This blog continues to discuss the topic of combining causal knowledge from multiple heterogeneous domains. Through this passage, we use bold letter like $\mathbf{U},\mathbf{S}$ to denote the set of variables. Without ambiguity, we use $\mathbf{V}$ to denote the set of nodes in causal DAG $\mathcal{G}.$ Moreover, $p_\mathbf{x}(\mathbf{y}\vert\mathbf{z})$ is short for post-intervention distribution $p(\mathbf{y}\vert\mathrm{do}(\mathbf{x}),\mathbf{z}).$

Formulation

We consider the set of heterogenous domains $\Pi=\lbrace\pi_1,\cdots,\pi_n\rbrace,$ where each domain associates with a SCM compatible with a common diagram $\mathcal{G}.$ Then, we fix the domain $\pi_0$ as the domain in which we are interested in answerinf a causal query. For emphasis we write $\pi_0$ as $\pi^{* }.$

Definition 1 (Domain discrepancy). Let $\pi$ and $\pi^{* }$ be domains compatible with a causal DAG $\mathcal{G}.$ We denote $\Delta\subseteq\mathbf{V}$ as a set of variables such that, for each $V\in\Delta,$ there might exist a discrepancy; either $f_ V\neq f^{* }_ V,$ or $p(\mathbf{U}_ V) \neq p^{* }(\mathbf{U}_ V).$

In the following discussion, we denote $\Delta_i$ as the discrepancy between domain $\pi_i$ and $\pi^*.$

Definition 2 (Selection Diagram). Given a collection of discrepancies $\boldsymbol{\Delta}=\lbrace\Delta_1,\cdots,\Delta_n\rbrace$ with respect to graph $\mathcal{G}=\langle\mathbf{V},\mathbf{E}\rangle,$ let $\mathbf{S}=\lbrace S_V: V\in\bigcup_{i\in[n]}\Delta_i\rbrace$ be the set of selection variables. Then, the selection diagram $\mathcal{G}^\boldsymbol{\Delta}$ is defined as

$$\mathcal{G}^\boldsymbol{\Delta}:=\langle\mathbf{V}\cup\mathbf{S},\mathbf{E}\cup\lbrace S_V\to V\rbrace_{V:S_V\in\mathbf{S}}\rangle.$$

Remark. We denote the domain specific selection variable set by $\mathbf{S}^{(i)}=\lbrace S_V:V\in\Delta_i\rbrace,$ and the rest by $\mathbf{S}^{(-i)}=\mathbf{S}\backslash\mathbf{S}^{(i)}.$ Selection variables work like switches selecting the domain of interest. The state space of $S_V\in\mathbf{S}$ is the index set $\lbrace 0\rbrace\cup\lbrace i:V\in\Delta_i\rbrace.$ Hence, a selection diagram can be viewed as the causal diagram for a unifying SCM representing heterogeneous SCMs where

$$p_\mathbf{x}(\mathbf{y}|\mathbf{w},\mathbf{S}^{(i)}=i,\mathbf{S}^{(-i)}=0) = p_\mathbf{x}^{(i)}(\mathbf{y}|\mathbf{w}).$$

Now we are ready to establish the most general transportability.

Definition 3 (General transportability, g-transportability). Let $\mathcal{G}^\boldsymbol{\Delta}$ be a selection diagram relative to source domains $\Pi=\lbrace\pi_1,\cdots,\pi_n\rbrace$ and a target domain $\pi^{* }.$ Let $\mathscr{Z}=\lbrace\mathcal{Z}^{(i)}\rbrace_ {i=1}^n$ be a specification of available experiments, where $\mathcal{Z}^{(i)}$ is the collection of sets of variables for $\pi_i$ in which experiments on each set of $\mathbf{Z}\in\mathcal{Z}^{(i)}$ can be conducted. Given disjoint sets of variables $\mathbf{X},\mathbf{Y}$ and $\mathbf{W},$ the conditional causal effect $p_\mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is said to be g-transportable with respect to $\langle\mathcal{G}^\boldsymbol{\Delta},\mathscr{Z}\rangle$ if $p_\mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is uniquely computable from $\mathcal{P}^{\Pi}_ \mathscr{Z} = \lbrace p_\mathbf{z}^{(i)}\ \vert\ \mathbf{Z}\in\mathcal{Z}^{(i)},\mathcal{Z}^{(i)}\in\mathscr{Z}\rbrace.$

Remark. For any $1\leq i\leq n,$ $\emptyset\in\mathcal{Z}^{(i)},$ hence $\mathcal{Z}^{(i)}$ contains not only the post-interventional distributions but also the observational distribution $p^{(i)}$ on $\pi_i$.

Characterizing g-transportability

Lemma 1. A causal effect $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is g-transportable with respect to $\langle\mathcal{G},\mathscr{Z}\rangle,$ if the expression $p_ \mathbf{x}(\mathbf{y}\vert\mathbf{w},\mathbf{S})$ is reducible, using the rules of do-calculus, to an expression in which every term of the form $p_\mathbf{z}(\mathbf{b}\vert \mathbf{c},\mathbf{S}’)$ satisfies $\mathbf{Z}\in\mathcal{Z}^{(i)}$ for some domains $\pi_i\in\Pi,$ and

$$(\mathbf{S}\backslash\mathbf{S}')\perp\mathbf{B}|\mathbf{C}\ \text{in}\ {\mathcal{G}^\boldsymbol{\Delta}\backslash\mathbf{Z}},\ \mathbf{S}^{(i)}\cap\mathbf{S}'= \emptyset.$$

Proof. The condition implies that $p_\mathbf{x}(\mathbf{y}\vert\mathbf{w},\mathbf{S}=0)$ can be written as an expression of $p_\mathbf{z}(\mathbf{b}\vert\mathbf{c},\mathbf{S}’=0).$ Furthermore, for any $\pi_i$ such that $\mathbf{Z}\in\mathcal{Z}^{(i)},$ we have $\mathbf{S}^{(i)}\subseteq\mathbf{S}\backslash\mathbf{S’}.$ By rule 1 of do-calculus,

$$p_\mathbf{z}(\mathbf{b}\vert\mathbf{c},\mathbf{S}=0) = p_\mathbf{z}(\mathbf{b}\vert\mathbf{c},\mathbf{S}^{(i)}=i,\mathbf{S}^{(-i)}=0)=p^{(i)}_\mathbf{z}(\mathbf{b}\vert\mathbf{c}).$$

Since $p_\mathbf{z}^{(i)}\in\mathcal{P}^{\Pi}_ \mathscr{Z},$ the expression is uniquely computable.

Lemma 2. A causal effect $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is not g-transportable with respect to $\langle\mathcal{G},\mathscr{Z}\rangle,$ if there exist two SCMs compatible with $\mathcal{G}^\boldsymbol{\Delta}$ where both agree on $\mathcal{P}^\Pi_\mathscr{Z}$ while disagreeing on $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w}).$

This is a g-version of Lemma 1 in Meta-transportability.

Graphical Criterion

Now we present a graphical criterion which can tell whether a conditional causal effect is not g-transportable.

Unconditional case

Recall the concepts of C-component, C-forest and hedge introduced by Shipster and Pearl, 2006. We consider a graph $\mathcal{G}:$

  • C-component: A subgraph of $\mathcal{G}$ whose bidirected edges from a spanning tree over all its vertices. A graph ${G}$ can be decomposed into a set $\mathcal{C}(\mathcal{G})$ of maximal C-components.
  • $\mathbf{R}$-rooted C-forest: A C-component whose root set is $\mathbf{R}$ and all observable vertices have at most one child.
  • Hedge: A pair of C-forests $\langle\mathcal{F},\mathcal{F}’\rangle$ with an inclusive relationship $\mathcal{F}’\subseteq\mathcal{F}$ and sharing the same root is called a hedge. A pair of $\mathbf{R}$-rooted $C$-forests $\langle\mathcal{F},\mathcal{F}’\rangle$ form a hedge for $p_\mathbf{x}(\mathbf{y})$ if

    $$\mathcal{F}'\subset\mathcal{F},\mathcal{F}\cap\mathbf{X}\neq\emptyset,\mathcal{F}'\cap\mathbf{X}=\emptyset,\mathbf{R}\subseteq An(\mathbf{Y})_{\mathcal{G}\backslash{\mathbf{X}}}.$$

Definition 4 (Hedgelet decomposition). The hedgelet decomposition $\mathbb{H}(\langle\mathcal{F},\mathcal{F}’\rangle)$ is the collection of hedgelets $\lbrace\mathcal{F}(\mathbf{T}):\mathbf{T}\in\mathcal{C}(\mathcal{F}\backslash\mathcal{F}’)\rbrace,$ where each hedgelet $\mathcal{F}(\mathbf{T})$ is a subgraph of $\mathcal{F}$ made of (i) $\mathcal{F}[\mathbf{V}(\mathcal{F}’)\cup\mathbf{T}]$ and (ii) $\mathcal{F}[De(\mathbf{T})_\mathcal{F}]$ without bidirected edges.

Definition 5 (S-thicket). Given $\langle\mathcal{G}^\boldsymbol{\Delta},\mathscr{Z}\rangle,$ an s-thicket $\mathcal{T}$ is a minimal non-empty $\mathbf{R}$-rooted C-forest of $\mathcal{G}$ such that for each $\mathcal{Z}\in\mathcal{Z}^{(i)}\in\mathscr{Z},$ either (a) $\Delta_i\cap\mathbf{R}\neq\emptyset,$ (b) $\mathbf{Z}\cap\mathbf{R}\neq\emptyset,$ or (c) there exists $\mathcal{F}\subseteq\mathcal{T}\backslash\mathbf{Z}$ where $\langle\mathcal{F},\mathcal{T}[\mathbf{R}]\rangle$ is a hedge. If $\mathbf{R}\subseteq An(\mathbf{Y})_ {\mathcal{G}\backslash\mathbf{X}}$ and every hedgelet of the hedges intersects with $\mathbf{X},$ then we say an s-thicket $\mathcal{T}$ is formed for $p^{* }_ \mathbf{x}(\mathbf{y})$ in $\mathcal{G}^\boldsymbol{\Delta}$ with respect to $\mathscr{Z}.$ Furthermore,

Remark. Intuitively, if an s-thicket formed for $p^{* }_ \mathbf{x}(\mathbf{y})$ is encountered, g-transporting $p^{* }_ {\mathbf{x}’}(\mathbf{r}),$ where $\mathbf{X}’=\mathbf{X}\cap\mathcal{T}$ is prevented, because every existing experimental distribution either (a) exhibits discrepancies over $\mathbf{R}$ and (b) is based on an intervention on the variables we wish to measure, or (c) is not sufficient to pinpoint $p^{* }_ {\mathbf{x}’}(\mathbf{r}).$ Moreover, $p^{* }_ \mathbf{x}(\mathbf{y})$ is not g-transportable since the negative result for $p^{* }_ {\mathbf{x}’}(\mathbf{r})$ can be mapped to that for $p^{* }_ {\mathbf{x}’}(\mathbf{y}’)$ where $\mathbf{Y}’\subseteq\mathbf{Y}$ and $\mathbf{R}\subseteq An(\mathbf{Y}’)_{\mathcal{G}\backslash\mathbf{X}’}.$

Lemma 3. A causal effect $p^{* }_\mathbf{x}(\mathbf{y})$ is not g-transportable with respect to $\langle\mathcal{G}^\boldsymbol{\Delta},\mathscr{Z}\rangle$ if there exists an s-thicket $\mathcal{T}$ formed for it.

Therefore, the non-existence of an s-thicket is a necessary condition for the g-transportability of an unconditional causal effect. It is proven to be a sufficient condtion as well in further works.

Conditional case

Assumption 1 (Conditional minimality). There is no $W\in\mathbf{W}$ such that

$$p_\mathbf{x}^{* }(\mathbf{y}|\mathbf{w}) = p_{(\mathbf{x},w)}^{* }(\mathbf{y}|\mathbf{w}\backslash\lbrace w\rbrace).$$

Remark. By rule 2 of do-calculus, the conditional minimality assumption can be graphically translated to the existence of an active backdoor path from each $W\in\mathbf{W}$ to $\mathbf{Y}$ in $\mathcal{G}_{\overline{\mathbf{X}}}$ given $\mathbf{X}$ and $\mathbf{W}\backslash\lbrace W\rbrace.$

Theorem 1. Let every $W\in\mathbf{W}$ have an active backdoor path to $\mathbf{Y}$ in $\mathcal{G}\backslash\mathbf{X}$ given $\mathbf{W}\backslash\lbrace W\rbrace.$ A query $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is not g-transportable if $p^{* }_ \mathbf{x}(\mathbf{w})$ is not g-transportable with respect to $\langle\mathcal{G}^{\boldsymbol{\Delta}},\mathscr{Z}\rangle.$

With the theorem above, the necessary and sufficient condition for the g-transportability of an conditional causal effect is derived below:

Theorem 2. Let every $W\in\mathbf{W}$ have an active backdoor path to $\mathbf{Y}$ in $\mathcal{G}\backslash\mathbf{X}$ given $\mathbf{W}\backslash\lbrace W\rbrace.$ A query $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w})$ is g-transportable if and only if $p^{* }_ \mathbf{x}(\mathbf{y},\mathbf{w})$ is g-transportable with respect to $\langle\mathcal{G}^{\boldsymbol{\Delta}},\mathscr{Z}\rangle.$

Proof. The sufficiency holds true since

$$p^*_\mathbf{x}(\mathbf{y}|\mathbf{w}) = \frac{p^*_\mathbf{x}(\mathbf{y},\mathbf{w})}{\sum_{\mathbf{y}'}p^*_\mathbf{x}(\mathbf{y}',\mathbf{w})}.\tag{1}$$

For the necessity, note that

$$p^*_\mathbf{x}(\mathbf{y},\mathbf{w}) = p^*_\mathbf{x}(\mathbf{y}|\mathbf{w})p^*_\mathbf{x}(\mathbf{w}).$$

Then if $p^{* }_ \mathbf{x}(\mathbf{y},\mathbf{w})$ is not g-transportable, at least one of $p^{* }_ \mathbf{x}(\mathbf{w})$ and $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w}).$ By theorem 1, the non-g-transportability of $p^{* }_ \mathbf{x}(\mathbf{y}\vert\mathbf{w})$ always holds.

Sound and Complete Algorithm

Lee, Correa and Bareinboim (2020) have proposed an algorithm gTR for solving any g-transportability instance. The algorithm gTR first converts the input causal query to a conditionally minimal expression, then solve an unconditional causal effect via function gTRu and compute the conditional one through equation (1) in Theorem 2. Function gTRu breaks down the query to subqueries and solve them. It is shown that whenever gTRu fails to g-transport a given query, an s-thicket for the query is encountered.

The algorithm µsID is proven to be sound and complete. Furthermore, the necessary and sufficient condition for the non-g-transportability of an unconditional causal effect can be derived:

Corollary 1. A causal effect $p^{* }_\mathbf{x}(\mathbf{y})$ is not g-transportable with respect to $\langle\mathcal{G}^\boldsymbol{\Delta},\mathscr{Z}\rangle$ if and only if there exists an s-thicket $\mathcal{T}$ formed for it.

References

  • Shpitser, I., and J. Pearl, 2006. Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of The Twenty-First National Conference on Artificial Intelligence, 1219–1226. AAAI Press.
  • Lee, S., J. D. Correa and E. Bareinboim, 2020. General Transportability – Synthesizing Observations and Experiments from Heterogeneous Domains. In Proceedings of the AAAI Conference on Artificial Intelligence, 34(06), 10210-10217.

<
Previous Post
Causal Inference: Negative Control
>
Next Post
Combining Experimental and Observational Data (I)