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1 Basic Measure Theory

1.1 Measurable Spaces, Sierpiński-Dynkin π-λ System and Monotone Classes

Let Ω be a nonempty set. Denote by 2Ω the set of all subsets of Ω, namely, 2Ω = {A : A ⊂ Ω}. Any subset

A ⊂ 2Ω is called a collection of subsets of Ω.

Definition 1.1 (σ-algebra and measurable space). Let F be a collection of subsets of Ω. Then F is said to

be a σ-algebra (or σ-field) if the following conditions are satisfied:

(i) Ω ∈ F ;

(ii) For all A ∈ F , the complement Ac := Ω\A ∈ F ;

(iii) For all sequences (An)
∞
n=1 in F ,

⋃∞
n=1An ∈ F .

A pair (Ω,F ) consisting of a set Ω and a σ-algebra of subsets of Ω is called a measurable space. A set

A ∈ F is said to be F -measurable.

Remark. Clearly, {∅,Ω} and 2Ω are two trivial σ-algebras of subsets of Ω. Furthermore, we can show that a

σ-algebra F also satisfies the following:

(i) ∅ ∈ F ;

(ii) For all A,B ∈ F , A\B,A ∪B,A ∩B ∈ F ;

(iii) For all sequences (An)
∞
n=1 in F ,

⋂∞
n=1An ∈ F .

Moreover, the intersection of any collection of σ-algebras is again a σ-algebra.

Definition 1.2. Let A be a collection of subsets of Ω. The σ-algebra generated by A is the minimal σ-algebra

of subsets of Ω that contains A :

σ(A ) =
⋂
{F : F is a σ-algebra and F ⊃ A } .

Remark. We can generate the minimal σ-algebra F from A as follows: (i) Complete A : F ← A ∪ {Ω, ∅};
(ii) For all A ∈ A , add Ac to F if necessary; (iii) For all sequences of sets in F , include their union in F .

Definition 1.3. Let (X,T ) be a topological space. The Borel σ-algebra on X is defined as the σ-algebra

generated by all open sets in X. We write B(X) = σ(T ).

Remark. One of the most commonly used σ-algebra is the Borel σ-algebra on R. By definition, B(R) contains
all open subsets, closed subsets, finite subsets and countable subsets of R. Also, B(R) contains all Gδ-sets (a
countable intersection of open sets) and all Fσ-sets (a countable union of closed sets) in R.

Definition 1.4 (π-system). Let P be a collection of subsets of Ω. If A ∩ B ∈ P for all A,B ∈ P, then P

is said to be a π-system.

Definition 1.5 (λ-system). Let L be a collection of subsets of Ω. Then L is said to be a λ-system (or

Dynkin system) if it satisfies the following conditions:

(i) Ω ∈ L ;

(ii) For all A,B ∈ L such that A ⊂ B, it holds B\A ∈ L ;

(iii) For all increasing sequences A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · in L , it holds
⋃∞
n=1An ∈ L .

Remark. Another equivalent formulation of λ-system is stated below:

(i) Ω ∈ L ;

(ii) For all A ∈ L , it holds Ac ∈ L ;

(iii) For all sequences (An)
∞
n=1 of disjoint sets in L , it holds

∐∞
n=1An ∈ L .
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We also observe that the intersection of any collection of λ-systems is again a λ-system. Therefore, similar to

Definition 1.2, we can define the minimal λ-system generated by a collection A of subsets of Ω:

λ(A ) =
⋂
{L : L is a λ-system and L ⊃ A } .

In general, a λ-system is not a σ-algebra, since it is not always closed under countable unions unless they are

disjoint. For instance, let Ω = {0, 1, 2, 3}, and consider L = {Ω, {0, 1}, {2, 3}, {0, 2}, {1, 3}, {1, 2}, {0, 3}, ∅}.

Lemma 1.6. F is a σ-algebra if and only if F is a π-system and λ-system.

Proof. By definition, a σ-algebra is a π-system and λ-system. Conversely, if F is a π-system and λ-system,

we only need to verify Definition 1.1 (iii). Let (An)
∞
n=1 be a sequence in F . Define

Bn =

n⋃
j=1

Aj , ∀n ∈ N.

Clearly, B1 ∈ F . Moreover, if Bn−1 ∈ F , we have Cn = Bn−1 ∩An ∈ F since F is a π-system, and

Bn = An ∪Bn−1 = (An\Cn)︸ ︷︷ ︸
∈F

∪ (Bn−1\Cn)︸ ︷︷ ︸
∈F

∪Cn. (1.1)

Note that (1.1) is a union of disjoint sets in F , which is a λ-system. Hence Bn is an increasing sequence in

F , which implies
⋃∞
n=1An =

⋃∞
n=1Bn ∈ F .

We introduce the Sierpiński-Dynkin π-λ theorem, which is a powerful tool in measure-theoretic analysis.

Theorem 1.7 (Sierpiński-Dynkin π-λ theorem). Let P and L be two collections of subsets of Ω such that

P ⊂ L . If P is a π-system, and L is a λ-system, then σ(P) ⊂ L .

Proof. We first claim that λ(P) is a σ-algebra. By Lemma 1.6, it suffices to show that λ(P) is a π-system.

Step I: We show that for all A ∈ λ(P), the collection

λA := {B ⊂ Ω : A ∩B ∈ λ(P)}

is a λ-system. Clearly, λA contains Ω and is closed under countable disjoint unions. For any B ∈ λA,

A ∩Bc = A\(A ∩B) ∈ λ(P),

because it is the proper difference of sets in λ(P). Hence λA is a λ-system.

Step II: We show that A∩B ∈ λ(P) for all A ∈P and all B ∈ λ(P). Fix A ∈P. Since P is a π-system and

P ⊂ λ(P), we have P ⊂ λA. Note that λ(P) is the minimal λ-system generated by P, we have λ(P) ⊂ λA.

Step III: We show that λ(P) is a σ-algebra. Let B ∈ λ(P). By Step I, λB is a λ-system. If E ∈ P, using

Step II, we have E ∩ B ∈ λ(P), which implies E ∈ λB . Then P ∈ λB , and λ(P) ⊂ λB . Hence for all

A ∈ λ(P) ⊂ λB , A ∩B ∈ λ(P). As a result, λ(P) is a π-system.

Since λ(P) is a σ-algebra, we have σ(P) ⊂ λ(P) ⊂ L . In fact, we can prove that σ(P ) = λ(P ): The

other direction holds because σ(P) is a λ-system, which implies λ(P) ⊂ σ(P).

Now we introduce the monotone class theorem.

Definition 1.8 (Monotone class). A collection M of subsets of Ω is said to be a monotone class if the following

hold: (i) For all increasing sequence (An)
∞
n=1 in M , it holds

⋃∞
n=1An ∈ M ; (ii) For all decreasing sequence

(Bn)
∞
n=1 in M , it holds

⋂∞
n=1Bn ∈M .
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Remark. Note that the intersection of a collection of monotone classes is also a monotone class. Again, we

can define the monotone class generated by a collection A of subsets of Ω:

m(A ) =
⋂
{M : M is a monotone class and M ⊃ A } .

Definition 1.9 (Algebra). Let A be a collection of subsets of Ω. Then A is said to be an algebra if the

following hold: (i) Ω ∈ A ; (ii) Ac ∈ A for all A ∈ A ; (iii) A ∪B ∈ A for all A,B ∈ A .

Remark. By (ii) and (iii), we can show that an algebra A is closed under finite unions and finite intersections.

In fact, another formulation of algebra uses the ring.

Definition 1.9* (Ring and algebra). A ring (or pre-algebra) is a collection R of subsets of Ω such that

A\B,A ∩B,A ∪B ∈ R for all A,B ∈ R. Following this, an algebra is a ring that contain Ω.

Lemma 1.10. If F is an algebra that is also a monotone class, then F is a σ-algebra.

Proof. It suffices to check Definition 1.1 (iii). For any sequence (An)
∞
n=1 in algebra F , the partial unions

Bn :=
⋃n
k=1Ak form an increasing sequence in F . Since F is a monotone class,

⋃∞
n=1An =

⋃n
n=1Bn ∈ F .

Theorem 1.11 (Monotone class theorem). Let A be a algebra of subsets of Ω. Then the monotone class

generated by A coincides with the σ-algebra generated by A .

Proof. Clearly, a σ-algebra is a monotone class. If we can show that the monotone class m(A ) generated by

A is a σ-algebra, then m(A ) = σ(A ). Following Lemma 1.10, it suffices to show that m(A ) is an algebra.

For any E ∈ m(A ), define

ME = {F ∈ m(A ) : E\F, F\E,E ∪ F ∈ m(A )}

We claim that ME = m(A ) for all E ∈ m(A ). For any increasing sequence Fn in ME , the sequence E\Fn
is decreasing in m(A ), and the sequences Fn\E and E ∪ Fn are increasing in m(A ). Then

E\
( ∞⋃
n=1

Fn

)
=

∞⋂
n=1

(E\Fn),
( ∞⋃
n=1

Fn

)
\E =

∞⋃
n=1

(Fn\E), E ∪
( ∞⋃
n=1

Fn

)
=

∞⋃
n=1

(E ∪ Fn)

are all contained in m(A ), and
⋃∞
n=1 Fn ∈ ME . A similar statement holds for decreasing sequences in ME .

Hence ME is a monotone class.

Assume E ∈ A . Since A is an algebra, we have A ⊂ME , which impliesm(A ) ⊂ME . Then for all E ∈ A

and all F ∈ m(A ), we have F ∈ME , which holds if and only if E ∈MF . As a result, we have A ⊂MF for all

F ∈ m(A ), which again implies m(A ) ⊂MF . Hence for all E,F ∈ m(A ), we have E\F, F\E,E∪F ∈ m(A ).

Clearly, Ω ∈ m(A ). Hence m(A ) is an algebra, as desired.

Remark. There is an equivalent statement of Theorem 1.11: If A is an algebra, and M is a monotone class

such that M ⊃ A , then σ(A ) ⊂M .

6



1.2 Measures, Pre-measures and Carathéodory’s Extension

1.2.1 Measure Spaces

Definition 1.12 (Measure). Let (Ω,F ) be a measurable space. A (nonnegative) measure µ on (Ω,F ) is a

function µ : F → R+ := [0,∞] that satisfies the following:

(i) µ(∅) = 0;

(ii) (Countable additivity). If (An)
∞
n=1 is a sequence of pairwise disjoint sets in F , then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

The triple (Ω,F , µ) is called a measure space. Furthermore,

(i) µ is called a finite measure if µ(Ω) <∞;

(ii) µ is called a σ-finite measure if there exists a countable collection {Ωn}∞n=1 ⊂ F such that Ω =
⋃∞
n=1 Ωn

and µ(Ωn) <∞ for each n ∈ N.
(iii) µ is called a semi-finite measure if every positive measure set E have a finite measure subset.

(iv) µ is called a probability measure if µ(Ω) = 1, and (Ω,F , µ) is called a probability space.

Remark. A measure µ also has the following properties:

• For all A,B ∈ F such that A ⊂ B, it holds µ(B\A) = µ(B)− µ(A) ≤ µ(B).

• For all A,B ∈ F , it holds µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

• Using the following Lemma 1.13, we obtain the countable subadditivity of µ:

µ

( ∞⋃
n=1

An

)
= lim
n→∞

µ

(
n⋃
k=1

Ak

)
≤ lim
n→∞

n∑
k=1

µ(Ak) =

∞∑
n=1

µ(An), ∀sequences (An)
∞
n=1 in F .

We then discuss the limit property of measures.

Lemma 1.13. Let (Ω,F , µ) be a measurable space.

(i) If (An)
∞
n=1 is an increasing sequence in F , then

µ

( ∞⋃
n=1

An

)
= lim
n→∞

µ(An);

(ii) If (An)
∞
n=1 is an decreasing sequence in F such that µ(A1) <∞, then

µ

( ∞⋂
n=1

An

)
= lim
n→∞

µ(An);

(iii) More generally, if (An)
∞
n=1 is a sequence in F , then

µ

( ∞⋃
n=1

∞⋂
k=n

Ak

)
≤ lim inf

n→∞
µ(An),

and if in addition µ(
⋃∞
n=1An) <∞, then

µ

( ∞⋂
n=1

∞⋃
k=n

Ak

)
≥ lim sup

n→∞
µ(An).
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Proof. (i) Define B1 = A1, and Bn = An\An−1 for n ≥ 2. Then (Bn)
∞
n=1 is a disjoint sequence of sets in F .

By countable additivity of µ, we have µ(An) =
∑n
k=1 µ(Bk). Hence

lim
n→∞

µ(An) =

∞∑
n=1

µ(Bn) = µ

( ∞⋃
n=1

Bn

)
= µ

( ∞⋃
n=1

An

)
.

(ii) Choose an increasing sequence Cn = A1\An. By (i), we have

lim
n→∞

µ(Cn) = µ

( ∞⋃
n=1

Cn

)
. (1.2)

Since µ(A1) <∞, and since
⋃∞
n=1 Cn = A1\ (

⋂∞
n=1An), the identity becomes (1.2)

µ(A1)− lim
n→∞

µ(An) = µ(A1)− µ

( ∞⋂
n=1

An

)
.

(iii) The set Bn =
⋂∞
k=nAk is an increasing sequence in F , and we have µ(Bn) ≤ infn≥k µ(Ak). By (i),

µ

( ∞⋃
n=1

∞⋂
k=n

Ak

)
= lim
n→∞

µ(Bn) ≤ lim inf
n→∞

µ(Ak).

Also, the set Bn =
⋃∞
k=nAk is a decreasing sequence in F , and we have µ(Bn) ≥ supn≥k µ(Ak). By (ii),

µ

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= lim
n→∞

µ(Bn) ≥ lim sup
n→∞

µ(Ak).

Then we conclude the proof.

Remark. The condition µ(A1) <∞ in (ii) cannot be removed. For example, let An = [n,∞), and let µ be the

Lebesgue measure. Then µ(En) =∞ for all n ∈ N, but

µ

( ∞⋃
n=1

An

)
= µ(∅) = 0.

The following theorem is often useful in measure-theoretic analysis.

Theorem 1.14 (First Borel-Cantelli Lemma). Let (Ω,F , µ) be a measure space. If (An)
∞
n=1 is a sequence of

sets in F such that
∑∞
n=1 µ(An) <∞, then

µ

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 0.

In other words, almost all ω ∈ Ω belongs to at most finitely many Ak’s.

Proof. Let Bn =
⋃∞
k=nAk for all n. Then Bn is a decreasing sequence in F , and µ(B1) ≤

∑∞
k=1 µ(Ak) <∞.

By Lemma 1.13,

0 ≤ µ

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= µ

( ∞⋃
n=1

Bn

)
= lim
n→∞

µ(Bn) ≤ lim
n→∞

∞∑
k=n

µ(Ak) = 0.
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1.2.2 Construction of Measures

We are going to construct a measure from a ring of subsets of Ω.

Definition 1.15 (Pre-measure). Let A be a collection of subsets of Ω such that ∅ ∈ A . A pre-measure on

A is a function µ : A → R+ satisfying the following:

(i) µ(∅) = 0;

(ii) (Countable additivity). If (An)
∞
n=1 is a sequence of pairwise disjoint sets in A with

∐∞
n=1An ∈ A , then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Definition 1.16 (Outer measure). An outer measure on Ω is a set function µ∗ : 2Ω → R+ satisfying the

following properties:

(i) µ(∅) = 0;

(ii) (Monotonicity). If A ⊂ B then µ∗(A) ≤ µ∗(B);

(iii) (Countable subadditivity). For any sequence (An)
∞
n=1 of subsets of Ω, we have

µ∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ∗(An).

Lemma 1.17 (Induced outer measure). Let R be a ring of subsets of Ω, and let µ : R → R+ be a pre-measure

on R. Define µ∗ : 2Ω → R+ by

µ∗(E) = inf

{ ∞∑
n=1

µ(An) : {An}∞n=1 ⊂ R, E ⊂
∞⋃
n=1

An

}
, ∀E ∈ 2Ω.

Define inf ∅ =∞. Then µ∗ is an outer measure on Ω, and µ∗|R = µ.

Proof. It is easy to check that µ∗ is an outer measure. For all E ∈ R, take A1 = E and A2 = A3 = · · · = ∅.
Then we know µ∗(E) ≤ µ(E). Hence it remains to show µ∗(E) ≥ µ(E).

For an arbitrary sequence (An)
∞
n=1 such that E ⊂

⋃∞
n=1An, take B1 = A1 and Bn = An\

(⋃n−1
k=1 Bk

)
for

n ≥ 2. Then (Bn)
∞
n=1 is a disjoint sequence in R, and we have

E ⊂
∞⋃
n=1

An =

∞⋃
n=1

Bn =

∞⋃
n=1

(E ∩Bn) ⇒ µ(E) =

∞∑
n=1

µ(E ∩Bn) ≤
∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An).

Hence µ∗(E) ≥ µ(E).

Definition 1.18 (Carathéodory condition). Let R be a ring of subsets of Ω, and let µ : R → R+ be a

pre-measure on R. Let µ∗ be the outer measure induced by µ. A subset E ⊂ Ω is said to be µ∗-measurable if

µ∗(A) = µ∗(A ∩ E) + µ∗(A\E), ∀A ⊂ Ω. (1.3)

Denote by R∗ the collection of all µ∗-measurable sets on Ω.

Remark. To check (1.3), it suffices to check µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A\E), since the opposite holds by

definition. Moreover, for all E ⊂ X with µ∗(E) = 0, the Carathéodory condition is automatically satisfied.

Proposition 1.19. The collection R∗ given in Definition 1.18 is a σ-algebra.

Proof. It is clear that Ω, ∅ ∈ R∗ and that Ec ∈ R∗ for all E ∈ R∗.
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Step I: We claim that R∗ is an algebra. Let E,F ∈ R∗. Then for each A ⊂ Ω,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

= µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec)

≥ µ∗(A ∩ E ∩ F ) + µ∗((A ∩ E ∩ F c) ∪ (A ∩ Ec)︸ ︷︷ ︸
=A∩ (Ec ∪F c)

)
(By subadditivity of µ∗)

= µ∗(A ∩ E ∩ F ) + µ∗(A ∩ (E ∩ F )c) ⇒ E ∩ F ∈ R∗.

Hence R∗ is closed under finite intersections. Note that R∗ is closed under complements, it is also closed

under finite unions. Thus R∗ is an algebra, as desired.

Step II: Following Lemma 1.10, it remains to show R∗ is a monotone class. Let (En)
∞
n=1 be a increasing

sequence in R∗. We want to show that G :=
⋃∞
n=1En ∈ R∗.

Take F1 = E1 and Fn = En\En−1 for n ≥ 2. Then (Fn)
∞
n=1 is a disjoint sequence in R∗, and G =

⋃∞
n=1 Fn.

For all A ⊂ X and all n ∈ N,

µ∗(A) = µ∗(A ∩ En) + µ∗(A ∩ Ecn) ≥ µ∗(A ∩ En) + µ∗(A ∩Gc)

= µ∗(A ∩ En−1) + µ∗(A ∩ Fn) + µ∗(A ∩Gc) (by Fn ∈ R∗)

= · · · =
n∑
k=1

µ∗ (A ∩ Fk) + µ∗(A ∩Gc). (by Fn−1, · · · , F2 ∈ R∗)

Therefore µ∗(A) ≥
∑∞
n=1 µ

∗(A ∩ Fk) + µ∗(A ∩Gc) = µ∗(A ∩G) + µ∗(A ∩Gc), and G ∈ R∗, as desired. (To

show that decreasing sequences in R∗ have their limits in R∗, take the complement.)

Proposition 1.20. µ∗ is a measure on (Ω,R∗).

Proof. It suffices to show countable additivity. Let (An)
∞
n=1 be a sequence of disjoint sets in R∗, and let

Bn =
⋃n
k=1Ak. Then for all n ≥ N,

µ∗

( ∞⋃
n=1

An

)
≥ µ∗(Bn)

An∈R∗

= µ∗(An) + µ∗(Bn−1)
An−1∈R∗

= · · · A2∈R∗

=

n∑
k=1

µ∗(Ak).

Hence µ∗ (
⋃∞
n=1An) ≥

∑∞
n=1 µ

∗(An). Since the opposite inequality holds by countable subadditivity of outer

measure µ∗, the equality of countable additivity follows.

Now we introduce the Carathéodory’s extension theorem.

Theorem 1.21 (Carathéodory’s extension theorem). Let R be a ring of subsets of Ω, and let µ : R → R+ be

a pre-measure on R. Let µ∗ and R∗ be given as in Definition 1.18. Then (Ω,R∗, µ∗) is a measure space, and

µ∗|R = µ. Furthermore, R ⊂ F := σ(R) ⊂ R∗. As a result, µ∗|F is an extension of µ, which is called the

Carathéodory’s extension.

Proof. It suffices to show R ⊂ R∗. Fix E ∈ R, we want to show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec), ∀A ⊂ Ω.

We can certainly assume µ∗(A) < ∞. Then for all ϵ > 0, there exists a sequence (Fn)
∞
n=1 in R such that

A ⊂
⋃∞
n=1 Fn and that

∞∑
n=1

µ(Fn) ≤ µ∗(A) + ϵ.
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Take a disjoint sequence (Gn)
∞
n=1 of sets in R such that G1 = F1 and Gn = Fn\

(⋃n−1
k=1 Fk

)
for all n ≥ 2.

Then
⋃∞
n=1Gn =

⋃∞
n=1 Fn ⊃ A, and

µ∗(A) + ϵ ≥
∞∑
n=1

µ(Gn) =

∞∑
n=1

µ(Gn ∩ E) +

∞∑
n=1

µ(Gn\E)

≥ µ(A ∩ E) + µ(A\E).

Since ϵ > 0 is arbitrary, the result follows.

Remark. (Ω,R∗, µ∗) is a complete measure space, since all E ⊂ X such that µ∗(E) = 0 is contained in R∗.

We have proved existence of an extension of the pre-measure on a ring. Now we discuss uniqueness.

Lemma 1.22. Let µ and ν be two measures on a measurable space (Ω,F ). Let P ⊂ F be a π-system such

that σ(P) = F and that µ|P = ν|P .

(i) If µ(Ω) = ν(Ω), then µ = ν;

(ii) If there exists an increasing sequence (Ωn)
∞
n=1 of sets in P such that Ω =

⋃∞
n=1 Ωn and µ(Ωn) = ν(Ωn)

for all n ∈ N, then µ = ν.

Proof. (i) Let L = {A ∈ F : µ(A) = ν(A)}. Then L is a λ-system that contains π-system P. By Theorem

1.7, F ⊂ σ(P) ⊂ L ⊂ F . Hence L = F , as desired.

(ii) Denote µn = µ|Ωn . Using (i), we have µn = νn for all n ∈ N. Then

µ(A) = limn→∞ µn (A ∩ Ωn) = limn→∞ νn (A ∩ Ωn) = ν(A), ∀A ∈ F .

Theorem 1.23 (Uniqueness of extension). Let R be a ring of subsets of Ω, and let µ : R → R+ be a

pre-measure on R. If µ is
:::::::
σ-finite, then its extension on F = σ(R) is unique.

Proof. Any ring R of subsets of Ω is a π-system. Apply Lemma 1.22.

Remark. Define the collection A of subsets of R which are finite unions of intervals of the following forms:

(−∞, b], (a, b], (a,∞), (−∞,∞), where a < b. Then A is an algebra. For each A ∈ A , define ℓ(A) to be the

length of A. Then (R,A , ℓ) is a σ-finite pre-measure space. Indeed, the Lebesgue measure on R is obtained

by the extension procedure described above.

Definition 1.24 (Semi-ring). A semi-ring is a π-system S of subsets of Ω such that for all A,B ∈ S , there

exists finite collection {Ak}nk=1 ⊂ S of pairwise disjoint sets such that A\B =
∐n
k=1Ak.

Remark. We can expand a semi-ring S to a ring by including all finite disjoint unions of sets in S :

R :=

{
n∐
k=1

Ak : n ∈ N, A1, · · · , An ∈ S are pairwise disjoint

}
.

Clearly, R is closed under finite disjoint unions. For all A,B ∈ S , we have A\B,B\A ∈ R, and their

union A ∪B = (A\B)⨿ (A ∩B)⨿ (B\A) ∈ R. Suppose the union of any n− 1 sets in S lies in R. Then for

all A1, · · · , An ∈ S ,

A1 ∪ · · · ∪An =
(
(A1 ∪ · · · ∪An−1) ∪An

)
⨿
(
(A1 ∪ · · · ∪An−1)\An

)
⨿
(
An\(A1 ∪ · · · ∪An−1)

)
=

(n−1⋃
k=1

(Ak ∩An)
)

︸ ︷︷ ︸
(a)

⨿
(n−1⋃
k=1

(Ak\An)
)

︸ ︷︷ ︸
(b)

⨿
(n−1⋂
k=1

(An\Ak)
)

︸ ︷︷ ︸
(c)

.
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Note that both (a) and (b) are (n− 1)-unions of sets in S , that (c) is finite intersection of sets in S , and

(a), (b), (c) are disjoint sets, we have
⋃n
k=1Ak ∈ R. By induction, any finite union of sets in S is in R.

Hence R is closed under finite unions. To show that R is a ring, it remains to show that R is closed under

finite intersections and differences:(
n∐
k=1

Ak

)
∩

(
m∐
l=1

Bl

)
=

n⋃
k=1

m⋃
l=1

(Ak ∩Bl)︸ ︷︷ ︸
∈S

∈ R, ∀ disjoint {Ak}nk=1, {Bl}ml=1 ⊂ S ,

(
n∐
k=1

Ak

)
\

(
m∐
l=1

Bl

)
=

n⋃
k=1

m⋂
l=1

(Ak\Bl)︸ ︷︷ ︸
∈R

∈ R, ∀ disjoint {Ak}nk=1, {Bl}ml=1 ⊂ S .

Hence R is a ring of subsets of Ω. Furthermore, we can extend a pre-measure µ : S → R+ to R by defining

µ∗

(
n⋃
k=1

Ak

)
=

n∑
k=1

µ(Ak), ∀ pairwise disjoint A1, · · · , An ∈ S .

Then µ∗ is a pre-measure on R, and µ∗|S = µ. Applying Carathéodory’s extension procedure discussed above,

we can also extend a pre-measure space (Ω,S , µ) on a semi-ring to a complete measure space (Ω, σ(S ), µ∗).

1.2.3 Application: Construction of Product Measures

An application of measure extension theorem is the construction of product measures.

Theorem 1.25 (Product measure). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two
::::::
σ-finite measure spaces.

F1 ×F2 := {A1 ×A2 : A1 ∈ F1, A2 ∈ F2}

is a collection of measurable rectangles in Ω1 × Ω2. Define F1 ⊗F2 := σ(F1 ×F2), which is a σ-algebra of

subsets of Ω1 × Ω2. Then there exists a unique measure µ on (Ω1 × Ω2,F1 ⊗F2) such that

µ(A1 ×A2) = µ1(A1)µ2(A2), ∀A1 ∈ F1, A2 ∈ F2.

The measure µ1 ⊗ µ2 := µ is called the product measure on (Ω1 × Ω2,F1 ⊗F2). Moreover, the triple

(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2) forms a product measure space.

Proof. We use the Carathéodory’s extension theorem to prove this. We check that (i) F1×F2 is a semi-ring;

and (ii) µ1 × µ2 : A1 × A2 7→ µ1(A1)µ2(A2) is a pre-measure on F1 ×F2. If (i) and (ii) are satisfied, the

existence of an extension on F1 ⊗F2 is ensured.

(i) Let A = A1 × A2, B = B1 × B2 ∈ F1 ×F2. Then A ∩ B = (A1 ∩ B1) × (A2 ∩ B2) ∈ F1 ×F2, and

F1 ×F2 is a π-system. Moreover, (B1 ×B2)
c = (Bc1 × Ω2)⨿ (B1 ×Bc2), and

A\B = ((A1 ∩Bc1)×A2)︸ ︷︷ ︸
∈F1×F2

⨿ ((A1 ∩B1)× (A2 ∩Bc2))︸ ︷︷ ︸
∈F1×F2

Hence F1 ×F2 is a semi-ring.

(ii) Clearly, (µ1×µ2)(∅) = 0. Then we need to verify the countable additivity of µ. Let E×F ∈ F1×F2,

and assume there exists disjoint sets {En × Fn}∞n=1 such that E × F =
∐∞
n=1(En × Fn). In other words,

χE(x)χF (y) =

∞∑
n=1

χEn
(x)χFn

(y), ∀x ∈ Ω1, y ∈ Ω2. (1.4)
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Fix y ∈ Ω2. By monotone convergence theorem (MCT, Theorem 1.40), we integrate both sides of (1.4)

with respect to x on Ω1. Then we obtain µ1(E)χF (y) =
∑∞
n=1 µ1(En)χFn

(y). Again by MCT, we have

µ1(E)µ2(F ) =
∑∞
n=1 µ1(En)µ2(Fn). Hence µ1 × µ2 is a pre-measure on F1 ×F2.

Now we show that µ1 × µ2 is σ-finite, so uniqueness of extension then follows from Theorem 1.23. By σ-

finiteness of µ1 and µ2, there exist {An}∞n=1 ⊂ F1 and {Bn}∞n=1 ⊂ F2 such that
⋃∞
n=1An = Ω1,

⋃∞
n=1Bn = Ω2

and µ1(An), µ2(Bn) < ∞ for all n. Clearly, Ω1 × Ω2 =
⋃

(j,k)∈N2(Aj × Bk), and (µ1 × µ2)(Aj × Bk) is finite

for all (j, k) ∈ N2. Since N2 is countable, µ1 × µ2 is σ-finite.

Remark. In general, the set of measurable rectangles F1×F2 is not a σ-algebra, since it is possibly not closed

under complements countable intersections. For example, consider (R2,B(R)2), where

B(R)2 = B(R)×B(R)).

The union of (0, 1)× (0, 1) and (−1, 0)× (−1, 0) is not in B(R)2.

Product topology and product σ-algebra. Let (X1,T1) and (X2,T2) are two
:::::::::::::::
second-countable topo-

logical spaces. The product topology T1 ⊗T2 is the topology generated by all open rectangles T1 ×T2.

Let B1 = σ(T1) and B2 = σ(T2) be the Borel σ-algebras generated by T1 and T2, respectively. Then

the σ-algebras generated by the product topology T1 ⊗ T2 and by Borel rectangles B1 ×B2 coincide. In a

nutshell, σ(T1)⊗ σ(T2) = σ(T1 ⊗T2).

Proof. Given A ∈ B1, let VA be the collection of all B ⊂ X2 such that A × B ∈ σ(T1 ⊗ T2). Clearly, VA is

a σ-algebra of subsets of X2, and it contains all open sets in X2. Hence B2 ⊂ VA. Similarly, for B ∈ B1,

the collection UB of all A ⊂ X1 such that A × B ∈ σ(T1 ⊗ T2) is a σ-algebra containing B1. As a result,

σ(T1 ⊗T2) contains all Borel rectangles B1 ×B2, hence contains σ(B1 ×B2).

In the other direction, let {Um}m∈N be a topological basis for X1, and {Vn}n∈N a topological basis for X2.

Then the collection A = {Um × Vn}m,n∈N is a topological basis for the product space X1 ×X2. Furthermore,

any open set in X1 × X2 is a union of these basis elements, which must be countable. Hence the σ-algebra

generated by A contains all open sets in X1 × X2, and σ(A ) ⊃ σ(T1 ⊗ T2). On the other hand, note that

A ⊂ T1 ×T2, which is the set of all open rectangles in X1 ×X2, we have σ(A ) ⊂ σ(T1 ×T2) ⊂ σ(T1 ⊗T2).

Furthermore, since A ⊂ B1 ×B2, we have σ(A ) ⊂ σ(B1 ×B2).

To summarize, σ(T1)⊗ σ(T2) = σ(B1 ×B2) = σ(A ) = σ(T1 ⊗T2).

Since the real line R given the standard topology is second-countable, we have B(R2) = B(R) ⊗B(R).
The same conclusion applies for all Euclidean spaces Rn, where n ∈ N.
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1.3 Measurable Functions and Lebesgue Integration

1.3.1 Measurable Functions

Definition 1.26 (Inverse image). Given a function T : Ω1 → Ω2 and a subset A ⊂ Ω2, define

T−1A = {ω ∈ Ω1 : Tω ∈ A}

to be the inverse image of A. If A is a collection of subsets of Ω2, define T
−1A = {T−1A : A ∈ A }.

Proposition 1.27. Let T : Ω1 → Ω2. It is easy to verify the following properties of T .

(i) T−1Ω2 = Ω1, T
−1∅ = ∅;

(ii) For all A ⊂ Ω2, T
−1(Ω2\A) = Ω1\T−1A.

(iii) If {Aα}α∈J is a collection of subsets of Ω2, then T
−1
(⋃

α∈J Aα
)
=
⋃
α∈J T

−1Aα.

(iv) If F is a σ-algebra of subsets of Ω2, then T
−1F is again a σ-algebra.

Definition 1.28 (Measurable functions). Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. A function

T : (Ω1,F1)→ (Ω2,F2) is said to be a measurable function if T−1F2 ⊂ F1. In other words, the inverse image

of every F2-measurable set in Ω2 is F1-measurable.

Remark. By definition, we can immediately verify that the composition T ◦ S of two measurable functions

(Ω1,F1)
S→ (Ω2,F2)

T→ (Ω3,F3) is measurable.

Lemma 1.29 (Pushforward measure). Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. If µ : F1 → R+

is a measure on (Ω1,F1), and T : Ω1 → Ω2 is a measurable function, then T∗µ : F2 → R+, A 7→ µ(T−1A) is

a measure on (Ω2,F2), called the pushforward of µ.

Proof. This lemma immediately follows from Proposition 1.27 (i) and (iii).

Remark. A function T : (Ω1,F1, µ1) → (Ω2,F2, µ2) is said to be measure preserving if µ2 = T∗µ1. In other

words, the measure of any measurable set A ∈ F2 does not change after inverse transformation.

Definition 1.30. Let (Ω,F ) be a measurable space.

(i) A real-valued function f : Ω → R is said to be measurable if f−1(B) ∈ F for all B ∈ B(R). In other

words, the function f : (Ω,F )→ (R,B(R)) is measurable.

(ii) An extended real-valued function f : Ω → R := R ∪ {−∞,∞} is said to be measurable if the sets

{ω : f(ω) = −∞} and {ω : f(ω) =∞} are measurable, and the real-valued function f1 is measurable:

f1(ω) =

f(ω), if f(ω) ∈ R;

0, otherwise

Remark. We can generalize (i) to any topological space (X,T ), where a Borel σ-algebra can be defined.

The measurability of a real-valued function can be characterized by its level sets.

Proposition 1.31 (Characterization of real-valued measurable functions). Let (Ω,F ) be a measurable space,

and f : Ω→ R. The following are equivalent:

(i) {ω : f(ω) > α} is measurable for all α ∈ R;
(ii) {ω : f(ω) ≥ α} is measurable for all α ∈ R;
(iii) {ω : f(ω) < α} is measurable for all α ∈ R;
(iv) {ω : f(ω) ≤ α} is measurable for all α ∈ R;
(v) f is a measurable function.
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Proof. Clearly (i) and (iii) are equivalent. It is easy to see that (i) and (ii) are equivalent, since

{ω : f(ω) > α} =
∞⋂
n=1

{
ω : f(ω) ≥ α+

1

n

}
, {ω : f(ω) ≥ α} =

∞⋂
n=1

{
ω : f(ω) > α− 1

n

}
.

Similarly (iii) and (iv) are equivalent. Then it remains to show (i)-(iv) ⇒ (v).

Let A =
{
A ⊂ R : f−1(A) ∈ F

}
. Clearly, A is a σ-algebra. Then it suffices to show that A contains all

open intervals: for all α < β, f−1((α, β)) = {ω : f(ω) < β} ∩ {ω : f(ω) > α} ∈ F .

Remark. By definition, all constant functions, indicator functions, continuous functions (the inverse images of

open sets remain open) and monotone functions on R are measurable. Furthermore, this proposition remains

true for extended real-valued functions f : Ω→ R.

Definition 1.32. Given a function f : Ω→ R, define f+ = max{f, 0} to be the positive part of f , and define

f− = max{−f, 0} to be the negative part of f . Then we have

f = f+ − f−, |f | = f+ + f−.

Proposition 1.33. Let (Ω,F ) be a measurable space. Let f and g be two real-valued measurable functions.

Let α ∈ R. The following functions are measurable: f+, f−, |f |, αf, f + g, fg.

Proof. Clearly, f+, f−, |f |, |f |2 and αf are measurable. To show f + g is measurable, note that

{ω : f(ω) + g(ω) > α} =
⋃
rn∈Q
{ω : f(ω) > rn} ∩ {ω : g(ω) > α− rn} ∈ B(R).

To show fg is measurable, note that (f + g)2 − |f |2 − |g|2 = 2fg is measurable.

Remark. The proposition also holds for extended real-valued f and g. (Note f + g should be well-defined, i.e.

the operation ∞−∞ are not allowed.)

The limit operation also preserves measurability.

Proposition 1.34. Given a measurable space (Ω,F ) and a sequence of measurable functions fn : Ω → R,
n ∈ N, then following functions are also measurable:

g1(ω) = sup
n≥1

fn(ω), g(ω) = lim sup
n→∞

fn(ω), h1(ω) = inf
n≥1

fn(ω), h(ω) = lim inf
n→∞

fn(ω).

Proof. Define gk(ω) = supn≥k fn(ω), k ∈ N. Then (gk)
∞
k=1 is a decreasing sequence. For all α ∈ R,

{ω : gk(ω) ≥ α} =
∞⋃
n=k

{ω : fn(ω) ≥ α} ∈ F .

Hence gk is measurable. Similarly, hk(ω) = infn≥k fn(ω) is an increasing sequence of measurable functions.

Furthermore,

g(ω) = lim
k→∞

gk(ω) = inf
k≥1

gk(ω), h(ω) = lim
k→∞

hk(ω) = sup
k≥1

hk(ω)

are also measurable.

Remark. Following the result above, If {fn : Ω → R, n ∈ N} is a sequence of measurable functions that

converges pointwise to a function f : Ω→ R, then f is also measurable.
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Sometimes we are also interested in the measurability of vector-valued functions.

Theorem 1.35. Let (Ω,F ) be a measurable space. Let X and Y be two second-countable measurable spaces.

A vector-valued function f = (fX , fY ) : Ω → X × Y is measurable if and only if its two components fX and

fY are both measurable.

Proof. If f = (fX , fY ) is measurable, consider the projection map πX : X × Y → Y, (x, y) 7→ x. Clearly, πX

is continuous, hence is measurable. Then fX = πX ◦ f is measurable. The same holds for fY .

Conversely, let {Um}∞n=1 be a topological basis for X, and {Vn}∞n=1 a topological basis for Y . For an open

set W in X × Y , it can be written as a countable union of some basis elements:

W =

∞⋃
k=1

Umk
× Vnk

⇒ f−1(W ) =

∞⋃
k=1

(
f−1
X (Umk

) ∩ f−1
Y (Vnk

)
)
.

Since fX and fY are measurable, f−1(W ) ∈ F for all open set W ⊂ X × Y . Since f preserves set operations

(intersection, union and complement), we have f−1(W ) ∈ F for all Borel set W in X × Y .

Remark. By induction, a real-vector-valued function f = (f1, · · · , fn) is measurable if and only if each of its

components fk is measurable.

1.3.2 Simple Function Approximation of Measurable Functions

Theorem 1.36 (Simple function approximation). . Let (Ω,F ) be a measurable space. A (measurable)

simple function φ is a finite linear combination of indicator functions of measurable sets. That is, there

exists A1, · · · , An ∈ F and c1, · · · , cn ∈ R such that

φ =

n∑
k=1

ckχAk
. (1.5)

Let (Ω,F ) be a measurable space, and let f : Ω → R be a nonnegative measurable function. Then there

exists an increasing sequence (φn)
∞
n=1 of measurable functions such that f(ω) = limn→∞ φn(ω) for all ω ∈ Ω.

Namely, φn converges pointwise to f . Furthermore, if there exists M > 0 such that f(ω) ≤ M for all ω ∈ Ω,

then we are able to choose φn that converges uniformly to f .

Proof. For each n ∈ N and 0 ≤ k < 4n, define

En,k =
{
ω : 2−nk ≤ f(ω) < 2−n(k + 1)

}
, En,4n = {ω : f(ω) ≥ 2n} .

Then choose a nonnegative measurable simple function φn as follows:

φn =

4n∑
k=0

k

2n
χEn,k

⇒ φn(ω) = max
k∈{0,1,··· ,4n}

{
2−nk : 2−nk ≤ f(ω)

}
, ∀ω ∈ Ω.

Clearly, φn is increasing, and φn(ω) → f(ω) for all ω ∈ Ω. If there exists M > 0 such that f(ω) ≤ M for all

ω ∈ Ω, then En,4n = ∅ once 2n > N , and |f(ω)− φn(ω)| < 2−n for all ω ∈ Ω.

Remark. If f is a measurable function, we can extract its positive part f+ = max{f, 0} and negative part

f− = max{−f, 0}. By approaching f+ and f− respectively, we obtain a simple function approximation (fn)

for a general measurable function f , with |fn| ↑ |f |.

The following theorem shows that a pointwise convergent function sequence almost converges uniformly.

It is also known as the second statement of the Littlewood’s three principles for real analysis.
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Theorem 1.37 (Egoroff). Let (Ω,F , µ) be a
::::
finite measure space. Let fn : Ω → R, n ∈ N be a sequence of

measurable functions that converges µ-almost everywhere to f : Ω ∈ R. Then for all ϵ > 0, there exists E ∈ F

such that µ(Ω\E) < ϵ and that fn converges to f uniformly on E.

Proof. Choose Ω0 ∈ F such that µ(Ω\Ω0) = 0 and fn(x)→ f(x) everywhere on Ω0. For all n, k ∈ N, define

Ak,n :=

{
ω : |fn(ω)− f(ω)| ≥

1

k

}
, Bk,n :=

∞⋃
j=n

Ak,j , Ak :=

∞⋂
n=1

Bk,n.

If ω0 ∈ Ω0, there exists N > 0 such that |fn(ω0) − f(ω0)| < k−1 for all n ≥ N . Then ω0 /∈ Bk,N , and

ω0 /∈ Ak for all k ∈ N. This implies
⋃∞
k=1Ak ⊂ Ω\Ω0. Since µ is finite, we have

lim
n→∞

µ(Bk,n) = µ

( ∞⋂
n=1

Bk,n

)
= µ(Ak) = 0 ⇒ ∃Nk > 0 such that µ (Bk,Nk

) < 2−kϵ.

Let E = Ω\ (
⋃∞
k=1Bk,Nk

) ∈ F . Then µ(Ω\E) < ϵ. Furthermore, for all ω ∈ E, ω /∈ Bk,Nk
for all k ∈ N.

In other words, given any k ∈ N, we have |fn(ω)− f(ω)| < k−1 for all n ≥ Nk and all ω ∈ E. Hence E is the

desired set on which fn converges uniformly to f .

We also have a monotone class theorem for measurable functions.

Theorem 1.38 (Monotone class theorem). Let A be a π-system that contains Ω, and let H be a collection of

real-valued functions on Ω that satisfies:

(i) {1A : A ∈ A } ⊂ H;
(ii) H is closed under linear operation, i.e. for all f, g ∈ H and c ∈ R, we have f + g, cf ∈ H.
(iii) If fn ∈ H are nonnegative and increase to a function f , then f ∈ H.
Then H contains all bounded functions that are measurable with respect to σ(A ).

Proof. We define

H = {A ⊂ Ω : 1A ∈H } .

By the assumptions Ω ∈ A , (ii) and (iii), H is a λ-system, which contains σ(A ) by the π-λ theorem. By (ii),

H contains all simple functions, and (iii) implies that H contains all bounded functions that are measurable

with respect to σ(A ) by simple function approximation.

1.3.3 Lebesgue Integration: Nonnegative Measurable Functions

Definition 1.39 (Lebesgue integral for nonnegative measurable functions). A simple function φ : Ω → R
takes only finitely many values a1, · · · , an ∈ R. Hence it has the unique standard expression:

φ =

n∑
k=1

akχAk
, where Ak = {ω : φ(ω) = ak}. (1.6)

For a nonnegative simple function φ : Ω→ R+ defined by (1.6), we define its Lebesgue integral as∫
φdµ =

n∑
k=1

anµ(An).

Given a nonnegative measurable function f : Ω→ R+, define its Lebesgue integral as follows:∫
f dµ = sup

{∫
φdµ : 0 ≤ φ ≤ f, φ is a measurable simple function

}
.
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In addition, given A ∈ F , define ∫
A

f dµ =

∫
fχA dµ.

Remark. These integrals are well-defined but may take value ∞, with the convention ∞ · 0 = 0.

The monotonicity is an important property of Lebesgue integrals.

Proposition 1.40 (Monotonicity). If f and g are nonnegative measurable functions such that f ≤ g, then∫
f dµ ≤

∫
g dµ.

Proof. If φ is a simple function with 0 ≤ φ ≤ f , we also have 0 ≤ φ ≤ g, and S(φ) ≤
∫
g dµ. By taking the

supremum over all such φ, we get the desired inequality.

Following the monotone property, we introduce one of the most important convergence theorems, which

ensure the interchangeability of limit and integration.

Theorem 1.41 (Monotone convergence theorem/Levi’s theorem). Let (fn)
∞
n=1 be a monotone increasing

sequence of nonnegative measurable functions, and let f(ω) = limn→∞ fn(ω) for all ω ∈ Ω. Then∫
f dµ = lim

n→∞

∫
fn dµ.

Proof. By Proposition 1.40,
∫
fn dµ is monotone increasing, and

lim
n→∞

∫
fn dµ = sup

n≥1

∫
fn dµ ≤

∫
f dµ. (1.7)

Now we prove the opposite. Let 0 < α < 1, and let φ be any simple function such that 0 ≤ φ ≤ f . Take

An := {ω : fn(ω) ≥ αφ(ω)}, which is an increasing sequence in F such that Ω =
⋃∞
n=1An. Note that fn is

nonnegative, and φ is simple. Then ∫
fn dµ ≥

∫
An

fn dµ ≥ α
∫
An

φdµ

Letting n→∞ and then α ↑ 1, we have

lim
n→∞

∫
fn dµ ≥ α

∫
φdµ, and lim

n→∞

∫
fn dµ ≥

∫
φdµ.

Since the simple function 0 ≤ φ ≤ f is arbitrary, by definition of Lebesgue integral, we complete the proof of

the opposite of (1.7).

Many properties of the Lebesgue integral can be proved by applying simple function approximation and

monotone convergence theorem.

Proposition 1.42. For all nonnegative measurable functions f and g and all α, β ∈ R+,∫
(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

Proof. The equality is clear when f and g is simple. In general case, use simple function approximation and

monotone convergence theorem.
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Proposition 1.43. Let f and g be nonnegative measurable functions. Then∫
f dµ = 0 ⇔ f = 0 a.e..

Furthermore, if f = g a.e., then ∫
f dµ =

∫
g dµ.

Proof. Let φ =
∑n
k=1 akχAk

be a simple function such that 0 ≤ φ ≤ f . If f = 0 a.e., then either µ(Ak) = 0

or ak = 0 for each k, which implies S(φ) = 0. By definition of Lebesgue integral,
∫
f dµ = 0.

Now assume
∫
f dµ = 0. Take E = {ω : f(ω) > 0} and En =

{
ω : f(ω) > n−1

}
for all n ∈ N. Then we

have E =
⋃∞
n=1En, and

0 ≤ µ(E) = lim
n→∞

µ(En) ≤ lim
n→∞

n

∫
En

f dµ ≤ lim
n→∞

n

∫
f dµ = 0 ⇒ µ(E) = 0, f = 0 a.e..

Finally assume f = g a.e.. Take h = max{f, g}, then h − f is a nonnegative measurable function, and

h− f = 0 a.e.. As a result,
∫
hdµ =

∫
f dµ. Similarly, we have

∫
hdµ =

∫
g dµ.

Now we introduce the second important convergence theorem. The Fatou’s lemma is useful when we do

not know whether limit and integration are interchangeable.

Theorem 1.44 (Fatou’s lemma). Let (fn)
∞
n=1 be a sequence of nonnegative measurable functions, and let

f(ω) = lim infn→∞ fn(ω) for all ω ∈ Ω. Then∫
f dµ ≤ lim inf

n→∞

∫
fn dµ. (1.8)

Proof. Let gn(ω) = infk≥n fk(ω). Then g is measurable, and∫
gn dµ ≤

∫
fk dµ, ∀k ≥ n,

which implies ∫
gn dµ ≤ inf

k≥n

∫
fk dµ.

Furthermore, (gn)
∞
n=1 is a monotone increasing sequence converging to f . By monotone convergence theorem,∫

f dµ = lim
n→∞

∫
gn dµ ≤ lim

n→∞
inf
k≥n

∫
fk dµ.

This is indeed the inequality (1.8).

Remark. Even though f = limn→∞ fn (pointwise), the limit and the integration are not interchangeable in

general. For example, let fn = nχ[0,n−1]. Then f = limn→∞ fn =∞χ{0}, but

0 =

∫
f dµ < lim

n→∞

∫
fn dµ = 1.

We will discuss a sufficient condition of interchangeability between limit and integration later in the Lebesgue

dominated convergence theorem.
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1.3.4 Integrable Functions and Lebesgue Integration

In this section, we extend the definition of Lebesgue integral to signed measurable functions.

Definition 1.45 (Lebesgue integrable functions). A measurable function f is said to be integrable if∫
f+ dµ <∞ and

∫
f− dµ <∞.

We denote by L1(Ω,F , µ) the set of all integrable functions. The Lebesgue integral of f is defined as∫
f dµ =

∫
f+ dµ−

∫
f− dµ ∈ R.

In addition, given A ∈ F , define ∫
A

f dµ =

∫
fχA dµ.

Remark. A measurable function f is said to be quasi-integrable if at least one of f+ and f− is integrable, and

the Lebesgue integral of f takes value in R = R ∪ {−∞,∞}.

Proposition 1.46 (Linearity of Lebesgue integral). For all f, g ∈ L1(Ω,F , µ) and all α, β ∈ R,∫
(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

Proof. By Proposition 1.42,∫
αf dµ =

∫
(αf)+ dµ−

∫
(αf)− dµ = α

∫
f+ dµ− α

∫
f− dµ = α

∫
f dµ.

Let A = {f ≥ 0, g ≥ 0}, B = {f < 0, g < 0}, P1 = {f ≥ 0, g < 0, f +g ≥ 0}, P2 = {f < 0, g ≥ 0, f +g ≥ 0},
N1 = {f < 0, g ≥ 0, f + g < 0}, N2 = {f ≥ 0, g < 0, f + g < 0}. Then Ω = A ∪B ∪ P1 ∪ P2 ∪N1 ∪N2, and∫

(f + g) dµ =

∫
(f + g)+ dµ−

∫
(f + g)− dµ

=

∫
A

(f+ + g+) dµ+

∫
P1

(f+ − g−) dµ+

∫
P2

(g+ − f−) dµ

−
∫
B

(f− + g−) dµ−
∫
N1

(f− − g+) dµ−
∫
N2

(g− − f+) dµ

=

∫
A

f+ dµ+

∫
P1

f+ dµ+

∫
N2

f+ dµ−
∫
B

f− dµ−
∫
P2

f− dµ−
∫
N1

f− dµ

+

∫
A

g+ dµ+

∫
P2

g+ dµ+

∫
N1

g+ dµ−
∫
B

g− dµ−
∫
P1

g− dµ−
∫
N2

g− dµ

=

∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ =

∫
f dµ+

∫
g dµ.

Proposition 1.47 (Absolute integrability). Let f be a measurable function. Then f ∈ L1(Ω,F , µ) if and

only if |f | ∈ L1(Ω,F , µ). In that case, ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f |dµ. (1.9)

Proof. Note that f = f+ − f−, |f | = f+ + f−. Then f and |f | is integrable if and only if f+ and f− is

integrable. Moreover, (1.9) follows from the triangle inequality.
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The Lebesgue’s dominated convergence theorem concerns about interchangeability of limit and integration.

Theorem 1.48 (Lebesgue’s dominated convergence theorem). Let (fn)
∞
n=1 be a sequence of measurable func-

tions such that fn → f a.e., where f is also a measurable function. If there exists g ∈ L1(Ω,F , µ) such that

|fn| ≤ g for all n ∈ N, then all functions fn and f are integrable, and∫
f dµ = lim

n→∞

∫
fn dµ.

Proof. We may assume fn → f pointwise by redefining f and fn on a set of measure zero. For all n ∈ N, we
have |fn| ≤ g, then |f | ≤ g. By Proposition 1.47, all functions fn and f are integrable. Since g + fn ≥ 0, and

g − fn ≥ 0, we apply Fatou’s lemma [Theorem 1.44] to obtain∫
(g + f) dµ ≤ lim inf

n→∞

∫
(g + fn) dµ =

∫
g dµ+ lim inf

n→∞

∫
fn dµ,

and ∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ =

∫
g dµ− lim sup

n→∞

∫
fn dµ.

Hence we have

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fn dµ,

and the result follows.

Remark. If (Ω,F , µ) is a complete measure space, then f is automatically measurable. Inspired by this proof,

we summarize another commonly used version of Fatou’s lemma as follows.

Corollary 1.49 (Fatou’s lemma). Let (fn)
∞
n=1 be a sequence of integrable functions.

(i) If there exists an integrable function g such that fn ≥ g for all n ∈ N, then∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ

(ii) If there exists an integrable function g such that fn ≤ g for all n ∈ N, then

lim sup
n→∞

∫
fn dµ ≤

∫
lim sup
n→∞

fn dµ.

Finally we discuss integral transform among different measure spaces.

Theorem 1.50 (Integral transform). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measure spaces. If function

T : (Ω1,F1, µ1)→ (Ω2,F2, µ2) is measure-preserving, i.e. µ2 = T∗µ1 is the pushforward of µ1, then∫
f ◦ T dµ1 =

∫
f dµ2, ∀f ∈ L1(Ω2,F2, µ2). (1.10)

Proof. For all A ∈ F2, we have∫
χA ◦ T dµ1 = µ1

(
T−1A

)
= µ2(A) =

∫
χA dµ2.

Then (1.10) holds for all nonnegative measurable simple functions f . Similar to the procedure of defining

Lebesgue integral (Definition 1.39 and Definition 1.45), it holds for all f ∈ L1(Ω2,F2, µ2).
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1.3.5 Integration on Product Spaces and Fubini’s Theorem

Now we discuss Lebesgue integral on product spaces and the interchange of integrals. We first present the

general conclusion in Theorem 1.51.

Theorem 1.51 (Fubini’s theorem). Let f ∈ L1(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2).

(i) For all ω1 ∈ Ω1, the function ω2 7→ f(ω1, ω2) is integrable.

(ii) The function ω1 7→
∫
Ω2
f(ω1, ω2) dµ2(ω2) is integrable.

(iii) For all ω2 ∈ Ω1, the function ω1 7→ f(ω1, ω2) is integrable.

(iv) The function ω2 7→
∫
Ω1
f(ω1, ω2) dµ1(ω1) is integrable.

(v) The following integrals are equivalent:∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

f(ω1, ω2) dµ2(ω2)

)
dµ1(ω1) =

∫
Ω2

(∫
Ω1

f(ω1, ω2) dµ1(ω1)

)
dµ2(ω2).

The proof of Fubini’s theorem uses Tonelli’s theorem. We first prove the following proposition.

Proposition 1.52. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure spaces, and denote their product

space by (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). For all A ∈ F1 ⊗F2, we define the slices

Aω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ A} .

Then the following hold for all A ∈ F1 ⊗F2:

(i) Aω1
∈ F2 for all ω1 ∈ Ω1;

(ii) The function fA : ω1 7→ µ2(Aω1) is measurable;

(iii) (µ1 ⊗ µ2)(A) =
∫
Ω1
µ2(Aω1

) dµ1(ω1) :=
∫
Ω1
fA dµ1.

A similar statement also holds for slices Aω2 = {ω1 ∈ Ω1 : (ω1, ω2) ∈ A}.

Proof. Denote by M the collection of all subsets of Ω1 × Ω2 which satisfy (i), (ii) and (iii). We prove that

M ⊃ F1 ⊗F2. Clearly, all measurable rectangles in Ω1 ×Ω2 satisfy (i), (ii) and (iii). Hence M ⊃ F1 ×F2.

Step I: We prove that for any increasing sequence (An)
∞
n=1 of sets in M , it holds A :=

⋃∞
n=1An ∈M .

(i) For all ω1 ∈ Ω1, we have

Aω1 =

( ∞⋃
n=1

An

)
ω1

=

∞⋃
n=1

(An)ω1 ∈ F2;

(ii) Note that (An)ω1
is an increasing sequence, we have

µ2(Aω1
) = lim

n→∞
µ2 ((An)ω1

) ⇒ fA = lim
n→∞

fn is measurable.

(iii) Note that fAn
is monotone increasing, by monotone convergence theorem,

(µ1 ⊗ µ2)(A) = lim
n→∞

(µ1 ⊗ µ2)(An) = lim
n→∞

∫
Ω1

fAn
dµ1 =

∫
Ω1

f dµ1.

Step II: Similar to Step I, we can prove that for any decreasing sequence (Bn)
∞
n=1 of sets in M such that

µ1((B1)ω1
) <∞ for all ω1 ∈ Ω1 and (µ1 ⊗ µ2)(B1) <∞, it holds B :=

⋂∞
n=1Bn ∈M .

Step III: We prove that for any sequence (En)
∞
n=1 of disjoint sets in M , it holds

⋃∞
n=1En ∈ M . Clearly, if

E,F are disjoint sets in M , we have E∪F ∈M . Then our result immediately follows from Step I by choosing

increasing sequence An :=
⋃n
k=1Ek in M .
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Step IV: Denote by A the collection of all finite unions of measurable rectangles in Ω1 × Ω2. Then A is an

algebra. By σ-finiteness of Ω1, choose an increasing sequence (Xn)
∞
n=1 such that µ1(Xn) < ∞ for all n ∈ N

and Ω1 =
⋃∞
n=1Xn. Similarly choose an increasing sequence (Yn)

∞
n=1 for Ω2.

Let An = {A ∈ A : A ⊂ Xn × Yn}, and Mn = {M ∈M :M ⊂ Xn × Yn}. Then An ⊂Mn. Clearly, An is

an algebra, and Mn is a monotone class by Steps I and II. By monotone class theorem, σ(An) ⊂Mn. Since

σ(An) contains all measurable subsets of Xn × Yn, so does M . As a result, M ⊃Mn contains all measurable

subsets of Xn × Yn for all n ∈ N. Since M is closed under countable unions, M ⊃ F1 ⊗F2.

The Tonelli’s theorem gives the integral of nonnegative functions on product measure spaces.

Theorem 1.53 (Tonelli’s theorem). Let f : (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2)→ R+ be a measurable function.

(i) For all ω1 ∈ Ω1, the function ω2 7→ f(ω1, ω2) is measurable.

(ii) The function ω1 7→
∫
Ω2
f(ω1, ω2) dµ2(ω2) is measurable.

(iii) For all ω2 ∈ Ω1, the function ω1 7→ f(ω1, ω2) is measurable.

(iv) The function ω2 7→
∫
Ω1
f(ω1, ω2) dµ1(ω1) is measurable.

(v) The following integrals are equivalent:∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

f(ω1, ω2) dµ2(ω2)

)
dµ1(ω1) =

∫
Ω2

(∫
Ω1

f(ω1, ω2) dµ1(ω1)

)
dµ2(ω2).

Proof. By Theorem 1.52, the theorem holds for all indicator functions χA, where A ∈ F1×F2. Consequently,

it holds for all nonnegative simple functions φ. For a general nonnegative measurable function f , choose

a monotone increasing sequence φn of nonnegative simple functions such that f = limn→∞ φn. Applying

monotone convergence theorem, we know that the theorem holds for f .

Proof of Fubini’s theorem. Since f = f+− f−, using Tonelli’s theorem to f+ and f− completes the proof.

Remark. If f /∈ L1(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2), we cannot change the order of integration. For example,

consider the function on f : [0, 1]× [0, 1]→ R:

f(x, y) =
x2 − y2

(x2 + y2)2
= − ∂2

∂x∂y
arctan

(y
x

)
.

Then ∫
[0,1]

(∫
[0,1]

x2 − y2

(x2 + y2)2
dy

)
dx =

∫
[0,1]

1

1 + x2
dx =

π

4
;

∫
[0,1]

(∫
[0,1]

x2 − y2

(x2 + y2)2
dx

)
dy =

∫
[0,1]

−1
1 + y2

dy = −π
4
;

and ∫
[0,1]

∫
[0,1]

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣dxdy =∞.
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1.4 Signed Measures, Jordan Decomposition and Radon-Nikodym Theorem

Definition 1.54 (Signed measure). Let (Ω,F ) be a measurable space. A signed measure µ on (Ω,F ) is a

set function µ : F → R that satisfies the following:

(i) µ(∅) = 0;

(ii) (Countable additivity). If (An)
∞
n=1 is a sequence of disjoint sets in F , then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An). (1.11)

When the left-hand side of (1.11) is finite, the right-hand side converges absolutely.

A signed measure µ is said to be finite if it only takes values in R. A signed measure µ is said to be σ-finite

if there exists {Ωn}∞n=1 such that Ω =
⋃∞
n=1 Ωn, and −∞ < µ(Ωn) <∞ for all n ∈ N.

Remark. One immediate consequence of (ii) is that a signed measure µ may take ∞ or −∞ as a value, but it

cannot take both, because the expression ∞−∞ is undefined.

Theorem 1.55 (Hahn decomposition theorem). Let µ be a signed measure on a measurable space (Ω,F ).

Then there exist measurable sets P,N ∈ F that satisfy the following:

(i) P ⨿N is a division of Ω. (In other words, P ∪N = Ω and P ∩N = ∅.)
(ii) For all A ∈ F with A ⊂ P , µ(A) ≥ 0. (In other words, P is a positive set.)

(iii) For all B ∈ F with B ⊂ N , µ(B) ≤ 0. (In other words, N is a negative set.)

Proof. We may assume that µ does not take ∞ as a value. Otherwise apply the following proof on −µ.
Denote by P the collection of all positive sets in F , then ∅ ∈ P. Let M = supA∈P µ(A), and choose

{An}∞n=1 ⊂P such that µ(An)→M . Clearly, P =
⋃∞
n=1An is a positive set, and µ(P ) =M .

We prove that N := Ω\P is a negative set. If not, there exists a measurable set E ⊂ N with µ(E) > 0.

Clearly, E is not a positive set. (Otherwise, P ∪ E ∈P, but µ(P ∪ E) = µ(P ) + µ(E) > M = supA∈P µ(A),

a contradiction!) Hence there exists B ⊂ E with µ(B) < 0. We choose the smallest positive integer k1 such

that there exists B1 ⊂ E with µ(B1) < −k−1
1 . Since k1 is the smallest, once k1 > 1, any measurable subset A

of E satisfies µ(A) ≥ −(k1 − 1)−1.

Again, E\B1 is not positive. Then we choose the smallest k2 ∈ N such that there exists B2 ⊂ E\B1 with

µ(B2) < −k−1
2 . Repeat this procedure, we obtain a sequence kn ∈ N and Bn ⊂ F such that

• Bn ⊂ E\
(⋃n−1

k=1 Bk

)
and µ(Bn) < −k−1

n , and

• Once kn > 1, any measurable subset A of E\
(⋃n−1

k=1 Bk

)
satisfies µ(A) ≥ −(kn − 1)−1.

Take C = E\ (
⋃∞
n=1Bn). By assumption that µ does not take ∞,

µ(C) = µ(E)−
∞∑
n=1

µ(Bn) = µ(E) +

∞∑
n=1

1

kn
<∞ ⇒ kn →∞ as n→∞.

Since any measurable subset A of C satisfies µ(E) ≥ − limn→∞(kn − 1)−1 = 0, C is a positive set disjoint

from P . However µ(P ∪ C) = µ(P ) + µ(E) +
∑∞
n=1 k

−1
n > M = supA∈P µ(A), again a contradiction!

Remark. We called a set E ∈ F a µ-null set if µ(A) = 0 for any measurable subset A of E. Following this

proof, the Hahn decomposition P ⨿N is unique up to adding to/subtracting µ-null sets from P and N :

Given a Hahn decomposition P ′ ⨿N ′, the set P ∩N ′ is a positive set and also a negative set. The same

applies to N ∩ P ′. Then P△P ′ = N△N ′ = (P ∩N ′) ∪ (N ∩ P ′)is a µ-null set.
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Corollary 1.56 (Jordan decomposition). Given a signed measure µ on a measurable space (Ω,F ), take the

Hahn decomposition Ω = P ⨿N on µ. Define

µ+(A) = µ(A ∩ P ), µ−(A) = −µ(A ∩N), ∀A ∈ F .

Then µ+ and µ− are two (finite) measures on (Ω,F ), and we have the Jordan decomposition µ = µ+−µ−.

Since the Hahn decomposition is unique up to the difference of a µ-null set, the Jordan decomposition is unique.

The measure |µ| := µ+ + µ− is called the variation of µ. Its maximum value ∥µ∥ = |µ|(Ω) is called the total

variation of µ.

Now we discuss the relationship between signed measures and Lebesgue integration. We first introduce the

absolute continuity and singularity of signed measures.

Definition 1.57. Let µ be a measure on a measurable space (Ω,F ).

(i) (Absolute continuity). A signed measure ν is said to be absolutely continuous with respect to µ, denoted

by ν ≪ µ, if ν(A) = 0 for all A ∈ F such that µ(A) = 0.

(ii) (Singularity). A signed measure ν is said to be singular with respect to µ, denoted by ν ⊥ µ, if there

exists A ∈ F such that µ(A) = 0 and ν(Ω\A) = 0.

The following theorem tells that every measurable function f is associated with a signed measure.

Theorem 1.58. Let f ∈ L1(Ω,F , µ). Define ν : F → R by

ν(A) =

∫
A

f dµ, ∀A ∈ F .

Then ν is a (finite) signed measure on (Ω,F ). Furthermore, for any ϵ > 0, there exists δ > 0 such that

for all A ∈ F with µ(A) < δ, we have ν(A) < ϵ. In particular, ν is absolutely continuous with respect to µ.

Proof. We may assume f ≥ 0, and the result follows from f = f+ − f−.
Clearly ν(∅) = 0. Let (An)

∞
n=1 be a sequence of disjoint sets in F . Then

∑n
k=1 fχAk

is a monotone

increasing sequence of nonnegative measurable functions that converges pointwise to fχA, where A =
⋃∞
n=1An.

By monotone convergence theorem,

ν(A) =

∫
fχA dµ = lim

n→∞

n∑
k=1

∫
fχAk

dµ =

∞∑
n=1

ν(An).

Thus ν is a signed measure on (Ω,F ). Now fix ϵ > 0. We define En = {ω : f(ω) > n} for all n ∈ N. Since
f is integrable, µ(En)→ 0. Again by monotone convergence theorem,∫

f dµ = lim
n→∞

∫
fχΩ\En

dµ ⇒ ∃N > 0 such that

∫
EN

f dµ <
ϵ

2
.

Then for all A ∈ F with µ(A) < ϵ/2N , we have∫
A

f dµ =

∫
A

fχΩ\EN
dµ+

∫
A

fχEN
dµ ≤ Nµ(A) +

∫
EN

f dµ < ϵ.

For the last statement, note that if ν(A) > 0, then ν(A) ≥ ϵ for some ϵ > 0, and there exists δ > 0 such

that µ(A) ≥ δ > 0. Hence µ(A) = 0 implies ν(A) = 0.

In fact, the converse of Theorem 1.58 also holds true. It is the generalization of the fundamental theorem

of calculus on measures, known as Radon-Nikodym theorem.
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Theorem 1.59 (Radon-Nikodym theorem). Let µ and ν be two σ-finite measures defined on a measurable

space (Ω,F ). If ν ≪ µ, then there exists a nonnegative measurable function f : Ω→ R+ such that

ν(A) =

∫
A

f dµ, ∀A ∈ F .

The function dν
dµ := f , called the Radon-Nikodym derivative of ν with respect to µ, is uniquely

determined up to a µ-null set.

Proof. Step I: We first assume that both µ and ν are finite. Denote by F the collection of all measurable

functions f : Ω→ R such that (i) f ≥ 0 a.e., and (ii)
∫
A
f dµ ≤ ν(A) for all A ∈ F . Then f ≡ 0 is in F , and

F is closed under finite maximum:∫
A

max{f1, f2} dµ =

∫
A∩{f1≥f2}

f1 dµ+

∫
A∩{f1<f2}

f2 dµ ≤ ν(A ∩ {f1 ≥ f2}) + ν(A ∩ {f1 ≥ f2}) = ν(A).

Define M = supf∈F
∫
f dµ, we prove that M = ν(Ω). Let fn be a sequence in F such that

∫
fn dµ→M .

We choose an increasing sequence gn = max{f1, · · · , fn} ∈ F . By monotone convergence theorem, the function

g = limn→∞ gn lies in F and satisfies∫
g dµ = lim

n→∞

∫
gndµ ≥ lim

n→∞

∫
fndµ =M

g∈F⇒
∫
g dµ =M.

Argue by contradiction. If M < ν(Ω), choose 0 < ϵ < ν(Ω)−M
µ(Ω) and define ν′(A) =

∫
A
g dµ+ ϵµ(A). Then

δ := sup
A∈F

(ν − ν′)(A) ≥ ν(Ω)− ν′(Ω) = ν(Ω)−M − ϵµ(Ω) > 0.

Using Hahn decomposition theorem on signed measure ν − ν′, there exists a positive set P ∈ F such that

ν(P )− ν′(P ) = δ > 0. Since ν′(A) ≤ ν(A) + ϵµ(A) and ν ≪ µ, we have ν′ ≪ µ, and µ(P ) > 0. By maximal

property of P , we have ν′(A) ≤ ν(A) for all A ⊂ P . (Otherwise ν(P\A)− ν′(P\A) > δ.) Then∫
A

(g + ϵχP ) dµ =

∫
A

g dµ+ ϵµ(A ∩ P ) =
∫
A\P

g dµ+ ν′(A ∩ P ) ≤ ν(A\P ) + ν(A ∩ P ) = ν(A), ∀A ∈ F .

Hence g + ϵχP ∈ F . However,
∫
(g + ϵχP ) dµ =

∫
g dµ + ϵµ(P ) > M , a contradiction! As a result, we have∫

g dµ =M = ν(Ω). Since g ∈ F , it holds

0 ≤ ν(A)−
∫
A

g dµ =

∫
Ω\A

g dµ− ν(Ω\A) ≤ 0, ∀A ∈ F .

Note that g : Ω → R is integrable. The set E = {ω : g(ω) = ∞} is µ-null. Choose f = gχΩ\E , then f is the

desired real-valued function.

Step II: If µ and ν are σ-finite, take a disjoint sequence (Ωn)
∞
n=1 such that Ω =

⋃∞
n=1 Ωn and µ(Ωn), ν(Ωn) <∞

for all n ∈ N. For each n, by the finite case, there exists a measurable function fn : Ωn → R+ such that

ν(A) =

∫
A

fn dµ, ∀A ∈ F with A ⊂ Ωn.

Let f =
∑n
n=1 fn. Apply monotone convergence theorem to (

∑n
k=1 fk)

∞
n=1

:

ν(A) =

∞∑
n=1

ν(Ωn ∩A) =
∞∑
n=1

∫
A

fn dµ =

∫
A

f dµ, ∀A ∈ F .
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Step III: Finally we show that f is uniquely determined up to a µ-null set. Let h : Ω→ R+ be another function

satisfying the desired property. Then ∫
A

(f − h) dµ = 0, ∀A ∈ F .

Take A = {ω : f(ω) > h(ω)}, we have
∫
X
(f − h)+ dµ = 0, and (f − h)+ = 0 a.e.. Similarly (f − h)− = 0 a.e..

Hence f = h a.e., as desired.

Corollary 1.60. Let µ (resp. ν) be a σ-finite measure (resp. finite signed measure) on a measurable space

(Ω,F ). If ν ≪ µ, then there exists f ∈ L1(Ω,F , µ) such that

ν(A) =

∫
A

f dµ, ∀A ∈ F .

The Radon-Nikodym derivative dν
dµ := f is uniquely determined up to a µ-null set.

Proof. Use the Jordan decomposition of signed measure ν = ν+ − ν−. Then there exist measurable functions

g, h : Ω→ R+ such that

ν+(A) =

∫
A

g dµ, ν−(A) =

∫
A

hdµ, ∀A ∈ F .

Since ν is finite, g and h are integrable. Then f = g − h is the desired integrable function.

Theorem 1.61 (Lebesgue decomposition theorem). Let µ and ν be two σ-finite measures on a measurable

space (Ω,F ). Then there exist unique measures ν0 ≪ µ and ν1 ⊥ µ such that ν = ν0 + ν1.

Proof. Define the measure λ = µ + ν, then µ, ν ≪ λ, and λ is σ-finite. By Radon-Nikodym theorem, there

exists nonnegative measurable functions f, g : Ω→ R+ such that

µ(A) =

∫
A

f dλ, ν(A) =

∫
A

g dλ, ∀A ∈ F .

Let E = {ω : f(ω) = 0}, and define ν1(A) = ν(A ∩ E), ν0 = ν(A ∩ Ec) for all A ∈ F . Clearly, ν1 ⊥ µ,

since ν1(X\E) = ν1(∅) = 0 = µ(E).

It remains to show ν0 ≪ µ. If µ(A) = 0, we fix any n ∈ N and let Bn = {ω ∈ A : f(ω) > n−1}. Then

0 ≤ λ(Bn) ≤ n
∫
Bn

f dλ ≤ n
∫
A

f dλ = nµ(A) = 0.

Then the set B = A ∩ Ec =
⋃∞
n=1Bn has measure zero. Hence 0 ≤ ν0(A) = ν(B) ≤ λ(B) = 0.

Finally we prove uniqueness. If ν = ν′0 + ν′1 with ν′0 ≪ µ and ν′1 ⊥ µ, there exists E′ ∈ F such that

ν′1(X\E′) = µ(E′) = 0. Then for all measurable A ⊂ X\(E ∪ E′), we have ν0(A) = µ(A) = ν′0(A). Moreover,

for all measurable A ⊂ E ∪ E′, since ν0, ν
′
0 ≪ µ, we have ν0(A) = ν′0(A) = µ(A) = 0. Therefore ν′0 = ν0.

We can apply Theorem 1.60 to the Jordan decomposition of a signed measure ν = ν+ − ν−.

Corollary 1.62 (Lebesgue). Let µ (resp. ν) be a σ-finite measure (resp. σ-finite signed measure) on (Ω,F ).

Then there exist unique signed measures ν0 ≪ µ and ν1 ⊥ µ such that ν = ν0 + ν1.

Remark. When ν is not absolutely continuous with respect to µ, we can apply Radon-Nikodym theorem to

the pair ν0 ≪ µ.
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1.5 Convergence of Measurable Functions and Measures

1.5.1 Convergence in Measure

Definition 1.63 (Cauchy sequence in measure). Let (fn)
∞
n=1 be a sequence of measurable functions on

(Ω,F , µ). If there exists a function f such that for all ϵ > 0 and all η > 0, there exists N such that

µ(|fn − fm| ≥ η) < ϵ for all n,m ≥ N , then fn is said to be a Cauchy sequence in measure.

Definition 1.64 (Convergence in measure). Let (fn)
∞
n=1 be a sequence of measurable functions on (Ω,F , µ).

If there exists a function f such that for all η > 0,

lim
n→∞

µ (|fn − f | ≥ η) = 0,

then f is said to converges to f in measure, and we write fn
µ→ f .

Theorem 1.65. A function sequence (fn)
∞
n=1 converges in measure if and only if it is a Cauchy sequence.

The proof of this theorem makes use of a powerful subsequence lemma.

Lemma 1.66. If (fn)
∞
n=1 is a Cauchy sequence in measure, there exists a subsequence (fnk

)∞k=1 that converges

a.e. to a measurable function f .

Proof. Since fn is a Cauchy sequence, we can choose a subsequence fnk
such that

µ (Ek) <
1

2k
, where Ek =

{
|fnk+1

− fnk
| ≥ 1

2k

}
.

Let FN =
⋃∞
k=N Ek, and E =

⋂∞
N=1 FN . Then µ(FN ) < 2−N+1, and µ(E) = limN→∞ µ(FN ) = 0. For each

ω ∈ Ω\E, we have ω /∈ FN for some N ∈ N, which implies |fnk+1
(ω) − fnk

(ω)| < 2−k for all k ≥ N . Hence

fnk
(ω) is a Cauchy sequence, which converges to some f(ω) ∈ R. For ω ∈ E, define f(ω) = 0. As a result,

fn → f a.e., which is measurable.

Proof of Theorem 1.65. Given ϵ > 0 and η > 0. If fn
µ→ f , there exists N such that µ (|fn − f | ≥ η/2) < ϵ/2

for all n ≥ N . Then for all m,n ≥ N , we have

µ(|fn − fm| ≥ η) ≤ µ
({
ω : |fn(ω)− f(ω)| ≥

η

2

}
∪
{
ω : |fm(ω)− f(ω)| ≥ η

2

})
< ϵ.

Conversely, if fn is a Cauchy sequence in measure, by Lemma 1.66, one of its subsequence fnk
converges

a.e. to a measurable function f . Furthermore, if we choose Fk in Lemma 1.66, for all k ≥ N , we have

|fnk
(ω)− f(ω)| ≤

∞∑
l=k

|fl(ω)− fl+1(ω)| ≤
1

2k−1
, ∀ω ∈ Ω\Fk,

which implies

µ

(
|fnk
− f | > 1

2k−1

)
≤ µ(Fk) <

1

2k−1
.

Hence fnk

µ→ f . Now given ϵ, η > 0, we choose k > 0 such that µ(|fnk
− f | > η/2) < ϵ/2, and choose N > 0

such that µ(|fn − fm| > η/2) < ϵ/2 for all n ≥ N . Then

µ(|fn − f | ≥ η) ≤ µ
({
|fn − fnk

| ≥ η

2

}
∪
{
|fnk
− f | ≥ η

2

})
< ϵ

for all n ≥ max{nk, N}. Therefore fn
µ→ f .
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The following theorem shows that a pointwise convergent function sequence also converges in measure.

Theorem 1.67 (Egoroff). Let (Ω,F , µ) be a finite measure space. If a sequence of functions (fn) converges

to a function f µ-a.e., then fn
µ→ f .

Proof. Let ϵ > 0 and η > 0. By Theorem 1.37, choose E ∈ F such that µ(E) < ϵ and fn converges f

uniformly on Ω\E. Then there exists N such that |fn − f | < η for all n ≥ N and all ω ∈ Ω\E. Hence

µ(|fn − f | ≥ η) < µ(E) < ϵ for all n ≥ N . Since ϵ > 0 and η > 0 are arbitrary, fn
µ→ f .

For finite measure spaces, the condition of almost sure convergence in Fatou’s lemma and Lebesgue domi-

nated convergence theorem can be replaced by convergence in measure.

Theorem 1.68. Let (Ω,F , µ) be a finite measure space.

(i) (Fatou’s lemma). If (fn) is a sequence of nonnegative measurable functions such that fn
µ→ f , then∫

Ω

f dµ ≤ lim inf
n→∞

∫
Ω

fn dµ. (1.1)

(ii) (Dominated convergence theorem). If (fn) is a sequence of integrable functions such that fn
µ→ f , and

there exists an integrable function g such that |fn| ≤ g for each n ∈ N, then∫
Ω

f dµ = lim
n→∞

∫
Ω

fn dµ. (1.2)

Proof. (i) By the very definition of limit infimum, we take a subsequence (fnk
) such that

lim
k→∞

∫
Ω

fnk
dµ = lim inf

n→∞

∫
Ω

fn dµ,

and fnk

µ→ f still. By Lemma 1.66, we may further assume fnk
→ f a.e. by passing to a further subsequence.

The inequality (1.1) then follows from the classical Fatou’s lemma [Theorem 1.44].

(ii) The result follows by applying (i) on sequences g − fn and g + fn.

Remark. As we will see in Theorem 1.75, we can further weaken the condition that (fn) is dominated by an

integrable function.

Finally, we study the continuous transformation of µ-convergent sequences.

Theorem 1.69 (Continuous mapping). Let (Ω,F , µ) be a finite measure space, and ϕ : R→ R a continuous

function. If fn : Ω→ R is a sequence of measurable functions that converges in measure µ to f , the transformed

sequence (ϕ ◦ fn)∞n=1 also converges in measure µ, and the limit equals ϕ ◦ f .

Proof. Fix η > 0. For each k ∈ N, define

Ek =

{
x ∈ R : there exists y ∈ R such that |y − x| ≤ 1

k
and |ϕ(y)− ϕ(x)| ≥ η

}
.

Since ϕ is continuous, the sequence Ek ↓ ∅, and µ(Ek) ↓ 0. Then for each k ∈ N,

µ (|ϕ ◦ fn − ϕ ◦ f | ≥ η) = µ

(
|f − fn| ≤

1

k
, |ϕ ◦ fn − ϕ ◦ f | ≥ η

)
+ µ

(
|f − fn| >

1

k
, |ϕ ◦ fn − ϕ ◦ f | ≥ η

)
≤ µ(Ek) + µ

(
|f − fn| >

1

k

)
→ µ(Ek), as n→∞.

Since µ is finite, we let k →∞ and apply Proposition 1.13 to get the desired result.
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1.5.2 Lp Convergence and Uniform Integrability

For completeness of our discussion, we give a brief review of Lp spaces.

Definition 1.70 (Lp-spaces). Let (Ω,F , µ) be a measurable space. For 1 ≤ p <∞, define Lp(Ω,F , µ) to be

the set of all measurable functions f such that |f |p is integrable, i.e.
∫
X
|f |pdµ <∞. We define

∥f∥p =
(∫
|f |pdµ

)1/p

, f ∈ Lp(Ω,F , µ).

By Minkowski’s inequality, ∥ · ∥p is a seminorm on Lp(Ω,F , µ). Let f ∼ g
def⇔ f = g a.e. be a equivalence

relation on Lp(Ω,F , µ). We define Lp-space as the quotient space

Lp(Ω,F , µ) = Lp(Ω,F , µ)/ ∼,

and maintain the norm ∥[f ]∥p = ∥f∥p. This is a well-defined norm, since ∥f∥p = ∥g∥p if f ∼ g. For simplicity,

we drop the brackets and use f to denote its corresponding equivalence class [f ] in Lp(Ω,F , µ). Then the

space (Lp(Ω,F , µ), ∥ · ∥p) is a normed space.

Theorem 1.71 (Chebyshev inequality). Let 1 ≤ p <∞, and f ∈ Lp(Ω,F , µ). Then

µ(|f | ≥ η) ≤ 1

ηp
∥f∥pp, ∀η > 0.

Proof. Let E = {ω : |f(ω)| ≥ η}. Then

∥f∥pp =
∫
|f |p dµ ≥

∫
E

|f |p dµ ≥ ηpµ(E), ∀η > 0.

Remark. As a result of Theorem 1.71, the convergence in Lp-norm implies the convergence in measure.

Theorem 1.72 (Riesz-Fisher). Lp(Ω,F , µ) is a Banach space. That is, every Cauchy sequence (fn) in

Lp(Ω,F , µ) converges in Lp norm to a function in Lp(Ω,F , µ).

Proof. By Chebyshev’s inequality, fn is also a Cauchy sequence in measure, and there exists a subsequence

fnk
that converges a.e. to some measurable f . Given ϵ > 0, we choose N such that ∥fn − fm∥p < ϵ for all

n,m ≥ N . By Fatou’s lemma,∫
|f − fm|p dµ =

∫
lim
k→∞

|fnk
− fm|p dµ ≤ lim inf

k→∞

∫
|fnk
− fm|p dµ ≤ ϵp, ∀m ≥ N.

Hence f − fm ∈ Lp(Ω,F , µ), f = fm + (f − fm) ∈ Lp(Ω,F , µ). Since ϵ > 0 is arbitrary, ∥f − fm∥p → 0.

Now we introduce uniform integrability of function classes.

Definition 1.73. (Uniform Integrability). Let (X,F , µ) be a finite measure space. A collection of integrable

functions F ⊂ L1(Ω,F , µ) is said to be uniformly integrable, if

lim
N→∞

sup
f∈F

∫
{|f |>N}

|f |dµ = 0. (1.3)

Remark. If g is an integrable function such that |f | ≤ g for all f ∈ F , by dominated convergence theorem,∫
Ω

|f |1{|f |>N} dµ ≤
∫
Ω

g 1{g>N} dµ→
∫
Ω

g 1{g=∞} dµ = 0 as N →∞.

Therefore, F is uniformly integrable if it is dominated by an integrable function g.

30



The following theorem gives a characterization of uniformly integrable function classes in finite measure

spaces, which has a similar form to the Arzelà-Ascoli theorem in functional analysis.

Theorem 1.74. Let (Ω,F , µ) be a finite measure space. A collection of functions F ⊂ L1(Ω,F , µ) is

uniformly integrable if and only if it satisfies the following:

(i) (Uniform L1-boundedness). supf∈F ∥f∥1 <∞.
(ii) (Uniform absolute continuity). For all ϵ > 0, there exists δ > 0 such that for all A ∈ F with µ(A) < δ,∫

A

|f |dµ < ϵ, ∀f ∈ F .

Proof. Let F be uniform integrable. For all A ∈ F and n > 0, we have∫
A

|f |dµ ≤
∫
A∩{|f |>N}

|f |dµ+

∫
A∩{|f |≤N}

|f |dµ ≤
∫
{|f |>N}

|f |dµ+Nµ(A), ∀f ∈ F .

Then we can verify that F satisfies (i) and (ii):

(i) Choose A = Ω. Since µ(Ω) <∞, and F be uniform integrable, both terms are uniformly bounded.

(ii) Given ϵ > 0, we choose N such that supf∈F
∫
{|f |>N} |f |dµ < ϵ/2 and δ = ϵ

2N .

Conversely, if F satisfies (i) and (ii), by Chebyshev inequality,

sup
f∈F

µ(|f | ≥ N) ≤ 1

N
sup
f∈F
∥f∥1 → 0 as N →∞.

Given ϵ > 0, we choose the δ specified in (ii), and choose N0 such that µ(|f | ≥ N) < δ for all N ≥ N0 and

all f ∈ F . By uniform absolute continuity of F , we have supf∈F
∫
{|f |>N} |f |dµ < ϵ for all N ≥ N0. Since ϵ is

arbitrary, F is uniformly integrable.

With uniform integrability, we can deduce L1-convergence using convergence in measure.

Theorem 1.75. Let (Ω,F , µ) be a finite measure space, and fn ∈ L1(Ω,F , µ). Let (fn)
∞
n=1 be a sequence of

integrable functions that converges to f in measure µ. The following are equivalent:

(i) (fn)
∞
n=1 is uniformly integrable;

(ii) limn→∞ ∥fn − f∥1 = 0; (iii) limn→∞ ∥fn∥1 = ∥f∥1.

Proof. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The statement (ii) ⇒ (iii) is trivial.

(i) ⇒ (ii). Given N > 0, we define fN = max{−N,min{f,N}}. Then

|fn − f | ≤ |fn − fNn |+ |fNn − fN |+ |fN − f |.

We fix N > 0. By continuous mapping theorem [Theorem 1.69], we have fNn
µ→ fN . Since |fNn − fN | ≤ 2N ,

by dominated convergence [Theorem 1.68], ∥fNn − fN∥1 → 0 as n→∞. Then

lim
n→∞

∥fn − f∥1 ≤ sup
n∈N
∥fNn − fNn ∥1 + ∥fNn − fN∥1 + ∥fN − f∥1 ≤ sup

n∈N
∥fNn − fNn ∥1 + ∥fN − f∥1.

Now we control the remaining two terms. By uniform integrability of (fn),

sup
n∈N
∥fNn − fNn ∥1 ≤ sup

n∈N

∫
{|fn|>N}

|fn|dµ→ 0 as N →∞.

To control ∥fn − f∥1, we apply Fatou’s lemma to get ∥f∥1 ≤ lim infn→∞ ∥fn∥1 ≤ supn∈N ∥fn∥1 < ∞. By

dominated convergence theorem, we also have ∥fN − f∥1 → 0. Hence limn→∞ ∥fn − f∥1 = 0.
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(iii) ⇒ (i). We define the continuous function

ψN (x) =


|x|, x ∈ (−M + 1,M − 1),

(M − 1)(M − |x|), x ∈ [−M,−M + 1] ∪ [M − 1,M ],

0, x > M.

Fix ϵ > 0. Note that ∥f∥1 < ∞, and ψN (f) → |f | a.e.. By dominated convergence theorem, we choose N so

large that
∫
Ω
(|f | − ψN (f)) dµ < ϵ/3. We also choose n0 according to the following criteria:

• Since ∥fn∥1 → ∥f∥1, there exists n0 such that ∥fn∥1 ≤ ∥f∥1 + ϵ/3 for all n ≥ n0;
• By continuous mapping theorem and dominated convergence theorem, we have ∥ψN (fn)−ψN (f)∥1 → 0.

We then choose n0 such that ∥ψN (fn)− ψN (f)∥1 < ϵ/3 for all n ≥ n0.
Consequently, for all n ≥ n0,∫

{|fn|≥N}
|fn|dµ ≤

∫
Ω

(|fn| − ψN (fn)) dµ ≤
∫
Ω

|f |dµ+
ϵ

3
−
∫
Ω

ψN (f)dµ+
ϵ

3
< ϵ.

By taking N larger, we can make
∫
{|fn|≥N} |fn| < ϵ for 1 ≤ n < n0, and (fn) is uniformly integrable.

Remark. The condition of Lebesgue dominated convergence theorem can be weakened as follows. If (Ω,F , µ)

is a finite measure space, (fn)
∞
n=1 ⊂ L1(Ω,F , µ) is a uniformly integrable sequence, and fn

µ→ f , then

lim
n→∞

∫
fn dµ =

∫
f dµ.

1.5.3 Weak Convergence of Measures

Definition 1.76 (Weak convergence). Let Ω be a metric space with its Borel σ-algebra B. Let Cb(Ω) be the

set of all bounded continuous functions on Ω. Let µn be a sequence of probability measures on (Ω,B). If

there exists a probability measure µ on (Ω,B) such that∫
f dµn →

∫
f dµ, ∀f ∈ Cb(Ω),

then µn is said to converge weakly to µ, and we write µn
w→ µ.

Review: Semi-continuity. Recall that a function f : Ω→ R is upper semi-continuous at ω0 if for any real

y > f(ω0) there exists a neighborhood U of ω0 such that f(x) < y for all x ∈ U . In a nutshell, f does not

take a much larger value than f(ω0) at a point closed to ω0.

Similarly, a function f is said to be lower semi-continuous at ω0 if if for any real y < f(ω0) there exists a

neighborhood U of ω0 such that f(x) > y for all x ∈ U . In addition, If f is upper (resp. lower) semi-continuous

at each ω ∈ Ω, we say f is upper (resp. lower) semi-continuous.

Lemma 1.77. Let Ω be a metric space. For every nonnegative lower semi-continuous function f : Ω → R+,

there exists a sequence of nonnegative bounded Lipschitz continuous functions fn such that fn ↑ f pointwise.

Proof. For every n ∈ N, define gn(x) = infy∈Ω {f(y) + nd(x, y)}. Clearly, we have 0 ≤ fn ≤ fn+1 ≤ f .

Furthermore, for all x, y ∈ Ω,

gn(x)− gn(y) = inf
z∈Ω
{f(z) + nd(x, z)} − fn(y) ≤ inf

z∈Ω
{f(z) + nd(x, y) + nd(y, z)} − fn(y) = nd(x, y).

Symmetrically gn(y)− gn(x) ≤ nd(x, y). Hence gn is n-Lipschitz. It remains to show gn ↗ f pointwise.
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Fix x ∈ Ω, and choose 0 < ϵ < f(x). Since f is lower semi-continuous, there exists δ > 0 such that

f(y) > f(x)− ϵ for all y ∈ O(x, δ). Choose N > f(x)/δ. If n ≥ N , we have f(y) + nd(x, y) ≥ Nδ > f(x) for

all y /∈ O(x, δ), and f(y) + nd(x, y) ≥ f(y) > f(x)− ϵ for all y ∈ O(x, δ). Hence f(x)− ϵ < gn(x) ≤ f(x) for

all n ≥ N . Since 0 < ϵ < f(x) is arbitrary, gn(x)↗ f(x). Then fn = min{gn, n} is the desired sequence.

The following lemma states that the converging point of a weakly convergent sequence is unique.

Lemma 1.78. Let Ω be a metric space equipped with its Borel σ-algebra B. Let µn be a sequence of probability

measures on (Ω,B). If µn
w→ µ and µn

w→ µ′, then µ = µ′.

Proof. By definition of weak convergence,
∫
fn dµ =

∫
fn dµ

′ for all f ∈ Cb(Ω).
Let G be a closed set, then χG is lower semi-continuous. By Lemma 1.77, we choose a sequence of bounded

Lipschitz continuous functions fn ↗ χG. By monotone convergence theorem,

µ(G) = lim
n→∞

∫
fn dµ = lim

n→∞

∫
fn dµ

′ = µ′(G).

Let T be the topology on Ω, i.e. T is the collection of all open subsets of Ω. Then µ|T = µ′|T . Since T

is a π-system, and σ(T ) = B, by Lemma 1.22, µ = µ′.

The Portmanteau lemma gives multiple equivalent definitions of weak convergence.

Theorem 1.79 (Portmanteau lemma). Let Ω be a metric space with its Borel σ-algebra B. Let µn be a

sequence of probability measures on (Ω,B). The following are equivalent:

(i)
∫
f dµn →

∫
f dµ for all bounded continuous functions f . In other words, µn

w→ µ;

(ii)
∫
f dµn →

∫
f dµ for all bounded Lipschitz continuous functions f ;

(iii) lim infn→∞
∫
f dµn ≥

∫
f dµ for all lower semi-continuous function f bounded from below;

(iv) lim supn→∞
∫
f dµn ≤

∫
f dµ for all upper semi-continuous function f bounded from above;

(v) lim infn→∞ µn(G) ≥ µ(G) for every open sets G;

(vi) lim supn→∞ µn(F ) ≤ µ(F ) for every closed sets F ;

(vii) limn→∞ µn(B)→ µ(B) for all Borel sets B with µ(∂B) = 0, where ∂B = B \B̊ is the boundary of B.

Remark. A Borel set B is said to be a µ-continuity set if µ(∂B) = 0. Conversely, if a Borel set B is not a

µ-continuity set, it is said to be a µ-discontinuity set.

Proof. (i) ⇒ (ii) is clear. (iii) ⇔ (iv) follows by taking negation. (v) ⇔ (vi) follows by taking complements.

(ii) ⇒ (iii): Without loss of generality, assume f ≥ 0 is lower semi-continuous. By Lemma 1.77, choose a

sequence fk of nonnegative bounded Lipschitz continuous functions such that fk ↗ f pointwise.

Since fk is Lipschitz and fk ≤ f , by (ii) and monotone convergence theorem, we have

lim inf
n→∞

∫
f dµn ≥ lim inf

n→∞

∫
fk dµn =

∫
fk dµ, ∀k ∈ N ⇒ lim inf

n→∞

∫
f dµn ≥ lim

k→∞

∫
fk dµ =

∫
f dµ.

(iii) + (iv) ⇒ (i): Let f be a bounded continuous function. By (iii) and (iv). Then

lim inf
n→∞

∫
f dµn ≥

∫
f dµ ≥ lim sup

n→∞

∫
f dµn ⇒ lim

n→∞

∫
f dµn =

∫
f dµ.

(iii) ⇒ (v): If G is an open set, χG is bounded and lower semi-continuous. Take f = χG in (iii).

(v) ⇒ (i): Pick f ∈ Cn(Ω), and without loss of generality assume 0 < f < 1. Then the function

χ{(ω,t):f(ω)>t} = χ(0,∞)(f(ω)− t)
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is measurable. By Fubini’s theorem,∫ 1

0

µ(f > t) dt =

∫ 1

0

(∫
Ω

χ{(ω,t):f(ω)>t} dµ

)
dt =

∫
Ω

(∫ 1

0

χ{(ω,t):t<f(ω)} dt

)
dµ =

∫
f dµ.

Since f is continuous, {ω : f(ω) > t} = f−1((t,∞)) is open. By (v), lim infn→∞ µn(f > t) ≥ µ(f > t). Using

Fatou’s lemma, we have

lim inf
n→∞

∫
f dµn = lim inf

n→∞

∫ 1

0

µn(f > t) dt

∫ 1

0

lim inf
n→∞

µn(f > t) dt ≥
∫
µ(f > t) dt =

∫
f dµ.

By repeating the same procedure on −f , we have lim supn→∞
∫
f dµn ≤

∫
f dµ. Then (i) follows.

(v) + (vi) ⇒ (vii): Let B ∈ B. Then

µ(B̊)
(v)

≤ lim inf
n→∞

µn(B̊) ≤ lim inf
n→∞

µn(B) ≤ lim sup
n→∞

µn(B) ≤ lim sup
n→∞

µn(B)
(vi)

≤ µ(B).

If µ(δB) = 0, all above inequalities become equalities, and they equal µ(B).

(vii) ⇒ (vi): Fix a closed set F ⊂ Ω, and define the collection of sets {BF (r) : r ≥ 0}, where

BF (r) := {ω ∈ Ω : d(ω, F ) ≤ r}.

Claim. There exists a countable subset C of [0,∞) such that BF (r) is a µ-continuity set for all r ∈ [0,∞)\C.

Proof of claim. Given r ≥ 0, let DF (r) = {ω ∈ Ω : d(ω, F ) = r}. Then {DF (r) : r ≥ 0} is a partition of Ω.

By continuity of d(·, F ), BF (r) is a closed set. Furthermore, if ω ∈ ∂BF (r) = Ω\BF (r) ∩ BF (r), choose a

sequence ωn ∈ Ω\BF (r) such that ωn → ω. Again by continuity of d(·, F ), d(ω, F ) = limn→∞ d(ωn, F ) ≥ r.

Hence d(ω, F ) = r, which implies δBF (r) ⊂ DF (r).

Let C = {r ≥ 0 : µ(DF (r)) > 0} and Cn = {r ≥ 0 : µ(DF (r)) > 1/n}. Then |Cn| < n, and C =
⋃∞
n=1 Cn

is at most countable. Furthermore, for each r ∈ [0,∞)\C, it holds

0 ≤ µ(∂BF (r)) ≤ µ(DF (r)) = 0.

Therefore BF (r) is a µ-continuity set, and C is the desired countable set.

Now we choose a sequence rk ↓ 0 in [0,∞)\C. Then BF (rk) ↓ F . By (vii),

µ(BF (rk)) = lim
n→∞

µn(BF (rk)) ≥ lim sup
n→∞

µn(F ), ∀k ∈ N.

Since BF (rk) ↓ F ,

µ(F ) = lim
k→∞

µ(BF (rk)) ≥ lim sup
n→∞

µn(F ).

Hence (vi) follows.
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2 Random Variables

2.1 Random Variables and Independence

From now on, our discussion builds on a probability space (Ω,F ,P).

2.1.1 Random Variables and Distribution Functions

Definition 2.1 (Random variables and distribution). Let (Ω,F ,P) be a probability space. A (real-valued)

random variable is a real-valued measurable function X on (Ω,F ). In other words, a real-valued function

X : Ω→ R is a random variable if

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} ∈ F , ∀x ∈ R ⇔ X−1 (B(R)) ⊂ F .

The collection X−1 (B(R)) is said to be the σ-algebra generated by X. The function F : R→ [0, 1],

F (x) = P (X ≤ x) := P ({ω ∈ Ω : X(ω) < x}) , ∀x ∈ R (2.1)

is said to be the cumulative distribution function (c.d.f.) of X, written X ∼ F .

Remark. Generally, a measurable extended real-valued function X : Ω → R is also called a random variable,

if we have P(|X| =∞) = P({ω ∈ Ω : X(ω) ∈ {−∞,∞}}) = 0.

Proposition 2.2. Let F be the c.d.f. of a random variable X. Then F satisfies the following:

(i) F is monotone increasing on R;
(ii) F is right-continuous, i.e. F (x) = limϵ→0+ F (x+ ϵ) for all x ∈ R;
(iii) F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

In fact, any function F : R→ [0, 1] satisfying the properties (i)-(iii) is called a c.d.f..

Proof. Clearly F is monotone increasing, and its left and right-hand limits exist everywhere. Then

lim
ϵ→0+

F (x+ ϵ) = lim
n→∞

F

(
x+

1

n

)
= lim
n→∞

P
({

ω : X(ω) ≤ x+
1

n

})
= P

( ∞⋃
n=1

{
ω : X(ω) ≤ x+

1

n

})
= P ({ω : X(ω) ≤ x}) = F (x).

Then (ii) holds, and (iii) follows from a similar procedure.

Remark. Inspired by this proof, we can also associated P(X < x) with F by the following formula:

P(X < x) = P

( ∞⋃
n=1

{
ω : X(ω) ≤ x− 1

n

})
= lim
n→∞

P
(
X ≤ x− 1

n

)
= lim
ϵ→0+

F (x− ϵ).

Since P(X = x) = F (x)− limϵ→0+ F (x− ϵ), F is continuous at a point x ∈ R if and only if P(X = x) = 0.

Definition 2.3 (Distribution measure). A random variable X ∼ F on (Ω,F ,P) determines a pushforward

measure µF = P ◦X−1 on (R,B(R)):

µF (B) = P
(
X−1B

)
= P (X ∈ B) = P ({ω : X(ω) ∈ B}) , ∀B ∈ B(R).

The pushforward µF is said to be the distribution measure of X, written X ∼ µF . It is easy to check that

µF ((−∞, b]) = F (b), µF ((a,∞)) = 1− F (a), µF ((a, b]) = F (b)− F (a), ∀ a < b. (2.2)
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Remark. Let S be the collection of all finite unions of intervals of the following forms:

(−∞, b], (a,∞), (a, b].

Then S is a semiring of subsets of R, and σ(S ) = B(R). Given a c.d.f. F : R → [0, 1], we define a pre-

measure µF on S by equation (2.2). Using Carathéodory’s extension theorem, µF can be uniquely extended

to a probability measure on B(R). Thus we find a one-to-one correspondence between a c.d.f. F : R→ [0, 1]

and Borel probability measure µF on (R,B(R)). In later discussion, we may not distinguish them.

Let’s see what the c.d.f. of a random variable may looks like.

Definition 2.4. Let µ be a Borel measure on R. A point x ∈ R is said to be an atom of µ if µ({x}) > 0.

(i) (Discrete measure). µ is said to be discrete, if there exists a countable subset C of R such that

µ(A) =
∑

x∈C∩A
µ({x}), ∀A ∈ B(R).

The atoms of µ are D := {x ∈ R : µ({x}) > 0} ⊂ C.
(ii) (Continuous measure). µ is said to be (absolutely) continuous if µ ≪ m, where m is the Lebesgue

measure on R. The Radon-Nikodym derivative ρ := dµ
dm is said to be the density function of µ. If µ is a

probability measure, ρ is said to be the probability density function (p.d.f.) of µ.

(iii) (Singular measure). µ is said to be singular (continuous) if µ has no atom and µ ⊥ m. In other words,

µ is concentrated on a Lebesgue-null set E, where µ takes zero at each point of E.

We give an example of singular measures on R.

Ternary Cantor sets and devil’s staircase. A ternary Cantor set K is obtained by repeatedly removing

the middle thirds from the compact unit interval [0, 1]:

K1 = [0, 1], K2 =

[
0,

1

3

]
∪
[
2

3
, 1

]
, K3 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
, · · · .

Since ternary Cantor set K =
⋂∞
n=1Kn is the intersection of a decreasing sequence of non-empty compact

sets, it is itself compact. Furthermore, it can be written as the set of numbers in [0, 1] with a ternary expansion

omitting the digit 1 (the ternary numbers 0.c1c2 · · · with cn = 1 digit is 1 are removed from Kn):

K =

{ ∞∑
n=1

cn
3n

: cn ∈ {0, 2}

}
.

It is not hard to see that (i) K is an uncountable set, since {0, 2}N is uncountable, and (ii) K is a Lebesgue-null

set in R, since m(K) = limn→∞m(Kn) = limn→∞(2/3)n = 0.

We define a function sequence (Fn) on [0, 1] by the following recursive formula:

F1(x) = x, Fn+1(x) =


1
2Fn(3x), 0 ≤ x < 1

3 ,

1
2 ,

1
3 ≤ x ≤

2
3 ,

1
2 + 1

2Fn(3x− 2), 2
3 < x ≤ 1.

This is a sequence of continuous monotone increasing functions, with

∥Fn+1 − Fn∥∞ ≤
1

2
∥Fn − Fn−1∥∞ ≤ · · · ≤

1

2n−1
∥F2 − F1∥∞ ≤

1

3 · 2n
.
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Therefore, the sequence (Fn) converges uniformly to a function F on [0, 1], called the devil’s staircase, which

is also continuous and monotone increasing. Furthermore, for each connected component (a, b) of [0, 1]\K, we

have F (a) = F (b). Hence F ′ = 0 almost everywhere on [0, 1].

Note that F (0) = 0 and F (1) = 1, we define F = 0 on (−∞, 0] and F = 1 on [1,∞). Then F is a c.d.f..

Let µF be the distribution measure of F . Since F is continuous, µF has no atom. Furthermore,

µF (R\K) = µF ([0, 1]\K) = µF

( ∞⋃
n=1

[0, 1]\Kn

)
=

∑
(a,b)∈[0,1]\K

(F (b)− F (a)) = 0.

Therefore µF ⊥ m, and µF is a singular measure on R.

Theorem 2.5 (Decomposition of Borel measures). If µ is a σ-finite Borel measure on R, there exist uniquely

discrete, continuous and singular σ-finite measures µd, µc and µs such that µ = µd + µc + µs.

Proof. Let D = {x ∈ R : µ({x}) > 0}. Since µ is σ-finite, D is at most countable. Then µd(A) = µ(A ∩D) is

a discrete measure. (µd ≡ 0 if D = ∅.) Furthermore, µd is unique and supported on all atoms of µ.

By Theorem 1.61, the measure µ − µd has a unique Lebesgue decomposition µ − µd = µc + µs, where

µc ≪ m and µs ⊥ m. Since µ− µd has no atom, the result follows.

Remark. Likewise, a c.d.f. F admits a unique convex combination F = αFd + βFc + (1−α− β)Fs, where the

associated distribution measures of Fd, Fc and Fs are discrete, continuous and singular, respectively.

Definition 2.6 (Random vectors). When X1, X2, · · · , Xn are all random variables, the function

X = (X1, · · · , Xn) : Ω→ Rn

is said to be a random vector. The function

F (x1, · · · , xn) = P(X1 ≤ x1, · · · , Xn ≤ xn)

is called the joint distribution (function) of (X1, · · · , Xn). For each k, the function

Fk(x) = P(Xk = x) = F (∞, · · · ,∞, x
k-th

,∞, · · · ,∞)

is called the marginal distribution (function) of Xk.

Remark. By Theorem 1.35, a random vector is also a measurable function X : (Ω,F ) → (Rn,B(Rn)).
Furthermore, the c.d.f. F : Rn → [0, 1] of X satisfies the following:

(i) F is monotone increasing with respect to each variable on R;
(ii) F is right-continuous on each variable;

(iii) For all x1, · · · , xn ∈ R, limxj→−∞ F (x1, · · · , xn) = 0, and limx1,··· ,xn→∞ F (x1, · · · , xn) = 1.

Lemma 2.7. Assume that two random variables X and Y has the same distribution measure. We say they

are identically distributed and write X
d
= Y . For any measurable function φ such that φ(X) and φ(Y ) are

well-defined, we have φ(X)
d
= φ(Y ).

Proof. Denote by µ the distribution measures of X and Y , respectively. For all b ∈ R, we have

P(φ(X) ≤ b) = P(X ∈ φ−1((−∞, b])) = µ
(
φ−1((−∞, b])

)
= P(Y ∈ φ−1((−∞, b])) = P(φ(Y ) ≤ b).

Then φ(X) and φ(Y ) has the same c.d.f., hence the same distribution measure.
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2.1.2 Independence

Definition 2.8 (Independence). Let (Ω,F ,P) br a probability space.

(i) (Independent events). A pair of events A,B ∈ F are said to be independent if P(A ∩B) = P(A) · P(B).

Also, n events A1, · · · , An ∈ F are said to be mutually independent if for all I ⊂ {1, · · · , n}, it holds

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

(ii) (Independent σ-algebras). Two two sub-σ-algebras F1 and F2 of F are said to be independent, if each

pair of events A ∈ F1 and B ∈ F2 are independent.

Remark. A group of pairwise independent events are not always mutually independent. For example, consider

the discrete measure on Ω = {1, 2, 3, 4} with a probability mass of 1/4 at each atom. Let A = {1, 2}, B = {2, 3},
C = {1, 3}. Then P(A ∩ B) = P(A)P(B) = 1/4, and so do event pairs (B,C) and (C,A). Nevertheless, A,B

and C are not mutually independent, since P(A ∩B ∩ C) = 0.

Definition 2.9 (Independent random variables). Two random variables X and Y are said to be independent

if their joint distribution is the product of marginal distributions:

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R.

Similarly, given n random variables X1, · · · , Xn, they are said to be (mutually) independent if

P(X1 ≤ x1, · · · , Xn ≤ xn) =
n∏
i=1

P(Xi ≤ xi), ∀x1, · · · , xn ∈ R. (2.3)

Clearly, if (2.3) is satisfied, then for all index sets I ⊂ {1, · · · , n}, we have

P

(⋃
i∈I
{Xi ≤ xi}

)
=
∏
i∈I

P(Xi ≤ xi), ∀x1, · · · , xn ∈ R.

Theorem 2.10. Two random variables X and Y are independent if and only if for all A,B ∈ B(R),

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B). (2.4)

This theorem can also be stated as follows:

(i) X and Y are independent if and only if σ(X) and σ(Y ) are independent.

(ii) If X ∼ µX and Y ∼ µY , then X and Y are independent if and only if (X,Y ) ∼ µX ⊗ µY .

Proof. We only prove that (2.4) holds when X and Y are independent. Given A = (−∞, x], let

MA = {B ∈ B(R) : P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)} .

Clearly, MA is a λ-system. By independence of X and Y , we have M0 := {(−∞, y] : y ∈ R} ⊂ MA. Since

M0 is a π-system, and since B(R) = σ(M0), by Sierpiński-Dynkin π-λ system, we have MA = B(R).
Given any B ∈ B(R), we let

MB = {A ∈ B(R) : P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)} .

We can also verify that MB is a λ-system, and M0 ⊂MB . Again by Sierpiński-Dynkin π-λ system, we have

MB = B(R). Hence (2.4) holds for all A,B ∈ B(R).
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Corollary 2.11. If X and Y are two independent random variables, and ψ,φ : R→ R are Lebesgue-measurable

functions, then ψ(X) and φ(Y ) are independent.

Proof. Let A and B be two Borel sets on R. Then

P(ψ(X) ∈ A,φ(X) ∈ B) = P(X ∈ ψ−1(A), Y ∈ φ−1(B))

= P(X ∈ ψ−1(A))P(Y ∈ φ−1(B))

= P(ψ(X) ∈ A)P(φ(Y ) ∈ B).

Then we finish the proof.

Remark. More generally, we say two collection of random variables {Xα}α∈I and {Yβ}β∈J are independent if

for any two random vectors (Xα1
, · · · , Xαm

) and (Yβ1
, · · · , Yβn

), it holds

P ((Xα1 , · · · , Xαm) ∈ A, (Yβ1 , · · · , Yβn) ∈ B) = P ((Xα1 , · · · , Xαm) ∈ A) · P ((Yβ1 , · · · , Yβn) ∈ B)

for all Borel sets A ⊂ Rm and B ⊂ Rn.
The σ-algebra generated by the random variable collection {Xα}α∈I is the smallest sub-σ-algebra of F

such that every Xα is measurable. By definition,

σ ({Xα}α∈I) ⊂ σ

(⋃
α∈I

σ(Xα)

)
.

On the other hand, since every σ(Xα) is contained in σ ({Xα}α∈I), the union
⋃
α∈I σ(Xα) is also contained in

σ ({Xα}α∈I), and so

σ ({Xα}α∈I) ⊃ σ

(⋃
α∈I

σ(Xα)

)
.

Hence we have

σ ({Xα}α∈I) = σ

(⋃
α∈I

σ(Xα)

)
= σ

 ⋃
m∈N, α1,··· ,αm∈I

σ(Xα1 , · · · , Xαm)

 .

Now we claim that {Xα}α∈I and {Yβ}β∈J are independent if and only if σ({Xα}α∈I) and σ({Yβ}β∈J) are
independent. We fix G = σ(Yβ1 , · · · , Yβn). For each A ∈ G , the class

{B ∈ F : P(A ∩B) = P(A) · P(B)}

is a λ-system containing every σ(Xα1
, · · · , Xαm

). Since the union of σ-algebras σ(Xα1
, · · · , Xαm

) generated

by finite subcollections is a π-system, the above λ-system also contains σ({Xα}α∈I), by Sierpiński-Dynkin

π-λ theorem. Since both A ∈ G and G = σ(Yβ1 , · · · , Yβn) is arbitrary, σ({Xα}α∈I) is independent of all

σ(Yβ1 , · · · , Yβn) generated by finite subcollections. Similar to the previous procedure, we can run over all

A ∈ σ({Xα}α∈I) to conclude that σ({Xα}α∈I) is independent of σ({Yβ}β∈J).
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2.2 Expectation

Definition 2.12 (Expectation). Let X ∼ F be a random variable on (Ω,F ,P). If X is integrable, the

expectation of X is defined as the Lebesgue integral

EX =

∫
X dP.

Similarly, for any Lebesgue-measurable function φ : R→ R, if φ ◦X is integrable, define

E[φ(X)] =

∫
φ ◦X dP.

Theorem 2.13 (Integral transform). Using the integral transform formula in Theorem 1.50, we immediately

know that the expectation of φ(X) equals the Lebesgue-Stieltjes integral

E[φ(X)] =

∫
φ ◦X dP =

∫
φdµF =:

∫
φ(x) dF (x).

Particularly,

EX =

∫
xdµF (x) =

∫
x dF (x).

If X ∼ µF is a discrete random variable, let A be the set of all atoms of µF . Then we have

E[φ(X)] =
∑
x∈A

φ(x)µF ({x}).

If X ∼ µF is a continuous random variable with density ρ, i.e. µF is continuous and dµF

dm = ρ, then

E[1A(X)] =

∫
1A dµF = µF (A) =

∫
1Aρdm.

By simple function approximation, for all measurable φ with φ(X) integrable, we have

E[φ(X)] =

∫
φρdm =

∫
φ(x)ρ(x) dx.

Another useful formula for calculating expectation follows from Fubini’s theorem.

Theorem 2.14. Let X be a nonnegative random variable. Then

EX =

∫ ∞

0

P(X > x) dx.

Proof. By Fubini’s theorem,

∫ ∞

0

P(X > x) dx =

∫ ∞

0

E[1{X>x}] dx = E
[∫ ∞

0

1{X>x} dx

]
= E

[∫ X

0

dx

]
= EX.

Note that the function

1{X>x} = 1{X(ω)>x} = 1(0,∞)(X(ω)− x)

is defined on Ω× R. Since X is measurable, so is 1{X>x}.
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Proposition 2.15. Let X and Y be two random variables. The following properties of expectation follows

from Lebesgue integral:

(i) If X ≥ 0 a.s., i.e. P(X ≥ 0) = 1, then EX ≥ 0. Additionally, if EX = 0, then X = 0 a.s..

(ii) For all α, β ∈ R, E[αX + βY ] = αEX + βEY .

(iii) For 1 ≤ p <∞, denote ∥X∥p = (E|X|p)1/p.

• (Hölder’s inequality). If p, q > 1, r ≥ 1 and 1
p +

1
q = 1

r , then ∥XY ∥r ≤ ∥X∥p ∥Y ∥q;

• (Moment inequality). If 1 ≤ p < q <∞, then ∥X∥p ≤ ∥X∥q.

• (Minkowski’s inequality). If 1 ≤ p ≤ ∞, then ∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

(iv) (Jensen’s inequality). If g : R→ R is a convex function, and both EX and E[g(X)] are well-defined, then

E[g(X)] ≥ g(EX). In addition, if g is strongly convex and E[g(X)] = g(EX), then X = EX a.s..

Proof. (iii) We first assume r = 1. The convexity of x 7→ − lnx implies Young’s inequality:

1

p
ln ap +

1

q
ln bq ≥ ln

(
ap

p
+
bq

q

)
⇒ ap

p
+
bq

q
≤ ab, ∀a, b > 0,

1

p
+

1

q
= 1.

Then we have

1

p

|X|p

∥X∥pp
+

1

q

|Y |q

∥Y ∥qq
≤ |XY |
∥X∥p ∥Y ∥q

,
1

p
+

1

q
= 1. (2.5)

Taking expectation on both sides of (2.5) concludes. For the case r > 1, we have

∥XY ∥rr = ∥|XY |
r∥1 ≤ ∥|X|

r∥p/r ∥|Y |
r∥q/r = ∥X∥

r
p ∥Y ∥

r
q ,

1

p
+

1

q
=

1

r
.

Hence we have Hölder’s inequality. By taking Y = 1 in Hölder’s inequality, we have the moment equality. To

obtain Minkowski’s inequality (p > 1), take 1/q = 1− 1/p. Then

∥X + Y ∥pp ≤ E
[
|X + Y |p−1|X|

]
+ E

[
|X + Y |p−1|Y |

]
≤ ∥X∥p

(
E
[
|X + Y |(p−1)q

])1/q
+ ∥Y ∥p

(
E
[
|X + Y |(p−1)q

])1/q
(By Hölder’s inequality)

= (∥X∥p + ∥Y ∥p) ∥X + Y ∥p/qp = (∥X∥p + ∥Y ∥p) ∥X + Y ∥p−1
.

(iv) Since g is a convex function defined on an open set R, its subgradient set ∂xg at x is nonempty for every

x ∈ R. By taking x0 = EX and α ∈ ∂x0
g, we have

g(x) ≥ g(x0) + α(x− x0), ∀x ∈ R. (2.6)

Taking expectation on both sides of (2.6) immediately yields Jensen’s inequality.

Now assume g is strongly convex, then the inequality (2.6) becomes strict when x ̸= x0. Let

φ(x) := g(x)− g(x0)− α(x− x0),

then φ(x) = 0 implies x = x0, and φ(X) is a nonnegative random variable. If E[g(X)] = g(x0), we have

E[φ(X)] = 0. By (i), we have φ(X) = 0 a.s., and X = x0 a.s..
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2.3 Conditional Expectation and Distribution

2.3.1 Conditional Expectation

In this subsection we introduce conditional expectation. In contrast to expectation, which takes real number,

the conditional expectation is a random variable.

Definition 2.16 (Conditional expectation). Let G be a sub σ-algebra of F , i.e. G ⊂ F and G is a σ-algebra

of subsets of Ω. Let Y be a random variable. If E|Y | <∞, the conditional expectation of Y with respect to G

is defined as any random variable ξ satisfying the following:

(i) ξ is G -measurable, i.e. ξ−1 (B(R)) ⊂ G ;

(ii) E[Y 1A] = E[ξ1A] for all A ∈ G .

Remark. We define a finite signed measure µ : G → R by assigning µ(A) := E[Y 1A] for all A ∈ G . Then

P(A) = 0 implies µ(A) = 0, and µ≪ P|G . By Radon-Nikodym theorem, we take

ρ =
dµ

dP|G
⇒ µ(A) =

∫
A

ρdP|G = E[ρ1A], ∀A ∈ G .

Then ρ is the desired G -measurable function. Furthermore, if ξ is a conditional expectation of Y with respect

to G , we define An = {ω : ρ(ω) > ξ(ω) + n−1}. Then An is G -measurable, and

0 ≤ P(ρ > ξ + n−1) ≤ nE[(ρ− ξ)1An
] = E[Y 1An

]− E[Y 1An
] = 0

for all n ∈ N, and letting n→∞ gives P(ρ > ξ) = 0. Similarly, we have P(ξ > ρ+n−1) = 0. Hence ξ = ρ a.s..

Therefore, the conditional expectation, written E[Y |G ], exists and is almost surely unique.

In fact, the expectation E[Y ] can be viewed as the conditional expectation E[Y |F0], where F0 = {Ω, ∅} is
the smallest σ-algebra on Ω.

Proposition 2.17 (Properties of conditional expectation). Let G ⊂ F be a σ-algebra of subsets of Ω. Let X

and Y be two integrable random variables, that is, X,Y ∈ L1(Ω,F ,P).
(i) (Total expectation formula). E [E [X|G ]] = EX. In addition, if H is another sub σ-algebra of F such

that H ⊂ G , then E [E [X|G ] |H ] = E [E [X|H ] |G ] = E[X|H ] a.s..

(ii) (Monotonicity). If X ≥ 0 a.s., then E[X|G ] ≥ 0 a.s.. Hence X ≤ Y a.s. implies E[X|G ] ≤ E[Y |G ] a.s..

In particular, |E[X|G ]| ≤ E[|X| |G ] a.s..

(iii) (G -linearity). For any G -measurable random variable ξ and η, it holds E[ξX + ηY ] = ξEX + ηEY a.s..

(iv) (Independence law). σ(X) is independent of G if and only if E[φ(X)|G ] = E[φ(X)] a.s. ∀ measurable φ.

(v) (Conditional Jensen’s inequality). If g : R → R is a convex function such that g(X) is integrable, then

E[g(X)|G ] ≥ g (E[X|G ]) a.s..

(vi) The following inequalities almost surely hold:

• (Conditional Hölder’s inequality). If p, q > 1, r ≥ 1 and 1
p +

1
q = 1

r , then

E [|XY |r|G ]
1/r ≤ E [|X|p|G ]

1/p E [|Y |q|G ]
1/q

a.s..

• (Conditional moment inequality). If 1 ≤ p < q, then

E [|X|p|G ]
1/p ≤ E [|X|q|G ]

1/q
a.s..

• (Conditional Minkowski inequality). If p ≥ 1, then

E [|X + Y |p|G ]
1/p ≤ E [|X|p|G ]

1/p
+ E [|Y |p|G ]

1/p
a.s..
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Proof. (i) Let ξ = E[X|G ], then E[X1A] = E[ξ1A] for all A ∈ G . Choose A = Ω, so we have E [E [X|G ]] = EX.

If H is another sub σ-algebra of F such that H ⊂ G , then a G -measurable function is also H -measurable,

and E [E [X|H ] |G ] = E[X|H ] a.s.. Let ξ = E[X|G ], and η = E[E[X|G ]|H ]. Then for all A ∈ H ⊂ G , we

have E[η1A] = E[ξ1A] = E[X1A], which implies E[X|H ] = η a.s..

(ii) Let ξ = E[X|G ], and define An = {ω : ξ(ω) ≤ −n−1} ⊂ G . Then

−n−1P(An) ≥ E[ξ1An
] = E[X1An

] ≥ 0 ⇒ P(An) = 0, ∀n ∈ N.

Let A = {ω : ξ(ω) < 0} =
⋃∞
n=1An. Then P(A) = limn→∞ P(An) = 0, which implies ξ ≥ 0 a.s.. Since

|X| −X+ and |X| −X− are a.s. nonnegative, we have |E[X|G ]| ≤ E[|X| |G ] a.s..

(iii) The R-linearity of E[·|G ] follows from linear operator E : L1(Ω,F ,P) → R. Now we prove that E[·|G ] is

G -linear. For all A ∈ G , we have

E[X1A|G ] = 1AE[X|G ] ⇒ E[X1A1B ] = 1AE[X1B ], ∀B ∈ G .

By simple function approximation, for a G -measurable function ξ such that ξX ∈ L1(Ω,F ,P), we have

E[ξX1B ] = ξE[X1B ], ∀B ∈ G ⇒ E[ξX|G ] = ξE[X|G ].

Hence E[·|G ] is a G -linear operator.

(iv) If σ(X) and G are independent, we have

E[1A(X)1B ] = P({X ∈ A} ∩B) = P(X ∈ A)P(B) = E[1A(X)]E[1B ], ∀A ∈ B(R), B ∈ G .

Since A is arbitrary, by simple function approximation, for any measurable φ such that E |φ(X)| <∞,

E[φ(X)1B ] = E[φ(X)]E[1B ] = E[E[φ(X)]1B ], ∀B ∈ G ⇒ E[φ(X)|G ] = E[φ(X)] a.s..

Conversely, if E[X|G ], then for all A ∈ B(R) and all B ∈ G , we have

P({X ∈ A} ∩B) = E[1A(X)1B ] = E[E[1A(X)1B |G ]] = E[1B ]E[1A(X)] = P(B)P(X ∈ A).

(v) Since g is a convex function, there exists a countable set C ⊂ R2 such that g(x) = sup(a,b)∈S(a+ bx). That

is, g is the supremum of a countable collection of affine functions. Then a+ bX ≤ g(X) for all (a, b) ∈ S.
By monotonicity and linearity of conditional expectation, we have a + bE[X|G ] ≤ E[g(X)|G ] a.s. for all

a, b ∈ S. Since S is countable, we have

P

(
sup

(an,bn)∈S
(an + bn E[X|G ]) > E[g(X)|G ]

)
= P

 ⋂
(an,bn)∈S

{an + bn E[X|G ] > E[g(X)|G ]}


≤ lim
n→∞

n∑
k=1

P (ak + bk E[X|G ] > E[g(X)|G ]) = 0.

Hence g(E[X|G ]) ≤ E[g(X)|G ] a.s..

(vi) The conditional Hölder’s inequality follows from Young’s inequality and monotonicity of conditional ex-

pectation. The remaining part of this proof is totally parallel to Proposition 2.15 (iii).
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Remark. Given a random variable X ∈ Lp(Ω,F ,P), where 1 ≤ p <∞. By conditional Jensen’s inequality,

(E[X|G ])
p ≤ E [|X|p|G ] a.s.

implies

∥E[X|G ]∥pp ≤ E [E [|X|p|G ]] = ∥X∥pp

Hence E[·|G ] : Lp(Ω,F ,P)→ Lp(Ω,F ,P) is a bounded linear operator, and ∥E[·|G ]∥ ≤ 1. Particularly, it can

be viewed as a projection operator on the Hilbert space L2(Ω,F ,P) of square-integrable variables.

The convergence theorems for expectation can be extended to conditional expectation.

Theorem 2.18. Let G be a sub σ-algebra of F .

(i) (Conditional monotone convergence theorem). Let (Xn)
∞
n=1 be a increasing sequence of L1 nonnegative

random variables such that Xn ↑ X ∈ L1(Ω,F ,P). Then

lim
n→∞

E[Xn|G ] = E [X|G ] a.s..

(ii) (Conditional Fatou’s lemma). Let (Xn)
∞
n=1 be a sequence of nonnegative L1 random variables. Then

E
[
lim inf
n→∞

Xn

∣∣G ] ≤ lim inf
n→∞

E[Xn|G ] a.s..

(iii) (Conditional dominated convergence theorem). If (Xn)
∞
n=1 is a sequence of random variables such that

Xn → X a.s., and there exists a integrable random variable Y ∈ L1(Ω,F ,P) such that |Xn| ≤ Y a.s. for

all n ∈ N, then
E[X|G ] = lim

n→∞
E[Xn|G ] a.s. and in L1.

Proof. (i) Define Yn = E[X−Xn|G ]. By monotonicity of conditional expectation, Yn is a decreasing sequence.

We denote by Y the limit of sequence (Yn). For each A ∈ G ,

E[Yn1A] = E[(X −Xn)1A].

Since |X −Xn| ≤ |X| ∈ L1(Ω,F ,P), by Lebesgue dominated convergence theorem,

E[Y 1A] = lim
n→∞

E[Yn1A] = lim
n→∞

E[(X −Xn)1A] = E
[
lim
n→∞

(X −Xn)1A

]
= 0.

Since Y ≥ 0 is G -measurable, Y = 0 a.s., and the desired limit follows.

(ii) Let Yn = infk≥nXk, which is a increasing sequence of nonnegative L1 random variables. By monotonicity

of conditional expectation,

E[Yn|G ] ≤ E[Xk|G ], for all k ≥ n.

Hence E[Yn|G ] ≤ infk≥n E[Xk|G ], and by (i),

E
[
lim
n→∞

Yn
∣∣G ] = lim

n→∞
E [Yn|G ] ≤ lim inf

n→∞
E[Xn|G ] a.s..

(iii) The almost sure convergence follows by applying (ii) on sequences (Y +Xn) and (Y −Xn). For the L1

convergence, note that 0 ≤ |Xn −X| ≤ 2Y . By Lebesgue dominated convergence theorem,

E [ |E[Xn|G ]− E[X|G ]| ] ≤ E [E[|Xn −X| |G ]] = E |Xn −X| → 0.

Hence E[Xn|G ] converges to E[X|G ] in L1-norm.
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Theorem 2.19. Let H = L2(Ω,F ,P) be the space of square-integrable random variables. Define

⟨X,Y ⟩ = E[XY ], ∀X,Y ∈ H.

Then (H, ⟨·, ·⟩) is a Hilbert space. Given a sub σ-algebra G ⊂ F , we also define HG = L2(Ω,G ,P|G ), then HG

is a closed subspace of H, and the conditional expectation operator E[·|G ] is the projection onto HG , i.e.

E[Y |G ] = argmin
X∈HG

E
[
(Y −X)2

]
, ∀Y ∈ H. (2.7)

Proof. The construction of Hilbert space H and HG follows from completeness of Lp-spaces. To prove that

E[·|G ] is the projection onto HG , it suffices to show ξ := E[Y |G ] is orthogonal to Y − ξ:

⟨ξ, Y − ξ⟩ = E[ξ(Y − ξ)] = E [E[ξ(Y − ξ)|G ]] = E [ξ E[Y − ξ|G ]] = 0.

The equation (2.7) follows from the definition of projection.

Similar to Theorem 2.13, we also have the integral transform formula for conditional expectation.

Theorem 2.20 (Conditional integral transform). Let (Ω1,F1,P1) and (Ω2,F2,P2) be probability spaces, and

let T : (Ω1,F1) → (Ω2,F2) be a measure-preserving transform, i.e. P2 = P1 ◦ T−1. If φ ∈ L1(Ω2,F2,P2),

and G2 ⊂ F2 is a sub σ-algebra,

E1[φ ◦ T |T−1G1] = E2[φ|G2] ◦ T, (2.8)

where E1 and E2 are expectation operators on (Ω1,F1,P1) and (Ω2,F2,P2), respectively.

Proof. Let ξ2 = E2[φ|G2]. Then ξ1 := ξ2 ◦ T is a T−1G2-measurable function on (Ω1,F1). By Theorem 1.50,

we have E1[ψ ◦ T ] = E2[ψ] for all ψ ∈ L1(Ω2,F2,P2). For any A1 ∈ T−1G2, we have A2 := TA1 ∈ G2, and

E1[ξ1 · 1A1
] = E1[(ξ2 ◦ T ) · 1A1

] = E1[(ξ2 ◦ T ) · (1A2
◦ T )] = E1[(ξ2 · 1A2

) ◦ T ] = E2[ξ2 · 1A2
]

= E2[φ · 1A2
] = E1[(φ · 1A2

) ◦ T ] = E1[(φ ◦ T ) · (1A2
◦ T )] = E1[(φ ◦ T ) · 1A1

]

Since A1 ∈ T−1G2 is arbitrary, we have E1[φ ◦ T |T−1G1] = ξ2 ◦ T a.s., which is (2.8).

Definition 2.21 (Conditional expectation given random variables). Let X and Y be two random variables.

If E|Y | <∞, the conditional expectation of Y given X is defined as

E[Y |X] = E[Y |σ(X)],

where σ(X) = X−1(B(R)) is the σ-algebra generated by X.

Theorem 2.22 (Doob-Dynkin). Let (Ω,F ) and (Γ,G ) be measurable spaces. Given a measurable function

T : Ω → Γ, let σ(T ) := T−1G ⊂ F be the σ-algebra generated by T . A real-valued function g : Ω → R is

σ(T )-measurable if and only if there exists a G -measurable function φ : Γ→ R such that g = φ ◦ T.

Proof. The sufficiency is clear, so we only prove the necessity. Let g be nonnegative and σ(T )-measurable.

By simple function approximation, there exists {An}∞n=1 ⊂ σ(T ) and nonnegative numbers {αn}∞n=1 such that

g =
∑∞
n=1 αn1An

. Since An ∈ σ(T ), there exists Bn ∈ G such that An = T−1Bn, namely, 1An
= 1Bn

◦ T .
Hence we define φ =

∑∞
n=1 αn1Bn , which satisfies φ ◦ T = g. For a general σ(T )-measurable function

g, there exists G -measurable function φ+, φ− : Γ → R such that g+ = φ+ ◦ T and g− = φ− ◦ T . Let

E = {ψ ∈ Γ : φ+(γ) = φ−(γ) =∞} ∈ G . Then T−1E = ∅, since∞−∞ is undefined. Then φ = 1Γ\E(φ
+−φ−)

is the desired G -measurable function.
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Remark. By Theorem 2.22, since E[Y |X] : (Σ,F )→ (R,B(R)) is a σ(X)-measurable function, there exists a

Borel-measurable function φ : (R,B(R))→ (R,B(R)) such that E[Y |σ(X)] = φ(X). In other words, E[Y |X]

is the composition of a measurable function φ and the random variable X.

Theorem 2.23. Let X ∼ µX and Y ∼ µY be two independent random variables. If φ : R2 → R is measurable

and φ(X,Y ) is integrable, then

E [φ(X,Y )|Y ] = E[φ(X, y)]
∣∣
y=Y

:=

∫
φ(x, Y ) dµX(x). (2.9)

Proof. Define ψ(y) =
∫
φ(x, y) dµX(x), y ∈ R. For all A ∈ B(R), we have

E[ψ(Y )1A(Y )] =

∫
ψ(y)1A(y) dµY (y) =

∫ (∫
φ(x, y)1A(y) dµX(x)

)
dµY (y)

=

∫
φ(x, y)1A(y) d(µX ⊗ µY )(x, y) = E [φ(X,Y )1A(Y )] . (By Fubini’s theorem)

Hence we have E [φ(X,Y )|Y ] = ψ(Y ).

Remark. In fact, the equation (2.9) has a more direct form:

E[φ(X,Y )|Y = y] = E[φ(X, y)|Y = y] = E[φ(X, y)].

Given a sub σ-algebra G of F , we can define conditional probability P(·|G ) by conditional expectation:

P(A|G ) = E[1A|G ]. This automatically induces a probability measure P(·|G )(ω) for each ω ∈ Ω.

2.3.2 Regular Conditional Distributions

Our study on the regular conditional distribution is based on a more general case. Let (Ω,F ,P) be a probability
space, and let X : (Ω,F )→ (E,E ) be a measurable mapping.

Definition 2.24 (Regular conditional probability). Let G be a sub σ-algebra of F . A regular conditional

probability is a function P(·|G )(·) : F × Ω→ [0, 1] satisfying the following:

(i) For P-a.e. ω ∈ Ω,

P(A|G )(ω) = E [1A|G ] (ω), for all A ∈ F ;

(ii) For P-a.e. ω ∈ Ω, P(·|G )(ω) is a probability measure on (Ω,F ).

This is a special case of the following definition when X is the identical mapping.

Definition 2.25 (Regular conditional distribution). Let G be a sub σ-algebra of F . Let X : (Ω,F )→ (E,E )

be a random mapping. We define µX|G (·, ·) : E × Ω→ [0, 1] as follows:

µX|G (B,ω) = P(X−1(B)|G )(ω), for all B ∈ E .

The function µX|G : E × Ω→ [0, 1] is called a regular conditional distribution of X given G , if

(i) ω 7→ µX|G (B,ω) is G -measurable for each B ∈ E , and

(ii) µX|G (·, ω) is a probability measure on (E,E ) for P-a.e. ω ∈ Ω.

Moreover, for all A ∈ G and B ∈ E , we have

P(ω ∈ A,X ∈ B) =

∫
A

µX|G (B,ω)P(dω).

Remark. According to the last identity, P(X ∈ B |G ) = µX|G (B, ·) a.e. for every B ∈ E .
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Theorem 2.26. Let µX|G be a regular conditional distribution for X given G . If f : (E,E ) → (R,B(R))
satisfies E[f(X)] <∞, then

E[f(X)|G ] =

∫
E

f(x) dµX|G , a.s..

Proof. The case f = 1B follows from the definition. Linearity extends the result to simple f and monotone

convergence to nonnegative measurable f . The general result follows by writing f = f+ − f−.

Theorem 2.27 (Existence of regular conditional distribution). Let G be a sub σ-algebra of F , and let (E,E )

be a Polish space (a separable and completely metrizable space) equipped with the Borel σ-algebra. Then every

random mapping X : (Ω,F )→ (E,E ) has a regular conditional distribution µX|G given G .

Proof. In a Polish space E, the Borel algebra E is generated by the collection U of open balls of rational radii

and centers in a countable dense subset of E. Since the algebra generated by a finite collection is finite, the

algebra V generated by U is countable since it can be written as a countable union of finite algebras Vn.

Step I. We apply Ulam’s Theorem [Proposition 4.18 (iii)] to the probability measure P ◦ X−1 on (E,E ) to

conclude that, for each B ∈ V , there exists a sequence of compact sets Bj ⊂ B such that P(X−1(Bj)) ↑
P(X−1(B)). Without loss of generality we may assume B1 ⊂ B2 ⊂ · · · ⊂ B. By Theorem 2.18 (i),

lim
j→∞

P(X−1(Bj)|G ) = P(X−1(B)|G ) a.s.. (2.10)

We consider the algebra D generated by the union of (i) all sets in V , and (ii) the set of all compact Bj for

all B ∈ V . This algebra is countable. Furthermore, P(X−1(D)|G ) is G -measurable for each D ∈ D , and

(i) for each D ∈ D , P(X−1(D)|G ) ≥ 0 a.s.;

(ii) P(X−1(E)|G ) = 1 a.s., and P(∅|G ) = 0 a.s.;

(iii) for any sequence of disjoint sets D1, D2, · · · ∈ D ,

P

X−1

 k⋃
j=1

Dj

 ∣∣∣∣G
 =

k∑
j=1

P
(
X−1(Dj)|G

)
a.s. for each k ∈ N;

(iv) For any B ∈ V and for the specific sequence (Bj)
∞
j=1 as chosen, (2.10) holds.

Since (i)-(iv) consists of countably many equations, they all hold on some Ω\N with N ∈ G and P(N ) = 0.

Step II. We prove that µω := P(X−1(·)|G )(ω) is countably additive on the algebra V for every ω ∈ Ω\N .

Argue by contradiction. If µω is not countably additive, by property (iii), i.e. the finite additivity of µω,

there exists Vj ↓ ∅ with δ := limj→∞ µω(Vj) > 0. For each j, by property (iv), we take Kj ∈ D such that

Kj ⊂ Vj and µω(Vj\Kj) = 3−jδ. Then for each n ∈ N,

µω (K1 ∩K2 ∩ · · · ∩Kn) ≥ µω(Vn)−
n∑
j=1

3−jδ >
δ

2
.

Hence the intersection
⋂n
j=1Kj is nonempty. Since K1 is a compact set in E, by the finite intersection

property,
⋂∞
j=1Kj is nonempty, contradicting the fact Vj ↓ ∅.

Step III. By Carathéodory’s extension theorem, for each ω ∈ Ω\N , P(X−1(·)|G )(ω) extends to a probability

measure µω on E = σ(V ). For all ω ∈ N , we can let µω be any fixed probability measure ν. If B ∈ V ,∫
A

µω(B)P(dω) =
∫
A

P(X−1(B)|G ) dP = P(ω ∈ A,X ∈ B), for each A ∈ G . (2.11)

We let M be the collection of all sets B ∈ E satisfying the above condition. Then M is a monotone class

containing the algebra V , and by the monotone class theorem, M ⊃ σ(V ) = E . Since N ∈ G , ω 7→ µω(B) is

G -measurable. Therefore µX|G (B,ω) := µω(B) defines a regular conditional distribution of X given G .
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Remark. The regular conditional distribution µX|G is unique in the sense that if µ′ also satisfies the definition

of µX|G , then for P|G -a.e. ω, the two laws µX|G (·, ω) and µ′(·, ω) are identical.

To see this, we note that since V is countable, P|G almost surely, µX|G (B,ω) = µ′(B,ω) = P(X ∈ B|G )(ω)

for all B ∈ V . For all such ω, the collection of subsets of E on which there is agreement is a monotone class,

which includes σ(V ) = E . This justifies the uniqueness of the regular conditional distribution.

We have a more elementary proof for the case (E,E ) = (R,B(R)).

Proof of Theorem 2.27. For all rationals r ∈ Q, define

F (r|·) = P(X ∈ (−∞, r] |G ) := E[1{ω∈Ω:X(ω)∈(−∞,r]}|G ].

Clearly, for r ≤ s, we have 1{X∈(−∞,r]} ≤ 1{X∈(−∞,s]}. By monotonicity of conditional expectation, we have

F (r|·) ≤ F (s|·) for P-a.e. ω ∈ Ω. Denote Ar,s = {ω ∈ Ω : F (r|ω) > F (s|ω)}, so P(Ar,s) = 0. Moreover, by

dominated convergence theorem (Theorem 2.18), there exist null sets {Br}r∈Q ⊂ F and C ∈ F such that

lim
n→∞

F

(
r +

1

n

∣∣∣∣ω) = F (r|ω), ∀ω ∈ Ω\Br

as well as

inf
r∈Q

F (r|ω) = 0 and sup
r∈Q

F (r|ω) = 1, ∀ ω ∈ Ω\C.

Let E =
(⋃

r,s∈Q:r<sAr,s

)
∩
(⋃

r∈QBr

)
∪ C. Then µ(N) = 0. For ω ∈ Ω\E, define

F̃ (x|ω) := inf
r∈Q: r>z

F (r|ω), ∀x ∈ R.

Since F (·|ω) is monotone increasing on Q, F̃ (ω)|Q = F (·|ω). By construction, F (·|ω) : R→ [0, 1] is a c.d.f., and

we can extend this to a unique probability measure µX|G (·, ω) on B(R) by Carathéodory’s extension theorem.

Hence µX|G (·, ω) is a Borel probability measure for P-a.e. ω ∈ Ω.

For ω ∈ E, define F̃ (·|ω) = F0, where F0 is an arbitrary but fixed c.d.f.. Then for r ∈ Q and B = (−∞, r],

ω 7→ µX|G (B,ω) = 1E(ω)F0(r) + 1Ω\E(ω)F (r|ω)

is F -measurable, since F (r|ω) is G -measurable by definition. We define

D =
{
B ∈ B(R) : ω 7→ µX|G (B,ω) is F -measurable

}
.

This is a λ-system, because

(i) µX|G (R, ω) ≡ 1, which implies R ∈ D ;

(ii) For E ⊂ F ∈ D , µX|G (F\E,ω) = µX|G (F, ω)− µX|G (E,ω), hence F\E ∈ D ;

(iii) For increasing sequence Bn ∈ D , µX|G (B,ω) = limn→∞ µX|G (Bn, ω), hence B :=
⋃∞
n=1Bn ∈ D .

Note that {(−∞, r], r ∈ Q} is a π-system generating B(R). By Sierpinski-Dynkin π-λ theorem, we have

D = B(R). Then µX|G (B, ·) is F -measurable for all B ∈ B(R). Furthermore, for all A ∈ G and B ∈ B(R),∫
A

µX|G (B,ω)P(dω) = E
[
1AE[1{X∈B}|G ]

]
= E[1A∩{X∈B}] = P(ω ∈ A,X ∈ B).

Thus we complete the full proof.

Remark. If X is independent of G , the conditional distribution µX|G (·, ω) is the same as the unconditional

distribution µX for P-a.e. ω ∈ Ω.
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Finally, we study the regular conditional distributions given random variables.

Theorem 2.28 (Conditional distribution). Let X and Y be two random mappings taking values in a Polish

space (E,E ). We denote by µX = P ◦ X−1 the distribution measure of X on (E,E ). Then there exists a

function µY |X(·|·) : E × E → [0, 1], called the regular conditional distribution of Y given X, such that

(i) x 7→ µY |X(B|x) is E -measurable for each B ∈ E ;

(ii) µY |X(·|x) is a probability measure on (E,E ) for µX-a.e. x;

(iii) for all A,B ∈ E ,

P(X ∈ A, Y ∈ B) =

∫
A

µY |X(B|x)µX(dx).

We write Y |X ∼ µY |X .

Proof. We let G = σ(X), and fix the regular conditional distribution µY |G : E × Ω → [0, 1]. For each

B ∈ E , by G -measurability of ω 7→ µY |G (B,ω) and the Doob-Dynkin Theorem [Theorem 2.22], there exists a

E -measurable function φB : E → [0, 1] such that µY |G (B,ω) = φB(X(ω)).

We define µY |X(·|·) : E × E → [0, 1] by setting µY |X(B|x) = φB(x) for B ∈ E and x ∈ E. We prove that

µY |X is the desired regular conditional distribution.

(i) Clearly, for each B ∈ E , µY |X(B|·) = φB is E -measurable.

(ii) We let Ω0 be the set of ω such that µY |G (·, ω) is a probability measure on (E,E ). Then P(Ω0) = 1, and

for each x ∈ X(Ω0), there exists ω ∈ X−1(x) ⊂ Ω0 such that µY |X(·|x) = φ(·)(X(ω)) = µY |G (·, ω). Since

µX(X(Ω0)) = P(Ω0) = 1, we know that µY |X(·|x) is a probability distribution for µX -a.e. x.

(iii) For each B ∈ E , the random variable µY |X(B|X) = φB(X) = µY |G (B, ·) = P(Y ∈ B |G ) a.s.. We then

use the integral transform formula [Theorem 1.50] to obtain

P(X ∈ A, Y ∈ B) =

∫
X−1(A)

P(Y ∈ B |G ) dP =

∫
µY |X(B|X(ω))1{X(ω)∈A} P(dω) =

∫
A

µY |X(B|x)µX(dx).

Thus we find the desired regular conditional distribution µY |X .

Remark. (I) In particular, if X and Y are two real-valued random variables, there exists a two-variable

measurable function (x, y) 7→ FY |X(y|x) such that F (·|x) is a c.d.f. for µX -a.e. x, and

P(X ≤ a, Y ≤ b) =
∫
(−∞,a]

FY |X(b|x)µX(dx), a, b ∈ R.

Also, {FY |X(·|x)}x∈R is called the family of conditional distribution functions of Y given X.

(II) If X and Y are two real-valued random variables have a joint density ρ(x, y) > 0. Define

µY |X(B|x) =
∫
B
ρ(x, y) dy∫

R ρ(x, y) dy
, B ∈ B(R), x ∈ R.

This is a regular conditional distribution of Y given X.
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2.4 Stochastic Convergence

Review: Convergence of Random Variables. Here are several categories of convergence of measurable

functions we covered in Section 1.6 . We summarized them in random variable version. Let Xn : (Ω,F ) →
(R,B(R)) be a sequence of random variables. Let X be a random variable.

(i) (Almost sure convergence). Xn is said to converge almost surely to X if

P
(
lim
n→∞

Xn = X
)
= 1.

(ii) (Convergence in Probability). Xn is said to converge in probability to X if for all η > 0,

lim
n→∞

P (|Xn −X| ≥ η) = 0.

(iii) (Convergence in Lp-norm). Let 1 ≤ p <∞. Xn is said to converge to X in Lp-norm if

lim
n→∞

E|Xn −X|p = 0.

All these modes of convergence can be generalized to the case of random vectors by giving Rp a proper

metric, e.g. the Euclidean distance and Lp-distance.

Since a probability space (Ω,F ,P) is a finite measure space, almost sure convergence implies convergence

in probability. Also, by Chebyshev inequality, convergence in Lp-norm implies convergence in probability.

Moreover, if Xn is a uniformly integrable sequence that converges to X in probability, it also converges to X

in L1-norm. Now we introduce another convergence of random variables.

Definition 2.29 (Convergence in distribution). A sequence of random variables Xn ∼ Fn is said to converges

in distribution to a random variable X ∼ F if

lim
n→∞

Fn(x) = F (x) ⇔ lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

for each points x of continuity of F , and we write X
d→ Xn. We also say that the sequence of cumulative

distribution functions Fn converges weakly to F , and write Fn
w→ F .

Remark. In fact, a sequence of random variables converges in distribution if and only if their distribution

measures converges weakly. This is used an alternative definition of convergence in distribution.

Theorem 2.30 (Portmanteau lemma). Let Xn ∼ Fn be a sequence of random variables, and X ∼ F . Then

Xn
d→ X if and only if the following equivalent conditions hold:

(i) E[f(Xn)]→ E[f(X)] for all bounded continuous functions f ;

(ii) E[f(Xn)]→ E[f(X)] for all bounded Lipschitz continuous functions f ;

(iii) lim infn→∞ E[f(Xn)] ≥ E[f(X)] for all lower semi-continuous function f bounded from below;

(iv) lim supn→∞ E[f(Xn)] ≤ E[f(X)] for all upper semi-continuous function f bounded from above;

(v) lim infn→∞ P(Xn ∈ G) ≥ P(X ∈ G) for every open sets G;

(vi) lim supn→∞ P(Xn ∈ F ) ≤ P(X ∈ F ) for every closed sets F ;

(vii) limn→∞ P(Xn ∈ B)→ P(X ∈ B) for all continuity sets B, i.e. P(X ∈ ∂B) = 0.

Proof. ⇒ (i): Without loss of generality, we let bounded continuous function f take values in [−1, 1]. Assume

that F is continuous. By Xn
d→ X, we have limn→∞ P(Xn ∈ I) = P(X ∈ I) for all closed intervals I on R.

Given ϵ > 0, choose a sufficiently large I so that P(X /∈ I) < ϵ/5. Since f is uniformly continuous on the

compact set I, we choose a partition I =
⋃k
j=1 Ij such that f varies at most ϵ/5 on each Ij . Take a point xj
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from each Ij , and define φ = f(xj)1Ij , then φ is a simple function, and

|E[f(Xn)]− E[φ(Xn)]| =
ϵ

5
+ P(Xn /∈ I), |E[f(X)]− E[φ(X)]| = ϵ

5
+ P(X /∈ I) ≤ 2ϵ

5
. (2.10)

Since limn→∞ P(Xn ∈ I) = P(X ∈ I) and P(X /∈ I) < ϵ/5, there exists N0 such that P(Xn /∈ I) < ϵ/5 for

all n ≥ N0. Note that

|E[φ(Xn)]− E[φ(X)]| ≤
k∑
j=1

|P(Xn ∈ Ij)− P(X ∈ Ij)| |f(xj)| . (2.11)

We also choose N1 such that |P(Xn ∈ Ij)− P(X ∈ Ij)| < ϵ/(5k) for all Ij and all n ≥ N1. Combine (2.10)

with (2.11) and use triangle inequality, then |E[f(Xn)]− E[f(X)]| < ϵ for all n ≥ max{N0, N1}. Since ϵ > 0

is arbitrary, (ii) holds for all continuous c.d.f. F .

If F : R → [0, 1] is not continuous everywhere, we use rarity of discontinuity sets. The collection of sets

{(−∞, α] : α ∈ R} has disjoint boundaries, and at most countably many of them are discontinuity sets, say

P(X = α) > 0. As a result, there exists a dense subset D ⊂ R such that F is continuous at each α ∈ D. We

choose closed intervals I with boundaries on D.

(vii) ⇒: For each point x of continuity of F , choose B = (−∞, x].

Remark. This theorem can be easily extended to the case of random vectors.

A continuous mapping preserves several modes of stochastic convergence of random variable sequences.

Theorem 2.31 (Continuous mapping). Let X be a random variable. If g : R → R is continuous everywhere

on a set C such that P(X ∈ C) = 1, then g preserves the following modes of convergence:

(i) If Xn
a.s.→ X, then g(Xn)

a.s.→ g(X);

(ii) If Xn
P→ X, then g(Xn)

P→ g(X);

(iii) If Xn
d→ X, then g(Xn)

d→ g(X).

Proof. (i) is trivial. (ii) Given η > 0, define

Ek =

{
x ∈ C : ∃y ∈ R such that |y − x| < 1

k
and |g(y)− g(x)| ≥ η

}
, k ∈ N.

Since g is continuous everywhere on C, the sequence Ek ↘ ∅. Then

P (|g(Xn)− g(X)| ≥ η) ≤ P(X ∈ Ek) + P
(
|Xn −X| ≥

1

k

)
(2.12)

Given ϵ > 0, we first choose K such that P(X ∈ EK) ≤ ϵ/2, then choose N such that P(|Xn−X| ≥ 1/K) < ϵ/2

for all n ≥ N . Hence (2.12) is controlled by arbitrarily small ϵ > 0.

(iii) Let F ⊂ R be a closed set. If x ∈ g−1(F ), there exists sequence xk ∈ g−1(F ) such that xk → x and

g(xk) ∈ F . Since F is closed and g is continuous on C, if x ∈ C, we have g(x) ∈ F . Hence the following

inclusions hold for all closed F :

g−1(F ) ⊂ g−1(F ) ⊂ g−1(F ) ∪ Cc.

Using the Portmanteau lemma, we have

lim sup
n→∞

P(g(Xn) ∈ F ) ≤ lim sup
n→∞

P
(
Xn ∈ g−1(F )

)
≤ P

(
X ∈ g−1(F )

)
≤ P (g(X) ∈ F ),

where the last inequality holds because P(X ∈ C) = 0. Again by Portmanteau lemma, g(Xn)
d→ g(X).
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Another important property associated with weak convergence is uniform tightness. Any random variable

X is tight or Op(1), i.e. for each ϵ > 0, there exists M > 0 such that P(|X| > M) < ϵ. This is a consequence

of the properties of c.d.f. FX(x) = P(X ≤ x).

Definition 2.32 (Uniform tightness). A collection of random variables {Xα, α ∈ J} is said to be uniformly

tight, if for every ϵ > 0, there exists a constant M > 0 such that

sup
α∈J

P (|Xα| > M) < ϵ.

Clearly, any finite collection of random variable is uniformly tight.

The following Prohorov’s theorem is a generalization of Heine-Borel theorem.

Theorem 2.33 (Prohorov). Let Xn be a sequence of random variables.

(i) If Xn
d→ X for some random variable X, then {Xn : n ∈ N} is uniformly tight;

(ii) If {Xn : n ∈ N} is uniformly tight, then there exists a subsequence Xnk
that converges in distribution to

some random variable X.

Proof of Theorem 2.32 (i). Given ϵ > 0, we choose M0 such that P(|X| > M0) < ϵ/2. By Portmanteau’s

theorem, we have lim supn→∞ P(|Xn| > M0) ≤ P(|X| > M0). Hence we can choose N such that

sup
n≥N

P(|Xn| > M0) < P(|X| > M0) +
ϵ

2
< ϵ.

Note that any finite collection of random variables is uniformly tight. Then we choose M1 such that

P(|Xj | > M1) < ϵ for all j = 1, · · · , N − 1. Let M = max{M0,M1}, then supn∈N P(|Xn| > M) < ϵ.

The proof of Theorem 2.33 (ii) uses Helly’s selection theorem.

Theorem 2.34 (Helly’s selection theorem). Let fn : R → [−M,M ] be a uniformly bounded sequence of

monotone increasing functions. Then there exists a subsequence (fnk
)∞k=1 that converges pointwise to an

monotone increasing function f : R→ [−M,M ].

Proof. Choose a countable dense subset Q = {rk, k ∈ N} of R. Then fn(r1) is a bounded sequence. By

Bolzano-Weierstrass theorem, choose a convergent subsequence f1n(r1) → f(r1). Then f1n(r2) is a bounded

sequence, and again we choose one of its convergent subsequence f2n(r2)→ f(r2).

“diagonal trick”: Repeat this procedure, so for each k ∈ N, we choose a subsequence fkn such that

fkn(rj) → f(rj) for all indices j ≤ k. Since (fkn)
∞
n=1 is a subsequence of its predecessor (fk−1,n)

∞
n=1,

(fnn(rk))
∞
n=1 is a subsequence of (fkn(rk))

∞
n=1 from n = k on, and we have limn→∞ fnn(rk) = f(rk) for

all k ∈ N. Hence we obtain a subsequence fnn that converges to f pointwise on Q. Clearly, f : Q→ [−M,M ]

is increasing.

For all irrationals x ∈ R\Q, choose a increasing rational sequence rkj → x, and let f(x) = limj→∞ f(rkj ).

Note this limit exists because f(rkj ) is a bounded increasing sequence. Clearly, f is increasing on R and

bounded by M , and rki < x < rkj implies fnn(rki)− f(rkj ) < fnn(x)− f(x) < fnn(rkj )− f(rki) for all n ∈ N.
Finally we prove fnn → f pointwise on R. Given ϵ > 0. If x ∈ R\Q is a point of continuity of f , we choose

rationals r < x < r′ with |f(rki)− f(rkj )| < ϵ. Then

−ϵ ≤ lim inf
n→∞

(fnn(r)− f(r′)) ≤ fnn(x)− f(x) ≤ lim sup
n→∞

(fnn(r
′)− f(r)) < ϵ.

Hence fnn converges pointwise to f , except possibly at points of discontinuity of f . Being monotone

increasing, f has at most countably points of discontinuity. Since fnn is uniformly bounded by M , we repeat

the “diagonal” trick to obtain a subsequence of fn that converges everywhere on R.
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Corollary 2.35 (Helly’s selection theorem). Let Fn : R → [0, 1] be a sequence of cumulative distribution

functions. Then there exists a subsequence Fnk
such that Fnk

(x) → F (x) at each point x of continuity of a

possibly defective distribution function F , i.e. F only satisfies properties (i) and (ii) in Proposition 2.2.

Proof. By Theorem 2.33, we choose a subsequence Fnk
of Fn that converges pointwise to an increasing function

G : R → [0, 1]. Define F (x) = limϵ→0+ G(x + ϵ) for all x ∈ R. Then F is right-continuous on R, and Fnk

converges to F at all points of continuity of F .

Proof of Theorem 2.32 (ii). Let Xn ∼ Fn. By Helly’s selection theorem, there exists a subsequence Fnk
of the

c.d.f. sequence Fn that converges to a possibly defective distribution function F . It suffices to show that F is

proper. That is, limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Given ϵ > 0, by uniform tightness of {Xn, n ∈ N}, we choose M > 0 such that F (M) > 1 − ϵ. Since the

points of discontinuity of F are rare, we slide M slightly larger so that M is a point of continuity of F . Then

Fnk
(M)→ F (M) > 1− ϵ. Since ϵ > 0 is arbitrary, F (x)→ 1 as x→∞. The case x→ −∞ is similar.

Now we discuss the relationship between convergence in probability and convergence in distribution.

Theorem 2.36. Let Xn, X, Yn and Y be random variables. Let c ∈ R be a constant. Then

(i) If Xn
P→ X and Yn

P→ Y , then (Xn, Yn)
P→ (X,Y );

(ii) If Xn
d→ X and |Xn − Yn|

P→ 0, then Yn
d→ X;

(iii) If Xn
P→ X, then Xn

d→ X;

(iv) Xn
P→ c if and only if Xn

d→ c;

(v) If Xn
d→ X and Yn

d→ c, then (Xn, Yn)
d→ (X, c);

Proof. (i) The result follows since ρ((xn, yn), (x, y)) :=
√
|x− xn|2 + |y − yn|2 ≤ |x− xn|+ |y − yn|.

(ii) For every bounded 1-Lipschitz continuous function f : R→ [0, 1], we have

|E[f(Xn)]− E[f(Yn)]| ≤ ϵE[1{|Xn−Yn|≤ϵ}] + E[1{|Xn−Yn|>ϵ}] ≤ ϵ+ P(|Xn − Yn| > ϵ), ∀ϵ > 0.

Since ϵ > 0 is arbitrary, and P(|Xn − Yn| > ϵ) converges to zero, we have E[f(Xn)] − E[f(Yn)] → 0. By

Portmanteau lemma, E[f(Yn)]→ E[f(X)], and Yn
d→ X.

(iii) Since X
d→ X trivially, this is a special case of (ii).

(iv) The “only if” case is a special case of (iii). For the converse, given any ϵ > 0, by Portmanteau lemma,

Xn
d→ c implies Xn

P→ c:

lim sup
n→∞

P(|Xn − c| ≥ ϵ) = lim sup
n→∞

P(Xn ∈ R\(c− ϵ, c+ ϵ)) ≤ P(c ∈ R\(c− ϵ, c+ ϵ)) = 0.

(v) Since ρ((Xn, Yn), (Xn, c)) = |Yn − c|
P→ 0, by (ii), it suffices to show that (Xn, c)

d→ (X, c). For every

f ∈ Cb(R2), the mapping x 7→ f(x, c) is also bounded and continuous. By Portmanteau lemma, we have

E[f(Xn, c)]→ E[f(X, c)]. Thus (Xn, c)
d→ (X, c), and the result follows.

We have the following useful corollary.

Lemma 2.37 (Slutsky). Let Xn, X and Yn be random variables. If Xn
d→ X and Yn

d→ c ∈ R, then
(i) Xn + Yn

d→ X + c;

(ii) XnYn
d→ cX;

(iii) If c ̸= 0, then Y −1
n Xn

d→ c−1X.

Proof. By Theorem 2.35 (v) and continuous mapping theorem [Theorem 2.30 (iii)].
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Finally we introduce small o and big O symbols.

Definition 2.38 (Stochastic o and O symbols). The notation oP(1) denotes a sequence of random variables

that converges to 0 in probability. The notation OP(1) denotes a sequence of random variables that is uniformly

tight. More generally, given a sequence of random variables Rn,

Xn = oP(Rn) ⇔ Xn = YnRn and Yn
P→ 0;

Xn = OP(Rn) ⇔ Xn = YnRn and Yn = OP(1).

Theorem 2.39 (Calculus with o and O symbols). (i) oP(1) + oP(1) = oP(1);

(ii) oP(1) +OP(1) = OP(1);

(iii) OP(1)oP(1) = oP(1);

(iv) (1 + oP(1))
−1 = OP(1);

(v) oP(Rn) = RnoP(1), OP(Rn) = RnOP(1);

(vi) oP(OP(1)) = oP(1);

Proof. (i), (v) follows from definition.

(ii) Let Xn = oP(1) and Yn = OP(1). Given ϵ > 0, choose M such that P(|Yn| > M/2) < ϵ/2 for all n ∈ N,
and choose N such that P(|Xn| > M/2) < ϵ/2 for all n ≥ N . Then P(|Xn + Yn| > M) < ϵ for all n ≥ N .

Since (Xn + Yn)
∞
n=N is uniformly tight, so is (Xn + Yn)

∞
n=1.

(iii) Let Xn = oP(1) and Yn = OP(1). Given ϵ > 0, choose M such that P(|Yn| > M) < ϵ/2. Given η > 0,

choose N such that P(|Xn| > η/M) < ϵ/2 for all n ≥ N . Then P(|XnYn| > η) < ϵ for all n ≥ N .

(iv) Let Xn = oP(1). For any ϵ > 0, there exists 0 < η < 1 and N > 0 such that P(|Xn| > η) < ϵ. Then

P((1 +Xn)
−1 > 1

1−η ) < ϵ. As a result, ((1 +Xn)
−1)∞n=N is uniformly tight, and so is ((1 +Xn)

−1)∞n=1.

(vi) Follows from (iii) and (v).

Theorem 2.40. Let R : R→ R be a function such that R(0) = 0. Let Xn = oP(1). Then for every p > 0,

(i) If R(h) = o(|h|p) as h→ 0, then R(Xn) = oP(|Xn|p);
(ii) If R(h) = O(|h|p) as h→ 0, then R(Xn) = OP(|Xn|p).

Proof. Define g as g(h) = |h|−pR(h) for h ̸= 0 and g(0) = 0. Then R(Xn) = |Xn|pg(Xn).

(i) By assumption, g is continuous at 0. Then g(Xn)
P→ g(0) = 0 by continuous mapping theorem.

(ii) By assumption, there exists δ > 0 and M > 0 such that |g(h)| ≤ M for all |h| ≤ δ. Then we have

P(|g(Xn)| > M) ≤ P(|Xn| > δ)→ 0, and the sequence g(Xn) is uniformly tight.
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2.5 Characteristic Functions

Definition 2.41 (Characteristic function). Let X ∼ µ be a (real-valued) random variable, where µ is a

distribution measure. The characteristic function of X is defined as

ϕX : R→ C, ϕX(λ) = E
[
eiλX

]
=

∫
R
eiλx dµ(x), i2 = −1.

Proposition 2.42 (Properties of characteristic functions). If ϕX is the characteristic function of a random

variable X ∼ µ, the following are true:

(i) ϕX(0) = 1;

(ii) ϕX : R→ C is bounded and uniformly continuous.

(iii) If E [|X|n] <∞ for some n ∈ N, then ϕX is n-differentiable, and its k-th derivative is

ϕ
(k)
X (λ) = E

[
(iX)keiλX

]
, k = 1, · · · , n. (2.13)

Furthermore, all these derivatives are uniformly continuous. Particularly, we have ϕ(k)(0) = ikE[Xk].

(iv) ϕX is twice differentiable if and only if E[X2] < ∞. Generally, for each k ∈ N, ϕX is 2k-differentiable

if and only if E[X2k] <∞.

(v) If X is a continuous variable, then limλ→±∞ ϕX(λ) = 0.

Proof. (i) is clear by definition. To prove (ii), note that |ϕX(λ)| < 1 for all λ ∈ R. For uniform continuity, we

use the following inequality:

eiθ − 1 = 2ie
iθ
2 sin

θ

2
⇒

∣∣eiθ − 1
∣∣ ≤ 2

∣∣∣∣sin θ2
∣∣∣∣ ≤ |θ|.

Then for all λ1, λ2 ∈ R, we have

|ϕX(λ1)− ϕX(λ2)| =
∣∣∣E [(ei(λ1−λ2)X − 1

)
eiλ2X

]∣∣∣ ≤ E
∣∣∣ei(λ1−λ2)X − 1

∣∣∣ ≤ 2

∫
R

∣∣∣∣sin (λ1 − λ2)x
2

∣∣∣∣ dµ(x). (2.14)

Given ϵ > 0, we choose [−R,R] such that µ([−R,R]) > 1− ϵ/4. Then whenever |λ1 − λ2| < ϵ
2R , we have

2

∫
R

∣∣∣∣sin (λ1 − λ2)x
2

∣∣∣∣ dµ(x) ≤ 2

∫ R

−R

∣∣∣∣sin (λ1 − λ2)x
2

∣∣∣∣ dµ(x) + ϵ

2
< 2

∫
[−R,R]

ϵ

4
dµ+

ϵ

2
= ϵ. (2.15)

Hence ϕX is uniformly continuous.

(iii) Assume E|X| <∞. By Lebesgue dominated convergence theorem, since 1
ϵ |exp(iϵX)− 1| ≤ |X|,

lim
ϵ→0

ϕX(λ+ ϵ)− ϕX(λ)

ϵ
= lim
ϵ→0

E
[
eiϵX − 1

ϵ
eiλX

]
= E

[
lim
ϵ→0

eiϵX − 1

ϵ
eiλX

]
= E

[
iXeiλX

]
.

Hence ϕX is differentiable. Furthermore, by monotone convergence theorem, we choose R1 > 0 such that

E[|X|1{|X|>R1}] < ϵ/2. Alike (2.14) and (2.15), whenever |λ1 − λ2| < ϵ/(2R2
1), we have

|ϕ′X(λ1)− ϕ′X(λ2)| = E
[
iX(eiλ1X − eiλ2X)

]
< 2

∫ R1

−R1

∣∣∣∣x sin (λ1 − λ2)x
2

∣∣∣∣ dµ(x) + ϵ

2
< ϵ.

Therefore the derivative ϕ′X is uniformly continuous. Now assume (2.13) holds for k − 1. If E[|X|k] <∞,

lim
ϵ→0

ϕ
(k−1)
X (λ+ ϵ)− ϕ(k−1)

X (λ)

ϵ
= lim
ϵ→0

E
[
eiϵX − 1

ϵ
(iX)k−1eiλX

]
= E

[
lim
ϵ→0

eiϵX − 1

ϵ
(iX)k−1eiλX

]
= E

[
(iX)keiλX

]
.
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Therefore ϕX is k-differentiable. Again by monotone convergence theorem, we choose Rk > 0 such that

E[|X|k1{|X|>Rk}] < ϵ/2. Whenever |λ1 − λ2| < ϵ/(2Rk+1
k ), we have

∣∣∣ϕ(k)X (λ1)− ϕ(k)X (λ2)
∣∣∣ = E

[
(iX)k(eiλ1X − eiλ2X)

]
< 2

∫ Rk

−Rk

∣∣∣∣xk sin (λ1 − λ2)x
2

∣∣∣∣ dµ(x) + ϵ

2
< ϵ.

Hence ϕ
(k)
X is uniformly continuous. By induction we finish the proof of (iii).

(iv) We only proves necessity, since (iii) implies sufficiency. By definition, if ϕ′′X(0) exists, we have

ϕ′′X(0) = lim
h→0

ϕX(h) + ϕX(−h)− 2ϕ(0)

h2
= lim
h→0

∫
R

2 cos(hx)− 2

h2
dµ(x) = −2 lim

h→0

∫
R

1− cos(hx)

h2
dµ(x).

By Fatou’s lemma, we have

E[X2] =

∫
R
x2 dµ(x) = 2

∫
R
lim
h→0

1− cos(hx)

h2
dµ(x) ≤ 2 lim inf

h→0

∫
R

1− cos(hx)

h2
dµ(x) = −ϕ′′X(0) <∞.

Generally, if ϕ
(2k−2)
X (0) exists, then E[X2k−2] <∞, and by (iii), ϕ

(2k−2)
X (λ) = E[(iX)2k−2eiλX ]. Then

ϕ
(2k)
X (0) = lim

h→0

ϕ
(2k−2)
X (h) + ϕ

(2k−2)
X (−h)− 2ϕ(0)

h2
= lim
h→0

∫
R
(ix)2k−2 2 cos(hx)− 2

h2
dµ(x)

= (−1)k−12 lim
h→0

∫
R
x2k−2 1− cos(hx)

h2
dµ(x).

By Fatou’s lemma, we have

E[X2k] =

∫
R
x2k dµ(x) = 2

∫
R
lim
h→0

x2k−2 1− cos(hx)

h2
dµ(x)

≤ 2 lim inf
h→0

∫
R
x2k−2 1− cos(hx)

h2
dµ(x) = (−1)k−1ϕ

(2k−2)
X (0) <∞.

Then (iv) follows from induction.

(v) Since X is continuous, there exists a density function ρ ∈ L1(R) of X, and ϕX(λ) =
∫
R ρ(x)e

iλx dx. The

conclusion immediately follows from Riemann-Lebesgue lemma. We give a complete proof here.

Firstly, suppose ρ ∈ Cc(R). For λ ̸= 0, the substitution x→ x− π
λ implies

ϕX(λ) =

∫
R
ρ(x)eiλx dx =

∫
R
ρ
(
x− π

λ

)
eiλxeiπx dx = −

∫
R
ρ
(
x− π

λ

)
eiλx dx

Use the two formulae to compute ϕX(λ), we have

|ϕX(λ)| ≤ 1

2

∫
R

∣∣∣ρ(x)− ρ(x− π

λ

)∣∣∣ dx.
Since ρ is continuous,

∣∣ρ(x)− ρ (x− π
λ

)∣∣ → 0 as |λ| → ∞ for all x ∈ R. By Lebesgue dominate convergence

theorem, |ϕX(λ)| → 0 as |λ| → ∞.

For the general case ρ ∈ L1(R), we use function approximation. Since Cc(R) is dense in L1(R), we can

choose f ∈ Cc(R) such that ∥f − g∥1 ≤ ϵ for any ϵ > 0. Then

lim sup
λ→±∞

|ϕX(λ)| ≤ lim sup
λ→±∞

∣∣∣∣∫ (ρ(x)− f(x))eiλx dx
∣∣∣∣+ lim sup

λ→±∞

∣∣∣∣∫ f(x)eiλx dx

∣∣∣∣ ≤ ϵ+ 0 = ϵ.

Since ϵ > 0 is arbitrary, we have |ϕX(λ)| → 0 as λ→ ±∞.
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In fact, we can determine a measure distribution uniquely by its characteristic function.

Theorem 2.43 (Inversion formula). Let F be a c.d.f., and ϕF is the associated characteristic function.

(i) For any two points a < b of continuity of F ,

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−iat − e−ibt

it
ϕF (t) dt.

Distinct c.d.f. F have distinct characteristic functions.

(ii) For any φ ∈ Cc(R), ∫
φdF = lim

δ→0+

1

2π

∫
φ(x)

(∫
e−itxϕF (t)e

− δ
2 t

2

dt

)
dx.

(iii) If ∥ϕF ∥1 :=
∫
|ϕF (t)|dt <∞, then F has density function ρ:

ρ(x) =
1

2π

∫
e−itxϕF (t) dt,

and supx∈R ρ(x) ≤ 1
2π∥ϕF ∥1 <∞.

Proof. (ii) Let Z ∼ N(0, 1) be independent of X ∼ F . Then for all φ ∈ Cc(R) and δ > 0,

E
[
φ(X +

√
δZ)

]
= E

[
1√
2π

∫
φ(X +

√
δλ)e−

λ2

2 dλ

]
= E

[
1√
2π

∫
φ(X +

√
δλ)E

[
e−iλZ

]
dλ

]
= E

[
1√
2π

∫
φ(X +

√
δλ)e−iλZ dλ

]
= E

[
1√
2πδ

∫
φ(ξ)e

−i ξ−X√
δ
Z
dξ

]
=

1√
2πδ

∫
φ(ξ)E

[
e
−i ξ−X√

δ
Z
]
dξ

=
1√
2πδ

∫
φ(ξ)E

[
e
−i ξZ√

δ ϕF

(
Z√
δ

)]
dξ =

1

2π
√
δ

∫
φ(ξ)

(∫
e
−i ξz√

δ ϕF

(
z√
δ

)
e−

z2

2 dz

)
dξ

Note that φ is continuous and bounded. Let δ ↘ 0, we obtain (ii) by dominated convergence theorem.

(iii) If a < b are points of continuity of F , then by (i),

|F (b)− F (a)| ≤ lim
T→∞

1

2π

∫ T

−T

∣∣∣∣e−iat − e−ibt

it

∣∣∣∣ |ϕF (t)| dt.
Since

∣∣∣ exp(−iat)−exp(−ibt)
it

∣∣∣ ≤ |b− a|, we have

|F (b)− F (a)| ≤ |b− a|
2π

∥ϕF ∥1. (2.16)

For general a < b, we can find two sequence an ↗ a and bn ↘ b of points of continuity of F . Hence the

estimate (2.16) holds for all a < b, and F is continuous. As a result, F has density ρ, and

F (b)− F (a)
b− a

≤ 1

2π

∫
eiat − eibt

i(b− a)t
ϕF (t) dt.

Let b↘ a, the equation in (iii) holds, and the estimate of upper bound follows from (2.16).

The proof of (i) requires some technical lemma.
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Lemma 2.44 (Dirichlet). Let α ∈ R. Then

lim
T→∞

∫ T

−T

sin(αt)

t
dt = π sgn(α),

where sgn(α) = 1(0,∞)(α)− 1(−∞,0)(α).

Proof. The case α = 0 is clear. It suffices to prove the case α = 1. Since (s, t) 7→ e−st is absolutely integrable

on [0,∞)× [0,∞), by Fubini’s theorem,∫ ∞

0

sin t

t
dt =

∫ ∞

0

(∫ ∞

0

e−st sin tds

)
dt =

∫ ∞

0

(∫ ∞

0

e−st sin tdt

)
ds =

∫ ∞

0

1

1 + s2
ds =

π

2
.

The result follows by changing variables.

Proof of Theorem 2.42 (i). Let a < b be two points of continuity of F , and X ∼ F . By Fubini’s theorem,

1

2π

∫ T

−T

e−iat − e−ibt

it
ϕF (t) dt =

1

2π

∫ T

−T

e−iat − e−ibt

it
E
[
eitX

]
dt

= E

[
1

2π

∫ T

−T

e−iat − e−ibt

it
eitX dt

]

= E

[
1

2π

∫ T

−T

sin(tX − at)− sin(tX − bt)
t

eitX dt

]
(2.17)

Note that
∫ T
0

sin t
t dt ≤

∫ π
0

sin t
t dt ≤ π for all T > 0, the integrand in (2.17) is bounded by 2. By Lebesgue

dominated convergence theorem,

lim
T→∞

1

2π

∫ T

−T

e−iat − e−ibt

it
ϕF (t) dt = E

[
lim
T→∞

1

2π

∫ T

−T

sin(tX − at)− sin(tX − bt)
t

eitX dt

]

=
1

2
E [sgn(X − a)− sgn(X − b)] (By Lemma 2.43)

=
1

2
(1− 2F (a)− 1 + 2F (b))

= F (b)− F (a),

where the last row follows from continuity of F at a and b.

Remark. In high-dimensional case, a similar conclusion follows: Let µF be a distribution measure on B(Rp),
and let ϕF (λ) =

∫
Rp exp (i⟨x, λ⟩) dµF (x) be the characteristic function of µF . Let A ⊂ Rd be a cell of the form

A = {(x1, · · · , xp) : aj ≤ xj ≤ bj for all j} ,

where aj < bj for all j and µF (∂A) = 0. Then

µF (A) = lim
T→∞

1

(2π)p

∫
[−T,T ]p

p∏
j=1

{
eiajtj − eibjtj

itj

}
ϕF (t) dt, where t = (t1, · · · , tp) ∈ Rp. (2.18)

Note that at most countably many hyperplanes perpendicular to the coordinate axes can have positive µF

measure. As a result, the cells A with µ(δA) = 0 form a π-system that generate B(Rp). Thus a distribution

µF is uniquely determined by its characteristic function ϕF by (2.18) and Lemma 1.22.
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Corollary 2.45 (Independence). Let X and Y be two random variables. Let ϕX and ϕY be the characteristic

functions of X and Y , respectively, and let ϕX,Y be the characteristic function of (X,Y ). Then X and Y are

independent if and only if

ϕX,Y (u, v) = ϕX(u)ϕY (v).

Proof. The necessity is clear. We prove sufficiency here. If ϕX,Y (u, v) = ϕX(u)ϕY (v), by inversion formula,

µX,Y ([a1, b1] × [a2, b2]) = µX([a1, b1]) × µY ([a2, b2]) for all continuity rectangles [a1, b1] × [a2, b2], which form

a π-system that generates B(R2). Then the result follows from Lemma 1.22.

We also have the following useful corollary, which allows us to simplify some future proofs by doing only

the 1-dimension case.

Lemma 2.46 (Cramér-Wold device). Let X and Y be two p-dimensional random vectors. Then X
d
= Y if

and only ⟨X,α⟩ d= ⟨Y, α⟩ for all α ∈ Rp.

Proof. The necessity is clear. For sufficiency, note that when ⟨X,α⟩ d= ⟨Y, α⟩ for all α ∈ Rp, the characteristic

functions of X and Y are the same.

We can use characteristic functions to investigate the tail properties of distribution functions.

Proposition 2.47. Let ϕX be the characteristic function of a random variable X. For each ϵ, δ > 0, there

exists a constant K > 0 depending only on δ such that

P(|X| ≥ ϵ) ≤ K
∫ 1

0

[
1− Re

(
ϕX

(
tδ

ϵ

))]
dt,

E
[
X21{|X|≤ϵ}

]
≤ Kϵ2

[
1− Re

(
ϕX

(
tδ

ϵ

))]
.

Proof. We redefine that sin 0
0 = 1 and 1−cos 0

02 = 1
2 , so both sin x

x and 1−cos x
x2 become uniformly continuous

functions on R. Then for any δ > 0, there exists K > 0 such that

1− sinx

x
≥ 1

K
, ∀|x| ≥ δ, and

1− cosx

x2
≥ 1

K
, ∀|x| ≤ δ.

Let X ∼ F , and let η = δ/ϵ. Then

P (|X| ≥ ϵ) = E
[
1{|ηX|≥δ}

]
≤ KE

[
1− sin(ηX)

ηX

]
= K − E

[
K

∫ 1

0

cos(ηtX) dt

]
= K

∫ 1

0

[1− Re (ϕX(ηt))] dt, (By Fubini’s theorem)

and

E
[
X21{|X|≤ϵ}

]
=

1

η2
E
[
|ηX|21{|ηX|≤δ}

]
≤ K

η2
E [1− cos(ηX)] = Kϵ2 [1− Re (ϕX(ηt))] .

Thus we complete the proof.
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2.6 The Continuity Theorem and The Central Limit Theorems

2.6.1 Lévy’s Continuity Theorem

Definition 2.48 (Quantile). Given a c.d.f. F : R→ [0, 1], the quantile of distribution F is defined as

F−1(p) = inf {α ∈ R : F (α) ≥ p} , ∀p ∈ (0, 1).

Remark. The quantile F−1 : (0, 1)→ R satisfies the following properties:

(i) F−1 : (0, 1)→ R is monotone increasing.

(ii) F−1 has at most countably many points of discontinuity. To see this, let E be the set of these points.

Then for each x ∈ E, since F−1 is monotone, define

lx := lim
y↗x

F−1(y) < lim
y↘x

F−1(y) =: rx.

Since Q is dense in R, choose qx ∈ Q ∩ (lx, rx). Since F−1 is monotone increasing, the intervals (lx, rx)

are pairwise disjoint. Thus we obtain a bijection x 7→ qx from E to a subset of Q. Hence E has at most

countably many elements. In fact, this conclusion holds for all monotone functions on R.
(iii) F−1 is left-continuous. This follows from the right-continuity of F :

{α ∈ R : F (α) ≥ p} =
∞⋂
n=1

{
α ∈ R : F (α) ≥ p− 1

n

}
⇒ F−1(p) = lim

n→∞
F−1

(
p− 1

n

)
.

Lemma 2.49 (Galois inequality). Let α ∈ R and p ∈ (0, 1). Then F (α) ≥ p if and only if F−1(p) ≤ α.

Particularly, we have F (F−1(p)) ≥ p and F−1(F (α)) ≤ α.

Proof. The “only if” case follows from definition. Conversely, assume α ≥ F−1(p) := inf{z ∈ R : F (z) ≥ p}.
Then we have α+ n−1 ∈ {z ∈ R : F (z) ≥ p} for all n ∈ N. By right-continuity of F ,

F (α) = lim
n→∞

F

(
α+

1

n

)
≥ p.

Thus we finish the proof.

Corollary 2.50 (Quantile transformation). Let U ∼ Unif(0, 1). Then F−1(U) ∼ F .

Proof. By Galois inequality, for all x ∈ R, we have P(F−1(U) ≤ x) = P(F (x) ≥ U) = F (x).

Theorem 2.51 (Weak convergence of quantiles). Let Fn be a c.d.f. sequence, and F a c.d.f.. Then Fn
w→ F

if and only if F−1
n (p)→ F−1(p) for each point p of continuity of F−1.

Proof. Assume Fn
w→ F , and let Z ∼ N(0, 1). Since F is discontinuous at at most countably many points,

we have Fn(Z)
a.s.→ F (Z), and Fn(Z)

d→ F (Z). By Portmanteau lemma [Theorem 2.29 (vii)], if the function

p 7→ P(F (Z) < p) is continuous at p ∈ (0, 1), we have P(F (Z) = p) = 0, and P(Fn(Z) < p)→ P(F (Z) < p).

Let Φ be the c.d.f. of standard Gaussian variables. By Galois inequality,

Φ(F−1
n (p)) = P(Z < F−1

n (p)) = P(Fn(Z) < p)
n→∞→ P(F (Z) < p) = Φ(F−1(p))

for each point p of continuity of Φ ◦ F−1. By continuity of Φ, these contain all points of continuity of F−1.

Again, by continuity of Φ−1, we have F−1
n (p)→ F−1(p) for each point p of continuity of F−1.

Conversely, assume that F−1
n (p)→ F−1(p) for each point p of continuity of F−1. Let U ∼ Unif(0, 1), then

F−1
n (U)

a.s.→ F−1(U), since F−1 has at most countably many points of discontinuity. Since F−1
n (U) ∼ Fn and

F−1(U) ∼ F , we have Fn
w→ F .
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Theorem 2.52 (Skorokhod’s almost sure representations). Let Fn : R → [0, 1] be a sequence of c.d.f.’s such

that Fn
w→ F , where F is also a c.d.f.. Then there exists a probability space (Ω,F ,P) and a sequence of random

variables Xn on it such that Xn ∼ Fn for all n ∈ N, and Xn
a.s.→ X, where X ∼ F .

Proof. We use the quantile transformation. Let Ω = [0, 1], and let P be the Lebesgue measure on [0, 1]. Define

X(ω) = F−1(ω) and Xn(ω) = F−1
n (ω) for all n ∈ N. Then X ∼ F , and Xn ∼ Fn. By Theorem 2.50, Xn → X

on Ω except possibly at countably many points of discontinuity of F−1, which form a null set.

Corollary 2.53 (Convergence of characteristic functions). Let Fn be a c.d.f. sequence, and let ϕFn
be the

sequence of associated characteristic functions. If Fn
w→ F , where F is a c.d.f., then ϕFn

→ ϕF pointwise.

Proof. By Skorokhod’s representation theorem, we can choose Xn ∼ Fn and X ∼ F such that Xn
a.s.→ X.

Then eiλXn
a.s.→ eiλX for all λ ∈ R. By Lebesgue dominated convergence theorem, ϕFn → ϕF pointwise.

Theorem 2.54 (Lévy’s continuity theorem). Let Xn be a sequence of random variables, and let ϕn be the

sequence of associated characteristic functions. If ϕn converges pointwise to a function ϕ : R→ C, the following
are equivalent:

(i) {Xn}∞n=1 is uniformly tight, i.e. limM→∞ supn∈N P(|Xn| ≥M) = 0.

(ii) Xn
d→ X for some random variable X.

(iii) ϕ is the characteristic of some random variable X, i.e. ϕ(λ) = E[eiλX ];

(iv) ϕ is continuous everywhere on R;
(v) ϕ is continuous at 0.

Proof. (i) ⇒ (ii): Let Fn be the c.d.f. of Xn. By Theorem 2.32 (ii), for every subsequence of Xn, we can

extract a further subsequence which converges some random variable X ∼ F . By Corollary 2.52, ϕF = ϕ,

hence F is uniquely determined by ϕ. We can fix X and conclude that every subsequence Xnk
of Xn has a

further subsequence that converges in distribution to X.

It remains to show Xn
d→ X. If not, choose f ∈ Cb(R) such that E[f(Xn)] does not converge to E[f(X)].

Then there exists ϵ > 0 such that for all k ∈ N we can find nk ≥ k such that |E[f(Xnk
)] − E[f(X)]| > ϵ.

As a result, E[f(Xnk
)] has no subsequence converging to E[f(X)], and Xnk

has no subsequence converging in

distribution to X, a contradiction! Hence Xn
d→ X. (This is called the subsequence trick.)

(ii) ⇒ (iii) follows from Corollary 2.52. (iii) ⇒ (iv) and (iv) ⇒ (v) are trivial.

(v) ⇒ (i): Following Proposition 2.46, we set δ = 2 and K = 5. The following estimate holds for all n ∈ N:

P(|Xn| ≥ T ) ≤ 5

∫ 1

0

[
1− Re

(
ϕn

(
2t

T

))]
dt.

By Lebesgue dominated convergence theorem,

lim
n→∞

P(|Xn| ≥ T ) ≤ 5

∫ 1

0

[
1− Re

(
ϕ

(
2t

T

))]
dt.

Since ϕ(0) = 1, and ϕ is continuous at 0, the right-hand side of the above estimate converges to 0 as T →∞.

Given ϵ > 0, we choose T0 such that limn→∞ P(|Xn| ≥ T0) < ϵ/2, and choose N such that P(|Xn| ≥ T0) < ϵ

for all n ≥ N . Then {Xn}∞n=N is uniformly tight, and so is {Xn}∞n=1.

Remark. We can summarize a commonly used conclusion from Theorem 2.53, which can be viewed as a

converse of Corollary 2.52:

Let Fn be a c.d.f. sequence, and let ϕFn be the sequence of associated characteristic functions. If ϕFn → ϕ

pointwise, and ϕ is continuous at 0, then ϕ is the characteristic function of some c.d.f. F , and Fn
w→ F .
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2.6.2 The Central Limit Theorems

Theorem 2.55 (Khintchine’s weak law of large numbers). Let (Xn)
∞
n=1 be a sequence of independent and

identically distributed (i.i.d.) random variables such that E[|X1|] <∞. Denote µ := E[X1] <∞. Define

Xn =
1

n

n∑
j=1

Xj .

Then Xn
P→ µ.

Proof. Without loss of generality, assume µ = 0. Let ϕ : R → C be the characteristic function of X1. Then

the characteristic function of Xn is

ϕn(λ) = E

 n∏
j=1

ei
λ
nXj

 = ϕ

(
λ

n

)n
.

Since E[|X1|] <∞, ϕ is differentiable, ϕ′(0) = iEX1 = 0, and ϕ′ is uniformly continuous. Fix λ ∈ R. Given

any ϵ > 0, we can choose N such that |ϕ′(t)| ≤ ϵ for all |t| ≤ |λ|/N . Hence

lim
n→∞

|ϕn(λ)− 1| = lim
n→∞

∣∣∣∣ϕ(λn
)n
− 1

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∣
(
1 +

∫ λ/n

0

ϕ′(t) dt

)n
− 1

∣∣∣∣∣ ≤ max
{
e|λ|ϵ − 1, 1− e−|λ|ϵ

}
.

Since ϵ > 0 is arbitrary, ϕn(λ) → 1 pointwise. By Lévy’s continuity theorem, Xn
d→ 0. By Theorem 2.36

(iv),we have Xn
P→ 0.

Theorem 2.56 (Lindeberg-Lévy central limit theorem). Let (Xn)
∞
n=1 be a sequence of i.i.d. random variables

such that E
[
|X1|2

]
<∞. Denote µ := EX1 <∞, and 0 < σ2 := Var(X1) <∞. Define

Xn =
1

n

n∑
j=1

Xj , Zn =

√
n

σ
(Xn − µ)

Then Zn
d→ Z, where Z ∼ N(0, 1).

Proof. Without loss of generality, assume that µ = 0 and σ2 = 1. Let ϕ be the characteristic function of X1.

Then the characteristic function of Zn is

ϕn(λ) = E

 n∏
j=1

e
i λ√

n
Xj

 = ϕ

(
λ√
n

)n
.

Since E[|X1|2] <∞, ϕ is twice-differentiable, ϕ′(0) = iEX1 = 0, and ϕ′′(0) = −E[X2
1 ] = −1.

ϕ

(
λ√
n

)
= 1 +

∫ λ/
√
n

0

ϕ′(t) dt = 1 +

∫ λ/
√
n

0

∫ t

0

ϕ′′(u) dudt = 1− λ2

2n
+

∫ λ/
√
n

0

∫ t

0

(1 + ϕ′′(u)) dudt.

Note that ϕ′′ is uniformly continuous. Given ϵ > 0, choose N such that |1 + ϕ′′(u)| < ϵ for all |u| ≤ |λ|/
√
N .

Then for all n ≥ N , we have

1− λ2(1 + ϵ)

2n
≤ ϕ

(
λ√
n

)
≤ 1− λ2(1− ϵ)

2n
⇒ e−

λ2(1+ϵ)
2 ≤ lim

n→∞
ϕn(λ) ≤ e−

λ2(1−ϵ)
2 .

Since ϵ > 0 is arbitrary, limn→∞ ϕn(λ) = e−λ
2/2, which is the characteristic function of Z ∼ N(0, 1).
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Theorem 2.57 (Lindeberg-Feller central limit theorem). Let (Xn)
∞
n=1 be a sequence of independent random

variables such that EXn = 0 and 0 < σ2
n := E

[
X2
n

]
<∞. Define

s2n =

n∑
k=1

σ2
k, Zn =

1

sn

n∑
k=1

Xk.

Then Zn
d→ N(0, 1) and

lim
n→∞

max1≤k≤n σ
2
k

s2n
= 0 (2.19)

if and only if the following Lindeberg’s condition is satisfied:

lim
n→∞

1

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
= 0, ∀ϵ > 0. (2.20)

Proof of Suffieiency. Suppose the Lindeberg’s condition (2.20) holds. Then for 1 ≤ k ≤ n and all ϵ > 0,

max1≤k≤n σ
2
k

s2n
= max

1≤k≤n

{
1

s2n
E
[
X2
k1{|Xk|<ϵsn}

]
+

1

s2n
E
[
X2
k1{|Xk|≥ϵsn}

]}
≤ ϵ2 + 1

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
.

Then (2.19) is true follows by letting n→∞ and ϵ ↓ 0. Let ϕn be the characteristic function of Xn. To prove

Zn → N(0, 1), we need to show that the characteristic function of Zn satisfies

ϕZn
(λ) =

n∏
k=1

ϕk

(
λ

sn

)
→ e−λ

2/2 as n→∞. (2.21)

The result then follows from Lévy’s continuity theorem. We claim that (2.21) holds if and only if

lim
n→∞

n∑
k=1

(
ϕk

(
λ

sn

)
− 1

)
+
λ2

2
= 0, (2.22)

We first prove the following (2.23), which together with (2.22) implies (2.21):

lim
n→∞

∣∣∣∣∣exp
{

n∑
k=1

(
ϕk

(
λ

sn

)
− 1

)}
−

n∏
k=1

ϕk

(
λ

sn

)∣∣∣∣∣ = 0. (2.23)

Claim I. If ϕ : R→ C is a characteristic function, so is λ 7→ eϕ(λ)−1.

Let (Yn)
∞
n=1 be a sequence of i.i.d. random variables, and let N ∼ Poisson(1) be a random variable

independent of Yn’s. Define W =
∑N
k=1 Yk. Then the characteristic function of W is

E
[
eiλW

]
= E

[
E
[
eiλW |N

]]
= E

[
ϕ(λ)N

]
=

∞∑
n=0

e−1

n!
ϕ(λ)n = eϕ(λ)−1.

Claim II (Product comparison). Given {a1, · · · , an}, {b1, · · · , bn} ⊂ {z ∈ C : |z| ≤ 1}, it holds∣∣∣∣∣
n∏
j=1

aj −
n∏
j=1

bj

∣∣∣∣∣ ≤
n∑
j=1

|aj − bj |.

The case n = 1 is clear. Then prove the case n = 2:

|a1b1 − a2b2| = |a1(b1 − b2)− (a1 − b1)b2| ≤ |a1 − b1|+ |a2 − b2| .

We apply this formula to
∏n−1
j=1 aj ,

∏n−1
j=1 bj , an, bn, so the general case follows from induction.
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Proof of (2.23). By Claims I and II,∣∣∣∣∣exp
{

n∑
k=1

(
ϕk

(
λ

sn

)
− 1

)}
−

n∏
k=1

ϕk

(
λ

sn

)∣∣∣∣∣ ≤
n∑
k=1

∣∣∣∣exp(ϕk ( λ

sn

)
− 1

)
− ϕk

(
λ

sn

)∣∣∣∣ . (2.24)

By Taylor’s theorem, we have∣∣∣∣ϕk ( λ

sn

)
− 1

∣∣∣∣ ≤ 1 +
λ2

2s2n
sup
t∈R

ϕ′′(t)− 1 =
λ2σ2

k

2s2n
≤ λ2

2
max

1≤k≤n

σ2
k

s2n
.

Given any 0 < ϵ < 1, by (2.19), we can choose N such that |ϕk(λ/sn) − 1| ≤ ϵ/2 for all n ≥ N and all

1 ≤ k ≤ n. Since |ez − z − 1| ≤ ϵ|z| for all |z| ≤ ϵ/2, following (2.24), we have∣∣∣∣∣exp
{

n∑
k=1

(
ϕk

(
λ

sn

)
− 1

)}
−

n∏
k=1

ϕk

(
λ

sn

)∣∣∣∣∣ ≤
n∑
k=1

ϵ

∣∣∣∣ϕk ( λ

sn

)
− 1

∣∣∣∣ ≤ ϵλ2

2s2n

n∑
k=1

σ2
k =

ϵλ2

2
, ∀n ≥ N.

Since ϵ > 0 is arbitrary, the limit (2.23) holds.

Proof of (2.22). Given ϵ > 0, we use the following expansion:

n∑
k=1

(
ϕk

(
λ

sn

)
− 1

)
+
λ2

2
=

n∑
k=1

E
[
eiλXk/sn − 1− iλ

sn
Xk −

(iλ)2

2s2n
X2
k︸ ︷︷ ︸

=:An,k

]

=

n∑
k=1

E
[
An,k1{|Xk|<ϵsn}

]
+

n∑
k=1

E
[
An,k1{|Xk|≥ϵsn}

]
=: S(1)

n,ϵ + S(2)
n,ϵ.

Now we bound the two terms. For the first term,

∣∣∣S(1)
n,ϵ

∣∣∣ ≤ n∑
k=1

E
∣∣An,k1{|Xk|<ϵsn}

∣∣ ≤ n∑
k=1

E

[
1

3!

∣∣∣∣ λsnXk

∣∣∣∣3 1{|Xk|<ϵsn}

]

=
|λ|3

6s3n

n∑
k=1

E
[
|Xk|3 1{|Xk|<ϵsn}

]
≤ |λ|

3ϵ

6s2n

n∑
k=1

E|Xk|2 =
|λ|3ϵ
6

. (2.25)

By Lindeberg’s condition, we can bound the second term as n→∞:

∣∣∣S(2)
n,ϵ

∣∣∣ ≤ n∑
k=0

E
∣∣An,k1{|Xk|≥ϵsn}

∣∣ ≤ n∑
k=1

E

[∣∣∣∣ λsnXk

∣∣∣∣2 1{|Xk|≥ϵsn}

]
=
|λ|2

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
→ 0. (2.26)

Since ϵ > 0, we can bound (2.22) by arbitrarily small numbers, and the result follows.

Remark. In estimates (2.25) and (2.26), we used the following estimate in case n = 2:∣∣∣∣∣eiθ −
n∑
k=1

(iθ)k

k!

∣∣∣∣∣ ≤ min

{
2θn

n!
,
θn+1

(n+ 1)!

}
, ∀θ ∈ R.

The following proof of necessity is given by William Feller.

Proof of Necessity (Theorem 2.57). Assume that (2.19) holds and Zn
d→ N(0, 1). Note the proof of (2.23) only

uses (2.19). Then both (2.21) and (2.23) hold, which together imply (2.22). Let ϵ > 0. If λ ̸= 0, we have

1

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
= 1− 2

λ2

n∑
k=1

E
[
λ2X2

k

2s2n
1{|Xk|<ϵsn}

]
.
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Then we use the estimate 1− cosx ≤ x2

2 to obtian

1

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
≤ 2

λ2

(
λ2

2
+

n∑
k=1

E
[(

cos

(
λXk

sn

)
− 1

)
1{|Xk|<ϵsn}

])

=
2

λ2

(
λ2

2
+

n∑
k=1

Re

(
ϕk

(
λ

sn

)
− 1

)
+

n∑
k=1

E
[(

1− cos

(
λXk

sn

))
1{|Xk|≥ϵsn}

])

≤ 2

λ2

(
λ2

2
+

n∑
k=1

Re

(
ϕk

(
λ

sn

)
− 1

))
+

4

λ2

n∑
k=1

P(|Xk| ≥ ϵsn)

≤ 2

λ2

(
λ2

2
+

n∑
k=1

Re

(
ϕk

(
λ

sn

)
− 1

))
+

4

λ2

n∑
k=1

σ2
k

ϵ2s2n
(By Chebyshev’s inequality)

≤ 2

λ2

(
λ2

2
+

n∑
k=1

Re

(
ϕk

(
λ

sn

)
− 1

))
+

4

λ2ϵ2
.

By (2.22), the first term converges to 0 as n → ∞. Since λ ̸= 0 is arbitrary, we obtain the Lindeberg’s

condition (2.20) by letting λ2 →∞.

We also have another form of Lindeberg-Feller theorem which applies to triangular arrays. The proof

follows the same approach as before.

Theorem 2.58 (Lindeberg-Feller). For each n ∈ N, let (Xn,m)nm=1 be independent square-integrable random

variables with EXn,m = 0 for all 1 ≤ m ≤ n, and let s2n =
∑n
m=1 E[X2

n,m]. If Lindeberg’s condition holds,

i.e. for each ϵ > 0,

lim
n→∞

1

s2n

n∑
m=1

E[X2
n,m1{|Xn,m|>ϵsn}] = 0.

Then we have

lim
n→∞

max
1≤m≤n

1

s2n
E[X2

n,m] = 0,

and Zn = 1
sn

∑n
m=1Xn,m

d→ N(0, 1) as n→∞.

A “standardized” form alternative is given below.

Theorem 2.59 (Lindeberg-Feller). For each n ∈ N, let (Xn,m)nm=1 be independent square-integrable random

variables with EXn,m = 0 for all 1 ≤ m ≤ n. Assume that

(i)
∑n
m=1 E[X2

n,m]→ σ2 > 0 as n→∞, and

(ii) (Lindeberg’s condition). for each ϵ > 0,

lim
n→∞

n∑
m=1

E[X2
n,m1{|Xn,m|>ϵ}] = 0.

Then we have

lim
n→∞

max
1≤m≤n

E[X2
n,m] = 0, (2.27)

and Sn = Xn,1 +Xn,2 + · · ·+Xn,n
d→ N(0, 1) as n→∞.

Proof. Without loss of generality we assume σ2 = 1. The proof of (2.27) is similar to Theorem 2.57. We let

ϕn,m be the characteristic function of Xn,m. By Lévy’s continuity theorem, it suffices prove that

ϕSn
(λ) =

n∏
m=1

ϕn,m(λ)→ e−λ
2/2 as n→∞,
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which is valid if

lim
n→∞

n∑
m=1

(ϕn,m(λ)− 1) +
λ2

2
= 0 and lim

n→∞

∣∣∣∣∣
n∏

m=1

eϕn,m(λ)−1 −
n∏

m=1

ϕn,m(λ)

∣∣∣∣∣ = 0. (2.28)

To prove the first identity in (2.28), we fix any ϵ > 0 and use Lindeberg’s condition:∣∣∣∣∣
n∑

m=1

(ϕn,m(λ)− 1) +
λ2

2

∣∣∣∣∣ =
∣∣∣∣∣
n∑

m=1

E
[
eiλXn,m − 1− iλXn,m −

(iλXn,m)2

2︸ ︷︷ ︸
=:An,m

]
+
λ2

2

(
1−

n∑
m=1

E[X2
n,m]

)∣∣∣∣∣
≤

n∑
m=1

E
∣∣An,m1{|Xn,m|≤ϵ}

∣∣+ n∑
m=1

E
∣∣An,m1{|Xn,m|>ϵ}

∣∣+ λ2

2

∣∣∣∣∣1−
n∑

m=1

E[X2
n,m]

∣∣∣∣∣
≤ |λ|

3ϵ

6

n∑
m=1

E|Xn,m|2 + |λ|2
n∑

m=1

E
[
X2
n,m1{|Xn,m|>ϵ}

]
+
λ2

2

∣∣∣∣∣1−
n∑

m=1

E[X2
n,m]

∣∣∣∣∣→ |λ|3ϵ6
.

Letting ϵ ↓ 0 yields the desired result. For the second identity in (2.28), note that

|ϕn,m(λ)− 1| ≤ 1 +
λ2

2
sup
t∈R
|ϕ′′n,m(t)| − 1 ≤ λ2

2
max

1≤m≤n
E[X2

n,m].

Fix ϵ > 0. For large enough n, we have∣∣∣∣∣
n∏

m=1

eϕn,m(λ)−1 −
n∏

m=1

ϕn,m(λ)

∣∣∣∣∣ ≤
n∑

m=1

∣∣∣eϕn,m(λ)−1 − ϕn,m(λ)
∣∣∣

≤
n∑

m=1

ϵ |ϕn,m(λ)− 1| ≤ λ2ϵ

2

n∑
m=1

E[X2
n,m]→ λ2ϵ

2
.

Again we let ϵ ↓ 0 to conclude the proof.

In practice, the Lindeberg’s condition is not convenient to verify. In many cases, we would rather use one

of its sufficient condition proposed by Lyapunov.

Theorem 2.60 (Lyapunov Condition). Let (Xn)
∞
n=1 be a sequence of independent random variables such that

EXn = 0 and 0 < σ2
n := E

[
X2
n

]
<∞. Let s2n = σ2

1 + · · ·+ σ2
n. If there exists δ > 0 satisfying the Lyapunov

condition

lim
n→∞

1

s2+δn

n∑
k=1

E
[
|Xk|2+δ

]
= 0, (2.29)

then the Lindeberg’s condition (2.20) holds, and so the central limit theorem [Theorem 2.57] applies.

Proof. If there exists δ > 0 that satisfies the Lyapunov condition (2.29), then

1

s2n

n∑
k=1

E
[
X2
k1{|Xk|≥ϵsn}

]
=

n∑
k=1

E

[∣∣∣∣Xk

sn

∣∣∣∣2 1{|Xk|≥ϵsn}

]

≤
n∑
k=1

E

[∣∣∣∣Xk

sn

∣∣∣∣2 ∣∣∣∣Xk

ϵsn

∣∣∣∣δ 1{|Xk|≥ϵsn}

]
≤ 1

ϵδs2+δn

n∑
k=1

E
[
|Xk|2+δ

]
→ 0 as n→∞.

Hence the Lindeberg’s condition (2.20) is satisfied.
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3 Martingales and Local Martingales

3.1 Processes, Filtrations and Stopping Times

Definition 3.1 (Stochastic processes). Given a probability space (Ω,F ,P), a metric space (E, d) and a

nonempty set T , a stochastic process is a function (t, ω) 7→ Xt(ω) defined on the set Ω× T and taking values

in E such that Xt(·) is measurable for each t ∈ T .

Remark. We can also view a stochastic process as a collection X = (Xt)t∈T of E-valued random variables

indexed by elements of T . If T is a topological space given the discrete topology, we call (Xt)t∈T a discrete

stochastic process. Furthermore, if T = N0, we call the process (Xn)
∞
n=0 a stochastic sequence.

Definition 3.2 (Filtrations). Let T be N0 or R+. A filtration on (Ω,F ,P) is a collection (Ft)t∈T indexed

by elements T of increasing sub σ-algebras of F , i.e. Fs ⊂ Ft for all s < t.

Remark. We can also define the limit of a filtration (Ft)t∈T by F∞ = σ
(⋃

t∈T Ft

)
. If T = N, then

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ Fn+1 ⊂ · · · ⊂ F∞ ⊂ F .

If T = [0,∞), then for all t > s ≥ 0,

F0 ⊂ Fs ⊂ Ft ⊂ F∞ ⊂ F .

Definition 3.3 (Adaptation). Let T be N0 or R+, and let (Ft)t∈T be a filtration on (Ω,F ,P). A stochastic

process (Xt)t∈T is said to be adapted to (Ft)t∈T , if Xt is Ft-measurable for each t ∈ T .

Remark. A stochastic process (Xt)t≥0 automatically induces a canonical filtration

FX
t = σ({Xs}s≤t), t ∈ T .

It is the minimal sub σ-algebra where every Xs with s ≤ t is measurable. We also call this the σ-algebra

generated by {Xs}s≤t. Clearly, the process (Xt)t≥0 is adapted to its canonical filtration.

Definition 3.4 (Stopping time). Let T be N0 or R+. A random variable τ : Ω→ T := T ∪ {∞} is said to be

a stopping time of the filtration {Ft}t∈T if {τ ≤ t} ∈ Ft for all t ∈ T . Without ambiguity, if the filtration is

fixed, we say that τ is a stopping time.

Remark. If τ is a stopping time, then the set {τ < t} is also Ft-measurable for all t ∈ T , since

{τ < t} =
∞⋃
n=1

{
τ ≤ t− 1

n

}
.

Furthermore,

{τ =∞} =

( ∞⋃
n=1

{τ ≤ n}

)c
∈ F∞.

We may modify the definition of stopping time in discrete case. If T = N0, then τ : Ω→ N0 is a stopping time

of the filtration {Fn}∞n=1 if and only if {τ = n} ⊂ Fn for all n ∈ N0, since {τ ≤ n} =
⋃n
k=0{τ = k}.

Definition 3.5 (σ-algebra generated by a stopping time). Let T be N0 or R+, and let τ be a stopping time

of the filtration (Ft)t∈T . The σ-algebra generated by τ is defined as

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, ∀t ∈ T } .
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Remark. We need to check that Fτ is a σ-algebra. Clearly, Ω ∈ Fτ . If A ∈ Fτ , then for all t ∈ T , we have

Ac ∩ {τ ≤ t} = {τ ≤ t} ∩ (A∩ {τ ≤ t})c ∈ Ft, which implies Ac ∈ Fτ . Finally, given {An}∞n=1 ⊂ Fτ , we have( ∞⋃
n=1

An

)
∩ {τ ≤ t} =

∞⋃
n=1

(An ∩ {τ ≤ t}) ∈ Ft, ∀t ∈ T .

Then
⋃∞
n=1An ∈ Fτ . Therefore Fτ is a σ-algebra.

Definition 3.6 (Stopped processes). Let (Xt)t∈T be an adapted process, and let τ be a stopping time. The

stopped process (Xτ
t )t∈T is defined by

Xτ
t (ω) = Xt∧τ(ω)(ω), ∀ω ∈ Ω.

On each path, Xτ
t (ω) = Xt(ω) for t ≤ τ(ω), and Xτ

t (ω) = Xτ(ω)(ω) for t > τ(ω). Then this definition can be

viewed such that the process (Xt)t∈T is stopped at the time τ .

Now we work on the case T = R+.

Definition 3.7 (Right-continuity). Let (Ft)t≥0 be a filtration on (Ω,F ,P). For every t ∈ R+, define

Ft+ =
⋂
s>t

Fs, and F∞+ = F∞.

Then Ft+ is a σ-algebra, and the collection (Ft+)t≥0 is also a filtration on (Ω,F ,P). If Ft = Ft+ for all

t ∈ R+, then the filtration (Ft)t≥0 is said to be right-continuous. By construction, the filtration (Ft+)t≥0 is

automatically right-continuous.

Definition 3.8 (Completeness). Let (Ft)t≥0 be a filtration on (Ω,F ,P), and let N be the sets of all (F∞,P)-
negligible sets, i.e. A ∈ N if there exists A′ ∈ F∞ such that A′ ⊃ A and P(A′) = 0. The filtration {Ft}t≥0

is said to be complete if N ⊂ F0.

Remark. If (Ft)t≥0 is not complete, we can complete it by letting F ′
t = σ (Ft ∪ σ(N )) for every t ∈ R+.

Apply this completion procedure to the canonical filtration Ft = σ ({Xs}s≤t) of a stochastic process {Xt}t≥0,

we obtain the completed canonical filtration of {Xt}t≥0.

Let (Ft)t≥0 be a complete filtration on (Ω,F ,P). By definition, if two random variables ξ
a.s.
= η, and ξ is

Ft-measurable, then η is also Ft-measurable.

Definition 3.9 (Measurability and progressiveness). A stochastic process (Xt)t≥0 over a metric space (E, d)

is said to be measurable if the mapping

(ω, t) 7→ Xt(ω)

defined on Ω×R+ equipped with the product σ-field F ⊗B(R+) is measurable. In addition, we fix a filtration

(Ft)t≥0 on (Ω,F ,P). If for each t ≥ 0, the mapping

(ω, s) 7→ Xs(ω)

defined on Ω× [0, t] equipped with the product σ-field Ft ⊗B([0, t]) is measurable, then the process (Xt)t≥0

is said to be progressive.

Remark. By definition, a progressive process (Xt)t≥0 is both adapted and measurable. In later discussion, we

fix the filtration (Ft)t≥0 on a probability space (Ω,F ,P) as well as the state space (E, d).
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Proposition 3.10. Let (Xt)t≥0 be an adapted stochastic process. If (Xt)t≥0 is (sample) right-continuous,

i.e. for all ω ∈ Ω, the mapping t 7→ Xt(ω) is right-continuous, then (Xt)t≥0 is progressive. The same

conclusion holds if one replaces right-continuous with left-continuous.

Proof. We only prove the case of sample right continuity. The case of sample left continuity is similar. Fix

t > 0. For each n ∈ N, define

X(n)
s = X kt

n
if s ∈

[
(k − 1)t

n
,
kt

n

)
, k ∈ {1, · · · , n} and X

(n)
t = Xt.

The sample-right-continuity of {Xt}t≥0 implies that for all ω ∈ Ω,

lim
n→∞

X(n)
s (ω) = Xs(ω), ∀s ∈ [0, t].

Furthermore, for every Borel set B ∈ B(E),

{
(ω, s) ∈ Ω× [0, t] : X(n)

s (ω) ∈ B
}
=

(
n⋃
k=1

{
X kt

n
(ω) ∈ B

}
×
[
(k − 1)t

n
,
kt

n

))
∪ ({Xt ∈ B} × {t}) .

This belongs to the product σ-algebra Ft ⊗B([0, t]). Hence the mapping (ω, s) 7→ X
(n)
s (ω) is measurable on

(Ω× [0, t],Ft ⊗B([0, t])), and so is the pointwise limit (ω, s) 7→ Xs(ω).

Remark. If the filtration {Ft}t≥0 was complete, we would only require that the sample path t 7→ Xt(ω) is

left/right-continuous for P-a.e. ω ∈ Ω.

Proposition 3.11. Write Gt = Ft+ for every t ∈ [0,∞].

(i) A random variable τ : Ω→ [0,∞] is a stopping time of the filtration (Gt)t≥0 if and only if {τ < t} ∈ Ft

for all t > 0. This is equivalent to the condition that τ ∧ t is Ft-measurable for all t > 0.

(ii) Let τ be a stopping time of the filtration (Gt)t≥0. Then

Fτ+ := {A ∈ F∞ : A ∩ {τ < t} ∈ Ft, ∀t > 0} = Gτ .

Proof. (i) Assume {τ < s} ∈ Fs for all s > 0, and fix t ≥ 0. Then for all s > t,

{τ ≤ t} =
⋂

n∈N: t+n−1<s

{
τ < t+

1

n

}
∈ Fs ⇒ {τ ≤ t} ∈

⋃
s>t

Fs = Gt.

Conversely, if τ is a stopping time of {Gt}t≥0, then for all t > 0, we have

{τ < t} =
∞⋃

n∈N: t−n−1>0

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸
∈Gt−n−1⊂Ft

∈ Ft.

If τ ∧ t is Ft-measurable, we have {τ ≤ s} ∈ Ft for all s < t. Then we have {τ < t} ∈ Ft by taking sn ↗ t

and {τ < t} =
⋃∞
n=1{τ ≤ sn}. Conversely, if τ is a stopping time of {Gn}n≥0, we have {τ ≤ s} ∈ Gs ⊂ Ft for

all s < t, and τ ∧ t is thus Ft-measurable.

(ii) By definition, Gτ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Gt, ∀t ≥ 0}. If A ∩ {τ < t} ∈ Ft for all t > 0, then

A ∩ {τ ≤ t} =
⋂

n∈N: t+n−1<s

(
A ∩

{
τ < t+

1

n

})
∈ Fs, ∀s > t ≥ 0 ⇒ A ∩ {τ ≤ t} ∈ Gt, ∀t ≥ 0.
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Conversely, if A ∈ Gτ , we have

A ∩ {τ < t} =
∞⋃

n∈N: t−n−1>0

(
A ∩

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸

∈Gt−1/n⊂Ft

)
∈ Ft, ∀t > 0.

Hence the conclusion follows.

Proposition 3.12 (Properties of stopping times). Let τ, σ be two stopping times of the filtration (Ft)t≥0.

(i) τ is a stopping time of (Ft+)t≥0, and Fτ ⊂ Fτ+. If (Ft)t≥0 is right-continuous, we have Fτ = Fτ+.

(ii) If τ = t is a constant stopping time, then Fτ = Ft, and Fτ+ = Ft+.

(iii) τ is Fτ -measurable.

(iv) Given A ∈ F∞, define

τA(ω) =

τ(ω), ω ∈ A,

∞, ω /∈ A.

Then τA ∈ Fτ if and only if τA is a stopping time.

(v) If σ ≤ τ , then Fσ ⊂ Fτ , and Fσ+ ⊂ Fτ+.

(vi) All σ ∧ τ , σ ∨ τ and σ + τ are stopping times, and {σ ≤ τ}, {σ = τ} ∈ Fσ∧τ = Fσ ∩Fτ .

(vii) A function ω 7→ Y (ω) defined on {τ <∞} is Fτ -measurable if and only if for each t ≥ 0, the restriction

of Y to the set {τ ≤ t} is Ft-measurable.

(viii) If (τn)
∞
n=1 is a monotone sequence of increasing stopping times, then τ∞ = limn→∞ τn is a stopping time.

(ix) If (τn)
∞
n=1 is a monotone sequence of decreasing stopping times, then τ∞ = limn→∞ τn is a stopping time

of the filtration (Ft+)t≥0, and

Fτ∞+ =

∞⋂
n=1

Fτn+.

In addition, if (τn)
∞
n=1 is stationary, i.e. for each ω ∈ Ω, there exists Nω ∈ N such that τ(ω) = τn(ω)

for all n ≥ Nω, then τ is a stopping time, and

Fτ∞ =

∞⋂
n=1

Fτn .

Proof. (i) By Remark of Definition 3.4 and Proposition 3.11, τ is also a stopping time of (Ft+)t≥0. The

statement Fτ ⊂ Fτ+ follows from Ft ⊂ Gt. (ii) immediately follows from definition.

(iii) For all α ∈ R, we have

{τ ≤ α} ∩ {τ ≤ t} = {τ ≤ α ∧ t} ∈ Ft, ∀t ≥ 0 ⇒ {τ ≤ α} ∈ Fτ .

(iv) The result immediately follows from the definition of Fτ , since

{τA ≤ t} = A ∩ {τ ≤ t}, ∀t ≥ 0.

(v) If A ∈ Fσ, then A ∩ {σ ≤ t} ∈ Ft for all t ≥ 0. Since σ ≤ τ , we have {σ ≤ t} ⊃ {τ ≤ t}, and

A ∩ {τ ≤ t} = (A ∩ {σ ≤ t}) ∩ {τ ≤ t} ∈ Ft.
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(vi) For all t ≥ 0, we have

{σ ∧ τ ≤ t} = {σ ≤ t} ∪ {τ ≤ t} ∈ Ft, {σ ∨ τ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∈ Ft,

and {σ + τ > t} = {τ ≥ t} ∪

 ⋃
q∈Q∩ (0,t]

{t− q ≤ τ < t} ∩ {σ > q}

 ∈ Ft.

Hence σ ∧ τ , σ ∨ τ and σ + τ are stopping times. By (v), Fσ∧τ ⊂ Fσ ∩Fτ . Conversely, if A ∈ Fσ ∩Fτ ,

A ∩ {σ ∧ τ ≤ t} = (A ∩ {σ ≤ t}︸ ︷︷ ︸
∈Ft

) ∪ (A ∩ {τ ≤ t}︸ ︷︷ ︸
∈Ft

) ∈ Ft, ∀t ≥ 0 ⇒ A ∈ Fσ∧τ .

Hence Fσ∧τ = Fσ ∩Fτ . By Proposition 3.11 (i), for all t ≥ 0, both σ ∧ t and τ ∧ t are Ft-measurable, and

{σ ≤ τ} ∩ {σ ≤ t} = {σ ≤ t} ∩ {σ ∧ t ≤ τ ∧ t} ∈ Ft ⇒ {σ ≤ τ} ∈ Fσ,

{σ ≤ τ} ∩ {τ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∩ {σ ∧ t ≤ τ ∧ t} ∈ Ft ⇒ {σ ≤ τ} ∈ Fτ .

Then {σ ≤ τ} ∈ Fσ ∩Fτ = Fσ∧τ , and {σ = τ} = {σ ≤ τ} ∩ {σ ≥ τ} ∈ Fσ∧τ .

(vii) We first assume that for each t ≥ 0, the restriction Y |{τ≤t} is Ft-measurable. Then for every Borel set

B ∈ B(E), we have {Y ∈ B} ∩ {τ ≤ t} ∈ Ft. Since Y is defined on {τ <∞}, we have

{Y ∈ B} =
∞⋃
n=1

({Y ∈ B} ∩ {τ ≤ n}) ∈ F∞.

Hence {Y ∈ B} ∈ Fτ . Conversely, if Y is Fτ -measurable, then {Y ∈ B} ∩ {τ ≤ t} ∈ Ft for all t ≥ 0.

(viii) For every t ≥ 0, {τ∞ ≤ t} =
⋂∞
n=1 {τn ≤ t} ∈ Ft.

(ix) For every t ≥ 0, {τ∞ < t} =
⋃∞
n=1 {τn < t} ∈ Ft. Hence τ is a stopping time of {Ft+}t≥0 by Proposition

3.11 (i). By (v), we have Fτ+ ⊂ Fτn+ for each n ∈ N. Conversely, if A ∈ Fτn+ for each n ∈ N,

A ∩ {τ∞ < t} =
∞⋃
n=1

(A ∩ {τn < t}) ∈ Ft, ∀t > 0 ⇒ A ∈ Fτ∞+.

Hence Fτ∞+ =
⋂∞
n=1 Fτn+. Furthermore, if τn is stationary, then {τ∞ ≤ t} =

⋃∞
n=1 {τn ≤ t} ∈ Ft. Thus τ∞

is a stopping time, and Fτ∞ ⊂ Fτn for each n ∈ N by (v). Conversely, if A ∈ Fτn for each n ∈ N,

A ∩ {τ∞ ≤ t} =
∞⋃
n=1

(A ∩ {τn ≤ t}) ∈ Ft, ∀t > 0 ⇒ A ∈ Fτ∞ .

Hence
⋂∞
n=1 Fτn = Fτ∞ .

Proposition 3.13. Let X = (Xt)t≥0 be a progressive process of (Ft)t≥0. If T is a stopping time of (Ft)t≥0,

then the function Xτ : ω 7→ Xτ(ω)(ω), defined on the set {τ <∞}, is Fτ -measurable.

Proof. By Proposition 3.12 (vii), it suffices to show that the restriction of Xτ to {τ ≤ t} is Ft-measurable for

all t ≥ 0. The restriction Xτ |{τ≤t} is a composition of two measurable mappings:

τ ∧ t is Ft-measurable : ({τ ≤ t},Ft)→ ({F ≤ t} × [0, t],Ft ⊗B([0, t])), ω 7→ (ω, τ(ω) ∧ t) ,

X is progressive : ({τ ≤ t} × [0, t],Ft ⊗B([0, t]))→ (E,B(E)), (ω, s) 7→ Xs(ω).

Hence Xτ |{τ≤t} is Ft-measurable, and the result follows.
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Remark. We may also consider the discrete-time case. Let (Xn)
∞
n=0 be an adapted sequence. Then for all

B ∈ B(E), we have {Xτ ∈ B} ∩ {τ ≤ t} =
⋃t
n=0{Xn ∈ B} ∩ {τ = n} ∈ Ft for every t ∈ N. Then we have

{Xτ ∈ B} ∈ Fτ , and Xτ is always Fτ -measurable.

We introduce a common category of stopping times called hitting times.

Proposition 3.14. Let (Xt)t≥0 be a adapted process taking values in (E, d), and let A ⊂ E be a measurable

subset of E. The hitting time (or début) of A is defined as

τA = inf {t ≥ 0 : Xt ∈ A} .

Given a random time σ : Ω→ [0,∞], the first hitting time of A after σ is defined as

τσA = inf {t > σ : Xt ∈ A} .

Note that we set inf ∅ =∞. Then

(i) If (Xt)t≥0 is right-continuous and G ⊂ E is an open set, then τG is a stopping time of the filtration

(Ft+)t≥0. Furthermore, if σ is a stopping time of the filtration (Ft+)t≥0, so is τσG.

(ii) If (Xt)t≥0 is continuous and F ⊂ E is a closed set, then τF is a stopping time of the filtration (Ft)t≥0.

Furthermore, if σ is a stopping time of the filtration (Ft+)t≥0, so is τσF .

Proof. (i) Fix t > 0. If τG(ω) < t, then there exists τG(ω) < s < t such that Xs(ω) ∈ G. Since G is open, and

t 7→ Xt(ω) is right-continuous, we can choose a rational q ∈ (s, t) such that Xq(ω) ∈ G. Hence

{τG < t} =
⋃

q∈Q∩ [0,t)

{Xq ∈ G} ∈ Ft, ∀t > 0.

Then by Proposition 3.11 (i), τG is a stopping time of {Ft+}t≥0. Furthermore, if σ is a stopping time of

{Ft+}t≥0, we have

{τσG < t} =
⋃

q∈(0,t)

({σ < q} ∩ {inf{s ≥ q : Xs ∈ G} < t})

=
⋃

q∈(0,t)

{σ < q} ∩

 ⋃
r∈Q∩ [q,t)

{Xr ∈ G}

 ∈ Ft, ∀t > 0.

(ii) Fix t ≥ 0. If τG(ω) ≤ t, choose sn ↓ s := τG(ω) such that Xsn ∈ F . Since t 7→ Xt(ω) is continuous and F

is closed, we have Xsn(ω)→ Xs(ω) ∈ F . Hence

{τF ≤ t} =
⋃

s∈[0,t]

{Xs ∈ F} =
{

inf
q∈Q∩ [0,t]

d(Xq, F ) = 0

}
∈ Ft, ∀t ≥ 0.

where the second equality holds because d(·, F ) is continuous, and the inclusion holds because d(·, F ) is Borel-
measurable and Xq is Ft-measurable for all q ∈ Q ∩ [0, t], and countable infimum preserves measurability.

Furthermore, if σ is a stopping time of {Ft+}t≥0, we have

{τσF < t} =
⋃

q∈(0,t)

({σ < q} ∩ {inf{s ≥ q : Xs ∈ F} < t})

=
⋃

q∈(0,t)

(
{σ < q} ∩

{
inf

r∈Q∩ [q,t]
d(Xr, F ) = 0

})
∈ Ft, ∀t > 0.

Therefore τσF is a stopping time of (Ft+)t≥0.
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Remark. Similarly, given any Borel set A ∈ B(R), we can define the hitting time of A associated to a discrete

process X = (Xt)
∞
t=0:

τA = min{n ∈ N0 : Xn ∈ A}, τσA = min{n ∈ N0 : n > σ,Xn ∈ A}.

It is easy to show that τA is a stopping time for any measurable set A, since {τA ≤ n} =
⋃n
k=0{Xk ∈ A}.

Furthermore, if σ is a stopping time, then the first hitting time τσA after σ is also a stopping time:

{τσA ≤ n} =
n−1⋃
k=0

({σ = k} ∩ {k < τσA ≤ n}) =
n−1⋃
k=0

{σ = k} ∩

 n⋃
j=k+1

{Xj ∈ A}

 ∈ Fn, ∀n ∈ N0.

Finally we introduce a technical lemma about stopping times which resembles the form of simple function

approximation.

Proposition 3.15. Let τ be a stopping time.

(i) If σ : Ω→ [0,∞] is a Fτ -measurable random variable such that σ ≥ τ , then σ is also a stopping time.

(ii) Furthermore,

τn =
⌊2nτ⌋+ 1

2n
=

∞∑
k=0

k + 1

2n
1{k2−n≤τ<(k+1)2−n} +∞1{τ=∞}, n ∈ N

is a sequence of stopping times decreasing to τ .

Proof. (i) Since σ is Fτ -measurable, we have {σ ≤ t} ∈ Fτ , and {σ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∈ Ft for all

t ≥ 0. Hence σ is also a stopping time.

(ii) Note that τn(ω) = inf{k2−n : k2−n > τ(ω), k ∈ Z}. Then we have τn ↓ τ . Since τn is a measurable

function of τ , it is Fτ -measurable, hence a stopping time by the first assertion.
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3.2 Discrete-time Martingales

3.2.1 Definition and Properties

Definition 3.16 (Discrete-time martingales). Let (Xn)
∞
n=0 be a real-valued and L1 process that is adapted

to the filtration {Fn}∞n=0. Here L1 means E|Xn| <∞ for all n ≥ 0. Then

(i) (Xn)
∞
n=0 is said to be a martingale if E[Xn|Fm] = Xm for all n > m ≥ 0;

(ii) (Xn)
∞
n=0 is said to be a supermartingale if E[Xn|Fm] ≤ Xm for all n > m ≥ 0;

(iii) (Xn)
∞
n=0 is said to be a submartingale if E[Xn|Fm] ≥ Xm for all n > m ≥ 0;

All these notations depends on the choice of the filtration {Fn}∞n=0, which is fixed in later discussion.

Remark. The set of all martingales in
(
L1(Ω,F ,P)

)N0
is a vector space.

Proposition 3.17. Let f : R→ R be a convex function such that E[f(Xn)] <∞ for all n ∈ N0.

(i) If (Xn)
∞
n=0 is a martingale, then (f(Xn))

∞
n=0 is a submartingale.

(ii) If f is monotone increasing and (Xn)
∞
n=0 is a submartingale, then (f(Xn))

∞
n=0 is a submartingale.

Remark. The proof simply uses conditional Jensen’s inequality. Here are some useful corollaries:

(i) If (Xn)
∞
n=0 is a martingale and p ≥ 1, then (|Xn|p)∞n=0 is a submartingale;

(ii) If (Xn)
∞
n=0 is a submartingale, then (X+

n )
∞
n=0 is a submartingale.

Definition 3.18 (Predictable processes). A discrete process (Hn)
∞
n=0 is said to be predictable if H0 is a

constant and Hn is Fn−1-measurable for all n ≥ 1. We define the integral (or the martingale transform) of

(Hn)
∞
n=0 with respect to an adapted process (Xn)

∞
n=0 by

(H ·X)0 = H0X0, (H ·X)n = (H ·X)n−1 +Hn(Xn −Xn−1) = H0X0 +

n∑
k=1

Hk(Xk −Xk−1), ∀n ∈ N.

Clearly, (H ·X)n is an adapted process. We can easily check the following facts:

• If Xn is a martingale, so is (H ·X)n.

• If Xn is a submartingale (or supermartingale) and Hn is nonnegative, so is (H ·X)n.

Remark. If τ is a stopping time, the process Hn = 1{τ≥n} is nonnegative and predictable. Then

(H ·X)n = X0 +

n∑
k=1

1{τ≥n}(Xk −Xk−1) = Xn∧τ .

Therefore, if (Xn)
∞
n=1 is a submartingale, so is the stopped process (Xτ

n)
∞
n=1 = (Xn∧τ )

∞
n=1.

Theorem 3.19 (Doob’s decomposition theorem). Let (Xn)
∞
n=1 be a submartingale. Then there exists an

increasing predictable L1 process (An)
∞
n=0 staring with A0 = 0 and a martingale (Mn)

∞
n=0 such that Xn =

Mn +An for each n ≥ 0, and the decomposition is unique.

Proof. We first prove the existence. Define M0 = X0, A0 = 0 and

Mn = X0 +

n∑
k=1

(Xk − E[Xk|Fk−1]) , An =

n∑
k=1

(E[Xk|Fk−1]−Xk−1) , ∀n ≥ 1.

Then (Mn)
∞
n=1 and (An)

∞
n=1 are the desired processes. To prove uniqueness, let Xn = M ′

n + A′
n be another

decomposition satisfying the conditions given. Then Yn = Mn − M ′
n = An − A′

n is a martingale and a

predictable L1 sequence, which implies Yn = E[Yn|Fn−1] = Yn−1 = · · · = Y0 = 0. Hence Yn ≡ 0.
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Remark. We have a similar conclusion for supermartingales: If (Xn)
∞
n=1 is a submartingale, then there exists

an decreasing predictable L1 process (An)
∞
n=0 staring with A0 = 0 and a martingale (Mn)

∞
n=0 such that

Xn =Mn +An for each n ≥ 0, and the decomposition is unique.

Theorem 3.20 (Doob’s optional stopping theorem for discrete-time submartingales). Let (Xn)
∞
n=1 be a sub-

martingale, and let τ be a bounded stopping time. Then

(i) E[Xτ ] ≥ E[X0];

(ii) If τ is bounded by N ∈ N, then E[XN |Fτ ] ≥ Xτ ;

(iii) If σ is another bounded stopping time and σ ≤ τ , then E[Xτ |Fσ] ≥ Xσ.

Proof. (i) By definition, we have {τ ≥ k} = {τ ≤ k − 1}c ∈ Fk−1 for all k ∈ N. Then

E[Xτ ] = E

[
X0 +

N∑
k=1

(Xk −Xk−1)1{τ≥k}

]
= E[X0] +

N∑
k=1

E
[
(Xk −Xk−1)1{τ≥k}

]
= E[X0] +

N∑
k=1

E
[
E[(Xk −Xk−1)|Fk−1]︸ ︷︷ ︸

≥0

1{τ≥k}
]
≥ E[X0].

(ii) If A ∈ Fτ , we have A ∩ {τ = n} ∈ Fn for all N ∈ N0, and

E[XN1A] =

N∑
n=0

E
[
XN1A∩{τ=n}

]
=

N∑
n=0

E
[
E [XN |Fn]1A∩{τ=n}

]
≥

N∑
n=0

E
[
Xn1A∩{τ=n}

]
=

N∑
n=0

E
[
Xτ1A∩{τ=n}

]
= E[Xτ1A].

Since Xτ is Fτ -measurable, we have E[XN |Fτ ] ≥ Xτ .

(iii) Since σ ≤ τ ≤ N , we have Fσ ⊂ Fτ . We use Doob’s decomposition Xt = Mt + At of submartingale,

where Mt is a martingale and At is an increasing predictable sequence. By (ii),

Mσ = E[MN |Fσ] = E[E[MN |Fτ ]|Fσ] = E[Mτ |Fσ].

Clearly, Aτ ≥ Aσ, and E[Aτ |Fσ] ≥ E[Aσ|Fσ] = Aσ. Hence E[Xτ |Fσ] = E[Mτ+Aτ |Fσ] ≥Mσ+Aσ = Xσ.

We give another characterization of martingales.

Theorem 3.21. Let (Xn)
∞
n=0 be an adapted and L1 sequence. Then (Xn)

∞
n=0 is a martingale if and only if

E[Xτ ] = E[X0] for every bounded stopping time τ .

Proof. The direction “⇒” follows by Theorem 3.20 (i). To prove the converse, assume that E[Xτ ] = E[X0] for

every bounded stopping time τ . To prove that (Xn)
∞
n=0 is a martingale, we show that for each n ∈ N,

E[Xn|Fn−1] = Xn−1 ⇔ E[Xn1A] = E[Xn−11A], ∀A ∈ Fn−1.

Let τ = (n− 1)1A+n1Ac , so τ is a bounded stopping time, and E[X0] = E[Xτ ] = E[Xn−11A]+E[Xn1Ac ].

Since n is a constant stopping time, we have E[Xn] = E[X0]. Then E[Xn1A] = E[Xn−11A].
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3.2.2 Martingale Convergence Theorems and Application

Now we discuss the convergence of martingales.

Definition 3.22 (Upcrossing number). Given a real sequence (xn)
∞
n=0 and a < b, the upcrossing number of

this sequence along [a, b] before time n, denoted by Ux[a,b](n), is the largest integer k such that there exists a

strictly increasing sequence

0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ n

of integers such that xsj ≤ a and xtj ≥ b for all j ∈ {1, · · · , k}. The total upcrossing number Ux[a,b](∞) of this

sequence along [a, b] is defined as the limit of monotone increasing sequence Ux[a,b](n), which possibly takes ∞.

Definition 3.23 (Upcrossing number). Given an adapted random variable sequence (Xn)
∞
n=0, the associated

upcrossing number is define as UX[a,b](n) : ω 7→ U
X(ω)
[a,b] (n), where n ∈ N. It can be depicted by a sequence of

stopping times. Let τ0 = −∞, and define

σj = min {k ∈ N0 : k > τj−1, Xk ≤ a} , τj = min {k ∈ N0 : k > σj , Xk ≥ b} , j ≥ 1.

Then the upcrossing number of (xn)
∞
n=0 along [a, b] before time n ∈ N is UX[a,b](n) = max{j : τj ≤ n}, and

UX[a,b](∞) = limn→∞ UX[a,b](n) = max{j : τj <∞} = min{j : τj =∞}.

Remark. The upcrossing number UX[a,b](n) is an integer-valued random variable.

Proposition 3.24 (Doob’s upcrossing inequality). If (Xn)
∞
n=0 is a submartingale, then for all real numbers

a < b and all n ∈ N,

E
[
UX[a,b](n)

]
≤ E[(Xn − a)+ − (X0 − a)+]

b− a
. (3.1)

Proof. Define stopping times {σj}∞j=1 and {τj}∞j=1 as in Definition 3.23. Then {UX[a,b](n) ≥ k} = {τk ≤ n}, and

Hn =

1, if σk < n ≤ τk for some k ∈ N,

0, otherwise.

defines a nonnegative predictable process, since

{Hn = 1} =
n−1⋃
m=1

{Xm ≤ a} ∩
n−1⋂

j=m+1

{Xj < b}

 .

Define Yn = (Xn − a)+. Then Yn is a nonnegative submartingale, and we have UX[a,b](n) = UY[0,b−a](n). By

definition, H · Y satisfies

(H · Y )n = 0 +

n∑
k=1

Hn(Yn − Yn−1) ≥ (b− a) · UY[0,b−a](n) = (b− a) · UX[a,b](n)

Note that (1−H) · Y is also a submartingale. Then

(b− a) · E
[
UX[a,b](n)

]
≤ E [(H · Y )n] = E [Yn − ((1−H) · Y )n] ≤ E[Yn]− E[(1−H0)Y0] = E[Yn]− E[Y0].

This is indeed the inequality (3.1).

We present Doob’s first martingale convergence theorem below.
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Theorem 3.25 (Doob’s convergence theorem for discrete-time submartingales). If (Xn)
∞
n=0 is a submartin-

gale, and supn∈N E[X+
n ] <∞, then X∞ = limn→∞Xn a.s. exists, and X∞ ∈ L1(Ω,F∞,P).

Proof. Let M := supn∈N E[X+
n ] <∞. Then for all a ∈ R,

(x− a)+ ≤ x+ + a−, ∀x ∈ R ⇒ E[(Xn − a)+] ≤ E[Xn] + a− ≤M + a−, ∀n ∈ N.

By Fatou’s lemma and Proposition 3.24, the total upcrossing number UX[a,b](n) ↑ U
X
[a,b](∞) satisfies

E
[
UX[a,b](∞)

]
≤ lim inf

n→∞
E
[
UX[a,b](n)

]
≤ lim inf

n→∞

E[(Xn − a)+]
b− a

≤ M + |a|
b− a

<∞, ∀R ∋ b > a.

Then for all real numbers a < b, we have

P
(
UX[a,b](∞) <∞

)
= 1.

Consequently,

P
(
lim inf
n→∞

Xn < lim sup
n→∞

Xn

)
= P

 ⋃
a,b∈Q:a<b

{
lim inf
n→∞

Xn ≤ a < b ≤ lim sup
n→∞

Xn

}
= P

 ⋃
a,b∈Q:a<b

{
UX[a,b](∞) <∞

} = 0.

Therefore X∞ = limn→∞Xn a.s. exists. Now we prove that X∞ ∈ L1(Ω,F ,P). By Fatou’s lemma,

E[X+
∞] ≤ lim inf

n→∞
E[X+

n ] ≤M <∞,

and

E[X−
∞] ≤ lim inf

n→∞
E[X−

n ] = lim inf
n→∞

E[X+
n −Xn] ≤M − E[X0] <∞.

Therefore E|X∞| <∞, and X∞ ∈ L1(Ω,F ,P). Since every Xn is F∞-measurable, so is the a.s. limit X∞.

Remark. The Theorem 3.25 does not imply L1-convergence. As a counterexample, consider the random walk

X0 = 0, Xn =
∑n
k=1 ξk, where {ξk}∞k=1 are i.i.d. Rademacher variables. Let Fn be the canonical filtration of

(Xn)
∞
n=0, and define τ = min{n ∈ N : Xn = 1}, which is a stopping time. Then the stopped process Yn = Xn∧τ

is a submartingale. Since E[Y +
n ] ≤ 1, the sequence Yn converges a.s.. Furthermore, Yn → Y∞ = 1 a.s., because

Yn+1 = Yn ± 1 once Yn < 1. On the other hand, E[Yn] = E[Xn∧τ ] = E[X0] = 0 for all n ∈ N0.

Theorem 3.26 (Supermartingale convergence theorem). A nonnegative supermartingale (Xn)
∞
n=0 converges

almost surely, and the limit X∞ satisfies EX∞ ≤ EX0.

Proof. Since (−Xn)
∞
n=0 is a submartingale and E[(−Xn)

+] = 0 for all n, it converges almost surely to some

−X∞ ∈ L1(Ω,F ,P) by Theorem 3.25. The inequality EX∞ ≤ EX0 follows from Fatou’s lemma.

Next we show some applications of the Martingale convergence theorem.

Proposition 3.27 (Bounded increments). Let (Xn)
∞
n=0 be a martingale such that |Xn −Xn−1| < K a.s. for

all n ∈ N, where 0 < K <∞. Then with probability 1,

• either the martingale (Xn)
∞
n=1 converges to a finite limit,

• or lim infn→∞Xn = −∞ and lim supn→∞Xn =∞.
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Proof. We may assume X0 = 0 without loss of generality. Let N ∈ (0,∞) and τN = inf{n ∈ N : Xn ≤ −N},
which is a stopping time. Then the stopped martingale (Xn∧τN )∞n=1 is bounded below by −N − K > −∞,

and Xn∧τN +K +N converges almost surely by Theorem 3.26. Consequently, limn→∞Xn exists and is finite

everywhere on {τN =∞}, except on a P-null set. This statement also holds on

∞⋃
N=1

{τN =∞} =
∞⋃
N=1

{
inf
n∈N

Xn > −N
}

=
{
lim inf
n→∞

Xn > −∞
}
.

Therefore, with probability 1, either (Xn)
∞
n=1 converges to a finite limit or lim infn→∞Xn = −∞. Applying

the same conclusion on (−Xn)
∞
n=1, either (Xn)

∞
n=1 converges to a finite limit or lim supn→∞Xn =∞.

We are applying this result to prove the second Borel-Cantelli lemma.

Theorem 3.28 (Second Borel-Cantelli Lemma). Let (Fn)
∞
n=1 be a filtration with F0 = {∅,Ω}, and (En)

∞
n=1

an adapted event sequence, i.e. En ∈ Fn for each n ∈ N. Then{ ∞∑
n=1

P(En|Fn−1) =∞

}
= {(En)∞n=1 occurs infinitely often} a.s..

Remark. We say two measurable sets A = B a.s., if A∆B = (A\B) ∪ (B\A) has probability zero.

Proof. Let Xn =
∑n
k=1 1Ek

, which is a submartingale. By Doob’s decomposition theorem, we take Xn =

Mn +An, where Mn is a martingale and An is a predictable increasing sequence. To be more specific,

Mn =

n∑
k=1

1Ek
− P(Ek|Fk−1), An =

n∑
k=1

P(Ek|Fk−1).

Note that both (Xn)
∞
n=1 and (An)

∞
n=1 are monotone increasing. We need to show that

{A∞ =∞} = {X∞ =∞} a.s..

Since |Mn −Mn−1| ≤ 1, by Proposition 3.27, with probability 1, exactly one of the following cases holds:

• Mn = Xn −An converges to a finite limit. On this event, X∞ =∞ if and only if A∞ =∞.

• lim infn→∞Mn = −∞ and lim supn→∞Mn =∞. On this event, we have both X∞ =∞ and A∞ =∞.

Then we complete the proof.

Corollary 3.29 (Second Borel-Cantelli lemma). If (En)
∞
n=1 is a sequence of independent events such that∑∞

n=1 P(En) =∞, then

P ((En)
∞
n=1 occurs infinitely often) = P

( ∞⋂
n=1

∞⋃
k=n

En

)
= 1.

Next we discuss the Lp convergence of martingales.

Proposition 3.30 (Maximal inequality). If (Xn)
∞
n=0 is a submartingale, then for every n ∈ N,

λP
(

max
0≤k≤n

X+
k ≥ λ

)
≤ E

[
X+
n 1

{
max

0≤k≤n
X+
k ≥ λ

}]
≤ E[X+

n ], ∀λ > 0, (3.2)

and

λP
(

max
0≤k≤n

|Xk| ≥ λ
)
≤ 2E|Xn|+ E|X0|, ∀λ > 0. (3.3)
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Proof. Let τ = n ∧min{m ∈ N0 : X+
m ≥ λ}, and E = {max0≤k≤nX

+
k ≥ λ}. Then τ is a bounded stopping

time, and E = {X+
τ ≥ λ}. By Markov’s inequality,

λP(E) = λP(X+
τ ≥ λ) ≤ E

[
X+
τ 1E

]
. (3.4)

Since (X+
n ) is a submartingale, we have E[X+

τ ] ≤ E[X+
n ] by Theorem 3.20. Noticing that Xτ = Xn on Ec, we

have E[X+
τ 1E ] ≤ E[X+

n 1E ]. Then the first inequality in (3.2) follows, and the second is trivial.

The proof of (3.3) is similar, but we let τ = n ∧ min{m ∈ N0 : |Xm| ≥ λ}. By Markov’s inequality and

applying Theorem 3.20 on supermartingales (Xn) and (X+
n ), we have

λP (|Xτ | ≥ λ) ≤ E|Xτ | = 2E[X+
τ ]− E[Xτ ] ≤ 2E[X+

n ]− E[X0] ≤ 2E|Xn|+ E|X0|.

Then we finish the proof.

Proposition 3.31 (Doob’s Lp-inequality). If (Xn)
∞
n=0 is a submartingale and 1 < p <∞, then

E
[
max

0≤k≤n
(X+

k )
p

]
≤
(

p

p− 1

)p
E
[
(X+

n )
p
]
, ∀n ∈ N. (3.5)

Proof. We use a corollary of Fubini’s theorem: for p > 0 and a nonnegative random variable Y ∈ Lp(Ω,F ,P),

E[Y p] =
∫ ∫ ∞

0

pλp−11{λ≤Y }dλ dP =

∫ ∞

0

pλp−1P(Y ≥ λ) dλ.

Let (Xn)
∞
n=0 be a submartingale in Lp, and Y := max0≤k≤nX

+
n . For each M > 0,

E[(Y ∧M)p] =

∫ ∞

0

pλp−1P(Y ∧M ≥ λ) dλ ≤
∫ ∞

0

pλp−2E[X+
n 1{Y ∧M≥λ}] dλ (By Proposition 3.30)

= E
[
X+
n

∫ ∞

0

pλp−21{Y ∧M≥λ} dλ

]
=

(
p

p− 1

)
E
[
X+
n (Y ∧M)p−1

]
. (3.6)

Note that q = p/(p− 1) is the conjugate exponent of p, by Hölder’s inequality,

E
[
X+
n (Y ∧M)p−1

]
≤
(
E[(X+

n )
p]
)1/p (E[(Y ∧M)(p−1)q]

)1/q
=
(
E[(X+

n )
p]
)1/p

(E[(Y ∧M)p])
1−1/p

. (3.7)

Combining (3.6) and (3.7), we have E[(Y ∧M)p] ≤ E[(X+
n )

p] for all M > 0. Letting M → ∞, the monotone

convergence theorem implies (3.5).

Remark. As p ↓ 1, the coefficient
(

p
p−1

)p
blows up, and an estimate of the same form does not exist for p = 1.

As a counterexample, we consider the Gambler’s ruin: A gambler has 1 dollar, and in each play he earns

or loses 1 dollar with probability 1/2. He exits the game until he loses all his money. To model the game,

let S0 = 1, and Sn = 1 +
∑n
k=1 ξk, where ξ1, ξ2, · · · is a sequence of i.i.d. Rademacher variables, and let

τ0 = inf{n ≥ 0 : Sn = 0}. The stopped martingale Xn = Sn∧τ0 is the money the gambler holds after n plays.

According to the martingale property, E[Xn] = 1 for each n ∈ N. If we let τM = inf{n ≥ 0 : Xn =M}, the
martingale (Xn∧τM ) will converge to a random variable XτM valued in {0,M}, and E[XτM ] = 1 by dominated

convergence theorem. Hence P(maxm≥0Xm ≥M) =M−1, and

E
[

max
1≤m<∞

Xm

]
=

∞∑
M=1

P
(
max
m≥0

Xm ≥M
)

=

∞∑
M=1

1

M
=∞.

By monotone convergence, E
[

max
1≤m≤n

Xm

]
↑ ∞ as n→∞, which cannot be bounded in terms of E[Xn] = 1.
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Theorem 3.32 (Convergence theorem for Lp-bounded martingales). If (Xn)
∞
n=0 is a martingale such that

supn∈N0
E|Xn|p <∞, where 1 < p <∞, then Xn converges a.s. and in Lp-norm.

Proof. Let Y = supn∈N0
|Xn| and M = supn∈N0

E|Xn|p. By Theorem 3.27, there exists X∞ ∈ Lp(Ω,F ,P)
such that Xn → X∞ a.s.. By Doob’s Lp-inequality [Proposition 3.22] and monotone convergence theorem,

E
[
max

1≤k≤n
|Xk|p

]
≤
(

p

p− 1

)p
E|Xn|p ≤

(
p

p− 1

)p
M ⇒ E[Y p] ≤

(
p

p− 1

)p
M <∞.

Since |Xn −X∞| ≤ 2Y , by Lebesgue dominated convergence theorem, ∥Xn −X∞∥p → 0.

Next we discuss the convergence of uniformly integrable martingales.

Theorem 3.33 (Convergence theorem for uniformly integrable submartingales). For a submartingale (Xn)
∞
n=0,

the following are equivalent:

(i) (Xn)
∞
n=0 is uniformly integrable.

(ii) (Xn)
∞
n=0 converges a.s. and in L1.

(iii) (Xn)
∞
n=0 converges in L1.

Proof. We first show that (i) ⇒ (ii). Since (Xn)
∞
n=0 is uniformly integrable, we have supn∈N0

E|Xn| < ∞.

By Theorem 3.25, Xn converges a.s. to some X∞ ∈ L1(Ω,F ,P). By uniform integrability of (Xn)
∞
n=1, the

convergence also holds in L1. The implication (ii) ⇒ (iii) is trivial, and (iii) ⇒ (i) is by Theorem 1.75.

Proposition 3.34. Given Z ∈ L1(Ω,F ,P), the following collection is uniformly integrable:

{E[Z|G ] : G is a sub-σ-algebra of F}

Proof. Since Z is integrable, by Theorem1.58, for every ϵ > 0, there exists δ > 0 such that E[|Z|1A] < ϵ for

all A ∈ F with P(A) < δ. Given M > 0, and define XG = E[Z|G ], YG = E[|Z||G ]. Then |XG | ≤ YG , and

E[|XG |1{|XG |>M}] ≤ E[YG1{YG>M}] = E[|Z|1{YG>M}].

By Chebyshev inequality, P(YG > M) ≤ E[YG ]/M = E|Z|/M . If M > E|Z|/δ, we have E[|Z|1{YG>M}] < ϵ.

Note the choice of M is independent of G . Since ϵ > 0, we have

0 ≤ lim
M→∞

sup
G⊂F

E
[
|XG |1{|XG |>M}

]
≤ lim
M→∞

sup
G⊂F

E
[
|Z|1{|YG |>M}

]
= 0.

Hence the collection of conditional expectations is uniformly integrable.

Theorem 3.35 (Doob’s convergence theorem for uniformly integrable martingales). For a martingale (Xn)
∞
n=0,

the following are equivalent:

(i) (Xn)
∞
n=0 is uniformly integrable.

(ii) (Xn)
∞
n=0 converges a.s. and in L1.

(iii) (Xn)
∞
n=0 converges in L1.

(iv) (Xn)
∞
n=0 is closed, i.e. there exists Z ∈ L1(Ω,F ,P) such that Xn = E[Z|Fn] for all n ∈ N0.

Proof. By Theorem 3.33, we have (i) ⇒ (ii) ⇒ (iii). To show (iii) ⇒ (iv), we let X∞ = limn→∞Xn in L1.

Since the conditional expectation is a bounded linear operator on L1(Ω,F ,P),

E[X∞|Fn] = lim
m→∞

E[Xm|Fn] = Xn.

Finally, (iv) ⇒ (i) is by Proposition 3.34.
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Corollary 3.36 (Lévy’s upward theorem). Let (Fn)
∞
n=0 be a filtration. If Z ∈ L1(Ω,F ,P),

E[Z|Fn]→ E[Z|F∞] a.s. and in L1.

Proof. We define a uniformly integrable martingale Xn = E[Z|Fn], which converges both a.s. and in L1. Let

X∞ ∈ L1(Ω,F∞,P) be the a.s. and L1 limit. It suffices to show that X∞ = E[Z|F∞]. Let A ∈
⋃∞
n=0. Then

A ∈ Fn for some n ∈ N0, and

E[X∞1A] = E[E[X∞1A|Fn]] = E[E[X∞|Fn]1A] = E[Xn1A] = E[Z1A].

Since
⋃∞
n=0 Fn is a π-system, and the sets E satisfying E[X∞1E ] = E[Z1E ] is a λ-system, by Sierpiński-

Dynkin π-λ Theorem, we have E[X∞1E ] = E[Z1E ] for all E ∈ F∞, and the results follows by definition of

conditional expectation.

Remark. Given Z ∈ L1(Ω,F ,P), the martingale Xn = E[Z|Fn] is also called a Doob’s martingale. According

to Theorem 3.35, every uniformly integrable martingale is a Doob martingale. Furthermore, even if the choice

random variable Z in Theorem 3.35 (iv) is not unique, by Corollary 3.36, the conditional expectation E[Z|F∞]

is unique and equals X∞.

We discuss two 0-1 laws, which can be proved by constructing Doob martingales.

Corollary 3.37 (Levy’s 0-1 law). If Fn ↑ F∞ and A ∈ F∞, then P(A|Fn)→ 1A a.s. and in L1.

Corollary 3.38 (Kolmogorov’s 0-1 law). Let (Xn)
∞
n=1 be a sequence of independent random variables, and

Gn = σ(Xn+1, Xn+2, · · · ) for all n ∈ N0. Define the tail σ-algebra G∞ as follows:

G∞ =
⋂
n∈N0

Gn.

Then G∞ is P-trivial, i.e. P(A) ∈ {0, 1} for all A ∈ G∞.

Proof. Let Fn = σ(X1, · · · , Xn), which is independent of Gn. Then for all n ∈ N0, we have A ∈ G∞ ⊂ Gn,

and P(A|Fn) = P(A). Also A ∈ F∞, and by Corollary 3.37, P(A|Fn)→ 1A. Hence P(A) ∈ {0, 1}.

3.2.3 Doob’s Optional Stopping Theorem

In this part, we study the expectation of Xτ , where τ is a stopping time.

Theorem 3.39 (Optional stopping theorem for nonnegative supermartingales). Let (Xn)
∞
n=1 be a nonngeative

supermartingale, and let τ be a stopping time. Then

E[Xτ ] ≤ E[X0].

Proof. The nonnegative supermartingale (Xn) has an a.s. limit X∞, which is integrable. Also, the stopped

process Xn∧τ → Xτ a.s.. By Fatou’s lemma,

E[Xτ ] ≤ lim inf
n→∞

E[Xn∧τ ]

Note that n ∧ τ is a bounded stopping time, for each n ∈ N,

E[Xn∧τ ] ≤ E[X0].

Hence E[Xτ ] ≤ E[X0].
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Theorem 3.40 (Optional stopping theorem). Let (Xn)
∞
n=1 be a submartingale, and let τ be a stopping time.

If at least one of the following conditions holds:

(i) τ is a bounded stopping time;

(ii) E[τ ] <∞, and there exists c > 0 such that E[|Xn+1 −Xn| |Fn] ≤ c for all n ∈ N0; or

(iii) The stopped process Xτ
n is uniformly bounded, and τ <∞ a.s.;

Then Xτ is a.s. well-defined, and E[Xτ ] ≥ E[X0].

Proof. The case (i) is proved in Theorem 3.20. To prove the case (ii), we write the stopped process as

Xτ
n = X0 +

n∑
k=1

(Xk −Xk−1)1{k≤τ}, ∀n ∈ N0,

which is dominated by

|Xτ
n | ≤ |X0|+

∞∑
k=1

|Xk −Xk−1|1{τ≥k}.

Note that

E

[
|X0|+

∞∑
k=1

|Xk −Xk−1|1{τ≥k}

]
= E|X0|+

∞∑
k=1

E
[
E [|Xk −Xk−1||Fk−1]1{τ≥k}

]
<∞.

≤ E|X0|+ cE[τ ].

Hence (Xτ
n) is dominated by an integrable random variable, which implies (iii). Finally, if (iii) holds, we use

the following fact:

E[Xτ
n ] = E[Xn∧τ ] ≥ E[X0], ∀n ∈ N0,

which holds because n ∧ τ is a bounded stopping time. By uniform integrability, the convergence Xτ
n → Xτ

holds both a.s. and in L1, and E[X0] ≤ E[Xτ
n ]→ E[Xτ ].

For uniformly integrable martingales, we have a stronger optional stopping theorem.

Theorem 3.41 (Optional stopping theorem for uniformly integrable martingales). Let (Xn)
∞
n=1 be a uniformly

integrable martingale, and X∞ = limn→∞Xn a.s.. If τ is a stopping time, then Xτ ∈ L1(Ω,F ,P) and

Xτ = E[X∞|Fτ ]

with the convention that Xτ = X∞ on {τ =∞}. If σ ≤ τ is another stopping time, then E[Xτ |Fσ] = Xσ.

Proof. By Theorem 3.35, we have E[X∞|Fn] = Xn. Then for all A ∈ Fτ , A ∩ {τ = n} ∈ Fn, and

E[X∞1A] =

∞∑
n=0

E
[
X∞1A∩{τ=n}

]
+ E[X∞1A∩{τ=∞}]

=

∞∑
n=0

E
[
Xn1A∩{τ=n}

]
+ E[X∞1A∩{τ=∞}]

=

∞∑
n=0

E
[
Xτ1A∩{τ=n}

]
+ E[Xτ1A∩{τ=∞}] = E[Xτ1A].

Since Xτ is Fτ -measurable, we have E[X∞|Fτ ] = Xτ . Furthermore, if σ ≤ τ is another stopping time, then

Fσ ⊂ Fτ , and E[Xτ |Fσ] = E[E[X∞|Fτ ]|Fσ] = E[X∞|Fσ] = Xσ.
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3.2.4 Backward Martingales and Applications

To end this section, we also introduce backward martingale, which is a powerful tool in some scenarios.

Definition 3.42 (Backward martingales). A backward filtration is an increasing sequence of sub σ-algebras

(Fn)n∈−N0 indexed by nonpositive integers, i.e. Fn ⊃ Fn−1 for all n ∈ −N0. Let (Yn)n∈−N0 be an adapted

sequence of integrable variables indexed by nonpositive integers.

(i) (Yn)n∈−N0
is said to be a backward martingale, if E[Xn|Fm] = Xm for all m < n ≤ 0.

(ii) (Yn)n∈−N0 is said to be a backward submartingale, if E[Xn|Fm] ≥ Xm for all m < n ≤ 0.

(iii) (Yn)n∈−N0
is said to be a backward supermartingale, if E[Xn|Fm] ≤ Xm for all m < n ≤ 0.

Remark. Likewise, we define the limit of the backward filtration (Fn)n∈−N0
by

F−∞ =
⋂

n∈−N0

Fn.

Theorem 3.43 (Doob’s convergence theorem for backward submartingales). If (Xn)n∈−N0 is a backward

submartingale such that limn→−∞ E[Xn] > −∞, then (Xn)n∈−N0
is uniformly integrable and converges a.s.

and in L1 to a random variable X−∞ ∈ L1 (Ω,F−∞,P). Moreover, E[Xn|F−∞] ≥ X−∞ for all n ∈ −N0.

Proof. Since Xn, Xn+1, · · · , X0 is a submartingale, by Doob’s upcrossing inequality [Proposition 3.24],

E
[
UX[a,b](n)

]
≤ E[(X0 − a)+ − (Xn − a)+]

b− a
≤ E|X0|+ |a|

b− a
, ∀a < b.

Since UX[a,b](n) ↑ U
X
[a,b](−∞), by monotone convergence theorem, we have P

(
UX[a,b](−∞) <∞

)
= 1, and

P

 ⋃
a,b∈Q:a<b

{
UX[a,b](−∞) <∞

} = 1

Similar to our proof of Theorem 3.25, Xn converges a.s. when n → −∞. Since every sequence (Xk)k≤n is

Fn-measurable, the limit X−∞ is Fn-measurable for each n ∈ −N0, hence is F−∞-measurable.

To prove uniform integrability, we fix ϵ > 0. Since E[Xn] ↓ L := limn→−∞ E[Xn] > −∞, we can choose

N ∈ −N0 such that E[Xn] > E[XN ]− ϵ/4 for all n ≤ N . Then

E
[
|Xn|1{|Xn|>M}

]
= E

[
Xn1{|Xn|>M}

]
− E[Xn] ≤ E

[
E[XN |Fn]1{|Xn|>M}

]
− E[XN ] +

ϵ

4

≤ E
[
XN1{|Xn|>M}

]
+
ϵ

4

≤ E
[
|XN |1{|Xn|>M, |XN |>M/2}

]
+ E

[
|XN |1{|Xn|>M, |XN |≤M/2}

]
+
ϵ

4

≤ E
[
|XN |1{|XN |>M/2}

]
+

1

2
E
[
|Xn|1{|Xn|>M}

]
+
ϵ

4
.

Hence

E
[
|Xn|1{|Xn|>M}

]
< 2E

[
|XN |1{|XN |>M/2}

]
+
ϵ

2

for all n ≤ N . Choose M > 0 so that the first term is less than ϵ/2. Hence (Xn)n≤N is uniformly integrable,

and so is (Xn)n∈−N0
. Therefore ∥Xn −X−∞∥1 → 0. Moreover, for all A ∈ F−∞ =

⋂
n∈−N0

Fn,

E[Xn1A]− E[Xm1A] = E[Xn1A]− E[E[Xn|Fm]1A] ≥ E[Xn1A]− E[Xn1A] ≥ 0, ∀m < n.

Let m→ −∞. By Lebesgue dominated convergence theorem, E[Xn1A] ≥ E[X−∞1A] for all n ∈ −N0. Hence

we have E[Xn|F−∞] ≥ X−∞.
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Remark. If (Xn)n∈−N0
is a backward martingale, the requirement limn→−∞ E[Xn] = E[X0] > −∞ is satisfied.

As we can see, a backward martingale always converges a.s. and in L1, with no additional condition required.

Moreover, the limit is given by X−∞ = E[X0|F−∞].

We also have an immediate corollary of this theorem: If Fn ↓ F−∞ is a backward filtration, and Z is a

integrable random variable, then E[Z|Fn]→ E[Z|F−∞] a.s. and in L1.

The convergence theorem for backward martingales is useful in probability theory. Typically, we apply it

to study the exchangeability of random variables.

Definition 3.44 (Exchangeable σ-algebra). Let X1, X2, · · · be a sequence of random variables, and define

F∞ = σ(X1, X2, · · · ). For each n ∈ N, define the n-exchangeable σ-algebra by

En = {A ∈ F∞ : A is invariant under permutation of X1, X2, · · · , Xn} .

Also, define the exchangeable algebra by

E =

∞⋂
n=1

En.

Remark. If A is included in the algebra F∞ generated by the random sequence (Xn)
∞
n=1, it is of the form

A = {(X1, X2, · · · ) ∈ B} ,

where B is a Borel set in the product space RN. If A ∈ F∞ is invariant under permutation of X1, · · · , Xn,

then for any bijection π : {1, · · · , n} → {1, · · · , n}, we have

π(B) :=
{
(xπ(1), xπ(2), · · · , xπ(n), xn+1, · · · ) : (x1, x2, · · · ) ∈ B

}
= B.

For example, for any c ∈ R, the set {X1 + · · · + Xn ≤ c} is n-permutation invariant. Furthermore, for any

measurable function φ : Rn → R, if A is n-permutation invariant,

E [φ(X1, · · · , Xn)1A] = E
[
φ(Xπ(1), · · · , Xπ(n))1A

]
.

Therefore, the conditional expectation is also permutation-invariant:

E
[
φ(Xπ(1), · · · , Xπ(n))|En

]
= E[φ(X1, · · · , Xn)|En]

Theorem 3.45 (Hewitt-Savage 0-1 law). The exchangeable algebra E of an i.i.d. sequence (Xn)
∞
n=1 is trivial,

i.e. P(A) ∈ {0, 1} for all A ∈ E .

We first prove the following lemma.

Lemma 3.46. Let φ : Rk → R be a bounded measurable function, and define

Anφ =
1

(n)k

∑
(i1,··· ,ik)∈In,k

φ(Xi1 , · · · , Xik),

where In,k consists of sequences of distinct integers 1 ≤ i1 < · · · < ik ≤ n, and (n)k = n(n− 1) · · · (n− k + 1)

is the number of such sequences. Then Anφ→ E[φ(X1, · · · , Xk)] a.s..

Proof. By definition, Anφ is En-measurable, and

Anφ = E[Anφ|En] =
1

(n)k

∑
(i1,··· ,ik)∈In,k

E[φ(Xi1 , · · · , Xik)|En] = E[φ(X1, · · · , Xk)|En].
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Since En ↓ E , by backward martingale convergence theorem, Anφ → E[φ(X1, · · · , Xk)|E ] a.s. and in L1. To

finish the proof, we need to prove that E[φ(X1, · · · , Xk)|E ] = E[φ(X1, · · · , Xk)]. Note that

Anφ =
1

(n)k

∑
1∈i∈In,k

φ(Xi1 , · · · , Xik) +
1

(n)k

∑
1/∈i∈In,k

φ(Xi1 , · · · , Xik).

Since φ is bounded, the first term involving X1 is bounded by k
n∥φ∥∞, which converges to 0 as n→∞. Then

the a.s. limit E[φ(X1, · · · , Xk)|E ] is measurable with respect to σ(X2, X3, · · · ). Repeating the same procedure,

E[φ(X1, · · · , Xk)|E ] is measurable with respect to σ(Xn, Xn+1, · · · ) for all n ∈ N. Acutally, the conditional

expectation E[φ(X1, · · · , Xk)|E ] is measurable with respect to the tail σ-algebra
⋂∞
n=1 σ(Xn, Xn+1, · · · ), which

is trivial by Kolmogorov’s 0-1 law [Corollary 3.38]. Consequently,

P (E[φ(X1, · · · , Xk)|E ] > q) ∈ {0, 1}

for all q ∈ Q. Therefore E[φ(X1, · · · , Xk)|E ] is a constant a.s., which is E[φ(X1, · · · , Xk)].

Proof of Theorem 3.45. By Lemma 3.46, E[φ(X1, · · · , Xk)|E ] = E[φ(X1, · · · , Xk)] holds for each bounded

measurable function φ. Then the exchangeable σ-algebra E is independent of σ(X1, · · · , Xk) for all k ∈ N.
Since

⋃∞
k=1 σ(X1, · · · , Xk) is a π-system, by Sierpiński-Dynkin π-λ theorem, E is independent of σ(X1, X2, · · · ).

Then E is independent of itself, and P(A) = P(A ∩A) = P(A)2 for all A ∈ E , which concludes the proof.

Theorem 3.47 (De Finetti’s theorem). If X1, X2, · · · is a sequence of exchangeable random variables, i.e.

for all n ∈ N and all permutations π of {1, · · · , n},

(X1, · · · , Xn)
d
= (Xσ(1), · · · , Xσ(n)),

then X1, X2, · · · are i.i.d. conditional on the exchangeable σ-algebra E .

Proof. We let f : Rk−1 → R and g : R → R be bounded measurable functions. Then the tensor product

φ(x1, · · · , xk) = f(x1, · · · , xk−1)g(xk) is also bounded, and

(n)k−1Anf · nAg =
∑

i∈In,k−1

f(Xi1 , · · · , Xik−1
)

n∑
j=1

g(Xj)

=
∑
i∈In,k

f(Xi1 , · · · , Xik−1
)g(Xik) +

∑
i∈Ink−1

f(Xi1 , · · · , Xik−1
)

k−1∑
m=1

g(Xim)

= (n)kAnφ+ (n)k−1

k−1∑
m=1

Anφm,

where φm(x1, · · · , xk−1) = f(x1, · · · , xk−1)g(xm). Rearranging the identity, we have

Anφ =
n

n− k + 1
Anf ·Ang −

1

n− k + 1

k−1∑
m=1

Anφm.

According to the proof of Lemma 3.46, with exchangeability, Anφ → E[φ(X1, · · · , Xk)|E ] for all bounded

functions φ : Rk → R. We let n→∞ in the last display to obtain

E[φ(X1, · · · , Xk)|E ] = E[f(X1, · · · , Xk−1)|E ] · E[g(Xk)|E ].
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By induction, for all n ∈ N and bounded measurable functions f1, · · · , fn, we have

E[f1(X1)f2(X2) · · · fn(Xn)|E ] = E[f1(X1)|E ]× E[f2(X2)|E ]× · · · × E[fn(Xn)|E ].

Hence X1, X2, · · · are i.i.d. conditional on E .

The backward martingale method gives a beautiful proof of Kolmogorov’s strong law of large numbers.

Theorem 3.48 (Kolmogorov’s strong law of large numbers). Let (ξn)
∞
n=1 be a sequence of i.i.d. random

variables such that E|ξ1| <∞. Then

lim
n→∞

ξ1 + ξ2 + · · ·+ ξn
n

= Eξ1 a.s..

Proof. Let Sn = ξ1 + · · ·+ ξn, and X−n = Sn/n. Let F−n = σ(Sn, ξn+1, ξn+2, · · · ) ↓ F−∞. Then

E[X−n|F−n−1] =
1

n
E [Sn+1 − ξn+1|F−n−1] =

Sn+1

n
− E [ξn+1|F−n−1]

n

=
Sn+1

n
− Sn+1

n(n+ 1)
= X−n−1,

where in the third inequality we use the exchangeability of ξ1, · · · , ξn+1 and the fact Sn+1 = ξ1 + · · ·+ ξn+1.

By backward martingale convergence theorem, X−n → X−∞ a.s. and in L1, and X−∞ = E[ξ1|F−∞]. Also,

by definition we have F−n ⊂ En, and F−∞ ⊂ E . By Hewitt-Savage 0-1 law, E[ξ1|F−∞] = Eξ1 a.s..
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3.3 Continuous-time Martingales

3.3.1 Definition and Properties

Definition 3.49 (Continuous-time martingales). Let (Xt)t≥0 be a real-valued and L1 process that is adapted

to the filtration (Ft)t≥0. Here L1 means E|Xt| <∞ for all t ∈ R+. Then

(i) (Xt)t≥0 is said to be a martingale if E[Xt|Fs] = Xs for all t > s ≥ 0;

(ii) (Xt)t≥0 is said to be a supermartingale if E[Xt|Ft] ≤ Xs for all t > s ≥ 0;

(iii) (Xt)t≥0 is said to be a submartingale if E[Xt|Ft] ≥ Xs for all t > s ≥ 0;

All these notations depends on the choice of the filtration {Ft}t≥0, which is fixed in later discussion.

Remark. Similar to Proposition 3.17, we have an immediate corollary of conditional Jensen’s inequality. Let

f : R→ R be a convex function such that E[f(Xt)] <∞ for all t ∈ R+.

(i) If (Xt)t≥0 is a martingale, then (f(Xt))t≥0 is a submartingale. Particularly, (|Xt|)t≥0 is a submartingale.

(ii) In addition, if f is monotone increasing and (Xt)t≥0 is a submartingale, (f(Xt))t≥0 is a submartingale.

Particularly, (X+
t )t≥0 is a submartingale.

Proposition 3.50. Let (Xt)t≥0 be a submartingale. Then for all t ≥ 0,

sup
0≤s≤t

E|Xs| <∞.

Proof. Clearly, E[Xs] = E[E[Xs|F0]] ≥ E[X0]. On the other hand, since (X+
t ) is also a submartingale, we

have E[X+
s ] ≤ E[X+

t ] for all 0 ≤ s ≤ t. Note that |x| = 2x+ − x. Hence we have

E|Xs| = 2E[X+
s ]− E[Xs] ≤ 2E[X+

t ]− E[X0] <∞, ∀s ∈ [0, t].

The result immediately follows.

Proposition 3.51. Let (Xt)t≥0 be an L2 martingale. Then for all reals 0 ≤ s < t and all finite partitions

s = t0 < t1 < · · · < tk = t, we have

E

 k∑
j=1

(Xtj −Xtj−1
)2

∣∣∣∣∣∣Fs

 = E
[
X2
t −X2

s |Fs

]
= E

[
(Xt −Xs)

2|Fs

]
.

Proof. For each j = 1, · · · , k,

E
[
(Xtj −Xtj−1)

2|Fs

]
= E

[
E
[
(Xtj −Xtj−1)

2|Ftj−1

]∣∣Fs

]
= E

[
E
[
X2
tj −X

2
tj−1
|Ftj−1

]∣∣∣Fs

]
Then the desired result follows by summing over j.

Now we extend the inequalities in Proposition 3.30 and Proposition 3.31 to continuous-time martingales.

Proposition 3.52. Let (Xt)t≥0 be a right-continuous submartingale.

(i) (Maximal inequality). For every t > 0,

λP
(

sup
0≤s≤t

|Xs| > λ

)
≤ E|X0|+ 2E|Xt|, ∀λ > 0.

In addition, if (Xt)t≥0 is nonnegative, then

λP (X∗
t > λ) ≤ E[Xt], ∀λ > 0, where X∗

t = sup
0≤s≤t

Xs.
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(ii) (Doob’s Lp-inequality). If (Xt)t≥0 is a right-continuous martingale, then for every t > 0,

E
[
sup

0≤s≤t
|Xs|p

]
≤
(

p

p− 1

)p
E|Xt|p, ∀p > 1.

Proof. We fix t > 0 and take a countable dense subset t ∈ D ⊂ R. If f is a right-continuous function, we have

sup
s∈D∩[0,t]

f(s) = sup
0≤s≤t

f(s)

Here is a brief interpretation using diagonal trick. Let M = sup0≤s≤t f(s), then we can find a sequence

sn ∈ [0, t] such that f(sn)↗M . Since f is right continuous, and D ∋ t is dense in R, we can find a sequence

D ∩ [0, t] ∋ tnk ↘ sn such that f(tnk)→ f(sn) for every n. Then f(tnn)→M , and sups∈D∩[0,t] f(s) =M .

Hence, by right-continuity of s 7→ Xs(ω) and the fact that t ∈ D, we have sups∈D∩[0,t] |Xs| = sup0≤s≤t |Xs|.
Furthermore, we can view D ∩ [0, t] as the union of an increasing sequence of partitions Dk = {tk0 , tk1 , · · · , tkk},
where 0 ≤ tk0 < tk1 < · · · < tkk = t.

(i) For each k ∈ N, we can apply the maximal inequality [Proposition 3.30] of discrete form on sequence

Yn = Xtkn∧k
, which is a submartingale of the filtration Gn = Ftkn∧k

:

λP
(
max
s∈Dk

|Xs| > λ

)
≤ E[|X0|] + 2E[|Xt|], ∀k ∈ N, λ > 0.

Note that maxs∈Dk
|Xs| ↗ sups∈D∩[0,t] |Xs| = sup0≤s≤t |Xs| as k →∞. By monotone convergence theorem,

λP
(
max
s∈Dk

|Xs| > λ

)
↗ λP

(
sup
s∈[0,t]

|Xs| > λ

)
≤ E[|X0|] + 2E[|Xt|], ∀λ > 0.

The case of nonnegative submartingale is similar.

(ii) Similar to the proof of (i), we apply Doob’s inequality [Proposition 3.31] of discrete form:

E
[
max
s∈Dk

|Xk|p
]
≤
(

p

p− 1

)p
E [|Xt|p] , ∀p > 1.

Since maxs∈Dk
|Xk| ↗ sup0≤s≤t |Xs|, we use monotone convergence theorem to get the desired result.

Remark. If (Xt)t≥0 is a submartingale, then for any dense subset D ⊂ R and every t > 0,

P
(

sup
s∈D∩[0,t]

|Xs| > λ

)
≤ 1

λ
(E[|X0|] + 2E[|Xt|]) , ∀λ > 0.

Let λ→∞, we obtain that sups∈D∩[0,t] |Xs| <∞ a.s. for all t > 0.

3.3.2 Martingale Convergence Theorems

Definition 3.53 (Upcrossing number). Given a function f : E → R and a < b, where E ⊂ R, the upcrossing

number of this sequence along [a, b], denoted by Uf[a,b](E), is the largest k ∈ N such that there exists a finite

and strictly increasing sequence s1 < t1 < s2 < t2 < · · · < sk < tk of elements of E such that f(sj) ≤ a and

f(tj) ≥ b for all j ∈ {1, · · · , k}. If there exists no such sequence, we take Uf[a,b](E) = 0. If such sequence exists

for all k ∈ N, we take Uf[a,b](E) =∞,

A function f : E → R is said to be càdlàg (French: continue à droite, limite à gauche), if for all t ∈ E̊, the

left limit f(t−) <∞ exists, and the right limit f(t+) exists and equals f(t).
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Lemma 3.54. Let D be a countable dense subset of R+, and f : D → R. Assume that for every T ∈ D,

(i) the function f is bounded on D ∩ [0, T ], and

(ii) Uf[a,b](D ∩ [0, T ]) <∞ for all rationals a < b.

Then the right limit f(t+) = limD∋s↓t f(s) exists for all t ∈ R+, and the left limit f(t−) = limD∋s↑t f(s) exists

for all t ∈ R++. Furthermore, the function g : R+ → R defined by g(t) = f(t+) is càdlàg.

Proof. We first fix t ∈ R+, and prove that f(t+) = limD∋s↓t f(s) exists. Take D ∋ T > t. By assumption (i),

there exists M > 0 such that |f(t)| ≤ M for all t ∈ D ∩ [0, T ]. Take a sequence in sn ∈ D ∩ [0, T ] such that

sn ↓ t. By Heine-Borel theorem, every subsequence of f(sn) has a further subsequence that converges. We

prove that all such subsequences converges to the same point, which implies that f(sn) converges.

Argue by contradiction. If there exists two subsequence sn and tn such that f(sn)→ a and f(tn) = b > a,

take two rationals a < p < q < b. Then for any k ∈ N, we can find a f(tn1
) ≥ q, and sn1

< tn1
such that

f(sn1
) ≤ p, and tn2

< sn1
such that f(tn2

) ≥ q, · · · , and snk
< tnk

such that f(snk
) ≤ p. Thus we obtain

an upcrossing sequence snk
< tnk

< snk−1
< ynk−1

< · · · < sn1
< tn1

of elements of D ∩ [0, T ]. Therefore,

U[p,q](D ∩ [0, T ]) > k for all k ∈ N, a contradiction to (ii)!

As a result, all such sequences D ∩ [0, T ] ∋ sn ↓ t converges. They should converge to the same point.

Otherwise, we can construct a sequence not converging by interlacing two sequences that converges to distinct

points. Therefore, the right limit f(t+) = limD∋s↓t f(s) exists for all t ∈ R+. Similarly, we can prove that the

left limit f(t−) = limD∋s↑t f(s) exists for all t ∈ R++.

Now we prove g(t) = f(t+) is càdlàg. Given ϵ > 0, we take δ > 0 such that |f(s) − f(t−)| < ϵ for all

s ∈ (t− δ, t), and |f(r)− f(t+)| < ϵ for all r ∈ (t, t+ δ). Take rn ↓ r ∈ (t, t+ δ), and sn ↓ s ∈ (t− δ, t). Then

|g(r)− f(t+)| = lim
n→∞

|f(rn)− f(t+)| < ϵ, and |g(s)− f(t−)| = lim
n→∞

|f(sn)− f(t−)| < ϵ.

Hence limr↓t g(r) = f(t+), lims↑t g(s) = f(t−), and g is càdlàg.

Theorem 3.55. Let (Xt)t≥0 be a submartingale, and let D be a countable dense subset of R+.

(i) For P-a.e. ω ∈ Ω, the restriction of path t 7→ Xt(ω) to D has right and left limits everywhere:

Xt+(ω) = lim
D∋s↓t

Xs(ω), ∀t ∈ R+, Xt−(ω) = lim
D∋s↑t

Xs(ω), ∀t ∈ R++.

(ii) For every t ∈ R+, the limit Xt+ ∈ L1(Ω,Ft+,P), and E[Xt+|Ft] ≥ Xt with equality holds if the mean

function t 7→ E[Xt] is right-continuous (in particular, if (Xt)t≥0 is a martingale). The process (Xt+)t≥0 is a

submartingale with respect to the filtration (Ft+)t≥0.

Remark. In (ii), if Xt+ is undefined on a negligible set N , we can just take Xt+(ω) = 0 for ω ∈ N .

Proof. (i) Fix T ∈ D. Then sups∈D∩[0,T ] |Xs| < ∞ a.s.. As in the proof of Proposition 3.52, we take an

sequence Dk increasing to D ∩ [0, T ]. Using Doob’s upcrossing inequality [Proposition 3.24] and monotone

convergence theorem, for all a < b, we have

E
[
UX[a,b](D ∩ [0, T ])

]
≤ E [(XT − a)+ − (X0 − a)+]

b− a
<∞ ⇒ UX[a,b](D ∩ [0, T ]) <∞ a.s..

Set the negligible set N as

N =
⋃
T∈D

{ sup
s∈D∩[0,T ]

|Xs| =∞

}
∩

 ⋃
a,b∈Q

{
UX[a,b](D ∩ [0, T ]) =∞

} ⇒ P(N) = 0. (3.8)

Outside N , the assumptions in Lemma 3.54 are satisfied, and the result follows.
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(ii) We supplement the definition Xt+(ω) = 0 if limD∋s↓tXs(ω) does not exist, which occurs negligibly. Then

Xt+ is Ft+-measurable. Fix t ∈ R+, and choose tn ↓ t. Then we have Xtn → Xt+ a.s.. Set Yn = Xt−n
for all

n ∈ −N0. Then Yn is a backward submartingale with respect to the backward filtration Gn = Ft−n
:

E[Yn|Gn−1] = E[Xt−n |Ft−(n−1)
] ≥ Xt−(n−1)

= Yn−1, ∀n ∈ −N0.

By Proposition 3.50, we have sups∈D∩[0,T ] E[|Xs|] < ∞, which implies limn→−∞ E[Yn] > −∞. Using

Doob’s convergence theorem for discrete-time backward submartingales [Theorem 3.43], we have Xtn → Xt+

in L1, and Xt+ ∈ L1(Ω,Ft+,P). Due to convergence in L1, we have

E[Xt+|Ft] = lim
n→∞

E[Xtn |Ft] ≥ Xt, and E[Xt+] = lim
n→∞

E[Xtn ].

Note the first equality holds because the conditional expectation operator E[·|Ft] is a bounded linear

operator on L1(Ω,F ,P). In addition, if the mean function s 7→ E[Xs] is right-continuous, the second equality

implies E[Xt+] = E[Xt], which requires E[Xt+|Ft] = Xt.

Let s < t, and take sn ↓ s such that sn ≤ tn. Then Xsn → Xs+ a.s. and in L1. Moreover, if A ∈ Fs+,

E[Xt+1A] = lim
n→∞

E[Xtn1A] ≥ lim
n→∞

E[Xsn1A] = E[Xs+1A].

Since Xs+ is Fs+-measurable, we have E[Xt+|Fs+] ≥ Xs+. Therefore, (Xt+)t≥0 is a submartingale with

respect to the filtration (Ft+)t≥0.

Theorem 3.56 (Càdlàg modification). Let (Ft)t≥0 be a right-continuous and complete filtration. Let (Xt)t≥0

be a submartingale such that the mean function t 7→ E[Xt] is right continuous. Then (Xt)t≥0 has an a.s.

modification with càdlàg sample paths, which is also a submartingale with respect to (Ft)t≥0.

Proof. Let D be a countable subset of R+, and let N be the negligible set defined in (3.8). We take Yt := Xt+

with the refinement Yt(ω) = 0 for ω ∈ N . By Lemma 3.54, the sample paths of (Yt)t≥0 are càdlàg.

Since Xt+ is Ft-measurable by right-continuity of (Ft)t≥0, and since the negligible set N falls in all Ft

by completeness of (Ft)t≥0, the function Yt is Ft-measurable. Furthermore,

Xt = E[Xt+|Ft] = Xt+
a.s.
= Yt, ∀t ∈ R+.

Hence (Yt)t≥0 is an a.s. modification of (Xt)t≥0, which is adapted to the filtration (Ft)t≥0. Furthermore, we

have E[Yt|Fs] = E[Xt|Fs] ≥ Xs = Ys for all t > s ≥ 0. Hence (Yt)t≥0 is also a submartingale.

Theorem 3.57 (Doob’s first martingale convergence theorem). If (Xt)t≥0 is a right-continuous submartingale

and supt≥0 E[X
+
t ] <∞, then X∞ = limt↑∞Xn a.s. exists, and X∞ ∈ L1(Ω,F ,P).

Proof. Let D be a countable subset of R+, and let M := supt≥0 E[X
+
t ] <∞. For all a < b, we can follow the

proof of Theorem 3.55 (i) and use monotone convergence theorem to conclude

E
[
UX[a,b](D ∩ [0, T ])

]
≤ E[(XT − a)+ − (X0 − a)+]

b− a
≤ M + |a|

b− a
⇒ E

[
UX[a,b](D)

]
≤ M + |a|

b− a
<∞.

Hence UX[a,b](D) < ∞ a.s. for all a, b ∈ Q with a < b, and X∞ = limD∋t↑∞Xt ∈ [−∞,∞] a.s. exists. We can

further exclude values ∞ and −∞ P-a.e., because the Fatou’s lemma gives

E[X+
∞] ≤ lim inf

D∋t↑∞
E[X+

t ] ≤M, E[X−
∞] ≤ lim inf

D∋t↑∞
E[X−

t ] = lim inf
D∋t↑∞

E[X+
t −Xt] ≤M − E[X0].

Hence X∞ ∈ L1(Ω,F ,P). Finally, since (Xt)t≥0 is right-continuous, we can drop the restriction t ∈ D.
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Similarly, we need uniform integrability of martingale to obtain convergence in L1.

Theorem 3.58 (Doob’s second martingale convergence theorem). Let (Xt)t≥0 be a right-continuous martin-

gale. The following are equivalent:

(i) The collection {Xt}t∈R+ is uniformly integrable.

(ii) Xt converges a.s. and in L1-norm.

(iii) (Xt)t≥0 is closed, i.e. there exists Z ∈ L1(Ω,F ,P) such that Xt = E[Z|Ft] for all t ∈ R+.

Proof. (i) ⇒ (ii): By Theorem 3.57, the limit X∞ = limt→∞Xt a.s. exists. Since {Xt}t∈R+ is uniformly

integrable, convergence in L1 also holds by Theorem 1.75.

(ii) ⇒ (iii) follows from the continuity of conditional expectation operator on L1(Ω,F ,P).

(iii) ⇒ (i) follows from Theorem 3.34.

Remark. If (i)-(iii) are satisfied, the limit X∞ = limt→∞Xt satisfies E[X∞|Ft] = lims→∞ E[Xs|Ft] = Xt.

Theorem 3.59 (Convergence theorem for Lp-bounded martingales). Let (Xt)t≥0 is a martingale such that

supt≥0 E[|Xt|p] <∞, where p > 1. Then X∞ = limt→∞Xt a.s. and in Lp.

Proof. Let Y = supt≥0 |Xt|, and M = supt≥0 E[|Xt|p] <∞. By Theorem 3.58, there exists X∞ ∈ Lp(Ω,F ,P)
such that Xt → X∞ a.s.. By Doob’s Lp-inequality [Proposition 3.50 (ii)] and monotone convergence theorem,

E
[
sup

0≤s≤t
|Xs|p

]
≤
(

p

p− 1

)p
E[|Xt|p] ≤

(
p

p− 1

)p
M ⇒ E[Y p] ≤

(
p

p− 1

)p
M <∞.

Since |Xt −X∞| ≤ 2Y , by Lebesgue dominated convergence theorem, ∥Xt −X∞∥p →∞.

3.3.3 Optional Stopping Theorems

Given a right-continuous submartingale (Xt)t≥0 such that supt≥0 E[X
+
t ] < ∞, and a stopping time τ , we

define the random variable

Xτ (ω) = Xτ(ω)(ω)1{τ<∞}(ω) +X∞(ω)1{τ=∞}(ω), where X∞ = lim
t→∞

Xt a.s..

By Proposition 3.10 and Proposition 3.13, (Xt)t≥0 is progressive, and the restriction of Xτ to {τ <∞} is
Fτ -measurable. Meanwhile, {X∞1{τ=∞} ≤ α} ⊂ {τ ≤ t} if α ≥ 0, and {X∞1{τ=∞} ≤ α} ∩ {τ ≤ t} = ∅ if
α < 0. Therefore, {X∞1{τ=∞} ≤ α} ∩ {τ ≤ t} ∈ Ft for all t ≥ 0, and X∞1{τ=∞} is Fτ -measurable. As a

result, the random variable Xτ is Fτ -measurable.

Theorem 3.60 (Optional stopping theorem for submartingales). Let (Xt)t≥0 be a right-continuous submartin-

gale. Let τ and σ be two stopping times such that σ ≤ τ . Then Xτ , Xσ ∈ L1(Ω,F ,P), and E[Xτ |Fσ] ≥ Xσ,

if either of the following conditions holds:

(i) τ and σ are bounded stopping times;

(ii) (Xt)t≥0 is uniformly bounded by some U ∈ L1(Ω,F0,P) from above, i.e. Xt ≤ U for all t ≥ 0.

Proof. (i) Suppose τ ≤M , where M ∈ N. Akin to Proposition 3.14, we define two sequences of stopping times

σn ≤ τn that decrease to σ and τ , respectively:

σn =

M2n−1∑
k=0

k + 1

2n
1{k2−n<σ≤(k+1)2−n}, and τn =

M2n−1∑
k=0

k + 1

2n
1{k2−n<τ≤(k+1)2−n}, n ∈ N.
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We fix n ≥ 2. Then the sequence (Xk2−n)∞k=0 is a discrete-time submartingale with respect to the fil-

tration (Fk2−n)∞k=0. Furthermore, both 2nτn−1 and 2nτn are stopping times of (Fk2−n)∞k=0, since 2nτn−1 =

min {k ∈ {2, 4, · · · ,M2n} : k2−n ≥ τ} implies

{2nτn−1 ≤ p} =
{
τ ≤

⌊p
2

⌋
21−n

}
∈ Fp2−n , ∀p ∈ N,

and 2nτn = min {k ∈ {1, 2, · · · ,M2n} : k2−n ≥ τ} implies

{2nτn ≤ p} = {τ ≤ p2−n} ∈ Fp2−n , ∀p ∈ N.

By the optional stopping theorem for discrete-time submartingales [Theorem 3.20 (iii)], we know that

E[Xτn−1
|Fτn ] ≥ Xτn . Hence Yn := Xτ−n

is a backward submartingale. Furthermore, by [Theorem 3.20 (i, ii)],

we have E[Xτn ] ≥ E[X0] for all n ∈ N. Apply Theorem 3.43, the sequence (Xτn)
∞
n=1 is uniformly integrable.

Since τn(ω)↘ τ(ω), and the sample path t 7→ Xt(ω) is right-continuous, we have Xτn → Xτ a.s., and this

convergence also holds in L1. Also, Xσn → Xσ a.s. and in L1. Then for all A ∈ Fσ, we have

(By Theorem 3.20) E[Xτn1A] ≥ E[Xσn
1A], ∀n ∈ N ⇒ E[Xτ1A] ≥ E[Xσ1A],

where the ⇒ follows from L1 convergence. Hence E[Xτ |Fσ] ≥ Xσ.

(ii) Apply (i) to bounded stopping times 0 and τ ∧ n, we have E[Xτ∧n] ≥ E[X0] > −∞. Since Xt is bounded

from above by U , by Fatou’s lemma, E[Xτ ] ≥ lim supn→∞ E[Xτ∧n] ≥ E[X0] > −∞. Similarly we have

E[Xσ] ≥ E[X0] > −∞. Hence Xτ , Xσ ∈ L1(Ω,F ,P).
Fix A ∈ Fσ ⊂ Fτ , and define τA(ω) = τ(ω)1A +∞1Ac . According to Proposition 3.12 (d), both τA and

σA are also stopping times. By (i), we have

0 ≤ E [XτA∧n]− E [XσA∧n]

= E
[
Xn1Ac +Xτ∧n1A∩{σ≤n} +Xn1A∩{σ>n}

]
− E

[
Xn1Ac +Xσ1A∩{σ≤n} +Xn1A∩{σ>n}

]
= E

[
Xτ∧n1A∩{σ≤n}

]
− E

[
Xσ1A∩{σ≤n}

]
Note that 1A∩{σ≤n} → 1A∩{σ<∞} and Xτ∧n → Xτ as n→∞. By Lebesgue dominated convergence theorem,

we have E[Xτ1A∩{σ<∞}] ≥ E[Xσ1A∩{σ<∞}]. Clearly, E[Xτ1A∩{σ=∞}] = E[Xσ1A∩{σ=∞}]. Hence

E[E[Xτ |Fσ]1A] = E[Xτ1A] ≥ E[Xσ1A], ∀A ∈ Fσ.

Since Xσ is Fσ-measurable, we have E[Xτ |Fσ] ≥ Xσ.

Theorem 3.61 (Optional stopping theorem for uniformly integrable martingales). Let (Xt)t≥0 be a uniformly

integrable right-continuous martingale. Let τ be a stopping time. Then we have

E[X∞|Fτ ] = Xτ ∈ L1(Ω,F ,P).

Furthermore, if σ is another stopping time such that σ ≤ τ , then E[Xτ |Fσ] = Xσ.

Proof. Using Proposition 3.15, we define a sequence of stopping times τn ↘ τ as follows:

τn =

∞∑
k=0

k + 1

2n
1{k2−n<τ≤(k+1)2−n} +∞1{τ=∞}, n ∈ N.

Clearly, 2nτn is a stopping time of the filtration {F(k+1)2−n}∞k=0. Apply Theorem 3.41 to discrete-time

martingale {X(k+1)2−n}∞k=0 with respect to the filtration {F(k+1)2−n}∞k=0, which is uniformly integrable, we
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have E[X∞|Fτn ] = Xτn ∈ L1(Ω,F ,P). Since τn(ω) ↘ τ(ω), and the sample path t 7→ Xt(ω) is right-

continuous, we have Xτn → Xτ a.s.. Furthermore, {Xτn}∞n=1 is uniformly integrable, so the convergence also

holds in L1. For all A ∈ Fτ ⊂ Fτn , E[X∞|Fτn ] = Xτn implies E[X∞1A] = E[Xτn1A]. Then

E[Xτ1A] = lim
n→∞

E [Xτn1A] = E[X∞1A], ∀A ∈ Fτ ⇒ E[X∞|Fτ ] = Xτ .

Furthermore, if σ ≤ τ is a stopping time, then E[Xτ |Fσ] = E [E[X∞|Fτ ]|Fσ] = E[X∞|Fσ] = Xσ.

Given an adapted process (Xt)t≥0 and a stopping time τ , we denote by Xτ
t = Xt∧τ the stopped process.

Corollary 3.62. Let (Xt)t≥0 be a right-continuous submartingale. Let τ be a stopping time.

(i) The stopped process (Xτ
t )t≥0 is a submartingale.

(ii) In addition, if (Xt)t≥0 is a uniformly integrable martingale, so is the stopped process (Xτ
t )t≥0. Moreover,

Xτ
t = E[Xτ |Ft].

Proof. (i) Fix t > s ≥ 0. If A ∈ Fs ⊂ Ft, we have A ∩ {τ > s} ∈ Fs, and A ∩ {τ > s} ∈ Fτ by the very

definition of Fτ . Hence A ∩ {τ > t} ∈ Fs ∩Fτ = Fτ∧s, and

E [Xτ
t 1A]− E [Xτ

s 1A] = E
[
Xτ∧t1A∩{τ≤s}

]
+ E

[
Xτ∧t1A∩{τ>s}

]
− E [Xτ∧s1A]

= E
[
Xτ∧s1A∩{τ≤s}

]
+ E

[
Xτ∧t1A∩{τ>s}

]
− E [Xτ∧s1A]

= E
[
(Xτ∧t −Xτ∧s)1A∩{τ>s}

]
= E

[
E [Xτ∧t −Xτ∧s|Fτ∧s]1A∩{τ>s}

]
= 0,

where the last inequality follows from Theorem 3.60, because τ ∧ s ≤ τ ∧ t are two bounded stopping times.

(ii) Fix t ≥ 0. If A ∈ Ft, we have A ∩ {τ > t} ∈ Ft, and A ∩ {τ > t} ∈ Fτ by the very definition of Fτ .

Hence A ∩ {τ > t} ∈ Ft ∩Fτ = Fτ∧t, and

E [Xτ1A]− E [Xτ
t 1A] = E

[
Xτ∧t1A∩{τ≤t}

]
+ E

[
Xτ1A∩{τ>t}

]
− E [Xτ∧t1A]

= E
[
(Xτ −Xτ∧t)1A∩{τ>t}

]
= E

[
E [Xτ −Xτ∧t|Fτ∧t]1A∩{τ>t}

]
= 0,

where the last inequality follows from Theorem 3.61, because τ ∧ t ≤ τ is a stopping time. Since A ∈ Ft is

arbitrary, and Xτ
t = Xτ∧t is Ft-measurable, we have E[Xτ |Ft] = Xτ

t . Since Xτ ∈ L1(Ω,F ,P), the stopped

process (Xτ
t )t≥0 is uniformly integrable.
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3.4 Continuous Semimartingales

3.4.1 Finite Variation Processes

Review: Functions of bounded variation. Given a function f : [0, T ]→ R, we define the total variation

of f on interval [0, T ] as

V T0 f = sup


n∑
j=1

|f(xj)− f(xj−1)| : n ∈ N, 0 = x0 < x1 < · · · < xn = T


If V T0 f <∞, we say that f : [0, T ]→ R has bounded variation.

We can show that every function of bounded variation is the difference of two monotone increasing functions.

If f : [0, T ] → R is a function of bounded variation, we define vf (0) = 0 and vf (t) = V t0 f for all t ∈ (0, T ],

which is the total variation of f |[0,t]. Then we have vf (t)− vf (s) = V ts (f) ≥ |f(t)− f(s)| for all 0 ≤ s < t ≤ T .
Therefore, both vf + f and vf − f are monotone increasing functions on [0, T ], and f = 1

2 (vf + f)−
1
2 (vf − f).

In addition, if f(0) = 0, we can require both vf + f and vf − f to be nonnegative.

Furthermore, if f : [0, T ]→ R is a càdlàg function of bounded variation such that f(0) = 0, there exists a

finite signed measure µ such that µ([0, t]) = f(t) for all t ∈ [0, T ].

Since vf is monotone on [0, T ], vf has a left limit vf (s−) at every s ∈ (0, T ], and a right limit vf (t+) at

every t ∈ [0, T ). We prove that vf (t+) = vf (t) for all t ∈ [0, T ). Fix ϵ > 0. Since f is right-continuous, choose

δ > 0 such that |f(x)−f(t)| < ϵ/2 for all x ∈ (t, t+δ). We also choose a partition t = x0 < x1 < · · · < xn = T

such that
∑n
j=1 |f(xj)− f(xj−1)| > V Tt f − ϵ

2 . Then for all x < min{x1, δ}, we have

V Tt f −
ϵ

2
<

n∑
j=1

|f(xj)− f(xj−1)| ≤ |f(x)− f(t)|+ |f(x1)− f(x)|+
n∑
j=2

|f(xj)− f(xj−1)| ≤
ϵ

2
+ V Tx f.

Hence vf (x)− vf (t) = V xt f = V Tt f − V Tx f < ϵ for all x ∈ min{x1, δ}, and vf is right-continuous. As a result,

both vf + f and vf − f are nonnegative, monotone increasing and càdlàg functions on [0, T ]. Akin to the

Carathéodory extension procedure of a c.d.f. in the Remark of Definition 2.3, there exists two Borel measures

µ+ and µ− such that µ+([0, t]) = 1
2 (vf (t) + f(t)) and µ−([0, t]) = 1

2 (vf (t)− f(t)) for all t ∈ [0, T ]. Then

µ = µ+ − µ− is a signed measure with µ([0, t]) = f(t) for all t ∈ [0, T ].

Moreover, the total variation measure |µ| of µ satisfies |µ|([0, T ]) = vf (T ) = V T0 f . For any partition

0 = x0 < x1 < · · · < xn = T , we have
∑n
j=1 |f(xj) − f(xj−1)| ≤ |µ|([0, T ]), hence V t0 f ≤ |µ|([0, T ]). To

prove the opposite, we define a probability measure P(A) = |µ|(A)
|µ|([0,T ]) on B([0, T ]). Let P ⨿N = [0, T ] be the

Hahn decomposition associated with µ, and define Y = 1P − 1N . Let 0 = tn0 < tn1 < · · · < tnkn = T be an

increasing sequence of partitions of interval [0, t] such that the mesh max1≤j≤kn(t
n
j − tnj−1) → 0, and let Bn

be the sub σ-algebra generated by intervals (tnj , t
n
j−1]. Then (Bn)

∞
n=1 is a filtration with B∞ = B([0, T ]),

and Xn = E[Y |Bn] is a uniformly integrable martingale sequence. Furthermore, by properties of conditional

expectation, Xn is a constant on each subinterval (tnj−1, t
n
j ], and

Xn|(tnj−1,t
n
j ]

=
E
[
Xn1(tnj−1,t

n
j ]

]
P((tnj−1, t

n
j ])

=
E
[
Y 1(tnj−1,t

n
j ]

]
P((tnj−1, t

n
j ])

=
µ((tnj−1, t

n
j ])

|µ|([0, T ])P((tnj−1, t
n
j ])

=
f(tnj )− f(tnj−1)

|µ|((tnj−1, t
n
j ])

, ∀1 ≤ j ≤ kn.

Now it suffices to prove that
∑kn
j=1

∣∣f(tnj )− f(tnj−1)
∣∣ → µ([0, T ]). By Doob’s convergence theorem for

uniformly integrable martingales, we have Xn → Y a.s. and in L1. As a result,

E|Xn| =
kn∑
j=1

∣∣f(tnj )− f(tnj−1)
∣∣

µ([0, T ])
→ E|Y | = 1.
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Review: Functions of finite variation. A function f : R+ → R is said to have finite variation, if the

restriction f |[0,T ] has bounded variation on [0, T ] for all T ∈ R++. In addition, if f(0) = 0 and f is càdlàg, we

can find a unique σ-finite signed measure µ on B(R+) such that µ([0, t]) = f(t) for all t ∈ R+, and |µ|([0, t])
is the total variation of f |[0,t].

Review: Lebesgue Stieltjes integral. Let f : [0, T ]→ R be a càdlàg function of bounded variation with

f(0) = 0, so we can find a finite signed measure on [0, T ] such that µ([0, t]) = f(t) for all t ∈ [0, T ]. If

φ : [0, T ]→ R is a measurable function such that
∫
[0,T ]
|φ|d|µ| <∞, define the Lebesgue-Stieltjes integral

∫ T

0

φ(s) df(s) =

∫
[0,T ]

φdµ,

∫ T

0

φ(s) |df(s)| =
∫
[0,T ]

φ |dµ|.

It is seen that the function t 7→
∫ t
0
φ(s) df(s) is also of bounded variation on [0, T ]. To see this, note the

associated signed measure is ν(A) =
∫
A
φdµ, and the total variation on [0, T ] is |ν|([0, T ]) =

∫
[0,T ]
|φ| |dµ| <∞.

Also, if f : R+ → R is a càdlàg function of finite variation with f(0) = 0, we can define the Lebesgue-

Stieltjes integral ∫ ∞

0

φ(s) df(s) = lim
T→∞

∫ T

0

φ(s) df(s)

for all measurable functions φ such that
∫∞
0
|φ(s)| |df(s)| <∞.

Review: Approximation of Lebesgue Stieltjes integral. We can approximate a Lebesgue-Stieltjes

integral of a continuous function by differentiating on a mesh. Let 0 = tn0 < tn1 < · · · < tnkn = T be a sequence

of partitions whose mesh max1≤j≤kn(t
n
j − tnj−1)→ 0. Then

∫ T

0

φn(s) df(s) =

kn∑
j=1

φ(tnj )
(
f(tnj )− f(tnj−1)

)
, where φn(s) = φ(0)1{0}(s) +

kn∑
j=1

φ(tnj )1(tnj−1,t
n
j ]
(s).

By continuity of φ, we have φn → φ, and all these functions are dominated by a constant maxs∈[0,T ] |φ(s)|.
By Lebesgue dominated convergence theorem, we have

∫ T

0

φ(s) df(s) = lim
n→∞

kn∑
j=1

φ(tnj )
(
f(tnj )− f(tnj−1)

)
.

Definition 3.63 (Finite variation processes). An adapted process (Xt)t≥0 is said to be a finite variation

process if all its sample paths t 7→ Xt(ω) are functions of finite variation on R+. In addition, if all sample

paths t 7→ Xt(ω) are monotone increasing, the process (Xt)t≥0 is said to be an increasing process.

Remark. If (At)t≥0 is a finite variation process, then

Vt =

∫ t

0

|dAs|, ∀t ∈ R+

is an increasing process. Writing At =
1
2 (Vt +At)− 1

2 (Vt −At) shows that any finite variation process can be

written as the difference of two increasing processes. Note that Vt is Ft-measurable, because

Vt = lim
n→∞

kn∑
j=1

∣∣∣Atnj −Atnj−1

∣∣∣ , where 0 = tn0 < tn1 < · · · < tnkn = t is an increasing sequence of partitions of [0, t].
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Proposition 3.64. Let A = (At)t≥0 be a finite variation process, and let H = (Ht)t≥0 be a progressive process

such that
∫ t
0
|Hs(ω)| |dAs(ω)| <∞ for all t ∈ R+ and all ω ∈ Ω. Then the process H ·A defined by

(H ·A)t =
∫ t

0

Hs dAs, ∀t ∈ R+.

is also a finite variation process.

Proof. It suffices to show that H · A is an adapted process, namely, if h : Ω × [0, t] → R is measurable on

Ft ×B([0, t]), and
∫ t
0
|h(ω, s)| |dAs(ω)| <∞ for all ω ∈ Ω, then ω 7→

∫ t
0
h(ω, s) dAs(ω) is Ft-measurable. Let

h(ω, s) = 1F (ω)1(p,q](s), where F ∈ Ft and (p, q] ⊂ [0, t]. Then∫ t

0

h(ω, s) dAs(ω) = 1F (ω) (Aq(ω)−Ap(ω)) .

Clearly, 1F (Aq −Ap) is Ft-measurable. Now we define

Lt =

{
G ∈ Ft ⊗B([0, t]) : ω 7→

∫ t

0

1G(ω, s) dAs(ω) is Ft-measurable

}
.

Note this is a λ-system containing {F × (p, q] : F ∈ Ft, (p, q] ⊂ [0, t]}, which is a π-system generating

Ft⊗B([0, t]). By Sierpiński-Dynkin π-λ theorem, we have Lt = Ft⊗B([0, t]). Hence ω 7→
∫ t
0
h(ω, s) dAs(ω)

is Ft-measurable for all simple functions h. The remaining part follows from simple function approximation

and the Lebesgue dominated convergence theorem.

Remark. If the filtration (Ft)t≥0 is complete, then Proposition 3.64 holds for all progressive process (Ht)t≥0

such that
∫ t
0
|Hs(ω)| |dAs(ω)| < ∞ for all t ∈ R+ and P-a.e. ω ∈ Ω. To clarify this, we redefine H · A = 0 on

the P-null set where
∫ t
0
|Hs(ω)| |dAs(ω)| <∞.

3.4.2 Continuous Local Martingales

The local martingales is a large class of stochastic processes.

Definition 3.65 (Continuous local martingales). An adapted continuous process X = (Xt)t≥0 with X0 = 0

a.s. is said to be a continuous local martingale, if there exists an increasing sequence (τn)
∞
n=1 of stopping times

such that τn ↑ ∞, and the stopped process Xτn = (Xτn
t )t≥0 is a uniformly integrable martingale. In that case,

the sequence (τn)
∞
n=1 of stopping times is said to reduce process X.

More generally, an adapted continuous process X = (Xt)t≥0 is said to be a continuous local martingale if

the process Yt = Xt −X0 is a continuous local martingale. Here we do not assume X0 is L1.

Remark. In the Definition 3.65, one can replace “uniformly integrable martingale” by “martingale”. In the

latter case, τn ∧ n is a sequence of stopping times such that Xτn∧n is uniformly integrable, and τn ∧ n ↑ ∞.

The following two basic facts about continuous local martingales immediately follow from Corollary 3.62.

Proposition 3.66. Suppose X = (Xt)t≥0 is a continuous local martingale. Then:

(i) For any stopping time τ , the stopped process (Xτ
t )t≥0 is also a continuous local martingale.

(ii) If (τn)
∞
n=1 is a sequence of stopping times reducing X, and (σn)

∞
n=1 is a sequence of stopping times such

that σn ↑ ∞, then (σn ∧ τn)∞n=1 also reduces X.

Remark. We can show that all continuous local martingales form a vector space. To see this, let X and X ′

be two continuous local martingales reduced by stopping time sequences (τn)
∞
n=1 and (τ ′n)

∞
n=1, respectively.

Using property (ii), we know that (τn ∧ τ ′n)∞n=1 is a stopping time sequence that reduces process X +X ′.
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Proposition 3.67. Let X = (Xt)t≥0 be a continuous local martingale.

(i) If (Xt)t≥0 is nonnegative and X0 ∈ L1(Ω,F ,P), then (Xt)t≥0 is a supermartingale.

(ii) If there exists random variable Z ∈ L1(Ω,F ,P) such that |Xt| ≤ Z for all t ≥ 0, then (Xt)t≥0 is a

uniformly integrable martingale.

(iii) If X0 = 0, the sequence of stopping times τn = inf{t ≥ 0 : |Xt| ≥ n} reduces X.

(iv) If W is a F0-measurable (real) random variable, then (WXt)t≥0 is also a continuous local martingale.

Proof. (i) Write Xt = X0 + Yt. By definition, there exists a sequence (τn)
∞
n=1 of stopping times reducing Y .

Whenever t > s ≥ 0, since X0 ∈ L1(Ω,F ,P), we have

Ys∧τn = E[Yt∧τn |Fs] ⇒ Xs∧τn = E[Xt∧τn |Fs] (3.9)

Since X is nonnegative, by Fatou’s lemma (conditional version), we have

Xs = lim inf
n→∞

Xs∧τn = lim inf
n→∞

E[Xt∧τn |Fs] ≥ E
[
lim
n→∞

Xt∧τn |Fs

]
= E[Xt|Fs].

(ii) Following (3.9), we use Lebesgue dominated convergence theorem, because |Xt∧τn | ≤ Z ∈ L1(Ω,F ,P) for
all n ∈ N and t ≥ 0. Then Xt∧τn → Xt in L

1, and Xs = E[Xt|Fs] for 0 ≤ s < t.

(iii) By Proposition 3.14 (ii), τn = inf{t ≥ 0 : Xt ≥ n} is indeed a stopping time. By (ii), the stopped process

Xτn , bounded by n, is a uniformly integrable martingale for each n ∈ N, and the result follows.

(iv) It suffices to show the case X0 = 0. Choose the stopping times τn defined in (iii). Clearly, the process

(WXt∧τn)t≥0 is adapted, and |WXt∧τn | ≤ n|W | is L1. Furthermore, since (τn)
∞
n=1 reduces (Xt)t≥0, and W is

F0-measurable, we have E[WXt∧τn |Fs] = WE[Xt∧τn |Fs] = WXs∧τn for all t > s ≥ 0. Hence (τn)
∞
n=1 also

reduces (WXt)t≥0, and the conclusion follows.

Proposition 3.68. If X = (Xt)t≥0 is both a continuous local martingale and a finite variation process with

X0 = 0, then there exists a negligible set N such that Xt(ω) = 0 for all t ∈ R+ and all ω ∈ Ω\N .

Proof. Since X is a finite variation process,
∫ t
0
|dXs| is an increasing process with continuous sample paths.

For every n ∈ N, define the stopping time

τn = inf

{
t ≥ 0 :

∫ t

0

|dXs| ≥ n
}
,

and set Yt = Xτn
t . Then Yt ≤

∫ t∧τn
0

|dXs| ≤ n. By Proposition 3.67 (ii), Y is a uniformly integrable martingale.

Let 0 = t0 < t1 < · · · < tk = t be a partition of [0, t]. By Proposition 3.51, we have

E
[
Y 2
t

]
=

p∑
j=1

E
[(
Ytj − Ytj−1

)2] ≤ E
[

sup
1≤j≤k

∣∣Ytj − Ytj−1

∣∣ p∑
j=1

∣∣Ytj − Ytj−1

∣∣] ≤ nE[ sup
1≤j≤k

∣∣Ytj − Ytj−1

∣∣].
Now we take a sequence of increasing partitions 0 = tm0 < tm1 < · · · < tmkm = t of [0, t] whose mesh converges

to 0. By continuity of sample paths of Y and Lebesgue dominated convergence theorem, we have

sup
1≤j≤km

∣∣∣Ytmj (ω)− Ytmj−1
(ω)
∣∣∣→ 0 as m→∞, ∀ω ∈ Ω ⇒ E

[
sup

1≤j≤km

∣∣∣Ytmj − Ytmj−1

∣∣∣]→ 0.

Note we are able to use dominated convergence theorem because Y is bounded by n. Hence E[Y 2
t ] = 0, and

Xτn
t = 0 a.s.. Letting n→∞, we then have Xt = 0 a.s. for all ∈ R+. To show that X(ω) ≡ 0 for a.s. ω ∈ Ω,

we take a countable dense subset D ⊂ R+. Then N = {ω ∈ Ω : ∃t ∈ D, Xt(ω) ̸= 0} is a negligible set. By

continuity of sample paths of X, we have Xt(ω) = 0 for all t ∈ R+ and all ω ∈ Ω\N .
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Remark. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two stochastic processes. If there exists a negligible set N ⊂ Ω

such that Xt(ω) = Yt(ω) for all t ∈ R+ and all ω ∈ Ω\N , then X and Y are said to be indistinguishable. Note

this is a stronger condition than a.s. modification.

3.4.3 Quadratic Variation and Covariation

From now on we assume that the filtration (Ft)t≥0 is complete.

Theorem 3.69 (Quadratic variation). Let X = (Xt)t≥0 be a continuous local martingale. There exists

an increasing process denoted by ⟨X,X⟩ = (⟨X,X⟩t)t≥0, which is unique up to indistinguishability, such that

X2−⟨X,X⟩ is a continuous local martingale. Furthermore, for every fixed t > 0, if 0 = tn0 < tn1 < · · · < tnkn = t

is an increasing sequence of partitions of [0, t] with the mesh max1≤j≤kn |tnj − tnj−1| → 0, then

⟨X,X⟩t = lim
n→∞

kn∑
j=1

(
Xtnj
−Xtnj−1

)2
(3.10)

in probability. The process ⟨X,X⟩ is called the quadratic variation of X.

Proof. Step I: Let Yt and Y ′
t be two processes satisfying the conditions given in the statement. Then the

process Y ′
t − Yt = (X2

t − Yt)− (X2
t − Y ′

t ) is both a finite variation process and a continuous local martingale.

According to Proposition 3.68, Y ′
t − Yt = 0 a.s., and the statement of uniqueness follows.

Step II: Now we prove existence. We first assume that X0 = 0 and X is bounded. Hence X is a uniformly

integrable martingale by Proposition 3.67 (ii). We fix T > 0 and an increasing sequence of partitions of [0, T ]

with the mesh max1≤j≤kn |tnj − tnj−1| → 0. The for every s > r ≥ 0 and every bounded Fr-measurable random

variable Z, the process (Z (Xs∧t −Xr∧t))t≥0 is adapted and L1, and for all 0 ≤ t′ < t,

E [Z (Xs∧t −Xr∧t) |Ft′ ] =

E [E[Z (Xs∧t −Xr∧t) |Fr]|Ft′ ] = 0 if t′ < r,

Z E [Xs∧t −Xr|Ft′ ] = Z(Xs∧t′ −Xr) if t′ ≥ r.

Hence (Z (Xs∧t −Xr∧t))t≥0 is a bounded martingale. Following this, the process

Mn
t =

kn∑
j=1

Xtnj−1

(
Xtnj ∧t −Xtnj−1∧t

)
, satisfying X2

tnj
− 2Mn

tnj
=

j∑
i=1

(
Xtni
−Xtni−1

)2
,

is also a bounded martingale.

Claim. limn,m→∞ E
[
(Mn

T −Mm
T )2

]
= 0.

Proof of the Claim. We fix m ≤ n and evaluate the product E[Mn
TM

m
T ]:

E[Mn
TM

m
T ] =

km∑
i=1

kn∑
j=1

E
[
Xtmi−1

(
Xtmi

−Xtmi−1

)
Xtnj−1

(
Xtnj
−Xtnj−1

)]

=

kn∑
j=1

∑
i:(tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

E
[
Xtmi−1

(
Xtmi

−Xtmi−1

)
Xtnj−1

(
Xtnj
−Xtnj−1

)]

=

kn∑
j=1

∑
i:(tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

∑
l:(tnl−1,t

n
l ]⊂(tmi−1,t

m
i ]

E
[
Xtmi−1

(
Xtnl
−Xtnl−1

)
Xtnj−1

(
Xtnj
−Xtnj−1

)]

=

kn∑
j=1

∑
i:(tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

E
[
Xtmi−1

Xtnj−1

(
Xtnj
−Xtnj−1

)2]
(3.11)
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The second equality holds because once tnj−1 ≥ tmi (resp. tnj ≤ tmi−1), we can take conditional expectation with

respect to Ftnj−1
(resp. Ftmi−1

) to eliminate the corresponding term in the double sum. The fourth equality

because once l < j (resp. l > j), we can take conditional expectation with respect to Ftnj−1
(resp. Ftnl−1

) to

eliminate the corresponding term in the triple sum. As a special case of (3.11), we have

E
[
(Mn

T )
2
]
=

kn∑
j=1

E
[
X2
tnj−1

(
Xtnj
−Xtnj−1

)2]
. (3.12)

And by Proposition 3.51,

E
[
(Mm

T )2
]
=

km∑
i=1

E
[
X2
tmi−1

(
Xtmi

−Xtmi−1

)2]
=

km∑
i=1

E
[
X2
tmi−1

E
[(
Xtmi

−Xtmi−1

)2∣∣∣∣Ftmi−1

]]

=

km∑
i=1

∑
j:(tnj−1,t

n
j ]⊂(tmi−1,t

m
i ]

E
[
X2
tmi−1

E
[(
Xtnj
−Xtnj−1

)2∣∣∣∣Ftmi−1

]]

=

kn∑
j=1

∑
i:(tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

E
[
X2
tmi−1

(
Xtnj
−Xtnj−1

)2]
. (3.13)

Note that for every j ∈ {1, · · · , kn}, there is a unique i ∈ {1, · · · , km} such that (tmi−1, t
m
i ] ⊃ (tnj−1, t

n
j ].

Combining (3.11), (3.12) and (3.13), we have

E
[
(Mn

T −Mm
T )2

]
=

kn∑
j=1

∑
i:(tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

E
[(
Xtnj−1

−Xtmi−1

)2 (
Xtnj
−Xtnj−1

)2]

≤ E

 sup
1≤j≤kn, (tmi−1,t

m
i ]⊃(tnj−1,t

n
j ]

(
Xtnj−1

−Xtmi−1

)2 kn∑
j=1

(
Xtnj
−Xtnj−1

)2
≤ E

[
sup

1≤j≤kn, (tmi−1,t
m
i ]⊃(tnj−1,t

n
j ]

(
Xtnj−1

−Xtmi−1

)4] 1
2

E

( kn∑
j=1

(
Xtnj
−Xtnj−1

)2)2
 1

2

(3.14)

By continuity of the sample paths of X and the fact that X is bounded (so we can use dominated convergence

theorem), the first term in (3.14) converges to 0 as n,m → ∞. Hence our result follows if we can bound the

second term with a finite constant independent of n. Suppose that |Xt| ≤ K for all t ≥ 0. Then

E

( kn∑
j=1

(
Xtnj
−Xtnj−1

)2)2
 =

kn∑
j=1

E
[(
Xtnj
−Xtnj−1

)4]
+ 2

∑
1≤j<i≤kn

E
[(
Xtni
−Xtni−1

)2 (
Xtnj
−Xtnj−1

)2]

≤ 4K2
kn∑
j=1

E
[(
Xtnj
−Xtnj−1

)2]
+ 2

kn−1∑
j=1

E

(Xtnj
−Xtnj−1

)2 kn∑
i=j+1

E
[(
Xtni
−Xtni−1

)2
|Ftnj

]
= 4K2E

[
(XT −X0)

2
]
+ 2

kn−1∑
j=1

E
[(
Xtnj
−Xtnj−1

)2
E
[(
XT −Xtnj

)2
|Ftnj

]]
(By Proposition 3.51)

≤ 12K2E
[
(XT −X0)

2
]
≤ 48K4.

Hence we can bound the second term in (3.14) by 4
√
3K2, which completes the proof.
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Proof of Theorem 3.69 (Cont). Step III: By Doob’s Lp-inequality [Proposition 3.52 (ii)] and our claim,

0 ≤ lim
n,m→∞

E
[

sup
0≤t≤T

(Mn
t −Mm

t )
2

]
≤ lim
n,m→∞

4E
[
(Mn

T −Mm
T )

2
]
= 0.

Hence for all t ∈ [0, T ], (Mn
t )

∞
n=1 is a Cauchy sequence in L2(Ω,F ,P) and thus converges in L2. We choose

a subsequence nk ↗∞ such that

E
[

sup
0≤t≤T

(
M

nk+1

t −Mnk
t

)2]
< 2−k, ∀k ∈ N.

As a result,

E

[ ∞∑
k=1

sup
0≤t≤T

∣∣Mnk+1

t −Mnk
t

∣∣] < ∞∑
k=1

2−k <∞ ⇒
∞∑
k=1

sup
0≤t≤T

∣∣Mnk+1

t −Mnk
t

∣∣ <∞ a.s..

Therefore, except on a negligible set N where the series in the above display diverges, the function sequence

t 7→Mnk
t (ω) converges uniformly on [0, T ] as k →∞. Let Yt(ω) = limk→∞Mnk

t (ω) for all t ∈ [0, T ] if ω /∈ N ,

and otherwise Yt(ω) = 0 for all t ∈ [0, T ]. Then (Yt)t≥0 has continuous sample paths. Also, Yt is adapted by

completeness of our filtration (Ft)t≥0. Moreover, since (M t
n)

∞
n=1 converges in L2, it must converges to the a.s.

limit Yt in L2. Also, since the conditional expectation is a bounded linear operator in L2(Ω,F ,P), we can

pass the martingale property of Mn
t to Yt to obtain that E[Yt|Fs] = Ys for all 0 ≤ s < t ≤ T . Hence (Yt∧T )t≥0

is a continuous martingale.

Meanwhile, the process X2
t − 2Mn

t restricted to the finite sequence (tnj )
kn
j=1 is increasing. Take the limit

nk ↑ ∞, we have X2
t − 2Mnk

t ⇒ X2
t − Yt on [0, T ] except possibly on the negligible set N . Set V Tt = X2

t − 2Yt

on Ω\N , and V Tt = 0 on N . Then V T0 = 0, V Tt is Ft-measurable for all t ∈ [0, T ], and V T has increasing

continuous sample paths. Also, X2
t∧T − V Tt∧T is a continuous martingale.

For every T ∈ N, by the uniqueness argument proposed in Step I, we have V Tt∧T = V T+1
t∧T a.s.. Hence we

can define an increasing process ⟨X,X⟩t = V Tt for all t ∈ [0, T ] and all T ∈ N. Clearly, X2
t − ⟨X,X⟩t is a

continuous martingale. To obtain (3.10), note that X2
t∧T −V Tt∧T and X2

t∧T −⟨X,X⟩t∧T are martingales. Again

by the uniqueness argument, we have V Tt∧T = ⟨X,X⟩t∧T a.s., and particularly, V TT = ⟨X,X⟩T a.s.. Note that

Mn
T → YT = 1

2 (X
2
T − V TT ) in L2, we have

X2
T − 2Mn

T =

kn∑
j=1

(
Xtnj
−Xtnj−1

)2 L2

→ V TT = ⟨X,X⟩T a.s..

Then the proof for the case where X0 = 0 and X is bounded is completed.

Step IV: If X0 = 0, but X is not bounded, let τn = inf{t ≥ 0 : |Xt| ≥ n}. By Proposition 3.67 (iii), the

stopped process Xτn is a bounded martingale, and we set V [n] = ⟨Xτn , Xτn⟩. Again, the uniqueness argument

shows that V
[n]
t and V

[n+1]
t∧τn are indistinguishable. Then there exists an increasing and continuous process V

such that Vt∧τn = V
[n]
t a.s. for all t ≥ 0, and X2

t∧τn − Vt∧τn is a martingale for every n ∈ N. As a result,

X2
t − Vt is a continuous local martingale, and taking ⟨X,X⟩t = Vt suffices.

To obtain (3.10) (in probability), note that for all η > 0,

P

∣∣∣∣∣∣
km∑
j=1

(
Xtj −Xtj−1

)2 − ⟨X,X⟩t
∣∣∣∣∣∣ ≥ η

 ≤ 1

η2

∥∥∥∥ km∑
j=1

(
Xτn
tj −X

τn
tj−1

)2
− ⟨X,X⟩t∧τn

∥∥∥∥2
2

+ P(τn < t). (3.15)

In (3.15), the first term converges to 0 as m → ∞, because (3.10) holds in L2 when we replace X and

⟨X,X⟩t by Xτn and ⟨X,X⟩t∧τn , respectively. Also, the second term converges to 0 as n→∞ by definition.
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Step V: For the general case, we write Xt = X0+Zt, so X
2
t = X2

0 +2X0Zt+Z
2
t . By Proposition 3.67 (iv), the

process X0Zt is also a continuous local martingale. Hence X2
t −⟨Z,Z⟩t remains a continuous local martingale.

Meanwhile, (3.10) does not change by adding a F0-measurable variable X0.

Remark. According to our proof in Step V, the quadratic variation of a continuous local martingale X =

(Xt)t≥0 does not depend on the initial value X0, i.e. if we write Xt = X0+Zt, then we have ⟨X,X⟩t = ⟨Z,Z⟩t.

Proposition 3.70. Let X = (Xt)t≥0 be a continuous local martingale.

(i) If τ is a stopping time, then ⟨Xτ , Xτ ⟩t = ⟨X,X⟩t∧τ .
(ii) Assume X0 = 0. Then ⟨X,X⟩ = 0 if and only if X = 0 a.s..

Proof. (i) Since the stopped process X2
t∧τ − ⟨X,X⟩t∧τ is a continuous local martingale, the result follows.

(ii) Assume ⟨X,X⟩t = 0 for all t ≥ 0. Then X2
t − 0 is a nonnegative continuous local martingale, hence a

supermartingale by Proposition 3.67. This implies E[X2
t ] ≤ E[X2

0 ] = 0, and Xt = 0 a.s.. To prove that X = 0

a.s., take the intersection of {Xt = 0, t ∈ D} for a dense set D ⊂ R, then use sample path continuity.

Theorem 3.71. Let X = (Xt)t≥0 be a continuous local martingale such that X0 ∈ L2(Ω,F ,P). Then the

following are equivalent: (i) X is a martingale, and supt≥0 E|Xt|2 <∞; (ii) E [⟨X,X⟩∞] <∞. Furthermore,

if these properties hold, then X2 − ⟨X,X⟩ is a uniformly integrable martingale, and in particular we have

E[X2
∞] = E[X2

0 ] + E[⟨X,X⟩∞].

Proof. Without loss of generality let X0 = 0.

(i) ⇒ (ii): By Doob’s Lp-inequality [Proposition 3.52] and monotone convergence theorem, we have

E
[

sup
0≤t≤T

|Xt|2
]
≤ 4E|XT |2, ∀T ≥ 0, and E

[
sup
t≥0
|Xt|2

]
≤ 4 sup

t≥0
E|Xt|2 <∞

Define σn = inf{t ≥ 0 : ⟨X,X⟩t ≥ n} ↑ ∞. Then the continuous local martingale X2
t∧σn

− ⟨X,X⟩t∧σn is

dominated by the integrable variable supt≥0 |Xt|2 + n. By Proposition 3.67 (ii), this is a uniformly integrable

martingale, and

E [⟨X,X⟩t∧σn
] = E

[
X2
t∧σn

]
≤ E

[
sup
t≥0
|Xt|2

]
≤ 4 sup

t≥0
E[|Xt|2].

Let n→∞ and t→∞, we have E[⟨X,X⟩∞] ≤ 4 supt≥0 E[|Xt|2] <∞ by monotone convergence theorem.

(ii)⇒ (i): Let τn = {t ≥ 0 : |Xt| ≥ n}. Then the continuous local martingale X2
t∧τn−⟨X,X⟩t∧τn is dominated

by the integrable variable ⟨X,X⟩∞ + n2. According to Proposition 3.67 (ii), this is a uniformly integrable

martingale. By Fatou’s lemma, we have

E
[
X2
t∧τn

]
= E [⟨X,X⟩t∧τn ] ≤ E [⟨X,X⟩∞] <∞ ⇒ E[X2

t ] ≤ lim inf
n→∞

E
[
X2
t∧τn

]
≤ E [⟨X,X⟩∞] <∞.

Meanwhile, the sequence |Xt∧τn | ↑ |Xt| as n→∞, and (Xt∧τn)
∞
n=1 is uniformly integrable:

lim
M→∞

sup
n∈N

E
[
|Xt∧τn |1{|Xt∧τn |≥M}

]
≤ lim
M→∞

sup
n∈N

E
[
X2
t∧τn

]
E
[
1{|Xt∧τn |≥M}

]
≤ E [⟨X,X⟩∞] lim

M→∞
E
[
1{|Xt|≥M}

]
= 0.

As a result, Xt∧τn → Xt a.s. and in L1. By Proposition 3.67 (iii), (Xt∧τn)t≥0 is a martingale, and we have

E[Xt∧τn |Fs] = Xs∧τn for all t > s ≥ 0. Convergence in L1 implies E[Xt|Fs] = Xs, hence X is a martingale.

Finally, if (i) and (ii) hold, the continuous local martingale X2
t − ⟨X,X⟩t is dominated by the integrable

variable ⟨X,X⟩∞ + supt≥0 |Xt|2. By Proposition 3.67 (ii), this is a uniformly integrable martingale.
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The following corollary is derived by applying Theorem 3.71 on (Xt∧T )t≥0 for each T ≥ 0.

Corollary 3.72. Let X = (Xt)t≥0 be a continuous local martingale such that X0 ∈ L2(Ω,F ,P). Then the

following are equivalent: (i) X is a martingale, and Xt ∈ L2(Ω,F ,P) for all t ≥ 0; (ii) E [⟨X,X⟩t] < ∞ for

all t ≥ 0. Furthermore, if these properties hold, then X2
t − ⟨X,X⟩t is a martingale.

Corollary 3.73. Let X = (Xt)t≥0 be a continuous local martingale such that ⟨X,X⟩∞ < ∞ a.s.. Then X

converges a.s..

Proof. If ⟨X,X⟩∞ < ∞, the stopping time Tn = inf{t ≥ 0 : ⟨X,X⟩t ≥ n} a.s. increases to ∞ as n → ∞.

By Theorem 3.71, the local martingale XTn is a L2-bounded martingale, which converges a.s.. On the event

{⟨X,X⟩∞ <∞} we have Tn =∞ a.s. from some n on, which completes the proof.

Definition 3.74 (Bracket). Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two continuous local martingales. The

bracket (or quadratic covariation) ⟨X,Y ⟩ is defined as the following finite variation process:

⟨X,Y ⟩t =
1

2
(⟨X + Y,X + Y ⟩t − ⟨X,X⟩t − ⟨Y, Y ⟩t) , t ≥ 0.

We have the following properties and approximation formula for the bracket.

Proposition 3.75. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two continuous local martingales.

(i) ⟨X,Y ⟩ is the unique (up to indistinguishability) finite variation process such that XtYt − ⟨X,Y ⟩t is a

continuous local martingale.

(ii) The mapping (X,Y ) 7→ ⟨X,Y ⟩ is bilinear and symmetric.

(iii) For any increasing sequence of partitions 0 = tn0 < tn1 < · · · < tnkn = t of [0, t] with mesh tending to 0,

⟨X,Y ⟩t = lim
n→∞

kn∑
j=1

(Xtnj
−Xtnj−1

)(Ytnj − Ytnj−1
) in probability.

(iv) For every stopping time τ , ⟨Xτ , Y τ ⟩t = ⟨Xτ , Y ⟩t = ⟨X,Y ⟩t∧τ .
(v) For every stopping time τ , Xτ (Y − Y τ ) is a continuous martingale.

(vi) If X and Y are two L2-bounded continuous martingales, XtYt − ⟨X,Y ⟩t is a uniformly integrable mar-

tingale. Consequently, ⟨X,Y ⟩∞ is well-defined as the a.s. limit of ⟨X,Y ⟩t as t → ∞, and E[X∞Y∞] =

E[X0Y0] + E[⟨X,Y ⟩∞].

(vii) ⟨X,Y ⟩t = 0 a.s. for all t ≥ 0 if and only if XY is a continuous local martingale. In this case, the two

continuous local martingales X and Y are said to be orthogonal.

Proof. (i) Since XY = 1
2 (X + Y )2 − X2 − Y 2, the process XtYt − ⟨X,Y ⟩t is a continuous local martingale.

The uniqueness argument is similar to Theorem 3.69.

(ii) is a consequence of the uniqueness argument. (iii) follows from (3.10).

(iv) According to (iii), we have

⟨Xτ , Y τ ⟩t = ⟨Xτ , Y ⟩t = ⟨X,Y ⟩t on {τ ≥ t},

⟨Xτ , Y τ ⟩t − ⟨Xτ , Y τ ⟩τ = ⟨Xτ , Y ⟩t − ⟨Xτ , Y ⟩τ = 0 on {τ < t}.

(v) is a consequence of (iv), since Xτ
t (Yt − Y τt ) = Xτ

t Yt − ⟨Xτ , Y ⟩t − (Xτ
t Y

τ
t − ⟨Xτ , Y τ ⟩t).

(vi) is a consequence of Theorem 3.71.

(vii) If XY is a local martingale, so is ⟨X,Y ⟩ = XY − (XY − ⟨X,Y ⟩), which is also a finite variation process.

Conversely, if ⟨X,Y ⟩t = 0 a.s. for all t ≥ 0, then XY = (XY − ⟨X,Y ⟩) + ⟨X,Y ⟩ is a local martingale.
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Theorem 3.76 (Kunita-Watanabe). Let X and Y be two continuous local martingales, and let H and K be

two measurable processes. Then∫ ∞

0

|Hs| |Ks| |d⟨X,Y ⟩s| ≤
(∫ ∞

0

H2
s d⟨X,X⟩s

)1/2(∫ ∞

0

K2
s d⟨Y, Y ⟩s

)1/2

.

Proof. Given t > s ≥ 0, we abuse the notation ⟨X,Y ⟩ts = ⟨X,Y ⟩t − ⟨X,Y ⟩s. Let s = tn0 < tn1 < · · · < tnkn = t

be a increasing sequence of partitions of [s, t] with the mesh tending to 0. Let SnXX =
∑kn
j=1

(
Xtnj
−Xtnj−1

)2
,

SnY Y =
∑kn
j=1

(
Ytnj − Ytnj−1

)2
, and S2

XY =
∑kn
j=1

(
Xtnj
−Xtnj−1

)(
Ytnj − Ytnj−1

)
. By Cauchy-Schwarz inequality,

we have SnXY ≤
√
SnXXS

n
Y Y . Note that ⟨X,Y ⟩ts −

√
⟨X,X⟩ts⟨Y, Y ⟩ts

P→ SnXY −
√
SnXXS

n
Y Y . For all η > 0,

P
(
⟨X,Y ⟩ts −

√
⟨X,X⟩ts⟨Y, Y ⟩ts > η

)
≤ P

(
⟨X,Y ⟩ts −

√
⟨X,X⟩ts⟨Y, Y ⟩ts − SnXY +

√
SnXXS

n
Y Y > η

)
→ 0.

By taking the union of all rationals η > 0, we have ⟨X,Y ⟩ts −
√
⟨X,X⟩ts⟨Y, Y ⟩ts ≤ 0 a.s.. Since t > s ≥ 0

are arbitrary, ⟨X,Y ⟩ts −
√
⟨X,X⟩ts⟨Y, Y ⟩ts ≤ 0 holds for all rationals t > s ≥ 0 for a.s. ω ∈ Ω. By continuity

of X and Y , we have for a.s. ω ∈ Ω that ⟨X,Y ⟩ts −
√
⟨X,X⟩ts⟨Y, Y ⟩ts ≤ 0 for all reals t > s ≥ 0.

Now we fix ω ∈ Ω with ⟨X,Y ⟩ts −
√
⟨X,X⟩ts⟨Y, Y ⟩ts ≤ 0 for all reals t > s ≥ 0. Then all remaining results

are deterministic. For any subdivisions s = t0 < t1 < · · · < tk = t, we have

k∑
j=1

∣∣∣⟨X,Y ⟩tjtj−1

∣∣∣ ≤ k∑
j=1

√
⟨X,X⟩tjtj−1

√
⟨Y, Y ⟩tjtj−1

≤

√√√√ k∑
j=1

⟨X,X⟩tjtj−1

√√√√ k∑
j=1

⟨Y, Y ⟩tjtj−1
=
√
⟨X,X⟩ts

√
⟨Y, Y ⟩ts.

Let the mesh of our partition tends to 0, we obtain∫ t

s

|d⟨X,Y ⟩u| ≤
√
⟨X,X⟩ts

√
⟨Y, Y ⟩ts

Fix T > 0, and let MT be the collection of all A ∈ B([0, T ]) such that

∫
A

|d⟨X,Y ⟩u| ≤

√∫
A

d⟨X,X⟩u

√∫
A

d⟨Y, Y ⟩u. (3.16)

By monotone convergence theorem, MT is a monotone class, and it contains the collection of all finite inter-

sections of closed intervals in [0, T ], which is an algebra. By monotone class theorem [Theorem 1.11], we have

MT = B([0, T ]). As a result, (3.16) holds for all bounded Borel sets A ∈ B(R+). Also, for all nonnegative

simple functions h, k on [0, T ], choose finite partition A1, · · · , Am of [0, T ] such that h =
∑m
i=1 αi1Ai

and

k =
∑m
i=1 βj1Ai

. Then we have

∫
h(s)k(s) |d⟨X,Y ⟩s| =

m∑
i=1

αiβi

∫
Ai

|d⟨X,Y ⟩s| ≤

√√√√ m∑
i=1

α2
i

∫
Ai

d⟨X,X⟩u

√√√√ m∑
i=1

β2
i

∫
Ai

d⟨Y, Y ⟩u

=

√∫
h(s)2 d⟨X,X⟩s

√∫
k(s)2 d⟨Y, Y ⟩s

Note that every nonnegative measurable function on [0, T ] is the limit of an increasing sequence of nonnegative

simple functions [0, T ], and every nonnegative measurable function h on R+ is the increasing limit of h1[0,T ]

as T →∞. Hence an application of monotone convergence theorem finishes the proof.
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3.4.4 Continuous Semimartingales

Definition 3.77 (Continuous semimartingales). A process X = (Xt)t≥0 is said to be a continuous semi-

martingale if it can be written as

Xt =Mt +At, ∀t ∈ R+, (3.17)

where M = (Mt)t≥0 is a continuous local martingale and A = (At)t≥0 is a continuous finite variation process.

Remark. Thanks to Proposition 3.68, the decomposition (3.17) is unique up to indistinguishability. We call

this the canonical decomposition of a continuous semimartingale X.

Definition 3.78 (Bracket). Given two continuous semimartingale X =M +A and Y =M ′ +A′ (which are

canonical decompositions), we define the bracket ⟨X,Y ⟩ = ⟨M,M ′⟩, which is a finite variation process.

Proposition 3.79. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two continuous semimartingales. Let t > 0. Let

0 = tn0 < tn1 < · · · < tnkn = t be any increasing sequence of partitions of [0, t] whose mesh tends to 0. Then

⟨X,Y ⟩t = lim
n→∞

kn∑
j=1

(
Xtnj
−Xtnj−1

)(
Ytnj − Ytnj−1

)
in probability.

Proof. Let X =M +A and Y =M ′ +A′ be the canonical decompositions. Then

kn∑
j=1

(
Xtnj
−Xtnj−1

)(
Ytnj − Ytnj−1

)
=

kn∑
j=1

(
Mtnj

−Mtnj−1

)(
M ′
tnj
−M ′

tnj−1

)
+

kn∑
j=1

(
Mtnj

−Mtnj−1

)(
A′
tnj
−A′

tnj−1

)

+

kn∑
j=1

(
Atnj −Atnj−1

)(
M ′
tnj
−M ′

tnj−1

)
+

kn∑
j=1

(
Atnj −Atnj−1

)(
A′
tnj
−A′

tnj−1

)
According to Proposition 3.75 (iii),

lim
n→∞

kn∑
j=1

(
Mtnj

−Mtnj−1

)(
M ′
tnj
−M ′

tnj−1

)
= ⟨M,M ′⟩t = ⟨X,Y ⟩t in probability.

Also, note that∣∣∣∣∣∣
kn∑
j=1

(
Mtnj

−Mtnj−1

)(
A′
tnj
−A′

tnj−1

)∣∣∣∣∣∣ ≤
(∫ t

0

|dA′
s|
)

sup
1≤j≤kn

∣∣∣Mtnj
−Mtnj−1

∣∣∣→ 0, a.s.,

∣∣∣∣∣∣
kn∑
j=1

(
Atnj −Atnj−1

)(
M ′
tnj
−M ′

tnj−1

)∣∣∣∣∣∣ ≤
(∫ t

0

|dAs|
)

sup
1≤j≤kn

∣∣∣M ′
tnj
−M ′

tnj−1

∣∣∣→ 0, a.s.,

∣∣∣∣∣∣
kn∑
j=1

(
Atnj −Atnj−1

)(
A′
tnj
−A′

tnj−1

)∣∣∣∣∣∣ ≤
(∫ t

0

|dAs|
)

sup
1≤j≤kn

∣∣∣A′
tnj
−A′

tnj−1

∣∣∣→ 0, a.s.,

where the a.s. convergence holds by continuity of sample paths of M , M ′ and A′.
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4 Brownian Motions: Part I

4.1 Pre-Brownian Motions and Brownian Motions

Definition 4.1 (Gaussian spaces). A (centered) Gaussian space H is a closed subspace of L2(Ω,F ,P) that
contains only centered Gaussian variables.

Remark. To justify the closedness of a Gaussian space H ⊂ L2(Ω,F ,P), we let H ∋ Xn ∼ N(0, σ2
n)

L2

→ X.

Convergence in L2 implies E[X2
n] = σ2

n → σ2. Then for all λ ∈ R, by dominated convergence theorem,

E
[
eiλX

]
= lim
n→∞

E
[
eiλXn

]
= lim
n→∞

exp

(
−σ

2
n

2
λ2
)

= exp

(
−σ

2

2
λ2
)
.

Hence X ∼ N(µ, σ2) ∈ H. Furthermore, since L2(Ω,F ,P) is a complete space, so is a Gaussian subspace.

We can make H a Hilbert space by define the inner product ⟨X,Y ⟩ = E[XY ] for X,Y ∈ H. In this space,

orthogonality and independence are equivalent. To be specific, in the Gaussian space H, two variables X and

Y are independent if and only if they are orthogonal, i.e. E[XY ] = 0. To see the “if” case, note that X,Y are

jointly Gaussian. Then for all s, t ∈ R,

E
[
ei(sX+tY )

]
= exp

(
−s

2

2
E[X2]− stE[XY ]− t2

2
E[Y 2]

)
= exp

(
−s

2

2
E[X2]− t2

2
E[Y 2]

)
= E

[
eisX

]
E
[
eitY

]
.

By Corollary 2.45, X and Y are independent. Likewise, assume that G,K are two subspaces of the Gaussian

space H. Then G ⊥ K if and only if the sub σ-algebras σ(G) and σ(K) generated by G and K are independent.

We also point out the equivalence between orthogonal projection onto a Gaussian space and conditional

expectation. If H is a Gaussian space, and G is a closed subspace of H, then for all X ∈ H, the conditional

expectation E[X|σ(G)] is the projection of X onto G. To see this, let ξ be the orthogonal projection of X onto

G, so that X − ξ ⊥ G. As a result, E[X|σ(G)] = E[ξ + (X − ξ)|σ(G)] = E[ξ|σ(G)] = ξ.

4.1.1 Gaussian White Noises and Pre-Brownian Motions

Definition 4.2 (Gaussian white noise). Let (E,E ) be a measurable space, and let µ be a σ-finite measure on

(E,E ). A Gaussian white noise with intensity µ is an isometry W from L2(E,E , µ) into a Gaussian space.

Remark. (i) According to the polarization identity, an isometry W also preserves inner product. Therefore, if

f, g ∈ L2(E,E , µ), then we have

E[W (f)W (g)] = ⟨f, g⟩ =
∫
fg dµ, and in particular, E[W (f)2] = ∥f∥22 =

∫
|f |2 dµ.

If f = 1A with µ(A) <∞, we write W (A) =W (1A), and W (A) ∼ N(0, µ(A)).

(ii) Given any σ-finite measure µ on (E,E ), we can always find a Gaussian white noise with intensity µ on an

appropriate probability space (Ω,F ,P). Let {eλ, λ ∈ Λ} be an orthonormal basis of L2(E,E , µ). According

to Corollary 4.19, we define (Ω,F ,P) = (RΛ,B(R)⊗Λ,G), where G extends Gaussian measures

G(t1,··· ,tn)(A) =
1

(2π)n/2

∫
A

e−
1
2 (z

2
1+···+z2n) dz, ∀t1, · · · , tn ∈ T , ∀A ∈ B(Rn).

Then the coordinate maps (πλ)λ∈Λ is a collection of independent standard Gaussian variables. For every

f ∈ L2(E,E , µ), we define

W (f) =
∑
λ∈Λ

⟨f, eλ⟩πλ.
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This series converges in L2 since {eλ, λ ∈ Λ} is an orthonormal basis of L2(E,E , µ). Hence W takes values in

the Gaussian space H = span (πλ)λ∈Λ. Since W maps an orthonormal basis in L2(E,E , µ) to one in H, it is

an isometry. Thus we find a Gaussian white noise W with intensity µ.

(iii) Given a measurable set A in (E,E , µ) with µ(A) <∞, we can approximate µ(A) with a Gaussian white

noise W with intensity µ. Let A = An1 ⨿ · · · ⨿Ankn be a sequence of partitions of A such that

lim
n→∞

(
max

j∈{1,··· ,kn}
µ(Anj )

)
= 0.

Then W (Anj ), j = 1, · · · , kn are independent Gaussian variables, and E[W (Anj )
2] = µ(Aj). Furthermore,

E


 kn∑
j=1

W (Anj )
2 − µ(A)

2
 =

kn∑
j=1

E
[(
W (Anj )

2 − µ(Anj )
)2]

= 2

kn∑
j=1

µ(Anj )
2 ≤ 2µ(A) max

1≤j≤kn
µ(Anj )→ 0.

This implies

lim
n→∞

kn∑
j=1

W (Anj )
2 = µ(A) in L2.

Definition 4.3 (Pre-Brownian motion). Give R+ the Borel σ-algebra B(R+) and the Lebesgue measure m,

and let W be a Gaussian white noise on R+ with intensity m. The process (Bt)t≥0 defined by

Bt =W (1[0,t]), ∀t ∈ R+

is said to be a pre-Brownian motion.

Remark. By definition, a pre-Brownian motion B = (Bt)t≥0 is a Gaussian process, i.e. the linear combination

of any finitely many observations Bt1 , · · · , Btn is Gaussian. The covariance function of this process is given by

K(s, t) = E [BsBt] =

∫
1[0,s]∩[0,t] dm = s ∧ t, ∀s, t ∈ R+.

Proposition 4.4 (Characterization of pre-Brownian motions). Let B = (Bt)t≥0 be a (real-valued) stochastic

process. The following are equivalent:

(i) (Bt)t≥0 is a pre-Brownian motion.

(ii) (Bt)t≥0 is a centered Gaussian process with covariance K(s, t) = s ∧ t.
(iii) B0 = 0 a.s., and for every t > s ≥ 0, the random variable Bt−Bs is independent of σ(Br, r ∈ [0, s]) and

distributed according to N(0, t− s).
(iv) B0 = 0 a.s., and for every choice of 0 = t0 < t1 < · · · < tn, the variables {Btj −Btj−1

, j = 1, · · · , n} are
independent, and for every j = 1, · · · , p, the variable Btj−Btj−1

is distributed according to N(0, tj−tj−1).

Proof. The facts that (i) ⇒ (ii) and that (iii) ⇒ (iv) are clear.

(ii) ⇒ (iii). Let H be the Gaussian space spanned by {Br, r ∈ [0, s]} and Xt. Then Bt−Bs ∈ H is a centered

Gaussian variable, and

E
[
(Bt −Bs)2

]
= t− 2(s ∧ t) + s = t− s,

E [(Bt −Bs)Br] = t ∧ r − s ∧ r = r − r = 0, ∀r ∈ [0, s].

Hence Xt −Xs ∼ N(0, t− s), and Xt is independent of all Xr with r ∈ [0, s].
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(iv) ⇒ (i). It suffices to show that there exists an isometry W between L2(R+,B(R+),m) and a Gaussian

space H. For all step functions f =
∑n
j=1 λj1(tj−1,tj ] in L

2(R+,B(R+),m), define

W (f) =

n∑
j=1

λj(Btj −Btj−1).

If f, g ∈ L2(R+,B(R+),m) are two step functions, we can find a partition 0 = t0 < t1 < · · · < tn such that

f =
∑n
j=1 λj1(tj−1,tj ] and g =

∑n
j=1 νj1(tj−1,tj ]. According to (iii), we have

E[W (f)W (g)] = E

 n∑
j=1

n∑
k=1

λjνk(Btj −Btj−1)(Btk −Btk−1
)

 =

n∑
j=1

λjνj(tj − tj−1) =

∫
fg dm.

Therefore W is an isometry from the vector space of all step functions in L2(R+,B(R+),m) into the

Gaussian space spanned by {Bt, t ∈ R+}. Since the step functions are dense in L2(R+,B(R+),m), we

immediately extend W to an isometry between L2(R+,B(R+),m) and span {Bt, t ≥ 0}.

Remark. According to our proof of (iv) ⇒ (i), we can determine a Gaussian noise W with intensity m given

a pre-Brownian motion B = (Bt)t≥0. For all f ∈ L2(R+,B(R+),m), we write the notation

W (f) =

∫ ∞

0

f(s) dBs, W (f1[0,t]) =

∫ t

0

f(s) dBs,

and

W (f1(s,t]) =

∫ t

s

f(r) dBr, ∀t > s ≥ 0.

The mapping W : f 7→
∫∞
0
f(s) dBs is called the Wiener integral with respect to B = (Bt)t≥0. Clearly, we

have W (f) ∼ N
(
0,
∫∞
0
|f |2 dm

)
.

Proposition 4.5. Let B = (Bt)t≥0 be a pre-Brownian motion. The following statements are true:

(i) (Symmetry). −B is also a pre-Brownian motion.

(ii) (Scale invariance). For all λ > 0, the process

Bλt =
1

λ
Bλ2t

is a pre-Brownian motion.

(iii) (Simple Markov property). For all s ≥ 0, the process

B
(s)
t = Bs+t −Bs

is a pre-Brownian motion that is independent of σ(Br, r ∈ [0, s]).

(iv) (Time inversion). The process B̂ defined by B̂0 = 0 and

B̂t = tB 1
t

is (indistinguishably) a pre-Brownian motion.

Proof. The statement (i) is clear. (ii) follows from Proposition 4.4 (iv). For (iii), Proposition 4.4 (iv) implies

that B
(s)
t is a pre-Brownian motion, and the independence argument follows from Proposition 4.4 (iii). The

statement (iv) follows from Proposition 4.4 (ii).
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4.1.2 Sample Path Continuity and Brownian Motions

Before introducing Brownian motions, we first discuss continuity of sample paths of a stochastic process. For

the convenience of a chaining argument, we consider the set of dyadic rationals

Q2 =
{m
2n

: m,n ∈ N0

}
,

which is a dense subset of R+.

Theorem 4.6 (Kolmogorov continuity lemma). Let X = (Xt)t∈Q2∩I be a process taking values in a metric

space (E, d), where I ⊂ R+ is a compact interval. Assume there exist ϵ, q, C ∈ (0,∞) such that

E [d(Xs, Xt)
q] ≤ C|t− s|1+ϵ, ∀s, t ∈ Q2 ∩ I. (4.1)

Then for each α ∈ (0, ϵq ), there exists a random variable Mα with P(Mα <∞) = 1 such that

d(Xs, Xt) ≤Mα|t− s|α for all t, s ∈ Q2 ∩ I.

Proof. Without loss of generality, we take I = [0, 1] and fix α ∈ (0, ϵq ). Let

Gn =
{
d
(
Xi2−n , X(i−1)2−n

)
≤ 2−αn for all 1 ≤ i ≤ 2n

}
.

We apply Markov’s inequality and a union bound to obtain

P(Gcn) ≤
2n∑
i=1

P
(
d
(
Xi2−n , X(i−1)2−n

)
≤ 2−αn

)
≤ 2−αqn

2n∑
i=1

E
[
d
(
Xi2−n , X(i−1)2−n

)q] ≤ C2−n(ϵ−αq), (4.2)

where the last inequality follows from (4.1). Now we introduce a useful chaining argument.

Lemma 4.7 (Chaining). On the event HN =
⋂∞
n=N GN , for all s, t ∈ Q2 ∩ [0, 1] with |s− t| < 2−N ,

d(Xs, Xt) ≤
3

1− 2−α
|t− s|α.

Proof of the lemma. We fix t > s > 0 with s, t ∈ Q2 ∩ [0, 1]. We take m ≥ N and 1 ≤ j ≤ 2m such that

s ≤ (j − 1)2−m < j2−m ≤ t. Then we can write s and t as binary expansions

s = (j − 1)2−m −
k∑
i=1

δi2
−m−i, t = j2−m +

l∑
i=1

δ′i2
−m−i, where δ1, · · · , δk, δ′1, · · · , δ′l ∈ {0, 1}.

We take the finite sequences si ↓ sk = s and ti ↑ tl = t defined by partial sums. On the event HN ,

d(Xs, Xt) ≤ d(Xs, X(j−1)2−m) + d(X(j−1)2−m , Xj2−m) + d(Xj2−m , Xt)

≤
k∑
i=1

d
(
Xsi−1 , Xsi

)
+ d(X(j−1)2−m , Xj2−m) +

l∑
i=1

d
(
Xti−1,Xti

)
≤

∞∑
i=1

2−α(m+i) + 2−mα +

∞∑
i=1

2−α(m+i) ≤ 3 · 2−mα

1− 2−α
.

Since |t− s| ≥ 2−m, the result follows.
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Proof of Theorem 4.6 (Cont). Applying a union bound on (4.2), we have

P(Hc
N ) ≤

∞∑
n=N

P(GcN ) ≤ C
∞∑
n=N

2−n(ϵ−αq) ≲ 2−N(ϵ−αq).

Since ϵ− αq > 0, we have
∞∑
N=1

P(Hc
N ) <∞.

Using the Borel-Cantelli lemma, we know that there exists a random Nα with P(Nα <∞) = 1 such that HNα

occurs. When Nα <∞, we have

d(Xs, Xt) ≤ C|t− s|α for all s, t ∈ Q2 ∩ [0, 1] with |t− s| ≤ 2−Nα .

We can extend this to all s, t ∈ Q2 ∩ [0, 1] by a similar chaining argument similar to Lemma 4.7:

d(Xs, Xt) ≤
2Nα + 2

1− 2−α
|t− s|α, for all s, t ∈ Q2 ∩ [0, 1].

Taking Mα = 2Nα+2
1−2−α concludes our proof.

Corollary 4.8 (Kolmogorov’s continuity lemma). Let X = (Xt)t≥0 be a process taking values in a complete

metric space (E, d). Assume there exist ϵ, q, C ∈ (0,∞) such that

E [d(Xs, Xt)
q] ≤ C|t− s|1+ϵ, ∀s, t ≥ 0. (4.3)

Then there exists an a.s. modification X̃ of X that is locally α-Hölder continuous for each α ∈ (0, ϵq ).

Proof. We first consider the process (Xt)t∈I , where I ⊂ R is a compact interval. According to Theorem 4.6,

the process (Xt)t∈I is a.s. Hölder continuous of exponent α on Q2 ∩ I. By completeness of (E, d), we define

X̃t(ω) =

limQ2∩I∋s→tXs(ω) if Mα(ω) <∞

x0 otherwise,

where x0 ∈ E is an arbitrary fixed point. Then (X̃t)t∈I has Hölder continuous sample paths of exponent α.

Next, we need to show that the process X̃ is an a.s. modification of X. We fix t ∈ I, and take a dyadic

sequence (tn) ⊂ Q2 ∩ I converging to t. The assumption (4.3) and Markov’s inequality imply Xtn
P→ Xt, and

we also have Xtn → X̃t a.s. by definition of X̃. Hence Xt = X̃t a.s..

Finally, we apply our conclusion repeatedly on In = [0, n] for n ∈ N. Then (Xt)t≥0 has an a.s. modification

(X̃t)t≥0 whose sample paths are locally Hölder continuous of exponent α for all α ∈ (0, ϵq ).

Corollary 4.9. Let B = (Bt)t≥0 be a pre-Brownian motion. Then it has an a.s. modification whose sample

paths are locally Hölder continuous with exponent α for all α ∈ (0, 12 ).

Proof. Take δ > 0. For all s, t ≥ 0, we have

E|Bt −Bs|2+δ = |t− s|1+
δ
2E|Z|2+δ, where Z ∈ N(0, 1).

By the last corollary, process B has an a.s. modification B̃ whose sample paths are locally Hölder continuous

of exponent α for all α ∈ (0, δ
4+2δ ). If δ is great enough we can take α arbitrarily close to 1

2 .

This Corollary justifies the existence of a Brownian motion, which is specified by the following definition.
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Definition 4.10 (Brownian motion/Wiener process). If B = (Bt)t≥0 is a pre-Brownian motion and B is

continuous, then process B is said to be a (standard) Brownian motion/Wiener process. More generally, if

B − B0 is a continuous pre-Brownian motion and B0 is independent of the process B − B0, then B is also

called a Brownian process.

Remark. If B is a standard Brownian motion starting at B0 = 0 and Z is a random variable independent of

B, we can obtain a Brownian motion B + Z starting from Z.

Proposition 4.11. Let B = (Bt)t≥0 be a Brownian motion starting from B0 = 0. The following statements

are true:

(i) (Symmetry). −B is also a Brownian motion.

(ii) (Scale invariance). For all λ > 0, the process Bλt = 1
λBλ2t is a Brownian motion.

(iii) (Simple Markov property). For each s ≥ 0, the process (Bs+t)t≥0 is a Brownian motion. Furthermore,

(Bs+t −Bs)t≥0 is a Brownian motion starting from 0 and independent of Fs = σ(Br, r ≤ s).
(iv) (Time inversion). The process B̂ defined by B̂0 = 0 and B̂t = tB 1

t
is a Brownian motion.

Proof. The Proposition mostly follows from Proposition 4.5 and the continuity of transforms applied. The

only unclear thing is the continuity of B̂ at point 0 in (iv). We need to show that limt↑∞
1
tBt = 0.

If t ∈ N, the conclusion is clear by the Strong Law of Large Numbers [Theorem 3.48]. For the general case,

we need the following lemma.

Lemma 4.12 (Kolmogorov’s maximal inequality). Let (Xn)
∞
n=1 be an independent sequence of random vari-

ables with EXn = 0 and E[X2
n] <∞ for all n ∈ N. The partial sum sequence Sn =

∑n
j=1Xj satisfies

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ E[S2

n]

λ2
, λ > 0.

Proof of the lemma. By definition, the sequence (Sn)
∞
n=1 is a martingale sequence. We define the stopping

time τ = min{m ∈ N : |Sm| ≥ λ}. Then

P
(

max
1≤k≤n

|Sk| ≥ λ
)

= P (|Sn∧τ | ≥ λ) ≤
1

λ2
E|Sn∧τ |2

=
1

λ2

n∧τ∑
m=1

E|Xm|2 ≤
1

λ2

n∑
m=1

E|Xm|2 =
E[S2

n]

λ2
.

Proof continued. For any m,n ∈ N, we apply Kolmogorov’s maximal inequality for λ = n−2/3 to obtain

P
(

sup
0≤k≤2m

|Bn+k2−m −Bn| ≥ n2/3
)
≤ n−4/3E|Bn+1 −Bn|2 = n−4/3.

We then take m ↑ ∞ and apply Borel-Cantelli Lemma to conclude

P

(
sup

t∈[n,n+1]

|Bt −Bn| ≥ n2/3 for infinitely many n ∈ N

)
= 0.

For any ϵ > 0, almost surely, we can find N > 1
ϵ3 such that |Bn|

n < ϵ and sups∈[n,n+1] |Bs −Bn| < n2/3 for all

n ≥ N . Consequently, for all t ≥ N ,

|Bt|
t
≤
∣∣B⌊t⌋

∣∣
t

+

∣∣B⌊t⌋ −Bt
∣∣

t
≤
∣∣B⌊t⌋

∣∣
⌊t⌋

+
⌊t⌋2/3

t
< ϵ+ t−1/3 ≤ 2ϵ.

Hence Bt

t → 0 as t ↑ ∞, and B̂ is continuous at 0.
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4.2 Canonical Construction and Wiener’s Construction

4.2.1 Kolmogorov Extension Theorem

Definition 4.13. Let {(Ωα,Fα), α ∈ J} be a collection of measurable spaces. We define the collection of all

measurable rectangles by

∏
α∈J

Fα =

{∏
α∈J

Aα : Aα ∈ Fα for all α ∈ J, and Aα = Ωα except for finitely many α ∈ J

}
.

Akin to the proof (i) of Theorem 1.25, we can prove that
∏
α∈J Fα is a semi-ring. Similar to the definition of

product of two measurable spaces, we define the product σ-algebra:

⊗
α∈J

Fα = σ

(∏
α∈J

Fα

)

The measurable space
(⋃

α∈J Ωα,
⊗

α∈J Fα

)
is said to be the product space of {(Ωα,Fα), α ∈ J}.

Remark. Every coordinate mapping πβ : (ωα)α∈J 7→ ωβ is measurable when defined on {(Ωα,Fα), α ∈ J}.
Furthermore, for all finite subset I ⊂ J , the projection mapping πI : (ωα)α∈J 7→ (ωα)α∈I is measurable.

Proposition 4.14. Let IF be the collection of all
::::
finite subsets of J . For I ∈ IF , define

⊗J
α∈I Fα to be the

sub σ-algebra consisting of all measurable cylinders A with base in
∏
α∈I Ωα. That means, A = B×

∏
α∈Ic Ωα

for some measurable B ⊂
∏
α∈I Ωα. Then

⊗
α∈J

Fα = σ

( ⋃
I∈IF

J⊗
α∈I

Fα

)

Proof. Clearly
⊗J

α∈I Fα ⊂
⊗

α∈J Fα for all I ∈ IF . On the other hand, every element of
∏
α∈J Fα is

contained by some
⊗J

α∈I Fα.

Proposition 4.15. Let {PI , I ∈ IF } be a collection of probability measures defined on finite product spaces{(∏
α∈I Ωα,

⊗
α∈I Fα

)
, I ∈ IF

}
. The following compatibility condition is necessary and sufficient for the

existence of a finitely additive probability measure P on
⊗

α∈J Fα such that the pushforward (πI)∗P = PI .

Compatibility: If I1 ⊂ I2 are two finite subsets of J , then (πI2→I1)∗PI2 = PI1 .

Proof. We only prove sufficiency, since necessity is clear. For every cylinder A = B ×
∏
α∈Ic Ωα such that

B ∈
⊗

α∈I Fα, define P(A) = PI(B). By compatibility condition, we obtain a finitely additive function P on

A =
⋃
I∈IF

⊗J
α∈I Fα, which is an algebra. We extend P to

⊗
α∈J Fα = σ(A ). For A ∈

⊗
α∈J Fα, define

P(A) = sup {P(F ) : F ⊂ A, F ∈ A } ∈ [0, 1].

Then for any collection of disjoint sets A1, · · · , An ∈
⊗

α∈J Fα, we have

n∑
j=1

P(A) =
n∑
j=1

sup {P(Fj) : Fj ⊂ Aj , F ∈ A }

= sup

P

 n⋃
j=1

Fj

 : Fj ⊂ Aj , Fj ∈ A , ∀j ∈ {1, · · · , n}

 = P

 n⋃
j=1

Aj

 .

Thus we complete the proof of finite additivity of P on
⊗

α∈J Fα.
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Proposition 4.16 (Compact class). A class C of subsets of Ω is said to be compact, if every countable

subclasses of C with finite intersection property has nonempty intersection. That is, for all sequences

(Cn)
∞
n=1 ⊂ C such that

⋂n
k=1 Ck ̸= ∅ for all n ∈ N, it holds

⋂∞
n=1 Cn ̸= ∅.

If C is a compact class, so are the following: (i) The class Cδ containing all countable intersections of

elements of C ; (ii) The class Cs containing all finite unions of elements of C .

Proof. (i) Since every countable intersection of elements of Cδ is also a countable intersection of elements of

the compact class C , the result follows immediately.

(ii) We take a sequence Dn =
⋃mn

j=1 C
n
j ∈ Cs such that

⋂n
k=1Dk ̸= ∅, and prove that

⋂∞
n=1Dn ̸= ∅. For each

n ∈ N, define the multi-index set In =
∏n
k=1{1, · · · ,mk}. Then according to distributivity law, we have

n⋂
k=1

Dk =

n⋂
k=1

mk⋃
j=1

Ckj

 =
⋃
α∈In

(
n⋂
k=1

Ckαk

)
̸= ∅.

Hence for every n ∈ N, there exists a multi-index α ∈ In such that
⋂n
k=1 C

k
αk
̸= ∅, and we define

Jn =

{
α ∈

∞∏
k=1

{1, · · · ,mk} :
n⋂
k=1

Ckαk
̸= ∅

}
, ∀n ∈ N.

Clearly, the definition of Jn only concerns about the first n elements. Then Jn ̸= ∅ for all n ∈ N, and (Jn)
∞
n=1

is monotone decreasing. Now we choose a sequence α[n] ∈ Jn for each n ∈ N. By induction on k, we are able

to determine a sequence α∗
k ∈ {1, · · · ,mk} such that α∗

1:k = α
[n]
1:k for infinitely many n. As a result, for each

k ∈ N, we can find n ≥ k such that α∗
1:k = α

[n]
1:k, which implies α∗ ∈ Jn ⊂ Jk. Hence α∗ ∈

⋃∞
k=1 Jk, and by

compactness of C we have
⋂∞
k=1Dk ⊃

⋂∞
k=1 C

k
α∗

k
̸= ∅, completing the proof.

Remark. This definition is also in accordance with compactness in topology. If X is a topological space, and

K is the collection of all compact subspaces of X. If (Kn)
∞
n=1 ⊂ K is a sequence such that

⋂∞
n=1Kj = ∅,

define Ln =
⋂n
j=1Kj . Then the increasing sequence (K1\Ln)∞n=1 forms an open cover of K1. By compactness

of K1, there is a finite subcover, and we can find N ∈ N such that LN = ∅.

Theorem 4.17 (Daniell-Kolmogorov extension). Let {PI , I ∈ IF } be a collection of probability measures de-

fined on finite product spaces
{(∏

α∈I Ωα,
⊗

α∈I Fα

)
, I ∈ IF

}
that satisfies the compatibility condition in

Proposition 4.15. If for each α ∈ J , there exists a compact class Cα ⊂ Fα such that

Pα(A) = sup {Pα(C) : C ∈ Cα, C ⊂ A} , ∀A ∈ Fα.

Then there exists a unique probability measure P on
(∏

α∈J Ωα,
⊗

α∈J Fα

)
that extends each PI .

Proof. Step I: Let P be the finitely additive set function found in Proposition 4.15. We first prove that there

exists a compact subclass C of the semiring S =
∏
α∈J Fα of all measurable rectangles such that

P(A) = sup {P(C) : C ∈ C , C ⊂ A} , ∀A ∈ S . (4.1)

Let D = {C ×
∏
α̸=β Ωα : β ∈ J, C ∈ Cβ}. Then every countable intersection D =

⋂
n∈N(Cn ×

∏
α̸=βn

Ωα) of

elements of D has the form
∏
β∈J Bβ , where Bβ =

⋂
{n:βn=β} Cn. If the countable intersection D is empty, let

β ∈ J be such that Bβ = ∅. By compactness of Cβ , there exists a finite subset Iβ ⊂ {n : βn = β} such that⋂
n∈Iβ Cn = ∅, which implies

⋂
n∈Iβ (Cn ×

∏
α̸=βn

Ωα) = ∅. Therefore D is a compact subclass of S . Again,

the class C of all finite intersections of elements of D is compact.
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Now we prove (4.1). Take any ϵ > 0. If A is a measurable rectangle with base
∏n
j=1Aαj

⊂
∏n
j=1 Ωαj

,

choose Ctj ∋ Cj ⊂ Aαj
such that Pαj

(Cj) ≥ Pαj
(Atj )− ϵ

n . Then C ∋ C =
⋂n
j=1(Cj ×

∏
α ̸=αj

Ωα) ⊂ A, and

P(A\C) = P

 n⋃
j=1

(
(Aαj\Cj)×

∏
α̸=αj

Ωα

) ≤ n∑
j=1

Pαj (Aαj\Cj) = ϵ ↓ 0.

Step II: We prove the σ-additivity of P on S . We take the class Cs consisting of all finite intersection of

elements of C , which is again a compact class by Proposition 4.16 (ii) and is contained in the ring R generated

by S according to the Remark under Definition 1.24. Similar to the proof of (4.1) in Step I, we can prove

that P(A) = sup{P(C) : C ∈ Cs, C ⊂ A} for all A =
∐n
k=1Ak ∈ R by taking C =

∐n
k=1 Ck ∈ Cs with

P(Ak\Ck) ≤ ϵ/n for arbitrarily small ϵ. We prove that P is σ-additive on R, hence on S .

Given ϵ > 0, we take a sequence R ∋ An ↓ ∅, and take Cs ∋ Cn ⊂ An with P(An) ≤ P(Cn) + ϵ2−n. Then⋂∞
n=1 Cn ⊂

⋂∞
n=1An = ∅, and there exists N ∈ N such that

⋂N
n=1 Cn = ∅ by compactness of Cs. As a result,

P(AN ) = P

(
AN\

(
N⋂
n=1

Cn

))
= P

(
N⋃
n=1

(AN\Cn)

)
≤

N∑
n=1

P(An\Cn) ≤ ϵ ↓ 0.

Therefore P is continuous at ∅. If (Bn)∞n=1 ⊂ R is a sequence of disjoint sets, take An =
⋃∞
k=n+1Bk. Then we

have An ↓ ∅. Finite additivity of P implies

P

( ∞⋃
n=1

Bn

)
−

N∑
n=1

P(Bn) = P(AN )→ 0 as N →∞.

Step III: According to Step II, P is a finite pre-measure on the semiring S which generates
⊗

α∈J Fα. By

Carathéodory’s extension theorem, P can be uniquely extended to a probability measure
⊗

α∈J Fα. On the

other hand, the finite additive function P is uniquely defined on S , which is specified by the family of measures

{PI , I ∈ IF } on finite-dimensional subspaces. Therefore the extension P is unique.

Proposition 4.18. Let Ω be a Hausdorff topological space, and equip Ω with the Borel σ-algebra B. Let C

be the collection of all closed sets in Ω, and K the collection of all compact sets in Ω. Let P be a probability

measure on (Ω,B). We define the collections Rc of closed regular sets and Rk of regular sets as

Rc =

{
B ∈ B : P(B) = sup

C∈C :C⊂B
P(C)

}
, Rk =

{
B ∈ B : P(B) = sup

K∈K :K⊂B
P(K)

}
.

We say P is tight if Ω ∈ Rk. We say P is closed inner regular (resp. inner regular) if Rc = B (resp.

Rk = B). The following statements are true:

(i) The collection R∗
c = {B ∈ Rc : Ω\B ∈ Rc} is a σ-algebra. In addition, if P is tight, then the collection

R∗
k = {B ∈ Rk : Ω\B ∈ Rk} is also a σ-algebra.

(ii) If Ω is metrizable, then P is closed inner regular. In addition, if P is tight, then it is inner regular.

(iii) (Ulam). If Ω is a Polish space (a separable completely metrizable space), then P is inner regular.

Proof. (i) Clearly, Ω ∈ R∗
c , and B ∈ R∗

c implies Ω\B ∈ R∗
c . Given any sequence (An)

∞
n=1 ⊂ R∗

c , we prove

A =
⋃∞
n=1An ∈ R∗

c . Let ϵ > 0. Take closed sets Cn ⊂ An such that P(Cn) ≥ P(An)− ϵ3−n, and Dn ⊂ Ω\An
such that P(Dn) ≥ P(Ω\An)− ϵ2−n. Then there exists N ∈ N such that P(A) > P (

⋃∞
n=1An)− ϵ/2. Note that⋃N

n=1 Cn ⊂ A is closed, and

P(A)− P

(
N⋃
n=1

Cn

)
<
ϵ

2
+ P

(
N⋃
n=1

An

)
− P

(
N⋃
n=1

Cn

)
≤ ϵ

2
+ P

(
N⋃
n=1

(An\Cn)

)
< ϵ.
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Meanwhile,
⋂∞
n=1Dn ⊂ Ω\A is also closed, and

P (Ω\A)− P

( ∞⋂
n=1

Dn

)
= P

( ∞⋃
n=1

((Ω\A)\Dn)

)
≤

∞∑
n=1

P ((Ω\An)\Dn) < ϵ.

Since ϵ > 0 is arbitrary, we have A ∈ R∗
c . Hence R∗

c is a σ-algebra.

If P is tight, we have Ω, ∅ ∈ R∗
k , and B ∈ R∗

k implies Ω\B ∈ R∗
k . Similar to the above proof, since finite

unions and countable intersections of compact sets are still compact, we conclude R∗
k is a σ-algebra.

(ii) Let d be the metric of Ω. If U ⊂ Ω is an open set, take its complement F = Ω\U , and define Fn =

{x ∈ Ω : d(x, F ) ≥ 1/n}. Then Fn ↑ U , and U ∈ R∗
c defined in (i). Since R∗

c is a σ-algebra containing all open

sets in Ω, we have R∗
c = B, and P is closed inner regular.

In addition, if P is tight, we can take a compact set K such that P(Ω\K) < ϵ/2 for every ϵ > 0. For

any Borel set B ∈ B, take closed set F ⊂ B with µ(B\F ) < ϵ/2. Then F ∩ K ⊂ B is a compact set, and

P(B\(K ∩ F )) ≤ P(B\F ) + P(Ω\K) < ϵ. Since ϵ > 0 is arbitrary, B ∈ Rk. Hence P is regular.

(iii) Following (ii), it suffices to show that P is tight. Let (ωn)
∞
n=1 be a dense sequence in Ω. For any η > 0

and ω ∈ Ω, let B(ω, η) be the closed ball centered at ω of radius η. Given ϵ > 0, by density of (ωn)
∞
n=1, we

are able to take Nm ∈ N such that

P

(
Ω\

Nm⋃
n=1

B

(
ωn,

1

m

))
<

ϵ

2m
, ∀m ∈ N.

Let K =
⋂∞
m=1

⋃Nk

n=1B
(
ωn,

1
k

)
. Then K is both closed and totally bounded. Since Ω is a complete metric

space, K is compact. Furthermore, we have

P(Ω\K) ≤
∞∑
m=1

ϵ

2m
= ϵ ↓ 0.

Hence P is tight, and the result follows from (ii).

Theorem 4.17 and Proposition 4.18 together imply the following conclusion.

Corollary 4.19. Let {(Ωα,Bα), α ∈ J} be a family of Polish spaces equipped with their Borel σ-algebras. For

any compatible family {PI , I ∈ IF } of probability measures defined on
{(∏

α∈I Ωα,
⊗

α∈I Bα

)
, I ∈ IF

}
, there

exists a unique probability measure P on
(∏

α∈J Ωα,
⊗

α∈J Bα

)
that extends each PI .

Remark. Let E be a metric space equipped with its Borel σ-algebra B. The product space (ET ,B⊗T ) is

called the canonical space. Since every evaluation map πt : (E
T ,B⊗T ) → (E,B), x 7→ x(t) is measurable,

we can define a process (πt)t∈T on (ET ,B⊗T ), which is called the canonical process. Given a probability

measure µ on (ET ,B⊗T ), the sample paths of the canonical process (πt)t∈T are distributed according to µ.

Given (Xt)t∈T is a stochastic process defined on (Ω,F ,P) whose state space is the metric space E, the

mapping Φ : (Ω,F ) → (ET ,B⊗T ) defined to map ω to its sample path t 7→ Xt(ω) is measurable. In fact,

for every measurable rectangle A ∈ ET with basis
∏n
j=1Atj , its pre-image Φ−1(A) =

⋂n
j=1X

−1
tj (Atj ) ∈ F .

Since Φ−1 preserves complement and countable union operations, and B⊗T is generated by all measurable

rectangles, we obtain that Φ is measurable. As a result, the process (Xt)t∈T determines a pushforward

probability measure µ = Φ∗P on the canonical space (ET ,B⊗T ). Furthermore, the canonical process (πt)t∈T

defined on (ET ,B⊗T , µ) is identically distributed to (Xt)t∈T .

According to our previous discussion, we can construct a stochastic process indexed by T and taking values

in E by constructing a probability measure on the canonical space (ET ,B⊗T ).
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4.2.2 Construction of Brownian Motions

Example: the canonical construction of Brownian motion. Let C(R+) be the space of all real-valued

continuous function defined on R+. We give C(R+) the metric

d(f, g) =

∞∑
n=1

1

2n
supt∈[0,n] |f(t)− g(t)|

1 + supt∈[0,n] |f(t)− g(t)|
, ∀f, g ∈ C(R+).

This metric induces the compact convergence (c.c.) topology on C(R+), because a sequence fn ∈ C(R+)

converges uniformly on each compact set to f ∈ C(R+) if and only if d(fn, f) → 0. Then for each t ∈ R+,

the coordinate mapping πt : C(R+) → R, f 7→ f(t) is continuous. Consequently, if we give C(R+) the Borel

σ-algebra C generated by c.c.topology, then all coordinate mappings {πt, t ∈ R+} are measurable.

Proposition 4.20. C coincides the σ-algebra generated by coordinate maps πt : f 7→ f(t).

Proof. Let Bp be the smallest σ-algebra on C(R+) for which the coordinate mappings πt : f 7→ f(t) are

measurable for all t ∈ R+. It is clear that Bp ⊂ C .

We know that C(R+) is separable with respect to the c.c. topology, because we can approximate each

f ∈ C(R+) within arbitrary precision with a polynomial with rational coefficients on some [0, n]. As a result,

every open set in C(R+) with respect to the c.c.topology is a countable union of base sets of the form

B[0,n](f0, ϵ) =

{
f ∈ C(R+) : sup

t∈[0,n]

|f(t)− f0(t)| < ϵ

}
,

where f0 ∈ C(R+) and ϵ > 0. By continuity, every base set

B[0,n](f0, ϵ) =
⋂

t∈Q∩[0,n]

π−1
t B(f0(t), ϵ) ∈ Bp.

Hence every open set in C(R+) in the c.c.topology is contained in Bp. Therefore Bp coincides C .

Wiener Measure. To construct a measure on the space of continuous functions on R+, we first consider the

space RQ2 of functions on dyadic rationals Q2. For each measurable rectangle A = {f(ti) ∈ Ai, i = 0, 1, · · · , n},
where 0 = t0 < t1 < · · · < tn in Q2 and A0, A1, · · · , An ∈ B(R), define

ν(A) =
1A0

(0)√
(2π)n

∏n
j=1(tj − tj−1)

∫
A1×···×An

exp

{
−

n∑
j=1

(zj − zj−1)
2

2(tj − tj−1)

}
dz1 · · · dzn, where z0 = 0.

This is a pre-measure on the semi-ring S of measurable rectangles, which extends uniquely to a measure ν on

the product σ-algebra B(R)Q2 , which is generated by S .

We denote by C(Q2) the set of all functions f : Q2 → R that is uniformly continuous on [0, T ] for each

T > 0, and consider the process Bt(ω) = ωt, where ω ∈ RQ2 . Then for all s, t ∈ Q2, we have

Eν |Bt −Bs|4 =
1√

2π|t− s|

∫ ∞

−∞
x4e−

x2

2|t−s| dx = 3|t− s|2.

By Kolmogorov’s continuity lemma, with probability 1, the process (Bt)t∈Q2 is uniformly continuous on each

compact interval [0, T ]. Therefore ν is concentrated on the subset C(Q2), i.e. ν(C(Q2)) = 1.

On the restricted measure space (C(Q2),C (Q2), ν), we define a mapping ψ : C(Q2) → C(R+) that sends

each f ∈ C(Q2) to its continuous extension on R+. Then ψ is a measurable mapping, and we define W to be

the pushforward of ν, i.e. W = ν ◦ ψ−1. This is called the Wiener measure on (C(R+),C (R+)).
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For any 0 = t0 < t1 < · · · < tn, by dominated convergence theorem, we have

W (A) =
1A0

(0)√
(2π)n

∏n
j=1(tj − tj−1)

∫
A1×···×An

exp

{
−

n∑
j=1

(zj − zj−1)
2

2(tj − tj−1)

}
dz1 · · · dzn, where z0 = 0.

If we choose (Ω,F ,P) = (C(R+),C (R+),W ), then the canonical process (πt)t∈R+ is a Brownian motion.

This is a consequence of Proposition 4.4 (iv) and the fact that (πt)t∈R+ has continuous sample paths. In fact,

the distribution law of every Brownian motion (Bt)t≥0 is determined, which is the Wiener measure W .

Example: Wiener’s construction of Brownian Process. Let {en, n ∈ N} be a countable orthonormal

basis of L2([0, 1]), which is a separable Hilbert space. According to Corollary 4.19, it is possible to construct a

collection of independent standard Gaussian variables (Zn)
∞
n=1 on an appropriate probability space (Ω,F ,P).

We define a process (Bt)t∈[0,1] as follows:

Bt =

∞∑
n=1

⟨1[0,t], en⟩Zn, ∀t ∈ [0, 1]. (4.2)

Since
∑∞
n=1 |⟨1[0,t], en⟩|2 = t < ∞, the series (4.2) converges in L2. Consequently, (Bt)t∈[0,1] is a Gaussian

process. Furthermore, for any partition 0 = t0 < t1 < · · · < tp = 1, we have

E
[
(Btj −Btj−1

)(Btk −Btk−1
)
]
=

∞∑
m=1

∞∑
n=1

⟨1(tj−1,tj ], em⟩⟨1(tk−1,tk], en⟩ ⟨em, en⟩︸ ︷︷ ︸
=E[ZmZn]

=

〈 ∞∑
m=1

⟨1(tj−1,tj ], em⟩em,
∞∑
n=1

⟨1(tk−1,tk], en⟩en

〉
= ⟨1(tj−1,tj ],1(tk−1,tk]⟩ = δjk(tj − tj−1).

Consequently, the process (Bt)t∈[0,1] has independent increments, and Btj − Btj−1
∼ N(0, tj − tj−1) for

each j. By Proposition 4.4 (iv), (Bt)t∈[0,1] is a pre-Brownian motion on [0, 1]. If we choose a particular basis

for L2([0, 1]): e0 = 1, and en(t) =
√
2 cos(nπt), ∀n ∈ N, we obtain a process

Bt = tZ0 +

∞∑
n=1

√
2 sin(nπt)

n
Zn = tZ0 +

∞∑
n=1

2n−1∑
k=2n−1

√
2 sin(kπt)

k
Zk, ∀t ∈ [0, 1].

We set Sm(t) =
∑2m−1
k=m

√
2 sin(kπt)

k Zk, and write Bt = tZ0 +
∑∞
n=0 S2n(t). Let Tm = supt∈[0,1] |Sm(t)|. Then

T 2
m ≤

√
2 sup
t∈[0,1]

∣∣∣∣∣
2m−1∑
k=m

eikπt

k
Zk

∣∣∣∣∣
2

=
√
2 sup
t∈[0,1]

2m−1∑
j=m

2m−1∑
k=m

ei(k−j)πt

jk
ZjZk

≤
√
2

2m−1∑
k=m

Z2
k

k2
+ 2
√
2 sup
t∈[0,1]

∣∣∣∣∣
2m−1∑
k=m

2m−k−1∑
l=1

eilπt
ZkZk+l
k(k + l)

∣∣∣∣∣
=
√
2

2m−1∑
k=m

Z2
k

k2
+ 2
√
2 sup
t∈[0,1]

∣∣∣∣∣
m−1∑
l=1

eilπt
2m−l−1∑
k=m

ZkZk+l
k(k + l)

∣∣∣∣∣
≤
√
2

2m−1∑
k=m

Z2
k

k2
+ 2
√
2

m−1∑
l=1

∣∣∣∣∣
2m−l−1∑
k=m

ZkZk+l
k(k + l)

∣∣∣∣∣
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Let us bound the expectation of the second term:

E

[∣∣∣∣∣
2m−l−1∑
k=m

ZkZk+l
k(k + l)

∣∣∣∣∣
]
≤

√√√√√E

(2m−l−1∑
k=m

ZkZk+l
k(k + l)

)2
 =

(
2m−l−1∑
k=m

1

k2(k + l)2

)1/2

≤ 1

m3/2
,

⇒ E

[
m−1∑
l=1

∣∣∣∣∣
2m−l−1∑
k=m

ZkZk+l
k(k + l)

∣∣∣∣∣
]
≤ 1√

m
.

Since
∑2m−1
k=m k−2 ≤ m−1, we have E[T 2

m] < c/
√
m for some constant c > 0 not dependent on m. Consequently,

E

[ ∞∑
n=0

T2n

]
≤

∞∑
n=0

√
E[T 2

2n ] ≤ c
∞∑
n=0

1

2n/4
<∞.

By Weierstrass M-test, with probability 1, the mapping t 7→ Bt(ω) converges uniformly on [0, 1], and the

uniform limit is continuous on [0, 1]. By redefine the sample path of (Bt)t∈[0,1] on a negligible set, we obtain

a Brownian motion (Bt)t∈[0,1] on [0, 1]. To construct a Brownian motion (Bt)t≥0 on R+, we concatenate

Brownian processes defined on each [n− 1, n]:

Bt = Bn−1 + (t− n+ 1)Z
(n)
0 +

∞∑
k=1

√
2 sin(kπt)

k
Z

(n)
k , t ∈ [n− 1, n],

where (Z
(n)
k )∞k=1 is a family of independent standard Gaussian variables.
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4.3 Sample Paths of Brownian Motion

Let (Bt)t≥0 be a Brownian motion. We take the canonical filtration (Ft)t≥0 of (Bt)t≥0:

Ft = σ (Bs, 0 ≤ s ≤ t) , ∀t ≥ 0.

Then (Bt)t≥0 is a martingale with respect to (Ft)t≥0.

4.3.1 Blumenthal’s 0-1 Law and Recurrence

Theorem 4.21 (Blumenthal’s 0-1 law). The germ σ-algebra F0+ =
⋂
t>0 Ft is P-trivial.

Proof. Let 0 < t1 < · · · < tn, and let g be a bounded continuous function on Rn. According to continuity and

dominated convergence theorem, for all A ∈ F0+, we have

E [1Ag(Bt1 , · · · , Btn)] = lim
ϵ↓0

E [1Ag(Bt1 −Bϵ, · · · , Btn −Bϵ)] .

By the simple Markov property of Brownian motions [Proposition 4.11 (iii)], Bt1 − Bϵ, · · · , Btn − Bϵ is inde-
pendent of Fϵ ⊃ F0+ whenever 0 < ϵ < t1. Hence

E [1Ag(Bt1 , · · · , Btn)] = P(A) lim
ϵ↓0

E [g(Bt1 −Bϵ, · · · , Btn −Bϵ)] = P(A)E[g(Bt1 , · · · , Btn)].

For any open set U ∈ B(Rn), take a sequence gn(x) = d(x, U c)/(d(x, U c) + n−1) of bounded continuous

functions such that gn ↑ 1U pointwise. Then

E [1A1U (Bt1 , · · · , Btn)] = P(A)E[1U (Bt1 , · · · , Btn)].

Since B(Rn) is generated by all open sets in Rn, an argument of π-λ theorem implies that F0+ is independent

of σ(Bt1 , · · · , Btn). This holds for all finite marginals 0 < t1 < · · · < tn, hence F0+ is independent of

σ(Bt, t > 0). By right-continuity of t 7→ Bt(ω), B0 = limt↓0Bt is measurable with respect to σ(Bt, t > 0), and

we have σ(Bt, t > 0) = σ(Bt, t ≥ 0) ⊃ F0+. Therefore F0+ is independent of itself, and the result follows.

Proposition 4.22. Let (Bt)t≥0 be a Brownian motion with B0 = 0.

(i) Almost surely, for each ϵ > 0,

sup
0≤s≤ϵ

Bs > 0 and inf
0≤s≤ϵ

Bs < 0.

(ii) (Recurrence). For every α ∈ R, define stopping time τα = inf{t > 0 : Bt = α} (with respect to the

canonical filtration, with the convention inf ∅ =∞). Then we have τα <∞ a.s.. Consequently, it holds

lim sup
t↑∞

Bt =∞ and lim inf
t↑∞

Bt = −∞ a.s..

Proof. (i) We choose a positive sequence ϵn ↓ 0, and define the decreasing intersection

A =

∞⋂
n=1

{
sup

0≤s≤ϵn
Bs > 0

}
.

Then for each t > 0, there exists ϵn ∈ (0, t) such that

A =

∞⋂
k=n

{
sup

0≤s≤ϵk
Bs > 0

}
∈ Ft.
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Hence A ∈ F0+. By Blumenthal’s 0-1 law, either P(A) = 0 or P(A) = 1. We claim P(A) = 1, so the result

follows. To show P(A) = 1, note that

P
(

sup
0≤s≤ϵn

Bs > 0

)
≥ P (Bϵn > 0) =

1

2
, ∀n ∈ N ⇒ P(A) ≥ 1

2
.

(ii) By the simple Markov property of Brownian motions [Proposition 4.11 (ii)], for each λ > 0, the process

Bλt = 1
λBλ2t is also a Brownian motion. Since all Brownian motions starting at 0 are identically distributed

[according to the Wiener measure on C(R+)], we have

P
(

sup
0≤s≤1

Bs > λ

)
= P

(
sup

0≤s≤1/λ2

Bλs > 1

)
= P

(
sup

0≤s≤1/λ2

Bs > 1

)

Let λ ↓ 0. By monotone convergence theorem, we have

1 = P
(

sup
0≤s≤1

Bs > 0

)
= P

(
sup
s≥0

Bs > 1

)
= P

(
sup
s≥0

Bαs > 1

)
= P

(
sup
s≥0

Bs > α

)
≤ P(τα <∞), ∀α > 0.

Therefore τα < ∞ a.s. for each α > 0, which holds only if lim supt↑∞Bt = ∞ a.s.. Symmetric arguments of

(i) and (ii) follow by replacing Bs by −Bs.

Remark. We fix a number M > 0. By the second statement, with probability 1, we can find s1 > 0 such that

Bs1 > M , then s2 > s1 such that Bs2 < −M , and then s3 > s2 such that Bs3 > M , etc. Following this

procedure, we find a sequence 0 < s1 < s2 < · · · where B crosses the interval [−M,M ] during each [sn−1, sn].

By continuity of t 7→ Bt, there exists a sequence 0 < tn ↑ ∞ such that Btn = 0 at each tn. Therefore B returns

to 0 infinitely often. In words, one-dimensional Brownian motions are recurrent.

We have a stronger recurrence statement ragarding the return time of Brownian motions.

Proposition 4.23. Let (Bt)t≥0 be a Brownian motion with B0 = 0, and let τ0 = inf{t > 0 : Bt = 0} be the

(first) return time. Then τ0 = 0 a.s..

Proof. We define τ+ = inf{t > 0 : Bt > 0}, and τ− = inf{t > 0 : Bt < 0}. By Proposition 4.22 (i), we have

τ+, τ− ∈ [0, ϵ) for each ϵ > 0. Hence τ+ = τ− = 0. Since B hits both (0,∞) and (−∞, 0) a.s. immediately, by

continuity of the path t 7→ Bt, we have τ0 = 0 a.s..

Up to now we only discuss the behavior of Brownian motions near t = 0. By using a time inversion trick,

we extend our result to get information about the behavior as t→∞.

Proposition 4.24. Let (Bt)t≥0 be a Brownian motion with B0 = 0. The tail σ-algebra

T =
⋂

0<t<∞
σ(Bs, s ≥ t)

is trivial, i.e. if A ∈ T , then either Px(A) = 0 or Px(A) = 1.

Proof. T is exactly the same as the germ σ-algebra for the process B̂t = tB 1
t
, and the result follows from

Proposition 4.11 (iv) and Blumenthal’s 0-1 law.

4.3.2 Monotonicity, Smoothness and Non-Differentiability

The following proposition follows immediately from Remark III under Definition 4.2, which is a property of

Gaussian white noise.
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Proposition 4.25. Let (Bt)t≥0 be a Brownian motion. Let 0 = tn0 < tn1 < · · · < tnkn = t be a sequence of

partitions of [0, t] with the mesh max1≤j≤kn(t
n
j − tnj−1)→ 0. Then

lim
n→∞

kn∑
j=1

(Btnj −Btnj−1
)2 = t in L2.

This statement implies a lot of properties of the sample path of Brownian motions.

Corollary 4.26. Let (Bt)t≥0 be a Brownian motion.

(i) Almost surely, the sample path t 7→ Bt is not monotone on any nondegenerate interval [a, b].

(ii) Almost surely, the sample path t 7→ Bt has infinite total variation on any nondegenerate interval [a, b].

(iii) (Bt)t≥0 has finite quadratic variation ⟨B,B⟩t = t.

Proof. (i) By simple Markov property of (Bt)t≥0 and Proposition 4.22, we have

sup
q≤t≤q+ϵ

Bt > Bq, inf
q≤t≤q+ϵ

Bt < Bq, ∀ϵ > 0, ∀q ∈ Q, a.s..

For any nontrivial interval [a, b], we just choose q ∈ Q and ϵ > 0 with [q, q + ϵ] ⊂ [a, b].

(ii) By simple Markov property of (Bt)t≥0, it suffices to consider intervals [0, t]. Choose an increasing sequence

of partitions of [0, t] as in Proposition 4.25, we have(
sup

1≤j≤kn

∣∣∣Btnj −Btnj−1

∣∣∣) kn∑
j=1

∣∣∣Btnj −Btnj−1

∣∣∣ ≥ kn∑
j=1

(
Btnj −Btnj−1

)2 L2

→ t.

As n→∞, we have sup1≤j≤kn |Btnj − Btnj−1
| → 0 by continuity, which implies

∑kn
j=1 |Btnj − Btnj−1

| → ∞ a.s..

The result follows by taking intersection of all 0 < t ∈ Q. (iii) is a consequence of Theorem 3.69.

Proposition 4.27 (Non-differentiability). Let (Bt)t≥0 be a Brownian motion with B0 = 0. Then

lim sup
t↓0

Bt√
t
=∞ and lim inf

t↓0

Bt√
t
= −∞ a.s..

Consequently, by simple Markov property of (Bt)t≥0, for every s > 0, the function t 7→ Bt has a.s. no right

derivative, hence is non-differentiable at s.

Proof. We prove that for all α > 0, almost surely,

sup
0≤s≤ϵ

Bs√
s
> α, ∀ϵ > 0. (4.3)

This statement holds only if lim supt↓0
Bt√
t
= ∞. Take a decreasing sequence 0 < ϵn ↓ 0, and define the

decreasing intersection

A =

∞⋂
n=1

{
sup

0≤s≤ϵn

Bs√
s
> α

}
∈ F0+.

According to Blumenthal’s 0-1 law, we have either P(A) = 0 or P(A) = 1. Note that

P
(

sup
0≤s≤ϵn

Bs√
s
> α

)
≥ P

(
Bϵn√
ϵn

> α

)
=

1√
2π

∫ ∞

α

e−
x2

2 dx ⇒ P(A) ≥ 1√
2π

∫ ∞

α

e−
x2

2 dx > 0.

Therefore P(A) = 1, and the result (4.3) follows. A symmetric argument holds if we replace Bs by −Bs.
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Proposition 4.28 (Global non-differentiability). Let (Bt)t≥0 be a Brownian motion. Almost surely, the

sample path t 7→ Bt is not Hölder continuous with exponent γ at any point for each γ > 1
2 . In particular, the

sample path t 7→ Bt is not Lipschitz continuous at any point, hence is nowhere differentiable.

Proof. We fix γ > 1
2 , and take k ∈ N such that γ > 1

2 + 1
k . Given C > 0, let

An =

{
ω ∈ Ω : there exists s ∈ [0, 1] such that |Bt −Bs| ≤ C|t− s|γ for all |t− s| < k

n

}
.

For 1 ≤ m ≤ n− k + 1, define

Ym,n = max
0≤j≤k−1

∣∣∣Bm+j
n
−Bm+j−1

n

∣∣∣ ,
and

En =

{
there exists 1 ≤ m ≤ n− k + 1 such that Ym,n ≤

(2k − 1)C

nγ

}
.

On the event An, we apply the triangle inequality to get∣∣∣Bm+j
n
−Bm+j−1

n

∣∣∣ ≤ ∣∣∣B k+j
n
−Bs

∣∣∣+ ∣∣∣Bs −B k+j−1
n

∣∣∣ ≤ (2k − 1)C

nγ
, j = 0, 1, · · · , k − 1

for some 1 ≤ m ≤ n− k + 1. Therefore An ⊂ En, and

P(An) ≤ P(En) ≤ (n− k + 1) · P
(∣∣B1/n

∣∣ ≤ (2k − 1)C

nγ

)k
= (n− k + 1) · P

(
|B1| ≤

(2k − 1)C

nγ−
1
2

)k
≤ (2k − 1)kCkn

k
2−kγ+1.

Since γ > 1
2 + 1

k , we have P(An) → 0 as n → ∞. Noticing that (An) is a increasing sequence, we have

P(An) = 0 for all n ∈ N. Also, since C is arbitrary chosen, with probability 1, the path of (Bt) is not Hölder

continuous with exponent γ at any point in [0, 1].

4.3.3 Growth Rate and the Law of the Iterated Logarithm

In this part, we discuss the growth rate of the Brownian motion as the time goes to infinity.

Proposition 4.29 (Growth Rate). Let (Bt)t≥0 be a Brownian motion with B0 = 0. Then with probability 1,

lim sup
t↑∞

Bt√
t
=∞, and lim inf

t↑∞

Bt√
t
= −∞.

Proof. For each M ∈ (0,∞),

P
(
Bn√
n
≥M i.o.

)
= P

( ∞⋂
N=1

∞⋃
n=N

{
Bn√
n
≥M

})

≥ lim sup
n→∞

P
(
Bn√
n
≥M

)
= lim sup

n→∞
P (B1 ≥M) > 0.

By Proposition 4.24, the probability of this event is 1. Since M > 0 is arbitrary, the first result holds. The

second result follows from symmetry.

An accurate evaluation of the Brownian growth rate is given by the law of the iterated logarithm.
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Theorem 4.30 (Law of the iterated logarithm). Let (Bt)t≥0 be a Brownian motion with B0 = 0. Then

lim sup
t↑∞

Bt√
2t log log t

= 1 a.s..

Proof. We first give a tail bound of B1 ∼ N(0, 1), which is a standard Gaussian variable:

αe−α
2/2

(1 + α2)
√
2π

=
1√
2π

∫ ∞

α

e−t
2/2

(1 + t2)2
dt ≤ 1√

2π

∫ ∞

α

e−t
2/2 dt ≤ 1√

2π

∫ ∞

α

te−t
2/2

α
dt =

e−α
2/2

α
√
2π

, ∀α > 0.

Let h(t) =
√
2t log log t. Using the law of Mt := sup0≤s≤tBs

d
= |Bt| given in Corollary 4.36, for all r > 1 and

all δ > 0, whenever n ≥ n0 := 1 + e
log r , we have

P
(

Mrn

h(rn−1)
>
√
r + δ

)
= P

(
|Brn |√
rn

>

√
2

(
1 +

δ

r

)
log log rn−1

)
≤ C(n− 1)−1− δ

r ,

where C = C(δ, r) is some constant independent of n. Hence we have

∞∑
n=n0

P

(
sup

s∈[rn−1,rn]

Bs
h(s)

>
√
r + δ

)
≤

∞∑
n=n0

P
(

Mrn

h(rn−1)
>
√
r + δ

)
≤ C

∞∑
n=n0−1

n−1− δ
r <∞.

By Borel-Cantelli lemma, we have

P
(
lim sup
n→∞

Bs
h(s)

≤
√
r + δ

)
= P

(
sup

s∈[rn−1,rn]

Bs
h(s)

>
√
r + δ for finitely many n

)
= 1.

Let δ ↓ 0 and r ↓ 1, we have P
(
lim supn→∞

Bs

h(s) ≤ 1
)
= 1.

Now we prove lim supn→∞
Bs

h(s) ≥ 1 a.s.. Given n ≥ n0, we have
√

2 log(n log r) > 1, and

P

(
Brn −Brn−1 ≥

√
r − 1

r
h(rn)

)
≥ P

(
Brn −Brn−1√
rn−1(r − 1)

≥
√
2 log(n log r)

)
≥ C

n
√
log n

for some constant C = C(r) independent of n. Hence

∞∑
n=n0

P

(
Brn −Brn−1 ≥

√
r − 1

r
h(rn)

)
≥ C

∞∑
n=n0

1

n
√
log n

=∞.

Since (Bt)t≥0 has independent increments, the second Borel-Cantelli lemma [Corollary 3.29] implies that a.s.

Brn −Brn−1 ≥
√

r−1
r h(rn) for infinitely many n. A symmetric argument of the first part of our proof implies

lim infn→∞
Bs

h(s) ≥ −1 a.s.. Hence for a.s. ω ∈ Ω, we can find some N(ω) such that for all n ≥ N(ω),

Brn−1 ≥ −2h(rn−1) ≥ − 2√
r
h(rn).

Hence Brn ≥
(
1− 3√

r

)
h(rn) occurs infinitely often. Consequently, for all r > 1, we have

P
(
lim sup
t→∞

Bt
h(t)

≥ 1− 3√
r

)
= 1.

Letting r →∞ suffices.
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4.4 Strong Markov Property and Applications

In this section we discuss the strong Markov property of a Brownian motion (Bt)t≥0 starting from B0 = 0.

Let τ be a stopping time (with respect to the canonical filtration (Ft)t≥0 of (Bt)t≥0). We define

1{τ<∞}Bτ (ω) = 1{τ(ω)<∞}Bτ(ω)(ω).

This is a Fτ -measurable variable. To see this, note that (Bt)t≥0 is an adaptive and continuous process, hence

is progressive [Proposition 3.10]. Then the desired result follows from Proposition 3.13.

4.4.1 Strong Markov Property

Theorem 4.31 (Strong Markov property). Let τ be a stopping time with P(τ <∞) > 0. Let

B
(τ)
t = 1{τ<∞}(Bτ+t −Bτ ), ∀t ∈ R+.

Then (B
(τ)
t )t≥0 is a Brownian motion under the measure P(·|τ <∞), and is independent of Fτ .

Proof. We first deal with the case τ <∞ a.s.. Fix A ∈ Fτ and 0 = t0 < t1 < · · · < tn. We claim that

E
[
1Ag(B

(τ)
t0 , B

(τ)
t1 , · · · , B

(τ)
tn )
]
= P(A)E [g(Bt0 , Bt1 , · · · , Btn)]

for all bounded continuous functions g : Rn → R. If we take A = Ω, a similar argument to the proof of

Theorem 4.21 implies that (B
(τ)
t0 , B

(τ)
t1 , · · · , B

(τ)
tn )

d
= (Bt0 , Bt1 , · · · , Btn) for all choices 0 = t0 < t1 < · · · < tn.

Since sample paths of (B
(τ)
t )t≥0 are continuous, Proposition 4.4 implies that (B

(τ)
t )t≥0 is also a Brownian

motion. Furthermore, (B
(τ)
t0 , B

(τ)
t1 , · · · , B

(τ)
tn ) is independent of Fτ , and (B

(τ)
t )t≥0 is independent of Fτ .

Now we prove the claim. For p ∈ N, take [t]p = min{k2−p : k2−p ≥ t, k ∈ Z} with convention [∞]p = ∞,

and write τp = [τ ]p. By continuity we have B
(τp)
t → B

(τ)
t a.s., and dominated convergence implies

E
[
1Ag(B

(τ)
t0 , B

(τ)
t1 , · · · , B

(τ)
tn )
]
= lim
p→∞

E
[
1Ag(B

(τp)
t0 , B

(τp)
t1 , · · · , B(τp)

tn )
]

= lim
p→∞

∞∑
k=0

E
[
1A∩{(k−1)2−p<τ≤k2−p}g (Bk2−p+t0 −Bk2−p , Bk2−p+t1 −Bk2−p , · · · , Bk2−p+tn −Bk2−p)

]
= lim
p→∞

∞∑
k=0

P(A ∩ {(k − 1)2−p < τ ≤ k2−p})E [g (Bt0 , Bt1 , · · · , Btn)] = P(A)E [g (Bt0 , Bt1 , · · · , Btn)] ,

where the last row follows from the fact that

A ∩ {(k − 1)2−p < τ ≤ k2−p} =
(
A ∩ {τ ≤ k2−p}

)
∩ {τ ≤ (k − 1)2−p}c ∈ Fk2−p

and simple Markovian property of (Bt)t≥0. Thus we completes the proof for case τ <∞ a.s.. For the general

case P(τ <∞) > 0, we have

E
[
1A∩{τ<∞}g(B

(τ)
t0 , B

(τ)
t1 , · · · , B

(τ)
tn )
]
= P(A ∩ {τ <∞})E [g(Bt0 , Bt1 , · · · , Btn)] .

Then the desired result follows in a straightforward way.

Remark. In Section 6.2.2, we will introduce a stronger statement. We show that, for any stopping time τ with

respect to the filtration (Ft+)≥0 and measurable function Φ· : R+ × C(R+)→ R+,

E [Φτ ((Xτ+t)t≥0)|Fτ+] = EXτ
Φτ .
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4.4.2 Zero Set

Let (Bt)t≥0 be a Brownian motion starting from B0 = 0. We study the property of the zero set

Z = {t ≥ 0 : Bt = 0} .

Since t 7→ Bt is continuous, this random set is almost surely closed. By Proposition 4.22, we know that

0 is a limit point of Z, and Z is unbounded. To be specific, we define τ0 = inf{s > 0 : Bs = 0} and

υt = inf{s > t : Bs = 0}. Then τ0 = 0 a.s., and υt <∞ a.s. for each t ∈ R+.

Proposition 4.32. With probability 1, the zero set Z has no isolated points.

Proof. The recurrence of (Bt)t≥0 implies P(υt <∞) = 1, and

P (τ0 ((Bυt+s)s≥0) > 0 |Fυt) = P0 (τ0 > 0) = 0.

We take expectation and then take a union bound to obtain

P (τ0 ((Bυt+s)s≥0) > 0 for some t ∈ Q) = 0.

If a point u ∈ Z(ω) is isolated from the left, i.e. u = υt(ω) for some rational t, the above result implies that u

is a limit point from the right. Therefore Z has no isolated points almost surely.

Remark. In fact, the zero Z is an uncountable set. To see this, we note that Z(ω) is a closed subset of R,
hence is a complete metric space. By Baire’s category theorem, Z(ω) is not a countable union of nowhere

dense sets. If Z(ω) is a countable set, then at least one singleton {u} ⊂ Z contains an open ball in Z(ω). This
implies that u is an isolated point, which contradicts Proposition 4.32.

Proposition 4.33. With probability 1, the Lebesgue measure of Z is zero.

Proof. For all t ̸= 0, we have P(t ∈ Z) = P(Bt = 0) = 0. Then

E [m(Z)] = E
[∫ ∞

0

1{t∈Z} dt

]
= E

[∫ ∞

0

1{Bt=0} dt

]
=

∫ ∞

0

P(Bt = 0) dt = 0.

Hence m(Z) = 0 almost surely.

4.4.3 Hitting Times, Reflection Principle and Exit Times

In this part, we study the hitting time

τa = inf{s ≥ 0 : Bs = a}, a ≥ 0

of a Brownian motion (Bt)t≥0 starting from B0 = 0. Then we can view (τa)a≥0 as an increasing random

process, which has jumps and is not continuous.

Theorem 4.34 (First passage process). The process (τa)a≥0 has stationary and independent increments.

Proof. We fix 0 ≤ a < b. Then τb((Bτa+t)t≥0) = τb − τa. By Proposition 4.22, τa <∞ a.s. for all a > 0. For

any bounded measurable function f , by the strong Markov property,

E0 [f(τb − τa)|Fτa ] = E0 [f(τb((Bτa+t)t≥0))|Fτa ] = Ea[f(τb)] = E0[f(τb−a)].

Hence τb − τa
d
= τb−a, which proves stationarity.
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Now we let 0 = a0 < a1 < · · · < an and let f1, · · · , fn be bounded measurable functions. Then

E0

[
n∏
i=1

fi(τai − τai−1
)

]
= E0

[
n−1∏
i=1

fi(τai − τai−1
)E0

[
f(τan − τan−1

)

∣∣∣∣Fτan−1

]]

= E0

[
n−1∏
i=1

fi(τai − τai−1
)Ean−1

[f(τan)]

]
= E0

[
n−1∏
i=1

fi(τai − τai−1
)

]
E0

[
f(τan−an−1

)
]

= · · · =
n∏
i=1

E0

[
f(τai−ai−1

)
]
=

n∏
i=1

E0

[
f(τai − τai−1

)
]
,

where the last equality follows from the fact τai − τai−1

d
= τai−ai−1

. This proves independence.

Theorem 4.35 (Reflection principle). Given t > 0, let Mt = sup0≤s≤tBs. For any a > 0 and b ∈ (−∞, a],

P(Mt ≥ a,Bt ≤ b) = P(Bt ≥ 2a− b). (4.5)

In particular, we have Mt
d
= |Bt|.

Proof. Consider the hitting time τa = inf{s > 0 : Bs = a}. By Proposition 4.22 (ii), we have τa < ∞ a.s..

And by Theorem 4.31, the process B
(τa)
t = Bτa+t − Bτa = Bτa+t − a is a Brownian process independent of

Fτa . Consequently, (τa, B
(τa))

d
= (τa,−B(τa)), whose distribution equals the product of the law of τa and the

Wiener measure W on C(R+). Let H = {(s, f) ∈ R× C(R+) : s ≤ t, f(t− s) ≤ b− a}. Hence

P (Mt ≥ a,Bt ≤ b) = P (τa ≤ t, Bt ≤ b) = P
(
τa ≤ t, B(τa)

t−τa ≤ b− a
)
= P

(
(τa, B

(τa)) ∈ H
)

= P
(
(τa,−B(τa)) ∈ H

)
= P(τa ≤ t,−B(τa)

t−τa ≤ b− a)

= P(τa ≤ t, Bt ≥ 2a− b) = P(Bt ≥ 2a− b).

For the last assertion, note that

P(Mt ≥ a) = P(Mt ≥ a,Bt ≥ a) + P(Mt ≥ a,Bt ≤ a) = P(Bt ≥ a) + P(Bt ≥ 2a− a) = 2P(Bt ≥ a).

Thus we complete the proof.

Remark. According to (4.5), we also have

P(Mt ≤ y,Bt ≤ x) =

P(Bt ≤ x)− P(Bt ≥ 2y − x) if y > 0, x ≤ y

P(Mt ≤ y) if y > 0, x > y.

This gives the density of (Mt, Bt):

ρMt,Bt
(y, x) =

∂

∂y

(
1√
2πt

(
e−

x2

2t + e−
(2y−x)2

2t

))
=

2(2y − x)
t3/2
√
2π

e−
(2y−x)2

2t , y > 0, x ≤ y.

Corollary 4.36 (Law of hitting times). Given a > 0, the hitting time τa is identically distributed to a2B−2
1 .

Proof. By the last assertion of Theorem 4.35, we have

P (τa ≤ t) = P (Mt ≥ a) = P (|Bt| ≥ a) = P(B2
t ≥ a2) = P

(
a2

B2
1

≤ t
)
,

which holds for all t ≥ 0.

125



Remark. Since B1 ∼ N(0, 1), we can derive the density of τa:

ρτa(t) =
21{t>0}√

2π
e−

a2

2t
d

dt

(
a√
t

)
=

a√
2πt3

e−
a2

2t 1{t>0}.

This also implies E[τa] =∞ for all a > 0.

To further study the law of process (Mt)t≥0, we discuss the time reversal of Brownian motions.

Proposition 4.37 (Time reversal). Set B̃t = B1 − B1−t for every t ∈ [0, 1]. Then (B̃t)t∈[0,1] is a Brownian

motion on [0, 1], which has the same law as (Bt)t∈[0,1].

Proof. Clearly, B̃0 = 0, and (B̃t)t∈[0,1] has continuous sample paths. We show that (Bt)t∈[0,1] and (B̃t)t∈[0,1]

has the same finite-dimensional marginal distributions, which are extended to the Wiener measure on C([0, 1]).

Take a partition 0 = t0 < t1 < · · · < tn = 1. Then the increments

(B̃t1 , B̃t2 − B̃t1 , · · · , B̃tn − B̃tn−1
) = (B1 −B1−t1 , B1−t1 −B1−t2 , · · · , B1−tn−1

)

are jointly Gaussian and independent, and the desired result follows.

Corollary 4.38. Let Mt = sup0≤s≤tBt. Then Mt −Bt
d
=Mt

d
= |Bt| for every t > 0.

Proof. Fix t > 0. Akin to Proposition 4.37, we define B̃s = Bt − Bt−s for every s ∈ [0, t]. By symmetry

and time reversal property of Brownian motions, all (Bs)s∈[0,t], (B̃s)s∈[0,t] and (−B̃s)s∈[0,t] have the same law.

Consequently, sup0≤s≤tBt
d
= sup0≤s≤t(−B̃t), which is in fact Mt

d
=Mt −Bt.

To derive more property of the hitting times, we make use of the martingale property of Browninan motions.

The following proposition is obtained by direct calculation.

Proposition 4.39. Let (Ft)t≥0 be the canonical filtration of a Brownian motion (Bt)t≥0. All these processes

are martingales with respect to (Ft)t≥0: (i) Bt; (ii) B
2
t − t; (iii) exp(θBt − 1

2θ
2t), θ ∈ R.

Proposition 4.40 (Laplacian transform of hitting times). Given a > 0, the hitting time τa satisfies

E
[
e−λτa

]
= e−a

√
2λ, ∀λ > 0.

Proof. We consider the martingale Nθ
t = exp(θBt − 1

2θ
2t), where θ > 0. By Corollary 3.62, Nθ

t∧τa is a

martingale bounded by eθa from above, hence is uniformly integrable. As a result,

E
[
Nθ
τa

]
= lim
t→∞

E
[
Nθ
t∧τa

]
= E[Nθ

0 ] = 1.

Since τa <∞ a.s., we have

1 = E
[
Nθ
τa

]
= E

[
exp

(
θa− 1

2
θ2τa

)]
.

Setting θ =
√
2λ, the above reads E

[
e−λτa

]
= e−a

√
2λ.

To move forward, we alsop study the exit time of the Brownian motion from an interval.

Proposition 4.41 (Exit times). Given a ∈ R, set the hitting time τa = inf{s ≥ 0 : Bs = a}.
(i) (Law of the exit point from an interval). For every a < 0 < b, we have

P(τa < τb) =
b

b− a
, and P(τb < τa) =

−a
b− a

.
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(ii) (First moment of exit times). For every a < 0 < b, the exit time τ = τa ∧ τb satisfies E[τ ] = −ab.
(iii) (Laplacian transform of exit times). For every a > 0 and every λ > 0, the exit time τ = τa ∧ τb satisfies

E
[
e−λτ

]
=

cosh
(
b+a
2

√
2λ
)

cosh
(
b−a
2

√
2λ
) .

Proof. (i) We define a stopping time τ = τa ∧ τb. By Corollary 3.62, we choose the stopped martingale

(Bt∧τ )t≥0, which satisfies |Bt∧τ | ≤ (−a) ∨ b, hence is uniformly integrable. As a result, E [Bτ ] = E [B0] = 0.

Note that τa ̸= τb a.s., and E[Bτ ] = aP(τa < τb) + bP(τb < τa), the result follows.

(ii) Consider the martingale At = B2
t − t. Then E[At∧τ ] = E[A0] = 0, which gives E[B2

t∧τ ] = E[t ∧ τ ]. On the

other hand, the monotone convergence theorem implies E[t ∧ τ ] → E[τ ] as t → ∞. On the other hand, since

B2
t∧τ ≤ a2 ∨ b2, we have E[B2

t∧τ ]→ E[B2
τ ] as t→∞ by dominated convergence theorem. Note that

E
[
B2
τ

]
= E

[
a21{Bτ=a} + b21{Bτ=b}

]
= a2P(τa < τb) + b2P(τb < τa) = −ab.

(iii) Similar to Proposition 4.39 (iii), we take the following martingale:

Nt =
1

2
exp

(√
2λ

(
Bt −

a+ b

2

)
− λt

)
+

1

2
exp

(
−
√
2λ

(
Bt −

a+ b

2

)
− λt

)
= e−λt cosh

(√
2λ

(
Bt −

a+ b

2

))
, t ≥ 0.

Since 0 ≤ Nt∧τ ≤ cosh
(
b−a
2

√
2λ
)
, it is a uniformly integrable martingale. Consequently,

E [Nτ ] = lim
n→∞

[Nt∧τ ] = E[N0] = cosh

(
a+ b

2

√
2λ

)
.

On the other hand, since Bτ ∈ {a, b} a.s., we have

E[Nτ ] = E
[
e−λτ

(
1{Bτ=a} cosh

(
a− b
2

√
2λ

)
+ 1{Bτ=b} cosh

(
b− a
2

√
2λ

))]
= E

[
e−λτ

]
cosh

(
b− a
2

√
2λ

)
.

Then the desired result follows.

Proposition 4.42. Let a < 0 < b, and τ = τa ∧ τb = inf{t ≥ 0 : Bt /∈ [a, b]}. Then

3

10
E[τ2] ≤ E[B4

τ ] ≤ 30E[τ2].

Proof. By the martingale property of the process B4
t − 6tB2

t + 3t2 and the optional stopping theorem,

E
[
B4
t∧τ − 6(t ∧ τ)B2

t∧τ + 3(t ∧ τ)2
]
= 0.

For each λ > 0, by the Cauchy-Schwarz inequality,

E
[
B4
t∧τ + 3(t ∧ τ)2

]
= E[6(t ∧ τ)B2

t∧τ ] ≤ 3λE[(t ∧ τ)2] + 3

λ
E
[
B4
t∧τ
]

Since Bt∧τ ∈ [a, b], by the dominated convergence theorem and the monotone convergence theorem,(
1− 3

λ

)
E[B4

τ ] ≤ 3(λ− 1)E[τ2].

We set λ = 1
2 and λ = 5 to get the desired result.
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4.4.4 The Local Maxima

In this part, we study the times where a Brownian motion attains its local maxima:

M =

{
t ≥ 0 : Bt = max

s∈[t−ϵ,t+ϵ]
Bs for some ϵ > 0

}
.

Lemma 4.43. Let [a, b] and [c, d] be two disjoint intervals in [0,∞). Then the maxima of (Bt)t≥0 on them

are almost surely different.

Proof. Without loss of generality, assume b < c. By the simple Markov property, the maximal increment

supt∈[c,d]Bt −Bc
d
= supt∈[0,d−c]Bt and is independent of (Bs)s∈[0,c]. Then

P

(
sup
t∈[a,b]

Bt = sup
t∈[c,d]

Bt

)
= P

(
sup
t∈[a,b]

Bt −Bc = sup
t∈[c,d]

Bt −Bc

)
= 0.

Lemma 4.44. For a standard Brownian motion, almost surely, every local maximum is a strict local maximum.

Proof. By Lemma 4.43, with probability 1, (Bt)t≥0 has different maxima on any pair of disjoint rational

intervals. If some t∗ ∈ M is not strict, we derive a contradiction by selecting another local maximum s∗ ̸= t∗

in (t∗−ϵ, t∗+ϵ) with Bs∗ = Bt∗ , and finding two disjoint rational intervals containing s∗ and t∗, respectively.

Theorem 4.45. Let (Bt)t≥0 be a standard Brownian motion.

(i) Almost surely,M is a countable dense subset of [0,∞).

(ii) For each t > 0, almost surely, t /∈M, i.e. the Brownian motion does not attain a local maximum at t.

(iii) For each λ ∈ R, almost surely, λ is not a local maximum of (Bt)t≥0.

Proof. (i) By Lemma 4.44, almost surely,M is contained in the range of the mapping

[a, b] 7→ inf

{
t ∈ [a, b] : Bt = max

s∈[a,b]
Bs

}
from all rational intervals into [0,∞), which is countable. By Corollary 4.26 (i), (Bt)t≥0 is not monotone in

any nondegenerate interval, hence it almost surely has a local maximum in every nondegenerate interval.

(ii) Fix t > 0. By Proposition 4.22 and simple Markov property of Brownian motions, with probability 1, we

have supt≤s≤t+ϵBs −Bt > 0 for each ϵ > 0, which implies that t /∈M.

(iii) For every rational interval [a, b] ⊂ [0,∞), we have

P
(

max
s∈[a,b]

Bs = λ

)
= E

[
P
(

max
s∈[a,b]

Bs = λ
∣∣∣Fa

)]
=

∫
R

1√
2πa

e−
x2

2a P
(

max
s∈[0,b−a]

Bs = λ− x
)

= 0.

Then with probability 1, (Bt)t≥0 does not attains the maximum λ on any rational interval [a, b], and the result

follows from Lemma 4.44.

4.4.5 The Arcsine Laws

The arcsine laws are a collection of results for one-dimensional Brownian motion.

Proposition 4.46 (Arcsine laws). Let (Bt)t≥0 be a Brownian motion starting from B0 = 0.

(i) (Sign change). Let L = sup {t ∈ [0, 1] : Bt = 0}.
(ii) (Leftest maximum). Let M1 = sup0≤s≤1Bs, and define U = inf{t ≥ 0 : Bt =M1}. Then U < 1 a.s..
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The laws of L and U are both given by

P(L ≤ t) = P(U ≤ t) = 2

π
arcsin(

√
t), 0 ≤ t ≤ 1.

Proof. (i) The case for L is rather straightforward:

P(L ≤ t) = 2

∫ ∞

0

1√
2πt

e−
y2

2t P

(
sup

s∈[0,1−t]
(Bt −Bt+s) ≥ y

)
dy = 2

∫ ∞

0

1√
2πt

e−
y2

2t P (τy ≥ 1− t) dy

= 2

∫ ∞

0

1√
2πt

e−
y2

2t

(∫ ∞

1−t

y√
2πz3

e−
y2

2z dz

)
dy =

1

π

∫ ∞

1−t

(∫ ∞

0

y√
tz3

e−
y2

2t −
y2

2z dy

)
dz

=
1

π

∫ ∞

1−t

1√
tz3

tz

t+ z
dz

s= t
t+z
=

1

π

∫ t

0

s3/2

t
√
1− s

∂z

∂s
ds

=
1

π

∫ t

0

1√
s(1− s)

ds =
2

π
arcsin(

√
t).

(ii) Define B̃t = B1 −B1−t for all t ∈ [0, 1], which is a Brownian motion on [0, 1]. Then for all ϵ > 0,

B1 −M1 ≤ B1 − sup
1−ϵ≤s≤1

Bs = inf
0≤s≤ϵ

B̃s < 0 a.s..

Clearly, we have 0 ≤ U ≤ 1, and {U = 1} ⊂ {B1 =M1}. Hence P(U < 1) = 1.

Fix 0 < t < 1, and let Mt = sup0≤s≤tBs. By simple Markov property, (Bt+s −Bt)s∈[0,1−t] is independent

of (Bs)s∈[0,t]. Define Nt = sup0≤s≤1−t(Bt+s −Bt). Then Nt is independent of (Mt, Bt,Mt −Bt), and

P(U ≤ t) = P(Mt ≥ Bt +Nt) = P(Nt ≤Mt −Bt) = P(|B1 −Bt| ≤ |Bt|).

Let Z1, Z2 be N(0, 1) i.i.d., and θ is uniformly distributed on [0, 2π). By calculus,

P(U ≤ t) = P
(√

1− t|Z1| ≤
√
t|Z2|

)
= P

(
|Z1|√
Z2
1 + Z2

2

≤ t

)
= P

(
| sin θ| ≤

√
t
)
=

2

π
arcsin(

√
t).

Hence we complete the proof.

Remark. We also point out some details about random times L and U not discussed in the arcsin laws:

(i) Both L and U are not stopping times;

(ii) By Theorem 4.45, almost surely, 0 is neither a local maximum nor a local minimum of (Bt)t≥0. As a

result, (Bt)t≥0 always changes its sign at L;

(iii) By Lemma 4.43, almost surely, the maximum of (Bt)t≥0 on [0, 1] is unique and strict. Consequently, U

is the unique moment at which (Bt)t≥0 achieves its maximum on [0, 1].

We will introduce one more arcsine law for Brownian motions in Theorem 9.12.
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5 Stochastic Integration

In this chapter, our discussion is based on a probability space (Ω,F ,P) and a complete filtration (Ft)t≥0. All

processes we study are indexed by R+ and take real values.

5.1 Construction of Stochastic Integrals

5.1.1 From Elementary Processes to L2-Bounded Martingales

Preliminary: Space H2. Given a filtered probability space (Ω,F , (Ft)t≥0,P), we denote by H2 the vector

space of all continuous martingalesM = (Mt)t≥0 that are bounded in L2 [i.e. supt≥0 E[M2
t ] <∞] withM0 = 0,

and we write M ∼ N if M,N ∈ H2 are indistinguishable. Then we define H2 = H2/ ∼, and for brevity we

write [M ] = M for all M ∈ H2. By Theorem 3.71, a continuous local martingale falls in H2 if and only if

M0 = 0 and E [⟨M,M⟩∞] < ∞. Consequently, the martingale M = (Mt)t≥0 has a.s. and L2 limit X∞ such

that E[M∞|Ft] =Mt for all t ∈ R+.

IfM,N ∈ H2, the bracket ⟨M,N⟩ = 1
2 (⟨M+N,M+N⟩−⟨M,M⟩−⟨N,N⟩) then satisfies E[|⟨M,N⟩∞|] <∞.

This gives rise to a bilinear form:

⟨M,N⟩H2 = E [⟨M,N⟩∞] = E[M∞N∞] ⇒ ∥M∥H2 = E[⟨M,M⟩∞] = E[M2
∞].

One can easily show that ⟨·, ·⟩H2 forms an inner product on H2, of which positive definiteness follows from

Proposition 3.70. Furthermore, (H2, ⟨·, ·⟩H2) is a Hilbert space.

Proof of completeness. Let M (n) ∈ H2 be a Cauchy sequence with respect to the norm ∥ · ∥H2 . Then

lim
n,m→∞

E
[(
M (n)

∞ −M (m)
∞

)2]
= lim
n,m→∞

∥∥∥M (n) −M (m)
∥∥∥2
H2

= 0.

Then M
(n)
∞ is a Cauchy sequence in L2, and we denote Z = limn→∞M

(n)
∞ in L2. On the other hand, the

Doob’s L2-inequality [Proposition 3.52 (ii)] and an argument of dominated convergence theorem imply

E
[
sup
t≥0

∣∣∣M (n)
t −M (m)

t

∣∣∣2] ≤ 4E
[(
M (n)

∞ −M (m)
∞

)2]
.

Hence (M
(n)
t )∞n=1 is a Cauchy sequence for every t ≥ 0, which converges in L2. To conclude the proof, it

suffices to show that the limit process is in H2. We choose a subsequence M (nk) such that

E
[
sup
t≥0

∣∣∣M (nk+1)
t −M (nk)

t

∣∣∣2] < 2−k ⇒ E
[
sup
t≥0

∣∣∣M (nk+1)
t −M (nk)

t

∣∣∣] ≤ 2−k/2.

Consequently, we have
∑∞
k=1 supt≥0 |M

(nk+1)
t −M (nk)

t | <∞ a.s.. By Weierstrass M-test, the limit process

Mt = limk→∞M
(nk)
t is a a.s. uniform limit on R+, hence has continuous sample paths. On the zero probability

set where the uniform convergence does not hold, we take Mt = 0 for each t > 0. By completeness of the

filtration (Ft)t≥0, the process M = (Mt)t≥0 is adapted. Also, the continuity of conditional expectation passes

M
(nk)
t = E[M (nk)

∞ |Ft] to Mt = E[Z|Ft] as k →∞, hence (Mt)t≥0 is a uniformly integrable martingale, which

converges to M∞ a.s. and in L2. By uniform convergence, we have M∞ = Z a.s.. Therefore

lim
n→∞

∥∥∥M (n) −M
∥∥∥2
H2

= lim
n→∞

E
[(
M (n)

∞ −M∞

)2]
= lim
n→∞

E
[(
M (n)

∞ − Z∞

)2]
= 0.

Thus M ∈ H2 is indeed the limit of sequence M (n), completing the proof.
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Preliminary: Progressive σ-fields. Given (Ω,F ,P), we define the progressive σ-field on Ω× R+ as

P = {A ⊂ Ω× R+ : A ∩ (Ω× [0, t]) ∈ Ft ⊗B([0, t]), ∀t ∈ R+} ⊂ F ⊗B(R+),

where the inclusion holds since A =
⋃∞
n=1(A ∩ (Ω× [0, n])). Clearly, if A ∈P, the process Xt(ω) = 1A(ω, t)

is a progressive process. Furthermore, one can verify that P is indeed a σ-algebra on Ω× R+, and a process

(Xt)t≥0 is progressive if and only if the mapping (ω, t) 7→ Xt(ω) is P-measurable.

Preliminary: Space L2(M). Given a process M ∈ H2, the Theorem 3.69 determines to an increasing

process (⟨M,M⟩s)s≥0, which is called the quadratic variation of M . Then for every A ∈P, one can define

µM (A) = E
[∫ ∞

0

1A(·, s) d⟨M,M⟩s
]
.

This is a measure on (Ω× R+,P). We denote by L2(M) the space of all progressive progresses H such that

∥H∥2L2(M) = E
[∫ ∞

0

H2
s d⟨M,M⟩s

]
<∞,

and choose the quotient space L2(M) that makes ∥·∥L2(M) a proper norm. Then L2(M) = L2(Ω×R+,P, µM )

can be viewed as an ordinary L2-space, and we can define the inner product

⟨H,K⟩L2(M) = E
[∫ ∞

0

HsKs d⟨M,M⟩s
]

Remark. Recall that Xτ
t = Xt∧τ is the stopped process associated with a stopping time τ . IfM ∈ H2, then we

have ⟨Mτ ,Mτ ⟩∞ = ⟨M,M⟩τ , which implies that Mτ ∈ H2. Furthermore, if H ∈ L2(M), the process 1[0,τ ]H

defined by (1[0,τ ]H)s(ω) = 1[0,τ(ω)](s)Hs(ω) also belongs to L2(M). Note that 1[0,τ ]H is progressive since it

has left-continuous sample paths.

Definition 5.1 (Elementary processes). An elementary process is a progressive process of the form

Hs(ω) =

n∑
j=1

H(j)(ω)1(tj−1,tj ](s),

where 0 = t0 < t1 < · · · < tn, and H(j) is a :::::::
bounded Ftj−1

-measurable random variable for all j ∈ {1, · · · , n}.
Clearly, the set E of all (equivalence classes of) elementary processes is a subspace of L2(M).

Proposition 5.2. For every M ∈ H2, E is dense in L2(M).

Proof. Fix M ∈ H2. By elementary Hilbert space theory, it suffices to show that L2(M) ∋ K ⊥ E implies

K = 0. Assume that K ∈ L2(M) is orthogonal to E , and set

Xt =

∫ t

0

Ks d⟨M,M⟩s, ∀t ≥ 0.

According to Proposition 3.64, since

E
[∫ t

0

|Ks| |d⟨M,M⟩s|
]
≤
(
E
[∫ t

0

K2
s d⟨M,M⟩s

])1/2(
E
[∫ t

0

d⟨M,M⟩s
])1/2

≤ ∥K∥L2(M) ∥M∥H2 ,

the process (Xt)t≥0 is a finite-variation process. In addition, it is bounded in L1.
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Now we prove that (Xt)t≥0 is a continuous martingale. Given 0 ≤ s < t, let Hr = Y 1(s,t], where Y is a

bounded Fs-measurable random variable. Then

0 = ⟨H,K⟩L2(M) = E
[
Y

∫ t

s

Ku d⟨M,M⟩u
]
= E[Y (Xt −Xs)]

Since E[Y (Xt − Xs)] = 0 for all bounded Fs-measurable random variable Y , we have E[Xt − Xs|Fs] = 0.

Note that X = (Xt)t≥0 is adapted, and by definition it has continuous sample paths. Hence X is a continuous

martingale. By Proposition 3.68, we have X = 0 a.s., i.e.∫ t

0

Ks d⟨M,M⟩s = 0 ∀t ≥ 0, a.s. ⇒ Ks = 0 d⟨M,M⟩s-a.e., a.s..

Therefore ∥K∥L2(M) = 0, and the result follows.

Theorem 5.3 (Stochastic integrals for L2-bounded martingales). Let M ∈ H2. For every elementary process

H ∈ E , we define the following formula:

Hs =

n∑
j=1

H(j)1(tj−1,tj ](s) ⇒ (H ·M)t =

n∑
j=1

H(j)

(
Mtj∧t −Mtj−1∧t

)
This defines a process H ·M ∈ H2, and the mapping H 7→ H ·M extends to an isometry from L2(M) into H2.

Furthermore, H ·M is the unique martingale of H2 that satisfies the property

⟨H ·M,N⟩ = H · ⟨M,N⟩, ∀N ∈ H2, (5.1)

where the quantity H · ⟨M,N⟩ in the right-hand side is the integral with respect to a finite variation process.

If τ is a stopping time, we then have

(1[0,τ ]H) ·M = (H ·M)τ = H ·Mτ . (5.2)

The process H ·M is called the stochastic integral of H with respect to M .

Proof. Since the process H ·M does not depends on the choice of partition when H is given, it is easy to see

that H 7→ H ·M is a linear mapping. Then we verify that H 7→ H ·M is an isometry from E into L2(M).

We fix the process H = (Hs)s≥0 of the form given in the theorem. For every j ∈ {1, · · · , n}, define

M
(j)
t = H(j)(Mtj∧t − Mtj−1∧t) for all t ≥ 0. Akin to our proof of Theorem 3.56 at Step II, the process

(M
(j)
t )t≥0 is a continuous martingale, and it belongs to H2. Hence H ·M =

∑n
j=1M

(j) also belongs to H2.

Moreover, note that

〈
M (j),M (j)

〉
t
=

n∑
j=1

H2
(j)

(
⟨M,M⟩tj∧t − ⟨M,M⟩tj−1∧t

)
, (By the approximation formula)〈

M (j),M (k)
〉
H2

= E
[
M (j)

∞ M (k)
∞

]
= E

[
H(j)H(k)(Mtj −Mtj−1)(Mtk −Mtk−1

)
]

= E
[
E
[
H(j)H(k)(Mtj −Mtj−1

)(Mtk −Mtk−1
)|Ftj−1

]]
= 0, ∀1 ≤ j < k ≤ n.

By orthogonality of M (j)’s and bilinearity of quadratic variation, it holds

⟨H ·M,H ·M⟩t =
n∑
j=1

H2
(j)

(
⟨M,M⟩tj∧t − ⟨M,M⟩tj−1∧t

)
=

∫ t

0

H2
s d⟨M,M⟩s.
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Consequently, we have

∥H ·M∥2H2 = E [⟨H ·M,H ·M⟩∞] = E
[∫ ∞

0

H2
s d⟨M,M⟩s

]
= ∥H∥2L2(M), ∀t ≥ 0.

By linearity, if H = H ′ in L2(M), then H ·M = H ′ ·M in H2. Therefore the mapping E → H2 is well-defined.

Since it is norm-preserving and linear, it is an isometry. By Proposition 5.2 and the fact that H2 is complete,

we can uniquely extend this mapping to an isometry from L2(M) into H2.

Now we verify the property (5.1). We fix N ∈ H2. The Kunita-Watanabe inequality [Theorem 3.76] implies

E
[∫ ∞

0

|Hs| |d⟨M,N⟩s|
]
≤ ∥H∥L2(M)∥N∥H2 <∞, ∀H ∈ L2(M).

Then the variable (H · ⟨M,N⟩)∞ =
∫∞
0
Hs d⟨M,N⟩s is well-defined and in L1. For the case where H is an

elementary process, we have⟨H ·M,N⟩ =
∑n
j=1⟨M (j), N⟩

⟨M (j), N⟩t = H2
(j)

(
⟨M,N⟩tj∧t − ⟨M,N⟩tj−1∧t

)
, ∀t ≥ 0.

This gives (5.1) in the case H ∈ E :

⟨H ·M,N⟩t =
n∑
j=1

H2
(j)

(
⟨M,N⟩tj∧t − ⟨M,N⟩tj−1∧t

)
=

∫ t

0

Hs d⟨M,N⟩s = (H · ⟨M,N⟩)t, ∀t ≥ 0.

To prove the general case where H ∈ L2(M), note the continuity of the linear mapping X 7→ ⟨X,N⟩∞
from H2 into L1(Ω,F ,P):

E [|⟨X,N⟩∞|] = E [⟨X,X⟩∞]
1/2 E [⟨N,N⟩∞]

1/2
= ∥X∥H2∥N∥H2 .

Let H(n) ∈ E be a sequence that converges to H in L2(M). Then H(n) ·M → H ·M in H2, and

⟨H ·M,N⟩∞ = lim
n→∞

〈
H(n) ·M,N

〉
∞

= lim
n→∞

(
H(n) · ⟨M,N⟩

)
∞

= (H · ⟨M,N⟩)∞,

where the last equality holds in L1 by Kunita-Watanabe:

E
[∣∣∣∣∫ ∞

0

(H(n)
s −Hs) d⟨M,N⟩s

∣∣∣∣] ≤ ∥∥∥H(n)
s −Hs

∥∥∥
L2(M)

∥N∥H2 .

Hence we have ⟨H ·M,N⟩∞ = (H · ⟨M,N⟩)∞. By replacing N with the stopped martingale N t for any t ≥ 0,

one obtain ⟨H ·M,N⟩t = (H · ⟨M,N⟩)t. For uniqueness, let X ∈ H2 satisfy (5.1). Then ⟨H ·M−X,N⟩ = 0 for

all N ∈ H2, which implies ⟨H ·M −X,H ·M −X⟩ = 0. By Proposition 3.70 (ii), we have H ·M −X = 0 a.s..

Finally it remains to show (5.2). By Proposition 3.75 (iv), for all N ∈ H2, we have

⟨(H ·M)τ , N⟩t = ⟨H ·M,N⟩t∧τ = (H · ⟨M,N⟩)t∧τ =
(
1[0,τ ]H · ⟨M,N⟩

)
t
,

which implies the first inequality. The proof for the second one is similar:

⟨H ·Mτ , N⟩ = H · ⟨Mτ , N⟩ = H · ⟨M,N⟩τ = 1[0,τ ]H · ⟨M,N⟩.

Note that the property (5.1) can be used as an alternative definition of the stochastic integral H ·M .
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Remark. We use the following notation for a stochastic integral:∫ t

0

Hs dMs = (H ·M)t, ∀t ≥ 0, and

∫ ∞

0

Hs dMs = (H ·M)∞.

The property (5.1) gives commutativity of stochastic integral and bracket:〈∫ ·

0

Hs dMs, N

〉
t

=

∫ t

0

Hs d⟨M,N⟩s

The following proposition concerns about associativity.

Proposition 5.4 (Associativity). Let K = (Ks)s≥0 and H = (Hs)s≥0 be two progressive progresses.

(i) Let A = (As)s≥0 be a finite variation process, and
∫∞
0
|Hs| |dAs| <∞ a.s.. If

∫∞
0
|KsHs| |dAs| <∞ a.s.,

then (KH) ·A = K · (H ·A).
(ii) Let M ∈ H2, and H ∈ L2(M). Then KH ∈ L2(M) if and only if K ∈ L2(H ·M). In this case, we have

(KH) ·M = K · (H ·M).

Proof. The statement (i) follows from an analogous deterministic result. Using the property (5.1) twice and

(i) gives ⟨H ·M,H ·M⟩ = H2 · ⟨M,M⟩, and K2 · ⟨H ·M,H ·M⟩ = K2H2 · ⟨M,M⟩. Then the first assertion

of (ii) follows from a monotone convergence argument:

E
[(
K2H2 · ⟨M,M⟩

)
∞

]
= E

[(
K2 · ⟨H ·M,H ·M⟩

)
∞

]
For the second assertion, note that

⟨(KH) ·M,N⟩ = KH · ⟨M,N⟩ = K · (H · ⟨M,N⟩) = K · ⟨H ·M,N⟩, ∀N ∈ H2.

The result immediately follows from the uniqueness argument in Theorem 5.3.

Remark. Let M,N ∈ H2, H ∈ L2(M) and K ∈ L2(N). Using (5.1) and (i) gives a more general result:

⟨H ·M,K ·N⟩t =
〈∫ ·

0

Hs dMs,

∫ ·

0

Ks dNs

〉
t

=

∫ t

0

HsKs d⟨M,N⟩s.

According to Proposition 3.75 (vi), we have

E
[(∫ t

0

Hs dMs

)(∫ t

0

Ks dNs

)]
= E

[∫ t

0

HsKs d⟨M,N⟩s
]
.

Note that H ·M =
∫ ·
0
Hs dMs is a martingale of H2. For all 0 ≤ s < t ≤ ∞, we have

E
[∫ t

0

Hs dMs

]
= 0, and E

[∫ t

0

Hu dMu

∣∣∣∣Fs

]
=

∫ s

0

Hu dMu.

According to Theorem 3.71, the second moment of the stochastic integral is given by

E

[(∫ t

0

Hs dMs

)2
]
= E

[∫ t

0

H2
s d⟨M,M⟩s

]
.

Next we will discuss stochastic integrals for local martingales and semimartingales.
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5.1.2 Stochastic Integrals for Local Martingales and Semimartingales

Preliminaries: Space L2
loc(M). Let M be a continuous local martingale. Similar to the case M ∈ H2,

we can define a Hilbert space L2(M) associated with M containing all progressive processes H such that

E
[∫∞

0
H2
s d⟨M,M⟩s

]
<∞. Furthermore, we denote by L2

loc(M) the set of all progressive processes such that∫ t

0

H2
s d⟨M,M⟩s <∞, ∀t ≥ 0, a.s..

Clearly, L2(M) is a subspace of L2
loc(M).

Theorem 5.5 (Stochastic integrals for continuous local martingales). Let M be a continuous local martingale.

For every H ∈ L2
loc(M), there exists a unique continuous local martingale starting from 0, denoted by H ·M ,

such that for every continuous local martingale N ,

⟨H ·M,N⟩ = H · ⟨M,N⟩. (5.3)

If τ is a stopping time, we then have

(1[0,τ ]H) ·M = (H ·M)τ = H ·Mτ . (5.4)

In addition, if K = (Ks)s≥0 is a progressive process, then KH ∈ L2
loc(M) if and only if K ∈ L2

loc(H ·M). In

this case, we have (KH) ·M = K · (H ·M).

Proof. Without loss of generality, we assume that M0 = 0, since we can replace (Mt)t≥0 by (Mt−M0)t≥0. We

also assume that the property
∫ s
0
H2
s d⟨M,M⟩s <∞ for all t ≥ 0 holds for all ω ∈ Ω by resetting H = 0 on a

negligible set if required. For all n ∈ N, we choose a sequence of stopping times τn increasing to ∞ as follows:

τn = inf

{
t ≥ 0 :

∫ t

0

(1 +H2
s ) d⟨M,M⟩s ≥ n

}
.

By definition, ⟨Mτn ,Mτn⟩t = ⟨M,M⟩t∧τn ≤ n, hence the stopped martingaleMτn belongs toH2. Furthermore,∫ ∞

0

H2
s d⟨Mτn ,Mτn⟩s =

∫ τn

0

H2
s d⟨M,M⟩s ≤ n

Hence H ∈ L2(Mτn), and the definition of H ·Mτn make sense by Theorem 5.3. Note that for all n > m ≥ 1,

the property (5.2) implies (H ·Mτn)τm = H ·Mτm . Let (H ·M)t = limn→∞(H ·Mτn)t for every t ≥ 0, where

the limit exists for all ω ∈ Ω (we find m with τm(ω) ≥ t, then (H ·Mτn)t(ω) = (H ·Mτm)t(ω) for all n ≥ m).

Then H ·M is an adapted process, and (H ·M)τn = limm→∞(H ·Mτm)τn = H ·Mτn ∈ H2. Consequently,

H ·M has continuous sample paths, and is a continuous local martingale.

Now we verify (5.3). Let N be a continuous local martingale with N0 = 0, and choose stopping times

τ ′n = inf{t ≥ 0 : |Nt| ≥ n}, σn = τn ∧ τ ′n. Then Nτ ′
n ∈ H2. Note that Mτn ∈ H2, and H ∈ L2(Mτn). Hence

⟨H ·M,N⟩σn = ⟨(H ·M)τn , Nτ ′
n⟩ = ⟨H ·Mτn , Nτ ′

n⟩ = H · ⟨Mτn , Nτ ′
n⟩ = H · ⟨M,N⟩σn = (H · ⟨M,N⟩)σn .

Since σn →∞ as n→∞, the equality (5.3) follows. The uniqueness of H ·M follows from a similar argument

presented in the proof of Theorem 5.3. The equality (5.4) is a consequence of (5.3), as is shown in the proof

of Theorem 5.3. Finally, the associativity follows in an analogous way in Proposition 5.4.

Remark. (i) (Consistency of two definitions). If M ∈ H2 and H ∈ L2(M), the two definitions of H ·M given

in Theorems 5.3 and 5.5 coincide. To see this, note that the definition of H ·M in Theorem 5.5 satisfies

H ·M ∈ H2. This is a consequence of the property (5.3), which gives ⟨H ·M,H ·M⟩ = H2 · ⟨M,M⟩.
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(ii) (Connection to Wiener’s integral). A Brownian motion B = (Bt)t≥0 is a continuous martingale with

respect to the natural filtration Ft = σ(Bs, 0 ≤ s ≤ t). According to the Remark of Proposition 4.4, for each

h ∈ L2(R+,B(R+),m), we can define the Wiener integral
∫ t
0
h(s) dBs =W (h1[0,t]), where W is the Gaussian

white noise associated with B. This definition coincides with the stochastic integral (h ·B)t, where we view h

as a (deterministic) progressive process. For all step functions h =
∑n
j=1 λj1(tj−1,tj ], we have

∫ t

0

h(s) dBs =W (h1[0,t]) =

n∑
j=1

λj
(
Btj∧t −Btj−1∧t

)
.

Then for all continuous local martingales N , we have〈∫ ·

0

h(s) dBs, N

〉
t

=

n∑
j=1

λj(⟨Btj∧·, N⟩t − ⟨Btj−1∧·, N⟩t) =
n∑
j=1

λj(⟨B,N⟩tj∧t − ⟨B,N⟩tj−1∧t) = (h · ⟨B,N⟩)t.

Therefore we have
∫ t
0
h(s) dBs = (h ·B)t for all step functions h. For the general case h ∈ L2(R+,B(R+),m),

the quadratic variation ⟨B,B⟩t = t implies h ∈ L2(B), and the result follows from a density argument.

(iii) (Moment formulae). In the setting of Theorem 5.5, we again write
∫ t
0
Hs dMs = (H · M)t. If M,N

are continuous local martingales, H ∈ L2
loc(M) and K ∈ L2

loc(N), the first formula in the Remark under

Proposition 5.4 still holds true for ⟨H ·M,K ·N⟩:

⟨H ·M,K ·N⟩t =
∫ t

0

HsKs d⟨M,N⟩s, ∀t ≥ 0;

whereas the formulae for moments of
∫ t
0
Hs dMs may fail.

We can make an extension. For a continuous local martingale M and a progressive process H ∈ L2
loc(M),

and for some fixed t > 0, assume the following condition holds:

E
[∫ t

0

H2
s d⟨M,M⟩s

]
<∞. (5.5)

According to Theorem 3.71, the stopped process (H ·M)t is a martingale of H2. As a result, we have

E
[∫ t

0

Hs dMs

]
= 0, E

[(∫ t

0

Hs dMs

)2
]
= E

[∫ t

0

H2
s d⟨M,M⟩s

]
.

Consequently, regardless of whether the condition (5.5) holds, we have the following bound:

E

[(∫ t

0

Hs dMs

)2
]
≤ E

[∫ t

0

H2
s d⟨M,M⟩s

]
. (5.6)

This result remains true if we replace t by a stopping time τ .

Preliminary: Locally bounded processes. A progressive process H = (Hs)s≥0 is said to be locally

bounded if sup0≤s≤t |Hs| <∞ a.s. for all t > 0. In this case, for every finite variation process V , one have∫ t

0

|Hs| |dVs| ≤ sup
0≤s≤t

|Hs|
(∫ t

0

|dVs|
)
<∞ a.s., ∀t > 0.

In particular, an adapted and continuous process is locally bounded progressive process.
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Theorem 5.6 (Stochastic integrals for continuous semimartingales). Let X be a continuous semimartingale

with canonical decomposition X =M +A. If H is a locally bounded progressive process, the stochastic integral

H ·X is the continuous semimartingale with canonical decomposition H ·X = H ·M +H · A. The following

properties hold for this stochastic integral:

(i) The mapping (H,X) 7→ H ·X is bilinear.

(ii) If K is another locally bounded progressive process, then K · (H ·A) = (KH) ·A.
(iii) For a stopping time τ , we have H1[0,τ ] ·X = (H ·X)τ = H ·Xτ .

(iv) If X is a continuous local martingale, resp. if X is a finite variation process, so is H ·X;

(v) If H is of the form Hs(ω) =
∑n
j=1H(j)(ω)1(tj−1,tj ](s), where 0 = t0 < t1 < · · · < tn, and H(j) is a

Ftj−1
-measurable random variable for every j ∈ {1, · · · , n}, then

(H ·X)t =

n∑
j=1

H(j)

(
Xtj∧t −Xtj−1∧t

)
.

Proof. The properties (i)-(iv) follow from the results obtained when X is a continuous local martingale, resp.

a finite variation process. To obtain (iv), it suffices to consider the case where X = M is a continuous local

martingale with M0 = 0. We may even assume that M ∈ H2 by stopping it at a suitable time and using (5.2).

We choose the following sequence of stopping times, with the convention inf ∅ =∞:

τk = inf {t ≥ 0 : |Hs| ≥ k} = inf
{
tj−1 : |H(j)| ≥ k

}
.

Then τk ↑ ∞ as k →∞. Furthermore, for every k,

Hs1[0,τk](s) =

n∑
j=1

Hk
(j)1(tj−1,tj ](s), where Hk

(j) = H(j)1{τk≥tj−1} ≤ k.

Consequently, H1[0,τk] is an elementary process, and its stochastic integral with respect to M ∈ H2 is

(H ·M)t∧τk = (H1[0,τn] ·M)t =

n∑
j=1

Hk
(j)

(
Xtj∧t −Xtj−1∧t

)
.

Then the desired result follows by letting k →∞.

We introduce two important convergence results for stochastic integrals.

Theorem 5.7 (Dominated convergence theorem for stochastic integrals). Let X = M + A be the canonical

decomposition of a continuous semimartingale X, and let T ≥ 0. Let (Hn)∞n=1 be a sequence of locally bounded

progressive processes such that limn→∞Hn
s = Hs a.s. for every s ∈ [0, T ], where H is a locally bounded

progressive process. Let K = (Ks)s≥0 be a nonnegative progressive process such that∫ T

0

K2
s d⟨M,M⟩s <∞ a.s., and

∫ T

0

Ks |dAs| <∞ a.s.. (5.7)

If the sequence (Hn)∞n=1 is dominated by K, i.e. |Hn
s | ≤ Ks a.s. for every n ∈ N and every s ∈ [0, T ], then

Hn ·X → H ·X uniformly on [0, T ] in probability, i.e.

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Hn
s dXs −

∫ t

0

Hs dXs

∣∣∣∣ > ϵ

)
= 0, for each ϵ > 0.

Note the property (5.7) holds if K is a locally bounded progressive progress.
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Proof. Since |Hn
s −Hs| ≤ 2Ks a.s. and

∫ T
0
Ks|dAs| <∞, by Lebesgue dominated convergence theorem,

lim
n→∞

∫ T

0

|Hn
s −Hs| |dAs| = 0 a.s..

So we only need to deal with the case when X =M is a continuous local martingale. For every N ∈ N, choose
the following stopping time:

τN = inf

{
t ∈ [0, T ] :

∫ t

0

K2
s d⟨M,M⟩s ≥ N

}
∧ T.

By assumption (5.7), we have P(τN = T )→ 1 as N →∞. Furthermore, on [0, T ],

|(Hn −H) ·M |2 ≤ ⟨(Hn −H) ·M, (Hn −H) ·M⟩ = (Hn −H)2 · ⟨M,M⟩.

Hence for every t ∈ [0, T ],∣∣∣∣∫ t∧τN

0

(Hn
s −Hs) dMs

∣∣∣∣2 ≤ ∫ t∧τN

0

(Hn
s −Hs)

2 d⟨M,M⟩s =
∫ τN

0

(Hn
s −Hs)

2 d⟨M,M⟩s.

Since
∫ τN
0

K2
s d⟨M,M⟩s ≤ N , and |Hn

s − Hs| ≤ 2Ks and Hn
s → Hs a.s. for each s ∈ [0, T ], by Lebesgue

dominated convergence theorem,

lim
n→∞

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t∧τN

0

(Hn
s −Hs) dMs

∣∣∣∣2
]
≤ lim
n→∞

E
[∫ τN

0

(Hn
s −Hs)

2 d⟨M,M⟩s
]
= 0.

Then for every ϵ > 0,

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Hn
s −Hs) dMs

∣∣∣∣ ≥ ϵ
)
≤ P(τN < t) + P

(
sup
t∈[0,T ]

∣∣∣∣∫ t∧τN

0

(Hn
s −Hs) dMs

∣∣∣∣ ≥ ϵ
)

≤ P(τN < t) +
1

ϵ2
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t∧τN

0

(Hn
s −Hs) dMs

∣∣∣∣2
]
.

Letting n→∞ and N →∞, we obtain the desired result.

Corollary 5.8 (Dominated convergence theorem for stochastic integrals). Let X = (Xt)t≥0 be a continuous

semimartingale. Let (Hn)∞n=1 be a sequence of locally bounded progressive processes such that limn→∞Hn
s =

Hs a.s. for every s ≥ 0, where H is a locally bounded progressive process. Let K = (Ks)s≥0 be a nonnegative

progressive process satisfying (5.7) for every T > 0. If |Hn
s | ≤ Ks a.s. for every n ∈ N and every s ≥ 0, then

for every stopping time τ with τ <∞ a.s.,

lim
n→∞

∫ τ

0

Hn
s dXs =

∫ τ

0

Hs dXs in probability.

Proof. We fix N > 0. Then Hn ·X → H ·X uniformly on [0, T ] in probability, and for every ϵ > 0,

P
(∣∣∣∣∫ τ

0

Hn
s dXs −

∫ τ

0

Hs dXs

∣∣∣∣ > ϵ

)
≤ P

(∣∣∣∣∫ τ

0

Hn
s dXs −

∫ τ

0

Hs dXs

∣∣∣∣ > ϵ, τ ≤ N
)
+ P(τ > N)

≤ P

(
sup

t∈[0,N ]

∣∣∣∣∫ t

0

Hn
s dXs −

∫ t

0

Hs dXs

∣∣∣∣ > ϵ

)
+ P(τ > N).

We then let n→∞ and N →∞ to obtain the desired result.
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For continuous integrands, we have the following useful approximation result.

Proposition 5.9. Let X be a continuous martingale, and let H be an continuous adapted process. For every

t > 0 and every sequence of partitions 0 = tn0 < tn1 < · · · < tnkn = t whose mesh tends to 0, we have

∫ t

0

Hs dXs = lim
n→∞

kn∑
j=1

Htnj−1
(Xtnj

−Xtnj−1
) in probability. (5.8)

Proof. For every n ∈ N, we define Hn
0 = H0 and Hn

s =
∑kn
j=1Htnj−1

1(tnj−1,t
n
j ]

for all s > 0. Then Hn is a

left-continuous adapted process, hence is progressive. By Theorem 5.6 (v), we have

∫ t

0

Hn
s dXs =

kn∑
j=1

Htnj−1
(Xtnj

−Xtnj−1
), ∀n ∈ N.

We take Ks = max0≤r≤s |Hr|. This is a locally bounded progressive process dominating Hn. Since H is

sample continuous, we have Hn
s → Hs a.s. for all s ∈ [0, t]. Using Theorem 5.7 concludes the proof.

Remark. Note in (5.8), we evaluate H at the
:::
left

:::
end of every interval (tnj−1, t

n
j ]. The result fails if we replace

Htnj−1
by Htnj

. To see a counterexample, we take H = Y to be another continuous martingale. Then

kn∑
j=1

Ytnj (Xtnj
−Xtnj−1

) =

kn∑
j=1

Ytnj−1
(Xtnj

−Xtnj−1
) +

kn∑
j=1

(Xtnj
−Xtnj−1

)(Ytnj − Ytnj−1
)

The convergence results in (5.8) and (3.10) imply limn→∞
∑kn
j=1 Ytnj (Xtnj

−Xtnj−1
) =

∫ t
0
Ys dXs + ⟨X,Y ⟩t, and

XtYt −X0Y0 =

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + ⟨X,Y ⟩t. (5.9)

This is known as the formula of integration by parts.

139



5.2 Itô’s Formula and its Consequences

Theorem 5.10 (Itô’s Lemma). Let X1, · · · , Xp be p continuous semimartingales, and let F ∈ C2(Rp). Then

for every t ≥ 0, we have

F (X1
t , · · · , X

p
t ) = F (X1

0 , · · · , X
p
0 ) +

p∑
j=1

∫ t

0

∂F (X1
s , · · · , Xp

s )

∂xj
dXj

s +
1

2

p∑
i,j=1

∫ t

0

∂2F (X1
s , · · · , Xp

s )

∂xi∂xj
d⟨Xi, Xj⟩s.

Proof. We write (X1, · · · , Xp) = X for brevity. Fix t > 0, and consider an increasing sequence of partitions

0 = tn0 < tn1 < · · · < tnkn = t whose mesh tends to 0. According to Taylor’s theorem,

F (Xt) = F (X0) +

kn∑
l=1

(
F (Xtnj

)− F (Xtnj−1
)
)

= F (X0) +

p∑
j=1

kn∑
l=1

∂F

∂xj
(Xtnl−1

)(Xj
tnl
−Xj

tnl−1
)︸ ︷︷ ︸

(a)

+
1

2

p∑
i,j=1

kn∑
l=1

f i,jn,l(X
i
tnl
−Xi

tnl−1
)(Xj

tnl
−Xj

tnl−1
)︸ ︷︷ ︸

(b)

,

where the quantity f i,jn,l can be written as

f i,jn,l =
∂2F

∂xi∂xj
((1− ξ)Xtnl−1

+ ξXtnl
)

for some random variable ξ : Ω → [0, 1]. By Proposition 5.9, the term (a) converges to
∑p
j=1

∫ t
0
∂F
∂xj (Xs) dX

j
s

in probability as n→∞. So it remains to find the limit of term (b). For brevity we write DijF = ∂2F
∂xi∂xj . By

uniform continuity of the second derivatives of F on compact intervals, we have for all i, j ∈ {1, · · · , p} that

sup
1≤l≤kn

∣∣∣f i,jn,l −DijF (Xtnl−1
)
∣∣∣ ≤ sup

1≤l≤kn

 sup
x∈

[
Xtn

l−1
∧Xtn

l
,Xtn

l−1
∨Xtn

l

]
∣∣∣DijF (x)−DijF (Xtnl−1

)
∣∣∣
→ 0 a.s..

By Proposition 3.79,
∑kn
l=1(X

i
tnl
−Xi

tnl−1
)(Xj

tnl
−Xj

tnl−1
)

P→ ⟨Xi, Xj⟩t <∞. This gives an estimate of (b):

∣∣∣∣∣
kn∑
l=1

DijF (Xtnl−1
)(Xi

tnl
−Xi

tnl−1
)(Xj

tnl
−Xj

tnl−1
)−

kn∑
l=1

f i,jn,l(X
i
tnl
−Xi

tnl−1
)(Xj

tnl
−Xj

tnl−1
)

∣∣∣∣∣ P→ 0 as n→∞.

According to (5.9), the process XiXj = (Xi
sX

j
s )s≥0 is also a semimartingale. We then transform (b) as

lim
n→∞

kn∑
l=1

DijF (Xtnl−1
)(Xi

tnl
−Xi

tnl−1
)(Xj

tnl
−Xj

tnl−1
)

=

∫ t

0

DijF (Xs) d(X
iXj)s −

∫ t

0

DijF (Xs)X
i
s dX

j
s −

∫ t

0

DijF (Xs)X
j
s dX

i
s (in probability)

=

∫ t

0

DijF (Xs) d(X
iXj)s −

∫ t

0

DijF (Xs) d(X
i ·Xj)s −

∫ t

0

DijF (Xs) d(X
j ·Xi)s (by associativity)

=

∫ t

0

DijF (Xs) d⟨Xi, Xj⟩s. (by linearity and (5.9))

Thus we finish the proof of Itô’s formula.

Remark. The formula (5.9) of integration by parts is a special case of Itô’s lemma.

140



Proposition 5.11. Take a twice continuously differentiable function F (r, x) in R2. Itô’s formula implies

F (⟨X,X⟩t, Xt) = F (0, X0) +

∫ t

0

∂F

∂x
(⟨X,X⟩s, Xs) dXs +

∫ t

0

(
∂F

∂r
+

1

2

∂2F

∂x2

)
(⟨X,X⟩s, Xs) d⟨M,M⟩s

For a continuous local martingale M , F (⟨M,M⟩,M) is a continuous local martingale if ∂F∂r + 1
2
∂2F
∂x2 = 0.

Remark. We take F (r, x) = exp(λx− λ2

2 r), where λ ∈ C. Then both the real and imaginary parts of F : R2 → C
satisfies the above condition, and ∂F

∂x = λF . We define

E (λM)t = exp

(
λMt −

λ2

2
⟨M,M⟩t

)
, ∀t ≥ 0.

Consequently, E (λM) is a complex continuous local martingale (i.e. both its real and imaginary parts), and

E (λM)t = eλM0 + λ

∫ t

0

E (λM)s dMs.

5.2.1 Multidimensional Brownian motions

A d-dimensional Brownian motion is a stochastic process {Bt = (B1
t , · · · , Bdt ), t ≥ 0} with values in Rd whose

component processes B1, · · · , Bd are independent Brownian motions. A Brownian motion (Bt)t≥0 is called a

(Ft)-Brownian motion if it is adapted and has independent increments with respect to the filtration (Ft)t≥0.

Theorem 5.12 (Lévy’s characterization of multi-dimensional Brownian motions). An adapted and continuous

process B = (B1, · · · , Bd) is a (Ft)-Brownian motion if and only if its component processes B1, · · · , Bd are

continuous local martingales such that ⟨Bi, Bj⟩t = δijt for all i, j ∈ {1, · · · , d} and all t ≥ 0.

Proof. We only prove the sufficiency part, since the other direction is clear. Take α = (α1, · · · , αd) ∈ Rd

with |α|2 =
∑d
j=1 α

2
j . Then α⊤Xt =

∑d
j=1 αjB

j
t is a continuous local martingale with quadratic variation

⟨α⊤B,α⊤B⟩ = |α|2t. By Proposition 5.11, the process
(
exp(iα⊤Bt − 1

2 |α|
2t)
)
t≥0

is a continuous local martin-

gale bounded on each compact interval [0, t], t > 0, hence is a martingale. As a result, for all t ≥ s > 0,

E
[
exp

(
iα⊤Bt −

1

2
|α|2t

)∣∣∣∣Fs

]
= exp

(
iα⊤Bs −

1

2
|α|2s

)
⇒ E

[
exp
(
iα⊤(Bt −Bs)

)
|Fs

]
= e−

1
2 |α|

2(t−s).

Given any A ∈ Fs, we take the measure PA(E) = P(A∩E)/P(A), ∀E ∈ F . Comparing the characteristic

functions, the law of Bt − Bs does not change from P to PA. Then E [f(Bt −Bs)1A] = P(A)E [f(Bt −Bs)]
for all nonnegative measurable functions. Choosing f to be indicator functions do we obtain that Bt − Bs is

independent of Fs, and Bt − Bs ∼ N(0, (t − s)Id). Since B is adapted and continuous and has independent

Gaussian increments, it is a (Ft)-Brownian motion.

Remark. (i) (Rotational invariance of Brownian motions). If B is a d-dimensional Brownian motion and

Q ∈ Rd×d is an orthogonal matrix, then QB is also a d-dimensional Brownian motion. To see this, we note

⟨Xi, Xj⟩t =

〈
d∑
k=1

QikB
k,

d∑
l=1

QjlB
l

〉
t

=

d∑
k,l=1

QikQjl⟨Bk, Bl⟩t =
d∑
k=1

QikQjkt = δijt.

(ii) Let B = (B1, · · · , Bd) be a d-dimensional (Ft)-Brownian motion. By Itô’s formula, for a twice continuously

differentiable real-valued function F (x1, · · · , xd) on Rd,

F (B1
t , · · · , Bdt ) = F (B0) +

d∑
j=1

∫ t

0

∂F

∂xj
(B1

s , · · · , Bds ) dBjs +
1

2

d∑
j=1

∫ t

0

∂2F

∂x2j
(B1

s , · · · , Bds ) ds.
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We denote by ∆ the Laplacian operator. Then

F (Bt) = F (B0) +

∫ t

0

∇F (Bs) · dBs +
1

2

∫ t

0

∆F (Bs) ds.

Likewise, for a twice continuously differentiable real-valued function G(t, x1, · · · , xd) on R+ × Rd, we have

G(t, Bt) = G(0, B0) +

∫ t

0

∇xG(s,Bs) · dBs +
∫ t

0

(
∂G

∂t
+

1

2
∆xG

)
(s,Bs) ds.

5.2.2 The Dambis-Dubins-Schwarz Theorem

Now we introduce a time-changed Brownian motion representation of continuous local martingales. Before

presenting the general conclusion, we first prove some technical results.

Lemma 5.13. Let M = (Mt)t≥0 be a continuous local martingale. Almost surely, we have Ma = Mb for all

0 ≤ a < b such that ⟨M,M⟩b = ⟨M,M⟩a.

Proof. Fix 0 ≤ a < b. Consider the continuous local martingale Nt = Mt −Mt∧a, whose quadratic variation

is given by ⟨N,N⟩t = ⟨M,M⟩t − ⟨M,M⟩t∧a. We choose the sequence of stopping times τn = inf{t ≥ 0 :

⟨N,N⟩t ≥ 1/n}. Since ⟨Nτn , Nτn⟩ ≤ 1/n, we have Nτn ∈ H2, and

E
[
N2
t∧τn

]
= E [⟨N,N⟩t∧τn ] ≤

1

n
, ∀t ∈ [a, b].

On the event Aa,b := {⟨M,M⟩b = ⟨M,M⟩a} ⊂ {τn ≥ b}, we have

E
[
N2
b 1Aa,b

]
= E

[
N2
b∧τn1Aa,b

]
≤ E

[
N2
b∧τn

]
≤ 1

n

n→∞⇒ Nb = 0 a.s. on Aa,b.

We set Ea,b = {⟨M,M⟩b = ⟨M,M⟩a =Mb ̸=Ma} = A[a,b] ∩ {Mb ̸=Ma}, which satisfies P(Ea,b) = 0. Take

E =
⋃

a,b∈Q, 0≤a<b
Ea,b ⇒ P(E) = 0.

On event Ω\E, whenever ⟨M,M⟩b = ⟨M,M⟩a, one can choose Q ∋ an ↓ a and Q ∋ bn ↑ a. Then ⟨M,M⟩bn =

⟨M,M⟩an for all n ∈ N, and Man =Mbn . By sample-continuity of M , we obtain Ma =Mb.

Theorem 5.14 (Dambis-Dubins-Schwarz). Let M = (Mt)t≥0 be a continuous local martingale such that

M0 = 0 and ⟨M,M⟩∞ =∞ a.s.. Then there exists a Brownian motion β = (βs)s≥0 such that almost surely,

(Mt)t≥0 = (β⟨M,M⟩t)t≥0.

Proof. For every s ≥ 0, choose the stopping time τs = inf{t ≥ 0 : ⟨M,M⟩t ≥ s}. Since ⟨M,M⟩∞ = ∞ a.s.,

we have τs < ∞ a.s., and we reset τs(ω) = 0 on the event E = {⟨M,M⟩∞ < ∞}. By completeness of the

filtration (Ft)t≥0, the variable τs remains a stopping time. By construction, for every ω ∈ Ω, the function

s 7→ τs(ω) is increasing. On the event Ω\E, we have

lim
r↑s

τr = inf
⋂
r<s

{t ≥ 0 : ⟨M,M⟩t ≥ r} = inf{t ≥ 0 : ⟨M,M⟩t ≥ s},

lim
r↓s

τr = inf
⋃
r>s

{t ≥ 0 : ⟨M,M⟩t ≥ r} = inf{t ≥ 0 : ⟨M,M⟩t > s}.

Hence s 7→ τs(ω) is left-continuous, and has right limit τs+ = inf{t ≥ 0 : ⟨M,M⟩t > s} at s ≥ 0.
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For every s ≥ 0, we set βs =Mτs . By Proposition 3.13, β = (βt)t≥0 is an adapted process with respect to

the time-changed filtration Gs = Fτs for every s ≥ 0, and G∞ = F∞. The completeness of (Gt)t≥0 also follows

from (Ft)t≥0. Moreover, the sample path s 7→ βs is càglàd, with the right limit at s given by βs+ =Mτs+ on

the event Ω\E. Note that ⟨M,M⟩τs = ⟨M,M⟩τs+ = s for every s ≥ 0. By Lemma 5.13, we have almost surely

Mτs+ =Mτs for all s ≥ 0. Therefore, the sample path of β = (βs)s≥0 is almost surely continuous.

Now we verify that (βs)s>0 and (β2
s − s)s≥0 are martingales with respect to the filtration (Gs)s≥0. For

every n ∈ N, by Theorem 3.71, the stopped processes Mτn and (Mτn)2 − ⟨M,M⟩τn are uniformly integrable

martingales, since ⟨M,M⟩τn∞ = ⟨M,M⟩τn = n <∞. By optional stopping theorem, for every 0 ≤ s < t ≤ n,

E [βt|Gs] = E
[
Mτn
τt |Fτs

]
=Mτs = βs,

E
[
β2
t − t|Gs

]
= E

[
(Mτn

τt )
2 − ⟨Mτn ,Mτn⟩τs |Fτt

]
= (Mτn

τs )
2 − ⟨M,M⟩τs∧τn = β2

s − s.

The case d = 1 of Theorem 5.12 implies that β is a (Gt)-Brownian motion.

On the other hand, by the very definition of τr and τr+, for all s ≥ 0, we have τ⟨M,M⟩s ≤ s ≤ τ⟨M,M⟩s+ ,

and ⟨M,M⟩τ⟨M,M⟩s
= ⟨M,M⟩τ⟨M,M⟩s+

= ⟨M,M⟩s. According to Lemma 5.13, almost surely, the equality

Ms =Mτ⟨M,M⟩s
= β⟨M,M⟩s holds for all s ≥ 0, concluding the proof.

Remark. In this theorem, the Brownian motion β = (βt)t≥0 is no longer adapted with respect to the original

filtration (Ft)t≥0, but with respect to the time-changed filtration (Gt)t≥0.

Corollary 5.15. Let M and N be two continuous local martingales such that M0 = N0 = 0. Assume the

following conditions holds almost surely: (i) ⟨M,M⟩t = ⟨N,N⟩t for all t ≥ 0; (ii) ⟨M,N⟩t = 0 for all

t ≥ 0; (iii) ⟨M,M⟩∞ = ⟨N,N⟩∞ = ∞. Let β and γ be the Brownian motions such that Mt = β⟨M,M⟩t and

Nt = γ⟨N,N⟩t for all t ≥ 0 almost surely. Then β and γ are independent.

Proof. We choose the stopping times τs = inf{t ≥ 0 : ⟨M,M⟩t ≥ s} = inf{t ≥ 0 : ⟨N,N⟩t ≥ s} for all s ≥ 0, so

both βs =Mτs and γs = Nτs are (Gt)-Brownian motions, where (G )t≥0 is the time-changed filtration Gt = Fτt .

Since the continuous local martingales M and N are orthogonal, the process MN is also a continuous local

martingale. By Proposition 3.75 (vi), the stopped process MτnNτn is a uniformly integrable martingale. By

optional stopping theorem, for all 0 ≤ s < t ≤ n, we have

E [βtγt|Gs] = E
[
Mτn
τt N

τn
τt |Fτs

]
=Mτn

τs N
τn
τs = βsγs.

Hence (βtγt)t≥0 is a (Gt)-martingale, and again by Proposition 3.75 (vi), we have ⟨β, γ⟩ = 0. According to

Theorem 5.12, (β, γ) is a two-dimensional (Gt)-Brownian motion, hence β and γ are independent.
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5.2.3 The Burkholder-Davis-Gundy inequality

Now we introduce a useful inequality connecting the local maxima of a continuous local martingale with its

quadratic variation.

Theorem 5.16 (Burkholder-Davis-Gundy inequality). Given a continuous martingale M with M0 = 0, we

define the local maxima M∗
t = sup0≤s≤t |Ms| for all t ≥ 0. Then for every p > 0, there exist constants

Cp, cp > 0 depending only on p such that for every stopping time τ ,

cpE
[
⟨M,M⟩p/2τ

]
≤ E |M∗

τ |
p ≤ CpE

[
⟨M,M⟩p/2τ

]
.

Remark. By the case p = 1 of the Burkholder-Davis-Gundy inequality, if M is a continuous local martingale

with M0 = 0 such that E[⟨M,M⟩1/2∞ ] <∞, then M is a uniformly integrable martingale.

Proof. By replacing a continuous local martingale M with Mτ , it suffices to deal with the case τ = ∞. We

can further assume that M is bounded by replacing M with Mτn , where τn = {t ≥ 0 : |Mt| = n}, and the

result of n→∞ follows by monotone convergence theorem.

Step I. We first prove the inequality E |M∗
∞|

p ≤ CpE
[
⟨M,M⟩p/2∞

]
.

Case I: p ≥ 2. Apply Itô’s formula to |x|p:

|Mt|p =
∫ t

0

p|Ms|p−1sgn(Ms) dMs +
1

2

∫ t

0

p(p− 1)|Ms|p−2 d⟨M,M⟩s.

Note thatM is a bounded. ThenM ∈ H2, and the process
(∫ t

0
p|Ms|p−1sgn(Ms) dMs

)
t≥0

is also a martingale

in H2. Consequently, we have

E [|Mt|p] ≤
p(p− 1)

2
E
[∫ t

0

|Ms|p−2 d⟨M,M⟩s
]
≤ p(p− 1)

2
E
[
|M∗

t |p−2⟨M,M⟩t
]

≤ p(p− 1)

2
E [|M∗

t |p]
p−2
p E

[
⟨M,M⟩p/2t

]2/p
On the other hand, the Doob’s Lp-inequality Proposition 3.52 gives

E|M∗
t |p ≤

(
p

p− 1

)p
E|Mt|p

Combining the last two displays, we have

E|M∗
t |p ≤

((
p

p− 1

)p
p(p− 1)

2

)p/2
E
[
⟨M,M⟩p/2t

]
. (5.10)

Case II: p < 2. SinceM ∈ H2, the processM2−⟨M,M⟩ is a uniformly integrable martingale, and E[(Mτ )
2] =

E[⟨M,M⟩τ ] for every stopping time τ . Given x > 0, consider the stopping time τx = inf{t ≥ 0 : M2
t ≥ x}. If

τ is a bounded stopping time, we have

P
(
(M∗

τ )
2 ≥ x

)
= P(τx ≤ τ) = P

(
(Mτx∧τ )

2 ≥ x
)
≤

E
[
(Mτx∧τ )

2
]

x
=

E [⟨M,M⟩τx∧τ ]
x

≤ E [⟨M,M⟩τ ]
x

.

Consider the stopping time σx = inf{s ≥ 0 : ⟨M,M⟩s ≥ x}, so {⟨M,M⟩t ≥ x} = {σx ≤ t}. For every t ≥ 0,

we use the preceding bound with τ = σx ∧ t:

P
(
(M∗

t )
2 ≥ x

)
≤ P((M∗

σx∧t)
2 ≥ x) + P(σx ≤ t) ≤ x−1E [⟨M,M⟩σx∧t] + P (⟨M,M⟩t ≥ x)

= x−1E
[
⟨M,M⟩t1{⟨M,M⟩t<x}

]
+ 2P (⟨M,M⟩t ≥ x) .
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Now we integrate both side with respect to p
2x

p/2−1 dx. For the left-hand side:

∫ ∞

0

P
(
(M∗

t )
2 ≥ x

) p
2
xp/2−1 dx = E

[∫ (M∗
t )

2

0

p

2
xp/2−1 dx

]
= E [(M∗

t )
p] .

Similarly,
∫∞
0

P (⟨M,M⟩t ≥ x) p2x
p/2−1 dx = E

[
⟨M,M⟩p/2t

]
. Furthermore,

∫ ∞

0

E
[
⟨M,M⟩t1{⟨M,M⟩t<x}

] p
2
xp/2−2 dx = E

[
⟨M,M⟩t

∫ ⟨M,M⟩t

0

p

2
xp/2−2 dx

]
=

p

2− p
E
[
⟨M,M⟩p/2t

]
.

This gives the bound

E |M∗
t |
p ≤ 4− p

2− p
E
[
⟨M,M⟩p/2t

]
(5.11)

Note both (5.10) and (5.11) hold for t =∞ by monotone convergence theorem.

Step II. Now we prove the inequality E |M∗
∞|

p ≥ cpE
[
⟨M,M⟩p/2∞

]
. By Itô’s lemma,

M2
t = 2

∫ t

0

Ms dMs + ⟨M,M⟩t.

For x, y ≥ 0, we note the inequality

|x+ y|p ≤

2p−1 (|x|p + |y|p) , p ≥ 1,

|x|p + |y|p, 0 < p < 1.

We let x =M2
∞ and y = −2

∫ t
0
Mt dMt to get

E
[
⟨M,M⟩p/2∞

]
≤ max

{
1, 2

p
2−1
}(

E|M∞|p + 2
p
2E
∣∣∣∣∫ ∞

0

Mt dMt

∣∣∣∣p/2
)
≤ 2p

(
E|M∗

∞|p + E
∣∣∣∣∫ ∞

0

Mt dMt

∣∣∣∣p/2
)
.

We then apply the Burkholder-Davis-Gundy inequality to the continuous local martingale
∫ t
0
Ms dMs and the

Cauchy-Schwartz inequality to get

E
∣∣∣∣∫ ∞

0

Mt dMt

∣∣∣∣p/2 ≤ CpE
[(∫ ∞

0

M2
t d⟨M,M⟩t

)p/4]

≤ CpE
[
|M∗

∞|p/2⟨M,M⟩p/4∞

]
≤ Cp

√
E|M∗

∞|p E
[
⟨M,M⟩p/2∞

]
.

Therefore

E
[
⟨M,M⟩p/2∞

]
≤ 2pCp

(
E|M∗

∞|p +
√
E|M∗

∞|p E
[
⟨M,M⟩p/2∞

])
.

We rearrage the above inequality to obtain(√
E
[
⟨M,M⟩p/2∞

]
− 2p−1Cp

√
E|M∗

∞|p
)2

≤
(
22p−2C2

p + 2pCp
)
E|M∗

∞|p,

which implies

E
[
⟨M,M⟩p/2∞

]
≤
(
2p−1Cp +

√
22p−2C2

p + 2pCp

)2
E|M∗

∞|p.

Then we finish the proof.
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5.3 The Representation of Martingales as Stochastic Integral

On a probability space (Ω,F , P ), we choose a filtration (Ft)t≥0 on Ω to be the completed canonical filtration

of a Brownian motion. An interesting conclusion is that all martingales with respect to this filtration can be

represented as stochastic integrals with respect to the Brownian motion.

In this section, we fix a Brownian motion B = (Bt)t≥0, and assume (Ft)t≥0 to be the completed canonical

filtration of B. Before formally presenting this result, we first introduce some technical lemma.

Lemma 5.17. The vector space generated by the random variables of the form

exp

i n∑
j=1

λj(Btj −Btj−1
)

 , where 0 = t0 < t1 < · · · < tn and λ1, · · · , λn ∈ R

is dense in the space L2
C(Ω,F∞,P) of all square-integrable complex-valued F∞-measurable random variables.

Proof. By elementary Hilbert theory, it suffices to show that Z = 0 is the only variable that satisfying

E

Z exp

i n∑
j=1

λj(Btj −Btj−1
)

 = 0

for all choices of 0 = t0 < t1 < · · · < tn and λ1, · · · , λn ∈ R. Define the complex measure µ on Rn by

µ(F ) = E
[
Z1F (Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1)

]
, ∀F ∈ B(Rn).

Then the Fourier transform of µ satisfies

∫
Rn

eiλ
⊤x µ(dx) = E

Z exp

i n∑
j=1

λj(Btj −Btj−1
)

 = 0, ∀λ ∈ Rn.

By Lévy’s continuity theorem, we have µ = 0. Hence E[Z1A] = 0 for all A ∈ σ(Bt1 , · · · , Btn). A monotone

class argument shows that E[Z1A] holds for all A ∈ σ(Bt, t ≥ 0), and further by completion, for all A ∈ F∞.

Hence Z = 0 in L2
C(Ω,F∞,P).

Theorem 5.18. For every Z ∈ L2(Ω,F∞,P), there exists a unique progressive process H ∈ L2(B) such that

Z = E[Z] +
∫ ∞

0

Hs dBs. (5.12)

Consequently, for every L2-bounded martingale M (resp. for every continuous local martingale M), there

exists a unique process H ∈ L2(B) (resp. H ∈ L2
loc(B)) and a constant C ∈ R such that

Mt = C +

∫ t

0

Hs dBs, ∀t ≥ 0. (5.13)

Proof. Consider the first assertion. If both H and H ′ satisfy this (5.12), the second moment formula gives

0 = E

[(∫ ∞

0

(Hs −H ′
s) dBs

)2
]
= E

[∫ ∞

0

(Hs −H ′
s)

2 ds

]
⇒ H = H ′ in L2(B).

This shows uniqueness. For existence, let H be the vector space of all Z ∈ L2(Ω,F∞,P) for which there exists

an associated H ∈ L2(B) satisfying (5.12). By Proposition 5.11, for any step function h =
∑n
j=1 λj1(tj−1,tj ],
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where 0 = t0 < t1 < · · · < tn and λ1, · · · , λn ∈ R, we have

exp

(
i

n∑
j=1

λj(Btj −Btj−1) +
1

2

n∑
j=1

λ2j (tj − tj−1)

)
= E (ih ·B)t = 1 + i

∫ t

0

E (ih ·B)sh(s) dBs

Since E (ih ·B)sh(s) is a bounded continuous local martingale, both its real and imaginary parts are in L2(B).

This implies that both the real and imaginary parts of exp
(
i
∑n
j=1 λj(Btj −Btj−1

)
)
are in H . According to

Lemma 5.17, H contains a dense subset of L2(Ω,F∞,P).
To prove the first assertion, it remains to show that H is closed, which implies H = L2(Ω,F∞,P). We

assume that Zn ∈ H is a sequence of random variables that converges to Z in L2. Let H(n) ∈ L2(B) be the

associated progressive process. Then

∥H(n) −H(m)∥L2(B) = E
[∫ ∞

0

(H(n)
s −H(m)

s )2 ds

]
= E

[(∫ ∞

0

(H(n)
s −H(m)

s ) dBs

)2
]

= E
[
(Zn − Zm − E[Zn] + E[Zm])

2
]
≤ ∥Zn − Zm∥22.

Hence H(n) is a Cauchy sequence in L2(B), which converges to some H ∈ L2(B) by completeness of L2(B).

Consequently, Zn = E[Zn] +
∫∞
0
H

(n)
s dBs converges to Z = E[Z] +

∫∞
0
Hs dBs in L2.

We turn to the second assertion. The uniqueness argument is similar. If M is a L2-bounded martingale,

then Mt converges a.s. and in L2 to some M∞ ∈ L2(Ω,F∞,P). Since (
∫ t
0
Hs dBs)s≥0 is bounded in L2, it is

a uniformly integrable martingale. We can find the process H ∈ L2(B) that satisfies (5.12) for M∞. Then

M∞ = E[M∞] +

∫ ∞

0

Hs dBs ⇒ Mt = E[M∞|Ft] = E[M∞] +

∫ t

0

Hs dBs, ∀t ≥ 0.

Finally, if M is a continuous local martingale, we have M0 = C a.s. for some constant C ∈ R because F0

is P-trivial. We then choose stopping times τn = {t ≥ 0 : |Mt| ≥ n} so that Mτn are bounded martingales.

According to the preceding result, there exists H(n) ∈ L2(B) such that

Mt∧τn = C +

∫ t

0

H(n)
s dBs, ∀t ≥ 0.

By uniqueness of the progressive process in this representation, we have H(m) = H(n)1[0,τm] in L
2(B) for all

n > m. Consequently, we can find H ∈ L2(B) such that H(n) = H1[0,τn] in L2(B) for all n ∈ N, and the

representation formula (5.13) follows by letting n→∞. The uniqueness argument is similar.

Remark. In this theorem, we do not require the L2-bounded martingale M to be continuous. Next we discuss

some consequence of this representation theorem.

Proposition 5.19. The filtration (Ft)t≥0 is right-continuous.

Proof. Let Z be a bounded Ft+-measurable random variable. By Theorem 5.18, there exists H ∈ L2(B) such

that Z = E[Z] +
∫∞
0
Hs dBs. Given ϵ > 0, Z is Ft+ϵ measurable. By continuity of H ·B, we have

Z = E[Z|Ft+ϵ] = E[Z] +
∫ t+ϵ

0

Hs dBs
a.s.→ E[Z] +

∫ t

0

Hs dBs, ϵ ↓ 0.

As a result, Z = E[Z] +
∫ t
0
Hs dBs a.s.. By completeness of the filtration (Ft)t≥0, Z is also Ft-measurable.

Hence for all A ∈ Ft+, the variable Z = 1A is Ft measurable, and A ∈ Ft. Therefore Ft+ = Ft.
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Remark. We also can define the left limit of (Ft)t≥0 at any t > 0:

Ft− = σ

 ⋃
0≤s<t

Fs

 .

A similar argument to Proposition (5.19) implies that Ft− = Ft. Namely, the completed filtration (Ft)t≥0

generated by a Brownian motion B is also left-continuous.

Proposition 5.20. All martingales with respect to the filtration (Ft)t≥0 have an a.s. modification with con-

tinuous sample paths.

Proof. Following Theorem 5.18, an L2-bounded martingale is continuous according to the representation for-

mula (5.13). Now we consider a uniformly integrable martingale M . This suffice since we can replace a

martingale M by the stopped martingale Ma for every a ≥ 0.

Since M is a uniformly integrable martingale, we have Mt = E[M∞|Ft] for all t ≥ 0. By Theorem 3.56

and Proposition 5.19, M has an a.s. modification with càdlàg sample paths, which we still denote by M for

simplicity. LetM
(n)
∞ be a sequence of bounded random variables that converges in L1 toM∞, and introduce the

martingales M
(n)
t = E[M (n)

∞ |Ft]. These martingales are then bounded in L2, hence continuous. Furthermore,

the Doob’s maximal inequality Proposition 3.52 (i) gives

P
(
sup
t≥0
|M (n)

t −Mt| ≥ λ
)
≤ 3

λ
E
∣∣∣M (n)

∞ −M∞

∣∣∣ , ∀λ > 0.

We choose a subsequence nk such that

P
(
sup
t≥0
|M (nk)

t −Mt| >
1

2k

)
≤ 1

2k
, ∀k ∈ N,

which implies

P
(
sup
t≥0
|M (nk)

t −Mt| >
1

2k
for infinitely many k

)
= 0.

Here we use Borel-Cantelli lemma. Consequently, supt≥0 |M
(nk)
t −Mt| → 0 a.s., and the sample paths of M ,

being the uniform limit of a sequence of continuous functions, is continuous.
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5.4 Stochastic Differential Equations

We start from a deterministic process (yt)t≥0, of which the dynamic is specified by the following ordinary

differential equation (ODE):

dyt = b(t, yt) dt ⇔ yt = y0 +

∫ t

0

b(s, ys) ds

To model a noisy system, we simply introduce a random perturbation of the term σ dBt, where σ > 0 is a

constant, and Bt is a Brownian motion. This form implicitly assumes independence of perturbations affecting

disjoint time intervals, and we get

dyt = b(t, yt) dt+ σ dBt ⇔ yt = y0 +

∫ t

0

b(s, ys) ds+ σBt.

We generalize the above equation by allowing σ depending on the time t and the state yt:

dyt = b(t, yt) dt+ σ(t, yt) dBt ⇔ yt = y0 +

∫ t

0

b(s, ys) ds+

∫ t

0

σ(s, ys) dBs.

This gives rise to the following definition of stochastic differential equation.

Definition 5.21 (Stochastic Differential Equation, SDE). Let σ = (σij)i∈[p],j∈[q] : R+ × Rp → Rp×q and

b = (bi)i∈[p] : R+ × Rp → Rp be locally bounded measurable functions. A solution of the stochastic equation

E(σ, b), which is given by

dXt = σ(t,Xt) dBt + b(t,Xt) dt,

consists of:

• A filtered probability space (Ω,F ,P) and a complete filtration (F )t≥0;

• A q-dimensional (Ft)-Brownian motion B = (B1, · · · , Bq) starting from 0;

• An (Ft)-adapted and continuous process X = (X1, · · · , Xp) taking values in Rp, such that

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds
def⇔ Xi

t = Xi
0 +

q∑
j=1

∫ t

0

σij(s,Xs) dB
j
s +

∫ t

0

bi(s,Xs) ds.

If X0 ∼ δx for any x ∈ Rp, we say that X is a solution of Ex(σ, b).

There are several notions of existence and uniqueness for stochastic differential equations.

Definition 5.22. For the stochastic differential equation E(σ, b), we say that there is

• weak existence, if for every x ∈ Rp, there exists a solution of Ex(σ, b);

• weak existence and weak uniqueness, if in addition, for every x ∈ Rp, all solutions of Ex(σ, b) have the

same law;

• pathwise uniqueness, if, whenever the filtered probability space (Ω,F , (Ft)t≥0,P) and the (Ft)-Brownian

motion B are fixed, two solutions X and Y such that X0 = Y0 a.s. are indistinguishable.

Furthermore, we say that a solution X of E(σ, b) is a strong solution if X is adapted with respect to the

completed canonical filtration of B.

Remark. We give an example of stochastic differential equation where weak existence and weak uniqueness
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hold, but pathwise uniqueness fails. Let (βt)t≥0 be a Brownian motion with β0 = x ∈ R, and consider

Bt =

∫ t

0

sgn(βs) dβs, where sgn(x) = 1(0,∞)(x)− 1(−∞,0](x).

Then (Bt)t≥0 is a continuous local martingale with quadratic variation ⟨B,B⟩t = t, hence is a Brownian

motion by Theorem 5.12. Furthermore, by associativity of stochastic integrals, one have∫ t

0

sgn(βs) dBs =

∫ t

0

sgn(βs)
2 dβs = βt − β0, ∀t ≥ 0.

Therefore, (βt)t≥0 solves the following stochastic differential equations:

dXt = sgn(Xt) dBs, X0 = x.

For this equation, weak existence holds, and again by Theorem 5.12 we know that any solution of this equation

must be a Brownian motion. Hence weak uniqueness also holds. Nevertheless, pathwise uniqueness fails for

this equation. For example, if we set x = 0, then both β and −β solve the preceding SDE with the same

Brownian motion B starting from 0.

5.4.1 Existence Theory for SDEs with Lipschitz Coefficients

Now we study the properties of SDE E(σ, b) where functions σ and b are continuous on R+×Rq and Lipschitz

in the variable x. Then there exists a constant L such that for every t ≥ 0 and x, y ∈ Rd,

|σ(t, x)− σ(t, y)| ≤ L|x− y|,

|b(t, x)− b(t, y)| ≤ L|x− y|.

Here we use | · | to denote the Euclidean norm of vectors and the Frobenius norm of matrices.

Lemma 5.23 (Gronwall’s lemma). Let T > 0 and let g : [0, T ] → R+ be a bounded measurable function. If

there exist two constants a ≥ 0 and b ≥ 0 such that

g(t) ≤ a+ b

∫ t

0

g(s) ds, ∀t ∈ [0, T ],

then we have g(t) ≤ aebt for all t ∈ [0, T ].

Proof. A simple recursion on g gives

g(t) ≤ a+ a(bt) + b2
∫ t

0

(∫ s1

0

g(s2) ds2

)
ds1 ≤ · · ·

≤ a+ a(bt) + a
(bt)2

2
+ · · ·+ a

(bt)n

n!
+ bn+1

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn+1

0

dsn+1g(sn+1).

Since g is bounded, we let 0 ≤ g(t) ≤M for all t ∈ [0, T ]. Then

g(t) ≤ a
n∑
k=0

(bt)n

n!
+
M(bt)n+1

(n+ 1)!
.

Letting t→∞ produces the desired result.

The following theorem gives the existence of a solution of SDE in the Lipschitz case.
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Theorem 5.24. Let functions σ and b be continuous on R+ × Rq and Lipschitz in the variable x. Then

pathwise uniqueness holds for the SDE E(σ, b). Furthermore, for every complete filtered (Ω,F , (Ft)t≥0,P),
every (Ft)-Brownian motion B and every x ∈ Rp, there exists a unique strong solution of Ex(σ, b).

Proof. We prove the case p = q = 1. The multi-dimensional case is similar. To tackle pathwise uniqueness, we

fix the complete filtered probability space (Ω,F , (Ft)t≥0,P) and the (Ft)-Brownian motion B with B0 = 0.

Let X and Y be two solutions of E(σ, b) with X0 = Y0 a.s.. We fix M > 0, and set

τ = inf {t ≥ 0 : |Xt| ∨ |Yt| ≥M}

Then t 7→ E[(Xt∧τ − Yt∧τ )2] is a bounded measurable function. Moreover, for every t ≥ 0,

Xt∧τ = X0 +

∫ t∧τ

0

σ(s,Xs) dBs +

∫ t∧τ

0

b(s,Xs) ds,

and a similar formula holds for Yt∧τ . We fix T > 0. For all t ∈ [0, T ], use the bound (5.6):

E
[
(Xt∧τ − Yt∧τ )2

]
≤ 2E

[(∫ t∧τ

0

(σ(s,Xs)− σ(s, Ys)) dBs
)2
]
+ 2E

[(∫ t∧τ

0

(b(s,Xs)− b(s, Ys)) ds
)2
]

≤ 2E
[∫ t∧τ

0

(σ(s,Xs)− σ(s, Ys))2 ds
]
+ 2E

[
T

∫ t∧τ

0

(b(s,Xs)− b(s, Ys))2 ds

]
≤ 2(1 + T )L2E

[∫ t∧τ

0

(Xs − Ys)2 ds
]

≤ 2(1 + T )L2E
[∫ t

0

(Xs∧τ − Ys∧τ )2 ds
]
.

By Lemma 5.23, we have E
[
(Xt∧τ − Yt∧τ )2

]
= 0, and Xt∧τ = Yt∧τ a.s. for all t ∈ [0, T ]. Let M → ∞ and

T → ∞, we then have Xt = Yt a.s. for all t ≥ 0. The indistinguishability of X and Y then follows from

sample-continuity and a density argument.

Next we construct a solution of Ex(σ, b) using Picard’s approximation. Define by induction:

X0
t = x, X1

t = x+

∫ t

0

σ(s, x) dBs +

∫ t

0

b(s, x) ds,

Xn
t = x+

∫ t

0

σ(s,Xn−1
s ) dBs +

∫ t

0

b(s,Xn−1
s ) ds, n ∈ N.

Clearly, Xn is continuous and adapted to the completed canonical filtration of B. We fix T > 0, and find a

strong solution on [0, T ]. Define

gn(t) = E

[
sup
s∈[0,t]

|Xn
s −Xn−1

s |2
]
, ∀t ∈ [0, T ].

Since σ(·, x) is continuous, the process
(∫ t

0
σ(s, x) dBs

)
t≥0

is a continuous local martingale with finite

quadratic variation, hence is a martingale by Corollary 3.72. Consequently, we can use Doob’s L2-inequality

[Proposition 3.52 (ii)] and boundedness of functions σ(·, x) and b(·, x) on [0, T ] to find some constant CT > 0

depending only on T such that g1(t) ≤ CT for all t ∈ [0, T ].

Now we bound gn by induction. For any n ∈ N, one have

Xn+1
t −Xn

t =

∫ t

0

(
σ(s,Xn

s )− σ(s,Xn−1
s )

)
dBs +

∫ t

0

(
b(s,Xn

s )− b(s,Xn−1
s )

)
ds.
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We then use the Burkholder-Davis-Gundy inequality [Theorem 5.16]:

E

[
sup
s∈[0,t]

(Xn+1
s −Xn

s )
2

]

≤ 2E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(
σ(r,Xn

r )− σ(r,Xn−1
r )

)
dBr

∣∣∣∣2
]
+ 2E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

(
b(r,Xn

r )− b(r,Xn−1
r )

)
dr

∣∣∣∣2
]

≤ 2C2E
[∫ t

0

(
σ(r,Xn

r )− σ(r,Xn−1
r )

)2
dr

]
+ 2E

[
T

∫ t

0

(
b(r,Xn

r )− b(r,Xn−1
r )

)2
dr

]
≤ 2(C2 + T )L2E

[∫ t

0

(Xn
r −Xn−1

r )2 dr

]
Consequently, we have

gn+1(t) ≤ 2(C2 + T )L2

∫ t

0

gn(s) ds, ∀t ∈ [0, T ].

Since g1(t) ≤ CT for all t ∈ [0, T ], an induction gives

gn(t) ≤ CT
(2(C2 + T )L2t)n−1

(n− 1)!
, ∀t ∈ [0, T ].

Hence we have

∞∑
n=1

gn(T )
1/2 <∞ ⇒

∞∑
n=1

sup
t∈[0,T ]

∣∣Xn
t −Xn−1

t

∣∣ <∞ a.s..

By Weierstrass M-test, the sequence of processes (Xn
t , t ∈ [0, T ])∞n=1 converges a.s. uniformly to a limiting

process (Xt, t ∈ [0, T ]), which also has continuous sample paths on [0, T ] and is adapted to the completed

canonical filtration of B. Furthermore, using Lipschitz property of σ(t, ·) and b(t, ·) and dominated convergence

theorem for stochastic integrals [Theorem 5.7], the following convergences hold in probability:

lim
n→∞

(∫ t

0

σ(s,Xs) dBs −
∫ t

0

σ(s,Xn
s ) dBs

)
= 0,

lim
n→∞

(∫ t

0

b(s,Xs) ds−
∫ t

0

b(s,Xn
s ) ds

)
= 0,

where we use
∑∞
n=1 sups∈[0,t]

∣∣Xn
s −Xn−1

s

∣∣ to dominate the stochastic parts. By passing these limits to the

definition of Xn
t , we conclude that Xt is a strong solution of Ex(σ, b) on [0, T ]. Let T →∞, we obtain a process

X = (Xt)t≥0 solving Ex(σ, b), and the uniqueness of this strong solution follows from pathwise uniqueness.

Theorem 5.25. Equip both spaces C(R+,Rp) and C(R+,Rq) with the Borel σ-algebra of the compact conver-

gence topology, and complete this σ-algebra on C(R+,Rp) by W -negligible sets, where W is the Wiener mea-

sure. Under the assumptions of the preceding theorem, there exists a measurable mapping Fx : C(R+,Rq) →
C(R+,Rp) such that

(i) for every t ≥ 0, the mapping w 7→ Fx(w)t coincides W -a.s. with a measurable function of (w(r))0≤r≤t;

(ii) for every w ∈ C(R+,Rq), the mapping x 7→ Fx(w) is continuous;

(iii) for every t ≥ 0, and for every choice of the complete filtered probability space (Ω,F , (Ft)t≥0,P) and of

the (Ft)-Brownian motion B with B0 = 0, the process Xt = Fx(B)t is the unique solution of Ex(σ, b);

furthermore, if U is an F0-measurable Rp-valued random variable, the process FU (B)t is the unique

solution of E(σ, b) with X0 = U .
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Proof. Step I: For brevity, we only consider the case p = q = 1. We let Gt be the σ-algebra generated by

projection mappings {πs : 0 ≤ s ≤ t} and all W -negligible sets in C(R+,R), so (Gt)t≥0 is a complete filtration.

By Theorem 5.24, with the filtered probability space (C(R+,R),G∞, (Gt)t≥0,W ) fixed, and with the Brownian

motion Bt(w) = w(t) fixed as the canonical process, there exists a unique (up to indistinguishability) and

strong solution Xx = (Xx
t )t≥0 of Ex(σ, b) for every x ∈ R.

Step II: Let d be a metric on C(R+,R) that induces the compact convergence topology. We fix q ≥ 2, and

prove that there exists a constant C∗
q > 0 depending only on q, such that for all x, y ∈ R,

E [d(Xx, Xy)q] ≤ C∗
p |x− y|q. (5.14)

Then by Kolmogorov’s lemma [Theorem 4.6] applied to the process (Xx)x∈R taking values in C(R+,R), we find
a modification (X̃x)x∈R of (Xx)x∈R with continuous sample paths. Define Fx(w) = X̃x(w) = (X̃x

t (w))t≥0.

Then Fx : (C(R+,R),G∞)→ (C(R+,R),G∞) is a measurable mapping with property (ii).

To this end, we define the stopping time

τn = inf {t ≥ 0 : |Xx
t | ∨ |X

y
t | ≥ n} , n = 1, 2, · · · .

We fix some T ≥ 1. For every t ∈ [0, T ], we apply Jensen’s inequality, Burkholder-Davis-Gundy inequality

[Theorem 5.16], Hölder’s inequality and Lipschitz property as follows:

E

[
sup
s∈[0,t]

|Xy
s∧τn −X

y
s∧τn |

q

]

≤ 3q−1

(
|x− y|q + E

[
sup
s∈[0,t]

∣∣∣∣∫ s∧τn

0

(σ(r,Xx
r )− σ(r,Xy

r )) dBr

∣∣∣∣q + sup
s∈[0,t]

∣∣∣∣∫ s∧τn

0

(b(r,Xx
r )− b(r,Xy

r )) dr

∣∣∣∣q
])

≤ 3q−1

(
|x− y|q + CqE

[(∫ t∧τn

0

(σ(r,Xx
r )− σ(r,Xy

r ))
2
dr

)q/2]
+ E

[(∫ t∧τn

0

|b(r,Xx
r )− b(r,Xy

r )|dr
)q])

≤ 3q−1

(
|x− y|q + Cqt

q
2−1E

[∫ t

0

∣∣σ(r ∧ τn, Xx
r∧τn)− σ(r ∧ τn, X

y
r∧τn)

∣∣q dr]
+ tq−1E

[∫ t

0

∣∣b(r ∧ τn, Xx
r∧τn)− b(r ∧ τn, X

y
r∧τn)

∣∣q dr])
≤ 3q−1

(
|x− y|q +KqT

q
2−1

(
Cq + T q/2

)
E
[∫ t

0

∣∣Xx
r∧τn −X

y
r∧τn

∣∣q dr])
We let C ′

q = 3q−1Kq(1+Cq). Then we obtain the following estimate by using Gronwall’s lemma [Lemma 5.23]

on the bounded function t 7→ E
[
sups∈[0,t] |X

y
s∧τn −X

y
s∧τn |

q
]
:

E
[
sup
s∈[0,t]

|Xy
s∧τn −X

y
s∧τn |

q

]
≤ C ′

q|x− y|q exp
(
C ′
qT

q−1t
)
, ∀t ∈ [0, T ].

A monotone convergence argument follows by letting n→∞:

E
[
sup
s∈[0,t]

|Xy
s −Xy

s |
q

]
≤ C ′

q|x− y|q exp
(
C ′
qt
q
)
, ∀t ≥ 0.

We define the following metric d on C(R+,R), which induces the uniform topology:

d(w,w′) =

∞∑
k=1

αk

(
sup
s∈[0,k]

|w(s)−w′(s)| ∧ 1

)
,
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where αk > 0 is a real sequence such that
∑∞
k=1 αk converges. Choose (αk) such that

∑∞
k=1 αk exp(C

′
qk
q) <∞.

Again by Hölder’s inequality, one have

E [d(Xx
s , X

y
s )
q] ≤

( ∞∑
k=1

αk

)q−1 ∞∑
k=1

αkE

[
sup
s∈[0,k]

|Xx
s −Xy

s |
q

]
≤ C∗

q |x− y|q,

where C∗
q = C ′

q (
∑∞
k=1 αk)

q−1 (∑∞
k=1 αk exp(C

′
qk
q)
)
. This complete the proof of (5.14). For the assertion (i),

we point out that for any t ≥ 0, the mapping w 7→ Fx(w)t = X̃x
t
a.s.
= Xx

t is Gt-measurable. The result then

follows from Doob-Dynkin theorem [Theorem 2.22].

Step III: We prove the first part of assertion (iii). Fix a complete filtered probability space (Ω,F , (Ft)t≥0,P)
and an (Ft)-Brownian motion B. Clearly, the process Fx(B) = (Fx(B)t)t≥0 has continuous paths, and is also

adapted since Fx(B)t coincide a.s. with a measurable function of (Bs)s∈[0,t] by (i), and since the filtration

(Ft)t≥0 is complete. Then it remains to show that Fx(B) solves Ex(σ, b).

By construction of Fx and the fact that Xx = X̃x W -a.s., for all t ≥ 0, we have

Fx(w)t = x+

∫ t

0

σ(s, Fx(w)s) dw(s) +

∫ t

0

b(s, Fx(w)s) ds, for W -a.s. w ∈ C(R+,R).

By Proposition 5.9, we have the following approximation:

∫ t

0

σ(s, Fx(w)s) dw(s) = lim
n→∞

2n∑
j=1

σ

(
(j − 1)t

2n
, Fx (w) (j−1)t

2n

)(
w

(
jt

2n

)
−w

(
(j − 1)t

2n

))
(5.15)

in probability W (dw). Since W is the law of B, by Proposition 5.9, we have

Fx(B)s = x+ lim
n→∞

2n∑
j=1

σ

(
(j − 1)t

2n
, Fx(B) (j−1)t

2n

)(
B jt

2n
−B (j−1)t

2n

)
+

∫ t

0

b(s, Fx(B)s) ds

= x+

∫ t

0

σ(s, Fx(B)s) dBs +

∫ t

0

b(s, Fx(B)s) ds, a.s.,

where the a.s. convergence follows by passing the convergence in probability to an appropriate subsequence.

Therefore, Fx(B) is the desired solution of Ex(σ, b).

Step IV: We prove the first part of assertion (iii). The mapping x 7→ Fx(B)t(ω) is continuous for any fixed

ω ∈ Ω, and the mapping ω 7→ Fx(B)t(ω) is Ft-measurable for any fixed ω ∈ Ω. Then (x, ω) 7→ Fx(B)t(ω) is

B(R)⊗Ft-measurable according to a similar procedure in Proposition 3.10. If U is a F0-measurable random

variable, then FU (B)t is a composition of ω 7→ (U(ω), ω) and (x, ω)→ Fx(B)t(ω), hence is Ft-measurable.

Let H(x,w)t = Fx(w)t − x −
∫ t
0
b(s, Fx(w)s) ds. We use the convergence result (5.15) in probability W .

Since B ∼W , and U is a F0-measurable variable, which is independent of B, we have that

H(U,B)t =

2n∑
j=1

σ

(
(j − 1)t

2n
, FU (B) (j−1)t

2n

)(
B jt

2n
−B (j−1)t

2n

)
,

where the series converges in probability, and the limit is the stochastic integral
∫ t
0
σ(s, FU (B)s) dBs. Hence

FU (B)t − U −
∫ t

0

b(s, FU (B)) ds =

∫ t

0

σ(s, FU (B)s) dBs.

Consequently, FU (B) = (FU (B))t≥0 solves the SDE E(σ, b) with initial value U .

154



5.5 Girsanov’s Theorem and Cameron–Martin Formula

In Section 5.2, we show that the class of continuous semimartingales is invariant under composition with

C2-function. In this section, we study the effect on the class of continuous semimartingales of an absolutely

continuous transformation of probability measures. We consider two probability measures P and Q on the

same measurable space (Ω,F ). To avoid confusion, we write EP and EQ for the expectation under P and

Q, respectively. Unless otherwise specified, our notions of semimartingales refer to the underlying probability

measure P . We will point it out explicitly when consider these notions under Q.

5.5.1 Girsanov’s Theorem

Throughout this subsection, we assume (Ft)t≥0 is a complete and right continuous filtration. Most of the

time we may assume that P and Q are mutually absolutely continuous, hence the filtration (Ft)t≥0, being

complete with respect to P , is also complete with respect to Q.

Proposition 5.26. Assume that Q is a probability measure on (Ω,F∞) which is absolutely continuous with

respect to P on Ft for every t ≥ 0. Let Dt be the Radon-Nikodym derivative of Q with respect to P on Ft:

Dt =
dQ

dP

∣∣∣∣
Ft

, t ∈ R+.

Then D = (Dt)t≥0 is a P -martingale, and D has a càdlàg modification thanks to Theorem 3.56. Furthermore,

the following two assertions are equivalent:

(i) the martingale D is uniformly integrable;

(ii) Q≪ P on F∞.

Proof. We fix t > s ≥ 0. Then for all A ∈ Fs, we have Q(A) = EP[1ADs]. For the martingale property,

EP [Ds1A] = EP [Dt1A] = Q(A), ∀A ∈ Fs ⊂ Ft.

Hence we have Ds = E[Dt|Fs], and D is a martingale. If (i) holds, let Z be the a.s. and L1 limit of (Dt)t≥0.

Using a monotone class argument, we have EP [Z1A] = Q(A) for all A ∈ F∞, hence Q ≪ P on F∞. If (ii)

holds, let D∞ be the Radon-Nikodym derivative of Q with respect to P on Ft. Then EP [D∞|Ft] = Dt for

all t ≥ 0, which implies uniform integrability.

In the sequel, we assume that the martingale D = (Dt)t≥0 has càdlàg sample paths.

Proposition 5.27. Under the assumption of the preceding proposition, for every stopping time τ , we have

dQ = DτdP on Fτ ∩ {τ <∞}. Furthermore, if Q≪ P on F∞, we have

Dτ =
dQ

dP

∣∣∣∣
Fτ

Proof. For the uniform integrable case where Q≪ P on F∞, by optional stopping theorem [Theorem 3.61],

Q(A) = EP [D∞1A] = EP [EP [D∞|Fτ ]1A] = EP [Dτ1A] , ∀A ∈ Fτ .

Since Dτ is Fτ -measurable, the second assertion follows. For general case, we use the fact that the stopped

martingale (Ds∧t)s≥0 is uniformly integrable for every t ≥ 0. Then

Q(A ∩ {τ ≤ t}) = EP
[
Dτ∧t1A∩{τ≤t}

]
= EP [Dτ1A∩{τ≤t}], ∀A ∈ Fτ .

Letting t tends to infinity concludes the proof.
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Remark. Let X = (Xt)≥0 be an adaptive process with càdlàg sample paths. If XD is a P -local martingale,

then X is a Q-local martingale. To see this, we take a stopping time τ . Then for any s ≥ 0 and any A ∈ Fs,

A ∩ {τ > s} ∈ Fs ∩Fτ = Fτ∧s. Let t > s ≥ 0. If the stopped process (XD)τ is a P -martingale, then

EQ[Xt∧τ1A] = EQ[Xt∧τ1A∩{τ≤s}] + EQ[Xt∧τ1A∩{τ>s}]

= EQ[Xs∧τ1A∩{τ≤s}] + EP [Xt∧τDt∧τ1A∩{τ>s}]

= EQ[Xs∧τ1A∩{τ≤s}] + EP [Xs∧τDs∧τ1A∩{τ>s}] = EQ[Xs∧τ1A].

Hence Xτ is a Q-martingale. In addition, a sequence of stopping times increasing P -a.s. to ∞ also increases

Q-a.s. to ∞. Consequently, if XD is a P -local martingale, then X is a Q-local martingale.

Proposition 5.28. Under the preceding assumption, the martingale D is Q-a.s. strictly positive, i.e.

inf
t≥0

Dt > 0, Q-a.s..

Proof. For every n ∈ N, define the stopping time τn = inf{t ≥ 0 : Dt < 1/n}. Then the event {τn < ∞} is

Fτn-measurable, and Dτn ≤ 1/n on {τn <∞} by right-continuity of D. Hence

Q(τn <∞) = EP
[
Dτn1{τn<∞}

]
≤ 1

n
,

which implies

Q

( ∞⋂
n=1

{τn <∞}

)
= 0.

Then Q-a.s. there exists n ∈ N such that τn =∞. This complete the proof.

Remark. If we further assume that P and Q are mutually absolutely continuous, then the martingale D is also

P -a.s. strictly positive.

Theorem 5.29 (Girsanov). Suppose the assumption of the preceding proposition holds, and assume that the

martingale D = (Dt)t≥0 is continuous. If M = (Mt)t≥0 is a continuous P -local martingale, then

M̃ =M −D−1 · ⟨M,D⟩

is a continuous Q-local martingale. Furthermore, if N is another continuous P-local martingale, then

⟨M,N⟩ = ⟨M̃,N⟩ = ⟨M̃, Ñ⟩.

Proof. By Proposition 5.28, the process D−1 · ⟨M,D⟩ is P -a.s. of finite variation, and the process M̃ is a

P-semimartingale. According to the integration by parts formula, we have

(M̃D)t = M̃0D0 +

∫ t

0

M̃s dDs +

∫ t

0

Ds dM̃s + ⟨M̃,D⟩t

= M̃0D0 +

∫ t

0

M̃s dDs +

∫ t

0

Ds dMs − ⟨M,D⟩t + ⟨M̃,D⟩t

= M̃0D0 +

∫ t

0

M̃s dDs +

∫ t

0

Ds dMs.

Consequently, the process M̃D is a continuous P -local martingale. By the Remark under Proposition 5.27,

the process M̃ is a continuous Q-local martingale. The last assertion holds because the bracket of a finite

variation process and a semimartingale vanishes.
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Proposition 5.30. If D is a continuous local martingale taking strictly positive values. There exists a unique

continuous local martingale L such that

Dt = E (L)t = exp

(
Lt −

1

2
⟨L,L⟩t

)
.

Moreover, L is given by the formula

Lt = logD0 +

∫ t

0

D−1
s dDs. (5.16)

Proof. We first prove uniqueness: If both L and L′ has the desired property, then L−L′ = 1
2 ⟨L

′, L′⟩− 1
2 ⟨L,L⟩

is a continuous martingale of finite variation, hence is constantly zero [Proposition 3.68]. To show the second

assertion, use Itô’s formula to the process logD:

logDt = logD0 +

∫ t

0

D−1
s dDs −

1

2

∫ t

0

D−2
s d⟨D,D⟩s = Lt −

1

2
⟨L,L⟩t,

where L is given in (5.16).

We then have another form of Girsanov’s theorem.

Theorem 5.31 (Girsanov). Suppose the assumption of the preceding proposition holds, and assume that the

martingale D = (Dt)t≥0 is continuous. If M = (Mt)t≥0 is a continuous P -local martingale, then

M̃ =M −D−1 · ⟨M,D⟩ =M − ⟨M,L⟩.

is a continuous Q-local martingale, where L is given in (5.16). Moreover, D−1 = E (−L̃).

Proof. The first identity immediately follows from associativity of stochastic integral. For the second assertion,

we use the identity L̃ = L− ⟨L,L⟩:

E (−L̃)t = exp

(
−L̃t −

1

2
⟨L̃, L̃⟩t

)
= exp

(
−Lt +

1

2
⟨L,L⟩t

)
= E (L)−1

t .

This proves the second assertion.

Remark. (i) According to Theorem 5.30, if P and Q are mutually absolutely continuous on F∞, then the role

of P and Q can be exchanged by replacing L with −L̃.

(ii) In particular, if M = B is an (Ft)-Brownian motion under P , then B̃ = B−⟨B,L⟩ is a Q-continuous local

martingale, and ⟨B̃, B̃⟩t = ⟨B,B⟩t = t. By Lévy’s characterization of multi-dimensional Brownian motions

[Theorem 5.11], B̃ is an (Ft)-Brownian motion under Q.

Theorem 5.32. Let L be a continuous local martingale such that L0 = 0. Consider the following properties:

(i) (Novikov’s criterion). E
[
exp

(
1
2 ⟨L,L⟩∞

)]
<∞.

(ii) (Kazamaki’s criterion). L is a uniformly integrable martingale, and E
[
exp

(
1
2L∞

)]
<∞.

(iii) E (L) is a uniformly integrable martingale.

Then (i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii): The process E (L) is a nonnegative continuous local martingale, hence is a supermartingale

by Proposition 3.67 (i). By Fatou’s lemma,

E[E (L)∞] ≤ lim
t→∞

E[E (L)t] ≤ E[E (L)0] = 1.
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By property (i), we have E[⟨L,L⟩∞] < ∞, and L is a continuous martingale that is bounded in L2 by

Theorem 3.60. By Cauchy-Schwarz inequality,

E
[
exp

(
1

2
L∞

)]
= E

[
E (L)1/2∞ e

1
4 ⟨L,L⟩∞

]
≤
√
E [E (L)∞]

√
E
[
e

1
2 ⟨L,L⟩∞

]
≤
√
E
[
e

1
2 ⟨L,L⟩∞

]
<∞.

(ii) ⇒ (iii): If L is a uniformly integrable martingale, by optional stopping theorem, for any stopping time τ ,

one have Lτ = E [L∞|Fτ ]. By Jensen’s inequality,

E
[
exp

(
1

2
Lτ

)]
≤ E

[
exp

(
1

2
L∞

)
|Fτ

]
.

Since exp
(
1
2L∞

)
is integrable, the collection of random variables exp

(
1
2Lτ

)
is uniformly integrable, where τ

runs over all stopping times. On the other hand, set Z
(a)
t = exp

(
aLt

1+a

)
. Then for all 0 < a < 1,

E (aL)t = (E (L)t)
a2

(Z
(a)
t )1−a

2

.

By Hölder’s inequality, for any measurable set Γ ∈ F and any stopping time τ , one have

E [1ΓE (aL)τ ] ≤ E [E (L)τ ]
a2 E

[
1ΓZ

(a)
τ

]1−a2
≤ E

[
1ΓZ

(a)
τ

]1−a2
≤ E

[
1Γ exp

(
1

2
Lτ

)]2a(1−a)
,

where we also use Jensen’s inequality and the fact 1+a
2a > 1 in the last inequality. Consequently, the collection

of random variables E (aL)τ is uniformly integrable, where τ runs over all stopping times. Let τn ∧ ∞ be a

sequence of stopping times reducing E (aL). Then for all t > s ≥ 0, by uniform integrability,

E[E (aL)t|Fs] = lim
n→∞

E [E (aL)t∧τn |Fs] = lim
n→∞

E (aL)s∧τn = E (aL)s.

Hence E (aL) is a uniformly integrable martingale, and

1 = E[E (aL)∞] ≤ E [E (L)∞]
a2 E

[
Z(a)
∞

]1−a2
≤ E [E (L)∞]

a2 E
[
exp

(
1

2
L∞

)]2a(1−a)
,

which implies E [E (L)∞] = 1. Again, by Fatou’s lemma, E[E (L)∞|Ft] ≤ E (L)t. On the other hand, we have

E[E (L)∞] = E[E (L)t] = E[E (L)0] = 1.

Hence E[E (L)∞|Ft] = E (L)t, and E (L) is a uniformly integrable martingale.

Remark. Let L be a continuous P -local martingale satisfying property (ii). To apply Girsanov’s theorem, we

let Q be the probability measure with density E (L)∞ with respect to P . According to Proposition 5.25, the

Radon-Nikodym derivative is dQ
dP |Ft

= Dt = E (L)t.

5.5.2 The Cameron-Martin Formula

Motivation. Girsanov transformation and SDE. Let β = (βt)t≥0 be a p-dimensional (Ft)-Brownian

motion under P . Consider the following continuous local martingale:

Lt =

∫ t

0

b(s, βs) dβs.
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If there exists g ∈ L2(R+,B(R+),m) such that |b(t, x)| ≤ g(t) for all (t, x) ∈ R+ ×Rp, the Novikov’s criterion

is satisfied. Then the associated exponential martingale is given by

Dt = E (L)t = exp

(∫ t

0

b(s, βs) dβs −
1

2

∫ t

0

|b(s, βs)|2 ds
)
.

We set dQ = D∞dP , which is a probability distribution. By Remark II under Theorem 5.30, the following

process B is an (Ft)-Brownian motion under Q:

Bt = βt −
∫ t

0

b(s, βs) ds

Consequently, X = β solves the following SDE under probability measure Q:

dXt = dBt + b(t,Xt) dt

Here we only assume that b : R+ × Rp → Rp is dominated by a function g ∈ L2(R+,B(R+),m).

Proposition 5.33. Consider the following two SDEs admitting unique strong solution on R+:dXt = µ(t,Xt) dt+ σ(t,Xt) dBt,

dYt = (µ+ ν)(t, Yt) dt+ σ(t, Yt) dBt,

where Bt is a p-dimensional (Ft)-Brownian motion under P , and σ : R+ × Rp → Rp×p is almost everywhere

invertible. Furthermore, the Novikov’s condition is satisfied:

E
[
exp

(
1

2

∫ ∞

0

|σ(s, Ys)−1ν(s, Ys)|2 ds
)]

<∞.

Then, if X0
d
= Y0, the following identity holds for all bounded functional Φ : C(R+)→ R:

E [Φ(X)] = E
[
Φ(Y ) exp

(
−
∫ ∞

0

σ(s, Ys)
−1ν(s, Ys) ds−

1

2

∫ ∞

0

|σ(s, Ys)−1ν(s, Ys)|2 dBs
)]

.

Proof. Define the following continuous P -local martingale:

Lt = −
∫ t

0

σ(s, Ys)
−1ν(s, Ys) dBs.

Since the Novikov’s criterion is satisfied, we can use the exponential martingale:

E (L)t = exp

(
−
∫ t

0

σ(s, Ys)
−1ν(s, Ys) ds−

1

2

∫ t

0

|σ(s, Ys)−1ν(s, Ys)|2 dBs
)
.

Define dQ = E (L)∞ dP , and the (Ft)-Brownian motion under P :

B̃t = Bt − ⟨B,L⟩t = Bt +

∫ t

0

σ(s, Ys)
−1ν(s, Ys) ds.

Then we have dYt = µ(t, Yt) dt+σ(t, Yt) dB̃t. Consequently, Yt solves the first SDE under probability measure

Q and (Ft, Q)-Brownian motion B̃. By uniqueness of the strong solution, if X0
d
= Y0, then X and Y has the

same law under P and Q, respectively. The final result follows by EP [Φ(X)] = EQ [Φ(Y )].
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We specialize the previous discussion to the case b(t, x) = g(t), where g ∈ L2(R+,B(R+),m). We set

h(t) =

∫ t

0

g(s) ds, ∀t ∈ R+.

The set H of all functions h that can be written in this form is called the Cameron-Martin space, and we

write the derivative of h ∈H in sense of distribution by ḣ = g ∈ L2(R+,B(R+),m). As a special case of our

previous discussion, given a Brownian motion B under P , we construct the probability measure

dQ = D∞ dP = exp

(∫ ∞

0

g(t) dBs −
1

2

∫ t

0

|g(t)|2 ds
)
dP.

Then the process B̃t = Bt − h(t) is a Brownian motion under Q. Consequently, for every nonnegative

measurable function on C(R+,R), one have

EP [D∞Φ((Bt)t≥0)] = EQ [Φ((Bt)t≥0)] = EQ
[
Φ
(
(B̃t + h(t))t≥0

)]
= EP [Φ((Bt + h(t))t≥0)]

We rewrite this formula to the following form.

Theorem 5.34 (Cameron-Martin formula). Let W be the Wiener measure on C(R+,R), and let h be a

function in the Cameron-Martin space H . Then for every nonnegative measurable function Φ on C(R+,R),∫
W (dw)Φ(w + h) =

∫
W (dw) exp

(∫ ∞

0

ḣ(s)dw(s)− 1

2

∫ ∞

0

|ḣ(s)|2 ds
)
Φ(w).

Remark. The integral
∫∞
0
ḣ(s)dw(s) is viewed as the Wiener integral, where w ∼W .

Application: Law of hitting times for Brownian motion with drift. Let (Bt)t≥0 be a real Brownian

motion with B0 = 0, and define the hitting time τa = inf{t ≥ 0 : Bt = a} for every a > 0. Now given µ ∈ R,
consider the stopping time

υa = inf{t ≥ 0 : Bt + µt = a}.

Clearly, if µ = 0, we have υa = τa, and the desired law is given by Corollary 4.36. For the general case, we fix

t > 0, and use Cameron-Martin formula to the following function:

h(s) = µ(s ∧ t), ḣ(s) = µ1{s≤t}, Φ(w) = 1{maxs∈[0,t] w(s)≥a}, w ∈ C(R+,R).

Then we have

P (υa ≤ t) = E [Φ(B + h)] = E
[
exp

(
µBt −

µ2

2
t

)
1{τa≤t}

]
.

By optional stopping theorem [Theorem 3.60], we have

exp

(
µBt∧τa −

µ2

2
(t ∧ τa)

)
= E

[
exp

(
µBt −

µ2

2
t

)
|Ft∧τa

]
.

Consequently,

P (υa ≤ t) = E
[
exp

(
µBt∧τa −

µ2

2
(t ∧ τa)

)
1{τa≤t}

]
= E

[
exp

(
µa− µ2

2
τa

)
1{τa≤t}

]
=

∫ t

0

a√
2πs3

e−
1
2s (µs−a)

2

ds.

Therefore, υa has a density supported on R+: ρυa(t) =
a√
2πt3

e−
1
2t (µt−a)

2

, t > 0.
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6 Markov Processes

6.1 Transition Semigroups and Feller Semigroups

Definition 6.1 (Markovian transition kernels). Let (E,E ) be a measurable space. A Markovian transition

kernel (or transition kernel, for short) on E is a mapping Q : E×E → [0, 1] satisfying the following properties:

(i) For every x ∈ E, the mapping E ∋ A 7→ Q(x,A) is a probability measure on (E,E );

(ii) For every A ∈ E , the mapping E ∋ x 7→ Q(x,A) is E -measurable.

Remark. (i) If E is a finite or countable set equipped with the σ-algebra E of all its subsets, we can then

characterize a transition kernel Q by the matrix (Q(x, {y}))x,y∈E .

(ii) Let B(E) be the vector space of all bounded measurable real functions on E, and we define the norm

∥f∥ = supx∈E |f(x)| for all f ∈ B(E). Given a function f ∈ B(E), we define

Qf : E → R, Qf(x) =

∫
E

Q(x, dy)f(y).

For every A ∈ E , we have Q1A(x) = Q(x,A), hence the function Q1A is measurable. A simple function

approximation argument shows that Qf is measurable for all f ∈ B(E). Furthermore,

∥Qf∥ = sup
x∈E

(∫
E

Q(x, dy)f(y)

)
≤ ∥f∥ sup

x∈E

(∫
E

Q(x,dy)

)
= ∥f∥.

Clearly, B(E) is complete under the norm ∥ · ∥. From this perspective, we can view Q as a bounded linear

operator on the Banach space B(E) such that ∥Q∥ ≤ 1, which is called a contraction on B(E).

Definition 6.2 (Transition semigroups). A collection (Qt)t≥0 of transition kernels on E is said to be a

transition semigroup on E if the following properties hold:

(i) Q0(x, ·) = δx for every x ∈ E.

(ii) (Chapman-Kolmogorov identity). For every s, t ≥ 0 and every A ∈ E ,

Qt+s(x,A) =

∫
E

Qt(x, dy)Qs(y,A).

(iii) For every A ∈ E , the mapping (t, x) 7→ Qt(x,A) is measurable with respect to B(R+)× E .

Remark. If we view (Qt)t≥0 as bounded linear operators on B(E), the Chapman-Kolmogorov identity implies

that Qt+s = QtQs for all s, t ≥ 0. This give rise to the associative property: (QrQs)Qt = Qr(QsQt) for all

r, s, t ≥ 0. Hence (Qt)t≥0 is a semigroup of contractions on B(E).

Definition 6.3 (Resolvent). Let λ > 0. The λ-resolvent of the transition semigroup (Qt)t≥0 is the linear

operator Rλ : B(E)→ B(E) defined by

Rλf(x) =

∫ ∞

0

e−λtQtf(x) dt, ∀f ∈ B(E), x ∈ E.

Remark. The resolvent has the following properties:

(i) Rλ : B(E)→ B(E) is a positive and bounded linear operator. Note that Rλf ≥ 0 for all f ≥ 0, and

sup
x∈E

(∫ ∞

0

e−λtQtf(x) dt

)
≤
∫ ∞

0

e−λt∥Qtf∥dt ≤
∫ ∞

0

e−λt∥f∥ dt ⇒ ∥Rλf∥ ≤
1

λ
∥f∥.
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(ii) (Resolvent equation). For all λ, µ > 0, we have Rλ −Rµ + (λ− µ)RλRµ = 0:

Rλ(Rµf)(x) =

∫ ∞

0

e−λs
(∫

E

Qs(x, dy)

∫ ∞

0

e−µtQtf(y) dt

)
ds

=

∫ ∞

0

e−λs
(∫ ∞

0

e−µtQs+tf(x) dt

)
ds

r=s+t
=

∫ ∞

0

e−(λ−µ)s
(∫ ∞

s

e−µrQrf(x) dr

)
ds

=

∫ ∞

0

Qrf(x)e
−µr

(∫ r

0

e−(λ−µ)s ds

)
dr =

∫ ∞

0

(
e−µr − e−λr

λ− µ

)
Qrf(x) dr.

Consequently, if we fix f ∈ B(E), it holds

∥(Rλ −Rµ)f∥ = |λ− µ| ∥RλRµf∥ ≤
|λ− µ| ∥f∥

λµ
, ∀λ, µ ∈ (0,+∞).

Hence λ→ Rλf is a continuous mapping from (0,+∞) into B(E).

(iii) For every λ > 0 and every n ∈ N, we have

Rnλf(x) =

∫ ∞

0

sn−1

(n− 1)!
e−λsQsf(x) ds.

Clearly, this equality holds for n = 1. Hence we can prove the general case by induction:

Rn+1
λ f(x) = Rλ(R

n
λf)(x) =

∫ ∞

0

e−λr
(∫ ∞

0

tn−1

(n− 1)!
e−λtQr+tf(x) dt

)
dr

=

∫ ∞

0

(∫ ∞

r

(s− r)n−1

(n− 1)!
e−λsQsf(x) dt

)
dr

=

∫ ∞

0

∫ s

0

(s− r)n−1

(n− 1)!
e−λsQsf(x) dr ds =

∫ ∞

0

sn

n!
e−λsQsf(x) ds.

Preliminary: LCCB space. From now on, we deal with a special topological space E, which is Locally

Compact, Hausdorff, and has a Countable Basis B (LCCB).

Since E is locally compact, for each x ∈ E there exists an open neighborhood Ux with compact closure.

Consequently, one can find a basis set Bx ∈ B such that x ∈ Bx ⊂ Ux, and Bx is compact. We choose

BK ⊂ B to be the collection of all basis sets with compact closure. Then Bx ∈ BK for all x ∈ E, and

E =
⋃
B∈BK

B is a countable union of compact sets. Therefore, E is a
:::::::::
σ-compact topological space.

By σ-compactness of E, we choose an increasing sequence (Cn)
∞
n=1 of compact subsets increasing to E.

Then one can construct an increasing sequence (Kn)
∞
n=1 of compact subspace of E such that

K1 ⊂ K◦
2 ⊂ K2 ⊂ K◦

3 ⊂ · · · ⊂ Kn ⊂ K◦
n+1 ⊂ Kn+1 ⊂ · · · , E =

∞⋃
n=1

Kn. (*)

We start by choosing a neighborhood Ux with compact closure for each x ∈ E and setting K0 = ∅. If Kn−1

is constructed, then Kn−1∪Cn is compact, and there exists x1, · · · , xk such that Kn−1∪Cn ⊂ Ux1
∪ · · ·∪Uxk

.

We construct Kn = Ux1
∪ · · · ∪ Uxk

, which is also compact. Then we have Kn−1 ⊂ K◦
n, and

⋃∞
n=1Kn ⊃⋃∞

n=1(Kn)
◦ ⊃

⋃∞
n=1 Cn = E. Clearly, for any compact subset K of E, {(Kn)

◦}∞n=1 is an open cover of K,

hence there exists Kn such that K ⊂ Kn.

Preliminary: Continuous functions vanishing at infinity. Let E be a locally compact Hausdorff space.

A continuous function f : E → R is said to be vanishing at infinity, if for all ϵ > 0, there exists a compact

K ⊂ E such that |f(x)| < ϵ for all x ∈ E\K, or equivalently, {x ∈ E : |f(x)| ≥ ϵ} is compact. In addition, If
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(Kn)
∞
n=1 is a sequence of compact sets specified in (*), then we have

lim
n→∞

sup
x∈E\Kn

|f(x)| = 0.

We denote by C0(E) the vector space of all continuous real-valued functions on E vanishing at infinity.

This is a closed subspace of B(E). Consequently, C0(E) is a Banach space given the supremum norm.

In addition, since E is a locally compact Hausdorff space, it admits the Alexandroff compactification

E∗ = E ∪ {∞}, whose topology consists of all open sets in E and all sets of the form (E\K) ∪ {∞}, where
K is a compact subset of E. Consequently, for every f ∈ C0(E), we can extend it to a function of Cb(E

∗) by

setting f(∞) = 0. Conversely, for every f ∈ Cb(E∗), we have f |E − f(∞) ∈ C0(E).

Riesz-Markov Theorem. If E is a locally compact Hausdorff space and L : C0(E) → R is a bounded

linear functional, then there exists a unique regular (finite signed) measure µ such that Lf =
∫
f dµ for all

f ∈ C0(E). Furthermore, ∥L∥ = |µ|(E).

Using C0(E) to separate points of a LCCB space E. If X is a second-countable normal space, we

choose a basis B = {Bn}∞n=1 of X. We define Ic := {(m,n) ∈ N2 : Bm ⊊ Bn}, and for each (m,n) ∈ Ic,

by Urysohn’s lemma, we can find a continuous function fm,n : X → [0, 1] such that fm,n(Bm) = {1} and

fm,n(X\Bn) = {0}. Since for every pair of distinct points x1, x2 ∈ X, there exists disjoint neighborhoods

Bn1
∋ x1 and Bn2

∋ x2. Therefore, F = {fm,n : (m,n) ∈ Ic} ⊂ C(X) is a countable collection of functions

separating points of X, i.e. for all x1, x2 ∈ E with x1 ̸= x2, there exists f ∈ F such that f(x1) ̸= f(x2).

Now we consider a LCCB space E. If E∗ = E ∪ {∞} is the Alexandroff compactification of E, then

Un := E∗\Kn is a countable local base of∞, where {Kn}∞n=1 is specified in (*), because for any neighborhood

V of ∞ in E∗, {K◦
n}∞n=1 is an open cover of the compact set E∗\K. Consequently, we can construct a

countable collection F ∈ C(E∗) of functions separating points E∗, and we may set these functions to 0 at ∞.

By restricting these function on E, we obtain a countable collection of functions in C0(E) separating points

of E. We again use this conclusion when finding the càdlàg version of a Feller process.

Vague convergence. We equip a metrizable space E with its Borel σ-algebra E . Let µn be a sequence of

probability measures on (E,E ). If there exists a probability measure µ such that∫
E

f dµn →
∫
E

f dµ, ∀f ∈ Cc(E),

then µn is said to vaguely converges to µ. Clearly, weak convergence implies vague convergence.

In a LCCB space E, we can prove that weak convergence is equivalent vague convergence. Let µn be a

sequence of probability measures converging vaguely to µ, and fix ϵ > 0. For any g ∈ Cb(E) with ∥g∥ ≤ M ,

we let ϕ ∈ Cc(E) be a function supported on K such that
∫
E
ϕdµ > 1 − ϵ

3M . By vague convergence, there

exists N1 such that
∫
E
ϕ dµn > 1 − ϵ

3M for all n ≥ N . Since gϕ ∈ Cc(E), we also choose N2 such that∣∣∫
E
gϕdµn −

∫
E
gϕdµ

∣∣ < ϵ/3 for all n ≥ N2. Then∣∣∣∣∫
E

g dµn −
∫
E

g dµ

∣∣∣∣ = ∣∣∣∣∫
E

g(1− ϕ) dµn
∣∣∣∣+ ∣∣∣∣∫

E

gϕdµn −
∫
E

gϕdµ

∣∣∣∣+ ∣∣∣∣∫
E

g(1− ϕ) dµ
∣∣∣∣

≤ 2M

∣∣∣∣∫
E

(1− ϕ) dµ
∣∣∣∣+ ∣∣∣∣∫

E

gϕdµn −
∫
E

gϕdµ

∣∣∣∣ < ϵ, ∀n ≥ max{N1, N2}.

Since ϵ is arbitrarily small, we have
∫
E
g dµn →

∫
E
g dµ, and the weak convergence is clear.
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Definition 6.4 (Feller semigroups). A transition semigroup (Qt)t≥0 is said to be a Feller semigroup if

(i) For every t ≥ 0, we have QtC0(E) ⊂ C0(E).

(ii) For every f ∈ C0(E) and every x ∈ E, limt↓0Qtf(x) = f(x).

Remark. Consider the λ-resolvent. For any sequence xn ∈ E, by dominated convergence theorem,

lim
n→∞

Rλf(xn) = lim
n→∞

∫
e−λsQsf(xn) ds =

∫
e−λs lim

n→∞
Qsf(xn) ds, ∀f ∈ C0(E).

In the last equality, we use the fact supt≥0

∣∣e−λsQsf(xn)∣∣ ≤ ∥f∥ for all n ∈ N. Consequently, if (Qt)t≥0 is a

Feller semigroup, we also have RλC0(E) ⊂ C0(E) for all λ > 0.

Proposition 6.5. Let (Qt)t≥0 be a Feller semigroup, and let Rλ be its λ-resolvent, where λ > 0. Define

R = {Rλf : f ∈ C0(E)}. Then R does not depend on the choice of λ, and R is a dense subspace of C0(E).

Proof. For any µ ̸= λ, the resolvent equation gives Rλf = Rµg, where g = f − (λ− µ)Rλf ∈ C0(E). Hence R

does not depend on the choice of λ. For the second assertion, note that

lim
λ→∞

λRλf(x) = lim
λ→∞

λ

∫ ∞

0

e−λsQsf(x) ds = lim
λ→∞

∫ ∞

0

e−tQt/λf(x) dt =

∫ ∞

0

e−tf(x) dt = f(x),

where the last equality holds by dominated convergence, since sups≥0

∣∣e−sQs/λf(x)∣∣ ≤ ∥f∥ for all λ > 0.

Furthermore, for all λ, µ > 0 and all x ∈ E, we have

(λRλ − µRµ)f(x) =
∫ ∞

0

(
λe−λs − µe−µs

)
Qsf(x) ds =

∫ ∞

0

e−t
(
Qt/λ −Qt/µ

)
f(x) dt

=

∫ ∞

0

e−t
(
t

µ
− t

λ

)
Qt/µQt/λf(x) dt ≤

∣∣∣∣ 1λ − 1

µ

∣∣∣∣ ∥f∥.
Hence ∥(λRλ−µRµ)f∥ → 0 as λ, µ→∞, and λRλf ∈ R converges in C0(E) as λ→∞ by completeness, and

the pointwise limit f must be the limit C0(E). Consequently, R is dense in C0(E).

Remark. In the proof, we also conclude that limλ→∞ ∥λRλf − f∥ = 0 for all f ∈ C0(E).

Proposition 6.6 (Strong continuity). Let (Qt)t≥0 be a Feller semigroup, and fix f ∈ C0(E). Then

lim
t↓0
∥Qtf − f∥ = 0.

Consequently, the mapping t 7→ Qtf is uniformly continuous from (0,∞) into C0(E).

Proof. By Fubini’s theorem, since (s, y) 7→ e−λsQsf(y) is dominated by e−λs∥f∥, it holds

QtRλf(x) = eλt
∫ ∞

t

e−λsQsf(x) ds ≤ eλtRλf −
∫ t

0

eλ(t−s)Qsf(x) ds

Consequently, we have

∥QtRλf −Rλf∥ =
(
eλt − 1

)
∥Rλf∥+ teλt∥f∥ → 0 as t ↓ 0.

Therefore we have limt↓0 ∥Qtf − f∥ = 0 for all f ∈ R. The continuity of Qt − Id and a standard density

argument extend this conclusion to all f ∈ C0(E). For the second assertion, note that for all t > s ≥ 0,

∥Qtf −Qsf∥ = ∥Qs(Qt−sf − f)∥ = ∥Qt−sf − f∥ → 0 as t− s ↓ 0.

Since this convergence is uniform for all s ∈ (0,∞), the mapping t 7→ Qtf is uniformly continuous.
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Definition 6.7 (Infinitesimal generator). Let (Qt)t≥0 be a Feller semigroup. Define the space D(L) by

D(L) =

{
f ∈ C0(E) :

Qtf − f
t

converges in C0(E) when t ↓ 0
}
.

Then D(L) is a subspace of the vector space C0(E). Define the linear operator L : D(L)→ C0(E) as follows:

Lf = lim
t↓0

Qtf − f
t

, ∀f ∈ C0(E).

The operator L : D(L)→ C0(E) is called the infinitesimal generator (or generator, for short) of (Qt)t≥0.

Proposition 6.8. Let L be the generator of Feller semigroup (Qt)t≥0.

(i) For every f ∈ D(L) and every s > 0, Qsf ∈ D(L), and L(Qsf) = Qs(Lf). Furthermore,

Qtf = f +

∫ t

0

QsLf ds = f +

∫ t

0

LQsf ds ⇔ d

dt
Qtf = LQtf. (6.1)

(ii) D(L) = R, and Rλ is the inverse of λ Id−L for all λ > 0, namely, (λ Id−L)Rλ = Rλ(λ Id−L) = Id.

(iii) The semigroup (Qt)t≥0 is determined by the generator L:

Qt = etL := lim
λ→∞

e−tλ
∞∑
k=0

tkλ2k

k!
(λ Id−L)−k

Proof. (i) For all s ≥ 0, Qs is a bounded linear operator on C0(E), and Qsf ∈ C0(E) for all f ∈ D(E) ⊂ C0(E).

Semigroup property and continuity of Qs implies

Qt(Qsf)−Qsf
t

= Qs

(
Qtf − f

t

)
⇒ Qsf ∈ D(L), L(Qsf) = Qs(Lf).

Similarly, we have h−1 (Qt+hf −Qf ) = Qt(Lf) when h ↓ 0. Moreover,

lim
h↓0

∥∥∥∥Qtf −Qt−hfh
−Qt(Lf)

∥∥∥∥ = lim
h↓0

∥∥∥∥Qt−h(Qhf − fh

)
−Qt(Lf)

∥∥∥∥
≤ lim

h↓0

∥∥∥∥Qt−h(Qhf − fh
− Lf

)∥∥∥∥+ lim
h↓0
∥(Qt−h −Qt)(Lf)∥

≤ lim
h↓0

∥∥∥∥Qhf − fh
− Lf

∥∥∥∥+ lim
h↓0
∥Lf −Qh(Lf)∥ = 0.

Consequently, for every x ∈ E, the mapping t 7→ Qtf(x) is differentiable. By fundamental theorem of calculus,

Qtf − f =

∫ t

0

Qs(Lf) ds =

∫ t

0

L(Qsf) ds, ∀t ∈ R+.

(ii) If f ∈ D(L), we use (6.1) and Fubini’s theorem:

Rλ(λ Id−L)f =

∫ ∞

0

λe−λsQsf ds−
∫ ∞

0

e−λsQs(Lf) ds

=

∫ ∞

0

λe−λs
(
f +

∫ s

0

L(Qtf) dt

)
ds−

∫ ∞

0

e−λsL(Qsf) ds

= f +

∫ ∞

0

(∫ ∞

t

λe−λsL(Qtf) ds

)
dt−

∫ ∞

0

e−λsL(Qsf) ds = f.
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Apparently, we have D(L) ⊂ R. On the other hand, for g ∈ C0(E), by dominated convergence theorem,

lim
h↓0

QhRλg −Rλg
h

= lim
h↓0

1

h

∫ ∞

0

e−λt (Qt+h −Qt) g dt

= lim
h↓0

1

h

((
1− e−λh

) ∫ ∞

0

e−λtQt+hg dt−
∫ h

0

e−λtQtg dt

)
= λRλg − g.

Hence Rλg ∈ D(L), and R = D(L). Moreover, the first assertion in (i) implies

LRλg = λRλg − g ⇒ (λ Id−L)Rλg = g.

(iii) Fix f ∈ C0(E). For every λ > 0, if (λ Id−L)g = f for some g ∈ D(L), then g = Rλ(λ Id−L)g = Rλf .

Hence the resolvent Rλ is uniquely determined by inverting the operator λ Id−L, which is defined on C0(E).

For every λ > 0, we define Aλ := λRλL = λ2Rλ − λ Id. Then Aλ : D(L) → C0(E) is a bounded linear

operator, and ∥Aλ∥ ≤ 2λ. Then we define the following series, which converges in norm:

etAλ =

∞∑
k=0

(tAλ)
k

k!
⇒

∥∥etAλ
∥∥ =

∥∥∥etλ2Rλ−λ Id
∥∥∥ ≤ ∞∑

k=0

e−tλ
∥tλ2Rλ∥k

k!
≤

∞∑
k=0

e−tλ
(tλ)k

k!
= 1.

By commutativity principle (i.e. eT+S = eT eS for commutative bounded linear operators ST = TS), the

collection (etAλ)t≥0 is a semigroup of contractions. Moreover, since AλAµ = AµAλ = µ−λ
µλ L(Rλ −Rµ)L,

etAλ − etAµ =

∫ t

0

d

ds
etAµ+s(Aλ−Aµ) ds =

∫ t

0

e(t−s)AµesAλ(Aλ −Aµ) ds.

Hence for all f ∈ D(L), since Aλf → Lf as λ→∞,∥∥(etAλ − etAµ
)
f
∥∥ ≤ ∥(Aλ −Aµ)f∥ ⇒ etLf := lim

λ→∞
etAλf exists in C0(E).

Clearly, the mapping etL : D(L)→ C0(E) is a contraction. Since D(L) is dense in C0(E), we can extend the

definition of etL from D(L) to C0(E). The following shows that (etL)t≥0 is a semigroup: ∀f ∈ D(L),∥∥∥e(t+s)Lf − etLesLf∥∥∥ =
∥∥∥(e(t+s)L − e(t+s)Aλ)f

∥∥∥+ ∥∥etAλ(esAλ − esL)f
∥∥+ ∥∥(etAλ − etL)esLf

∥∥
≤
∥∥∥(e(t+s)L − e(t+s)Aλ)f

∥∥∥+ ∥∥(esAλ − esL)f
∥∥+ ∥∥(etAλ − etL)esLf

∥∥→ 0 as λ→∞.

We also note strong continuity so that (etL)t≥0 is a Feller semigroup: ∀f ∈ D(L),

∥etLf − f∥ ≤ ∥(etL − etAλ)f∥+ ∥etAλf − f∥ ≤ t∥Lf −Aλf∥+ ∥etAλf − f∥ → 0 as t ↓ 0.

Furthermore, the generator of (etL)t≥0 is L:

etAλf − f =

∫ t

0

Aλe
sAλf ds ⇒ etLf − f =

∫ t

0

LesLf ds ⇒ lim
t↓0

etLf − f
t

= L.

Since the resolvent Rλf =
∫∞
0
e−λtQtf dt is the Laplacian transform, it has a one-to-one correspondence with

the transition semigroup (Qt)t≥0. Hence we can recover Qt = etL uniquely from the generator L.

Remark. Note that the domain of operator (λ Id−L)Rλ is C0(E).
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6.2 Markov Processes and Feller Processes

Now we fix a probability space (Ω,F ,P) and a filtration (Ft)t≥0.

Definition 6.9 (Markov processes and Feller processes). Let (Qt)t≥0 be a transition semigroup on E. A

Markov process with respect to the filtration (Ft)t≥0 with transition semigroup (Qt)t≥0 is an adapted process

X = (Xt)t≥0 with values in E such that for all f ∈ E and all s, t ≥ 0,

E [f(Xs+t)|Fs] = Qtf(Xs). (6.2)

Without specifying a filtration, we implicitly mean that the definition holds for the canonical filtration

FX
t = σ(Xs, 0 ≤ s ≤ t). Clearly, a Markov process X with respect to any filtration (Ft)t≥0 is also a Markov

process with respect to the canonical filtration (FX
t )t≥0.

A Markov process with values in E is called a Feller process if its transition semigroup is Feller.

Remark. Particularly, for all A ∈ E , one can take f = 1A in (6.1) to obtain

P(Xs+t ∈ A|Fs) = Qt(Xs, A).

It is seen that the conditional distribution of Xs+t given the history Fs only depends on the current state Xs.

Furthermore, given the law γ of X0, we have for all 0 < t1 < · · · < tn and all A0, A1, · · · , An ∈ E that

P(X0 ∈ A0, Xt1 ∈ A1, Xt2 ∈ A2, · · · , Xtn ∈ An)

=

∫
A0

γ(dx0)

∫
A1

Qt1(x0,dx1)

∫
A1

Qt2−t1(x1,dx2) · · ·
∫
An

Qtn−tn−1(xn−1,dxn). (6.3)

More generally, if f0, f1, · · · , fn ∈ B(E), we have

E [f0(X0)f1(Xt1) · · · fn(Xtn)]

=

∫
E

γ(dx0)f0(x0)

∫
E

Qt1(x0,dx1)f1(x1)

∫
E

Qt2−t1(x1,dx2)f2(x2) · · ·
∫
E

Qtn−tn−1
(xn−1,dxn)fn(xn).

Now we discuss the existence of a Markov process with transition semigroup (Qt)t≥0. According to (6.2),

with the initial γ given, we obtain a pre-measure P γt1,··· ,tn = P(X0 ∈ ·, Xt1 ∈ ·, · · · , Xtn ∈ ·) on all measurable

rectangles E n, which can be uniquely extended to a measure on the product space (En,E ⊗n). In addition,

the collection of all finite marginals {P γt1,··· ,tn : n ∈ N, 0 < t1 < · · · < tn} satisfies the compatibility condition

given in roposition 4.15, according to the Chapman-Kolmogorov identity.

We further assume that E is a Polish space. Then according to Corollary 4.19, which is a consequence

of the Daniell-Kolmogorov extension theorem, the compatible family {P γt1,··· ,tn : n ∈ N, 0 < t1 < · · · < tn}
of probability measures has a unique extension P γ on the canonical space (ER+ ,E ⊗R+). Consequently, the

canonical process {πt}t≥0 on (ER+ ,E ⊗R+) is a Markov process under P γ with transition semigroup (Qt)t≥0

with respect to the canonical filtration, and the law of π0 is given by γ.

To summarize, if E is a Polish space, we can construct a E-valued Markov process (Xt)t≥0 with transition

semigroup (Qt)t≥0 under any given initial distribution γ.

Alternative definition of Feller Semigroup. Let (Qt)t≥0 be a transition group, and for every x ∈ E, let

(Xx
t )t≥0 be a Markov process with semigroup (Qt)t≥0 starting from X0 ∼ δx. Then (Xx

t )t≥0,x∈E is a Markov

family, and the law of every process (Xx
t )t≥0 is given by P x := P δx .

Clearly, if (Qt)t≥0 is a Feller semigroup, then every process (Xx
t )t≥0 is a Feller process. In fact, we

can characterize a Feller semigroup by the following properties of the law of Markov families (Xx
t )t≥0,x∈E .
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Following our discussion of vague convergence, one can easily show that

∀x ∈ E and ∀t ≥ 0, Xy
t

d→ Xx
t as y → x ⇔ QtC0(E) ⊂ C0(E);

∀x ∈ E, Xx
t

P→ x as t ↓ 0 ⇔ Qtf(x)→ f(x), ∀f ∈ C0(E).

6.2.1 Sample Path Regularity

Now we study the sample path property of Feller processes. Recall that we assume E to be a LCCB space.

Proposition 6.10. If (Xt)t≥0 is a Markov process with transition semigroup (Qt)t≥0, and h ∈ B(E) is a

nonnegative function, then the process (e−λtRλh(Xt))t≥0 is a supermartingale.

Proof. Clearly e−λtRλh(Xt) is bounded, hence in L1. For every s, t ≥ 0, we have

QsRλh =

∫ ∞

0

e−λtQt+shdt = eλs
∫ ∞

0

e−λ(s+t)Qt+shdt ≤ eλsRλh.

By (6.2), the following inequality holds for (Xt)t≥0:

E[e−λ(t+s)Rλh(Xt+s)|Ft] = e−λ(t+s)QsRλh(Xt) ≤ eλtRλh(Xt)

Therefore (e−λtRλh(Xt))t≥0 is a martingale.

We first consider the case where E is a compact space.

Lemma 6.11. Let E be a compact Hausdorff space with a countable basis. Let (Xt)t≥0 be a Feller process with

semigroup (Qt)t≥0, with respect to the filtration (Ft)t≥0. Then the process (Xt)t≥0 has a càdlàg modification.

Proof. Let H ∈ C(E) be a countable collection of functions separating points of E. We first show that a

sequence xn ∈ E converges if h(xn) converges for all h ∈ H . By compactness of E, every sequence of points

of E has at least one limit point, and a sequence converges if and only if the limit point is unique. If x, y ∈ E
are both limit points of xn, then h(x) = limn→∞ h(xn) = h(y) for all h ∈ H , and x = y by definition of H .

Consequently, xn converges a unique limit point.

We take a sequence fn ∈ C+
0 (E) separating the points of E, and take H = {Rpfn : p ∈ N, n ∈ N}. This is

also a countable subset of C(E) that separates the points of E, since ∥pRpf − f∥ → 0 as p→∞.

Let D be a countable dense subset of R+. By Proposition 6.10, if h ∈ H , there exists p ∈ N such that

(e−pth(Xt))t≥0 is a supermartingale. By Theorem 3.55 (i), the left limit limD∋s↓t h(Xs) [resp. the right limit

limD∋s↑t h(Xs)] exists for all t ∈ R++ [resp. t ∈ R+] except on an event Nh of probability zero. We take

N =
⋃
h∈H Nh, hence (h(Xt))t∈D has side limits on Ω\N . Then we defineX̃t(ω) = limD∋s↓tXs(ω), ω ∈ Ω\N

X̃t(ω) = x0, ω ∈ N

where x0 ∈ E is a fixed point. Clearly this is a càdlàg process.

Finally, it remains to show that (X̃t)t≥0 is a modification of (Xt)t≥0. For any t ≥ 0, take D ∋ tn ↓ t. Then
for all f, g ∈ C(E), we have

E[f(Xt)g(X̃t)] = lim
n→∞

E[f(Xt)g(Xtn)] = lim
n→∞

E[f(Xt)Qtn−tg(Xt)] = E[f(Xt)g(Xt)].

By functional monotone class theorem, E[φ(Xt, X̃t)] = E[φ(Xt, Xt)] for all bounded Borel function on E ×E.

We take φ(x, y) = 1{x=y}, which gives P(Xt = X̃t) = 1. Hence (X̃t)t≥0 is a modification of (Xt)t≥0.
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Theorem 6.12 (Regularity of sample paths). Let E be a LCCB space. Let (Xt)t≥0 be a Feller process with

transition semigroup (Qt)t≥0, with respect to the filtration (Ft)t≥0. Set F̃∞ = F∞, and denote by N the

class of all zero probability sets in F̃∞. Define the modified filtration: F̃t = σ (Ft+ ∪ σ(N )) , ∀t ≥ 0.

The process (Xt)t≥0 has a càdlàg modification (X̃t)t≥0, such that (X̃t)t≥0 is a Feller process with respect

to the modified filtration (F̃t)t≥0.

Proof. Let E∗ = E ∪{∞} be the Alexandroff compactification of E. According to Lemma 6.11, and note that

Nh ∈ F∞ for all h ∈ H , we can find a càdlàg modification (X̃t)t≥0 taking values in E∗ and adapted to the

filtration (F̃t)t≥0. We also point out that the filtration (F̃t)t≥0 is right continuous, so the stopping time we

are about to define makes sense.

It is necessary to show (X̃t)t≥0 is also càdlàg as a process taking values in E. We take a strictly positive

g ∈ C0(E), then the function h = R1g ∈ C0(E) is also strictly positive, and
(
e−th(X̃t)

)
t≥0

is a nonnegative

and càdlàg supermartingale with respect to the filtration (F̃t)t≥0. We set

τn = inf

{
t ≥ 0 : e−th(X̃t) <

1

n

}
, and τ = lim

t→∞
τn,

which are stopping times with respect to the filtration (F̃t)t≥0 by Proposition 3.14. By optional sampling

theorem [Theorem 3.60], we have

E
[
e−th(X̃t)

]
≤ E

[
e−τn∧th(X̃τn∧t)

]
⇒ E

[
1{τn≤t}e

−th(X̃t)
]
≤ E

[
1{τn≤t}e

−τnh(X̃τn)
]
≤ 1

n
.

Letting n increase to ∞, we have

E
[
1{τ≤t}e

−th(X̃t)
]
≤ 0.

Since P(X̃t = ∞) = 0, and since h is strictly positive, we have τ > t a.s.. Note that t > 0 is arbitrary.

Then τn →∞ a.s., and infs∈[0,t] e
−sh(X̃s) > 0 a.s. for all t > 0. As a result, almost surely, we have X̃s− ̸=∞

and X̃s ̸=∞ for all s > 0. This extends càdlàg property to E.

Finally we verify that (X̃t)t≥0 is a Markov process with semigroup (Qt)t≥0 with respect to the filtration

(F̃t)t≥0. It suffices to prove that, for all s ≥ 0, t > 0 and A ∈ F̃s, f ∈ C0(E), we have

E
[
1Af(X̃s+t)

]
= E

[
1AQtf(X̃s)

]
. (6.4)

We may assume A ∈ Fs+ since it a.s. equals to some Fs+-set. Taking D ∋ sn ↓ s, we have

E [1Af(Xs+t)] = E [E [1Af(Xs+t)|Fsn ]] = E [1AQt+s−snf(Xsn)] . (6.5)

Since Qt+s−snf converges uniformly to Qtf , and Xsn
a.s.
= X̃sn

a.s.→ X̃s
a.s.
= Xs, setting n → ∞ in (6.5) gives

E[1Af(Xs+t)] = E[1AQt(Xs)]. As (X̃t)t≥0 is a modification of (Xt)t≥0, this is equivalent to (6.4).

Remark. In fact, we prove the existence of a Feller process with càdlàg sample paths in this theorem. Assume

we are given a process (Xt)t≥0 together with a family (Px)x∈E of probability measures such that, under Px,

(Xt)t≥0 is a Markov process with semigroup (Qt)t≥0 with respect to the filtration (Ft)t≥0, and X0 = x a.s..

Then we define a new filtration (Ft)t∈[0,∞] by F̃t = σ (Ft+ ∪ σ(N ′)) , where N ′ is the class of all F∞-sets

that have zero Px probability for each x ∈ E. By the same arguments as in the preceding proof, we can then

constructed an (F̃t)-adapted càdlàg process (X̃t)t≥0 such that for all x ∈ E,

• Px(X̃t = Xt) = 1 for all t ≥ 0, and

• under Px, (X̃t)t≥0 is a Feller process with semigroup (Qt)t≥0 with respect to the filtration (F̃t)t∈[0,∞].
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Notations. In later discussions, we often make use of this càdlàg property of Feller processes, which, as is

indicated by this theorem, is not a harmful assumption. For every x ∈ E, we use Px to denote the probability

measure on D(E) which is the law of Feller process (Xx
t )t≥0 starting from X0 ∼ δx. Moreover, we use Ex to

denote the expectation taken with respect to P x.

If Φ : D(E)→ R+ is a measurable map, the mapping x 7→ Ex[Φ] is also measurable. To see this, it suffices

to consider the case Φ = 1A, where A ∈ D . If A depends on only finitely many coordinate maps:

A =
{
f ∈ D(E) : f(t1) ∈ B1, · · · , f(tp) ∈ Btp

}
, where 0 ≤ t1 < · · · < tp, and B1, · · · , Bp ∈ E , (6.6)

then the mapping x 7→ Ex[1A] has an explicit form:

Ex[1A] =
∫
B1

Qt1(x,dy1)

∫
B2

Qt2−t1(y1,dy2) · · ·
∫
Bp

Qtp−tp−1(yp−1,dyp),

which is measurable. The remaining case then follows from a π-λ theorem argument.

In addition, for any initial law, the expectation Eγ taken with respect to P γ is given by

Eγ [1A] =
∫
γ(dx)

∫
B1

Qt1(x, dy1)

∫
B2

Qt2−t1(y1,dy2) · · ·
∫
Bp

Qtp−tp−1
(yp−1,dyp) =

∫
E

Ex[1A]γ(dx).

Using an argument of π-λ system and a simple function approximation, we obtain

Eγ [Φ] =
∫
E

Ex[Φ]γ(dx), ∀ measurable mapping Φ : (D(E),D)→ (R+,B(R+)).

6.2.2 Markov Properties

Theorem 6.13 (Simple Markov property). Let (Xt)t≥0 be a Markov process with semigroup (Qt)t≥0 with

respect to the filtration (Ft)t≥0. Assume that process (Xt)t≥0 has càdlàg sample paths. Let s ≥ 0, and let

Φ : D(E)→ R+ be a measurable map. Then

E [Φ((Xs+t)t≥0)|Fs] = EXsΦ a.s..

Proof. Following our preceding discussion, EXs
[Φ] is a composition of Xs and the mapping x 7→ Ex[Φ]. It

suffices to consider the case Φ = 1A, where A is given in (6.6). For φ1, · · · , φp ∈ B(E), we have

E
[
φ1(Xs+t1) · · ·φp(Xs+tp)|Fs

]
= E

[
φ1(Xs+t1) · · ·φp−1(Xs+tp−1

)E
[
φp(Xs+tp)|Fs+tp−1

]
|Fs

]
= E

[
φ1(Xs+t1) · · ·φp−1(Xs+tp−1

)Qtp−tp−1
φp(Xs+tp−1

)|Fs

]
= E

[
φ1(Xs+t1) · · ·φp−1(Xs+tp−1

)

∫
E

Qtp−tp−1
(Xs+tp−1

,dyp)φp(yp) dyp|Fs

]
= · · · =

∫
E

Qt1(Xs,dy1)φ1(y1)

∫
E

Qt2−t1(y1,dy2)φ2(y2) · · ·
∫
E

Qtp−tp−1
(yp−1,dyp)φp(yp).

Taking φj = 1Bj
immediately gives the desired conclusion according to (6.6).

Theorem 6.14 (Strong Markov property). Let (Xt)t≥0 be a Feller process with semigroup (Qt)t≥0 with respect

to the filtration (Ft)t≥0. Assume that process (Xt)t≥0 has càdlàg sample paths. Let τ be a stopping time of

the filtration (Ft+)t≥0, and let Φ· : R+ × D(E)→ R+ be a measurable map. Then

E
[
1{τ<∞}Φτ ((Xτ+t)t≥0)|Fτ+

]
= 1{τ<∞}EXτΦτ a.s..
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Proof. The right hand side of the last display is a measurable mapping, since the mapping {τ < ∞} ∋ ω 7→
Xτ (ω) is Fτ -measurable by Proposition 3.13, and the mapping x 7→ Ex[Φ] is measurable. To show the desired

conclusion, it suffices to show that for any A ∈ Fτ+,

E
[
1A∩{τ<∞}Φτ ((Xτ+t)t≥0)

]
= E

[
1A∩{τ<∞}EXτΦτ

]
.

We approximate τ by the smallest multiple of 2−n greater than τ , i.e. τn = ⌊2nτ⌋+1
2n . We consider the

mapping Φs(f) = φ0(s)
∏m
i=1 φi(f(ti))) ≥ 0, where φ0 is nonnegative, bounded and measurable on R+, and

φ1, · · · , φm ∈ B(E). By the previous conclusion,

E
[
1A∩{τn<∞}Φτn((Xτn+t)t≥0)

]
=

∞∑
k=1

E
[
1A∩{τn=k2−n}Φk2−n((Xk2−n+t)t≥0)

]
=

∞∑
n=1

E
[
1A∩{τ=k2−n}E [Φk2−n((Xk2−n+t)t≥0)|Fk2−n ]

]
=

∞∑
n=1

E
[
1A∩{τ=k2−n}EXk2−nΦk2−n

]
= E

[
1A∩{τ<∞}EXτn

Φτn
]
= E

[
1A∩{τ<∞}ψ(τn, Xτn)

]
.

where ψ(s, x) = ExΦs = φ0(s)
∏m
i=1Qtiφi(x). According to Riesz-Markov Theorem, since a finite signed

measure on E is determined by its values against all C0 functions on E, we may assume φ1, · · · , φn ∈ C0(E).

We also assume φ0 ∈ C0(R+). Then ψ is a bounded and continuous map on R+×E. By dominated convergence

theorem and right-continuity of t 7→ Xt, we let n→∞ to obtain

E
[
1A∩{τ<∞}Φτ ((Xτ+t)t≥0)

]
= E

[
1A∩{τ<∞}EXτ

Φτ
]
.

By monotone class theorem [Theorem 1.38], we concludes the proof of strong Markov property.

Remark. In this theorem, we assume that τ is a stopping time of the filtration (Ft+)t≥0. This is a more

general assumption than a stopping time of the filtration (Ft)t≥0. Where we use this assumption is that by

Proposition 3.11,

{τn = k2−n} = {(k − 1)2−n ≤ τ < k2−n} ∈ Fk2−n ,

and since A ∈ Fτ+,

A ∩ {(k − 1)2−n ≤ τ < k2−n} ∈ Fk2−n .

We can use this statement to generalize the Blumenthal’s 0-1 law.

Theorem 6.15 (Blumenthal’s 0-1 law). Let (Xt)t≥0 be a Feller process with càdlàg sample paths, and let

(Ft)t≥0 be the canonical filtration. Then for each x ∈ E, the germ σ-algebra F0+ is trivial under Px, i.e.

Px(A) ∈ {0, 1} for each A ∈ F0+.

Proof. For each A ∈ F0+, by the strong Markov property,

1A = Ex [1A|F0+] = Ex1A = Px(A).

Hence Px(A) is either 0 or 1.
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6.3 The Generators and the Feynman-Kac Formula

In this section, we are going to discuss some properties of generators. We first study the Brownian motion,

whose generator has a simple form.

Example 6.16. A Brownian motion B = (Bt)t≥0 is a real-valued Markov process with transition semigroup

Q0(x,A) = 1A(x), Qt(x,A) =

∫
A

1√
2πt

e−
(y−x)2

2t dy, ∀t > 0, x ∈ R, A ∈ B(R).

We first verify that (Qt)t≥0 is a Feller semigroup. We fix f ∈ C0(R), and there exists M > 0 such that

∥f∥ ≤M . For any x0 ∈ R, by Lebesgue dominated convergence theorem,

lim
x→x0

Qtf(x) = lim
x→x0

∫ ∞

−∞

1√
2πt

e−
(y−x)2

2t f(y) dy =

∫ ∞

−∞

1√
2πt

e−
(y−x0)2

2t f(y) dy = Qtf(x0).

Given any ϵ > 0, we choose K > 0 such that |f(y)| < ϵ/2 for all |y| > K, and choose α > 0 such that∫ ∞

α

1√
2πt

e
−z2

2t dz <
ϵ

2M
⇔

∫ −α

−∞

1√
2πt

e
−z2

2t dz <
ϵ

2
.

Then for all x > K + α, we have |f(z + x)| < ϵ/2 for all z > −α, and

|Qtf(x)| =
∣∣∣∣∫ ∞

−∞

1√
2πt

e−
(y−x)2

2t f(y) dy

∣∣∣∣ ≤M ∫ −α

−∞

1√
2πt

e
−z2

2t dz +

∫ ∞

−α

1√
2πt

e
−z2

2t |f(z + x)|dz < α.

Hence we conclude that Qtf ∈ C0(R). To show continuity of (Qt)t≥0, we fix η > 0. Then we choose δ > 0

such that |f(y)− f(x0)| < η/2 for all |y − x0| ≤ δ:∣∣∣∣∣
∫
|y−x0|≤δ

1√
2πt

e−
(y−x0)2

2t (f(y)− f(x0)) dy

∣∣∣∣∣ < η

2

∣∣∣∣∣
∫
|y−x0|≤δ

1√
2πt

e−
(y−x0)2

2t dy

∣∣∣∣∣ ≤ η

2
, ∀t > 0;

and choose t0 > 0 such that∫
|z|≥δ

1√
2πt0

e−
z2

2t0 dz <
η

4M
⇒

∣∣∣∣∣
∫
|y−x0|≥δ

1√
2πt

e−
(y−x0)2

2t (f(y)− f(x0)) dy

∣∣∣∣∣ < η

2
, ∀t ∈ (0, t0).

Consequently, we have |(Qtf − f)(x0)| < η for all t ∈ (0, t0), and Qtf(x0)→ f(x0) as t ↓ 0.

Resolvent and generator. For λ > 0, the resolvent is

Rλf(x) =

∫ ∞

0

e−λtQtf(x) dt =

∫ ∞

−∞

(∫ ∞

0

1√
2πt

e−λt−
(y−x)2

2t dt

)
︸ ︷︷ ︸

rλ(y−x)

f(y) dy

=

∫ ∞

−∞

1

|y − x|
E
[
τye

−λτy
]
f(y) dy,

where the hitting time τy = inf{t ≥ 0 : Bt = |y − x|} has density |y−x|√
2πt3

e−
(y−x)2

2t dt. By Proposition 4.40,

rλ(y − x) =
1

|y − x|
d

dλ
E[e−λτy ] =

1√
2λ
e−|y−x|

√
2λ.

172



This gives the formula of Rλ:

Rλf(x) =
1√
2λ

∫ ∞

−∞
e−|y−x|

√
2λf(y) dy.

Now we find the generator L of (Qt)t≥0. If h ∈ D(L), there exists f ∈ C0(R) such that Rλf = h. Taking

λ = 1/2, and sgn(z) = 1{z≥0} − 1{z<0}, we have

h(x) =

∫ ∞

−∞
e−|y−x|f(y) dy ⇒ h′(x) =

∫ ∞

−∞
sgn(y − x)e−|y−x|f(y) dy.

Furthermore, h′ is differentiable: for all x ∈ R,

h′(x+ δ)− h′(x) =
∫ ∞

−∞
sgn(y − x− δ)e−|y−x−δ|f(y) dy −

∫ ∞

−∞
sgn(y − x)e−|y−x|f(y) dy

=

∫
R\[x,x+δ]

sgn(y − x)
(
e−|y−x−δ| − e−|y−x|

)
f(y) dy −

∫ x+δ

x

(
ey−x−δ + ex−y

)
f(y) dy,

Hence we have

lim
δ↓0

h′(x+ δ)− h′(x)
δ

= h(x)− 2f(x).

A similar argument also holds for the left limit, hence h′′ = h− 2f . By Proposition 6.8, we have(
1

2
Id−L

)
h =

(
1

2
Id−L

)
R1/2f = f ⇒ Lh =

1

2
h′′, where h ∈ D(L) ⊂

{
h ∈ C2(R) : g, g′′ ∈ C0(R)

}
.

In fact, we can show that D(L) =
{
g ∈ C2(R) : g, g′′ ∈ C0(R)

}
. If g is a twice continuously differentiable

function with g, g′′ ∈ C0(R), we take f = 1
2 (g − g

′′) ∈ C0(R). Then h = R1/2f ∈ D(L), and the preceding

argument gives h′′ = h− 2f . This yields (h− g)′′ = h− g ⇒ (h− g)(x) = C1e
x + C2e

−x, where C1, C2 ∈ R.
Since h− g ∈ C0(R), we have g = h ∈ D(L).

Proposition 6.17. Let d ∈ N, and let B = (Bt)t≥0 be a d-dimensional Brownian motion. The infinitesimal

generator of B is equal to 1
2∆ on the space C2

0 (Rd).

Proof. For f ∈ C0(Rd), we write

Qtf(x) =
1

(2π)d/2

∫
Rd

e−|z|2/2f(x+ z
√
t) dz, (6.7)

where |z|2 =
∑d
j=1 z

2
j . If f ∈ C2

0 (Rd), the chain rule gives

∂

∂u
f(x+ zu) = z⊤∇f(x+ zu),

∂2

∂u2
f(x+ zu) = z⊤∇2f(x+ zu)z,

where ∇2f = [ ∂2

∂xi∂xj
f ]i,j∈[n] is Hessian matrix of f . By Taylor’s formula, there exists θ(t, z) ∈ [0, 1] such that

Qtf(x) = f(x) + (2π)−d/2
t

2

∫
Rd

e−|z|2/2z⊤∇2f(x+ θ(t, z)z
√
t)z dz

= f(x) +
t

2
∆f(x) + (2π)−d/2

t

2
J(t, x),
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where

J(t, x) =

∫
Rd

e−|z|2/2

 d∑
i,j=1

(
∂2f

∂xi∂xj
(x+ θ(t, z)z

√
t)− ∂2f

∂xi∂xj
(x)

)
zizj

 dz.

We set the following function F , and use uniform continuity of second partial derivatives of f :

F (x, z, t) = max
i,j∈[d]

∣∣∣∣ ∂2f

∂xi∂xj
(x+ θ(t, z)z

√
t)− ∂2f

∂xi∂xj
(x)

∣∣∣∣ ⇒ lim sup
t↓0

F (x, z, t) = 0.

Moreover, for any R > 0, one have

|J(t, x)| ≤
∫
|z|≤R

F (x, t, z) e−|z|2/2∥z∥21 dz + 2 max
i,j∈[d]

∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥∫
|z|>R

e−|z|2/2∥z∥21 dz.

Since the first term converges to 0 as t ↓ 0 by dominated convergence theorem for any R > 0, we have

lim
t↓0

∥∥∥∥1t (Qtf − f)− 1

2
∆f

∥∥∥∥ ≤ max
i,j∈[d]

∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥∫
|z|>R

e−|z|2/2∥z∥21 dz, ∀R > 0.

Take R→∞. Then we have Lf = 1
2∆f for all f ∈ C2

0 (R).

Remark. For the case d ≥ 2, the space C2
0 (Rd) is not equal to D(L). One can show that D(L) is the subspace

of C0(Rd) of functions f such that δf taken in weak sense is in C0(Rd).

Generally, we have the following relationship between Brownian motions and heat equations.

Theorem 6.18 (Brownian motions and the heat equation). Let φ ∈ C(Rd). Then the function u : R+×Rd →
R, (t, x) 7→ Qtφ(x) solves the following heat equation:∂u

∂t (t, x) =
1
2∆xu(t, x), t > 0

u(0, x) = φ(x),

where (Qt)t≥0 is defined in (6.7).

Proof. We write ut = Qtφ for t > 0, so ut ∈ C∞(Rd). For each t > 0, we fix 0 < ϵ < t. By Proposition 6.8,

ut = Qϵφ+

∫ t−ϵ

0

1

2
∆(Qs+ϵφ) ds = uϵ +

∫ t

ϵ

1

2
∆us ds

Since 1
2∆us = Qs−ϵ(

1
2∆uϵ) depends (uniformly) continuously on s ∈ [ϵ,∞) we have

∂ut
∂t

= lim
s→t

Qtφ−Qsφ
t− s

=
1

2
∆ut.

Furthermore, since (Qt)t≥0 is a Feller semigroup,

lim
t↓0

ut = lim
t↓0

Qtφ = φ.

Thus we conclude the proof.

The following theorem gives a characterization for the generator domain of a Feller semigroup (Qt)t≥0. For

any x ∈ E, we can construct a Markov process (Xx
t )t≥0 such that P(X0 = x) = 1 with semigroup (Qt)t≥0.
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Theorem 6.19. Let h, g ∈ C0(E). The following conditions are equivalent:

(i) h ∈ D(L) and Lh = g;

(ii) For every x ∈ E, the process

h(Xx
t )−

∫ t

0

g(Xx
s ) ds

is a martingale with respect to the filtration F x
t = σ(Xx

s , 0 ≤ s ≤ t).

Proof. (i) ⇒ (ii): Let h ∈ D(L) and Lh = g. By (6.1), we have

Qth = h+

∫ t

0

Qsg ds,

which implies

E
[
h(Xx

t+s)|F x
t

]
= Qsh(X

x
t ) = h(Xx

t ) +

∫ s

0

Qrg(X
x
t ) dr. (6.8)

Meanwhile, use the boundedness of g, we have

E
[∫ t+s

t

g(Xx
r ) dr

∣∣∣∣F x
t

]
=

∫ t+s

t

E [g(Xx
r )|Ft] =

∫ t+s

t

Qr−tg(X
x
t ) dr =

∫ s

0

Qrg(X
s
t ) dr. (6.9)

Combining (6.8) and (6.9), we have the martingale property:

E
[
h(Xx

t+s)−
∫ t+s

0

g(Xx
r ) dr

∣∣∣∣F x
t

]
= h(Xx

t )−
∫ t

0

g(Xx
r ), ∀t+ s > t ≥ 0.

(ii) ⇒ (i): For every x ∈ E and every t ≥ 0, we have

Qth(x)−
∫ t

0

Qrg(x) dr = E
[
h(Xx

t )−
∫ t

0

g(Xx
r ) dr

]
= h(x),

where the first equality follows from Markov property, and the second from martingale property. Hence

lim
t↓0

Qth− h
t

− g = lim
t↓0

1

t

∫ t

0

(Qrg − g) dr = 0.

Since g ∈ C0(E), we have h ∈ D(L), and Lh = g.

Now we introduce one special case of Feynman-Kac formula, which reveals the relation between parabolic

partial differential equations and stochastic differential equations.

Theorem 6.20 (Feynman-Kac formula). Let υ ∈ C0(E) be a nonnegative function. For every t ≥ 0, define

for every φ ∈ B(E) and every x ∈ E that

Ktφ(x) = E
[
φ(Xx

t ) exp

(
−
∫ t

0

υ(Xx
s ) ds

)]
,

where (Xx
t )t≥0 is a càdlàg Feller process with semigroup (Qt)t≥0 starting from X0 ∼ δx.

(i) (Kt)t≥0 is a semigroup of contractions on B(E).

(ii) If φ ∈ D(L), then

d

dt
Ktφ|t=0 = Lφ− υφ.
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Proof. (i) Fix x ∈ E, and let (Xt)t≥0 be a càdlàg Feller process with semigroup (Qt)t≥0 starting from X0 ∼ δx.
Clearly, Kt is a contraction: Ktφ(x) ≤ E [φ(Xt)] = Qtφ(x) ≤ ∥φ∥. Next, we let πt(f) = f(t) be the projection

map from D(E)→ E, and fix s, t ≥ 0. By definition of Kt and simple Markov property,

Ks(Ktφ)(x) = E
[
(Ktφ)(Xs) exp

(
−
∫ s

0

υ(Xs) ds

)]
= E

[
EXs

[
(φ ◦ πt) exp

(
−
∫ t

0

υ ◦ πr dr
)]

exp

(
−
∫ s

0

υ(Xr) dr

)]
= E

[
E
[
φ(Xs+t) exp

(
−
∫ t

0

υ(Xs+r) dr

)∣∣∣∣FX
s

]
exp

(
−
∫ s

0

υ(Xr) dr

)]
= E

[
φ(Xs+t) exp

(
−
∫ s+t

0

υ(Xr) dr

)]
= (Ks+tφ)(x).

(ii) Since d
dse

−
∫ t
s
f(r) dr = f(s)e−

∫ t
s
f(r) dr, the fundamental theorem of calculus gives

1− e−
∫ t
0
υ(Xr) dr =

∫ t

0

υ(Xs)e
−

∫ t
s
υ(Xr) dr ds.

By Fubini’s theorem and simple Markov property, for every φ ∈ B(E), we have

Ktφ(x) = E
[
φ(Xt)

(
1−

∫ t

0

υ(Xs) exp

(
−
∫ t

s

υ(Xr) dr

)
ds

)]
= Qtφ(x)−

∫ t

0

E
[
φ(Xt)υ(Xs) exp

(
−
∫ t

s

υ(Xr) dr

)]
ds

= Qtφ(x)−
∫ t

0

E
[
υ(Xs)E

[
φ(Xt) exp

(
−
∫ t

s

υ(Xr) dr

)∣∣∣∣FX
s

]]
ds

= Qtφ(x)−
∫ t

0

E [υ(Xs)Kt−sφ(Xs)] ds

= Qtφ(x)−
∫ t

0

Qs(υKt−sφ)(x) ds.

Hence limt↓0Ktφ = φ. Furthermore,∣∣∣∣1t
∫ t

0

Qs(υKt−sφ)(x) ds− v(x)φ(x)
∣∣∣∣ = 1

t

∣∣∣∣∫ t

0

Qs(υKt−sφ− υφ)(x) ds
∣∣∣∣+ 1

t

∣∣∣∣∫ t

0

(Qs − Id)(υφ)(x) ds

∣∣∣∣
≤ 1

t

∫ t

0

∥υKt−sφ− υφ∥∞ ds+
1

t

∫ t

0

∥(Qs − Id)(υφ)∥∞ ds

≤ 1

t

∫ t

0

∥υ∥∞ ∥Ksφ− φ∥∞ ds+
1

t

∫ t

0

∥(Qs − Id)(υφ)∥∞ ds

Letting t ↓ 0, the last display converges to zero. Consequently, we have

d

dt
Ktφ|t=0 =

d

dt
Qtφ|t=0 −

d

dt

∫ t

0

Qs(υKt−sφ)(x) ds|t=0 = Lφ− υφ,

which complete the proof.

Remark. To find the derivative of the mapping t 7→ Ktφ, we use the semigroup property:

d

dt
Ktφ =

d

ds
Ks+tφ|s=0 =

d

ds
Ks(Ktφ)|s=0 = LKtφ− υKtφ.
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Therefore, for any f ∈ B(E), the function

u(t, x) = Ktf(x) = E
[
f(Xx

t ) exp

(
−
∫ t

0

υ(Xx
s ) ds

)]
solves the following initial value problem (which is often a parabolic PDE):

∂u

∂t
= Lu− υu, t > 0

u(0, x) = f(x).

Here (Xx
t ) is a càdlàg Feller process with generator L starting from X0 ∼ δx. Letting υ = 0 gives the

Kolmogorov backward equation, which coincides the form of (6.1).
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6.4 Diffusion Processes

In this section, we discuss the solution of SDE E(σ, b)

dXt = σ(Xt) dBt + b(Xt) dt, σ = (σij)i∈[p],j∈[q], b = (bi)i∈[p]. (6.10)

in form of a Markov process. The processes with continuous sample paths that are obtained as solutions

of SDE (6.10) are called diffusion processes. The function b : Rp → Rp is called the drift coefficient, and

σ : Rp → Rp×q is called the diffusion coefficient.

We tackle with the homogeneous case where σ(t, x) = σ(x) and b(t, x) = b(x), and we maintain the Lipschitz

assumption: there exists a constant K > 0 such that for all x, y ∈ Rq,

|σ(x)− σ(y)| ≤ K|x− y|, |b(x)− b(y)| ≤ K|x− y|.

Here we use | · | to denote the Euclidean norm of vectors and the Frobenius norm of matrices.

6.4.1 Markovianity of Time-Independent SDEs

Theorem 6.21. Assume that X = (Xt)t≥0 is a solution of SDE (6.10) on a complete filtered probability space

(Ω,F , (Ft)t≥0,P). Then (Xt)t≥0 is a Markov process with respect to the filtration (Ft)t≥0, with semigroup

Qtf(x) = E [f(Xx
t )] , t ≥ 0,

where Xx = (Xx
t )t≥0 is an arbitrary solution of Ex(σ, b). Using the notation of Theorem 5.24, we also write

Qtf(x) =

∫
f(Fx(w)t)W (dw). (6.11)

Proof. We first prove that, for any f ∈ B(Rp) and any s, t ≥ 0, we have

E [f(Xs+t)|Fs] = Qtf(Xs),

To deal the time shift s, we define filtration (F ′
t)t≥0 and processes (X ′

t)t≥0, (B
′
t)t≥0 as follows:

F ′
t = Fs+t, X ′

t = Xs+t, B′
t = Bt+s −Bs.

Then (F ′
t)t≥0 is still complete, X ′ is adapted to (F ′

t)t≥0, and B
′ is a q-dimensional (F ′

t)-Brownian motion.

Furthermore, the approximation formula (5.8) for the integral of continuous adapted processes gives

X ′
t = Xs+t = Xs +

∫ s+t

s

σ(Xr) dBr +

∫ s+t

s

b(Xr) dr

= Xs +

∫ t

0

σ(X ′
r) dB

′
r +

∫ t

0

b(X ′
r) dr.

Consequently, X ′ solves E(σ, b) on the space (Ω,F , (F ′
t)t≥0,P) and with Brownian motion B′, with X ′

0 = Xs.

By Theorem 5.24 (iii), we have X ′ = FXs
(B′) a.s., which implies

E [f(Xs+t)|Fs] = E [f(X ′
t)|Fs] = E [f(FXs

(B′)t)|Fs]

=

∫
f(FXs(w)t)W (dw) = Qtf(Xs),

where in the third equality we use the independence of B′ and Fs.
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Now it remains to verify that (Qt)t≥0 is a transition semigroup. Clearly, Q0 is an identity map, and

(t, x) 7→ Qtf(x) is a continuous map, hence is measurable. Finally, one have

Qs+tf(x) = E
[
Xx
s+t

]
= E

[
E
[
Xx
s+t|Fs

]]
= E [Qtf(X

x
s )] =

∫
Qs(x, dy)Qtf(y)

which is the Chapman-Kolmogorov equation. This completes the proof.

We then give an estimate for the second moment of a diffusion process.

Lemma 6.22. Fix x ∈ Rp, and let (Xx
t )t≥0 be a solution of the SDE Ex(σ, b). Then there exists a constant

Cx > 0 depending only on x, such that for all t ≥ 0,

E
[
|Xx

t − x|2
]
≤ CxeCx(t+t

2)(t+ t2).

Proof. By triangle inequality and Lipschitz property, for all t ≥ 0, we have

|σ(Xx
t )|2 ≤ (|σ(x)|+ |σ(Xx

t )− σ(x)|)
2 ≤ 2|σ(x)|2 + 2K2|Xx

t − x|2. (6.12)

A similar formula also holds for |b(Xx
t )|2.

We define a stopping time τ = inf{t ≥ 0 : |Xx
t − x| > M} for some M > 0, and fix T > 0. Then the

function t 7→ E
[
|Xx

t∧τ − x|2
]
is bounded on [0, T ]. For any t ∈ [0, T ], we have

E
[
|Xx

t∧τ − x|2
]
≤ 2E

[(∫ t∧τ

0

σ(Xx
s ) dBs

)2
]
+ 2E

[(∫ t∧τ

0

b(Xx
s ) ds

)2
]

≤ 2E
[∫ t∧τ

0

|σ(Xx
s )|2 ds

]
+ 2E

[
T

∫ t∧τ

0

|b(Xx
s )|2 ds

]
≤ 4T (|σ(x)|2 + T |b(x)|2) + 4K2(1 + T )

∫ t∧τ

0

E
[
|Xx

s − x|2
]
ds

≤ 4T (|σ(x)|2 + T |b(x)|2) + 4K2(1 + T )

∫ t

0

E
[
|Xx

s∧τ − x|2
]
ds.

where we use (6.12) in the third inequality. By Gronwall’s lemma [Lemma 5.22], we have

E
[
|Xx

t∧τ − x|2
]
≤ 4T (|σ(x)|2 + T |b(x)|2)e4K

2(1+T )t, ∀t ∈ [0, T ].

Let M →∞, and use the monotone convergence theorem. Then for all t ≥ 0, we have

E
[
|Xx

t − x|2
]
≤ 4t

(
|σ(x)|2 + t|b(x)|2

)
e4K

2(t+t2).

Setting Cx = 4max
{
|σ(x)|2, |b(x)|2,K2

}
concludes the proof.

To move forward, we have the following conclusion.

Theorem 6.23. The semigroup (Qt)t≥0 is a Feller semigroup, and its generator L satisfies D(L) ⊃ C2
c (Rp).

In addition, for every f ∈ C2
c (Rp), we have

Lf =
1

2

p∑
i,j=1

(σσ∗)ij
∂2f

∂xi∂xj
+

p∑
i=1

bi
∂f

∂xi
,

where σ∗ is the matrix transpose of σ.
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Proof. (i) We first fix f ∈ C0(Rp), and verify that Qtf ∈ C0(Rp). Since x 7→ Fx(w) is continuous for every

w ∈ C(R+,Rq), the continuity of Qtf follows from (6.11) and dominated convergence theorem. Let Xx
t be a

solution of Ex(σ, b). By Markov’s inequality and Lemma 6.20, there exists a constant Cx > 0 such that

P(|Xx
t − x| > λ) ≤ 1

λ2
E
[
|Xx

t − x|2
]
≤ Cxe

Cx(t+t
2)(t+ t2)

λ2
, ∀t ≥ 0.

Then we have

|Qtf(x)| ≤
∣∣E [f(Xx

t )1{|Xx
t −x|≤λ}

]∣∣+ ∥f∥P(|Xx
t − x| > λ) ≤ sup

y: |y−x|≤λ
|f(y)|+ Cxe

Cx(t+t
2) ∥f∥ (t+ t2)

λ2

Since f ∈ C0(Rp), the first term of the last display converges to 0 as x → ∞ for all λ > 0. Then we have

lim supx→∞ |Qtf(x)| ≤ C ∥f∥ (t2 + t)/λ2 for all λ > 0. This implies Qtf(x)→ 0 as x→∞.

Now we fix x ∈ Rp, and verify that Qtf(x)→ f(x) as t ↓ 0. For any λ > 0,

|E [f(Xx
t )]− f(x)| ≤ sup

y:|y−x|≤λ
|f(x)− f(y)|+ 2 ∥f∥P (|Xx

t − x| > λ)

≤ sup
y:|y−x|≤λ

|f(x)− f(y)|+ 2Cxe
Cx(t+t

2)∥f∥(t+ t2)

λ2

→ sup
y:|y−x|≤λ

|f(x)− f(y)|, as t ↓ 0.

Taking λ ↓ 0 gives Qtf(x)→ f(x).

(ii) To prove the second assertion, we use Itô’s formula to f(Xx
t ), where f ∈ C2

c (Rp). Recall that

Xx,i
t = xi +

q∑
k=1

∫ t

0

σik(X
x
s ) dB

k
s +

∫ t

0

bi(X
x
s ) ds,

⟨Xx,i, Xx,j⟩t =
q∑

k=1

∫ t

0

σik(X
x
s )σjk(X

x
s ) ds =

∫ t

0

(σσ∗)ij(X
x
s ) ds.

Using Itô’s formula [Theorem 5.9] and associativity of stochastic integrals, one have

f(Xx
t ) = f(x) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xx

s ) dX
x,i
s +

1

2

p∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xx

s ) d⟨Xx,i, Xx,j⟩s

= f(x) +

p∑
i=1

q∑
k=1

∫ t

0

σik(X
x
s )
∂f

∂xi
(Xx

s ) dB
k
s +

∫ t

0

 p∑
i=1

bi(X
x
s )
∂f

∂xi
(Xx

s ) +
1

2

p∑
i,j=1

(σσ∗)ij(X
x
s )

∂2f

∂xi∂xj
(Xx

s )

ds.

Define g =
1

2

p∑
i,j=1

(σσ∗)ij
∂2f

∂xi∂xj
+

p∑
i=1

bi
∂f

∂xi
. Then the process

Mt =

p∑
i=1

q∑
k=1

∫ t

0

σik(X
x
s )
∂f

∂xi
(Xx

s ) dB
k
s = f(Xx

t )− f(x)−
∫ t

0

g(Xx
s ) ds

is a continuous local martingale. Since f ∈ C2
c (Rp), both f and g are compactly supported continuous

functions, hence the process (Mt)t≥0 is uniformly bounded. By Proposition 3.67 (ii), M is a martingale.

According to Theorem 6.19, f ∈ D(L), and Lf = g, which complete our proof.
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Remark. Let Σ = σσ∗ be the covariance matrix. We can formally write the generator L of E(σ, b) as

L =
1

2
Σ · ∇2 + b · ∇,

where ∇2 is the Hessian matrix. Fix f ∈ C2
c (Rp), and let u(t, x) = Qtf(x). Then u : R+ ×Rp → R solves the

following Kolmogorov backward equation:∂u
∂t (t, x) =

1
2Σ(x) · ∇

2
xu(t, x) + b(x) · ∇xu(t, x), t > 0

u(0, x) = f(x).

Now we discuss two typical SDEs and their generators.

Example 6.24 (Ornstein-Uhlenbeck process). Let λ > 0. An one-dimensional Ornstein-Uhlenbeck process is

the solution of the following SDE:

dXt = dBt − λXt dt.

By applying Itô’s formula to eλtXt, we have

eλtXt = X0 +

∫ t

0

eλsdXt + λ

∫ t

0

eλsXs dt,

which implies

Xt = X0e
−λt +

∫ t

0

e−λ(t−s) dBt.

Conditional on X0, the mean and covariance of (Xt)t≥0 are given by

E[Xt|X0] = X0e
−λt, Cov(Xs, Xt|X0) =

1

2λ

(
e−λ|s−t| − e−λ(s+t)

)
.

The generator of this process is given by

Lf(x) =
1

2

∂2f

∂x2
(x)− λx∂f

∂x
(x), f ∈ C2

c (R).

Moreover, if we set the starting law as X0 ∼ N(0, 1
2λ ), then the covariance function of X = (Xt)t≥0 is given

by K(s, t) = 1
2λe

−λ|s−t|. In this case, X is a stationary Gaussian process.

Example 6.25 (Geometric Brownian motion). Let σ > 0 and µ ∈ R. A geometric Brownian motion with

parameters σ and µ is the solution of the following SDE:

dXt = σXt dBt + µXt dt.

Since

Xt = X0 +

∫ ∞

0

σXt dBt +

∫ t

0

µXt dt,

the quadratic variation of X is

⟨X,X⟩t = σ2

∫ t

0

X2
t dt.
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Assume X0 > 0. By applying Itô’s formula to logXt, we have

logXt = logX0 +

∫ t

0

1

Xt
dXt −

1

2

∫ t

0

1

X2
t

d⟨X,X⟩t = logX0 + σBt +

(
µ− σ2

2

)
t.

Therefore, starting from X0 > 0, we have

Xt = X0 exp

(
σBt +

(
µ− σ2

2

)
t

)
.

Note that Mt = exp
(
σBt − σ2

2 t
)
is a martingale. Conditional on X0, the mean and covariance of (Xt)t≥0 are

given by

E[Xt|X0] = X0e
µt, Cov(Xs, Xt|X0) = X2

0e
µ(s+t)

(
eσ

2(s∧t) − 1
)
.

The generator of this process is given by

Lf(x) =
σ2

2
x2
∂2f

∂x2
(x) + µx

∂f

∂x
(x), f ∈ C2

c (R).

Furthermore, for any partition 0 = t0 < t1 < t2 < · · · < tn−1 < tn < · · · , we have independence of the

successive ratios:

X1 −X0

X0
,
X2 −X1

X1
, · · · , Xn −Xn−1

Xn−1
, · · · ,

which is a consequence of independent increment property of Brownian motions.

6.4.2 The Fokker-Planck Equation

Hermitian Adjoint of the Generator. Now we discuss the adjoint L∗ of generator L in sense that∫
Rp

Lf(x)g(x) dx =

∫
Rp

f(x)L∗g(x) dx.

Since both f and g are compactly supported on Rp, we can choose a common compact support Γ ⊂ Rp. Using

integration by parts, ∫
Γ

∇f · (bg) dm = −
∫
Γ

f∇ · (bg) dm,

and ∫
Γ

∇2f · (Σg) dm = −
∫
Γ

∇f · (∇ · (Σg)) dm =

∫
Γ

f∇2 · (Σg) dm.

Consequently, we have

L∗ =
1

2
∇2 · Σ−∇ · b. (6.13)

This operator is useful in our derivation of the Fokker-Planck equation, which reveals the dynamics of the

probability density flow of a diffusion process.

Theorem 6.26 (Fokker-Planck equation). Let (Xt)t≥0 be a diffusion process with diffusion σ : Rp → R and

drift b : Rp → R, and let ρ0 be a probability density function on Rp. Let ρ(t, ·) be the probability density
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function of Xt for every t ≥ 0. If ρ ∈ C1,2(R+ × Rp), then ρ solves the following Fokker-Planck equation:
∂ρ

∂t
= L∗ρ, t > 0

ρ(0, x) = ρ0(x).

Proof. Let q(·|t, x) be the probability density function of Qt(·, x), where t > 0. Let f ∈ C2
c (Rp). Then we have

lim
t↓0

1

t

(∫
Rp

f(y)q(y|t, x) ds− f(x)
)

= Lf(x) =
1

2
Σ(x) · ∇2f(x) + b(x) · f(x), ∀x ∈ R.

For any t > 0, we use interchangeability of derivative and integration:∫
Rp

f(y)
∂q

∂t
(y|t, x) dy =

∂

∂t

∫
Rp

f(y)q(y|t, x) dy

= lim
s↓0

1

s

∫
Rp

(q(y|t+ s, x)− q(y|t, x)) f(y) dy

= lim
s↓0

1

s

(∫
Rp

∫
Rp

q(z|t, x)q(y|s, z)f(y) dz dy −
∫
Rp

q(z|t, x)f(z) dy
)

= lim
s↓0

1

s

∫
Rp

q(z|t, x)
(∫

Rp

q(y|s, z)f(y) dy − f(z)
)

dz

=

∫
Rp

q(z|t, x)Lf(z) dz =
∫
Rp

L∗q(z|t, x)f(z) dz.

Here the third equality uses Chapman-Kolmogorov identity, and the fifth uses dominated convergence. Since

the above equation holds for all f ∈ C2
c (R), one have the following result:

∂q

∂t
(y|t, x) = L∗q(y|t, x) = 1

2
∇2 · Σ(z)q(y|t, x)−∇ · b(y)q(y|t, x). (6.14)

Now assume that X0 ∼ ρ0. Then we have

ρ(t, y) =

∫
Rp

q(y|t, x)ρ0(x) dx

By applying this integration to both sides of (6.14), one obtain the desired result.

183



6.5 Jump Processes

In this subsection, we study the Markov processes where the state space E is finite or countable and equipped

with the discrete topology. Note that a càdlàg function f ∈ D(E) satisfies that for every 0 ≤ t < ∞, there

exists ϵ > 0 such that f(s) = f(t) for all s ∈ [t, t+ ϵ).

Consider a Feller semigroup (Qt)t≥0 on E. According to our discussion in Section 6.2.1, we can construct

a probability space Ω, a right-continuous filtration (Ft)t∈[0,∞], a family of probability measures (Px)x∈E and

a càdlàg process (Xt)t≥0 such that under each Px, (Xt)t≥0 is a Markov process with semigroup (Qt)t≥0 with

respect to the filtration (Ft)t∈[0,∞], and Px(X0 = x) = 1.

By the càdlàg property of sample paths, for Px-a.e. x ∈ E, there exists a sequence of times

0 = T0(ω) < T1(ω) ≤ T2(ω) ≤ · · · ≤ ∞

such that

(i) Xt(ω) = X0(ω) for each t ∈ [0, T1(ω)),

(ii) for each j ≥ 1, the condition Tj(ω) < ∞ implies that XTj+1(ω) ̸= XTj (ω), Tj+1(ω) > Tj(ω) and

Xt(ω) = XTj (ω) for each t ∈ [Tj(ω), Tj+1(ω)), and

(iii) Tj(ω) ↑ ∞ as j →∞.

In other words, Tj(ω) are the moments at which (Xt)t≥0 jumps to another point. One can easily verify that

(Tn)n∈N are stopping times:

{T1 < t} =
⋃

q∈[0,t)∩Q

{Xq ̸= X0} ∈ Ft, {Tn < t} =

n−1⋂
j=0

{Tn < t}

 ∩
 ⋃
q∈[Tn−1,t)∩Q

{Xq ̸= X0}

 ∈ Ft.

We first study the law of the first jumping tine T1.

Lemma 6.27. For each x ∈ E, there exists λ(x) ≥ 0 such that T1 is exponentially distributed with parameter

λ(x) under Px. (We make the convention that an exponential variable with parameter 0 is equal to ∞ a.s..)

Furthermore, if λ(x) > 0, then XT1
and T1 are independent under Px.

Proof. We let s, t ≥ 0, and define Φ(f) = 1{f(r)=f(0), ∀r∈[0,t]} for f ∈ D(E). Using the simple Markov property

[Theorem 6.13] and the fact that Xs = x on the event {T1 > s}, we have

Px(T1 > s+ t) = Ex
[
1{T1>s}Φ((Xs+r)r≥0)

]
= Ex

[
1{T1>s}EXsΦ((Xr)r≥0)

]
= Ex

[
1{T1>s}Px(T1 > t)

]
= Px(T1 > s)Px(T1 > t).

Since T1 > 0 a.s., this memoryless property implies that T1 is an exponential variable under Px with parameter

λ(x) = log 1
Px(T1>1) . If λ(x) > 0, we have Px(T1 <∞) = 1. We fix y ∈ E and consider the mapping

Ψ(f) =

0, f is constant

1{γ1(f)=y}, f is non-constant, and γ1(f) is the value of f after its first jump.

Then

Px(T1 > t,XT1
= y) = Ex

[
1{T1>t}EXt

[Ψ((Xr)r≥0)]
]
= Px(T1 > t)Px(XT1

= y),

which gives the desired independece.

Remark. If λ(x) = 0, the point x ∈ E is said to be an absorbing state of the Markov process, in the sense that

Px (Xt = 0,∀t ≥ 0) = 1.
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For each point x ∈ E with λ(x) > 0, we set

Π(x, y) = Px(XT1
= y), y ∈ E\{x}.

Then Π(x, ·) is a probability measure on E with Π(x, x) = 0.

Proposition 6.28. Let L be the generator of (Qt)t≥0. Then D(L) = C0(E). For every x ∈ E and φ ∈ C0(E),

• if λ(x) = 0, then Lφ(x) = 0;

• if λ(x) > 0, then

Lφ(x) = λ(x)
∑

y∈E\{x}

Π(x, y)(φ(y)− φ(x)) =
∑
y∈E

L(x, y)φ(y),

where

L(x, y) =

λ(x)Π(x, y), y ∈ E\{x},

−λ(x), y = x.
(6.15)

Proof. Let φ ∈ C0(E). If λ(x) = 0, it is trivial that Qtφ(x) = Ex [φ(Xt)] = φ(x) and so

lim
t↓0

Qtφ(x)− φ(x)
t

= 0.

If λ(x) > 0, we use the strong Markov property of (Xt)t≥0 to obtain

Px(T2 ≤ t) ≤ Px(T1 ≤ t, T2 ≤ T1 + t) = Ex
[
1{T1≤t}PXT1

(T1 ≤ t)
]

= Ex
[
1{T1≤t}

(
1− e−tλ(XT1

)
)]

= Px(T1 ≤ t)Ex
[
1− e−tλ(XT1

)
]

=
(
1− e−tλ(x)

) ∑
y∈E\{x}

Π(x, y)
(
1− e−tλ(y)

)
.

We fix any ϵ > 0. Then there exists a finite subset F ⊂ E\{x} such that Π(x, F ) > 1− ϵ, and

lim
t↓0

Px(T2 ≤ t)
t

≤ lim
t↓0

1− e−tλ(x)

t

(∑
y∈F

Π(x, y)
(
1− e−tλ(y)

)
+ ϵ

)
= λ(x)ϵ.

Next, we decompost Qtφ(x) as follows and use the independence of T1 and XT1 under Px to obtain

Qtφ(x) = Ex[φ(Xt)] = Ex
[
φ(X0)1{t<T1}

]
+ Ex

[
φ(X1)1{T1≤t}

]
− Ex

[
φ(X1)1{T2≤t}

]
+ Ex

[
φ(Xt)1{T2≤t}

]
= φ(x)e−tλ(x) +

(
1− e−tλ(x)

) ∑
y∈E\{x}

Π(x, y)φ(y) + Ex
[
(φ(Xt)− φ(X1))1{T2≤t}

]
.

Combining the last two displays, we have

lim
t↓0

∣∣∣∣∣∣Qtφ(x)− φ(x)t
− λ(x)

∑
y∈E\{x}

Π(x, y) (φ(y)− φ(x))

∣∣∣∣∣∣ ≤ lim
t↓0

2∥φ∥∞
Px(T2 ≤ t)

t
≤ 2∥φ∥∞λ(x)ϵ.

Since ϵ > 0 is arbitrary, the result follows.

Remark. By taking φ = 1{y}, we can interprete L(x, y) as the instantaneous transition from x to y:

L(x, y) = L1{y}(x) =
d

dt
Px(Xt = y)

∣∣
t=0

, y ∈ E.
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Construction of a jump process. In practice, one usually starts from the transition rates of the process.

Assume we are given a collection (λ(x))x∈E of nonnegative numbers, and for every x ∈ E with λ(x) > 0, a

probability measure Π(x, ·) on E with Π(x, x) = 0. Then we define the generator L : E × E → R via (6.15).

If a corresponding semigroup (Qt)t≥0 exists, by Proposition 6.8, it must satisfy the differential equation

d

dt
Qt(x, y) = QtL(x, y).

Hence Qt = etL in the sense of the exponential of matrices.

• Since L1E = 0, we have Qt1E = 1E . Hence Qt(x, ·) is a transition kernel.

• The property e(t+s)L = etLesL implies the Chapman-Kolmogorov equation for (Qt)t≥0. Hence (Qt)t≥0

is a transition semigroup on E.

• Clearly, Qt = etL → Id as t ↓ 0. Hence Qt(x, ·) is a Feller semigroup.

After getting (Qt)t≥0, we can immediately construct a Feller process (Xt)t≥0 with càdlàg sample paths.

The next proposition provides a complete description of the sample paths of (Xt)t≥0 under Px. For the

sake of simplicity, we assume that there are no absorbing states.

Proposition 6.29. Assume that λ(y) > 0 for every y ∈ E. Let x ∈ E. Then

(i) Px-a.s., the jump times T1 < T2 < · · · are all finite;

(ii) under Px, the sequence (X0, XT1
, XT2

, · · · ) is a discrete-time Markov chain with transition kernel Π

started from x;

(iii) conditional on (X0, XT1
, XT2

, · · · ), the interval times (Tn − Tn−1)
∞
n=1 are independent, and for every

n ∈ N, the conditional distribution of Tn − Tn−1 is exponential with parameter λ(XTn−1
).

Proof. (i) Since λ(x) > 0, it is clear that Px(T1 <∞) = 1. Let Φ = 1{T1<∞}. By the strong Markov property,

Px(Tn+1 <∞) = Ex
[
1{Tn<∞}1{Tn+1−Tn<∞}

]
= Ex

[
1{Tn<∞}Φ((XTn+t)t≥0)

]
= Ex

[
1{Tn<∞}EXTn

Φ
]
= Ex

[
1{Tn<∞}PXTn

(T1 <∞)
]
= Px(Tn <∞).

where the last equality holds because λ(y) > 0 for all y ∈ E. By induction, every Tn is Px-a.s. finite.

(ii) & (iii). Let y, z ∈ E and f1, f2 ∈ B(R+). By the strong Markov property,

Ex
[
1{XT1

=y}f1(T1)1{XT2
=z}f2(T2 − T1)

]
= Ex

[
1{XT1

=y}f1(T1)EX1
[1{XT1

=z}f2(T1)]
]

= Π(x, y)Π(y, z)

∫ ∞

0

ds1e
−s1λ(x)f1(s1)

∫ ∞

0

ds2e
−s2λ(y)f2(s2).

By induction, with the convention y0 = x, for every n ∈ N, y1, · · · , yn ∈ E and f1, · · · , fn ∈ B(R+),

Ex
[
1{XT1

=y1}1{XT2
=y2} · · ·1{XTn=yn}f1(T1)f2(T2 − T1) · · · fn(Tn − Tn−1)

]
= Π(y0, y1)Π(y1, y2) · · ·Π(yn−1, yn)

n∏
k=1

∫ ∞

0

dske
−skλ(yk−1)fk(sk).

(6.16)

Hence the desired result follows.

Remark. For a jump process with absorbing states, we have an easy extension of the above theorem. Let

A = {y ∈ E : λ(y) = 0}, and let Π(y, y) = 1 for each y ∈ A. We define X∞ = limt↑∞Xt if the limit exists, i.e.

(Xt)t≥0 hits an absorbing state. Then under Px, the sequence (X0, XT1
, XT2

, · · · ) is a discrete-time Markov

chain with transition kernel Π started from x. Furthermore, with the convention ∞−∞ =∞, conditional on

(X0, XT1 , XT2 , · · · ), the interval times (Tn − Tn−1)
∞
n=1 are independent, and for every n ∈ N, the conditional

distribution of Tn − Tn−1 is exponential with parameter λ(XTn−1).
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6.5.1 Poisson Point Process.

Definition 6.30 (Lévy processes). A Lévy process is a real-valued stochastic process (Xt)t≥0 satisfying:

(i) X0 = 0 a.s..

(ii) (Independent and stationary increments). For every 0 ≤ s < t, the increment Xt −Xs is independent of

(Xr, 0 ≤ r ≤ s) and has the same law as Xt−s.

(iii) Xt converges in probability to 0 when t ↓ 0.

For each t ≥ 0, we denote by Qt(0,dy) the law of Xt. For every x ∈ R, we let Qt(x,dy) be the image of

Qt(0,dy) under the translation y 7→ x+ y.

Proposition 6.31 (Markovianity of Lévy processes). The collection (Qt)t≥0 is a Feller semigroup, and (Xt)t≥0

is a Markov process with semigroup (Qt)t≥0.

Proof. Step I. We first verify that (Qt)t≥0 is a transition semigroup. Let φ ∈ B(R) and x ∈ R. For any

s, t ≥ 0, by property (ii), the law of (Xt, Xt+s −Xt) is given by the product measure Qt(0, ·)⊗Qs(0, ·), and∫
R
Qt(x, dy)

∫
R
Qs(y,dz)φ(z) =

∫
R
Qt(0,dy)

∫
R
Qs(0,dz)φ(x+ y + z)

= E [φ(x+Xt + (Xt+s −Xt))] = E [φ(x+Xt+s)] =

∫
R
Qt+s(x, dz)φ(z).

Thus we establish the Chapman-Kolmogorov equation. The measurability of the mapping (t, x) 7→ Qt(x,A)

follows from the strong continuity we are going to establish in order to verify the Feller property.

Step II. We next verify the Feller property. If φ ∈ C0(R), by dominated convergence theorem, the mapping

x 7→ Qtφ(x) = E [φ(x+Xt)] is continuous, and E[φ(x+Xt)]→ 0 as |x| → ∞. Hence Qtφ ∈ C0(R).
For each ϵ > 0, by uniform continuity of φ, there exists δ > 0 such that |φ(x) − φ(y)| < ϵ for all x, y ∈ R

with |x− y| < δ. By property (iii),

lim
t↓0
|Qtφ(x)− φ(x)| ≤ lim

t↓0
E |φ(x+Xt)− φ(x)|

≤ lim
t↓0

E
[
|φ(x+Xt)− φ(x)|1{|Xt|≤δ}

]
+ 2∥φ∥∞ lim

t↓0
P(|Xt| > δ) ≤ ϵ.

Since ϵ > 0 is arbitrary, we have Qtφ→ φ as t ↓ 0, and the convergence is uniform.

Step III. Finally we verify the second assertion. For every s, t ≥ 0 and φ ∈ B(R),

E [φ(Xt+s)|Xr, 0 ≤ r ≤ s] = E [φ(Xs + (Xt+s −Xs))|Xr, 0 ≤ r ≤ s]

=

∫
R
Qt(0,dy)φ(Xs + y) =

∫
R
Qt(Xs,dy)φ(y) = Qtφ(Xs).

Therefore (Xt)t≥0 is a Markov process with semigroup (Qt)t≥0

The Poisson point process lies in the intersection of Lévy processes and jump processes.

Definition 6.32 (Poisson point processes). Let λ > 0. A Poisson point process with intensity λ is an integer-

valued stochastic process (Xt)t≥0 satisfying:

(i) X0 = 0 a.s..

(ii) (Independent and stationary increments). For every 0 ≤ s < t, the increment Xt −Xs is independent of

(Xr, 0 ≤ r ≤ s) and has the same law as Xt−s.

(iii) For every t > 0, the law of Xt is Poisson:

P(Xt = k) =
(λt)k

k!
e−λt, k = 0, 1, 2, · · · .
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Remark. According to Proposition 6.31, a Poisson point process (Xt)t≥0 with intensity λ is a Markov process

with Feller semigroup

Qt(n, n+m) =
(λt)m

m!
e−λt, n,m = 0, 1, 2, · · · .

For every n ∈ N0, the first jump time T1 satisfies

Pn(T1 > t) = Pn(Xt = n) = P0(Xt = 0) = e−λt.

Hence the jump rate λ(n) = λ for all n ∈ N0. Furthermore, the generator of (Qt)t≥0 is

L(n, n+m) =
d

dt
Pn(Xt = n+m)

∣∣
t=0

=
d

dt
P0(Xt = m)

∣∣
t=0

=


−λ, m = 0,

λ, m = 1,

0, m ≥ 2.

According to (6.31), the transition probability Π is

Π(n, n+ 1) = 1, and Π(n,m) = 0 for all m ̸= n+ 1.

Therefore XT1
= 1 a.s.. By Proposition 6.29, all jump times T1 < T2 < · · · are finite. By strong Markov

property, we have XTn = n a.s. for all n ∈ N.

Proposition 6.33. Let (Xt)t≥0 be a Poisson point process with intensity λ > 0. Define the nth arrival

Tn = inf{t ≥ 0 : Xt = n}.

Then (Tn − Tn−1)
∞
n=1 are i.i.d. exponential variables with parameter λ.

Proof. According to our previous discussion, almost surely, Tn is the nth jump time of the process (Xt)t≥0.

Furthermore, we have

(X0, XT1
, XT2

, · · · , XTn
, · · · ) = (0, 1, 2, · · · , n, · · · ) a.s..

We then let yk = k for each k ∈ N0 in (6.16) to get

E [f1(T1)f2(T2 − T1) · · · fn(Tn − Tn−1)] =

n∏
k=1

∫ ∞

0

e−λsfk(s) ds, ∀f1, · · · , fn ∈ B(R+).

Thus we complete the proof.

Remark. Consequently, the law of the nth arrival is the distribution Gamma(n, λ).

Proposition 6.34 (Conditioning). Let U1, · · · , Un be i.i.d. and uniform on [0, t], and let U (1) ≤ · · · ≤ U (n) be

the corresponding ordered statistics. Let (Xt)t≥0 be a Poisson point process with intensity λ > 0. Conditioning

on the event {Xt = n}, the arrival times (T1, · · · , Tn) and (U (1), · · · , U (n)) are identically distributed.

Proof. The event {Xt = n} has probability (λt)n

n! e−λt. On this event, the joint density of (T1, · · · , Tn) is

p (T1 = t1, · · · , Tn = tn, Xt = n) =

(
n∏
k=1

λe−λ(tk−tk−1)

)
e−λ(t−tn) = λne−λt.

Dividing the above result by P(Xt = n), we know that the conditional density of (T1, · · · , Tn) is n!/tn on the

region {0 ≤ t1 ≤ · · · ≤ tn ≤ t}. This is the distribution of (U (1), · · · , U (n)).
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7 Local Times

In this section, we study the theory of local times of continuous semimartingales. Throughout this section, we

fix a filtered probability space (Ω,F , (Ft)t≥0,P) with a complete filtration (Ft)t≥0. Before we proceed, we

review some properties of convex functions.

Proposition 7.1 (Convex functions). Let f : R→ R be a convex function. Then

(i) f is locally Lipschitz continuous;

(ii) the right derivative

D+f(x) = lim
h↓0

f(x+ h)− f(x)
h

exists for each x ∈ R, and D+f is right-continuous on R; and
(iii) the left derivative

D−f(x) = lim
h↓0

f(x)− f(x− h)
h

exists for each x ∈ R, and D−f is left-continuous on R.

Proof. (i) We first prove that f is locally bounded. Fix 0 < N <∞. Then for every x ∈ [−N,N ], we have

f(x) ≤ x+N

2N
f(N) +

N − x
2N

f(−N) ≤ max{f(N), f(−N)} <∞,

and

f(0) ≤ 1

2
f(x) +

1

2
f(−x) ≤ 1

2
f(x) +

1

2
max{f(N), f(−N)}.

Hence

2f(0)−max{f(N), f(−N)} ≤ sup
x∈[−N,N ]

|f(x)| ≤ max{f(N), f(−N)}.

To prove local Lipschitz continuity, we fix x, y ∈ [−N,N ] with x < y. By convexity of f , we have

f(y) ≤ f(x) + y − x
2N − x

(f(2N)− f(y)) ≤ f(x) + 2(y − x)
2N − x

sup
z∈[−2N,2N ]

f(z).

and

f(x) ≤ f(y) + y − x
2N + y

(f(−2N)− f(y)) ≤ f(y) + 2(y − x)
2N + y

sup
z∈[−2N,2N ]

f(z).

Hence
|f(y)− f(x)|

y − x
≤ 2

3N
sup

z∈[−2N,2N ]

f(z),

which proves Lipschitz continuity.

(ii) For each x ∈ R, we fix x < y < z. By convexity of f ,

f(y) ≤ y − x
z − x

f(z) +
z − y
z − x

f(x).

Hence we have
f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
.

By local Lipschitz continuity of f , the net
(
f(x+h)−f(x)

h

)
h>0

is bounded. Hence the limit

D+f(x) = lim
h↓0

f(x+ h)− f(x)
h
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exists for every x ∈ R. Furthermore, D+f is monotone increasing on R, since

f(w)− f(x)
w − x

≤ f(z)− f(x)
z − x

≤ f(z)− f(y)
z − y

for all x < w < y < z.

Letting w ↓ x and z ↓ y, we have D+f(x) ≤ D+f(y) for all x < y. To prove right continuity, we assume

α = limy↓xD
+f(y). Then D+f(x) ≤ α, and D+f(y) ≥ α for all y > x. Hence it suffices to show that

D+f(x) ≥ α. By convexity of f , we take 0 < h < z − y to obtain

f(z)− f(y)
z − y

≥ lim
h↓0

f(y + h)− f(y)
h

= D+f(y) ≥ α.

We then let y ↓ x to obtain
f(z)− f(x)

z − x
≥ α, for all z > x.

Finally, we let z ↓ x to conclude that D+f(x) ≥ α. Thus we complete the proof.

7.1 Tanaka’s Formula and Local Times

Motivation. Let X = (Xt)t≥0 be a continuous semimartingale. If f : R → R is a twice continuously

differentiable function, the Itô’s formula asserts that (f(Xt))t≥0 is still a semimartingale, and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) d⟨X,X⟩s. (7.1)

In fact, if f : R→ R is not twice continuously differentiable but convex, then (f(Xt))t≥0 is still a semimartin-

gale, and we can obtain a representation of f(Xt) similar to (7.1).

Theorem 7.2. Let f : R→ R be a convex function, and let (Xt)t≥0 be a semimartingale. Then (f(Xt))t≥0 is

also a semimartingale. Furthermore, there exists a continuous increasing process (Aft )t≥0 such that

f(Xt) = f(X0) +

∫ t

0

D−f(Xs) dXs +Aft . (7.2)

Proof. Step I. We let ϕ be a nonnegative C∞ function supported on [0, 1] such that
∫ 1

0
ϕ(x) dx = 1, and let

fn(x) = n(ϕ(n·) ∗ f)(x) = n

∫ ∞

−∞
ϕ(ny)f(x− y) dy.

Then fn is C∞ on R, and by standard mollification results, fn → f pointwise, and f ′n = nϕ(n·) ∗ D−f . By

left continuity of D−f , for every x ∈ R,

f ′n(x) = n

∫ 1/n

0

ϕ(ny)D−f(x− y) dy → D−f(x).

Finally, since fn is also convex, we have f ′′n ≥ 0 on R for all n ∈ N.

Step II. Let X =M + V be the canonical decomposition of semimartingale X. For each N > 0, define

τN =

{
t ≥ 0 : |Xt|+

∫ t

0

|dVs|+ ⟨M,M⟩t ≥ N
}
.

By Itô’s formula,

fn(Xt∧τN ) = fn(X0) +

∫ t∧τN

0

f ′n(Xs) dXs +
1

2

∫ t∧τN

0

f ′′n (Xs) d⟨X,X⟩s. (7.3)
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By definition of τN , we know ⟨M,M⟩τN ≤ N . Since f ′n is uniformly bounded on every compact interval [0, t],

by the Dominated Convergence Theorem 5.7 for stochastic integrals, as n→∞,∫ t∧τN

0

f ′n(Xs) dXs →
∫ t∧τN

0

D−f(Xs) dXs in probability. (7.4)

For every t ≥ 0, define

Af,Nt = f(Xt∧τN )− f(X0)−
∫ t∧τN

0

D−f(Xs) dXs.

By definition, t 7→ Af,Nt is continuous. Since fn → f and f ′n → D−f pointwise, by (7.3) and (7.4),

Af,Nt = lim
n→∞

1

2

∫ t∧τN

0

f ′′n (Xs) d⟨X,X⟩s in probability.

Since f ′′n ≥ 0, the process Af,N is increasing. Furthermore, forN ′ > N , we have Af,N
′

t∧τN = Af,Nt . Therefore there

exists a continuous increasing process Af = (Aft )t≥0 such that Aft∧τN = Af,Nt for every N > 0. Furthermore,

we can obtain (7.2) by letting N ↑ ∞ in the definition of Af,Nt .

Remark. We can adapt our proof to show that

f(Xt) = f(X0) +

∫ t

0

D+f(Xs) dXs + Ãft

for some continuous increasing process (Ãft )t≥0. If f is twice continuously differentiable, we have D+f = D−f

and Ãft = Aft = 1
2

∫ t
0
f ′′(Xs) d⟨X,X⟩s. However, in general we may have Ãf ̸= Af .

Theorem 7.3 (Tanaka). Let (Xt)t≥0 be a semimartingale and a ∈ R. Then there exists an increasing process

(Lat (X))t ≥ 0 that satisfies the following Tanaka’s formula:

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a) dXs + Lat (X), (7.5)

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a} dXs +
1

2
Lat (X), (7.6)

(Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs≤a} dXs +
1

2
Lat (X). (7.7)

The increasing process (Lat (X))t≥0 is called the local time of X at level a. Furthermre, for every stopping

time τ , we have (Lat∧τ (X))t≥0 = (Lat (X
τ ))t≥0.

Proof. We apply Theorem 7.2 on the convex function f(x) = |x− a|. Then the process (Lat (X))t≥0 defined by

Lat (X) = |Xt − a| − |X0 − a| −
∫ t

0

sgn(Xs − a) dXs (7.8)

is an increasing process, and (7.5) follows from definition. Also Lat∧τ (X) = Lat (X
τ ) for all stopping times τ ,

since
∫ t
0
sgn(Xτ

s − a) dXτ
s =

∫ t∧τ
0

sgn(Xs − a) dXs. To show (7.6) and (7.7), we apply Theorem 7.2 to convex

functions (x− a)+ and (x− a)− to obtain

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a} dXs +Aa+t , (Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs≤a} dXs +Aa−t ,

where (Aa+t )t≥0 and (Aa−t )t≥0 are two increasing processes. Taking the difference of the above two identities,

we see that Aa+t = Aa−t . By comparing the sum of the above two identities with (7.8), Aa+t + Aa−t = Lat (X).

Hence Aa+t = Aa−t = 1
2L

a
t (X), and we prove (7.6) and (7.7).
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Next, we study the variation property of local times. We write by dLas(X) the random measure associated

with the function s 7→ Las(X).

Proposition 7.4. Let X be a continuous semimartingale and let a ∈ R. Then almost surely, the random

measure dLas(X) is supported on {s ≥ 0 : Xs = a}.

Proof. We set Yt = |Xt − a|. By (7.5), since sgn(x) = 1 for all x ∈ R, we have ⟨Y, Y ⟩t = ⟨X,X⟩t, and

dYs = sgn(Xs − a)dXs + dLas(X).

By applying Itô’s formula to Y 2
t , it holds

(Xt − a)2 = Y 2
0 + 2

∫ t

0

Ys dYs + ⟨Y, Y ⟩t

= (X0 − a)2 + 2

∫ t

0

(Xs − a) dXs + 2

∫ t

0

|Xs − a|dLas(X) + ⟨X,X⟩t.

In the other hand, if we directly apply Itô’s formula to (Xt − a)2, we have

(Xt − a)2 = (X0 − a)2 + 2

∫ t

0

(Xs − a) dXs + ⟨X,X⟩t.

Comparing the two results, we have ∫ t

0

|Xs − a|dLas(X) = 0.

Then we finish the proof.

Remark. This proposition shows that (Lat (X))t≥0 may only increase whenXt = a. To some degree, (Lat (X))t≥0

measures how long the process stay at level a before time t, which justifies the name “local time”.

7.2 Continuity of Local Times and Generalized Itô’s Formula

In this subsection we discuss the continuity of local times La(X) with respect to the space variable a. It is

often helpful to view La(X) = (Lat (X))t≥0 as a random function in C(R+,R+), which is equipped with the

compact convergence topology. Throughout this section, we let X = M + V be a continuous semimartingale

with its canonical decomposition.

7.2.1 Continuity of Local Times

Theorem 7.5 (Càdlàg). The process (La(X))a∈R with values in C(R+,R+) has a càdlàg modification, which

we consider from now on and for which we keep the same notation (La(X))a∈R. For each a ∈ R, we denote

by La−(X) = limb↑a L
b(X) the left limit of b 7→ Lb(X) at level a. Then

Lat (X)− La−t (X) = 2

∫ t

0

1{Xs=a} dVs = 2

∫ t

0

1{Xs=a} dXs, t ≥ 0. (7.9)

In particular, if X is a continuous local martingale, the process (Lat (X))a∈R,t≥0 is jointly continuous.

The proof of this theorem uses Tanaka’s formula and the following technical lemma.

Lemma 7.6. Let p ≥ 1. There exists a constant Cp > 0 such that for every −∞ < a < b <∞,

E
[(∫ t

0

1{a<Xs≤b} d⟨M,M⟩s
)p]

≤ Cp(b− a)p
(
E
[
⟨M,M⟩p/2t

]
+ E

[(∫ t

0

|dVs|
)p])

. (7.10)
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Furthermore, for each a ∈ R, write Y a = (Y at )t≥0 for the random function in C(R+,R) defined by

Y at =

∫ t

0

1{Xs>a} dMs.

Then the process (Y a)a∈R has a continuous modification.

Proof. (i) We first prove the inequality (7.10). We may assume b = −a = r for some r > 0, otherwise we may

assume r = b−a
2 and replace X with X − b+a

2 . Let f be the unique function in C2(R) such that

f(0) = f ′(0) = 0, and f ′′(x) =

(
2− |x|

r

)+

.

Then |f ′| ≤ 2r on R. Since f ′′ ≥ 0 on R and f ′′(x) ≥ 1 for x ∈ [−r, r], and by Itô’s formula, we have

1

2

∫ t

0

1{−r<Xs≤r} d⟨M,M⟩s ≤
1

2

∫ t

0

f ′′(Xs) d⟨M,M⟩s = f(Xt)− f(X0)−
∫ t

0

f ′(Xs) dXs. (7.11)

Recalling that |f ′| ≤ 2r. By the Burkholder-Davis-Gundy inequality [Theorem 5.16],

E |f(Xt)− f(X0)|p ≤ (2r)pE |Xt −X0|p ≤ (2r)pE

[(
|Mt −M0|+

∫ t

0

|dVs|
)p]

≤ Cp(2r)p
(
E
[
⟨M,M⟩p/2t

]
+ E

[(∫ t

0

|dVs|
)p])

, (7.12)

and we henceforce use Cp to denote any constant depending only on p, which may vary from line to line. Next

we control
∫ t
0
f ′(Xs) dXs, which can decomposed as∫ t

0

f ′(Xs) dXs =

∫ t

0

f ′(Xs) dMs +

∫ t

0

f ′(Xs) dVs.

Note that

E

[∣∣∣∣∫ t

0

f ′(Xs) dVs

∣∣∣∣p
]
≤ (2r)p

∫ t

0

E

[(∫ t

0

|dVs|
)p]

,

and again by the Burkholder-Davis-Gundy inequality,

E

[∣∣∣∣∫ t

0

f ′(Xs) dMs

∣∣∣∣p
]
≤ CpE

[(∫ t

0

f ′(Xs) d⟨M,M⟩t
)p/2]

≤ Cp(2r)pE
[
⟨M,M⟩p/2t

]
Combining the last three displays and the estimates (7.11), (7.12), we obtain the inequality (7.10).

(ii) Fix p > 2. By the Burkholder-Davis-Gundy inequality, for every −∞ < a < b <∞ and t ≥ 0,

E

[
sup
s∈[0,t]

|Y bs − Y as |p
]
≤ CpE

[(∫ t

0

1{a<Xs≤b} d⟨M,M⟩s
)p/2]

. (7.13)

We define stopping time

τn = inf

{
t ≥ 0 : ⟨M,M⟩t +

∫ t

0

|dVs| ≥ n
}
.

By (7.10),

E

[(∫ t∧τn

0

1{a<Xs≤b} d⟨M,M⟩s
)p/2]

≤ Cp(b− a)p/2
(
np/4 + np/2

)
.
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We then use (7.13) with t replaced by t ∧ τn, and letting t→∞, to obtain

E
[
sup
s≥0
|Y bs∧τn − Y

a
s∧τn |

p

]
≤ Cp(b− a)p/2

(
np/4 + np/2

)
. (7.14)

Since p > 2, by Kolmogorov’s continuity lemma [Corollary 4.8], there exists an a.s. modification of the process

a 7→ (Y as∧τn)s≥0 valued in C(R+,R). We write (Y (n),a)a∈R for this continuous modification.

If 1 ≤ n ≤ m, for every fixed a ∈ R, we have (Y
(n),a
s )s≥0 = (Y

(m),a
s∧τn )s≥0 a.s.. By a continuity argument

(choose a dense subset of R and use continuity on the space variable a), the equality holds for all s ≥ 0 and all

a ∈ R a.s.. Therefore, we can find a continuous process (Ỹ a)a∈R valued in C(R+,R) such that for each n ≥ 1,

(Y
(n),a
s )s≥0 = (Ỹ as∧τn)s≥0 for all a ∈ R a.s., which is the desired continuous modification.

Remark. We apply the inequality (7.10) on the semimartingale Xτn , where τn has the same definition as in

the above proof. We then let a ↑ b and apply dominated convergence theorem to obtain

E
∣∣∣∣∫ t∧τn

0

1{Xs=b} d⟨M,M⟩s
∣∣∣∣ = 0.

Finally we let τn →∞ to obtain that
∫ t
0
1{Xs=b} d⟨M,M⟩s = 0 a.s. for every t ≥ 0. Hence∫ t

0

1{Xs=b} dMs = 0 a.s., b ∈ R, t ≥ 0. (7.15)

Proof of Theorem 7.5. We slightly abuse the notation and write (Y a)a∈R for the continuous modification

obtained in the second assertion of Lemma 7.6. We also define

Zat =

∫ t

0

1{Xs>a} dVs, t ≥ 0.

For each a0 ∈ R, by the dominated convergence theorem, for all T > 0,

lim
a↓a0

∫ T

0

|1{Xs>a} − 1{Xs>a0}|dVs = 0, lim
b↑a0

∫ T

0

|1{Xs>b} − 1{Xs≥a0}|dVs = 0,

It is seen that Zat → Za0t as a ↓ a0 and Zbt →
∫ t
0
1{Xs≥a0} dVs as b ↑ a0, and both convergences are uniformly on

each compact interval [0, T ]. Hence the process a 7→ Za has càdlàg sample paths. Since a 7→ Ya is continuous,

By Tanaka’s formula [Theorem 7.3], for each a ∈ R, we have

(Lat )t≥0 = 2
(
(Xt − a)+ − (X0 − a)+ − Y at − Zat

)
t≥0

a.s.. (7.16)

which provides the desired càdlàg modification, because

a 7→ (Xt − a)+ − (X0 − a)+ − Y at

has continuous sample paths. Furthermore, one can evaluate the jump by

Lat − La−t = Za−t − Zat =

∫ t

0

1{Xs=a} dVs.

By (7.15), we finish the proof of the second identity of (7.9).

Remark. Our càdlàg modification (L̃a(X))a∈R is done for the spatial process (La(X))a∈R taking values in

C(R+,R). Hence for each fixed a ∈ R, the processes (Lat (X))t≥0 and (L̃at (X))t≥0 are indistinguishable.
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7.2.2 Itô-Tanaka Formula

Now we study an extension of Itô’s formula using the càdlàg property of local times. If f is a convex function

on R, the left derivative D−f is a left-continuous increasing function on R, and there exists a unique Radon

measure D2f(dx) on R+ such that D2f([a, b)) = D−f(b)−D−f(a) for every a < b, which can be interpret as

the second derivative of f in the sense of distributions. For all −∞ < a < b <∞,

D−f(b) = D−f(a) +

∫
R
1{a≤x<b}D

2f(dx).

By the fundamental theorem of calculus for absolute continuous functions and Fubini’s theorem,

f(b) = f(a) +

∫ b

a

D−f(y) dy = f(a) +

∫ b

a

(
D−f(a) +

∫
R
1{a≤x<y}D

2f(dx)

)
dy

= f(a) + (b− a)D−f(a) +

∫
R

∫ b

a

1{a≤x<y} dy D
2f(dx).

Hence

f(b) = f(a) + (b− a)D−f(a) +

∫
[a,∞)

(b− x)+D2f(dx), −∞ < a < b <∞. (7.17)

We can then identify the increasing process (Aft )t≥0 in Theorem 7.2 using the local times (Lat (X))a∈R and

the distributional derivative D2f . This is a generalization of the Itô’s formula.

Theorem 7.7 (Itô-Tanaka). Let f : R→ R be a convex function. Then for every t ≥ 0,

f(Xt) = f(X0) +

∫ t

0

D−f(Xs) dXs +
1

2

∫
R
Lat (X)D2f(da). (7.18)

Proof. We first assume that (Xt)t≥0 is bounded, so there exists K > 0 such that |Xt| ≤ K for all t ≥ 0, and

La(X) ≡ 0 for |a| > K by Proposition 7.4. By Tanaka’s formula, for every a ∈ R,

(Xt − a)+ = (X0 − a)+ + Y at + Zat +
1

2
Lat (X), t ≥ 0. (7.19)

where

Y at =

∫ t

0

1{Xs>a} dMs, and Zat =

∫ t

0

1{Xs>a} dVs, t ≥ 0.

By Fubini’s Theorem,∫
[−K,K]

Zat D
2f(da) =

∫ t

0

∫
[−K,K]

1{Xs>a}D
2f(da) dVs

=

∫ t

0

∫
R
1{−K≤a<Xs}D

2f(da) dVs =

∫ t

0

(
D−f(Xs)−D−f(−K)

)
dVs. (7.20)

Next, we introduce the stopping times τn = {t ≥ 0 : ⟨M,M⟩t ≥ n}, and consider the continuous modification

of a 7→
∫ t∧τn
0

1{Xs>a} dMs provided by Lemma 7.6. Define

Mf,n
t =

∫
[−K,K]

(∫ t∧τn

0

1{Xs>a} dMs

)
D2f(da), t ≥ 0.

Then
∫ t
0
1{Xs>a} dMs is a local martingale reduced by τn, and by Fubini’s theorem,

E[Mf,n
t+ϵ|Ft] =Mf,n

t +

∫
[−K,K]

E

[(∫ (t+ϵ)∧τn

t∧τn
1{Xs>a} dMs

) ∣∣∣∣Ft

]
D2f(da) =Mf,n

t , t+ ϵ > t ≥ 0.
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Hence (Mf,n
t )t≥0 defines a continuous martingale in H2. For any N ∈ H2,

E
[
⟨Mf,n, N⟩∞

]
= E

[
Mf,n

∞ N∞
]
= E

[∫
[−K,K]

(∫ t∧τn

0

1{Xs>a} dMs

)
N∞D

2f(da)

]

= E

[∫
[−K,K]

(∫ τn

0

1{Xs>a} d⟨M,N⟩s
)
D2f(da)

]
= E

[∫ τn

0

(∫
[−K,K]

1{Xs>a}D
2f(da)

)
d⟨M,N⟩s

]

= E

[(∫ τn

0

(∫
[−K,K]

1{Xs>a}D
2f(da)

)
dMs

)
N∞

]
.

Since (M,N) 7→ E[⟨M,N⟩∞] = E[M∞N∞] is an inner product on H2, we have the following Fubini’s theorem

for stochastic integrals:

Mf,n
t =

∫
[−K,K]

(∫ t∧τn

0

1{Xs>a} dMs

)
D2f(da) =

∫ t∧τn

0

(∫
[−K,K]

1{Xs>a}D
2f(da)

)
dMs.

Letting n→∞, and apply the monotone convergence theorem, we have∫
[−K,K]

Y at D
2f(da) =

∫ t

0

(
D−f(Xs)−D−f(−K)

)
dMs, t ≥ 0. (7.21)

We then integrate (7.19) with respect to D2f(da) on [−K,K], and apply (7.17), (7.20) and (7.21) to obtain

f(Xt) + (Xt −X0)D
−f(−K) = f(X0) +

∫ t

0

(
D−f(Xs)−D−f(−K)

)
dXs +

1

2

∫
[−K,K]

Lat (X)D2f(da).

Note that
∫ t
0
dXs = Xt −X0, and L

a
t (X) = 0 for |a| > K, we obtain (7.18) for bounded semimartingales. For

the case when X is unbounded, we stop X when it first leaves [−K,K] at the stopping time TK . Then

f(Xt∧TK
) = f(X0) +

∫ t∧TK

0

D−f(Xs) dXs +
1

2

∫
R
Lat∧TK

(X)D2f(da).

By continuity of f and the monotone convergence theorem, we let K ↑ ∞ to conclude (7.18).

Remark. The Itô-Tanaka formula (7.18) also holds for each f that is a difference of two convex functions.

Corollary 7.8 (Occupation times formula). Almost surely, for all t ≥ 0 and all nonnegative Borel functions

Φ on R, ∫ t

0

Φ(Xs) d⟨X,X⟩s =
∫
R
Φ(a)Lat (X) da. (7.22)

More generally, we have a.s. for all t ≥ 0 and all nonnegative Borel functions Φ on R+ × R that∫ t

0

F (s,Xs) d⟨X,X⟩s =
∫
R

∫ ∞

0

F (s, a) dLas(X) da. (7.23)

Proof. We first fix Φ ∈ Cc(R) with Φ ≥ 0 and f ∈ C2(R) with f ′′ = Φ. Then (7.22) holds for each t ≥ 0

(by a continuity argument) outside a zero probability set NΦ by comparing Itô’s formula and the Itô-Tanaka

formula. Next, we take a countable dense subset {Φn}∞n=1 of Cc(R) and take N =
⋃∞
n=1NΦn

. Then the

formula (7.22) holds for all Φ ∈ Cc(R) outside the zero-probability set N . An application of the Monotone

Class Theorem 1.38 gives the general result for nonnegative measurable functions Φ. Consequently, (7.23)

holds for all functions F of the type F (s, a) = 1[α,β](s)1A(a), where 0 ≤ α ≤ β and A ∈ B(R). Again an

application of Theorem 1.38 gives the general result.
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7.2.3 Approximation of Local Times

We have the following proposition which gives another reason for the terminology “local time”.

Proposition 7.9. Let X be a continuous semimartingale. Then almost surely for all t ≥ 0 and a ∈ R,

Lat (X) = lim
ϵ↓0

1

ϵ

∫ t

0

1[a,a+ϵ)(Xs) d⟨X,X⟩s. (7.24)

Proof. By the occupation times formula (7.22), almost surely for all t ≥ 0 and a ∈ R,∫ t

0

1[a,a+ϵ)(Xs) d⟨X,X⟩s =
∫ a+ϵ

a

Lxt (X) dx.

Since a 7→ La(X) is right-continuous on R, the result follows.

Remark. An analogue of the above argument also gives

La−t (X) = lim
ϵ↓0

1

ϵ

∫ t

0

1(a−ϵ,a](Xs) d⟨X,X⟩s.

In particular, if X is a continuous local martingale, we have

Lat (X) = lim
ϵ↓0

1

2ϵ

∫ t

0

1(a−ϵ,a+ϵ)(Xs) d⟨X,X⟩s.

We also have the following estimate for the moments of local times.

Corollary 7.10. Let p > 1. There exists a constant Cp such that, for any continuous semimartingale X with

canonical decomposition X =M + V , we have for every a ∈ R and t ≥ 0 that

E|Lat (X)|p ≤ Cp
(
E
[
⟨M,M⟩p/2t

]
+ E

[(∫ t

0

|dVs|
)p])

.

Proof. This estimate follow from (7.10) in Lemma 7.6, the approximation (7.24) and Fatou’s lemma.

Next, we introduce the downcrossing approximation of local time. We letX be a continuous semimartingale,

and introduce two sequences of stopping times

σϵ0 = 0, τ ϵn = inf{t ≥ σn : Xt = ϵ}, and σϵn = inf{t ≥ τ ϵn−1 : Xt = 0}.

Define the downcrossing number of X from level 0 to level ϵ before time t by

NX
[0,ϵ](t) = inf {n ∈ N0 : σn ≤ t} .

We have introduced this notation with slight difference in the proof of martingale convergence.

Theorem 7.11 (Downcrossing representation of the local time at zero). For each t ≥ 0, we have

lim
ϵ↓0

ϵNX
[0,ϵ](t) =

1

2
L0
t (X) in probability. (7.25)

Furthermore, if there exists p ≥ 1 such that

E
[
⟨M,M⟩p/2∞ +

(∫ ∞

0

|dVs|
)p]

<∞,
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then

lim
ϵ↓0

E
[
sup
t≥0

∣∣∣∣ϵNX
[0,ϵ](t)−

1

2
L0
t (X)

∣∣∣∣p] = 0. (7.26)

Proof. For notation simplicity, we write Ls for L0
s(X) in our proof. By Tanaka’s formula,

(Xt∧τϵ
n
)+ − (Xt∧σϵ

n
)+ =

∫ t∧τϵ
n

t∧σϵ
n

1{Xs>0} dXs +
1

2

(
Lt∧τϵ

n
− Lt∧σϵ

n

)
(7.27)

Note that L0(X) does not increase on the intervals of the type [τ ϵn−1, σ
ϵ
n), n = 1, 2, · · · . By (7.27) we have

1

2
Lt =

1

2

∞∑
n=1

(
Lt∧σϵ

n+1
− Lt∧σϵ

n

)
=

1

2

∞∑
n=1

(
Lt∧τϵ

n
− Lt∧σϵ

n

)
=

∞∑
n=1

(
(Xt∧τϵ

n
)+ − (Xt∧σϵ

n
)+ −

∫ t∧τϵ
n

t∧σϵ
n

1{Xs>0} dXs

)

=

∞∑
n=1

(
(Xt∧τϵ

n
)+ − (Xt∧σϵ

n
)+
)
−
∫ t

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) dXs. (7.28)

Noting that (Xt∧τϵ
n
)+ − (Xt∧σϵ

n
)+ = ϵ1{τϵ

n≤t}, we have

∞∑
n=1

(
(Xt∧τϵ

n
)+ − (Xt∧σϵ

n
)+
)
= ϵNn

ϵ (t) + u(ϵ),

where 0 ≤ u(ϵ) = (Xt)
+ − (Xσϵ

n(t)
)+ ≤ ϵ, with n(t) = NX

[0,ϵ](t). Recalling (7.28), we have

1

2
Lt − ϵNX

[0,ϵ](t) = u(ϵ)−
∫ t

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) dXs. (7.29)

(i) Since 0 ≤
∑∞
n=1 1(σϵ

n,τ
ϵ
n]
(s)1(0,ϵ](Xs) ≤ 1(0,ϵ](Xs) for all ϵ > 0, by Theorem 5.7, we have

lim
ϵ↓0

∫ t

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) dXs = 0 in probability.

Recalling (7.29), we obtain (7.25).

(ii) By the Burkholder-Davis-Gundy inequality [Theorem 5.16], for every ϵ > 0 and T > 0,

E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) dXs

∣∣∣∣∣
p]

≤ CpE

(∫ T

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) d⟨M,M⟩s

)p/2
+

(∫ T

0

∣∣∣∣∣
∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs)

∣∣∣∣∣ |dVs|
)p

≤ CpE

[
⟨M,M⟩p/2T +

(∫ T

0

|dVs|

)p]
.

By (7.11) and the dominated convergence theorem, we have

lim
ϵ↓0

E

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∞∑
n=1

1(σϵ
n,τ

ϵ
n]
(s)1(0,ϵ](Xs) dXs

∣∣∣∣∣
p]

= 0.

Letting T ↑ ∞ and by (7.29), we conclude (7.26).
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7.3 Brownian Local Times

In this subsection, we study the local times of the standard Brownian motion B = (Bt)t≥0 on R. We fix

(Ft)t≥0 to be the completed canonical filtration of B.

Theorem 7.12 (Trotter). There exists a unique process (Lat (B))t≥0,a∈R, called the local time of the Brownian

motion B = (Bt)t≥0 such that

(i) the map (t, a) 7→ Lat (B) is continuous, and the map a 7→ Lat (B) is Hölder continuous with exponent γ

for each γ < 1
2 and uniformly in t on every compact interval;

(ii) for every fixed a ∈ R, the map t 7→ Lat (B) is increasing;

(iii) a.s. for every t ≥ 0 and every nonnegative measurable function on R,∫ t

0

Φ(Bs) ds =

∫
R
Φ(a)Lat (B) da;

(iv) a.s. for every a ∈ R, supp(dLas(B)) ⊂ {s ≥ 0 : Bs = a}, and for fixed a ∈ R,

supp(dLas(B)) = {s ≥ 0 : Bs = a} a.s.. (7.30)

Proof. (i) and (ii) are properties of local times [Theorem 7.5]. To prove Hölder continuity, the estimate (7.14)

implies that for every p = 2 + δ > 2,

E
[
sup

0≤s≤t
|Y bs − Y as |2+δ

]
≤ Cδ(b− a)1+

δ
2

(
t
2+δ
4 + t

2+δ
2

)
, a, b ∈ R,

where Y at =
∫ t
0
1{Bs>a} dBs. By Kolmogorov continuity lemma [Corollary 4.8], there exists an a.s. modification

of (Y a)a∈R that is locally γ-Hölder continuous for each γ ∈ (0, δ
4+2δ ), and so is

Lat (B) = (Bt − a)+ − (B0 − a)+ − Y at .

Letting δ → ∞, we conclude that a 7→ Lat (B) is Hölder continuous with exponent γ for each γ < 1
2 and

uniformly in t on every compact interval. Note that ⟨B,B⟩t = t, (iii) follows from Corollary 7.8.

(iv) The inclusion supp(dLas(B)) ⊂ {s ≥ 0 : Bs = a} holds a.s. if a ∈ R is fixed, hence simultaneously for all

rational a a.s.. The continuity argument (i) allows us to get that the inclusion holds for all a ∈ R outside a

zero probability set. In fact, if there exists a ∈ R such that Lat (B) > Las(B) for some 0 ≤ s < t and Br ̸= a

for all r ∈ [s, t], we can find a rational b sufficiently close to a such that the same properties hold when a is

replaced by b, which gives a contradiction.

Finally we verify the a.s. equality (7.30) for fixed a ∈ R. For each q ∈ Q, let τq := inf {t ≥ q : Bt = a}.
Then our claim will follow if we can verify that a.s. for every ϵ > 0, Laτq+ϵ(B) > Laτq (B). By the strong Markov

property at time τq, it suffices to prove that if (βt)
∞
t=1 is a Brownian motion started from β0 = a, then a.s. for

every ϵ > 0, Laϵ (β) > 0. Without loss of generality we can take a = 0. By Tanaka’s formula and an scaling

argument,

L0
ϵ(β) = |βϵ| −

∫ ϵ

0

sgn(βs) dβs
d
=
√
ϵ |β1| −

√
ϵ

∫ 1

0

sgn(βs) dβs =
√
ϵL0

1(β).

Since E[L0
1(β)] = E|β1| > 0, we have P(L0

ϵ(β) > 0) = P(L0
1(β) > 0) > 0. By Blumenthal’s 0-1 law, the event

A :=

∞⋂
n=1

{
L0
2−n(β) > 0

}
has probability 1, which concludes the proof.
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7.3.1 Laws of Brownian Local Times

In this part we study the law of local times of Brownian motions. The following lemma gives an integral

representation of Brownian local times.

Lemma 7.13. Let B = (Bt)t≥0 be a standard Brownian motion, and

βt = −
∫ t

0

sgn(Bs) dBs, t ≥ 0.

Then β = (βt)t≥0 is also a standard Brownian motion, and L0
t (B) = sup0≤s≤t βs.

Proof. Since ⟨β, β⟩t = t, by Lévy’s characterization of Brownian motions [Theorem 5.12], (βt)t≥0 is a Brownian

motion. By Tanaka’s formula, |Bt| = L0
t (B)− βt, which immediately shows that L0

t (B) ≥ sup0≤s≤t βt, since

L0
t (B) ≥ L0

s(B) = βs + |Bs| ≥ βs, for all s ≥ 0.

To show the opposite inequality, let Ut be the rightest zero of B in [0, t]. By the support peroperty of local

times, we have L0
t (B) = L0

Ut
(B) = βUt

≤ sup0≤s≤t βs, which concludes the proof.

Recalling that we write

Mt = sup
0≤s≤t

Bs.

Corollary 4.38 asserts that Mt
d
=Mt −Bt

d
= |Bt| for every t > 0. We have a stronger conclusion.

Theorem 7.14 (Lévy). The two processes (Mt,Mt −Bt)t≥0 and (L0
t (B), |Bt|)t≥0 have the same law.

Proof. By Lemma 7.13 and Tanaka’s formula,

(L0
t (B), |Bt|)t≥0 =

(
sup
s∈[0,t]

βs, sup
s∈[0,t]

βs − βt

)
t≥0

a.s..

Since (βs)s≥0 is a standard Brownian motion, the result follows.

Remark. By the remark under Theorem 4.35, we can obtain an explicit formula for the density of (L0
t (B), |Bt|).

Corollary 7.15. P(La∞(B) =∞) = 1 for every a ∈ R.

Proof. By the point recurrence of 1-dimensional Brownian motions, P(M∞ = ∞) = 1, and by Theorem 7.14,

we have P(L0
∞(B) = ∞) = 1. If a ̸= 0, by the strong Markov property, BTa+t − a is a standard Brownian

motion, where Ta := inf{t ≥ 0 : Bt = a}. Hence P(La∞(B) =∞) = 1.

Next we study the law of local times indexed by stopping times.

Proposition 7.16. Let B = (Bt)t≥0 be a standard Brownian motion.

(i) Let a ̸= 0 and Ta = inf{t ≥ 0 : Bt = a}. Then L0
Ta
(B) has an exponential distribution with mean 2|a|.

(ii) Let a > 0 and Ua = inf{t ≥ 0 : Bt = |a|}. Then L0
Ua

(B) has an exponential distribution with mean a.

Proof. By simple scaling and symmetry arguments, we may take a = 1. Since L0
∞(B) =∞ by Corollary 7.15,

we fix s > 0 and take τs = inf{t ≥ 0 : L0
t (B) ≥ s}, which is an a.s. finite stopping time. Furthermore, Bτs = 0

by the support property of local time. By the strong Markov property, (B′
t)t≥0 = (Bτs+t)t≥0 is a standard

Brownian motion started from 0 and independent of Fτs . By Proposition 7.24,

L0
t (B

′) = lim
ϵ↓0

1

ϵ

∫ τs+t

τs

1[0,ϵ)(Bs) ds = L0
τs+t(B)− L0

τs(B) = L0
τs+t(B)− s.
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(i) On the event {L0
T1
(B) ≥ s} = {τs ≤ T1},

L0
T1
(B)− s = L0

T1−τs(B
′) = L0

T ′
1
(B′),

where T ′
1 = {t ≥ 0 : B′

t = 1}. Since the event {τs ≤ T1} ∈ Fτs and B′ is independent of Fτs , the conditional

distribution of L0
T1
(B) − s given that L0

T1
(B) ≥ s is the same as the unconditional distribution of L0

T1
(B).

Hence the distribution of L0
T1
(B) is exponential. Furthermore, by the monotone convergence theorem, Tanaka’s

formula (7.6), and dominated convergence theorem,

E[L0
T1
(B)] = lim

t↑∞
E
[
L0
t∧T1

(B)
]
= 2 lim

t↑∞
E[(Bt∧T1

)+] = 2E[(BT1
)+] = 2.

(ii) The proof is similar to (i), but we apply Tanaka’s formula (7.5) to show that E[L0
U1
(B)] = 1.

Now we turn to the result on the support of the random measure dL0
s(B). We consider the time change

associated with (L0
s(B))s≥0, i.e.

τt = inf{s ≥ 0 : L0
s(B) > t}, t ≥ 0.

By construction, (τt)t≥0 has càdlàg increasing sample paths, since

τt = inf
⋃
h>0

{s ≥ 0 : L0
s(B) > t+ h} = inf

h>0
τt+h = lim

h↓0
τt+h.

Furthermore, by Theorem 7.14 and Theorem 4.34, (τt)t≥0
d
= (Tt)t≥0 and has independent increments.

Proposition 7.17. Let D be the countable set of jump times of (τt)t≥0. With probability 1,

supp(dL0
s(B)) = {s ≥ 0 : Bs = 0} = {τs : s ≥ 0} ∪ {τs− : s ∈ D},

Remark. We may write

C =
⋃
s≥0

(τs−, τs),

where (τs−, τs) is nonempty if and only if the local time L0(B) has a constant stretch at level s, and in that

case the stretch is exactly [τs−, τs]. Then C is a countable union of open intervals, and

{τs : s ≥ 0} ∪ {τs− : s ∈ D}

is the complement of C.

Proof. The first equality is (7.30). Next, for each s ≥ 0 and ϵ > 0, we have L0
τs(B) = s and L0

τs+ϵ(B) > s,

which implies τs ∈ supp(dL0
s(B)). Since supp(dL0

s(B)) is closed we also have τs− ∈ supp(dL0
s(B)). Hence

{τs : s ≥ 0} ∪ {τs− : s ∈ D} ⊂ supp(dL0
s(B)). (7.31)

Finally, for every t ∈ supp(dL0
s(B)), we have either

L0
t+ϵ(B) > L0

t (B) for every ϵ > 0,

or, if t > 0,

L0
t−ϵ(B) < L0

t (B) for every ϵ > 0,

or both simultaneously, which implies t = τL0
t (B) or t = τL0

t (B)−, respectively. Hence the opposite inclusion of

(7.31) holds, and the second equality is valid.
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8 Brownian Motions: Part II

8.1 Brownian Motions and Harmonic Functions

Brownian motions are closedly related to harmonic functions. We are going to address this particular topic.

Definition 8.1 (Harmonic functions). In this section we always assume U is an open subset of Rd. A function

u ∈ C2(U) is said to be harmonic, if

∆u =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2d
= 0 in U.

Remark. Let V be a bounded open subset of U with V ⊂ U . We define the stopping time τ = {t > 0 : Bt /∈ V }.
By Itô’s formula, for every x ∈ V , the process u(Bt∧τ ) is a local martingale under Px:

u(Bt∧τ ) = u(B0) +

∫ t∧τ

0

∇u(Bs) · dBs.

The quadratic variation of this process is given by

⟨u(Bτ ), u(Bτ )⟩t =
∫ t∧τ

0

|∇u(Bs)|2 ds, t ≥ 0.

Since V is a compact set, by Corollary 3.72, the stopped process (u(Bt∧τ ))t≥0 is a true martingale.

Theorem 8.2. Let u ∈ C2(U) be a harmonic function, and let V be a bounded open subset of U with V ⊂ U .

For every x ∈ V ,

u(x) = Ex[u(Bτ )].

Proof. Since V is bounded, (Bt)t≥0 leaves V with probability 1. For each t > 0 and x ∈ V , by optional

stoppping theorem,

Ex [u(Bt∧τ )] = Ex[u(B0)] = u(x).

Since u ∈ C2(U) and V ⋐ U , we let t ↑ ∞ and use dominated convergence theorem to conclude the proof.

8.1.1 Mean Value Property

In this section, we study the mean value property of harmonic functions. For any open ball B(x, r) ⊂ U , we

can relate the mean value of harmonic function u ∈ C2(U) both on the ball B(x, r) and on the sphere ∂B(x, r)

to its value at x. We denote by Σx,r the uniform probability measure on the sphere ∂B(x, r), i.e.

dΣx,r =
1

2
π− d

2 r1−dΓ
(d
2

)
dS,

Theorem 8.3 (Mean value property). Let U ⊂ Rd be an open set, and u ∈ C2(U). Then the following

assertions are equivalent:

(i) u is harmonic in U .

(ii) For all open balls B(x, r) ⊂ U ,

u(x) =

∫
udΣx,r. (8.1)

(iii) For all open balls B(x, r) ⊂ U ,

u(x) =
1

m(B(x, r))

∫
B(x,r)

u(y) dy. (8.2)
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Proof. (i) ⇒ (ii). We let V = B(x, r) in Theorem 8.2. By rotational variance of Brownian motions, the law of

Bτ under Px is the uniform distribution on the sphere ∂B(x, r), and the desired result follows.

(ii) ⇒ (i). Fix ϵ > 0 and Uϵ = {x ∈ U : d(x, U c) > 2ϵ}. It suffices to prove that u ∈ C2(Uϵ) and ∆u = 0 on

Uϵ. We take a standard mollifier ϕ ∈ C∞
c (B(0, 2ϵ)), for example, ϕ(x) = exp

(
− 1
ϵ2−|x|2

)
1B(0,ϵ)(x). Then

u(x) = C1

∫ ϵ

0

rd−1e
− 1

ϵ2−r2 u(x) dr = C1

∫ ϵ

0

rd−1

∫
ϕ(y − x)u(y) dΣx,r(y) dr

= C2

∫
B(x,ϵ)

ϕ(y − x)u(y) dy = C2(ϕ ∗ u)(x),

where C1, C2 are constants depending only on ϵ and d, and we switch from Cartesian coordinate to spherical

coordinate. Since ϕ is C∞, the convolution ϕ ∗ u of the last display is in fact a C∞ function on Uϵ.

Next, we apply Itô’s formula to u(Bt) under Px for x ∈ Uϵ and 0 < r < ϵ to obtain

Ex
[
u(Bt∧τx,r

)
]
= u(x) +

1

2
Ex
[∫ t∧τx,r

0

∆u(Bs) ds

]
,

where τx,r = inf{t > 0 : Bt /∈ B(x, r)}. Also, Exτx,r ≤ Ex
[
inf{s > 0 : |B1

s − x| = r}
]
< ∞. By dominated

convergence theorem, we let t ↑ ∞ on both sides of the last display to obtain

Ex
[
u(Bτx,r

)
]
= u(x) +

1

2
Ex
[∫ τx,r

0

∆u(Bs) ds

]
.

By the mean value property of u,

Ex
[∫ τx,r

0

∆u(Bs) ds

]
= 0 (8.3)

for all r ∈ (0, ϵ). If ∆u(x) > 0, by continuity of ∆u, we can take r0 ∈ (0, ϵ) such that ∆u > δ in B(x, r0) for

some δ > 0. Then we have

Ex
[∫ τx,r0

0

∆u(Bs) ds

]
≥ δ Exτx,r0 > 0,

which contradicts (8.3). Hence ∆u(x) ≤ 0. Similarly we have ∆u(x) ≥ 0. Therefore ∆u(x) = 0.

(ii) ⇒ (iii). Fix x ∈ U and r > 0 with B(x, r) ⊂ U . Then∫
B(x,r)

u(y) dy =

∫ r

0

∫
∂B(x,λ)

udS dλ =

∫ r

0

2π
d
2

Γ(d2 )
λd−1

∫
u dΣx,λ dλ = m(B(x, r))u(x),

where we use the fact

m(B(x, r)) =
πd/2

Γ(d2 + 1)
rd.

(iii) ⇒ (ii). Assume u has the mean value property (8.2). Define ψ : (0,∞)→ R by

ψ(r) =
1

rd−1

∫
∂B(x,r)

udS = Cd

∫
udΣx,r, where Cd =

2π
d
2

Γ(d2 )
.

Then for all r > 0 with B(x, r) ⊂ U , we switch from Cartesian coordinates to polar coordinates to obtain

rdm(B(x, 1))u(x) = m(B(x, r))u(x) =

∫
B(x,r)

u(y) dy =

∫ r

0

sd−1ψ(s) ds.

Differentiating with respect to r, we know that ψ(r) is constant on 0 < r < d(x, U c). Using the well-known

fact that dm(B(x, r))/dr = Cdr
d−1, we have ψ(r) = Cdu(x), which complete the proof.
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An immediate corollary of this property is the maximum principle for harmonic functions.

Theorem 8.4 (Strong maximum principle). Let U be a bounded, open subset of Rd, and let u ∈ C2(U)∩C(U)

be a harmonic function on U . Then

max
U

u = max
∂U

u. (8.4)

Moreover, if U is connected and there exists x∗ ∈ U such that u(x∗) = maxU u, then u is constant within U .

Remark. According to our proof, a harmonic function u ∈ C2(U) must be smooth.

Proof. Suppose such a point x∗ ∈ U exists. For all 0 < r < d(x∗, ∂U), the mean value property implies

M = u(x∗) =
1

m(B(x∗, r))

∫
B(x∗,r)

u(y) dy ≤M,

which holds only if u ≡ M within B(x∗, r). Hence the set {x ∈ U : u(x) = M} is both open and relatively

closed in U , which equals U if U is connected. The identity (8.4) follows from this.

8.1.2 Recurrence and Transience of Multi-dimensional Brownian Motions

Radial harmonic functions. In this subsection, we apply harmonic functions to study the recurrence and

transience of Brownian motions in Rd, where d ≥ 2. A harmonic radial function x 7→ ϕ(|x|) on Rd\{0} satisfies

0 = ∆xϕ(|x|) = ϕ′′(|x|) + d− 1

|x|
ϕ′(|x|) ⇔ ϕ′′(r) +

d− 1

r
ϕ′(r) = 0.

By solving the differential equation, we know that ϕ must be of the form

ϕ(r) =

a+ b log r, d = 2,

a+ br2−d, d ≥ 3,
r > 0. (8.5)

In our following discussion, we use the function

ϕ(r) =

log r, d = 2,

r2−d, d ≥ 3,
r > 0. (8.6)

Then x 7→ ϕ(|x|) is a harmonic function in Rd\{0}.

Theorem 8.5. For each a ≥ 0, we define the hitting time τa = inf{t ≥ 0 : |Bt| = a}, with the convention

inf ∅ =∞. Let x ∈ Rd\{0}, and let ϵ and R be such that 0 < ϵ < |x| < R. Then

Px (τϵ < τR) =


logR− log |x|
logR− log ϵ

, d = 2,

R2−d − |x|2−d

R2−d − ϵ2−d
, d ≥ 3.

(8.7)

Consequently, we have Px(τ0 <∞) = 0, and for every ϵ ∈ (0, |x|),

Px (τϵ <∞) =


1, d = 2,(
ϵ

|x|

)d−2

, d ≥ 3.
(8.8)
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Proof. Let ϕ be the function defined in (8.6), which is harmonic in the annulus Aϵ,R = {y ∈ Rd : ϵ < |y| < R}.
Let τ = inf{t ≥ 0 : Bt /∈ Aϵ,R}. Then Px(τ <∞) = 1. Furthermore, by Theorem 8.2,

ϕ(|x|) = Exϕ(|Bτ |) = Px (τϵ < τR)ϕ(ϵ) + (1− Px (τϵ < τR))ϕ(R).

This implies

Px (τϵ < τR) =
ϕ(R)− ϕ(|x|)
ϕ(R)− ϕ(ϵ)

.

We fix R > |x|. As ϵ ↓ 0, the limit τϵ ↑ τ0 holds Px a.s.. Hence we pass ϵ ↓ 0 to assert Px(τ0 < τR) = 0. Since

R > |x| is arbitrary, and τR ↑ ∞, Px a.s., we let R ↑ ∞ to conclude that Px(τ0 < ∞) = 0. Finally, we fix

0 < ϵ < |x| and Px(τϵ <∞) = limR→∞(τϵ < τR) to conclude (8.8).

Remark. By translation invariance of Brownian motions, for any pair of distinct points x, y ∈ Rd, we have

Px(∃t ≥ 0 such that Bt = y) = Px−y(τ0 <∞) = 0.

By this theorem, multi-dimensional Brownian motions are point-transient.

Theorem 8.6. Let (Bt)t≥0 be a d-dimensional Brownian motion.

(i) If the dimension d = 2, then (Bt)t≥0 is neighborhood recurrent, meaning that for every nonempty set

U ⊂ Rd, the set {t ≥ 0 : Bt ∈ U} is unbounded.

(ii) If the dimension d ≥ 3, then (Bt)t≥0 is transient, meaning that

lim
t→∞

|Bt| =∞ a.s..

In other words, (Bt)t≥0 leaves any bounded set with probability 1.

Proof. (i) We first consider an open ball B(0, ϵ). By Theorem 8.5, starting from x ̸= 0, the Brownian motion

(Bt)t≥0 never hits 0 but hits any open ball centered at 0. Thus, almost surely, for every M > 0, (Bt)t≥0

leave B(0, 2ϵ) at some time later than M , and then visit B(0, ϵ) by strong Markov property. By translation

invariance, given any open ball B(x, ϵ) in Rd, the Brownian motion B hits it at arbitrarily large times, a.s..

Note that every contains an open ball of rational radius centered at a point with rational coordinates. The

conclusion follows from a countable union argument.

(ii) Assume without loss of generality that the starting point of (Bt)t≥0 is x ̸= 0. Since x 7→ |x|2−d is harmonic

in Rd\{0} and Px(τ0 <∞) = 0, the process (|Bt|2−d)t≥0 is a local martingale under Px. By Proposition 3.67,

(|Bt|2−d)t≥0 is a nonnegative supermartingale, which a.s. converges as t → ∞. The a.s. limit must be 0,

otherwise the path t 7→ Bt would be bounded. Hence |Bt| → ∞ as t→∞.

Remark. (I) According to the neighborhood recurrence property of planar Brownian motions (d = 2), the

sample path {Bt(ω)}t≥0 is almost surely dense in R2.

(II) In regard of the growth rate of |Bt|t≥0 when d ≥ 3, we fix a sequence tn ↑ ∞. For each ϵ > 0,

P

( ∞⋂
N=1

∞⋃
n=N

{
|Btn |√
tn
≤ ϵ
})
≥ lim sup

n→∞
P
(
|Btn |√
tn
≤ ϵ
)

= P (|B1| ≤ ϵ) > 0.

By Blumenthal’s 0-1 law, the probability on the left-hand side must therefore be one, and

lim inf
t→∞

|Bt|√
t
= 0 a.s..
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8.1.3 The Dirichlet Problem

In this part, we assume U is an open and bounded subset of Rd, and study the boundary-value problem∆u = 0 in U,

u = g on ∂U,
(8.9)

where g is a continuous function on ∂U , and u ∈ C2(U) ∩ C(U) is the unknown.

Proposition 8.7. Define exit time τ = {t ≥ 0 : Bt /∈ U}, and let g be a bounded measurable function on ∂U .

(i) The function u(x) = Ex[g(Bτ )] is harmonic in U ;

(ii) In addition, if g is continuous on ∂U , and u solves the Dirichlet problem (8.9), then u(x) = Ex[g(Bτ )]
for each x ∈ U .

Proof. (i) It suffices to verify that u(x) = Ex[g(Bτ )] satisfies the mean value property. For each x ∈ U , we fix

B(x, r) ⊂ U and define τx,r = inf{t ≥ 0 : |Bt − x| = r}. For each w ∈ C(R+,Rd) with w(0) ∈ U , we define

Φ(w) to be the value of g at the first exit time of w from D, i.e. Φ(w) = g(inf{t ≥ 0 : w(t) /∈ D}). Then

g(Bτ ) = Φ((Bt)t≥0) = Φ((Bτx,r+t)t≥0) Px a.s..

By the strong Markov property of Brownian motions,

u(x) = Ex[g(Bτ )] = Ex
[
Φ((Bτx,r+t)t≥0)

]
= Ex

[
EBτx,r

[
Φ((Bt)t≥0)

]]
= Ex

[
u(Bτx,r

)
]
.

Since the law of Bτx,r under Px is the uniform probability measure Σx,r on ∂B(x, r), we conclude the proof.

(ii) For each x ∈ U , we fix B(x, r) ⊂ U . For each 0 < ϵ < r, we set Uϵ = {x ∈ U : d(x, U c) > ϵ}, and define

τϵ = inf{t ≥ 0 : Bt /∈ Uϵ}. Since u is harmonic in U , by Theorem 8.2,

u(x) = Ex [u(Bτϵ)] .

It is clear that τϵ is monotone increasing as ϵ ↓ 0, and the limit τ0 ≤ τ . On the other hand, we have Bτ0 ∈ ∂U by

te continuity of sample paths, which implies τ0 ≥ τ . Therefore τϵ ↓ τ as ϵ ↓ 0. By the dominated convergence

theorem, we have u(x) = Ex[u(Bτ )] = Ex[g(Bτ )].

Remark. The second assertion implies that if a solution to the Dirichlet problem (8.9) exists, it must be unique

and has the form u(x) = Ex[g(Bτ )]. We next study the existence of solutions.

Definition 8.8 (Exterior cone condition). Let U ⊂ Rd be open. If y ∈ ∂U , we say U satisfies the exterior

cone condition at y if there exists an open cone C with apex y and ϵ > 0 such that C ∩B(y, ϵ) ⊂ U c.

Lemma 8.9 (Brownian motions avoiding a cone). Define exit time τ = {t ≥ 0 : Bt /∈ U}. Under the exterior

cone condition, we have for every y ∈ ∂U and every η > 0 that

lim
U∋x→y

Px(τ > η) = 0.

Proof. For every ξ ∈ Rd with |v| = 1 and every γ ∈ (0, 1), consider the circular cone

C(ξ, γ) =
{
x ∈ Rd : x⊤ξ > (1− γ)|x|

}
.

By the exterior cone condition, there exists ξ ∈ Rd, γ ∈ (0, 1) and ϵ > 0 such that y + C(ξ, γ) ∩B(0, r) ⊂ U c.
For notation simplicity we define the truncated cone C = C(ξ, γ) ∩ B(0, r), and fix a smaller truncated cone

D = C(ξ, γ2 ) ∩B(0, r2 ). For an open V ⊂ Rd, let τV = inf{t ≥ 0 : Bt ∈ V }.
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By Proposition 3.14, the event {τC(ξ,γ/2) = 0} is contained in the germ σ-algebra
⋂
t>0 Ft, where (Ft)t≥0

is the canonical filtration (Bt)t≥0. For any s > 0,

P0

(
τC(ξ,γ/2) ≤ s

)
≥ P0

(
B⊤
s ξ −

(
1− γ

2

)
|Bs| > 0

)
= P0

(
Y ⊤ξ −

(
1− γ

2

)
> 0
)
=: δ > 0,

where the law of Y is the uniform probability measure on the unit sphere ∂B(0, 1). We let s ↓ 0 and apply

Blumenthal’s 0-1 law [Theorem 6.15] to obtain that τC(ξ,γ/2) = 0, P0-a.s.. By continuity of Brownian motions,

we also have τD = 0, P0-a.s.. On the other hand, for each r ∈ (0, ϵ2 ), we set Dr = {x ∈ D : |x| > r}. Then

Dr ↑ D as r ↓ 0, and τDr
↓ τD = 0. Thus, for any β > 0, we fix r > 0 so small that P0(τDr

≤ η) ≥ 1 − β.
Since y + C ⊂ U c, we have the estimate

Px(τ ≤ η) ≥ Px(τy+C ≤ η) = P0(τy−x+C ≤ η).

We also note that Dr ⊂ C. When |y − x| < 1
2d(Dr, ∂C), the shifted cone y − x+ C ⊃ Dr. Therefore

Px(τ ≤ η) ≥ P0(τDr
≤ η) ≥ 1− β.

Since β > 0 is arbitrary, we conclude the proof.

The exterior cone condition is sufficient for the existence of solution to the Dirichlet problem.

Theorem 8.10 (Solution of the Dirichlet problem). Let U be an open bounded subset of Rd such that each

y ∈ ∂U satisfies the exterior cone condition. Then for each continuous function g on ∂U , the solution of the

Dirichlet problem (8.9) is uniquely given by the function

u(x) = Ex[g(Bτ )], where τ = inf{t ≥ 0 : Bt /∈ U}.

Proof. Following Proposition 8.7 (i), it suffices to show that limU∋x→y u(x) = g(y) for each y ∈ ∂U . We fix

ϵ > 0. By continuity of g, there exists δ > 0 such that |g(z) − g(y)| < ϵ/3 for all z ∈ ∂U ∩ B(y, δ). Also, we

fix M > 0 such that |g(z)| ≤M for all z ∈ ∂U . Then for all η > 0,

|u(x)− g(y)| ≤ Ex
[
|g(Bτ )− g(y)|1{τ≤η}

]
+ Ex

[
|g(Bτ )− g(y)|1{τ>η}

]
≤ Ex

[
|g(Bτ )− g(y)|1{τ≤η}∩{supt∈[0,η] |Bt−x|≤δ/2}

]
+ 2MPx

(
sup
t∈[0,η]

|Bt − x| >
δ

2

)
+ 2MPx(τ > η).

(i) Under the event {τ ≤ η} ∩ {supt∈[0,η] |Bt − x| ≤ δ/2}, we have |Bτ − y| ≤ |Bt − x| + |y − x| < δ for all

|y − x| < δ/2. Then

Ex
[
|g(Bτ )− g(y)|1{τ≤η}∩{supt∈[0,η] |Bt−x|≤δ/2}

]
≤ ϵ

3
.

(ii) By translation invariance and continuity of Brownian motions, we apply dominated convergence theorem

to conclude P0

(
supt∈[0,η] |Bt| > δ

2

)
↓ 0 as η ↓ 0. Hence we fix η > 0 so small that

Px

(
sup
t∈[0,η]

|Bt − x| >
δ

2

)
= P0

(
sup
t∈[0,η]

|Bt| >
δ

2

)
≤ ϵ

6M
.

(iii) By Lemma 8.9, we can fix r ∈ (0, δ/2) such that Px(τ > η) < ϵ/(6M) for all x ∈ U ∩B(y, r). Combining

the last three estimates, we conclude that |u(x)− g(y)| < ϵ for all x ∈ U ∩B(y, r). Since ϵ > 0 is arbitrary, we

have limU∋x→y u(x) = g(y), which completes the proof.

Remark. In fact, our proof can be extended to certain unbounded open sets. For example, if U = {x ∈ Rd :

xd > 0} is the upper half-space, the above theorem also applies if g is bounded and continuous on ∂U .
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8.1.4 The Poisson Kernel and Exit Distributions

In this part, we study two special cases Dirichlet problem (8.9) and derive the corresponding exit distributions.

Half-space. We define the Poisson kernel of the upper half space U = {(x, y) ∈ Rd : x ∈ Rd−1, y > 0} to be

p(x, y) =
cdy

(|x|2 + y2)
d/2

, where cd =
Γ(d2 )

πd/2
.

The choice of cd implies
∫
Rd−1 p(x, 1) dx = 1. We next compute the partial derivatives:

∂p

∂xi
= − dxi
|x|2 + y2

p(x, y),
∂2p

∂x2i
=

d

|x|2 + y2

(
(d+ 2)x2i
|x|2 + y2

− 1

)
p(x, y), i = 1, · · · , d− 1,

and
∂p

∂y
=

(
1

y
− dy

|x|2 + y2

)
p(x, y),

∂2p

∂y2
=

d

|x|2 + y2

(
(d+ 2)y2

|x|2 + y2
− 3

)
p(x, y).

As a result, ∆p(x, y) = 0. Therefore p is harmonic on U .

Theorem 8.11. Let g : Rd−1 → R be bounded and continuous, and

u(x, y) =

∫
Rd−1

p(x− ξ, y)g(ξ) dξ, x ∈ Rd−1, y > 0.

Thne u solves the Dirichlet problem (8.9) on U = {(x, y) : x ∈ Rd−1, y > 0} with boundary value g.

Proof. We write pξ(x, y) = p(x − ξ, y) for ξ ∈ Rn−1. Then pξ is a harmonic function for every ξ ∈ Rn−1.

Interchanging the integral and derivative (which is justified by the dominated convergence theorem), we have

∆u =

d∑
i=1

∂2u

∂x2i
+
∂2u

∂y2
= 0.

Now it remains to verify the boundary condition. Since g is bounded, we may assume |g| ≤ 1 by scaling.

For each x ∈ Rn−1 and ϵ > 0, by continuity of g, we take δ > 0 such that |g(ξ)− g(x)| < ϵ for all |ξ − x| ≤ δ.
The choice of cd ensures that

∫
Rn−1 pξ(x, y) dx = 1 for all y > 0. By definition of the Poisson kernel p, there

exists yδ > 0 such that ∫
B(0,δ)

p(ξ, y) dξ =

∫
B(0, δy )

p(ξ, 1) dξ > 1− ϵ

for all y ∈ (0, yϵ). Then we have

|u(x, y)− g(x)| ≤
∫
|ξ−x|≤δ

p(x− ξ, y)|g(ξ)− g(x)|dξ +
∫
|ξ−x|>δ

p(x− ξ, y)|g(ξ)− g(x)|dξ

≤
∫
|ξ−x|≤δ

p(x− ξ, y)ϵdξ + 2

∫
|ξ|>δ

p(ξ, y) dξ ≤ 3ϵ.

Since ϵ > 0 is arbitrary, u(x, y)→ g(x) as y ↓ 0. This complete the proof.

Next, we study the exit distribution on the half-space U , i.e. the law of the position where a Brownian

motion B exits from the half-space U . According to Theorem 8.10, for all bounded continuous functions g,

E(x,y)[g(Bτ )] =

∫
Rd−1

p(x− ξ, y)g(ξ) dξ,

where τ = inf{t ≥ 0 : Bt ∈ ∂U}. This expectation determines the law of Bτ .
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Corollary 8.12. The law of Bτ under P(x,y) is given by the probability density function

ρ(x,y)(ξ, 0) = pξ(x, y) =
cdy

(|x− ξ|2 + y2)
d/2

, ξ ∈ Rd−1.

In fact, by translation and rotation invariance of Brownian motions, we can adapt the above conclusion

to any hitting time for a hyperplane in Rd (the starting point should not be on the hyperplane). This fact

inspires a probabilistic proof of Liouville’s theorem for harmonic functions.

Theorem 8.13 (Liouville’s Theorem). If u ∈ C2(Rd) is a bounded harmonic function, then u is constant.

Proof. Since u is a bounded harmonic function on Rd, the process (u(Bt))t≥0 is a continuous local martingale.

By Proposition 3.67 (ii), (u(Bt))t≥0 is a uniformly integrable martingale.

Let x and y be two distinct points in Rd, and take H the hyperplane in Rd such that the reflection in H

maps x to y. Define τH = inf{t ≥ 0 : Bt ∈ H}. Then BτH has the same exit distribution under Px and Py.
By the optional stopping theorem [Theorem 3.61] for uniformly integrable martingales,

u(x) = Ex[u(BτH )] = Ey[u(BτH )] = u(y).

Since x, y ∈ Rd are arbitrary, we conclude the proof.

Unit ball. We define the Poisson kernel of the unit ball B(0, 1) = {x ∈ Rd : |x| < 1} to be

K(x, y) = Ky(x) =
1− |x|2

|x− y|d
, where y ∈ Sd−1 = ∂B(0, 1).

Then the partial derivatives are

∂Ky

∂xi
= −d(xi − yi)(1− |x|

2)

|x− y|d+2
− 2xi
|x− y|d

,

and
∂2Ky

∂x2i
=
d(d+ 2)(xi − yi)2(1− |x|2)

|x− y|d+4
− d(1− |x|2)
|x− y|d+2

+
4dxi(xi − yi)
|x− y|d+2

− 2

|x− y|d
,

Note that |y|2 = 1. Then

∆Ky =
2d(1− |x|2)
|x− y|d+2

+
2d

|x− y|d+2

(
|x|2 + |x− y|2 − |y|2

)
− 2d

|x− y|d
= 0.

Therefore y 7→ K(x, y) is a harmonic function on the unit ball B(0, 1) for each y ∈ Sd−1. Next, we show that

for each x ∈ B(0, 1), the mapping y 7→ K(x, y) is a density function on the unit sphere Sd−1, i.e.∫
∂B(0,1)

K(x, y) dΣ(y) = 1, (8.10)

where Σ = Σ0,1 is the uniform probability measure on Sd−1. Define

F (x) =

∫
Sd−1

K(x, y) dΣ(y), x ∈ B.

By Fubini’s theorem and the mean value property of z 7→ K(z, y), we can verify mean-value property of F :∫
F dΣx,r =

∫∫
K(z, y) dΣ(y) dΣx,r(z) =

∫∫
K(z, y) dΣx,r(z) dΣ(y) =

∫
K(x, y) dΣ(y) = F (x). (8.11)
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By rotation invariance of (x, y) 7→ K(x, y) and Σ, we know that F is a radial harmonic function, which

is of form (8.5). Moreover, noticing that F is bounded in any punctured neighborhood of 0, we know that F

must be a constant. Hence F ≡ F (0) = 1.

Theorem 8.14. Let g be a continuous function on Sd−1 = ∂B(0, 1), and

u(x) =

∫
Sd−1

K(x, y)g(y) dΣ(y), x ∈ B(0, 1).

Then u solves the Dirichlet problem (8.9) on the unit ball B(0, 1) with boundary value g.

Proof. Similar to (8.11), we can prove that u has the mean-value property, hence is harmonic in B(0, 1). To

verify the boundary condition, we fix y0 ∈ Sd−1 and ϵ > 0. By continuity of g, we may assume |g| ≤ 1 on Sd−1

by an scaling argument, and take δ > 0 such that |g(y) − g(y0)| < ϵ for all y ∈ Sd−1 ∩ B(y0, δ). Meanwhile,

for x ∈ B(0, 1) with |x− y0| ≤ δ
2 and y ∈ Sd−1 with |y − y0| ≥ δ, one have

K(x, y) =
1− |x|2

|x− y|d
≤
(
2

δ

)d
(1− |x|2) ↓ 0, as x→ y0..

Then there exists δ1 > 0 such that for all x ∈ B(0, 1) with |x− y| ≤ δ1,∫
Sd−1\B(y0,δ)

K(x, y) dΣ(y) ≤ ϵ.

Therefore, for all x ∈ B(0, 1) with |x− y| ≤ δ1,

|u(x)− g(y0)| ≤
∫
Sd−1∩B(y0,δ)

K(x, y)|g(x)− g(y0)|dΣ(y) +
∫
Sd−1\B(y0,δ)

K(x, y)|g(x)− g(y0)|dΣ(y)

≤
∫
Sd−1∩B(y0,δ)

ϵK(x, y) dΣ(y) + 2

∫
Sd−1\B(y0,δ)

K(x, y) Σ(dy) ≤ 3ϵ.

Since ϵ > 0, we prove the boundary condition u(x)→ g(y0) as B ∋ x→ y0.

Again, we compare this result with Theorem 8.10 to get the exit distribution of the Brownian motion

(Bt)t≥0 from the unit ball B(0, 1).

Corollary 8.15. Let τ = inf{t : Bt /∈ B(0, 1)} be the exit time of Brownian motion (Bt)t≥0 from unit ball

B(0, 1). For every x ∈ B(0, 1), the law of Bτ under Px has density y 7→ K(x, y) with respect to the uniform

probability measure dΣ(y) on Sd−1.
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8.2 Occupation Times and Green’s Functions

8.2.1 Green’s Functions

We start from the following fundamental result about the occupation time of the Brownian motion.

Proposition 8.16. Let (Bt)t≥0 be a d-dimensional Brownian motion and t > 0, and let U ⊂ Rd be a nonempty

bounded set. Then for any x ∈ Rd,
(i) if d ≤ 2, we have

Px
(∫ ∞

0

1U (Bt) dt =∞
)

= 1;

(ii) if d ≥ 3, we have

Ex
[∫ ∞

0

1U (Bt) dt

]
<∞.

Proof. Since a bounded set is contained in an open ball and contains an open ball, we may assume that U is

an open ball. By shifting, we can assume U = B(0, r).

(i) Let d ≤ 2 and D = B(0, 2r). Define T0 = inf{t > 0 : Bt /∈ D}. For each k ∈ N, define

Sk = inf{t > Tk−1 : Bt ∈ U}, and Tk = inf{t > Sk : Bt /∈ D}.

Almost surely, these stopping times are finite. By the strong Markov property, for each k ≥ 1,

Px

(∫ Tk

Sk

1U (Bt) dt ≥ ϵ
∣∣∣∣FSk+

)
= PBSk

(∫ T0

0

1U (Bt) dt ≥ ϵ

)

= Ex

[
PBSk

(∫ T0

0

1U (Bt) dt ≥ ϵ

)]
= Px

(∫ Tk

Sk

1U (Bt) dt ≥ ϵ

)
,

where we get the second inequality by rotation invariance. Since the second expression does not depend on k,

the random variables ∫ Tk

Sk

1U (Bt) dt, k = 1, 2, · · ·

are i.i.d.. Since these random variables are not identically zero and nonnegative, they have positive expectation.

By the strong law of large numbers,∫ ∞

0

1U (Bt) dt ≥ lim
n→∞

n∑
k=1

∫ Tk

Sk

1U (Bt) dt =∞, a.s..

(ii) Let d ≥ 3 and pt(x, y) = (2πt)−d/2 exp
(
− |x−y|2

2t

)
the transition kernel of the Brownian motion. Then

∫ ∞

0

pt(x, y) dt =

∫ ∞

0

1

(2πt)d/2
e−

|x−y|2
2t dt =

∫ 0

∞

(
s

π|x− y|2

)d/2
e−s

(
−|x− y|

2

2s2

)
ds

=
|x− y|2−d

2πd/2

∫ ∞

0

s
d
2−2e−s ds =

Γ
(
d
2 − 1

)
2π

d
2 |x− y|d−2

Apply Fubini’s theorem and switch from Cartesian to polar coordinates, we obtain

E0

[∫ ∞

0

1B(0,r)(Bt) dt

]
=

∫ ∞

0

P0 (Bt ∈ B(0, r)) dt =

∫ ∞

0

∫
B(0,r)

pt(0, y) dy dt

=
2π

d
2

Γ(d2 )

∫ r

0

ρd−1

∫ ∞

0

pt(0, y) dtdρ =
r2

d− 2
<∞.
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To extend the conclusion to x ̸= 0, we apply the strong Markov property at the exit time τ from B(0, |x|) of
a Brownian motion starting at 0 and the rotational invariance to obtain

Ex
[∫ ∞

0

1B(0,r)(Bt) dt

]
= E0

[∫ ∞

τ

1B(0,r)(Bt) dt

]
≤ E0

[∫ ∞

0

1B(0,r)(Bt) dt

]
<∞,

which completes the proof.

Remark. We write

Φ(x, y) =

∫ ∞

0

pt(x, y) dt

the Green function or the potential kernel, because Φ(x, ·) is the electrostatic potential of a unit charge at x.

For the case d ≥ 3, we have

Φ(x, y) =
Γ(d2 − 1)

2π
d
2 |x− y|d−2

, d ≥ 3.

In the case d ≤ 2, we have
∫∞
0
pt(x, y) dt ≡ ∞. Hence we have to take another approach to define a useful Φ.

Definition 8.17. Let (Bt)t≥0 be a d-dimensional Brownian motion. A transient Brownian motion is the

process (Bt)t∈[0,τ ] in either of the following two cases:

(i) d ≥ 3 and τ =∞;

(ii) d ≥ 2 and τ is the first exit time from a bounded open domain U ⊂ Rd.
We use the convention that U = Rd in case (i).

Proposition 8.18 (Transition subdensity). For a transient Brownian motion (Bt)t∈[0,τ ], there exist a family

of transition (sub)densities p∗t (·, ·) : Rd × Rd → R+, 0 ≤ t <∞ such that

Px (Bt ∈ A and t ≤ τ) =
∫
A

p∗t (x, y) dy for every Borel set A ⊂ Rd.

Moreover,

(i) for each t ≥ 0, we have p∗t (x, y) = p∗t (y, x) for almost every x, y ∈ Rd;
(ii) if τ is the first exit time from a bounded open domain U ⊂ Rd, then for each t ≥ 0 and each x ∈ U , we

have p∗t (x, y) = 0 for almost every y /∈ U .

Proof. We fix t ≥ 0 throughout the proof. For the existence of the density, by the Radon-Nikodym theorem,

it suffices to check that Px(Bt ∈ A, t ≤ τ) = 0 for every Borel set A ⊂ Rd of Lebesgue measure 0.

(i) If d ≥ 3 and τ =∞, we can drop the requirement t ≤ τ and choose the heat kernel p∗t = pt.

(ii) If d ≥ 2 and τ is the first exit time from a bounded open domain U ⊂ Rd, for each compact subset K ⊂ U ,

x ∈ K and n ∈ N, define

p∗t,K,n(x, y) =

∫
K

· · ·
∫
K

2n∏
k=1

pt2−n(zk−1, zk) dz1 · · · dz2n−1,

where z0 = x and z2n = y, and p is the transition density of d-dimensional Brownian motion. Then

Px (Bt ∈ A, and Bkt2−n ∈ K for all k = 0, 1, · · · , 2n − 1) =

∫
A

p∗t,K,n(x, y) dy

for every Borel set A ⊂ Rd. Since p∗t,K,n is decreasing in n, by the monotone convergence theorem,

Px (Bt ∈ A and t ≤ τK) = lim
n→∞

∫
A

p∗t,K,n(x, y) dy =

∫
A

p∗t,K(x, y) dy, (8.12)
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where p∗t,K(x, y) = limn→∞ p∗t,K,n(x, y) and τK = inf{s ≥ 0 : Bs /∈ K}. The symmetry of pt implies that p∗t,K,n
and p∗t,K are both symmetric. We construct an increasing sequence (Km)∞m=1 of compact sets exhausting U ,

e.g. Km = {x ∈ U : d(x, U c) ≥ 1
m}. Then

∞⋃
m=1

{t ≤ τKm} =
∞⋃
m=1

⋂
s<t

{Bs ∈ Km} =
⋂
s<t

∞⋃
m=1

{Bs ∈ Km} =
⋂
s<t

{Bs ∈ U} = {t ≤ τ}.

Taking a monotone limit in (8.12) produces a symmetric version p∗t (x, y) of the transition density. For the

second statement, by (8.12), we note that p∗t,K(x, ·) = 0 a.e. on Kc for each compact K ⊂ U . Hence the

monotone limit p∗t (x, ·) = 0 a.e. on U c.

Remark. Let f ∈ C∞
c (Rd) be a nonnegative function. Then for each t > 0 and x ∈ U ,∫

Rd

p∗t (x, y)f(y) dy = Ex
[
f(Bt)1{t≤τ}

]
= Ex

[
f(Bt)

(
1− 1{t>τ}

)]
= Ex [f(Bt)]− Ex

[
1{t>τ}EBτ

[f(Bt−τ )]
]

=

∫
Rd

pt(x, y)f(y) dy − Ex
[
1{t>τ}

∫
Rd

pt−τ (Bτ , y)f(y) dy

]
=

∫
Rd

[
pt(x, y)− Ex

[
pt−τ (Bτ , y)1{τ<t}

]]
f(y) dy.

Therefore, we can choose a version of density p∗t (x, ·) = pt(x, ·) − Ex
[
pt−τ (Bτ , ·)1{τ<t}

]
. To summarize, we

use the following typical version of transition subdensities in Proposition (8.18):

(i) If d ≥ 3 and τ =∞, we have p∗t (x, y) = pt(x, y).

(ii) If d ≥ 2 and τ is the first exit time from a bounded open domain U ⊂ Rd,

p∗t (x, y) = pt(x, y)− Ex
[
pt−τ (Bτ , y)1{τ<t}

]
. (8.13)

Definition 8.19 (Green’s function). For a transient Brownian motion (Bt)t∈[0,τ ] with transition (sub)densities

(p∗t ) as above, we define the Green’s function G : Rd × Rd → [0,∞] by

G(x, y) =

∫ ∞

0

p∗t (x, y) dt, x, y ∈ Rd.

Remark. By Proposition 8.18, if τ is the first exit time of a bounded open domain U , we can choose for each

x ∈ U a version of Green’s function such that G(x, ·) = 0 on U c.

In probabilistic terms, with x ∈ U is fixed, the Green function G(x, ·) is the density of the expected

occupation measure for the transient Brownian motion (Bt)0≤t≤τ started in x.

Proposition 8.20. Let G be the Green function for a transient Brownian motion (Bt)t∈[0,τ ]. For every

meausrable functtion f : Rd → [0,∞] and x ∈ Rd,

Ex
[∫ τ

0

f(Bt) dt

]
=

∫
Rd

G(x, y)f(y) dy.

Proof. If f : Rd → [0,∞] is measurable, Tonelli’s theorem implies

Ex
[∫ τ

0

f(Bt) dt

]
=

∫ ∞

0

Ex
[
f(Bt)1{τ≥t}

]
dt =

∫ ∞

0

∫
Rd

p∗t (x, y)f(y) dy dt

=

∫
Rd

[∫ ∞

0

p∗t (x, y) dt

]
f(y) dy =

∫
Rd

G(x, y)f(y) dy.

Then we finish the proof.
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Proposition 8.21. Let (Bt)0≤t≤τ be a d-dimensional transient Brownian motion.

(i) If d ≥ 3 and τ =∞, the Green’s function is

G(x, y) = Φ(x, y) =
Γ(d2 − 1)

2πd/2
|x− y|2−d, x, y ∈ Rd.

(ii) If d ≥ 2 and τ is the first exit time from a bounded open domain U , the Green’s function is

G(x, y) = Φ(x, y)− Ex [Φ(Bτ , y)] , x, y ∈ Rd, (8.14)

where

Φ(x, y) =


− 1

π
log |x− y|, d = 2,

Γ(d2 − 1)

2πd/2
|x− y|2−d, d ≥ 3.

Remark. In fact, if d ≥ 3, we have |B∞| =∞ a.s., and the results in (i) and (ii) cocincide.

Proof. The result in (i) is already proved, so we focus on (ii). For every x, y ∈ Rd, we take (at)t≥0 such that∫ ∞

0

|pt(x, y)− at|dt <∞.

Assume Φ(x, y) =
∫∞
0

(pt(x, y)− at) dt. By (8.13),

G(x, y) =

∫ ∞

0

p∗t (x, y) dt =

∫ ∞

0

(pt(x, y)− at) dt− Ex
[∫ ∞

0

(pt−τ (Bτ , y)− at−τ )1{τ<t}dt

]
=

∫ ∞

0

(pt(x, y)− at) dt− Ex
[∫ ∞

τ

(pt−τ (Bτ , y)− at−τ ) dt
]
= Φ(x, y)− Ex [Φ(Bτ , y)] .

If d ≥ 3, we simply take at ≡ 0, and the result follows from (i). Otherwise, if d = 2, we let at =
1

2πte
− 1

2t , so

Φ(x, y) =

∫ ∞

0

1

2πt

(
e−

|x−y|2
2t − e− 1

2t

)
dt =

1

2π

∫ ∞

0

1

t

(∫ 1/(2t)

|x−y|2/(2t)
e−s ds

)
dt

=
1

2π

∫ ∞

0

e−s

(∫ 1/(2s)

|x−y|2/(2s)

dt

t

)
ds = − 1

π
log |x− y|.

Combining the last two displays completes the proof.

Finally, we study some analytic properties of the Green’s function.

Proposition 8.22. Let G : Rd × Rd → [0,∞] be the Green’s function for a transient Brownian motion

(Bt)t∈[0,τ ] in U ⊂ Rd. Then

(i) G(x, y) <∞ for all x ̸= y;

(ii) for each y ∈ U , the function x 7→ G(x, y) is harmonic on U\{y};
(iii) G(x, y) = G(y, x) for all x, y ∈ Rd.

Proof. These results are clear by the expression of G when d ≥ 3 and τ =∞. Hence we focus on the case that

U ⊂ Rd is a bounded open domain and d ≥ 2. Since G vanishes outside U × U , we may assume x, y ∈ U .

(i) For each y ∈ U , the function Φ(·, y) is bounded on ∂U . Since Bτ ∈ ∂U a.s., Ex [Φ(Bτ , y)] <∞.

(ii) By Proposition 8.7, the function hy(x) = Ex [Φ(Bτ , y)] is harmonic.

(iii) The symmetry of G follows from the almost-everywhere symmetry of p∗t together with the continuity.
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8.2.2 Poisson’s Equation

In this part, we assume U is an open and bounded subset of Rd, fix f ∈ Cb(U), and study the boundary-value

problem ∆u = f in U,

u = 0 on ∂U.
(8.15)

Similar to our discussion in the remark after Definition 8.1, by Itô’s formula, if u ∈ C2(U) ∩ C(U) satisfies

(8.15), the process

Mt = u(Bt∧τ )−
1

2

∫ t∧τ

0

f(Bs) ds, t ≥ 0

is a martingale under Px for each x ∈ U , where τ = inf{t ≥ 0 : Bt /∈ U}.

Proposition 8.23. Let f : U → R be a bounded continuous function.

(i) If there exists a bounded solution of (8.15), it must be

u(x) = −1

2
Ex
[∫ τ

0

f(Bt) dt

]
, x ∈ U. (8.16)

(ii) If the above u ∈ C2(U), it satisfies ∆u = f . In addition, if every y ∈ ∂U satisfies the exterior cone

condition [Definition 8.8], then u is a solution of (8.15).

Proof. (i) Since U is bounded, we have Exτ < ∞ for each x ∈ U . If both u and f are bounded continuous

functions on U , then |Mt| ≤ ∥u∥∞ + 1
2τ∥f∥∞. Since

lim
t↑∞

Mt = u(Bτ )−
1

2

∫ τ

0

f(Bt) dt = −
1

2

∫ τ

0

f(Bt) dt,

by the dominated convergence theorem and martingale property,

u(x) = Ex[M0] = lim
t↑∞

Ex[Mt] = −
1

2
Ex
[∫ τ

0

f(Bt) dt

]
.

(ii) We let u be defined as in (8.16), fix x ∈ U and B(x, ϵ) ⊂ U . Using the strong Markov property at the

stopping time τϵ = inf{t ≥ 0 : Bt /∈ B(x, ϵ)}, we have

E
[∫ τ

0

f(Bs) ds

∣∣∣∣Fτϵ

]
=

∫ τϵ

0

f(Bs) ds+ EBτϵ

[∫ τ

0

f(Bs) ds

]
=

∫ τϵ

0

f(Bs) ds−
1

2
u(Bτϵ).

Therefore

Ex [u(Bτϵ)]− u(x) =
1

2
Ex
[∫ τϵ

0

f(Bs) ds

]
=

(
f(x)

2
+ o(1)

)
Exτϵ.

On the other hand, by Taylor’s theorem and the martingale property of ((Bjt − x)2 − t)t≥0 under Px,

Ex [u(Bτϵ)]− u(x) = Ex
[
∇u(x)⊤(Bτϵ − x) +

1

2
(Bτϵ − x)⊤D2u(x)(Bτϵ − x)

]
+ o(ϵ2)

=

2∑
j=1

∂2u

∂x2j
(x)Ex[(Bjτϵ − x)

2] + o(ϵ2) =
∆u(x)

2
Exτϵ + o(ϵ2).

Since Exτϵ = ϵ2

d , the last two displays imply

|f(x)−∆u(x)| ≤ o(ϵ2)

Exτϵ
.
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Letting ϵ ↓ 0 gives ∆u(x) = f(x). Finally, to verify the boundary condition under the extorior cone condition,

we fix y ∈ ∂U and U ∋ xn → y. Then

• by Lemma 8.9, Pxn
(τ > η) = 0 as n→∞ for every η > 0;

• since U is bounded, supx∈U Exτ ≤ (diamU)2 <∞ and ∥u∥∞ ≤ (diamU)2

2 ∥f∥∞ <∞.

Then for any η > 0, by the simple Markov property at η,

|u(xn)| ≤
1

2
Exn

[∫ τ∧η

0

|f(Bs)|ds
]
+

1

2

∣∣∣∣Exn

[
1{τ>η}

∫ τ

η

f(Bs) ds

]∣∣∣∣
≤ η

2
∥f∥∞ +

∣∣Exn

[
1{τ>η}u(Bη)

]∣∣ ≤ η

2
∥f∥∞ + ∥u∥∞Pxn(τ > η)→ η

2
∥f∥∞.

Since η > 0 is arbitrary, we let η ↓ 0 to conclude that u(x)→ 0 as U ∋ x→ y ∈ ∂U .

Poisson’s equation and Green’s function. To determine if (8.16) solves the boundary-value problem

(8.15), it remains to study the differentiability of (8.16). By Propositions 8.20 and 8.21,

E
[∫ τ

0

f(Bt) dt

]
=

∫
U

G(x, y)f(y) dy =

∫
U

Φ(x, y)f(y) dy − Ex
[∫

U

Φ(Bτ , y)f(y) dy

]
.

For simplicity, we assume f ∈ C∞(U). We write

w(x) =

∫
U

Φ(x, y)f(y) dy,

so u(x) = w(x) − Ex[w(Bτ )]. Some fundamental results about convolution imply that w ∈ C∞(U), and by

Proposition 8.7, the function x 7→ Ex [w(Bτ )] is also smooth. Therefore u is the solution of (8.15). Further

studies show that one only requires f to be Hölder continuous to ensure that w ∈ C2(U).

Half-space. We let the dimension d ≥ 2, and consider the Brownian motion (Bt)0≤t≤τ in the upper half

space U = {(x1, · · · , xd) ∈ Rd : xd > 0}, where τ = {t ≥ 0 : Bt /∈ U}. Let

ỹ = (y1, · · · , yd−1,−yd)

be the reflection of any y = (y1, · · · , yd) ∈ Rd through the hyperplane {x ∈ Rd : xd = 0}.

Theorem 8.24. If x ∈ U and f ∈ Cc(U) is nonnegative, then

Ex
[∫ τ

0

f(Bt) dt

]
=

∫
U

Φ(x, y)f(y) dy −
∫
U

Φ(x, ỹ)f(y) dy, x ∈ U.

In other words, the Green’s function for the transient Brownian motion (Bt)0≤t≤τ is

G(x, y) = Φ(x, y)− Φ(x, ỹ), x, y ∈ U.

Proof. We define the reflected Brownian motion

B̃t = (B1
t , · · · , Bd−1

t ,−Bdt ), t ≥ 0.

By the strong Markov property, Bt
d
= B̃t on the event {τ ≥ t} under Px. Since supp f ⊂ U ,

Ex
[
f(Bt)− f(B̃t)

]
= Ex

[(
f(Bt)− f(B̃t)

)
1{τ>t}

]
+ Ex

[(
f(Bt)− f(B̃t)

)
1{τ≤t}

]
= Ex

[(
f(Bt)− f(B̃t)

)
1{τ>t}

]
= Ex

[
f(Bt)1{τ>t}

]
.
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Since f ≥ 0, we apply Tonelli’s theorem to obtain

Ex
[∫ τ

0

f(Bt)dt

]
=

∫ ∞

0

Ex
[
f(Bt)1{τ>t}

]
dt =

∫ ∞

0

∫
U

(pt(x, y)− pt(x, ỹ))f(y) dy dt

=

∫
U

∫ ∞

0

(pt(x, y)− pt(x, ỹ))f(y) dtdy =

∫
U

Φ(x, y)f(y) dy −
∫
U

Φ(x, ỹ)f(y) dy.

Thus we finish the proof.

Unit ball. We let the dimension d ≥ 2, and consider the Brownian motion (Bt)0≤t≤τ in the unit ball

B(0, 1) = {x ∈ Rd : |x| < 1}, where τ = {t ≥ 0 : Bt /∈ B(0, 1)}.

Theorem 8.25. If f is bounded and measurable then for each x ∈ B(0, 1),

Ex
[∫ τ

0

f(Bt) dt

]
=

∫
B(0,1)

G(x, y)f(y) dy,

where

G(x, y) = Φ(x, y)−
∫
∂B(0,1)

1− |x|2

|x− z|d
Φ(z, y) dΣ(z) = Φ(x, y)− Φ

(
x|y|, y

|y|

)
(8.17)

is the Green’s function for the transient Brownian motion (Bt)0≤t≤τ on B(0, 1). We use the continuous

extension of G(x, ·) at y = 0.

Proof. By Theorem 8.14 and Fubini’s theorem, for each x, y ∈ B(0, 1),

Ex
[∫ τ

0

f(Bt) dt

]
=

∫
B(0,1)

Φ(x, y)f(y) dy − Ex

[∫
B(0,1)

Φ(Bτ , y)f(y) dy

]

=

∫
B(0,1)

Φ(x, y)f(y) dy −
∫
B(0,1)

[∫
1− |x|2

|x− z|d
Φ(z, y) dΣ(z)

]
f(y) dy.

Then the first equality in (8.17) is valid. To show the second equality, ny Theorem 8.10, it suffices to show

that the second term is harmonic in x on B(0, 1) and equals Φ(x, y) on the boundary Sd−1 = ∂B(0, 1). Indeed,

when |x| = 1, ∣∣∣∣x|y| − y

|y|

∣∣∣∣2 = |x|2|y|2 − 2x⊤y + 1 = |y|2 − 2x⊤y + |x|2 = |x− y|2.

We fix 0 < |y| < 1. Then the mapping

x 7→ Φ

(
x|y| − y

|y|

)
=

Φ
(
x, y

|y|2

)
− 1

π log |y|, d = 2

|y|2−dΦ
(
x, y

|y|2

)
, d = 3

is harmonic on B(0, 1). For the case y = 0, note that

Φ(Bτ , 0) = Ex [Φ(Bτ , 0)] = lim
y→0

Φ

(
x|y|, y

|y|

)
is constant. Thus we finish the proof.
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8.3 Planar Brownian Motions and Holomorphic Functions

In this subsection, we focus on the planar case d = 2 and study the relation between holomorphic functions

and planar Brownian motions. We let B = (Bt)t≥0 be a 2-dimensional Brownian motion, where it is helpful

to identify R2 with the complex plane C. We write

Bt = Xt + iYt, t ≥ 0,

and say that B is a complex Brownian motion.

Let U ⊂ R2 be open. A function Φ : U → C is said to be holomorphic if it is complex differentiable in U .

A holomorphic function Φ(x, y) = u(x, y) + iv(x, y) satisfies the Cauchy-Riemann equation

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂u
.

By the Cauchy-Riemann equation, both the real and imaginary parts of Φ are harmonic. Consequently, both

(u(Bt))t≥0 and (v(Bt))t≥0 are continuous local martingales.

8.3.1 Conformal Martingales

We first introduce a special class of complex-valued local martingales.

Proposition 8.26. Let Z = X + iY be a continuous complex local martingale. Then there exists a unique

continuous complex finite variation process ⟨Z,Z⟩ with ⟨Z,Z⟩0 = 0, such that Z2 − ⟨Z,Z⟩ is a complex local

martingale. Furthermore, the following are equivalent:

(i) Z2 is a complex local martingale;

(ii) ⟨Z,Z⟩ = 0;

(iii) ⟨X,X⟩ = ⟨Y, Y ⟩ and ⟨X,Y ⟩ = 0.

Remark. A complex local martingale Z = (Zt)t≥0 satisfying the equivalent properties of the above statement

is called a conformal local martingale.

Proof. It suffices to define ⟨Z,Z⟩ by C× C-linearity:

⟨X + iY,X + iY ⟩ = ⟨X,X⟩ − ⟨Y, Y ⟩+ 2i⟨X,Y ⟩.

The uniqueness easily follows from Proposition 3.68.

The conformal local martingales have some nice properties.

Proposition 8.27. Let Z be a conformal local martingale, and Φ : C→ C be twice continuously differentiable

function (as a function of two real variables). Then

Φ(Zt) = Φ(Z0) +

∫ t

0

∂Φ

∂z
(Zs) dZs +

∫ t

0

∂Φ

∂z
(Zs) dZs +

1

4

∫ t

0

∆Φ(Zs) d⟨Z,Z⟩s. (8.18)

In particular, if Φ is harmonic, then (Φ(Zt))t≥0 is a local martingale. In addition, if Φ is holomorphic, then

Φ(Zt) = Φ(Z0) +

∫ t

0

Φ′(Zs) dZs. (8.19)

Furthermore, if ⟨X,X⟩∞ =∞ a.s., there exists (possibly on an enlargement of the probability space) a complex

Brownian motion (βt)t≥0 such that

Zt = β⟨X,X⟩t , t ≥ 0. (8.20)
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Proof. We write Φ = u+ iv. By Itô’s formula,

u(Zt) = u(Z0) +

∫ t

0

∂u

∂x
(Zs) dXs +

∫ t

0

∂u

∂y
(Zs) dYs +

1

2

(∫ t

0

∂2u

∂x2
(Zs) d⟨X,X⟩s +

∫ t

0

∂2u

∂y2
(Zs) d⟨Y, Y ⟩s

)
Since ∂u

∂z = 1
2
∂u
∂x −

i
2
∂u
∂y and ∂u

∂z = 1
2
∂u
∂x + i

2
∂u
∂y , and ⟨X,X⟩ = ⟨Y, Y ⟩ =

1
2 ⟨Z,Z⟩, we have

u(Zt) = u(Z0) +

∫ t

0

∂u

∂x
(Zs) d

Zs + Zs
2

+

∫ t

0

∂u

∂y
(Zs) d

Zs − Zs
2i

+
1

4

∫ t

0

∆u(Zs) d⟨Z,Z⟩s

= u(Z0) +

∫ t

0

∂u

∂z
(Zs) dZs +

∫ t

0

∂u

∂z
(Zs) dZs +

1

4

∫ t

0

∆u(Zs) d⟨Z,Z⟩s.

The same formula holds if we replace u with v. Hence (8.18) holds.

Furthremore, since ⟨X,Y ⟩ = 0 and ⟨X,X⟩ = ⟨Y, Y ⟩, we apply Theorem 5.14 to both X and Y and use

Corollary 5.15 to conclude the existence of a complex Brownian motion β such that (8.20) holds.

Finally, we study the conformal invariance property of complex Brownian motion, which asserts that the

image of complex Brownian motion under a holomorphic function is a time-changed complex Brownian motion.

Theorem 8.28 (Conformal invariance). Let Φ : C → C be a non-constant holomorphic function, and let

B = (Bt)t≥0 be a complex Brownian motion starting from z ∈ C. There exists a complex Brownian motion

β = (βt)t≥0 such that

Φ(Bt) = β⟨X,X⟩t for every t ≥ 0, Pz-a.s.,

where X = ReΦ(B) and

⟨X,X⟩t =
∫ t

0

|Φ′(Bs)|2 ds, t ≥ 0.

Furthermore, the mapping t 7→ ⟨X,X⟩t is strictly increasing.

Proof. If Φ is an entire function, so is Φ2, and Φ(B)2 is a continuous local martingale. By Proposition 8.26,

Φ(B) is a conformal local martingale. By (8.19),

Φ(Bt) = Φ(z) +

∫ t

0

Φ′(Bs) dBs.

For X = ReΦ(B), we have

⟨X,X⟩t =
∫ t

0

|Φ′(Bs)|2 ds, t ≥ 0.

Since Φ′ is holomorphic and not identically zero, it has at most countably zeroes in C, and

P (there exists t > 0 such that Φ′(Bt) = 0) = 0.

Therefore t 7→ ⟨X,X⟩t is strictly increasing.

Finally, following Proposition 8.27, it remains to show that ⟨X,X⟩∞ = ∞ a.s.. If ⟨X,X⟩∞ < ∞, by

Corollary 3.73, the process Xt would a.s. converge as t tends to infinity. On the other hand, since Φ is a

non-constant entire function, one can find two disjoint open sets U1, U2 ⊂ C with Φ(U1) ∩ Φ(U2) = ∅. By

recurrence of planar Brownian motion, both {t ≥ 0 : Bt ∈ U1} and {t ≥ 0 : Bt ∈ U2} are a.s. unbounded, and

Φ(Bt) cannot has a limit as t→∞. Thus we conclude the proof.

Remark. This conclusion remains true if Φ is a non-constant holomorphic function on C\N , where N is a set

satisfying that B hits N with zero probability. For example, we consider the holomorphic function Φ(z) = 1
z

on C\{0} and a complex Brownian motion B started from some z0 ̸= 0.
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8.3.2 The Skew-product Representation

We next study the decomposition of the planar Brownian motion in polar coordinates.

Theorem 8.29. Let B = (Bt)t≥0 be a complex Brownian motion started from z = reiθ ∈ C\{0}, where r > 0

and θ ∈ (−π, π]. Then there is a planar Brownian motion (β, γ) started from (log r, θ) under Pz, such that

Bt = exp (βHt
+ iγHt

) for every t ≥ 0, Pz-a.s.,

where

Ht =

∫ t

0

ds

|Bs|2
, t ≥ 0.

Proof. By the scaling and the rotational invariance of the Brownian motion, we may assume z = 1, where

r = 1 and θ = 0. We let W = (W 1,W 2) be a complex Brownian motion started from 0. By Theorem (8.28),

there exists a complex Brownian motion Z such that

eWt = ZCt , where Ct =

∫ t

0

e2W
1
s ds, t ≥ 0.

Consider the inverse function Ct of R+ → R+ : t 7→ Dt, which, by the formula for inverse functions, is

Ht =

∫ t

0

exp
(
−2W 1

Hs

)
ds =

∫ t

0

ds

|Zs|2
.

Therefore

Zt = exp (WHt
) = exp

(
W 1
Ht

+ iW 2
Ht

)
,

which is the desired result except we did not get it for B but for the complex Brownian motion Z introduced

in the course of the argument. To complete the proof, we let

βt = log
∣∣∣Binf{s≥0:

∫ s
0
|Br|−2 dr>t}

∣∣∣ and γt = argBinf{s≥0:
∫ s
0
|Br|−2 dr>t}, t ≥ 0.

Since β and γ are deterministic functions of B, there laws should be same if we replace B by another complex

Brownian motion Z started from 1. Hence (β, γ)
d
= (W1,W2), and (β, γ) are the desired Brownian motions.

Remark. We can write Ht as the inverse of its inverse, which is

Ht = inf

{
s ≥ 0 :

∫ s

0

e2βr dr > t

}
.

Consequently,

log |Bt| = βinf{s≥0:
∫ s
0
e2βr dr>t}.

Therefore |Bt| is completely determined by the Brownian motion β and independent of γ. Furthermore, the

the smaller the modulus of B, the more rapidly the argument of B varies.

8.3.3 Asymptotic Laws of Planar Brownian Motions

In this section, we apply the skew-product decomposition to certain asymptotic results for planar Brownian

motion. Let B = (Bt)t≥0 be a planar Brownian motion that starts from z ∈ C\{0}. We write

θt = argBt = γHt ,

which is the continuous determination of the argument of Bt.
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Winding and Unwinding. The argument θt of Bt is a time-changed one-dimensional Brownian motion

γHt
, where Ht =

∫ t
0
|Bs|−2 ds. If B0 = z ̸= 0, we fix the open disc D = B(z, |z|2 ). By Proposition 8.16, (Bt)t≥0

a.s. stays in the disc D for arbitrarily long time, and |Bs|−2 is bounded from below. Therefore H∞ =∞ a.s.,

and we have

lim sup
t→∞

θt =∞, lim inf
t→∞

θt = −∞, a.s..

In other words, the planar Brownian motion winds itself arbitrarily large numbers of times around 0, then

unwinds itself and does this infinitely often.

Next, we study the asymptotics of the random time change (Ht)t≥0. We fix β to be the Brownian motion

obtained in the skew-product representation of (Bt)t≥0. For each a > 0, write βat = a−1βa2t for the time-

scaling. For each such Brownian motion we look at the first hitting time of level b:

T ab = inf {t ≥ 0 : βat = b} , b ∈ R.

Lemma 8.30. For every ϵ > 0 and |z| = 1, we have

lim
t↑∞

Pz
(∣∣∣∣ 4Ht

(log t)2
− T

1
2 log t
1

∣∣∣∣ > ϵ

)
= 0.

Proof. Step I (Laplace’s method). We show that, for every continuous function f : [0, t]→ R,

lim
a↑∞

1

a
log

∫ t

0

eaf(s) ds = max
0≤s≤t

f(s).

By replacing f by its maximum in the limit, we obtain the upper bound. For the lower bound, we assume

f(r) = max0≤s≤t f(s) =M and by continuity fix δ > 0 such that f(s) > M − η for all |s− r| < δ. Then

1

a
log

∫ t

0

eaf(s) ds ≥ 1

a
log

∫ t∧(r+δ)

0∨(r−δ)
ea(M−η) ds =

log δ + a(M − η)
a

→M − η as a ↑ ∞.

Since η > 0 is arbitrary, we let η ↓ 0 to obtain the opposite inequality.

Step II. Since |z| = 1, we have β0 = 0 under Pz. By scaling we have T
1
2 log t
1+ϵ − T

1
2 log t
1−ϵ

d
= T 1

1+ϵ − T 1
1−ϵ. Then,

by the strong Markov property,

lim
ϵ↓0

Pz
(
T

1
2 log t
1+ϵ − T

1
2 log t
1−ϵ > η

)
= lim

ϵ↓0
Pz
(
T 1
1+ϵ − T 1

1−ϵ > η
)
= lim

ϵ↓0
Pz
(
T 1
2ϵ > η

)
= 0.

Since T
1
2 log t
1+ϵ < T

1
2 log t
1 < T

1
2 log t
1−ϵ , it suffices to show that

lim
t↑∞

Pz
(

4Ht

(log t)2
> T

1
2 log t
1+ϵ

)
= 0 and lim

t↑∞
Pz
(

4Ht

(log t)2
< T

1
2 log t
1−ϵ

)
= 0.

We are going to prove the first result.

Step III. We write a = 1
2 log t. Then{

4Ht

(log t)2
> T

1
2 log t
1+ϵ

}
=

{∫ a2Ta
1+ϵ

0

e2βs ds < t

}
=

{
1

2a
log

∫ a2Ta
1+ϵ

0

e2βs ds < 1

}
. (8.21)

Note that

1

2a
log

∫ a2Ta
1+ϵ

0

e2βs ds =
log a

a
+

1

2a
log

∫ Ta
1+ϵ

0

exp (2aβas ) ds
d
=

log a

a
+

1

2a
log

∫ T 1
1+ϵ

0

exp (2aβs) ds.

221



By the Laplace’s method (Step I), almost surely,

lim
a↑∞

1

2a
log

∫ T 1
1+ϵ

0

exp (2aβs) ds = sup
0≤s≤T 1

1+ϵ

βs = 1 + ϵ.

By (8.21), for each ϵ > 0, we have

lim
t↑∞

Pz
(

4Ht

(log t)2
> T

1
2 log t
1+ϵ

)
= lim
a↑∞

Pz

(
1

2a
log

∫ a2Ta
1+ϵ

0

e2βs ds < 1

)

= lim
a→∞

Pz

(∣∣∣∣∣ log aa +
1

2a
log

∫ T 1
1+ϵ

0

exp (2aβs) ds− (1 + ϵ)

∣∣∣∣∣ > ϵ

)
= 0.

Step IV. In the same way one can show that

lim
t↑∞

Pz
(

4Ht

(log t)2
< T

1
2 log t
1−ϵ

)
= 0,

which finishes the proof.

Remark. Since the law of T a1 does not depend on the choice of a, this lemma implies that

4Ht

(log t)2
d→ T1 := {t > 0 : βt = 1}

as t ↑ ∞. The density of the limiting distribution is given by Corollary 4.36.

Next, we study the typical size of the argument θt of a planar Brownian motion (Bt)t≥0 when t is large.

Theorem 8.31 (Spitzer’s law). Let (θt)t≥0 be the continuous determination of the argument of the complex

Brownian motion B started from z ∈ C\{0}. Then for every x ∈ R,

lim
t↑∞

Pz
(

2θt
log t

≤ x
)
≤
∫ x

−∞

1

π(1 + y2)
dy.

In other words, as t ↑ ∞, the law of 2θt
log t converges to a standard symmetric Cauchy distribution.

Proof. By scaling we may assume |z| = 1. Given a > 0, we define γat = a−1γa2t, t ≥ 0. Then

a−1θt = a−1γHt
= γaa−2Ht

.

By Lemma 8.30, for a = 1
2 log t, we have a−2Ht − T a1 → 0 in probability as t ↑ ∞, and

lim
t↑∞

Pz
(∣∣∣∣ 2θtlog t

− γaTa
1

∣∣∣∣ > ϵ

)
= 0, for all ϵ > 0.

Since β and γ are independent, the law of γaTa
1
does not depend on the choice of a > 0. Hence 2θt

log t converges

to γT1
in distribution, where T1 = {t ≥ 0 : βt = 1}. By Proposition 4.40, the characteristic function of γT1

is

E
[
eiλγT1

]
= E

[
E
[
eiλγT1 |T1

]]
= E

[
e−

1
2λ

2T1

]
= e−|λ|,

which is the characteristic function of the standard Cauchy distribution.

Next we study the law of minimum modulus. We know that a planar Brownian motion stated from z ̸= 0

hits the origin with probability zero, but inf0≤s≤t |Bs| → 0 as t ↑ ∞ by the neighborhood recurrence property.
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Proposition 8.32. Let B = (Bt)t≥0 be a planar Brownian motion started from z ̸= 0. Then for every b > 0,

lim
t↑∞

Pz
(

min
0≤s≤t

|Bs| ≤ t−b
)
≤ 1

1 + 2b
.

Proof. We may also take |z| = 1 by scaling. Then

log

(
min
0≤s≤t

|Bs|
)

= min
0≤s≤t

βHs
= min

0≤s≤Ht

βs.

Let a = 1
2 log t. Then

2

log t
log

(
min
0≤s≤t

|Bs|
)

=
1

a
min

0≤s≤Ht

βs = min
0≤s≤a−2Ht

βas .

By Lemma 8.30,

min
0≤s≤a−2Ht

βas − min
0≤s≤Ta

1

βas → 0 in probability as t ↑ ∞.

Since the law of min0≤s≤Ta
1
βas does not depend on a,

2

log t
log

(
min
0≤s≤t

|Bs|
)
→ min

0≤s≤T1

βs in distribution.

To get the desired result, we fix b > 0, define T−2b = inf{t ≥ 0 : βt = −2b} and note that

Pz
(

min
0≤s≤T1

βs ≤ −2b
)

= Pz (T−2b < T1) =
1

1 + 2b
.

Then combining the last two displays completes the proof.

Finally, we introduce the Kallianpur-Robbins law for the time spent by Brownian motion in a disc.

Theorem 8.33 (Kallianpur-Robbins). Let B = (Bt)t≥0 be a complex Brownian motion started from z ∈ C.
Then for any R > 0,

2

log t

∫ t

0

1{|Bs|<R} ds

converges in distribution as t ↑ ∞ to an exponential distribution with mean R2.

Proof. We fix t > 0 and let a = 1
2 log t. Then

2

log t

∫ t

0

1{|Bs|<R}ds =
1

a

∫ t

0

1{βHs<logR} ds =
1

a

∫ Ht

0

1{βs<logR}e
2βs ds

= a

∫ a−2Ht

0

1{βa
s<a

−1 logR}e
2aβa

s ds = a

∫ a−1 logR

−∞
e2axLxa−2Ht

(βa) dx =

∫ R

0

rLa
−1 log r
a−2Ht

(βa) dr, (8.22)

where the last second equality follows from the occupation time formula [Proposition 7.8], and we apply the

change of variable r = eax in the last one. As t ↑ ∞, we have a−1 log r ↓ 0 for every r > 0, and a−2Ht−T a1 → 0

in probability by Lemma 8.30. From the joint continuity of Brownian local times [Theorem 7.12], for every

ϵ ∈ (0, R), as t ↑ ∞,

sup
ϵ≤r≤R

∣∣∣La−1 log r
a−2Ht

(βa)− L0
Ta
1
(βa)

∣∣∣→ 0 in probability.

By (8.22), we have ∣∣∣∣ 2

log t

∫ t

0

1{|Bs|<R}ds−
R2

2
L0
Ta
1
(βa)

∣∣∣∣→ 0 in probability.

Since L0
Ta
1
(βa)

d
= L0

T 1(β) for each a > 0, the desired result follows from Proposition 7.16.
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9 General Random Walks

9.1 Donsker’s Invariance Principle

In this section, we discuss the approximation of general random walks by Brownian motions. What we are

interested in is the behavior of the partial sum sequence

Sn = X1 +X2 + · · ·+Xn,

whereX1, X2, · · · ∼ F are square-integrable i.i.d. random variables. One important conclusion we will use is the

Skorokhod’s embedding theorem, which asserts that any L2 random variable can be viewed as the Brownian

motion evaluated at an appropriate stopping time.

Theorem 9.1 (Skorokhod’s embedding theorem). Let X be a random variable with EX = 0 and E[X2] <∞,

and (Bt)t≥0 a Brownian motion starting at B0 = 0. Then there exists stopping time τ for the Brownian motion

such that Bτ
d
= X and E[τ ] = E[X2].

Proof. We first assume X is supported on a two point set {a, b}, where a < 0 < b. Then

E[X2] = a2P(X = a) + b2P(X = b) = −ab.

We choose τ = τa,b = inf{t > 0 : Bt ∈ {a, b}}, which is the exit time from [a, b]. By Proposition 4.41, we have

Bτ
d
= X and E[τ ] = −ab = E[X2]. To handle the general case, we approximate the distribution of X by a

mixture of two-point distributions. Here we use the binary splitting martingale.

Definition 9.2 (Binary splitting martingale). A discrete-time martingale (Xn)
∞
n=0 is said to be binary splitting

if, whenever the event

A(x0, x1, · · · , xn) = {X0 = x0, X1 = x1, · · · , Xn = xn}

for some x0, x1, · · · , xn ∈ R has positive probability, the random variable Xn+1 conditioned on the event

A(x0, x1, · · · , xn) is supported on at most two values.

One can approximate a square-integrable random variable with a binary splitting martingale.

Lemma 9.3 (Dubins’ embedding theorem). Let X be a random variable with E[X2] <∞. Then there exists

a binary splitting martingale (Xn)
∞
n=1 such that Xn → X a.s. and in L2.

Proof. Let X0 = EX, and define, iteratively, for all n ∈ N that

ξn = 1{X≥Xn} − 1{X<Xn}, Gn = σ(ξ0, ξ1, · · · , ξn−1), and Xn = E[X|Gn].

Then (Xn)
∞
n=0 is a binary splitting martingale. Since supn∈N E[X2

n] ≤ E[X2] <∞, by martingale convergence

theorems [Theorem 3.32 and 3.36], Xn converges a.s. and in L2 to X∞ := E[X|G∞], where G∞ = σ (
⋃∞
n=0 Gn).

Now it remains to show that X∞ = X. We claim that

|X −X∞| = lim
n→∞

ξn(X −Xn+1), a.s.. (9.1)

In fact, if X(ω) = X∞(ω) then both sides are 0. If X(ω) < X∞(ω), there exists N(ω) > 0 so that ξn(ω) = −1
for all n ≥ N(ω). The case X(ω) > X∞(ω) is symmetric. Then

E [ξn(X −Xn+1)] = E [ξnE [X −Xn+1|Gn]] = 0.

Since the collection (|X −Xn+1|)n∈N is uniformly integrable, (9.1) implies E|X −X∞| = 0.
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Proof of Theorem 9.1 (Continued). We take the binary splitting martingale constructed in Lemma 9.3. Then

X1 is supported on the two points a1 = E[X1{X<0}] and b1 = E[X1{X≥0}]. We take the exit time τ1 =

inf{t ≥ 0 : Bt /∈ (a1, b1)}, then Bτ1
d
= X1, and E[τ1] = E[X2

1 ].

Conditional on Bτ1 = a1, we take a21 = E[X1{X<a1}] and b21 = E[X1{a1≤X<0}], so X2 is supported on

the two-point set {a21, b21}. On the event {Bτ1 = a1}, we may take τ2 = inf
{
t ≥ τ1 : Bt /∈ (a21, b

2
1)
}
. Then

(Bτ2 |Bτ1 = a1)
d
= (X2|X1 = a1), and E[τ21{Bτ1=a

1}] = E[X2
21{X1=a1}]. Similarly, conditional on Bτ1 = b1,

we take τ2 = inf
{
t ≥ τ1 : Bt /∈ (a22, b

2
2)
}
, where a22 = E[X1{0≤X<b1}] and b22 = E[X1{X≥b1}]. Then similar

properties hold on the event {Bτ1 = a1}, and we conclude that Bτ2
d
= X2, and E[τ2] = E[X2

2 ].

Repeating this approach, we can find an increasing sequence of stopping times τ1 ≤ τ2 ≤ · · · such that

Bτn
d
= Xn and E[τn] = E[X2

n] for all n ∈ N. In fact, Bτn determines which of the 2n regions of the real line

the limit limm→∞Bτm should lie in. By Proposition 3.12, τn ↑ τ a.s. for some stopping time τ . Furthermore,

by monotone convergence theorem and Lemma 9.1,

E[τ ] = lim
n→∞

E[τn] = lim
n→∞

E[X2
n] = E[X2].

Since Bτn converges in distribution to X and a.s. to Bτ by continuity, we have Bτ
d
= X.

Skorokhod’s second embedding theorem concerns about extracting a random walk from a Brownian motion.

Theorem 9.4 (Skorokhod’s embedding theorem). Let (Bt)t≥0 be a Brownian motion starting at B0 = 0. Let

X1, X2, · · · be an i.i.d. sequence with a distribution F , which has mean 0 and finite variance. Define

Sn = X1 + · · ·+Xn, n = 0, 1, 2, · · · .

Then there exists an increasing sequence of stopping times 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · for (Bt)t≥0 satisfying

(i) Bτn
d
= Sn for all n = 0, 1, 2, · · · , and

(ii) The increments (τn − τn−1)
∞
n=1 are i.i.d..

Proof. Following Theorem 9.1, let τ1 be a stopping time with Bτ1
d
= X1 and E[τ1] = E[X2

1 ]. By the strong

Markov property, Bτ1+ · = (Bτ1+t −Bτ1)t≥0 is a Brownian motion independent of Fτ1 .

With τn−1 fixed, we follow the same approach on the Brownian motion Bτn−1+ · and take τn be a stopping

time such that Bτn − Bτn−1

d
= Xn and E[τn − τn−1] = E[X2

n], and τn − τn−1
d
= τ1. The increment τn − τn−1

independent of Fτn−1
. Thus we find the desired sequence (τn).

Corollary 9.5 (Central limit theorem). If (Xn)
∞
n=1 is an i.i.d. sequence with mean 0 and variance 1, then

1√
n

n∑
j=1

Xj
d→ N(0, 1).

Proof. By Brownian scaling, for each n ∈ N, we define a Brownian motion by Wn(t) =
Bnt√
n

d
= Bt. Then

Sn√
n

d
=
Bτn√
n

=Wn

(τn
n

)
.

By the weak law of large numbers, τnn → E[X2
1 ] = 1 in probability. For any ϵ > 0, we pick δ > 0 such that

P (∃t ∈ (1− δ, 1 + δ) such that |Bt −B1| > ϵ) <
ϵ

2
.

Next, we take N > 0 great enough so that P
(∣∣ τn

n − 1
∣∣ ≥ δ) < ϵ

2 . Then P
(∣∣Wn

(
τn
n

)
−Wn(1)

∣∣ > ϵ
)
< ϵ for all

n ≥ N . Since ϵ > 0 is arbitrary, Wn

(
τn
n

)
−Wn(1)

P→ 0, and Wn

(
τn
n

)
→ N(0, 1) by Slutsky’s lemma.
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Next, we will derive a functional central limit theorem for general random walks. For an i.i.d. sequence

X1, X2, · · · with mean 0 and variance 1, we consider the random walk Sn = X1+X2+ · · ·+Xn as a continuous

time process by defining

S(t) = S⌊t⌋ + (t− ⌊t⌋)
(
S⌊t⌋+1 − S⌊t⌋

)
, t ≥ 0.

In other words, we fix S(n) = Sn at all nonnegative integer points n ∈ N and take S(·) to be the linear

interpolation on each interval [n, n+ 1].

Theorem 9.6 (Donsker’s invariance principle). Let X1, X2, · · · be a sequence of i.i.d. random variables with

mean 0 and variance 1, and Sn = X1 +X2 · · ·+Xn. Define

S(t) = S⌊t⌋ + (t− ⌊t⌋)
(
S⌊t⌋+1 − S⌊t⌋

)
, t ≥ 0.

Then on the space C([0, 1]) equipped with the uniform topology,(
S(nt)√

n

)
t∈[0,1]

→ (Bt)t∈[0,1] weakly

as n→∞. Essentially, for each bounded contionuous function ψ on C([0, 1]),

Eψ
(
S(n·)√
n

)
→ Eψ(B). (9.2)

Proof. For each n ∈ N and 1 ≤ m ≤ n, we take Xn,m
d
= Xm/

√
n and Sn,m = Xn,1+ · · ·+Xn,m

d
= Sm/

√
n. By

Skorokhod embedding theorem, we take stopping times τn1 , · · · , τnn such that Sn,m = Bτn
m
. In fact, we at first

fix (Bt)t≥0 to be a Brownian motion independent of n, and then define the triangular random variable array

(Xn,m)n∈N,1≤m≤n in the same probability space.

Let τ1, τ2, · · · be the stopping times constructed in Theorem 9.4. By the scaling invariance of Brownian

motions, Bnt/
√
n is also a Brownian motion, and τnm

d
= τm/n. Hence for each s ∈ [0, 1], by the weak law of

large numbers, we have τn⌊ns⌋ → s in distribution, and also in probability. Next, we need the following lemma

to control the error between S∗ and B:

Lemma 9.7. If τn⌊ns⌋ → s in probability for each s ∈ [0, 1], then

sup
t∈[0,1]

|S∗
n(nt)−Bt| → 0 in probability

as n→∞, where S∗
n(nt) = Sn,⌊nt⌋ + (nt− ⌊nt⌋)

(
Sn,⌊nt⌋+1 − Sn,⌊nt⌋

) d
= S(nt)/

√
n.

Proof of Lemma 9.7. Since t 7→ Bt is uniformly continuous on the compact interval [0, 1] (in fact, Hölder

continuous with exponent 0 < γ < 1
2 ), for any ϵ > 0, there exists δ > 0 such that 1/δ ∈ N and

P (|Bt −Bs| < ϵ for all t, s ∈ [0, 1] and |t− s| < 2δ) > 1− ϵ. (9.3)

Note that τn⌊ns⌋ → s in probability. We take Nδ ≥ 1/δ such that for all n ≥ Nδ,

P
(∣∣τn⌊nkδ⌋ − kδ∣∣ < δ for all k = 1, 2, · · · , 1/δ

)
≥ 1− ϵ. (9.4)

Since m 7→ τnm is increasing, for s ∈ (kδ − δ, kδ), we have

τn⌊n(k−1)δ⌋ − kδ ≤ τ
n
⌊ns⌋ − s ≤ τ

n
⌊nkδ⌋ − (k − 1)δ.
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Under the event in (9.4), the above bound is controlled by ±2δ. Hence for all n ≥ Nδ,

P
(∣∣τn⌊ns⌋ − s∣∣ < 2δ for all s ∈ [0, 1]

)
≥ 1− ϵ. (9.5)

On the intersection of the two events (9.3) and (9.5), we have∣∣Sn,m −Bm
n

∣∣ = ∣∣Bτm
n
−Bm

n

∣∣ < ϵ, for all 1 ≤ m ≤ n.

To deal with the interpolation, we let t = m+θ
n , where m ∈ N and θ ∈ (0, 1). By the triangle inequality,

|S∗
n(nt)−Bt| ≤ (1− θ)|Sn,m −Bm

n
|+ θ|Sn,m+1 −Bm+1

n
|+ (1− θ)|Bt −Bm

n
|+ θ|Bt −Bm+1

n
| < 2ϵ

for all n ≥ Nδ. Since ϵ is arbitrary, we conclude the proof.

Proof of Theorem 9.6. We take ψ to be a bounded continuous function on C([0, 1]). It remains to show that

Eψ(S∗
n(n·))− Eψ(B)→ 0.

We fix ϵ > 0, and let Gϵ,δ = {ω ∈ C([0, 1]) : if ∥ω − ω̃∥∞ < δ then |ψ(ω)− ψ(ω̃)| < ϵ} for δ > 0. Since ψ is

continuous, Gϵ,δ ↑ C([0, 1]) as δ ↓ 0. Let Rn = ∥S∗
n(n·)−B∥∞. Then

|Eψ(S∗
n(n·))− Eψ(B)| ≤ E

[
|ψ(S∗

n(n·))− ψ(B)|1Gϵ,δ∩{Rn<δ}
]
+ E

[
|ψ(S∗

n(n·))− ψ(B)|1Gc
ϵ,δ∪{Rn≥δ}

]
≤ ϵ+ 2∥ψ∥∞

(
P(Gcϵ,δ) + P (Rn ≥ δ)

)
.

We can bound |Eψ(S∗
n(n·))− Eψ(B)| by 2ϵ by choosing small enough δ and then large enough n. Since ϵ > 0

is arbitrary, we complete the proof of Theorem 9.6.

Remark. (I) For any M ∈ N, by considering a similar triangular array (Xn,m)n∈N,1≤m≤nM , we can conclude(
S(nt)√

n

)
t∈[0,M ]

→ (Bt)t∈[0,M ] weakly

on the space C([0,M ]) equipped with the uniform topology.

(II) According to our proof, the identity (9.2) remains valid if ψ is bounded andW -a.s. continuous on C([0, 1]),

where W is the Wiener measure on C([0, 1]).

With a subtle remark on the topology of the continous function space, we can extend this result to [0,∞).

Theorem 9.8 (Donsker’s invariance principle). Let X1, X2, · · · be a sequence of i.i.d. random variables with

mean 0 and variance 1, and Sn = X1 +X2 · · ·+Xn. Define

S(t) = S⌊t⌋ + (t− ⌊t⌋)S⌊t⌋+1, t ≥ 0.

Then on the space C([0,∞)) equipped with the compact convergence topology, as n→∞,(
S(nt)√

n

)
t≥0

→ (Bt)t≥0 weakly.

Proof. The compact convergence topology on C([0,∞)) is induced by the metric

d(ω, ω̃) =

∞∑
M=1

2−M
supt∈[0,M ] |ω(t)− ω̃(t)|

1 + supt∈[0,M ] |ω(t)− ω̃(t)|
, ω, ω̃ ∈ C((0,∞]).
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We claim that d
(S∗

n(n·)√
n
, B
)
→ 0 in probability. In fact, by Lemma 9.7, for all M > 0,

sup
t∈[0,M ]

∣∣∣∣S∗
n(nt)√
n
−Bt

∣∣∣∣→ 0 in probability.

Given any ϵ > 0, we choose Mϵ > 0 such that
∑∞
M=Mϵ+1 2

−M < ϵ, and Nϵ > 0 such that if n ≥ Nϵ,

P

(
sup

t∈[0,M ]

∣∣∣∣S∗
n(nt)√
n
−Bt

∣∣∣∣ > ϵ

)
<

ϵ

Mϵ
, for M = 1, 2, · · · ,Mϵ.

We take a union bound over all 1 ≤M ≤Mϵ to conclude that, with probability at least 1− ϵ,

d

(
S∗
n(n·)√
n

,B

)
≤

Mϵ∑
M=1

2−M
supt∈[0,M ]

∣∣∣S∗
n(nt)√
n
−Bt

∣∣∣
1 + supt∈[0,M ]

∣∣∣S∗
n(nt)√
n
−Bt

∣∣∣ +
∞∑

M=Mϵ+1

2−M < 2ϵ.

Since ϵ > 0 is arbitrary, our claim is true.

Let ψ be a bounded continuous function on the space C((0,∞]) with the compact convergence topology.

Then the final part of our proof of Theorem 9.6 can be adapted by replacing

Gϵ,δ = {ω ∈ C((0,∞]) : if d(ω, ω̃) < δ then |ψ(ω)− ψ(ω̃)| < ϵ}

and Rn = d
(S∗

n(n·)√
n
, B
)
. Thus we complete our proof.

9.1.1 The Law of Iterated Logarithm

We can generalize the Law of Iterated Logarithm [Theorem 4.30] to random walks.

Theorem 9.9 (Hartman-Wintner). Let X1, X2, · · · be a sequence of i.i.d. random variables with mean 0 and

variance 1, and Sn = X1 +X2 · · ·+Xn. Then

lim sup
n→∞

Sn√
2n log log n

= 1 a.s..

Proof. As in the proof of Donsker’s invariance principle, we choose stopping times τ1, τ2, · · · with Sn = Bτn
and τn/n→ 1 a.s.. Following Theorem 4.30, it suffices to show that

lim sup
t↑∞

S⌊t⌋ −Bt√
t log log t

= 0 a.s..

Step I. Fix ϵ > 0. With probability 1, there exists t0(ω) such that t
1+ϵ ≤ τ⌊t⌋ ≤ (1 + ϵ)t for all t > t0(ω). We

let Mt = sup{|Bs −Bt|, t
1+ϵ ≤ s ≤ t(1 + ϵ)}, and tk = (1 + ϵ)k. If tk ≤ t ≤ tk+1,

Mt ≤ sup
s,r∈[tk−1,tk+2]

|Bs −Br| ≤ 2 sup
s∈[tk−1,tk+2]

|Bs −Btk−1
|. (9.6)

Note that tk+2 − tk−1 = δtk−1, where δ = (1 + ϵ)3 − 1. By scaling, for h > 0,

P

(
sup

s∈[tk−1,tk+2]

|Bs −Btk−1
| >
√
δh

)
= P

(
sup
s∈[0,1]

|Bs| >
√
h

)
≤ 2P

(
sup
s∈[0,1]

Bs >
√
h

)

=
4√
2π

∫ ∞

√
h

e−x
2/2 dx ≤

√
8

πh
e−h/2,
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where the last estimate is from the tail bound in the proof of Theorem 4.30. We set h = 3tk−1 log log tk−1 for

large enough k in the last display to obtain

P

(
sup

s∈[tk−1,tk+2]

|Bs −Btk−1
| >

√
3δtk−1 log log tk−1

)
≤

√
8((k − 1) log(1 + ϵ))−3tk−1

3(1 + ϵ)k−1(log(k − 1) + log log(1 + ϵ))
.

By Borel-Cantelli lemma, the above events occur for only finitely many k. By (9.6), for large enough t,

|S⌊t⌋ −Bt| = |Bτ⌊t⌋ −Bt| ≤Mt ≤
√
3δtk−1 log log tk−1 ≤

√
3δt log log t,

where we choose k to be such that (1 + ϵ)k = tk ≤ t ≤ tk+1 = (1 + ϵ)k+1. Hence with probability 1,

lim sup
t↑∞

S⌊t⌋ −Bt√
t log log t

≤
√
3δ.

Since δ = (1 + ϵ)3 − 1 and ϵ > 0 is arbitrary, we set ϵ ↓ 0 to conclude the proof.

9.1.2 The Arcsine Laws

In this part we extend the arcsine laws we discuss in Proposition 4.46 to random walks, and also introduce

another arcsin law for the positive set of one-dimensional Brownian motions.

Proposition 9.10 (Last sign change). Let X1, X2, · · · be a sequence of i.i.d. random variables with mean 0

and variance 1, and the associated random walk Sn = X1 + X2 · · · + Xn. Define Ln to be the last time the

random walk changes its sign before time n, i.e.

Ln = max{1 ≤ k ≤ n : SkSk−1 ≤ 0}.

Then Ln

n converges in law to the arcsine distribution.

Proof. We define a function ψ : C([0, 1])→ [0, 1] by

ψ(ω) = sup{t ∈ [0, 1] : ω(t) = 0}, ω ∈ C([0, 1]).

Then ψ is continuous at every function ω ∈ C([0, 1]) such that ω takes positive and negative values in every

neighbourhood of every zero and ω(1) ̸= 0. To see this, we fix such a function ω ∈ C([0, 1]) and ϵ > 0. Let

δ0 = inft∈[ψ(ω)+ϵ,1] |ω(t)|, and take δ1 > 0 with (−δ1, δ1) ⊂ ω((ψ(ω) − ϵ, ψ(ω) + ϵ)). For any 0 < δ < δ0 ∧ δ1
and ω̃ ∈ C([0, 1]) with ∥ω̃ − ω∥∞ < δ, the function ω̃ has no zero in (ψ(ω) + ϵ, 1] but has at least one zero

in (ψ(ω) − ϵ, ψ(ω) + ϵ), since there exists s, t ∈ (ψ(ω) − ϵ, ψ(ω) + ϵ) with ω̃(s) < 0 and ω̃(t) > 0. Thus

|ψ(ω)− ψ(ω̃)| < ϵ, which shows that ψ is almost everywhere on C([0, 1]) under the Wiener measure.

By Donsker’s invariance principle and the Portmanteau lemma,

ψ

(
S(n·)√
n

)
d→ ψ(B) as n→∞.

Also note that ∣∣∣∣ψ(S(n·)√
n

)
− Ln

n

∣∣∣∣ ≤ 1

n
,

which converges to 0. By Slutsky’s lemma, Ln

n → ψ(B), which is arcsine distributed.

Now we are going to introduce another arcsine law for Brownian motions.
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Lemma 9.11 (Richard). Let (Sn)
∞
n=0 be the simple, symmetric random walk on integers. Then for all n ∈ N,

|{k ∈ {1, 2, · · · , n} : Sk > 0}| d= min

{
k ∈ {0, 1, · · · , n} : Sk = max

1≤j≤n
Sj

}
(9.7)

Proof. We let Xk = Sk − Sk−1 for each k = 1, · · · , n. We rearrange the tuple (X1, · · · , Xn) as follows:

• For the terms Xk with Sk > 0, place them in decreasing order of index k.

• For the terms Xk with Sk ≤ 0, append them in increasing order of index k.

We denote by (Y1, · · · , Yn) the rearranged tuple, and write S′
k = Y1 + · · · + Yk for the corresponding partial

sums. We first claim that (X1, · · · , Xn)
d
= (Y1, · · · , Yn).

(i) If all partial sums are nonpositive, then trivially the conditional distributions are the same.

(ii) Otherwise, we condition on the event max{j ∈ {1, · · · , n} : Sj > 0} = k, so Y1 = Xk. Then the tuples

(X1, · · · , Xk) and (Xk+1, · · · , Xn)
d
= (Yk+1, · · · , Yn) are conditionally independent. Furthermore, the

i.i.d. increments X1, · · · , Xk are conditionally exchageable (conditioned on Sk = 1 if k < n, or Sn ≥ 1

if k = n). Hence the conditional law of (Xk, X1, · · · , Xk−1) remains the same. Repeating this argument

now for (X1, · · · , Xk−1), we see after finitely many steps that the two tuples have the same law.

As a consequence, we have (S1, · · · , Sn)
d
= (S′

1, · · · , S′
n). We check that

|{k ∈ {1, 2, · · · , n} : Sk > 0}| d= min

{
k ∈ {0, 1, · · · , n} : S′

k = max
1≤j≤n

S′
j

}
.

Indeed, this holds trivially for n = 1. When Xn+1 is appended there are two possibilities:

• if Sn+1 ≤ 0, then Yn+1 = Xn+1, and the position of the leftest maximum in (S′
k)
n+1
k=1 does not change.

• if Sn+1 > 0, then Y1 = Xn+1, and the position of the leftest maximum in (S′
k)
n+1
k=1 is shifted by one

position to the right.

Thus we complete thr proof by induction.

Theorem 9.12 (Lévy’s Arcsine law). Let (Bt)t≥0 be a Brownian motion starting at B0 = 0. Then the

Lebesgue measure of the positive set of B in [0, 1] satisfies the arcsine law, i.e.

P (m {s ∈ [0, 1] : Bs > 0} ≤ t) = 2

π
arcsin(

√
t),

where m is the Lebesgue measure on [0, 1].

Proof. We define a function ϕ : C([0, 1])→ [0, 1] by

ϕ(ω) = inf

{
t ∈ [0, 1] : ω(t) = max

s∈[0,1]
ω(s)

}
, ω ∈ C([0, 1]).

Then ϕ is continuous at every function ω ∈ C([0, 1]) with a unique maximum, hence almost everywhere

continuous under the Wiener measure. To see this, we fix such a function with ω ∈ C([0, 1]) and ϵ > 0. Let

M1 be the supremum of ω on [0, ϕ(ω) − ϵ] ∪ [ϕ(ω) + ϵ] and M0 = maxt∈[0,1] ω(t). Then for all ω̃ ∈ C([0, 1])
with ∥ω̃−ω∥∞ < 1

2 (M0−M1), we have |ϕ(ω̃)−ϕ(ω)| < ϵ, which shows the almost everywhere continuity of ϕ.

By Donsker’s invariance principle, the right-hand side of (9.7) divide by n converges in distribution to ϕ(B),

which has the arcsine distribution by Theorem 4.46. Next, we define a function ψ : C([0, 1])→ [0, 1] by

ψ(ω) = m {t ∈ [0, 1] : ω(t) > 0} , ω ∈ C([0, 1]),

which is continuous at every ω ∈ C([0, 1]) with the property

lim
ϵ↓0

m {t ∈ [0, 1] : ω(t) ∈ (−ϵ, ϵ)} = 0, (9.8)
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because for every ω̃ ∈ C([0, 1]) with ∥ω̃ − ω∥∞ < ϵ, one have

m {t ∈ [0, 1] : ω(t) > ϵ} ≤ ψ(ω̃) ≤ m {t ∈ [0, 1] : ω(t) > −ϵ}.

The property (9.8) is equivalent to the property m {t ∈ [0, 1] : ω(t) = 0} which the Brownian motion has

almost surely, hence ψ is almost everywhere continuous on C([0, 1]) under the Wiener measure. Note that∣∣∣∣ |k ∈ {1, · · · , n} : Sk > 0|
n

−m
{
t ∈ [0, 1] :

S(nt)√
n

> 0

}∣∣∣∣ ≤ |k ∈ {1, · · · , n} : Sk = 0|
n

,

which converges to 0 in probability, since

1

2n

n∑
k=0

P(S2k = 0) =
1

2n

n∑
k=0

2−2k

(
2k

k

)
∼ 1

2n

n∑
k=0

√
1

πk
→ 0.

Again by Donsker’s invariance principle, the left-hand side of (9.7) divided by n converges in distribution to

ψ(B) = m {t ∈ [0, 1] : Bt > 0}. This complete the proof.

Corollary 9.13 (Arcsine laws for random walks). Let X1, X2, · · · be a sequence of i.i.d. random variables

with mean 0 and variance 1, and the associated random walk Sn = X1 +X2 · · ·+Xn.

(i) (First maximum). Let

Un = inf

{
1 ≤ k ≤ n : Sk = max

1≤j≤n
Sj

}
.

(ii) (Occupation times of half-lines). Let

Mn =

n∑
j=1

1{Sj>0}.

Then both Un/n and Mn/n converge in law to the arcsine distribution as n→∞.

Proof. We use the almost everywhere continuity of the mappings ϕ and ψ we constructed in the proof of

Theorem 9.12 and apply Donsker’s invariance principle.
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9.2 Martingale Central Limit Theorem

9.2.1 Square Integrable Martingales and Brownian Embedding

Theorem 9.14. If (Sn)
∞
n=0 is a square-integrable martingale started from S0 = 0, then limn→∞ Sn exists and

is a.s. finite on the event{ ∞∑
n=1

E
[
(Sn − Sn−1)

2|Fn−1

]
<∞

}
, where Fn = σ(S0, S1, · · · , Sn).

Proof. Let Vn =
∑∞
n=1 E

[
(Sn − Sn−1)

2|Fn−1

]
. By the martingale property,

E

[
n∑

m=1

E
[
(Sm − Sm−1)

2|Fm−1

]]
= E

[
n∑

m=1

E
[
S2
m|Fm−1

]
− S2

m−1

]
=

n∑
m=1

(
E[S2

m]− E[S2
m−1]

)
= E[S2

m].

Applying Doob’s L2-inequality [Proposition 3.31] to |Sn|, we have

E
[

max
0≤m≤n

|Sm|2
]
≤ 4E|Sn|2 = 4EVn.

We let n → ∞ and apply the monotone convergence theorem to conclude that E
[
supm≥0 |Sm|2

]
≤ 4EV∞.

Now since (Vn)
∞
n=1 is (Fn)-predictable, we fix α > 0 and define the stopping time Nα = {n ∈ N0 : Vn+1 > α}.

Applying the last estimate to the stopped martingale (Sn∧Nα)
∞
n=0, we have

E
[
sup
n≥0
|Sn∧Nα |2

]
≤ 4EVNα ≤ 4α.

By Theorem 3.32, limn→∞ Sn∧Nα
exists and is a.s. finite. The desired result follows by letting α ↑ ∞.

Theorem 9.15 (Strassen). If (Sn)
∞
n=0 is a square-integrable martingale with respect to (Fn)

∞
n=0 started from

S0 = 0, and (Bt)t≥0 is a Brownian motion started from B0 = 0, then there is a sequence of stopping times

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · for the Brownian motion such that for all k ∈ N0,

(S0, S1, · · · , Sk)
d
= (Bτ0 , Bτ1 , · · · , Bτk).

Proof. We start from Bτ0 = 0 = S0 and apply an induction argument. Assume we have (Bτ0 , Bτ1 , · · · , Bτk−1
)
d
=

(S0, S1, · · · , Sk−1) for some k ≥ 1. Then the strong Markov property implies that (Bτk−1+t − Bτk−1
)t≥0 is a

Brownian motion independent of Fk−1.

Let µk : B(R) × Ω → [0, 1] be a regular conditional distribution of Sk − Sk−1 given Fk−1. Using the

martingale property, we obtain

0 = E[Sk − Sk−1|Fk−1](ω) =

∫
R
xµk(dx, ω) for P-a.s. ω ∈ Ω.

By Theorem 9.1, almost surely, there exists a stopping time τ̂ω for (Bτk−1+t −Bτk−1
)t≥0 such that

Bτk−1+τ̂ω −Bτk−1

d
= µk(·, ω).

Let τk = τk−1 + τ̂·. Then (S0, S1, · · · , Sk)
d
= (Bτ0 , Bτ1 , · · · , Bτk), and the result follows by induction.

Remark. If (FB
t )t≥0 is the caninical filtration of (Bt)t≥0, we have

E
[
τn − τn−1

∣∣∣FB
τn−1

]
d
= E

[
(Sn − Sn−1)

2|Fn−1

]
, n ∈ N.
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9.2.2 Lindeberg-Feller Theorem for Martingales

In this part, we study the central limit theorem and the invariance principle for martingale difference arrays.

Our discussion follows mostly from [10]. Let Fn,0 = {∅,Ω} for each n ∈ N. We say that (Xn,m,Fn,m)1≤m≤n

is a martingale difference array, if for each 1 ≤ m ≤ n,
(i) Xn,m is Fn,m-measurable, and

(ii) E[Xn,m|Fn,m−1] = 0.

We assume that the martinale difference array is square-integrable, and write the cumulative variance array

s2n,0 = 0, s2n,m =

m∑
k=1

E[X2
n,k], for every 1 ≤ m ≤ n.

For simplicity we also write s2n = s2n,n. Next, define the partial sum array :

Sn,0 = 0, and Sn,m =

m∑
k=1

Xn,k for every 1 ≤ m ≤ n.

Define the standardized linear interpolation process Zn by

Zn(t) =
1

sn,n

(
Sn,k +

ts2n − s2n,k
s2n,k+1 − s2n,k

Xn,k+1

)

for 0 ≤ t ≤ 1 and s2n,k ≤ ts2n ≤ s2n,k+1, where k = 0, 1, · · · , n − 1. In other words, t 7→ Zn(t) is composed

of straight line segments joining the points (s2k/s
2
n, Sk/sn), k = 0, 1, · · · , n. Finally, define the cumulative

conditional variance array:

Vn,m =

m∑
k=1

E
[
X2
n,k|Fn,k−1

]
, 1 ≤ m ≤ n.

Under some regular conditions, we can extend the invariance principle to martingales.

Theorem 9.16 (Lindeberg-Feller theorem for martingales). Let (Xn,m,Fn,m)1≤m≤n be a square-integrable

martingale difference array. Let kn(t) := max{k ∈ N0 : s2n,k ≤ ts2n} for n ∈ N and 0 ≤ t ≤ 1. If

(i) for each 0 ≤ t ≤ 1, we have

lim
n→∞

s−2
n Vn,kn(t) = t in probability,

(ii) (Lindeberg’s condition). and for each ϵ > 0,

lim
n→∞

s−2
n

n∑
m=1

E
[
X2
n,m1{|Xn,m|>ϵsn}

]
= 0.

then (Zn(t))t∈[0,1]
d→ (Bt)t∈[0,1], where (Bt)t∈[0,1] is a standard Brownian motion.

Proof. As in Theorem 2.57, Lindeberg’s condition implies

lim
n→∞

s−2
n max

1≤m≤n
E[X2

m] = 0. (9.9)

Step I. For each ϵ > 0, we define

V̂n(ϵ) =

n∑
m=1

E
[
X2
n,m1{|Xn,m|>ϵsn}|Fn,m−1

]
, n = 1, 2, · · · .

Then s−2
n V̂n(ϵ) converges to 0 in L2 by the Lindeberg’s condition, and also in probability.
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We first construct a sequence ϵn → 0 slowly enough, so that ϵ−2
n s−2

n V̂n(ϵn)→ 0 in probability. Let N0 = 0.

By Lindeberg’s condition, for each k ∈ N, we can find Nk > Nk−1 such that P(s−2
n V̂n(k

−1) > k−3) < k−1 for

all n ≥ Nk. For each n ∈ N, we let

ϵn =

1, n ≤ N1,

k−1, Nk ≤ n ≤ Nk+1.

For each δ > 0 and large enough n, we may take n ∈ [Nk, Nk+1) with k > δ−1. Then

P(ϵ−2
n s−2

n V̂n(ϵn) > δ) = P(s−2
n V̂n(k

−1) > δk−2) ≤ P(s−2
n V̂n(k

−1) > k−3) < k−1 < δ.

Hence ϵ−2
n s−2

n V̂n(ϵn)→ 0 in probability.

Step II. For every 1 ≤ m ≤ n, we define

X̂n,m = Xn,m1{|Xn,m|>ϵnsn}, X̃n,m = Xn,m1{|Xn,m|≤ϵnsn} − E
[
Xn,m1{|Xn,m|≤ϵnsn}|Fn,m−1

]
.

Then (X̃n,m)1≤m≤n is a martingale difference sequence, and
∣∣X̃n,m

∣∣ ≤ 2ϵnsn. For every 1 ≤ m ≤ n, we define

S̃n,0 = 0, S̃n,m =

m∑
k=1

X̃n,k.

In the obvious way, we denote by (Z̃n(t))0≤t≤1 the standardized linear interpolation of
(
s2k/s

2
n, S̃n,k/sn

)n
k=0

.

Lemma 9.17 (Freedman). There exists a standard Brownian motion (Bt)0≤t≤1 such that

lim
n→∞

sup
0≤t≤1

|Z̃n(t)−Bt| = 0 in probability. (9.10)

Proof of Lemma 9.17. By Theorem 9.15, for each n ∈ N, one can find stopping times τn1 , τ
n
2 , · · · , τnn for a

Brownian motion (Bt)t≥0 such that (s−1
n S̃n,1, s

−1
n S̃n,2, · · · , s−1

n S̃n,n) = (Bτn
1
, Bτn

2
, · · · , Bτn

n
). We first show

that τnkn(t) → t in probability for each t ∈ [0, 1]. By the remark under Theorem 9.15,

E
[
τnm − τnm−1

∣∣∣FB
τn
m−1

]
= s−2

n E
[
X̃2
n,m

∣∣∣Fn,m−1

]
. (9.11)

To proceed the right-hand side, note that E[Xn,m|Fn,m−1] = 0. Hence

E
[
X̃2
n,m

∣∣∣Fn,m−1

]
= E

[
X2
n,m1{|Xn,m|≤ϵnsn}

∣∣Fn,m−1

]
− E

[
Xn,m1{|Xn,m|≤ϵnsn}

∣∣Fn,m−1

]2
= E

[
X2
n,m

∣∣Fn,m−1

]
− E

[
X̂2
n,m

∣∣∣Fn,m−1

]
− E

[
X̂n,m

∣∣∣Fn,m−1

]2
≥ E

[
X2
n,m

∣∣Fn,m−1

]
− 2E

[
X̂2
n,m

∣∣∣Fn,m−1

]
For fixed t ∈ [0, 1], summing over 1 ≤ m ≤ kn(t) gives

Vn,kn(t) − V̂n(ϵn) ≤
kn(t)∑
m=1

E
[
X̃2
n,m

∣∣∣Fn,m−1

]
≤ Vn,kn(t).

By Step I, we have s−2
n V̂n(ϵn)→ 0 in probability. We let ιnm = τnm− τnm−1 for every 1 ≤ m ≤ n. By (9.11) and

property (i), for every fixed t ∈ [0, 1],

kn(t)∑
m=1

E
[
ιnm

∣∣∣FB
τn
m−1

]
→ t in probability as n→∞. (9.12)
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We observe that

E

∣∣∣∣∣τnkn(t) −
kn(t)∑
m=1

E
[
ιnm

∣∣∣FB
τn
m−1

]∣∣∣∣∣
2

= E

∣∣∣∣∣
kn(t)∑
m=1

(
ιnm − E

[
ιnm
∣∣FB

τn
m−1

])∣∣∣∣∣
2

= E

[
kn(t)∑
m=1

(
ιnm − E

[
ιnm

∣∣∣FB
τn
m−1

])2]
. (9.13)

by orthogonality of martingale increments ιnm − E
[
ιnm

∣∣∣FB
τn
m−1

]
. Next, following the same approach as in the

proof of Proposition 4.42, we have

E
[(
ιnm − E

[
ιnm

∣∣∣FB
τn
m−1

])2 ∣∣∣FB
τn
m−1

]
= E

[
(ιmn )2

∣∣∣FB
τn
m−1

]
−
(
E
[
ιnm

∣∣∣FB
τn
m−1

])2
≤ E

[
(ιmn )2

∣∣∣FB
τn
m−1

]
≤ 10

3
E
[
(Bτn

m
−Bτn

m−1
)4
∣∣∣FB

τn
m−1

]
=

10

3s4n
E
[
X̃4
n,m

∣∣∣Fn,m−1

]
≤ 40ϵ2n

3s2n
E
[
X̃2
n,m

∣∣∣Fn,m−1

]
.

Summing over m and recalling (9.13), we get

E

∣∣∣∣∣τnkn(t) −
kn(t)∑
m=1

E
[
ιnm

∣∣∣FB
τn
m−1

]∣∣∣∣∣
2

≤ 40ϵ2n
3s2n

n∑
m=1

E[X̃2
n,m] ≤ 40ϵ2n

3s2n

n∑
m=1

E[X2
n,m] =

40

3
ϵ2n.

Hence τnkn(t) −
∑kn(t)
m=1 E

[
ιnm

∣∣∣FB
τn
m−1

]
→ 0 in L2, and by (9.12), τnkn(t) → t in probability.

Now we prove (9.10). By the uniform continuity of t 7→ Bt on [0, 1], for each ϵ > 0, there exists δ > 0 such

that δ−1 ∈ N and

P (|Bt −Bs| < ϵ for all t, s ∈ [0, 1] and |t− s| < 2δ) > 1− ϵ. (9.14)

By (9.9), we increase Nδ so that s−2
n max1≤m≤n E[X2

n,m] < 2δ for all n ≥ Nδ. Since τnkn(t) → t in probability,

we take Nδ > δ−1 such that for all n ≥ Nδ,

P
(∣∣τnkn(jδ) − jδ∣∣ < δ for all j = 1, 2, · · · , δ−1

)
≥ 1− ϵ. (9.15)

Since τn1 ≤ τn2 ≤ · · · τnn , for t ∈ (jδ − δ, jδ), we have

τnkn((j−1)δ) − jδ ≤ τ
n
kn(t)

− t ≤ τnkn(jδ) − (j − 1)δ.

Under the event in (9.15), the above bound implies that for all n ≥ Nδ,

P
(∣∣τnkn(t) − t∣∣ < 2δ for all s ∈ [0, 1]

)
≥ 1− ϵ. (9.16)

On the intersection of the two events (9.14) and (9.16), which has probability at least 1− 2ϵ, we have∣∣∣s−1
n Sn,m −Bs2n,m/s

2
n

∣∣∣ = ∣∣∣Bτn
m
−Bs2n,m/s

2
n

∣∣∣ < ϵ for all 1 ≤ m ≤ n.

Finally, to tackle the interpolation, we fix t ∈ (0, 1) with t = s−2
n

(
s2n,m + θE[X2

n,m+1]
)
, where 0 ≤ m ≤ n− 1

and θ ∈ (0, 1). Then max
{∣∣s2n,m/s2n − t∣∣ , ∣∣s2n,m+1/s

2
n − t

∣∣} ≤ 2δ, and

|Zn(t)−Bt| =
∣∣(1− θ) (s−1

n Sn,m −Bt
)
+ θ

(
s−1
n Sn,m+1 −Bt

)∣∣
≤ (1− θ)

(∣∣∣s−1
n Sn,m −Bs2n,m/s

2
n

∣∣∣+ ∣∣∣Bs2n,m/s
2
n
−Bt

∣∣∣)
+ θ

(∣∣∣s−1
n Sn,m+1 −Bs2n,m+1/s

2
n

∣∣∣+ ∣∣∣Bs2n,m+1/s
2
n
−Bt

∣∣∣) ≤ 2ϵ.

Since ϵ > 0 is arbitrary, we establish the convergence result in probability.
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Step III. Now we estimate the difference between Z̃n(n·) and Zn(n·). On the event
⋂n
m=1{|Xn,m| ≤ ϵnsn},

∥∥∥Z̃n(·)− Zn(·)∥∥∥
C([0,1])

=
1

sn
max

1≤k≤n

k∑
m=1

E
[
Xn,m1{|Xn,m|≤ϵnsn}

∣∣Fn,m−1

]
≤ 1

sn

n∑
m=1

∣∣E [Xn,m1{|Xn,m|≤ϵnsn}
∣∣Fn,m−1

]∣∣ = 1

sn

n∑
m=1

∣∣∣E [X̂n,m

∣∣Fn,m−1

]∣∣∣
≤ 1

sn

n∑
m=1

E
[∣∣X̂n,m

∣∣ ∣∣∣Fn,m−1

]
≤ 1

ϵns2n

n∑
m=1

E
[
X̂2
n,m

∣∣∣Fn,m−1

]
=

1

ϵns2n
V̂n(ϵn).

Consequently, for every δ > 0,

P
(∥∥∥Z̃n(·)− Zn(·)∥∥∥

C([0,1])
> δ

)
≤ P

({∥∥∥Z̃n(·)− Zn(·)∥∥∥
C([0,1])

> δ

}
∩

n⋂
m=1

{|Xn,m| ≤ ϵnsn}

)
+ P

(
n⋃

m=1

{|Xn,m| > ϵnsn}

)

≤ P

({
1

ϵns2n

n∑
m=1

E
[
X̂2
n,m

∣∣∣Fn,m−1

]
> δ

}
∩

n⋂
m=1

{|Xn,m| ≤ ϵnsn}

)
+ P

(
n⋃

m=1

{|Xn,m| > ϵnsn}

)

≤ P

(
1

ϵns2n

n∑
m=1

E
[
X̂2
n,m

∣∣∣Fn,m−1

]
> δ

)
+ P

(
n⋃

m=1

{|Xn,m| > ϵnsn}

)
.

By Step I, ϵ−1
n s−2

n

∑n
m=1 E

[
X̂2
n,m|Fn,m−1

]
→ 0 in probabiity and the first term converges to 0. Then it remains

to control the second term:

lim
n→∞

P

(
n⋃

m=1

{|Xn,m| > ϵnsn}

)
= 0. (9.17)

We use the following lemma.

Lemma 9.18 (Dvoretsky). Let (An)
∞
n=1 be an adapted event sequence with respect to the filtration (Gn)∞n=0.

Then for any nonnegative G0-measuralbe function η and every n ∈ N,

P

(
n⋃

m=1

Am

∣∣∣∣G0

)
≤ η + P

(
n∑

m=1

P(Am|Gm−1) > η

∣∣∣∣G0

)
. (9.18)

Proof of Lemma 9.18. We proceed by induction. When n = 1, we want to prove

P(A1|G0) ≤ η + P (P(A1|G0) > η |G0) = η + 1{P(A1|G0)>η}.

Let D− = {P(A1|G0) ≤ η} and D+ = {P(A1|G0) > η}, which are both in G0. Then the above inequality is

trivial on D− and D+, since

1D+ =

0 ≥ P(A1|G0)− η on D−,

1 ≥ P(A1|G0) on D+.

To prove the result for n sets, we note that (9.18) is trivial on D+. Let Bm = Am ∩D− for every m. Since

D− ∈ G0 ⊂ Gm−1, we have 1D−P(Bm|Gm−1) = 1D−P(Am|Gm−1). Applying to the induction hypothesis for

n− 1 sets, for γ = δ − P(B1|G0) ≥ 0 we have

P

(
n⋃

m=2

Bm

∣∣∣∣G1

)
≤ γ + P

(
n∑

m=2

P(Bm|Gm−1) > γ

∣∣∣∣G1

)
.
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We take the conditional expectation with respect to G0 to get

P(B1|G0) + P

(
n⋃

m=2

Bm

∣∣∣∣G0

)
≤ δ + P

(
n∑

m=1

P(Bm|Gm−1) > δ

∣∣∣∣G0

)
.

Multiplying both sides by 1D− , we have

1D−

(
P(A1|G0) + P

(
n⋃

m=2

Am

∣∣∣∣G0

))
≤ 1D−

(
δ + P

(
n∑

m=1

P(Am|Gm−1) > δ

∣∣∣∣G0

))
.

Then the result follows from subadditivity of probability.

Back to the proof of Theorem 9.16, we let Am = {|Xn,m| > ϵnsn} and Gm = Fn,m. Then

P

(
n⋃

m=1

{|Xn,m| > ϵnsn}

)
≤ η + P

(
n∑

m=1

P(|Xn,m| > ϵnsn|Fn,m−1) > η

)

By Chebyshev’s inequality, we have

n∑
m=1

P(|Xn,m| > ϵnsn|Fn,m−1) ≤ ϵ−2
n s−2

n

n∑
m=1

E
[
X̂n,m

∣∣∣Fn,m−1

]
= ϵ−2

n s−2
n V̂n(ϵn),

which converges to 0 in probability. By letting η ↓ 0, we complete the proof of (9.17), and hence

sup
t∈[0,1]

|Z̃n(t)− Zn(t)| → 0 in probability.

Step IV. By Steps II & III and the triangle inequality, supt∈[0,1] |Zn(t)−Bt| → 0 in probability, and following

the same approach as in the proof of Theorem 9.6,

Eψ(Zn(n·))− Eψ(B)→ 0

for all bounded continuous functions ψ ∈ C([0, 1]). This proves the desired result.

For convenience in application, we also have an alternative for a single sequence.

Theorem 9.19 (Lindeberg-Feller theorem for martingales). Let (Xn)
∞
n=1 be a square-integrable martingale

difference sequence with respect to the filtration (Fn)
∞
n=1. For each n ∈ N, define s2n =

∑n
m=1 E[X2

m] and

Vn =
∑n
m=1 E[X2

m|Fm−1]. If

(i) s−2
n Vn → 1 in probability, and

(ii) (Lindeberg’s condition). for each ϵ > 0,

lim
n→∞

s−2
n

n∑
m=1

E
[
X2
m1{|Xm|>ϵsn}

]
= 0,

then (Zn(t))t∈[0,1]
d→ (Bt)t∈[0,1], where (Bt)t∈[0,1] is a standard Brownian motion.

Proof. We let kn(t) = max{k ∈ N0 : s2k ≤ ts2n}, and prove that for each t ∈ [0, 1],

lim
n→∞

s2kn(t)

s2n
= t. (9.19)
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The result is trivial when t ∈ {0, 1}, so we fix 0 < t < 1. By (9.9), for large enough n, we have kn(t) ≤ n− 1,

and s2kn(t) ≤ ts
2
n < s2kn(t)+1. Dividing by s2n, we have

s2kn(t)

s2n
≤ t <

s2kn(t)

s2n
+

E[X2
kn(t)+1]

s2n
≤
s2kn(t)

s2n
+ s−2

n max
1≤m≤n

E[X2
m].

Then (9.19) follows by letting n→∞ in the above estimate and (9.9).

Let Xn,m = Xm and Fn,m = Fm for each n ∈ N. By (9.9), kn(t) → ∞ as n → ∞, and we change the

notation in (i) to obtain

lim
n→∞

Vkn(t)

s2kn(t)
= 1 in probability.

Recalling (9.19), we have

lim
n→∞

Vkn(t)

s2n
= t in probability.

Then we verify the first condition in Theorem 9.16 and finish the proof.

9.3 Empirical Processes

9.3.1 Brownian Bridges

We consider the Gaussian process (Xt)t∈[0,1] with mean 0 and covariance function

Cov(Xs, Xt) = t ∧ s− st, 0 ≤ s, t ≤ 1. (9.20)

It is easily verified that (Xt)t∈[0,1] has the same finite-dimensional distributions as the process (Bt−tB1)t∈[0,1],

where (Bt)t≥0 is a standard Brownian motion. Consequently,

E |Xt −Xs|4 = E |(1− t+ s)(Bt −Bs)− (t− s)(B1 −Bt)− (t− s)Bs|4

= 3(t− s)2(1− t+ s)2 ≤ 3(t− s)2.

According to the Kolmogorov’s continuity lemma [Theorem 4.6 & Corollary 4.9], the Gaussian process (Xt)t≥0

has an a.s. modification with 1
4 -Hölder continuous sample path. We can further follow a similar procedure in

Section 4.2.2 to construct a measure on the space C([0, 1]) of continuous functions on [0, 1] equipped with the

σ-algebra C ([0, 1]) generated by the uniform topology.

Definition 9.20 (Brownian Bridges). A Brownian bridge is a continuous Gaussian process (Xt)t∈[0,1] with

mean 0 and covariance function (9.20).

Remark. The law of a Brownian bridge is uniquely determined by the measure on C([0, 1]) we discuss above.

In fact, given a standard Brownian motion (Bt)t≥0, we can construct a Brownian bridge (Bt − tB1)t∈[0,1].

Theorem 9.21 (Ballot process). Let ξ1, ξ2, · · · , ξ2n be a uniformly random permutation of

(−1, · · · ,−1︸ ︷︷ ︸
n

, 1, · · · , 1︸ ︷︷ ︸
n

),

and Sk = ξ1 + · · ·+ ξk. Then the process

S∗(t) =
S⌊2nt⌋ + (2nt− ⌊2nt⌋)S⌊2nt⌋+1√

2n

converges in distribution to a Brownian bridge on [0, 1].
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