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1 Sub-Gaussian Random Variables

1.1 Moment-Generating Function and Chernoff Bound

In probability theory, the moment-generating function is an alternative characterization of probability distri-

butions. The k-th moment of a distribution can be obtained by evaluating the k-th derivative of its moment-

generating function at 0, as is implied by the nomenclature. In contrast to characteristic functions, the

moment-generating function of a distribution does not necessarily exist. (As a counterexample, consider a

standard Cauchy distribution with density 1
π(1+x2) , −∞ < x <∞.)

Definition 1.1 (Moment-generating function, MGF). Let X be a real-valued random variable such that

E[etX ] exists in some neighborhood of 0, i.e. there exists b > 0 such that E[etX ] < ∞ for t ∈ (−b, b). The
moment-generating function (MGF) of X, denoted by MX , is defined as

MX(t) := E[etX ].

We also define the centered MGF as

M∗
X(t) := E[et(X−EX)] = e−tEXMX(t).

It can be verified that the existence of first-moment EX is ensured by the existence of MGF.

In practical situations, we may wonder if our sample properly depicts the population. In other words, we

are interested in the probability that a variable falls in the tail of a distribution. Applying Markov’s inequality

to the integrand in MGF, we can attain the Chernoff bound:

Lemma 1.2 (Chernoff bound). Suppose that MX(t) <∞ for all t ∈ R. Then for all ϵ ≥ 0, we have

P(X − EX ≥ ϵ) ≤M∗
X(t)e−tϵ, ∀t ≥ 0.

To obtain a tight bound, take the infimum of RHS:

P(X − EX ≥ ϵ) ≤ inf
t≥0

M∗
X(t)e−tϵ.

As an example, we focus on the Chernoff bound of a Gaussian variable Z ∼ N(0, σ2). The MGF of Z is

M∗
Z(t) =

1√
2πσ

∫
etz−

z2

2σ2 dz = exp

(
t2σ2

2

)
.

And we get the bound

P(Z ≥ ϵ) ≤ inf
t≥0

exp

(
t2σ2

2
− tϵ

)
= exp

(
− ϵ2

2σ2

)
. (1.1)
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1.2 Sub-Gaussian Random Variables

From the above discussion, we can conclude that if a random variable X satisfies M∗
X(t) ≤ exp

(
t2σ2/2

)
uniformly, then a decay rate in form of (1.1) can be obtained. This motivates the definition of sub-Gaussian

random variables.

Definition 1.3 (Sub-Gaussian random variable). Let σ > 0. A random variable X with mean µ = EX is said

to be sub-Gaussian with variance proxy σ2 (or σ2-sub-Gaussian), if

M∗
X(t) = E[et(X−µ)] ≤ exp

(
t2σ2

2

)
, ∀t ∈ R.

By definition, any σ2-sub-Gaussian random variable is also ρ2-gaussian for any ρ > σ. This definition

generalizes Gaussian tail bounds to non-Gaussian variables on the MGF condition. Nevertheless, there are

several equivalent characterizations of sub-Gaussianity. This is an exercise in Handel’s book, chapter 3.

Theorem 1.4 (Characterizations of sub-Gaussian variables). Let X be a centered random variable, i.e.,

EX = 0. Then the following statements are equivalent:

(i) (MGF condition). There is a constant σ > 0 such that

E[etX ] ≤ exp

(
t2σ2

2

)
, ∀t ∈ R. (1.2)

(ii) (Tail bound condition). There is a constant ρ > 0 such that

P(|X| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2ρ2

)
, ∀ϵ > 0. (1.3)

(iii) There is a constant ν > 0 such that

E
[
exp

(
X2

2ν2

)]
≤ 2. (1.4)

(iv) (Moment condition) There is a constant θ > 0 such that

E[X2k] ≤ (2k)!

2kk!
θ2k, ∀k ∈ N. (1.5)

Proof. (i) ⇒ (ii): Fix ϵ > 0. For any t > 0, we have

P(X ≥ ϵ) = P
(
etX ≥ e−tϵ

)
≤ etϵE[etX ] ≤ exp

(
1

2
t2σ2 − tϵ

)
.

Setting t = ϵ/σ2 implies P(X ≥ ϵ) ≤ exp
(
−ϵ2/2σ2

)
. By applying similar calculation to −X, we can obtain

P(X ≤ −ϵ) ≤ exp
(
−ϵ2/2σ2

)
, and the result (1.3) immediately follows for ρ = σ.

(ii) ⇒ (iii): Suppose (1.3) holds for ρ > 0. We will use the following fact, if Y is an random variable that is

almost surely non-negative and has distribution F , and ϕ is a differentiable increasing function, then

E[ϕ(Y )] =

∫ ∞

0

ϕ(y)dF (y) =

∫ ∞

0

(
ϕ(0) +

∫ y

0

ϕ′(ϵ)dϵ

)
dF (y)

= ϕ(0) +

∫ ∞

0

∫ ∞

t

ϕ′(ϵ)dF (y)dϵ = ϕ(0) +

∫ ∞

0

P(Y ≥ ϵ)ϕ′(ϵ)dϵ.
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Set Y = X2. For any ν > ρ, we have

E
[
exp

(
X2

2ν2

)]
= 1 +

∫ ∞

0

1

2ν2
exp

( ϵ

2ν2

)
P(X2 ≥ ϵ)dϵ

≤ 1 +
1

ν2

∫ ∞

0

exp

{
ϵ

(
1

2ν2
− 1

2ρ2

)}
dϵ = 1 +

2ρ2

ν2 − ρ2
, (1.6)

where the inequality follows from (1.3). Then we can attain (1.4) by setting ν =
√
3ρ in (1.6).

(iii) ⇒ (iv): Note that ex ≥ 1 + xk/k! for x ≥ 0 and k ∈ N, we have

2 ≥ E
[
exp

(
X2

2ν2

)]
≥ 1 +

E[X2k]

2kν2kk!
.

Then

E[X2k] ≤ (2k)!!ν2k ≤ (2k + 1)!!ν2k =
(2k)!

2kk!
(2k + 1)ν2k,

and (1.5) follows for θ =
√
3ν.

(iv) ⇒ (i): Let X ′ be an independent copy of X and Y := X−X ′. Then Y is symmetric, and the odd moments

vanish:

E[etY ] =
∞∑
k=0

tkE[Y k]

k!
=

∞∑
k=0

t2kE[Y 2k]

(2k)!
. (1.7)

For any k ∈ N, we have the cr-inequality:

Y 2k = (X −X ′)2k = 22k
(
X

2
+

−X ′

2

)2k

≤ 22k
(
1

2
X2k +

1

2
(−X ′)2k

)
,

E[Y 2k] ≤ 22k
(
1

2
E[X2k] +

1

2
E[(X ′)2k]

)
= 22kE[X2k].

Plug in to (1.7), we have

E[etY ] ≤
∞∑
k=0

(2t)2kE[X2k]

(2k)!
≤

∞∑
k=0

2k(tθ)2k

k!
≤ exp

(
2t2θ2

)
.

Since EX = 0, we have

E[etX ] = E[etX−tEX′
] ≤ E[et(X−X′)] = E[etY ] ≤ exp

(
2t2θ2

)
.

Then (1.2) holds for σ = 2θ, and we finish the proof.

Proposition 1.5 (Sub-Gaussian vector). Suppose X1, · · · , Xn are independent sub-Gaussian variables with

variance proxy σ2. Then for any u ∈ Rn with ∥u∥2 = 1, X⊤u is σ2-sub-Gaussian, where X = (X1, · · · , Xn)
⊤

is said to be a σ2-sub-Gaussian vector.

Proof. By direct calculation

E
[
etX

⊤u
]
=

n∏
i=1

E
[
etuiXi

]
≤

n∏
i=1

exp

(
t2u2iσ

2

2

)
= exp

(
t2σ2∥u∥2

2

)
= exp

(
t2σ2

2

)
.
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1.3 Illustrative Examples

The sub-Gaussian family contains a wide range of random variables, such as Gaussian variables, Rademacher

variables and bounded variables.

Proposition 1.6 (Rademacher variables are sub-Gaussian). Let X be a Rademacher random variable, i.e.

P(X = 1) = P(X = −1) = 1/2. Then X is 1-sub-Gaussian.

Proof. For all t ∈ R, we have E[etX ] =
et + e−t

2
=

∞∑
k=0

t2k

(2k)!
≤

∞∑
k=0

t2k

2kk!
= et

2/2.

Lemma 1.7 (Hoeffding’s lemma). Suppose X is a random variable such that P(X ∈ [a, b]) = 1. Then X is a

sub-Gaussian variable with variance proxy (b− a)2/4.

Proof. This proof is adapted from Handel’s notes. Without loss of generality, let EX = 0. Use exponential

tilting. Fix t ∈ R. For any Borel set B ∈ B(R), define Pt : B(R) → R as

Pt(B) :=
E
[
etX1{X∈B}

]
E[etX ]

.

It can be verified that Pt is a valid probability measure on R. Let random variable Ut ∼ Pt. Using simple

approximation theorem, we have for any measurable function f that

E[f(Ut)] =
E[etXf(X)]

E[etX ]
.

Now we investigate the logarithmic MGF ψX(t) = logE[etX ]. Using the interchangeability of derivative and

integral (dominated convergence theorem), we have

ψ′
X(t) =

E[XetX ]

E[etX ]
= E[Ut], ψ′′

X(t) =
E[X2etX ]

E[etX ]
−
(
E[XetX ]

E[etX ]

)2

= Var(Ut). (1.8)

By definition, P(Ut ∈ [a, b]) = Pt([a, b]) = 1, hence

Var(Ut) = E[(Ut − EUt)
2] = inf

c∈R
E[(Ut − c)2] ≤ E

[(
Ut −

a+ b

2

)2
]
≤
(
b− a

2

)2

. (1.9)

Using (1.8) and (1.9), we can bound ψX as follows:

ψX(t) = ψX(0) +

∫ t

0

(
ψ′
X(0) +

∫ s

0

ψ′′
X(u)du

)
ds ≤

∫ t

0

∫ s

0

(
b− a

2

)2

duds =
t2(b− a)2

8
.

Thus we complete the proof.
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2 Gaussian Concentration

2.1 Entropy and Sub-Gaussianity

Definition 2.1 (Entropy). For a non-negative random variable Y , the entropy of Y is defined as

Ent(Y ) = E[Y log Y ]− EY log(EY ).

For a random variable X, the following lemma has established the connection between the entropy of etX

and sub-Gaussianity.

Lemma 2.2 (Herbst). Suppose that random variable X satisfies

Ent(etX) = E[tXetX ]− E[etX ] logE[etX ] ≤ t2σ2

2
E[etX ], ∀t ∈ R. (2.1)

Then X is σ2-sub-Gaussian. Conversely, if X is σ2

4 -sub-Gaussian, then it satisfies (2.1).

Proof. (i) Let µ = EX, and define function φ : R\{0} → R, t 7→ 1
t logE[e

t(X−µ)], then

dφ

dt
(t) =

1

t

E[(X − µ)et(X−µ)]

E[et(X−µ)]
− 1

t2
logE[et(X−µ)] =

1

t

E[XetX ]

E[etX ]
− 1

t2
logE[etX ] ≤ σ2

2
.

We can complete φ on R by redefining φ(0) = limt→0 φ(t) = 0. Then φ(t)− tσ2/2 is non-increasing on R, and
X is σ2-sub-Gaussian:

logE[etX ]− t2σ2

2
= tφ(t)− t2σ2

2
≤ tφ(0) = 0.

(ii) Suppose X is σ2

4 -sub-Gaussian, and define Z = etX/E[etX ]. To prove (2.1), it suffices to show that

E[Z logZ] ≤ t2σ2

2
.

Suppose Z ∼ F. Since Z is non-negative and EZ = 1, we can define a new probability measure G such that

dG(z) = zdF (z). Then by Jensen’s inequality, we have

E[Z logZ] =

∫
z log zdF (z) =

∫
log zdG(z) ≤ log

(∫
zdG(z)

)
= logE[Z2].

Furthermore, note that E[et(X−µ)] ≥ eE[t(X−µ)] = 1, we have Z ≤ et(X−µ), and

E[Z logZ] ≤ logE[Z2] ≤ logE[e2t(X−µ)] ≤ (2t)2σ2

8
=
t2σ2

2
,

where the last equality follows from the sub-Gaussianity of X. Hence we conclude the proof.

2.2 Lipschitz Function of Gaussian Variables

Before we proceed, we first introduce a logarithmic Sobolev inequality

Lemma 2.3 (Gaussian log-Sobolev inequality). Let dµ(x) = (2π)−
n
2 e−

1
2 |x|

2

dx be the standard Gaussian

measure on Rn. Let f : Rn → R be a smooth function such that f ≥ 0 and f ∈ L1(µ). Then∫
Rn

f log f dµ ≤ 1

2

∫
Rn

|∇f |2

f
dµ+ ∥f∥L1(µ) log ∥f∥L1(µ). (2.2)
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Proof. The proof is based on the semigroup theory for heat kernels. Given any t > 0, define Pt by

(Ptf)(x) =
1

(4πt)n/2

∫
Rn

f(x)e−
|x|2
4t dx, f ∈ C∞

0 (Rn).

The generator for the semigroup (Pt)t≥0 is the Laplacian operator ∆, and Pt∆f = ∆Ptf . Furthermore,

d

ds
Ps(Pt−sf logPt−sf) = Ps [∆(Pt−sf logPt−sf)− (1 + logPt−sf)∆Pt−sf ]

= Ps

[
(∆Pt−sf) logPt−sf + 2∇Pt−sf · ∇Pt−sf

Pt−sf
+ Pt−sf ∇ · ∇Pt−sf

Pt−sf
− (1 + logPt−sf)∆Pt−sf

]
= Ps

(
|∇Pt−sf |2

Pt−sf

)
.

By Cauchy-Schwarz inequality,

|∇Pt−sf |2 = |Pt−s∇f |2 ≤ (Pt−s|∇f |)2 ≤ Pt−s

(
|∇f |2

f

)
Pt−sf

We use the fundamental theorem of calculus and the last two displays to obtain

Pt(f log f)− Ptf logPtf =

∫ t

0

d

ds
Ps(Pt−sf logPt−sf) ds

=

∫ t

0

Ps

(
|∇Pt−sf |2

Pt−sf

)
ds

≤
∫ t

0

PsPt−s

(
|∇f |2

f

)
ds = tPt

(
|∇f |2

f

)
.

Particularly, we taket = 1
2 and evaluate both sides at x = 0:∫
Rn

f log f dµ−
∫
Rn

f dµ log

(∫
Rn

f dµ

)
≤ 1

2

∫
Rn

|∇f |2

f
dµ.

Therefore ∫
Rn

f log f dµ ≤ 1

2

∫
Rn

|∇f |2

f
dµ+ ∥f∥L1(µ) log ∥f∥L1(µ).

Thus we complete the proof.

Remark. We can understand (2.2) from an information-theoretic perspective. Define g = f/∥f∥L1(µ) and

dν = g dµ, it can be verified that ν is also a probability measure on Rn, and g = dν/dµ is the Radon-Nikodym

derivative of ν with respect to µ. Moreover, (2.2) can be written as∫
g log g dµ ≤ 1

2

∫
|∇g|2

g
dµ. (2.3)

The LHS is the Kullback-Leibler divergence (or relative entropy) from µ to ν, and the RHS is half the relative

Fisher information:

DKL(ν∥µ) :=
∫

log

(
dν

dµ

)
dν ≤ 1

2

∫
|∇ log g|2 dν =:

1

2
I(ν∥µ).

Therefore, this lemma gives an upper bound for the Kullback-Leibler divergence between ν and µ in terms of

their relative Fisher information.
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Theorem 2.4 (Gaussian concentration). Let X ∼ N(0, In), and let f : Rn → R be an L-Lipschitz continuous

function. Then f(X) is a sub-Gaussian variable with variance proxy L2.

Proof. Step I. Fix a smooth function h ≥ 0 with ∥h∥L1(µ) =
∫
|h|dµ > 0. By Theorem 2.3,

∫
h log hdµ− ∥h∥L1(µ) log ∥h∥L1(µ) ≤

1

2

∫
|∇h|2

h
dµ. (2.4)

Suppose f ∈ C∞(Rn) and f is L-Lipschitz continuous. Fix t ∈ R and set h = etf . By (2.4), we have

Ent
(
etf(X)

)
≤ t2

2
E
[
etf(X)|∇f(X)|2

]
≤ t2L2

2
E
[
etf(X)

]
,

where the last equality holds because f is L-Lipschitz continuous. By Lemma 2.2, f(X) is L2-sub-Gaussian.

Step II. Now it remains to show that the conclusion holds for all L-Lipschitz f. (f is not necessarily differen-

tiable.) Choose a non-negative ψ ∈ C∞
c (Rn) such that supp(ψ) ⊆ {x ∈ Rn : ∥x∥ ≤ 1} and

∫
ψ(x)dx = 1, and

define ψϵ(x) :=
1
ϵψ
(
x
ϵ

)
for ϵ > 0. Then

∫
ψϵ(x)dx = 1.

Fix ϵ > 0, and define fϵ = ψϵ ∗ f : x 7→
∫
ψϵ(x− y)f(y)dy. Then fϵ ∈ C∞(Rn), and fϵ is L-Lipschitz:

|fϵ(x)− fϵ(x
′)| ≤

∫
ψϵ(y)

∣∣f(x− y)− f(x′ − y)
∣∣dy

≤
∫
ψϵ(y)L∥x− x′∥2dy ≤ L∥x− x′∥2.

Moreover, fϵ converges uniformly to f as ϵ→ 0:

∥fϵ − f∥∞ = sup
x∈Rn

|fϵ(x)− f(x)| = sup
x∈Rn

∣∣∣∣∫ ψϵ(x− y) (f(y)− f(x)) dy

∣∣∣∣
≤ sup

x∈Rn

∫
∥y−x∥2≤ϵ

ψϵ(x− y)L ∥y − x∥2 dy ≤ ϵL

∫
∥y∥2≤ϵ

ψϵ(−y)dy = ϵL.

Step III. Fix t ∈ R. For any ϵ > 0 and x ∈ Rn, we have etf(x) ≤ etfϵ(x)+|t|ϵL. Moreover, fϵ ∈ C∞
c (Rn) and fϵ

is continuous, then fϵ(X) is L2-sub-Gaussian. Therefore

E
[
etf(X)

]
≤ inf

ϵ>0
E
[
etfϵ(X)

]
e|t|ϵL ≤ inf

ϵ>0
exp

(
t2L2

2
+ |t|ϵL

)
= exp

(
t2L2

2

)
,

which concludes the proof.
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3 Tail Bound for Means and Maxima

3.1 Hoeffding Bound

Proposition 3.1. Let X1, · · · , Xn be independent sub-Gaussian variables with variance proxies σ2
1 , · · · , σ2

n.

Then

P

(
n∑

i=1

(Xi − EXi) ≥ ϵ

)
≤ exp

(
− ϵ2

2
∑n

i=1 σ
2
i

)
. (3.1)

Proof. It can be easily verified that
∑n

i=1(Xi − EXi) is a sub-Gaussian variable with mean 0 and variance

proxy
∑n

i=1 σ
2
i . Then (3.1) immediately follows from (1.3) in Theorem 1.4.

Combining Lemma 1.7 and Theorem 3.1 gives the following Hoeffding’s inequality:

Theorem 3.2 (Hoeffding). Let X1, · · · , Xn be independent random variables such that P(Xi ∈ [ai, bi]) = 1

for i = 1, · · · , n. Then

P

(
1

n

n∑
i=1

(Xi − EXi) ≥ ϵ

)
≤ exp

{
− 2n2ϵ2∑n

i=1(bi − ai)2

}
.

This is an extremely concentration inequality in statistical learning theory.

3.2 Maximum of Sub-Gaussian Variables

Suppose we have n centered independent sub-Gaussian variables with variance proxy σ2. A natural tail bound

for the maximum can be attained from the fact that {max1≤i≤nXi ≥ ϵ} =
⋃n

i=1{Xi ≥ ϵ}:

P
(

max
1≤i≤n

Xi ≥ ϵ

)
≤ n exp

(
− ϵ2

2σ2

)
. (3.2)

We can also bound the expected value as follows.

Theorem 3.3. Let X1, · · · , Xn be independent σ2-sub-Gaussian variables with mean zero. Then

E
[
max
1≤i≤n

Xi

]
≤ σ

√
2 log n.

Proof. Fix ϵ > 0. By Jensen’s inequality, we have

E
[
max
1≤i≤n

Xi

]
≤ 1

ϵ
logE

[
exp

(
ϵ max
1≤i≤n

Xi

)]
≤ 1

ϵ
logE

[
n∑

i=1

eϵXi

]

≤ 1

ϵ
log

{
n∑

i=1

exp

(
ϵ2σ2

2

)}
=

log n

ϵ
+
ϵσ2

2
.

Then we conclude the proof by setting ϵ =
√
2 log n/σ.

An immediate corollary of this theorem is the Massart’s finite class lemma.

Lemma 3.4 (Massart). Let A be a finite subset of Rn and ϵ1, · · · , ϵn be independent Rademacher variables.

Denote by rA = maxa∈A ∥a∥2 the radius of A. Then we have

E

[
max
a∈A

1

n

m∑
i=1

ϵiai

]
≤
rA
√
2 log |A|
n

.
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4 Tail Bound for Quadratic Forms

4.1 Gaussian Quadratic Forms

Lemma 4.1 (Hsu et al., 2012). Let Z1, · · · , Zm be independent standard Gaussian variables. Fix non-negative

vector α ∈ Rm
+ and vector β ∈ Rm. If 0 ≤ t < 1

2∥α∥∞
, then

E

[
exp

(
t

m∑
i=1

αiZ
2
i +

m∑
i=1

βiZi

)]
≤ exp

(
t∥α∥1 +

t2∥α∥22 + ∥β∥22/2
1− 2t∥α∥∞

)
. (4.1)

Proof. Fix 0 ≤ t < 1
2∥α∥∞

, and let ηi = 1/
√
1− 2tαi > 0 for i = 1, · · · ,m. Then

E
[
exp

{
tαiZ

2
i + βiZi

}]
=

1√
2π

∫
exp

{
−
(
1

2
− tαi

)
z2 + βiz

}
dz

=
1√
2π

∫
exp

{
−1

2

(
z

ηi
− βiηi

)2

+
1

2
β2
i η

2
i

}
dz

= ηi exp

(
1

2
β2
i η

2
i

)
= exp

{
−1

2
log(1− 2tαi) +

β2
i

2(1− 2tαi)

}
. (4.2)

To bound (4.2), note that

− log(1− 2tαi) =

∞∑
k=1

(2tαi)
k

k
≤ 2tαi +

∞∑
k=2

(2tαi)
k

2
= 2tα+

2t2α2
i

1− 2tαi
. (4.3)

Combining (4.2) and (4.3), we have

E
[
exp

(
tαiZ

2
i + βiZi

)]
≤ exp

(
tαi +

t2α2
i + β2

i /2

1− 2tαi

)
≤ exp

(
tαi +

t2α2
i + β2

i /2

1− 2t∥α∥∞

)
. (4.4)

Summation of (4.4) from i = 1 to m immediately yields (4.1).

4.2 Quadratic Forms of Sub-Gaussian Variables

In this subsection we introduce a tail bound for the quadratic form of sub-Gaussian vectors.

Theorem 4.2 (Tail bound for quadratic form). Let X1, · · · , Xn be independent sub-Gaussian variables with

mean 0 and variance proxy σ2. Then for any positive definite matrix Σ ∈ Rn×n and t > 0, we have

P
(
X⊤ΣX ≥ σ2

{
tr(Σ) + 2∥Σ∥F

√
t+ 2∥Σ∥2t

})
≤ e−t, (4.5)

where X = (X1, · · · , Xn)
⊤ is the vector of sub-Gaussian variables.

Proof. Since Σ is positive definite, it admits a spectral decomposition Σ = Q⊤SQ where Q ∈ Rn×n is an

orthogonal matrix and S = diag{ρ1, · · · , ρn} with eigenvalues ρ1 ≥ · · · ≥ ρn > 0. Let Z be a vector of n

independent standard Gaussian variables. Then for any α ∈ Rn and ϵ > 0, we have

E
[
eZ

⊤α
]
= e∥α∥

2
2/2. (4.6)

9



Denote A = Q⊤S1/2Q. For any ϵ > 0, define set Eϵ =
{
x ∈ Rn : x⊤Σx ≥ ϵ

}
. Fix λ > 0, we have

E
[
exp

(
λZ⊤AX

)]
=

∫
Rn

E
[
exp

(
λZ⊤AX

)
|X = x

]
dFX(x)

≥
∫
Eϵ

E
[
exp

(
λZ⊤AX

)
|X = x

]
dFX(x)

=

∫
Eϵ

exp

(
1

2
λ2Z⊤ΣZ

)
dFX(x) ≥ exp

(
1

2
λ2ϵ

)
P(X⊤ΣX ≥ ϵ), (4.7)

where the second equality follows from (4.6). Moreover,

E
[
exp

(
λZ⊤AX

)]
≤ E

[
exp

(
λ2σ2

2
Z⊤ΣZ

)]
. (4.8)

Combining (4.7) and (4.8) yields

P(X⊤ΣX ≥ ϵ) ≤ E
[
exp

(
λ2σ2

2
Z⊤ΣZ − 1

2
λ2ϵ

)]
.

Define Y = QZ, the orthogonality of Q implies that Y is also a vector of n independent standard Gaussian

variables, and Z⊤ΣZ = Y ⊤SY =
∑n

i=1 ρiY
2
i . Let ρ = (ρ1, · · · , ρn)⊤ and γ = λ2σ2/2. By Lemma 3.1, we have

for 0 ≤ γ < 1
2∥ρ∥∞

that

P(X⊤ΣX ≥ ϵ) ≤ exp

(
− γϵ
σ2

+ γ∥ρ∥1 +
γ2∥ρ∥22

1− 2γ∥ρ∥∞

)
.

Let δ = 1− 2γ∥ρ∥∞ with 0 < δ ≤ 1. Then

P(X⊤ΣX ≥ ϵ) ≤ exp

{
1

2∥ρ∥∞

[
(1− δ)

(
∥ρ∥1 −

ϵ

σ2

)
+

∥ρ∥22
2∥ρ∥∞

(
δ + δ−1 − 2

)]}
.

Let ϵ
σ2 − ∥ρ∥1 =

∥ρ∥2
2

2∥ρ∥∞
(δ−2 − 1), we have

P
(
X⊤ΣX ≥ σ2

{
∥ρ∥1 +

∥ρ∥22
2∥ρ∥∞

(
1

δ2
− 1

)})
≤ exp

{
− ∥ρ∥22
4∥ρ∥2∞

(
1

δ
− 1

)2
}
.

Now let t =
∥ρ∥2

2

4∥ρ∥2
∞

(
δ−1 − 1

)2 ≥ 0, that is, δ−1 = 1 + 2∥ρ∥∞
∥ρ∥2

√
t, then

P
(
X⊤ΣX ≥ σ2

{
∥ρ∥1 + 2∥ρ∥2

√
t+ 2∥ρ∥∞t

})
≤ e−t. (4.9)

Recall that ρ1, · · · , ρn are eigenvalues of Σ, we have ∥ρ∥1 = tr(Σ), ∥ρ∥2 = ∥Σ∥F and ∥ρ∥∞ = ∥Σ∥2, and the

result (4.5) immediately follows from (4.9).

The following corollary immediately holds by setting Σ in Theorem 4.2 as the n-by-n identity matrix.

Corollary 4.3. Let X1, · · · , Xn be independent sub-Gaussian variables with mean 0 and variance proxy σ2.

Then for any t > 0, we have

P

(
n∑

i=1

X2
i ≥ σ2

(
n+ 2

√
nt+ 2t

))
≤ e−t.

10



4.3 Application: Ordinary Least Square with A Fixed Design

We consider a fixed dataset D = {(xi, yi)}Ni=1 ⊂ Rd × R from a linear model: yi = x⊤i β
∗ + ϵi, where β

∗ ∈ Rd

and {ϵi}Ni=1 are independent σ2-sub-Gaussian noises with Eϵi = 0. The solution to the ordinary least square

(OLS) problem is

β̂ = argmin
β∈Rd

N∑
i=1

(yi − x⊤i β)
2 = Σ−1

(
N∑
i=1

xiyi

)
,

where Σ =
∑N

i=1 xix
⊤
i ∈ Rd×d. In many cases, we are interested in the difference between our estimator β̂ and

the true parameter β∗.

Proposition 4.4 (OLS with a fixed design). Assume that Σ is invertible, and 0 < δ < 1. With probability at

least 1− δ, we have

∥β̂ − β∗∥2Σ ≤ σ2
(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)
.

Proof. Denote by X = (x1, · · · , xN )⊤ ∈ RN×d the covariate matrix, ϵ = (ϵ1, · · · , ϵN )⊤ the noise vector, and

Y = (y1, · · · , yN )⊤ = Xβ∗ + ϵ the response vector. Then we have Σ = X⊤X, and

∥β̂ − β∗∥2Σ = (Σ−1X⊤Y − β∗)⊤Σ(Σ−1X⊤Y − β∗) = ϵ⊤XΣ−1X⊤ϵ.

Note that ϵ is σ2-sub-Gaussian, tr(XΣ−1X⊤) = d, ∥XΣ−1X⊤∥2F = d and ∥XΣ−1X⊤∥2 = 1, we can apply

Theorem 4.2 to any t > 0:

P
(
ϵ⊤XΣ−1X⊤ϵ ≥ σ2

(
d+ 2

√
dt+ 2t

))
≤ e−t. (4.10)

Then the result immediately follows from (4.10) by setting t = log(1/δ).

11



5 Application in Empirical process

5.1 Dudley’s Entropy Integral

Definition 5.1 (Sub-Gaussian process). Let {Xf : f ∈ F} be a collection of mean zero random variables

indexed by f ∈ F , and let d be a metric on the index set F . Then {Xf : f ∈ F} is said to be a sub-Gaussian

process with respect to d if

E
[
et(Xf−Xg)

]
≤ exp

{
t2d2(f, g)

2

}
, ∀f, g ∈ F .

That is, Xf −Xg is sub-Gaussian with variance proxy d2(f, g).

Definition 5.2 (ϵ-covering number/metric entropy). Let (F , d) be a metric space. For ϵ > 0, a subset Nϵ ⊆ F
is called a ϵ-net of F , if F ⊆

⋃
f∈Nϵ

B(f, ϵ), where B(f, ϵ) is the open d-ball of radius ϵ centered at f . The

ϵ-covering number of F is the cardinality of the minimal ϵ-cover of F , i.e.

N(ϵ,F , d) = min{|Nϵ|, Nϵ is an ϵ-net of F}.

The following theorem can be seen as an extension of Theorem 3.3.

Theorem 5.3 (Dudley). Let (F , d) be a metric space, and suppose that D := supf,g∈F d(f, g) < ∞. Let

{Xf : f ∈ F} be a stochastic process such that

(i) {Xf , f ∈ F} is sub-Gaussian with respect to d, and

(ii) {Xf , f ∈ F} is sample-continuous, i.e., for each sequence {fn} ⊂ F such that limn→∞ d(fn, f) = 0 for

some f ∈ F , we have Xfn → Xf almost surely.

Then the expected supremum of {Xf , f ∈ F} can be bounded with Dudley’s entropy integral:

E

[
sup
f∈F

Xf

]
≤ 12

∫ D/2

0

√
logN(ϵ,F , d) dϵ. (5.1)

Proof. This proof uses Dudley’s chaining rule. Choose an arbitrary f0 ∈ F and set ϵ0 = D, then Nϵ0 = {f0}
is a ϵ0-net of F . Now we choose a sequence of minimal ϵ-nets {Nϵj} by setting ϵj := 2−jϵ0 for j = 1, 2, · · · .
For brevity, write Nj = Nϵj . By definition of ϵ-net, ∀f ∈ F , we can find fj ∈ Nj such that d(f, fj) ≤ ϵj for all

j ∈ N. Fixing m ∈ N, we have

Xf = (Xf −Xfm) +

m∑
j=1

(
Xfj −Xfj−1

)
+Xf0 . (5.2)

Note that both fj and fj−1 are close to f , we have d(fj , fj−1) = d(fj , f) + d(f, fj−1) ≤ 3ϵj . Define a new

class Hj = {(gj−1, gj) ∈ Nj−1 ×Nj : d(gj , gj−1) ≤ 3ϵj} , j ∈ N. We have |Hj | ≤ |Nj−1||Nj | ≤ |Nj |2.
Revisiting (4.4), we have

E

[
sup
f∈F

Xf

]
≤ E

 sup
g,g′∈F, d(g,g′)≤ϵm

(Xg −Xg′) +

m∑
j=1

max
(gj−1,gj)∈Hj

(
Xgj −Xgj−1

)
+Xf0


= E

[
sup

g,g′∈F, d(g,g′)≤ϵm

(Xg −Xg′)

]
+

m∑
j=1

E
[

max
(gj−1,gj)∈Hj

(
Xgj −Xgj−1

)]
, (5.3)

where the equality follows from E[Xf0 ] = 0. Since {Xgj − Xgj−1 , (gj−1, gj) ∈ Hj} are sub-Gaussian with
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variance proxy 9ϵ2j , it follows from applying Theorem 3.3 that

E
[

max
(gj−1,gj)∈Hj

(Xgj −Xgj−1)

]
≤ 3ϵj

√
2 log |Hj | ≤ 6ϵj

√
log |Nj | = 12(ϵj − ϵj+1)

√
logN(ϵj ,F , d). (5.4)

Plug in (5.4) to (5.3), we have

E

[
sup
f∈F

Xf

]
≤ E

[
sup

g,g′∈F, d(g,g′)≤ϵm

(Xg −Xg′)

]
+ 12

m∑
j=1

∫ ϵj

ϵj+1

√
logN(ϵj ,F , d) dϵ

≤ E

[
sup

g,g′∈F, d(g,g′)≤ϵm

(Xg −Xg′)

]
+ 12

m∑
j=1

∫ ϵj

ϵj+1

√
logN(ϵ,F , d) dϵ

= E

[
sup

g,g′∈F, d(g,g′)≤ϵm

(Xg −Xg′)

]
+ 12

∫ ϵ1

ϵm+1

√
logN(ϵ,F , d) dϵ. (5.5)

Let m → ∞, then ϵm → 0, and the first term in (5.5) converges to 0 by sample-continuity. Thus we obtain

the bound in (5.1) provided that Dudley’s entropy integral exists.

Remark (Absolute values in suprema). In some cases, we may be interested in the supremum of absolute value.

Note that

sup
f∈F

|Xf | = sup
f∈F

Xf + sup
f∈F

(−Xf )− sup
f∈F

Xf ∧ sup
f∈F

(−Xf )

= sup
f∈F

Xf + sup
f∈F

(−Xf ) + inf
f∈F

Xf ∨ inf
f∈F

(−Xf )

≤ sup
f∈F

Xf + sup
f∈F

(−Xf ) + inf
f∈F

(Xf ∨ (−Xf )) = sup
f∈F

Xf + sup
f∈F

(−Xf ) + inf
f∈F

|Xf |.

Then by applying Theorem 5.3 to both Xf and −Xf , we have

E

[
sup
f∈F

|Xf |

]
≤ E

[
sup
f∈F

Xf

]
+ E

[
sup
f∈F

(−Xf )

]
+ inf

f∈F
E|Xf |

≤ 24

∫ D/2

0

√
logN(ϵ,F , d) dϵ+ inf

f∈F
E|Xf |.

We can also use the chaining rule to construct a tail bound for the supremum of a sub-Gaussian process.

Lemma 5.4 (Adapted from Lemma 3.2 of van de Geer 2000). Suppose (F , d) and {Xf , f ∈ F} are the metric

space and the stochastic process proposed in Theorem 5.3, the entropy integral in the RHS of (5.1) exists, and

∃f0 ∈ F such that Xf0 = 0. Then there exist constants C0, C1 > 0 depending only on F , such that for all

t > C0D, we have

P

(
sup
f∈F

Xf ≥ t

)
≤ C1 exp

(
− t2

C2
1D

2

)
. (5.6)

Proof. We inherit the definition of ϵj = D2−j ,Nj and Hj from Theorem 3, with the crudest ϵ0-net being

N0 = {f0}. Take C0 sufficiently large such that

t ≥

12

∞∑
j=1

ϵj

√
2 log |Nj |

 ∨ 6D ≥ 24D

√
log

24

23
. (5.7)
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Inspired by (5.2) and (5.3), we choose a sequence {ηj}∞j=1 such that
∑∞

j=1 ηj ≤ 1. Then

P

(
sup
f∈F

Xf ≥ t

)
≤ P

 ∞∑
j=1

max
(gj−1,gj)∈Hj

(
Xgj −Xgj−1

)
≥ t

∞∑
j=1

ηj


≤

∞∑
j=1

P
(

max
(gj−1,gj)∈Hj

(
Xgj −Xgj−1

)
≥ ηjt

)
≤

∞∑
j=1

exp

(
2 log |Nj | −

η2j t
2

18ϵ2j

)
, (5.8)

where the last inequality follows from (3.2). Now take

ηj =
6ϵj
√
2 log |Nj |
t

∨ 2−j
√
j

4
, (5.9)

then by (5.7) we have

∞∑
j=1

ηj ≤
6
√
2

t

∞∑
j=1

ϵj

√
log |Nj |+

1

4

∞∑
j=1

2−j
√
j ≤ 1

2
+

1

2
= 1.

Here we use the bound

∞∑
j=1

2−j
√
j ≤

∞∑
j=1

2−jj =
2−1

(1− 2−1)2
= 2. (5.10)

By (5.9), we have that log |Nj | ≤
η2
j t

2

72ϵj
and ηj ≥ 2−j√j

4 =
ϵj

√
j

4D , hence

P

(
sup
f∈F

Xf ≥ t

)
=

∞∑
j=1

exp

(
2 log |Nj | −

η2j t
2

18ϵ2j

)
≤

∞∑
j=1

exp

(
−
η2j t

2

36ϵ2j

)
≤

∞∑
j=1

exp

(
− jt2

576D2

)

=

[
1− exp

(
− t2

576D2

)]−1

exp

(
− t2

576D2

)
≤ 24 exp

(
− t2

576D2

)
, (5.11)

where the last inequality uses (5.7). Plug in (5.11) to (5.8), then (5.6) holds for C1 = 24, which concludes the

proof.

5.2 Rademacher Complexity

Definition 5.5 (Empirical Rademacher complexity). The empirical Rademacher complexity of a function

class F based on a sample {xi}ni=1 is defined as the expected supremum of inner product with independent

Rademacher variables {ϵj}nj=1:

R(F , x1:n) := E

[
sup
f∈F

1

n

n∑
i=1

ϵif(xi)

]
.

Denote by Pn the empirical distribution of {x1, · · · , xn}. Then we can define norm and inner product on

L2(Pn) space:

∥f∥Pn
=

(
1

n

n∑
i=1

f(xi)
2

)1/2

, ⟨f, g⟩Pn
=

1

n

n∑
i=1

f(xi)g(xi).

Now we define the process

Zf :=
1√
n

n∑
i=1

ϵif(xi), f ∈ F .
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By Proposition 1.5, (Zf − Zg) is sub-Gaussian with variance proxy ∥f − g∥2Pn
for any f, g ∈ F , namely,

{Zf , f ∈ F} is sub-Gaussian with respect to ∥ · ∥Pn
. It is worth noting that ∥ · ∥Pn

is possibly a pseudo-metric

on F , which means that ∥f∥Pn
= 0 does not necessarily imply f = 0. Nonetheless, this slight change does not

impact our conclusion, and you can verify that {Zf , f ∈ F} is sample-continuous. Using Theorem 5.3, we can

establish the connection between Dudley’s entropy integral and Rademacher complexity.

Definition 5.6 (Localized empirical Rademacher complexity and critical radius). Suppose we have a function

class F : X → R that is uniformly bounded by b, i.e. ∀f ∈ F , ∥f∥∞ ≤ b. The localized empirical Rademacher

complexity of a function class F based on a sample {xi}ni=1 is defined as

Rloc(δ,F , x1:n) := E

[
sup

f∈F :∥f∥Pn≤δ

1

n

n∑
i=1

ϵif(xi)

]
= R(F ∩Bn(δ), x1:n),

where {ϵi}ni=1 are independent Rademacher variables and Bn(δ) is the closed ball in the norm ∥ · ∥Pn of radius

δ > 0 centered at the origin. The empirical critical radius of F on dataset {xi}ni=1 is defined as the minimum

solution smallest positive solution to Rloc(δ,F , x1:n) ≤ δ2/b:

δ̂n = min

{
δ > 0 : Rloc(δ,F , x1:n) ≤

δ2

b

}
.

Proposition 5.7. Denote by Bn(ρ) the closed ball in the norm ∥ · ∥Pn of radius ρ > 0 centered at the origin.

Then the empirical Rademacher complexity of F satisfies

Rloc(ρ,F , x1:n) ≤
12√
n

∫ ρ

0

√
logN(ϵ,F , ∥ · ∥Pn

) dϵ. (5.12)

Proof. Applying Theorem 5.3 to
{
Zf := n−1/2

∑n
i=1 ϵif(xi), f ∈ F

}
immediately concludes the proof.

5.3 Sub-Gaussian Complexity

Motivation. Let’s consider a penalized least square problem. Suppose we have data {(xi, yi)}ni=1 ⊂ X × Y
collected from

yi = f∗(xi) + ϵi, i = 1, · · · , n.

Given a vector space F of mappings from X to Y with f∗ ∈ F , and let J be seminorm on F . We construct an

estimator of f∗ from this class by minimizing the regularized risk for some tuning parameter λ ≥ 0:

f̂ = argmin
f∈F

{
1

n

n∑
i=1

(yi − f(xi))
2
+ λJ(f)

}
.

Recall that we denote by Pn the empirical distribution of {x1, · · · , xn}. We also abuse the notation ⟨·, ·⟩Pn

by defining ⟨·, ·⟩Pn
: Rn × F → R, (z, f) 7→ 1

n

∑n
i=1 zif(xi). Let Y = (y1, · · · , yn)⊤, ϵ = (ϵ1, · · · , ϵn)⊤ be the

response and noise vectors. Then (5.10) implies

∥Y − f̂∥2Pn
+ λJ(f̂) ≤ ∥Y − f∗∥2Pn

+ λJ(f∗),
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and we have the basic inequality for f̂ :

∥f̂ − f∗∥2Pn
≤ 2⟨ϵ, f̂ − f∗⟩Pn

+ λ
(
J(f∗)− J(f̂)

)
≤ 2
(
J(f∗) + J(f̂)

)〈
ϵ,

f̂ − f∗

J(f̂) + J(f∗)

〉
Pn

+ λ
(
J(f∗)− J(f̂)

)
≤ 2
(
J(f∗) + J(f̂)

)
sup

J(g)≤1

⟨ϵ, g⟩Pn
+ λ

(
J(f∗)− J(f̂)

)
.

Then we can bound the empirical estimation error by controlling the supremum of an empirical process

{Zg := ⟨ϵ, g⟩Pn} indexed by g. Generally, for a function class F , we call supf∈F |⟨ϵ, f⟩Pn | the sub-Gaussian

complexity associated with F .

Lemma 5.8 (Adapted from Lemma 8.4 of van de Geer 2000). Let {ϵi, i = 1, · · · , n} denote independent sub-

Gaussian random variables, each having mean zero and variance proxy σ2. Assume that there exist constants

0 < w < 2 and C > 0 such that for some fixed x1, · · · , xn (which define the empirical norm ∥ · ∥Pn),

logN(η,F , ∥ · ∥Pn
) ≤ Cη−w (5.13)

for sufficiently small η > 0. Then for any fixed ρ > 0, there exists constants c, c′ > 0, depending only on

σ, ρ, C,w such that for all γ > c′,

sup
f∈F∩Bn(ρ)

⟨ϵ, f⟩Pn

∥f∥1−w/2
Pn

≤ γ√
n

with probability at least 1− c exp
(

γ2

c2

)
.

Proof. Note that
⟨ϵ,f⟩Pn√

σ2/n
is a sub-Gaussian process with respect to ∥ · ∥Pn . For any 0 < δ < ρ, the Dudley’s

entropy integral satisfies ∫ δ

0

√
logN(η,F , ∥ · ∥Pn

) dη ≤ c0δ
1−w/2 (5.14)

for some constant c0 > 0, hence is bounded. By Lemma 5.4, there exists c1, c2 > 0 depending only on σ, ρ, C,w

such that for all T ≥ c1δ√
n
, we have

P

(
sup

f∈F∩Bn(δ)

⟨ϵ, f⟩Pn
≥ T

)
≤ c2 exp

(
− nT 2

c22σ
2δ2

)
.
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Then for any T ≥ c1√
n
21−w/2ρw/2, we have

P

(
sup

f∈F∩Bn(ρ)

⟨ϵ, f⟩Pn

∥f∥1−w/2
Pn

≥ T

)
= P

 ∞⋃
j=1

{
sup

f∈F∩(Bn(21−jρ)\Bn(2−jρ))

⟨ϵ, f⟩Pn

∥f∥1−w/2
Pn

≥ T

}
≤

∞∑
j=1

P

(
sup

f∈F∩Bn(21−jρ)

⟨ϵ, f⟩Pn ≥ T (2−jρ)1−w/2

)

≤
∞∑
j=1

c2 exp

(
−nT

2(2−jρ)2−w

c22σ
2(21−jρ)2

)
=

∞∑
j=1

c2 exp

(
− nT 22jw

4c22σ
2ρw

)

≤
∞∑
j=1

c2 exp

(
−nT

2(1 + jw log 2)

4c22σ
2ρw

)

= c2 exp

(
− nT 2

4c22σ
2ρw

) exp
(
−nT 2w log 2

4c22σ
2ρw

)
1− exp

(
−nT 2w log 2

4c22σ
2ρw

)
≤ c2 exp

(
− nT 2

4c22σ
2ρw

) exp
(
− c21w log 2

c222
wσ2

)
1− exp

(
− c22w log 2

c212
wσ2

) ≤ c exp

(
−nT

2

c2

)

for some c > 0. Set γ = T√
n
, then there exists c′ > 0 depending only on ρ, σ, C,w such that for any γ ≥ c′,

P

(
sup

f∈F∩Bn(ρ)

⟨ϵ, f⟩Pn

∥f∥1−w/2
Pn

≥ γ√
n

)
≤ c exp

(
−γ

2

c2

)
.

Thus we complete the proof.

This Lemma gives a bound of the empirical process {⟨ϵ, f⟩Pn
, f ∈ F}. Suppose that ∥f∥Pn

decays with a

rate of n−1/(2+w), then with high probability, the following inequality holds uniformly for all f ∈ F :

⟨ϵ, f⟩Pn
≲ O

(
∥f∥1−w/2

Pn√
n

)
≂ O

(
n−

2
2+w

)
.

Lemma 5.9. Assume that F satisfies the entropy bound (5.13) for fixed x1, · · · , xn, where 0 < w < 2 and

C > 0 are constants. Then the empirical critical radius of F satisfies δ̂n ≤ c1n
−1/(2+w) for a constant c1.

Proof. By (5.12) and (5.14), we have

Rloc(δ,F , x1:n) ≤
c0√
n
δ1−w/2

for some constant c0 > 0. Then the smallest solution δ̂n to Rloc(δ,F , x1:n) ≤ δ2/b can be upper bounded by

δ2/b =
c0√
n
δ1−w/2 ⇔ δ1+w/2 =

c0b√
n
,

which gives δ̂n ≤ c1n
−1/(2+w) for some constants c1.
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