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1 Transportability
How to transfer causal knowledge across heterogeneous domains?

Domain discrepancy. Let π and π∗ be domains associated, respectively, with SCMsM andM∗ compatible
with a causal DAG G. We denote ∆ ⊆ V as a set of variables such that, for each V ∈ ∆, there might exist a
discrepancy; either fV ̸= f∗V , or p(UV ) ̸= p∗(UV ).

Selection diagram. Given the discrepancies ∆ with respect to graph G = ⟨V,E⟩, let S = {SV : V ∈ ∆} be
the set of selection variables. Then, the selection diagram D is defined as

D := ⟨V ∪ S,E ∪ {SV → V }V :SV ∈S⟩.

I list the types of transportability below.

• Transportability. From one domain (experiment) to another (observation)

• Z-Transportability. Experiments in source domain are limited.

• Meta-Transportability. Across multiple domains.

• Mz-Transportability. Across multiple domains, with limited experiments.

• G-Transportability. General Case.

• Soft g-transportability. From atomic interventions to soft interventions.

1.1 Transportability

Definition (Transportability). Given two domains π and π∗ characterized by shared causal DAG G and
probability distributions p and p∗, respectively. A causal relation R is said to be transportable from π to π∗ if
R(π) is estimable from the set I of interventions on π, and R(π∗) is identified from p, p∗, I in any model that
induces D.

From this definition, given a causal query p∗(y|do(x, )z), it can be expressed in terms of interventional
distributions on π (p with do-operators) and observational distributions on both π and π∗ (p and p∗ without
do-operators). An equivalent statement is presented below.

Theorem 1 (Pearl and Bareinboim, 2011). Let D be the selection diagram characterizing π and π∗, and S a
set of selection variables in D. The relation R = p∗(y|do(x), z) is transportable from π to π∗ if and only if the
expression p(y|do(x), z, s) is reducible, using the rules of do-calculus, to an expression in which S appears only
as a conditioning variable in do-free terms.

A more convenient kind of transportability is given below.
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Definition (Direct transportability). A causal relation R is said to be directly transportable from a domain
π to another π∗, if R(π) = R(π∗).

The direct transportability can be recognized via S-admissible set. A variable set Z is said to be S-admissible
with respect to the causal effect of X on Y, if

(Y ⊥⊥ S | Z)GX
.

Theorem 2 (Pearl and Bareinboim, 2011). For two population π and π∗, suppose we have the selection
diagram D with selection variable set S. The stratum-specific causal effect p∗(y|do(x), z) is transportable from
π to π∗ if Z is an S-admissible set with respect to the causal effect of X on Y.

1.2 Z-Transportability

Definition (z-Transportability). Let X,Y,Z be sets of disjoint variables and D a selection diagram relative
to domians ⟨π, π∗⟩. Denote the available interventional distributions available in π as

Iz =
⋃

Z′⊆Z

p(v|do(z))

A causal relation R is said to be transportable from π to π∗ if R(π) = p∗(y|do(x)) is z-transportable from π to
π∗ if it is identified from p, p∗, Iz in any model that induces D.

Compared with the transportability discussed in the previous subsection, z-transportability restricts the
interventions on variable set Z. Similarly, we have the following theorem.

Theorem 3 (Bareinboim and Pearl, 2013a). For two population π and π∗, suppose we have the selection
diagram D with selection variable set S. The relation R = p∗(y|do(x)) is z-transportable from π to π∗ if and
only if the expression p(y|do(x), s) is reducible, using the rules of do-calculus, to an expression in which all
do-operators are applied to subsets of Z, and the S-variables are separated from these do-operators.

1.3 Meta-Transportability

Transportability techniques are particularly valuable in situations that allow to combine empirical knowl-
edge from multiple source domains. While transportability is not realizable in any single diagram, meta-
transportability (or µ-transportability, for short) can be feasible.

Definition (µ-transportability). Let D = {D1, · · · ,Dn} be a collection of selection diagrams relative to source
domains Π = {π1, · · · , πn} and target domain π∗, respectively. Let ⟨p(i), I(i)⟩ be the pair of observational and
interventional distributions of πi, and p∗ be the observational distribution of π∗. The causal effect R = p(y|do(x))
is said to be µ-transportable from Π to π∗ in D if p∗(y|do(x)) is uniquely computable from

⋃
i∈[n]⟨p(i), I(i)⟩∪p∗

in any model that induces D .
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A proxy variable example. Consider the diagram shown above. The left hand side shows the causal diagram
G with selection variables S1 = {SW , SY } (blue squared nodes) relative to ⟨π1, π∗⟩ and S2 = {SZ , SX} (gold
squared nodes) relative to ⟨π2, π∗⟩. We want to estimate p∗(y|do(a), x), which is not directly transportable from
both π1 and π2. However, p∗(y|do(a), x) is µ-transportable:

p∗(y|do(a), x) =
∑
z∈Z

p∗(y|do(a), z, x)p∗(z|do(a), x) (1)

=
∑
z∈Z

p∗(y|do(a), z, x)p∗(z|x) (2)

=
∑
z∈Z

p(2)(y|do(a), z, x)p(1)(z|x), (3)

The equality (1) is the law of total probability, the equality (2) is follows from (Z ⊥⊥ A | X)G
A(X)

, and the
equality (3) follows from (Z ⊥⊥ SW , SY | X)GA

, and (Y ⊥⊥ SZ , SX | Z,X)GA
.

The principle of decomposition can be applied to solve the µ-transportability problems:

Theorem 4 (Bareinboim and Pearl, 2013b). Given a set of domains Π = {π1, · · · , πn} and target domain
π∗ characterized by selection diagrams D = {D1, · · · ,Dn} relative to target domain π∗. A relation R(π∗) is
µ-transportable from Π to π∗ if it can be decomposed into a set of subrelations of the form:

Rk = p∗(Vk|do(Wk),Zk) k = 1, · · · ,K

such that each Rk is uniquely computable from some Di ∈ D .

This decomposition is used in the algorithm for deriving µ-transportability. Moreover, Bareinboim and Pearl
(2013) proposed a graphical criterion (µs-hedge) to characterize non-µ-transportability in collection of selection
diagrams.

1.4 Mz-transportability

This definition combines z-transportability and µ-transportability.

Definition (mz-Transportability). Let D = {D1, · · · ,Dn} be a collection of selection diagrams relative to
source domains Π = {π1, · · · , πn}, and target domain π∗, respectively, and Zi (and Z∗) be the variables in
which experiments can be conducted in domain πi (and π∗). Let ⟨p(i), Iiz⟩ be the pair of observational and
interventional distributions of πi, where Iiz =

⋃
Z′⊆Zi

p(i)(v|do(z′)), and in an analogous manner, ⟨p∗, I∗z ⟩ be
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the observational and interventional distributions of π∗. The causal effect R = p∗(y|do(x)) is said to be mz-
transportable from Π to π∗ in D if p∗(y|do(x)) is uniquely computable from

⋃n
i=1⟨p(i), Iiz⟩ ∪ ⟨p∗, I∗i ⟩ in any

model that induces D .
Analogously, p∗(y|do(x)) is mz-transportable from Π to π∗ if the expression p(y|do(x), s1, · · · , sn) is re-

ducible, using the rules of do-calculus, to an expression in which (1) do-operators that apply to subsets of Iiz
have no Si-variables or (2) do-operators apply only to subsets of I∗z .

Algorithm. Bareinboim and Pearl (2014) derived the algorithm for deriving mz-transportability.

• Eliminate redundant do-operators. If V\An(Y)G ̸= ∅, then

p(y|do(x)) = p(y|do(x ∩An(Y )G),x\An(Y )G)

by Rule 1 of do-calculus. Then x ← x ∩ An(Y )G , G ← G(An(Y)), and the conditional term can be
averaged out using the observational distributions

∑
V\An(Y )G

P.

• Introduce other experiments. If W = (V\X)\An(Y)GX
̸= ∅, then

p(y|do(x)) = p(y|do(x,w))

by Rule 3 of do-calculus. Then x← (x,w).

• Decompose the query by C-components. If C(G\X) = {C0, C1, · · · , Ck}, then

p(y|do(x)) =
∑

V\{Y,X}

k∏
i=0

Q[Ci].

For each Q[Cj ], X← V\Cj , Y ← Cj .

• Identification. Transfer each Q[Cj ] to some Qπi [Cj ] if (Si ⊥⊥ Y | X)G(i)

X

and Zi ∪X ̸= ∅. Then, identify
each Qπi [Cj ] in domain πi.

1.5 G-Transportability

This definition generalizes themz-transportability. In the previous discussion, both z− andmz−transportability
borrows the concept of z-identifiability, which indicates that each domain is associated with experiments based
on every subset of manipulable variables Z ⊆ V. In g-transportability, experiments can be conducted on an
arbitrary collection of subsets of V.

We use an alternative definition of selection diagram. Given a collection of discrepancies ∆ = {∆1, · · · ,∆n}
with respect to graph G = ⟨V,E⟩, let S = {SV : V ∈

⋃
i∈[n] ∆i} be the set of selection variables. Then, the

selection diagram G∆ is defined as

G∆ := ⟨V ∪ S,E ∪ {SV → V }V :SV ∈S⟩.

We denote the domain specific selection variable set by S(i) = {SV : V ∈ ∆i}, and the rest by S(−i) = S\S(i).

Selection variables work like switches selecting the domain of interest. The state space of SV ∈ S is the index
set {0} ∪ {i : V ∈ ∆i}. Hence, a selection diagram can be viewed as the causal diagram for a unifying SCM
representing heterogeneous SCMs where

px(y|w,S(i) = i,S(−i) = 0) = p(i)x (y|w).
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Definition (g-transportability). Let G∆ be a selection diagram relative to source domains Π = {π1, · · · , πn}
and a target domain π∗. Let Z = {Z(i)}ni=1 be a specification of available experiments, where Z(i) is the
collection of sets of variables for πi in which experiments on each set of Z ∈ Z(i) can be conducted. Given
disjoint sets of variables X,Y and W, the conditional causal effect px(y|w) is said to be g-transportable with
respect to ⟨G∆,Z ⟩ if px(y|w) is uniquely computable from PΠ

Z = {p(i)z | Z ∈ Z(i),Z(i) ∈ Z }.

Theorem 5 (Lee, Correa and Bareinboim, 2019). A causal effect p∗x(y|w) is g-transportable with respect to
⟨G,Z ⟩, if the expression px(y|w,S) is reducible, using the rules of do-calculus, to an expression in which every
term of the form pz(b|c,S′) satisfies Z ∈ Z(i) for some domains πi ∈ Π, and

(S\S′) ⊥⊥ B | C in G∆\Z, S(i) ∩ S′ = ∅.

Lee et al. (2020) has proposed the conditions for g-transportability in both unconditional and conditional
case. For the conditional case, they established the connection between a graphical structure called s-thicket
and the non-g-transportability of a unconditional causal query, e.g. p(y|do(x)). For the conditional case,
they proved the equivalence between the g-transportability of p(y|do(x),w), and of p(y,w|do(x)). Hence, a
conditional g-transportable causal query can be computed by

p(y|do(x),w) =
p(y,w|do(x))∑

y′∈Y p(y
′,w|do(x))

.

1.6 G-transportability of Soft Interventions

The discussions above focuses on atomic interventions represented by do-operators, while in real scenarios the
interventions of interest can respond to a collection of variables in a stoachstic manner.

We consider four types of interventions summerized below. An intervention on variable X replace fx with
another function f ′x. In the conditional and stochastic cases, Pa′x are not necessarily contained by Pax as long
as they do not include any descendant of X. U′

x is different from Ux and U′
x ∩Ux = ∅.

Type Strategy Function
Idle σX = ∅ f ′x = fx

Atomic/do σX = x f ′x = x for some x ∈ Dom(X)
Conditional σX = g(Pa′x) f ′x = g(Pa′x)
Stochastic σX = p′(X|Pa′x) f ′x s.t. p′(x|Pa′x) =

∑
u′

x
p(f ′x(Pax,ux) = x)p(ux)

Table 1: Summary of the types of interventions considered.

Given an intervention σX, a new model can be defined as

MσX
= ⟨U ∪U′

x,V, (F\{fx}X∈X) ∪ {f ′x}X∈X, p(U,U
′
x)⟩,

which induces a probability distribution

p(v;σX) =
∑
u,ux

′

∏
i:Vi∈X

p(vi|Pavi ,uvi ,u
′
vi ;σX)p(ux

′;σX)
∏

i:Vi∈V\X

p(vi|Pavi ,uvi)p(u)

and a causal graph GσX
which contains a node σX for each X ∈ X with an edge (σX → X).
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Definition (Effect transportability). Let Y,X,W ⊂ V be disjoint variable sets. The (conditional) effect of
intervention σX on a set of outcome variables Y, conditional on W, p∗(y|w;σX), in a target domain π∗, is
said to be transportable from ⟨G∆,Z ⟩, if it is uniquely computable from the set of distribution Z for every
assignment (y,w) and every set of models {M(i)}πi∈Π inducing G∆ and Z .

Furthermore, Correa and Bareinboim (2022) proposed the conditions for g-transportability of soft interven-
tions in unconditional and conditional cases.

Theorem 6. Let Y,X ⊆ V be any two set of variables, and let σ∗
X be an atomic, conditional or stochastic

intervention. Then. the effect of σ∗
X on Y can be written as

p∗(y|σX = σ∗
X) =

∑
d\y

p∗(d\x;σ∗
x = x)

∏
X∈X∩D

p∗(x|Pax;σX = σ∗
X).

Moreover, this effect is transportable from ⟨G∆,Z ⟩ if and only if p∗(d\x;σ∗
x = x) is transportable from

p∗(d\x;σ∗
x = x), where D = An(Y)GσX

.
This theorem reduces the problem of transporting p∗(y|σX = σ∗

X) to that of transporting the effect of an
atomic intervention.

Theorem 7. Let Y,X,W ⊂ V, W∩Y = ∅, σX be any intervention, and GσX
the corresponding interventional

causal graph. Then, the effect of σX on Y conditioned on W is given by

p(y|w;σx) = p(y|wy;σx, σwy
= wy) =

∑
a\(y∪wy)

Q[A;σX]∑
a\wy

Q[A;σX]
,

where Wy ⊆W is the set of variables connected to any Y ∈ Y by any path in GσX[D]W, with D = An(Y)GσX
,

Wy = W\Wy, and A = An(Y ∪Wy)GσXW
. Furthermore, this effect is transportable from ⟨G∆,Z ⟩ if and

only if Q[A;σX] is transportable from ⟨G∆,Z ⟩.
Then one can use the C-component decomposition and the rules of σ-calculus to derive the g-transportability

for soft interventions.

2 Data Fusion
We discuss the methods to combine data collected from different sources, e.g. randomized experiments and
observational studys.

Settings. We use the potential outcome framework. Suppose we have data collected from RCTs and ob-
servational studies. Each individual in the RCT or observational population is described by a random tuple
(X,Y (0), Y (1), A, S), where

• X is a p-dimensional vector of covariates,

• A is a dichotomous treatment assignment,

• Y (a) is the potential outcome (also referred to as counterfactual outcome, which would be observed had
the subject been given treatment assignment A = a, a ∈ {0, 1}), and

• S is an indicative dichotomous variable for trial eligibility and willingness to participate.
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For RCT samples, S = 1 and for observational samples, S is unknown.
Suppose we have an RCT sample of size n identically distributed according to (X,Y (0), Y (1), A, S) | S = 1,

and an observational sample of size m identically distributed according to (X,Y (0), Y (1), A, S). Denote R =

{1, · · · , n} and O = {n + 1, · · · , n + m} as the index sets of samples from RCT and observational study,
respectively.

For the RCT data, we observe {(Xi, Ai, Yi, Si = 1)}ni=1, where Yi = AiYi(1)+ (1−Ai)Yi(0) according to the
SUTVA and consistency assumption. Moreover, the randomization implies

{Y (1), Y (0)} ⊥ A | X,S = 1.

Notations. Define the avergae treatment effect (ATE) in and conditional (CATE) observational and RCT
population:

τ = E[Y (1)− Y (0)], τ(x) = E[Y (1)− Y (0)|X = x],

τ1 = E[Y (1)− Y (0)|S = 1], τ1(x) = E[Y (1)− Y (0)|X = x, S = 1].

Propensity score and conditional mean outcome:for x ∈ Rp, a ∈ {0, 1},

e(x) = P(A = 1|X = x), e1(x) = P(A = 1|X = x, S = 1),

µa(x) = E[Y (a)|X = x], µa,1(x) = E[Y (a)|X = x].

Denote by α(x) the conditional odds that an individual with covariates x is in the RCT or observational
sample:

α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

P(i ∈ O | ∃i ∈ R ∪O, Xi = x)
=
πR(x)

πO(x)
=

πR(x)

1− πR(x)
.

Finally, we denote the distribution of covariates in observational data as f. Correspondingly, the distribution
of covariates in RCT can be obtaine by f1(·) = f(·|S = 1).

2.1 Observational data with no treatment and outcome

We first suggest two assumptions to generalize the findings in RCT to a target population.

Assumption 1 (Transportability of CATE). τ(x) = τ1(x) for all x.

Assumption 2 (Positivity). There exists some constant c > 0 such that P(S = 1|X) ≥ c almost surely.
Suppose that in our observational data O = {n + 1, · · · , n +m} we only observe the covariates Xi. Some

commonly used estimators, all identifiable and consistent, are listed below.

Inverse probability of sampling weighting (IPSW). Under Assumption 1 and 2, and exchangeability
holds for RCT, the ATE can be identified:

τ = E
[

n

mα(X)
τ1(X)

∣∣∣∣S = 1

]
= E

[
n

mα(X)

(
A

e1(X)
− 1−A

1− e1(X)

)
Y

∣∣∣∣S = 1

]
.

Let αn,m be an estimate of the odds of the indicatrix of being in the RCT, the IPSW estimator is given by

τ̂IPSW,n,m =
1

n

n∑
i=1

nYi
mα̂n,m(Xi)

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
.
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Plug-in g-formula. If exchangeability holds for RCT and Assumption 1,2 holds, then ATE can be identified
with another approach:

τ = E[µ1,1(X)− µ0,1(X)] = E[τ1(X)].

Then, we can fit an estimator µ̂a,1(·) of µa,1(·) for a = 0, 1, using the RCT data. Note that a correctly
specified regression model consistently estimates the mean outcome:

E[Y (a)|X = x] = E[Y (a)|X = x, S = 1] (Mean exchangeability)

= E[Y (a)|A = a,X = x, S = 1] (Exchangeability)

= E[Y |A = a,X = x, S = 1]. (Consistency)

Note that the assumption of mean exchangeability is stronger than Assumption 1. With an observational
distribution of X, plug-in the estimated (conditional) mean outcome to g-formula, we obtain

E[Y (a)] =

∫
E[Y |A = a,X = x, S = 1]f(x)dx.

Take the empirical version, we obtain the plug-in g-formula estimator:

τ̂G,m,n =
1

m

n+m∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) .

Doubly-robust estimator. The IPSW and outcome models can be combined to construct an Augmented
IPSW (AIPSW) estimator:

τ̂AIPSW,n,m =

n∑
i=1

1

mα̂n,m(Xi)

(
Ai(Yi − µ̂1,1,n(Xi))

e1(Xi)
− (1−Ai)(Yi − µ̂0,1,n(Xi))

1− e1(Xi)

)

+
1

m

n+m∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) .

This estimator is doubly robust, i.e., it is consistent when either one of the two models for α̂n,m(·) and
µa(·) (a = 0, 1) is correctly specified.

Calibration weighting. Let g(X) be a vector of functions of X to be calibrated. Then the weight ωi of
each individuals in the RCT sample can be solved via minimizing the negative entropy (so that the empirical
distribution of calibration weights is not too far away from the uniform distribution) under the balancing
constraint (so that the weighted mean of g in RCT sample is equal to the mean in the observational sample):

min
ω1,··· ,ωn

n∑
i=1

ωi logωi,

subjected to ωi ≥ 0, i = 1, · · · , n,
n∑
i=1

ωi = 1,

n∑
i=1

ωig(Xi) =
1

m

n+m∑
j=n+1

g(Xj).

Based on the calibration weights, the CW estimator is given by

τ̂CW,n,m =

n∑
i=1

ωiYi

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
.
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Moreover, an augmented CW estimator can be derived by combining it with the plug-in g-formula estimator.

2.2 Observational data with treatment and outcome

In observational data, the actual data generating process is unknown and there exists unmeasured confounding
in general, i.e.

{Y (1), Y (0)} ̸⊥ A | X.

Some methods have been proposed leverage trial and observational studies subject to hidden confounding.

2.2.1 Linear Combination

Denote our estimand as θ, then we can obtain its estimator θ̂exp and θ̂obs from trial data and observational
data, respectively. Usually, in a well-designed randomized experiment, θ̂exp is unbiased, however its variance
can be large due to the restriction of sample size. θ̂obs is biased, but it often has smaller variance than θ̂exp

since observational data is easily accessible.
A straight-forward linear combination strategy can be proposed to leverage the two estimators. Denote the

combined estimator as
θ̂λ = (1− λ)θ̂exp + λθ̂obs.

The optimal λ is chosen by minimizing the theoretical MSE:

λ∗ =
Var(θ̂exp)− Cov(θ̂exp, θ̂obs)

δ2 +Var(θ̂exp − θ̂obs)

where δ is the bias of observational estimator. Practically, it can be estimated as (θ̂exp − θ̂obs)2.

2.2.2 Bias model

This idea comes from Kallus et al. (2018). Define a bias function η(x) ̸= 0 to model the discrepancy between
the true CATE and the estimated CATE:

η(x) := τ(x)− τO(x).

Here τO(x) = E[Y |X = x,A = 1] − E[Y |X = x,A = 0]. Our estimator τ̂Om(x) is obtained by plugging-in
τO(x) since it is identifiable. Suppose η(x) can be well approximated by a function with low complexity. We
use a linear model to simulate the bias:

τ(x) = τO(x) + θ⊤x, θ ∈ Rp.

Now, we use a reweighting approach to obtain the expression of τ :

τ∗i =

(
Ai

e(Xi)
− 1−Ai

1− e(Xi)

)
Yi.

Then we can learn θ through a least-squares approach on the RCT sample:

θ̂ = argmin
θ∈Rp

n∑
i=1

(
τ∗i − τ̂Om(Xi)− θ⊤Xi

)2
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note that τ̂Om(·) is learned on the observational data. Using the estimated θ̂, we can recover the causal effect:

τ̂n,m(x) = τ̂Om(x) + θ̂⊤n,mx.

Under some regularity conditions, the θ̂n,m estimated through least squares is consistent, and τ̂(·) is consis-
tent on its target population.

2.2.3 Confounding function

This idea comes from Yang et al. (2020). We use S = 1 to denote the RCT sample and S = 0 the observational
data. Define the CATE τ(·) and confounding function, both can be identified:

τ(x) = E[Y (1)− Y (0)|X = x]

= E[Y |A = 1, X = x, S = 1]− E[Y |A = 0, X = x, S = 1],

λ(x) = E[Y (0)|A = 1, X = x, S = 0]− E[Y (0)|A = 0, X = x, S = 0]

= E[Y |A = 1, X = x, S = 0]− E[Y |A = 0, X = x, S = 0]− τ(x).

Then we parameterize τ(·) and λ(·) as follows:

τ(x) = τφ0
(x), λ(x) = λϕ0

(x), ψ0 = (φ⊤
0 , ϕ

⊤
0 )

⊤ ∈ Rp1 × Rp2 .

A crude estimator of ψ0 can be obtained by least squares, since τφ0(x) and λϕ0(x) are idetified.

Assumption 3 (Transportability and strong ignorability of trial treatment assignment).
E[Y (1)− Y (0)|X,S = 1] = E[Y (1)− Y (0)|X,S = 0] = τ(X), and
Y (a) ⊥ A | (X,S = 1) for a ∈ {0, 1}, and e(X,S) > 0 almost surely.

Then, we introduce the following variable to mimic Y (0) :

Hψ0 = Y − τφ0(X)A− (1− S)λϕ0(X)(A− e(X)).

Under Assumptions 3, we have E[Hψ0
|A,X, S] = E[Y (0)|X,S].

Furthermore, the semiparametric efficiency score of ψ0 can be derived. An estimating equation using this
score is applied to solve a semiparametric efficient estimator of ψ0.

3 Multi-Arm Bandits with Unobserved Confounders (MABUC)
In standard multi-armed bandit problems, an agent is faced with K ≥ 2 arms, each associated with an unknown
independent distribution of rewards. In each round the agent pulls an arm and receives a reward from the
corresponding distribution. The goal of the agent is to maximize the cumulative rewards over a series of rounds.

In the MABUC, agents are faced with the same task, except that unobserved confounders modify the
agent’s arm-choice predilections and payout rates at each round, and the dimensionality and functional form of
the unobserved confounders are unknown.

Definition 1 (Intent). Consider a structural causal model M and an endogeneous variable X ∈ V which is
determined by the structural equation X = fx(PaX , UX) and can be intervene on. After realization PaX =

pax, UX = ux, the output of the structural function given the current configuration of all unobserved confounders
is said to be the agent’s intent, i.e. I = fx(pax, ux).
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Intent can be viewed as an agent’s chosen action before its execution, which is a proxy for any influencing
unobserved confounders.

Definition 2 (K-armed bandits with unobserved confounders, MABUC) A K-armed bandit problem (K ∈
N,K ≥ 2) with unobserved confounders is defined as a SCMM with a reward distribution over p(u) where, for
each round 0 < t < T, t ∈ N :

1. Unobserved confounders: Ut represents the un-
observed variables encoding the payout rate and
unobserved influences to the propensity to choose
arm xt at round t.

2. Intent: It ∈ {x1, · · · , xk} represents the agent’s
intended arm choice at round t (prior to its final
choice, Xt) such that It = fi(paxt , ut).

3. Policy: πt ∈ {x1, · · · , xk} denotes the agent’s de-
cision algorithm as a function of its history and
current intent, fπ(ht, it).

4. Choice: Xt ∈ {x1, · · · , xk} denotes the agent’s
final arm choice that is “pulled” at round t,
xt = fx(πt).

5. Reward: Yt ∈ {0, 1} represents a Bernoulli re-
ward (0 for losing, 1 for winning) from choosing
arm xt under unobserved confounder state ut as
decided by yt = fy(xt, ut).

A graphical illustration of MABUC is given below.

3.1 Regret decision criterion (RDC)

In a MABUC instance with arm choice X, intent I = i, and reward Y, agents should choose the action a that
maximizes their intent-specific reward, or formally:

a∗ = argmax
a

[Ya|X = i],

where Ya is the counterfactual had X been a. The counterfactual term E[Yx|X = xi] is referred to as the
effect of treatment on the treated (ETT).

Theorem. The counterfactual ETT is empirically estimable for arbitrary action-choice dimension when agents
condition on their intent I = i and estimate the response Y to their final action choice X = a, i.e.

E[Ya|X = i] = E[Y |do(X = a), I = i].

3.2 Data Fusion

Suppose that the agent in MABUC possesses:

• observation of arm choices and payouts from other players, in forms of E[Y |X];

• the randomized experimental results from an expert, in forms of E[Y |do(X)];

• the knowledge to employ intent in its decision-making for choosing arms by maximizing the counterfactual
RDC E[Ya|X = i] where i encodes information about unobserved confounders since i = fi(pax, u).

11



Since the ETT minimized by RDC is estimable, we can construct a counterfactual dataset in the form of
{E[Ya|X = i]}(i,a)∈X×X , which can be obtained by the agent from its historical reward data. Here Y is a
Bernoulli reward, an estimator Ê[Ya|X = i] can be computed from the frequencies of win or loss under intent i
and action a. However, it does not utilize the information from observation and experimental dataset.

Some data fusion strategy is presented below.

Strategy 1. Cross-Intent Learning Consider the expansion of counterfactual quantity E[Yx], a single cell
in this system can be solve as:

EXInt[Yxr |xw] =
E[Yxr

]−
∑K
i=1,i̸=w E[Yxr

|xi]P(xi)
P(xw)

.

This form provides a systematic way of learning about arm payouts across intent conditions, which is
desirable because an arm pulled under one intent condition provides knowledge about the payouts of that arm
under other intent conditions.

Strategy 2. Cross-Arm Learning Consider a single-cell quary E[Yxr
|xw]. For any three arms xr, xs, xw

such that r /∈ {s, w}, it holds

E[Yxr ] =

K∑
i=1

E[Yxr |xi]P(xi), E[Yxs ] =

K∑
i=1

E[Yxs |xi]P(xi)

Then the query intent P(xw) can be expressed as

P(xw) =
E[Yxr

]−
∑K
i=1,i̸=w E[Yxr

|xi]P(xi)
E[Yxr

|xw]
=

E[Yxs
]−

∑K
i=1,i̸=w E[Yxs

|xi]P(xi)
E[Yxs

|xw]
,

and we can solve our query in terms of the paired arm xs:

EXArm[Yxr
|xw] =

{
E[Yxr

]−
∑K
i=1,i̸=w E[Yxr

|xi]P(xi)
}
E[Yxs

|xw]

E[Yxs ]−
∑K
i=1,i̸=w E[Yxs |xi]P(xi)

.

This formula allows our agent to estimate E[Yxr
|xw] from samples in which any arm xs ̸= xr was pulled

under the same intent xw. It can be viewed as information about Yxr
|xw flowing from arm xs ≠ xr to xr (under

intent xw).
A more robust estimate of the query can be obtained via inverse-variance-weighted average. Consider a

function hXArm such that EXArm[Yxr |xw] = hXArm(xr, xw, xs) and hXArm performs the empirical evaluation of
the RHS of the equation above. Moreover, let σ2

x,i = V̂ar(Yx|i) indicate the empirical payout variance for each
arm-intent condition. Then our estimator is

EXArm[Yxr |xw] =
∑K
i=1,i̸=r hXArm(xr, xw, xi)/σ

2
x,i∑K

i=1,i̸=r 1/σ
2
x,i

.

Strategy 3. The Combined Approach Until now, three methods are proposed to estimate an intent-
specific counterfactual reward E[Yxr

|xs] : + Ê[Yxr
|xs] from conditionally randomized experiment. + EXInt[Yxr

|xw]
from cross-intent learning. + EXArm[Yxr

|xw] from cross-arm learning.
While the variance of Ê[Yxr

|xs] can be estimated directly as the conditional sample variance σ2
xr,xs

=

V̂ar(Yxr
|xs), the cross-intent and cross-arm estimates, as combinations of sample payout estimates, have roughly
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estimated variances:

σ2
XInt =

1

2K − 1

 K∑
i=1,i̸=w

σ2
xr,xi

+

 K∑
i=1,i̸=w

σ2
xs,xi

+ σ2
xs,xw

 ,
σ2

XArm =
1

K − 1

K∑
i=1,i̸=w

σ2
xr,xi

.

Then, an inverse-variance weighting scheme can be employed to leverage the three estimators:

α = Ê[Yxr
|xs]/σ2

xr,xs
+ EXInt[Yxr

|xw]/σ2
XInt + EXArm[Yxr

|xw]/σ2
XArm,

β = 1/σ2
xr,xs

+ 1/σ2
XInt + 1/σ2

XArm,

Ecombo[Yxr |xs] = α/β.

Overview.

1. Assume that the agent has collected large sam-
ples of experimental and observational data from
its environment.

2. Unobserved confounders (UCs) in the environ-
ment are realized by the agent, though their la-
bels and values are unknown.

3. From these UCs and any other observed features
in the environment, the agent’s heuristics suggest
an action to take, i.e., its intent. With its intent
known, the agent combines the data in its history
(in this work, by the prescription of Strategy 3
above) to better inform its decision-making.

4. Based on its intent and combined history, the
agent commits to a final action choice.

5. The action’s response in the environment (i.e., its
reward) is observed, and the collected data point
is added to the agent’s counterfactual dataset.

3.3 Thompson Sampling with RDC

To address the MABUC problem using data fusion strategy, Forney et al. proposed an implementation of RDC
using Thompson Sampling as its basis. In each round t, the agent performs as follows:

• Observe the intent it from the realization of unobserved confounders ut in the current round;

• For each arm xr, r = 1, · · · ,K, sample Ê[Yxr
|it] from distribution Beta(sxr,it , fxr,it) in which sxr,it is the

number of successes (Y = 1) and fxr,it the number of failures (Y = 0).

• Compute the it-specific score for each arm using the combined datasets via Strategy 3.

• According to RDC, choose the arm xa with the highest it-specific score.

• Observe the result and update Ê[Yxa
|it].
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