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1 Basic Measure Theory

1.1 Measurable Spaces, Sierpinski-Dynkin 7-\ System and Monotone Classes

Let © be a nonempty set. Denote by 2 the set of all subsets of 2, namely, 29 = {A: A C Q}. Any subset
of C 29 is called a collection of subsets of €.

Definition 1.1 (o-algebra and measurable space). Let .Z be a collection of subsets of 2. Then .# is said to
be a o-algebra (or o-field) if the following conditions are satisfied:
(i) Qe 7
(ii) For all A € &, the complement A° := Q\A € F;
(iii) For all sequences (A4,)5, in Z, J,—, A, € Z.
A pair (Q,.%) consisting of a set Q and a o-algebra of subsets of 2 is called a measurable space. A set
A € 7 is said to be F-measurable.

Remark. Clearly, {(),Q} and 2% are two trivial o-algebras of subsets of Q. Furthermore, we can show that a
o-algebra % also satisfies the following:
(i) 0 e 7
(ii) Forall A,Be %, AA\B,AUB,ANB € .7,
(iii) For all sequences (4,)0%, in Z, (,_, A, € Z.

Moreover, the intersection of any collection of o-algebras is again a o-algebra.

Definition 1.2. Let &/ be a collection of subsets of 2. The o-algebra generated by <7 is the minimal o-algebra
of subsets of 2 that contains o7:

o(d) = ﬂ{ﬁz 2 F is a o-algebra and F D o} .

Remark. We can generate the minimal o-algebra # from & as follows: (i) Complete & F + o/ U{Q,0};
(ii) For all A € &7, add A° to .7 if necessary; (iii) For all sequences of sets in %, include their union in .%.

Definition 1.3. Let (X, .7) be a topological space. The Borel o-algebra on X is defined as the o-algebra
generated by all open sets in X. We write Z(X) = o(.7).

Remark. One of the most commonly used o-algebra is the Borel o-algebra on R. By definition, 2(R) contains
all open subsets, closed subsets, finite subsets and countable subsets of R. Also, Z(R) contains all Gs-sets (a

countable intersection of open sets) and all F,-sets (a countable union of closed sets) in R.

Definition 1.4 (m-system). Let &2 be a collection of subsets of Q. If ANB € & for all A,B € &, then &

is said to be a w-system.

Definition 1.5 (A-system). Let £ be a collection of subsets of 2. Then .Z is said to be a A-system (or
Dynkin system) if it satisfies the following conditions:
(i) Qe Z;
(ii) For all A, B € . such that A C B, it holds B\A4 € .Z;
(iii) For all increasing sequences A; C Ay C - C A, C Apy1 C -+ in &, it holds |J0— | A, € Z.

n=1

Remark. Another equivalent formulation of A-system is stated below:
(i) Qe g,
(ii) For all A € .Z, it holds A°® € .Z;
(iii) For all sequences (A4,)5%, of disjoint sets in ., it holds [[2, 4, € Z.



We also observe that the intersection of any collection of A-systems is again a A-system. Therefore, similar to
Definition 1.2] we can define the minimal A-system generated by a collection & of subsets of :

M) zﬂ{.,?:f is a A\-system and £ D o'} .

In general, a A-system is not a o-algebra, since it is not always closed under countable unions unless they are
disjoint. For instance, let Q = {0,1,2,3}, and consider .Z = {Q,{0,1},{2,3},{0,2},{1,3},{1,2},{0,3},0}.

Lemma 1.6. % is a o-algebra if and only if F is a w-system and A-system.

Proof. By definition, a o-algebra is a m-system and A-system. Conversely, if % is a m-system and A-system,

we only need to verify [Definition 1.1 (iii)l Let (A,)52; be a sequence in .#. Define

B, =|]JA4;, ¥neN.
j=1

Clearly, By € #. Moreover, if B,,_1 € .%, we have C,, = B,,_1 N A, € .% since ¥ is a m-system, and

B, = Ay U Byt = (A\Cp) U (Bn_1\Cr) UCh. (1.1)
—— —
EF EF

Note that [(1.1)[is a union of disjoint sets in %, which is a A-system. Hence B,, is an increasing sequence in
&, which implies |J7~, A, = ;o By € Z. O

We introduce the Sierpinski-Dynkin -\ theorem, which is a powerful tool in measure-theoretic analysis.

Theorem 1.7 (Sierpiriski-Dynkin 7-A theorem). Let & and £ be two collections of subsets of Q such that
P CL. If P is arm-system, and L is a A-system, then o(P) C Z.

Proof. We first claim that A(Z?) is a o-algebra. By it suffices to show that A(Z?) is a m-system.
Step I: We show that for all A € A(&?), the collection

Am={BCQ:ANBeXNZP)}
is a A-system. Clearly, A4 contains €2 and is closed under countable disjoint unions. For any B € A4,
ANB¢=A\(ANB) € \(£),

because it is the proper difference of sets in A(£?). Hence A4 is a A-system.

Step II: We show that ANB € A\(Z?) forall A € &2 and all B € A\(&?). Fix A € &. Since £ is a m-system and
P C ANZ), we have & C As. Note that A\(Z?) is the minimal A-system generated by &, we have A(Z?) C 4.

Step ITII: We show that A\(Z?) is a o-algebra. Let B € A(?). By Step I, Ap is a A-system. If F € &, using
Step II, we have E N B € A(&), which implies E € Ag. Then & € Ap, and A(Z?) C Ap. Hence for all
AeNP) CAg, ANB e XN(Z). As aresult, A\(Z?) is a m-system.

Since A\(Z?) is a o-algebra, we have 0(Z?) C AM(P) C Z. In fact, we can prove that o(P) = A(P): The
other direction holds because o(Z?) is a A-system, which implies A(Z?) C o(2). O

Now we introduce the monotone class theorem.

Definition 1.8 (Monotone class). A collection .# of subsets of €2 is said to be a monotone class if the following
hold: (i) For all increasing sequence (A4,)5%, in .#, it holds |J;2, A,, € . (ii) For all decreasing sequence
(Bn)oy in A, it holds (o, B, € 4.



Remark. Note that the intersection of a collection of monotone classes is also a monotone class. Again, we

can define the monotone class generated by a collection @7 of subsets of €2
m() = ﬂ {AM : A is a monotone class and M D o'} .

Definition 1.9 (Algebra). Let o/ be a collection of subsets of €. Then & is said to be an algebra if the
following hold: (i) 2 € «; (ii) A € & for all A € &; (iii) AUB € & for all A,B € «.

Remark. By (ii) and (iii), we can show that an algebra .« is closed under finite unions and finite intersections.

In fact, another formulation of algebra uses the ring.

Definition 1.9* (Ring and algebra). A ring (or pre-algebra) is a collection Z of subsets of Q such that
A\B,ANB,AUB € Z for all A, B € #. Following this, an algebra is a ring that contain €.

Lemma 1.10. If.% is an algebra that is also a monotone class, then % is a o-algebra.

Proof. Tt suffices to check [Definition 1.1 (iii)] For any sequence (A4,)32; in algebra .#, the partial unions

B,, :=J;_, A form an increasing sequence in .%. Since .# is a monotone class, | J;—, 4, =U_, B, € #. [

Theorem 1.11 (Monotone class theorem). Let o/ be a algebra of subsets of Q. Then the monotone class
generated by <7 coincides with the o-algebra generated by < .

Proof. Clearly, a o-algebra is a monotone class. If we can show that the monotone class m(«?) generated by
o is a o-algebra, then m(«/) = (). Following [Lemma 1.10} it suffices to show that m(<) is an algebra.
For any E € m(«/), define

My ={F € m(e/): E\F,F\E,EUF € m()}

We claim that .#g = m(<7) for all E € m(</). For any increasing sequence F,, in .#g, the sequence E\F,
is decreasing in m(«), and the sequences F,,\E and E U F,, are increasing in m(%/). Then

E\(D Fn> = ﬁl(E\Fn), <G Fn)\E: G(FH\E), EU (G Fn> = G(EUFH)

n=1 n=1 n=1 n=1 n=1

are all contained in m(</), and |J., F,, € 4. A similar statement holds for decreasing sequences in .#.
Hence .# is a monotone class.

Assume FE € 7. Since ./ is an algebra, we have & C .#g, which implies m(«/) C 4. Then for all E € &/
and all F' € m(«/), we have F € .4, which holds if and only if E € .#F. As a result, we have &/ C .#F for all
F € m(&7), which again implies m(2/) C #r. Hence for all E, F' € m(</), we have E\F, F\E, EUF € m(</).
Clearly, 2 € m(«7). Hence m(</) is an algebra, as desired. O

Remark. There is an equivalent statement of [Theorem 1.11} If .o/ is an algebra, and .# is a monotone class
such that .# O </, then o(&) C A .



1.2 Measures, Pre-measures and Carathéodory’s Extension
1.2.1 Measure Spaces

Definition 1.12 (Measure). Let (2,.%) be a measurable space. A (nonnegative) measure p on (Q,.%) is a
function p : F — Ry := [0, 00] that satisfies the following:

(i) p(®) =0;

(ii) (Countable additivity). If (A4,)22, is a sequence of pairwise disjoint sets in .%#, then

Hw <U An) = ZN(An)
n=1 n=1

The triple (2, #, u) is called a measure space. Furthermore,
(i) p is called a finite measure if p(Q) < oo;
(ii) pis called a o-finite measure if there exists a countable collection {Q,}22; C .Z such that Q@ = |J,—; Qy,
and p(Qy,) < oo for each n € N.
(iii) p is called a semi-finite measure if every positive measure set E have a finite measure subset.

(iv) w is called a probability measure if 4(Q) = 1, and (2, F, u) is called a probability space.

Remark. A measure p also has the following properties:
e For all A, B € .% such that A C B, it holds u(B\A) = u(B) — u(A4) < u(B).
e For all A, B € %, it holds (AU B) = u(A) + u(B) — u(An B).
e Using the following we obtain the countable subadditivity of yu:

o0 n n o0

1 (U An> = nan;Ou (U Ak> < nan;OZu(Ak) = Z,u(An), Vsequences (An)pey in ZF.
n=1 k=1 k=1 n=1

We then discuss the limit property of measures.

Lemma 1.13. Let (Q, %, u) be a measurable space.

(i) If (An)S2 4 is an increasing sequence in ., then

u <
(i) If (An)S2, is an decreasing sequence in F such that (A1) < oo, then

n=1
M (
n

(iii) More generally, if (Ap)S2, is a sequence in F, then

n=1
z (G N Ak) < ()

n=1k=n

An) — lim p(A,);

n—oo

1C3

D)

n— oo

An> = lim p(4,);

1

and if in addition p(|J,., A,) < oo, then

I (ﬂ U Ak> > hﬂso%p“(A")'

n=1k=n



Proof. (i) Define By = Ay, and B,, = A, \An—1 for n > 2. Then (B,)22, is a disjoint sequence of sets in .#.
By countable additivity of p, we have u(A,) = >"}_, u(By). Hence

nlggo w(An) = Z,U(Bn) =H (U Bn) =K <U An) .

(ii) Choose an increasing sequence Cp,, = A;\A,. By (i), we have

lim u(Cn) = po <U cn> : (1.2)

Since p(A;1) < oo, and since |Jo—; C, = A1\ (N~ An), the identity becomes [(1.2)

p(A) = lim p(An) = p(Ar) — p (ﬂ An> :

(iii) The set B, = (\,—,, Ak is an increasing sequence in .%, and we have p(B,,) < inf,>5 u(Ax). By (i),
— 3 < . .
a <U1 kﬂ Ak) Jim p(By) < liminf p(A).
n=1k=n

Also, the set B, = |J,—, A is a decreasing sequence in .7, and we have p(B,,) > sup,,>, (Ax). By (ii),

n—0o0 n—oo

I (ﬂ U Ak> = lim p(B,) > limsup p(Ag).

Then we conclude the proof. O

Remark. The condition p(A4;) < oo in (ii) cannot be removed. For example, let A,, = [n,00), and let p be the
Lebesgue measure. Then u(FE,) = oo for all n € N, but

1 (U An> = u(0) = 0.

The following theorem is often useful in measure-theoretic analysis.

Theorem 1.14 (First Borel-Cantelli Lemma). Let (Q,.%, u) be a measure space. If (4,)22, is a sequence of
sets in F such that > oo | u(A,) < oo, then

(oo} oo
n=1k=n
In other words, almost all w € ) belongs to at most finitely many Ay ’s.

Proof. Let B, = Jy—,, Ax for all n. Then B, is a decreasing sequence in .#, and pu(B1) < > o, p(Ay) < oc.
By [Comma .13

°§“<ﬂ UAk>=ﬂ<U3n> = Jim pu(Bn) < lm D u(Ax) = 0. O
k=n

n=1k=n n=1 =



1.2.2 Construction of Measures

We are going to construct a measure from a ring of subsets of 2.

Definition 1.15 (Pre-measure). Let o7 be a collection of subsets of  such that @ € «7. A pre-measure on
4/ is a function p : &7/ — R, satisfying the following:

(i) p(@) =0
(ii) (Countable additivity). If (A,)52; is a sequence of pairwise disjoint sets in & with [[)~, A, € <7, then

K <U An) = Zﬂ(An)
n=1 n=1

Definition 1.16 (Outer measure). An outer measure on  is a set function p* : 2% — R, satisfying the
following properties:
(i) u(®) =0
(ii) (Monotonicity). If A C B then p*(A) < p*(B);
(iii) (Countable subadditivity). For any sequence (4,)%2 ; of subsets of €2, we have

uw <U An> < Zu*(An).

n=1

Lemma 1.17 (Induced outer measure). Let Z be a ring of subsets of Q, and let i : Z# — R be a pre-measure
on #. Define u* : 22 =Ry by

W (E) = inf{zu(An) Ao cz, Ec | An}, VE € 29
n=1

n=1
Define inf ) = co. Then u* is an outer measure on Q, and p*|z = u.

Proof. Tt is easy to check that p* is an outer measure. For all F € %, take A1 = F and Ay = A3 = --- = {).
Then we know p*(E) < pu(FE). Hence it remains to show p*(E) > u(E).
For an arbitrary sequence (A,)22; such that E C |J,_, A, take By = A; and B, = A,,\ ( Z;ll Bk) for

n > 2. Then (B,)22, is a disjoint sequence in #, and we have

3

EcJan=UBi=UENB) = wE) =S wENB) <Y nBa) <> ulAy).
n=1 1 n=1 n=1 n=1

n

n=1
Hence p*(E) > p(E). O

Definition 1.18 (Carathéodory condition). Let Z be a ring of subsets of Q, and let u : Z — R, be a

pre-measure on Z%. Let u* be the outer measure induced by p. A subset £ C Q is said to be p*-measurable if
p(A)=p"(ANE)+ u*(A\E), YA C Q. (1.3)

Denote by Z* the collection of all p*-measurable sets on Q.

Remark. To check [(1.3)] it suffices to check p*(A) > p*(AN E) + pu*(A\E), since the opposite holds by
definition. Moreover, for all E C X with p*(E) = 0, the Carathéodory condition is automatically satisfied.

Proposition 1.19. The collection #* given in Definition[1.18 is a o-algebra.

Proof. Tt is clear that Q,() € Z* and that E¢ € #* for all E € #*.



Step I: We claim that Z* is an algebra. Let E, F' € #Z*. Then for each A C €,

W (A) = §*(AN E) + (AN E°)

WANENFE)+pu (ANENF®) +u* (AN E®)

> (ANENF)+p (ANENF°)U(ANE°)) (By subadditivity of u*)
=AN(E¢UF*°)

= (ANENF)+u* (AN(ENF)°) = ENF e %"

Hence Z* is closed under finite intersections. Note that Z* is closed under complements, it is also closed
under finite unions. Thus Z* is an algebra, as desired.

Step II: Following [Lemma 1.10] it remains to show %* is a monotone class. Let (E,)>2; be a increasing
sequence in Z*. We want to show that G :=J,_, E, € #*.

Take F} = E; and F,, = E,\E,,_1 for n > 2. Then (F,)?, is a disjoint sequence in #*, and G = |J,;—, F,.
Forall AC X and all n € N,

1A = W (AN E,) + i (ANES) 2 w* (AN B,) + u* (AN G°)

= (ANE, 1)+ p (ANFE,) 4+ p* (AN G°) (by F,, € %#*)
== P (ANFL) +pt(ANGO). (by Fp_1,---, Fy € Z*)
k=1

Therefore p*(A) > S°0° " (AN Fy) + p* (ANGS) = w*(ANG) + p* (AN GS), and G € Z*, as desired. (To
show that decreasing sequences in Z* have their limits in #£*, take the complement.) O

*

Proposition 1.20. y* is a measure on (0, Z*).

Proof. Tt suffices to show countable additivity. Let (A,)5%; be a sequence of disjoint sets in %Z*, and let
B, =U;_, Ax. Then for all n > N,

* 00 * AnER” & * Apn_1ER” AR - *
u (UAn)ZM(Bn) S0 (An) + p(Buoy) TTET - ER Y ().
n=1 —

1

Hence p* (Up—q An) > > 00, 1*(Ay). Since the opposite inequality holds by countable subadditivity of outer
measure u*, the equality of countable additivity follows. O

Now we introduce the Carathéodory’s extension theorem.

Theorem 1.21 (Carathéodory’s extension theorem). Let Z be a ring of subsets of 2, and let y: % — R be
a pre-measure on Z. Let y* and Z* be given as in Definition . Then (2, Z*, 1*) is a measure space, and
W% = . Furthermore, Z C F = o(#) C #*. As a result, u*|z is an extension of u, which is called the
Carathéodory’s extension.

Proof. 1t suffices to show #Z C Z*. Fix E € #Z, we want to show that
p(A) > u (ANE)+ u* (AN E°), YA C Q.

We can certainly assume p*(A) < oo. Then for all € > 0, there exists a sequence (F,)52; in & such that
Ac U2, F, and that

> u(F) < pr(A) e

10



Take a disjoint sequence (G, )22, of sets in & such that G; = F} and G, = F,,\ ( Z;ll Fk) for all n > 2.
Then U~ Gn =U,—; Fn D A, and

pEA) +e2 3 u(Gr) = 3 w(Ga N E) + 3 u(Ga\E)

n=1

> W(AN B) + p(A\E).

Since € > 0 is arbitrary, the result follows. O
Remark. (9, %, 11*) is a complete measure space, since all E C X such that p*(E) = 0 is contained in Z*.
We have proved existence of an extension of the pre-measure on a ring. Now we discuss uniqueness.

Lemma 1.22. Let p and v be two measures on a measurable space (,.7). Let & C F be a w-system such
that o(P) = F and that plo» = v| 2.

(i) If p(Q) = v(Q), then p=v;
(ii) If there exists an increasing sequence (0,)52 of sets in &P such that Q@ =J,—; Q, and p(Q,) = v(Qy)
for alln € N, then p=v.

Proof. (i) Let & ={A € % : u(A) =v(A)}. Then . is a A-system that contains m-system &?. By Theorem
F Co(P)C ¥ CZF. Hence £ = .7, as desired.

(ii) Denote u, = plq, . Using (i), we have p,, = v, for all n € N. Then

w(A) =limy, o0 tin (AN Q) =lim, 0o vy, (ANQ,) =v(A4), VA € £ O

Theorem 1.23 (Uniqueness of extension). Let Z be a ring of subsets of Q, and let u : # — Ry be a
pre-measure on Z. If p is a-finite, then its extension on F = o(Z) is unique.

Proof. Any ring Z of subsets of 2 is a m-system. Apply Lemma O

Remark. Define the collection & of subsets of R which are finite unions of intervals of the following forms:
(—o00,b], (a,b], (a,00), (—00,00), where a < b. Then & is an algebra. For each A € o7, define ¢(A) to be the
length of A. Then (R, «7,{) is a o-finite pre-measure space. Indeed, the Lebesgue measure on R is obtained

by the extension procedure described above.

Definition 1.24 (Semi-ring). A semi-ring is a w-system .7 of subsets of Q such that for all A, B € ., there
exists finite collection {Ay}}_; C . of pairwise disjoint sets such that A\B = [[;_, Ax.

Remark. We can expand a semi-ring . to a ring by including all finite disjoint unions of sets in .:

n
X = {H Ap:neN, Aq,---, A, €% are pairwise dz'sjoint} .
k=1

Clearly, Z# is closed under finite disjoint unions. For all A, B € ., we have A\B, B\A € %, and their
union AU B = (A\B)II (AN B) II (B\A) € %Z. Suppose the union of any n — 1 sets in .# lies in #. Then for
all Ay, A, €.,

AU UA, = ((A1U- UA,_1) UA,) T (AU UA,1)\Ap) I (A \(A1 U UA,_1))

(AN An)) I <nU1(Ak\An)> I (ﬂ (A,L\Ak)) :

k=1 k=1 k=1

(a) (b) (c)

11



Note that both (a) and (b) are (n — 1)-unions of sets in .7, that (c) is finite intersection of sets in ., and
(a), (b), (c) are disjoint sets, we have |J,_; A, € #. By induction, any finite union of sets in . is in Z.
Hence £ is closed under finite unions. To show that Z is a ring, it remains to show that Z is closed under

finite intersections and differences:

(H Ak> N <HBI> = U U (Ak NBy) € #, V disjoint {Ap} i1, {Bi}%1 C 7,
k=1 k=11=1

ey
(H Ak> \ <HBZ> = U ﬂ Ak\Bl ) € X, Y disjoint {Ap}i_1,{Bi}2 C .
k=1 - k=11=1
eﬂ

Hence Z is a ring of subsets of Q. Furthermore, we can extend a pre-measure y : . — R, to Z by defining
n n
w <U Ak> = Zu(Ak), Y pairwise disjoint Ay,--- , A, € S
= k=1
Then p* is a pre-measure on %, and p*|.» = p. Applying Carathéodory’s extension procedure discussed above,
we can also extend a pre-measure space (2,.%, 1) on a semi-ring to a complete measure space (2, 0(%), u*).
1.2.3 Application: Construction of Product Measures

An application of measure extension theorem is the construction of product measures.

Theorem 1.25 (Product measure). Let (21, %1, pu1) and (Qg, Fa, p2) be two g-finite measure spaces.
91 X 5‘\2 = {Al X Ag : Al S 91,142 S 92}

is a collection of measurable rectangles in Q1 x Qa. Define F1 ® Fo 1= 0(F1 X Fa), which is a o-algebra of

subsets of Q1 x Qa. Then there exists a unique measure p on (21 X Qo, F1 @ Fa) such that
,u(Al X AQ) = ,ul(Al)/,LQ(AQ)7 VAl S 3‘\1, A2 S 92.

The measure 1 ® o := p is called the product measure on (21 X Qa, 71 @ F2). Moreover, the triple
(1 X Q9,.%1 ® Fa, 11 ® o) forms a product measure space.

Proof. We use the Carathéodory’s extension theorem to prove this. We check that (i) #; x %3 is a semi-ring;
and (i) g1 X p2 + A1 X Ay — p1(A1)pe(As) is a pre-measure on %y X Fo. If (i) and (ii) are satisfied, the
existence of an extension on %#; ® %5 is ensured.

(i) Let A= A; X As, B = By X By € #; X F5. Then AN B = (A1 N By) x (A2 N By) € % X Fo, and
F1 x Fy is a m-system. Moreover, (By x By)¢ = (Bf x Q) II (By x BS), and

EF1 X Fo €EF1 X Fa

Hence %, x %5 is a semi-ring.
(ii) Clearly, (p1 % p12)(0) = 0. Then we need to verify the countable additivity of u. Let E X F € % x Fa,
and assume there exists disjoint sets {E,, x F},}%2; such that E x F = [[2 | (E, x F,). In other words,

XE Zmn (), Yz € Qy, y € Q. (1.4)

12



Fix y € Q3. By monotone convergence theorem (MCT, [Theorem 1.40)), we integrate both sides of |(1.4)|

with respect to z on Q. Then we obtain pi(E)xr(y) = >oney #1(En)xr, (y). Again by MCT, we have
p1(E)pe(F) =307 w1 (En)pe(F,). Hence py X o is a pre-measure on .#; X Zo.

Now we show that p1 X po is o-finite, so uniqueness of extension then follows from By o-
finiteness of yu1 and po, there exist {A4,}°2, C % and {B,,}52, C %5 such that ), | A, = U, U B = Qo
and f11(Ap), p2(By) < oo for all n. Clearly, Q1 x Qy = U(; jyen2(A4; % Br), and (11 X p2)(A; x By) is finite
for all (j, k) € N2. Since N? is countable, p1 x us is o-finite. O

Remark. In general, the set of measurable rectangles %7 x %5 is not a g-algebra, since it is possibly not closed

under complements countable intersections. For example, consider (R?, Z(R)?), where
BR)? = B(R) x B(R)).
The union of (0,1) x (0,1) and (—1,0) x (—1,0) is not in Z(R)2.

Product topology and product o-algebra. Let (X1,.77) and (X2, %) are two second-countable topo-
logical spaces. The product topology 1 ® 5 is the topology generated by all open rectangles 77 x 5.

Let %, = o(%1) and By = 0(F) be the Borel o-algebras generated by 77 and 9%, respectively. Then
the o-algebras generated by the product topology 77 ® 95 and by Borel rectangles %, x %y coincide. In a
nutshell, (7)) ® 0(%) = o(7 @ Fa).

Proof. Given A € %y, let ¥4 be the collection of all B C X5 such that A x B € (7% ® %). Clearly, ¥4 is
a o-algebra of subsets of Xs, and it contains all open sets in X5. Hence %y C ¥4. Similarly, for B € %,
the collection %p of all A C X; such that A X B € (7 ® %) is a o-algebra containing %;. As a result,
o(J1 ® J5) contains all Borel rectangles %1 x %, hence contains (%, X HBs).

In the other direction, let {Up, }men be a topological basis for X, and {V,, }en a topological basis for X.
Then the collection & = {U,, x V,,}m nen is a topological basis for the product space X; x X,. Furthermore,
any open set in X7 X X5 is a union of these basis elements, which must be countable. Hence the o-algebra
generated by 7 contains all open sets in X; X Xo, and o(&/) D 0(Z1 ® Z5). On the other hand, note that
o C T X D, which is the set of all open rectangles in X; X Xs, we have o(&) C 0(F X %) C 0(F @ F).
Furthermore, since &/ C %) x HB,, we have o() C 0(H1 x H2).

To summarize, 0(71) ® 0(%) = 0(%$1 x B2) = o(H) = 0(A @ Fa). O

Since the real line R given the standard topology is second-countable, we have Z(R?) = Z(R) @ Z(R).
The same conclusion applies for all Euclidean spaces R", where n € N.
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1.3 Measurable Functions and Lebesgue Integration
1.3.1 Measurable Functions

Definition 1.26 (Inverse image). Given a function T : Q1 — Qs and a subset A C s, define
T'A={weQ, :Twe A}

to be the inverse image of A. If o is a collection of subsets of Qo, define T-'e/ = {T71A: A€ o/}

Proposition 1.27. Let T : Q1 — Q. It is easy to verify the following properties of T .
(i) T7'Q0 = Oy, T710 = 0;
(ii) For all A C Qqo, T7H(Q2\A4) = U \T 1A,
(iti) If {Aa}acs is a collection of subsets of Qg, then T~ (Upes Aa) = Unes T ' Aa.
(iv) If F is a o-algebra of subsets of Qa, then T™1.F is again a o-algebra.

Definition 1.28 (Measurable functions). Let (£21,.%1) and (Q2,.%2) be two measurable spaces. A function
T : (Q1,.F1) — (Qg,.%2) is said to be a measurable function if T~*.%5 C .Z;. In other words, the inverse image

of every %5-measurable set in Q5 is .%#1-measurable.

Remark. By definition, we can immediately verify that the composition T o .S of two measurable functions
(Qlagl) E) (Qz,jg) z) (Qg,yg) is measurable.

Lemma 1.29 (Pushforward measure). Let (1, .%1) and (Qa, F2) be two measurable spaces. If p: F1 — Ry
is a measure on (Qy,.71), and T : Q1 — Qg is a measurable function, then Tep : Fo — Ry, A p(T~LA) is
a measure on (2, F2), called the pushforward of .

Proof. This lemma immediately follows from [Proposition 1.27 (i) and (iii)} O

Remark. A function T : (Qq, F1, 1) — (Qa, Fa, o) is said to be measure preserving if po = Tipp. In other

words, the measure of any measurable set A € .%; does not change after inverse transformation.

Definition 1.30. Let (£2,.%) be a measurable space.
(i) A real-valued function f : Q — R is said to be measurable if f~1(B) € .Z for all B € Z(R). In other
words, the function f: (2,.%#) — (R, B(R)) is measurable.
(i) An extended real-valued function f : Q@ — R := R U {—o0,00} is said to be measurable if the sets
{w: f(w) = —o0} and {w : f(w) = 0o} are measurable, and the real-valued function f; is measurable:

fw), if flw) e R;

0, otherwise

fi(w) =

Remark. We can generalize (i) to any topological space (X, .7), where a Borel o-algebra can be defined.
The measurability of a real-valued function can be characterized by its level sets.

Proposition 1.31 (Characterization of real-valued measurable functions). Let (2,.%) be a measurable space,
and f:Q — R. The following are equivalent:
(i) {w: f(w) > a} is measurable for all o € R;
(i) {w: f(w
(iii) {w: f(w) < a} is measurable for all o € R;
(iv) {w: flw

(v) f is a measurable function.

) > a} is measurable for all « € R;

) < a} is measurable for all « € R;
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Proof. Clearly (i) and (iii) are equivalent. It is easy to see that (i) and (ii) are equivalent, since
~ 1 1
{w: flw)>a} = m {w:f(w)Zoz—!—n}, {w: flw)>a}= {w:f(w)>a—n}.
=1

n=1

Similarly (iii) and (iv) are equivalent. Then it remains to show (i)-(iv) = (v).
Let o7 = {A CR:f (A e f} Clearly, o7 is a o-algebra. Then it suffices to show that &/ contains all
open intervals: for all a < 3, f~1((a, 8)) = {w: f(w) < B} N{w: f(w) > a} € Z. O

Remark. By definition, all constant functions, indicator functions, continuous functions (the inverse images of
open sets remain open) and monotone functions on R are measurable. Furthermore, this proposition remains

true for extended real-valued functions f : Q — R.

Definition 1.32. Given a function f : Q — R, define f* = max{f,0} to be the positive part of f, and define
f~ =max{—7,0} to be the negative part of f. Then we have

f=rr=f l=r+r.

Proposition 1.33. Let (2, %) be a measurable space. Let f and g be two real-valued measurable functions.
Let a € R. The following functions are measurable: f+, =, |fl, af, f+g, fg.

Proof. Clearly, f, f=,|f],|f]*> and af are measurable. To show f + g is measurable, note that

{w: f@) +gw)>at= J{w: fw) >rmin{w: gw) > a—r} € BR).

rn, €Q
To show fg is measurable, note that (f + g)? — | f|> — |g|*> = 2fg is measurable. O

Remark. The proposition also holds for extended real-valued f and g. (Note f 4 g should be well-defined, i.e.

the operation oo — oo are not allowed.)
The limit operation also preserves measurability.

Proposition 1.34. Given a measurable space (Q,.7) and a sequence of measurable functions f, : Q — R,

n € N, then following functions are also measurable:

gl(w) = Sup fn(w)ﬂ g(w) = limsup fn(w)ﬂ hl(w) = 71&% fn(w)7 h(“) = hmlnffn(w)

n>1 n—00 n—00

Proof. Define gi(w) = sup,,>, fn(w), & € N. Then (gx)32; is a decreasing sequence. For all a € R,

{w: gp(lw) > a}l = U{w D falw) > a} € F.
n==k

Hence gy, is measurable. Similarly, hy(w) = inf,, > fn(w) is an increasing sequence of measurable functions.

Furthermore,

9(w) = lim gp(w) = Iilefl gk(w), h(w) = lim hy(w) = sup hy(w)

k—o0 k—o0 E>1

are also measurable. O

Remark. Following the result above, If {f, : Q@ — R, n € N} is a sequence of measurable functions that

converges pointwise to a function f: Q — R, then f is also measurable.
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Sometimes we are also interested in the measurability of vector-valued functions.

Theorem 1.35. Let (2, %) be a measurable space. Let X andY be two second-countable measurable spaces.
A wvector-valued function f = (fx, fy) : @ = X XY is measurable if and only if its two components fx and

fy are both measurable.

Proof. If f = (fx, fy) is measurable, consider the projection map 7x : X xY =Y, (x,y) — x. Clearly, mx
is continuous, hence is measurable. Then fx = mx o f is measurable. The same holds for fy.
Conversely, let {U,,,}5°; be a topological basis for X, and {V;,}22; a topological basis for Y. For an open

set W in X x Y, it can be written as a countable union of some basis elements:

(@

W= ) Un, x Vo, = f1(W)=
k=1 k

(5" Um) N 5 (Viy)) -

1

Since fx and fy are measurable, f~1(W) € .% for all open set W C X x Y. Since f preserves set operations
(intersection, union and complement), we have f~1(W) € .Z for all Borel set W in X x Y. O

Remark. By induction, a real-vector-valued function f = (f1, -, fn) is measurable if and only if each of its
components fi is measurable.
1.3.2 Simple Function Approximation of Measurable Functions

Theorem 1.36 (Simple function approximation). . Let (2,.%) be a measurable space. A (measurable)
stmple function ¢ is a finite linear combination of indicator functions of measurable sets. That is, there
exrists Ay, -+ A, € F and c1,- -+ , ¢, € R such that

o= ckxa,. (1.5)
k=1

Let (2, #) be a measurable space, and let f : Q — R be a nonnegative measurable function. Then there
exists an increasing sequence (¢n)5; of measurable functions such that f(w) = lim,—co @n(w) for all w € .
Namely, o, converges pointwise to f. Furthermore, if there exists M > 0 such that f(w) < M for all w € Q,

then we are able to choose @, that converges uniformly to f.

Proof. For each n € Nand 0 < k < 4", define
Eprp={w:27"k < flw) <27"(k+1)}, Epan ={w: f(w) >2"}.

Then choose a nonnegative measurable simple function ¢,, as follows:

47L
k
n = on n(W) = 27"k 27"k < , Q.
® kz:;) omn XEny = ¥ (w) ke{OI,rll,a?(A"} { f(w)} Vw e

Clearly, ¢, is increasing, and @, (w) — f(w) for all w € Q. If there exists M > 0 such that f(w) < M for all
w € Q, then E, 4» = @ once 2" > N, and |f(w) — pn(w)| < 27" for all w € Q. O

Remark. If f is a measurable function, we can extract its positive part f* = max{f,0} and negative part
f~ = max{—f,0}. By approaching f* and f~ respectively, we obtain a simple function approximation (f,)
for a general measurable function f, with |f,| 1 |f]-

The following theorem shows that a pointwise convergent function sequence almost converges uniformly.

It is also known as the second statement of the Littlewood’s three principles for real analysis.
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Theorem 1.37 (Egoroff). Let (Q,.%, 1) be a finite measure space. Let f,, : Q@ — R, n € N be a sequence of
measurable functions that converges p-almost everywhere to f : Q € R. Then for all e > 0, there exists E € %
such that p(Q\E) < € and that f, converges to f uniformly on E.

Proof. Choose Qy € .% such that u(Q\Q) =0 and f,(z) — f(z) everywhere on Q. For all n,k € N, define

1 oo (o)
A= {ws1fu0) - @I = 1} B = Udnsn A= () B

If wy € Qo, there exists N > 0 such that |f,(wo) — f(wo)| < k=* for all n > N. Then wy ¢ By y, and
wo ¢ Ay, for all k € N. This implies (Jyo; Ax C Q\Qp. Since p is finite, we have

n=1

li_>m w(Brn) = p (ﬂ Bk,n> = u(Ag) =0 = 3IN, > 0 such that pi (By,n,) < 27 ke,

Let E = Q\ (Ui Br,n,,) € Z. Then u(Q\E) < e. Furthermore, for all w € E, w ¢ By n, for all k € N.
In other words, given any k € N, we have |f,,(w) — f(w)| < k=! for all n > Ny and all w € E. Hence E is the

desired set on which f,, converges uniformly to f. O
We also have a monotone class theorem for measurable functions.

Theorem 1.38 (Monotone class theorem). Let &7 be a m-system that contains 0, and let H be a collection of
real-valued functions on Q) that satisfies:

(i) {la:Aec A} CH;

(i) H is closed under linear operation, i.e. for all f,g € H and ¢ € R, we have f + g,cf € H.

(iii) If f,, € H are nonnegative and increase to a function f, then f € H.

Then H contains all bounded functions that are measurable with respect to o(<7).

Proof. We define
H={ACQ:1,4€x}.

By the assumptions Q € <7, (ii) and (iii), . is a A-system, which contains o (/) by the -\ theorem. By (ii),
H contains all simple functions, and (iii) implies that H contains all bounded functions that are measurable
with respect to o(2/) by simple function approximation. O

1.3.3 Lebesgue Integration: Nonnegative Measurable Functions

Definition 1.39 (Lebesgue integral for nonnegative measurable functions). A simple function ¢ : Q@ — R

takes only finitely many values ay,--- ,a, € R. Hence it has the unique standard expression:
n
w= ZakXAw where A, = {w : p(w) = ax}. (1.6)
k=1

For a nonnegative simple function ¢ : Q — Ry defined by |(1.6)] we define its Lebesgue integral as

/gpdu = Zanu(An).
k=1

Given a nonnegative measurable function f : Q — R, define its Lebesgue integral as follows:

/fdu = sup {/cpd,u :0< o < f, pis a measurable simple function} .
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In addition, given A € #, define

/Afdu:/fXAdw

Remark. These integrals are well-defined but may take value oo, with the convention oo - 0 = 0.
The monotonicity is an important property of Lebesgue integrals.

Proposition 1.40 (Monotonicity). If f and g are nonnegative measurable functions such that f < g, then

[ran< [gan

Proof. If ¢ is a simple function with 0 < ¢ < f, we also have 0 < ¢ < g, and S(¢) < [ gdu. By taking the
supremum over all such ¢, we get the desired inequality. O

Following the monotone property, we introduce one of the most important convergence theorems, which

ensure the interchangeability of limit and integration.

Theorem 1.41 (Monotone convergence theorem/Levi’s theorem). Let (f,)52; be a monotone increasing

sequence of nonnegative measurable functions, and let f(w) = limy, o0 fn(w) for allw € Q. Then

/fdu = lim /fnd,u.
n—oo
Proof. By Proposition [ fn dp is monotone increasing, and
i [ fdp=sup [ fudu< [ 7 (1.7)
n—oo n>1

Now we prove the opposite. Let 0 < o < 1, and let ¢ be any simple function such that 0 < ¢ < f. Take
A, = {w: fo(w) > ap(w)}, which is an increasing sequence in .# such that @ = |J,_, A,,. Note that f, is

nonnegative, and ¢ is simple. Then
/fndﬂZ/ fndMZa/ @d,UJ
A, An

Letting n — oo and then a 1 1, we have

lim [ f,du> a/godp, and  lim /fnduz /gpdu.
n—oo n—oo

Since the simple function 0 < ¢ < f is arbitrary, by definition of Lebesgue integral, we complete the proof of

the opposite of |(1.7)] O

Many properties of the Lebesgue integral can be proved by applying simple function approximation and

monotone convergence theorem.

Proposition 1.42. For all nonnegative measurable functions f and g and all o, € R,

[s+span=a [rau+s [gan

Proof. The equality is clear when f and g is simple. In general case, use simple function approximation and

monotone convergence theorem. O
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Proposition 1.43. Let f and g be nonnegative measurable functions. Then

/fdu:O < f=0ae.

Furthermore, if f = g a.e., then

/fdu:/gdu.

Proof. Let ¢ = >, _; arpxa, be a simple function such that 0 < ¢ < f. If f = 0 a.e., then either pu(Ag) =0
or a = 0 for each k, which implies S(¢) = 0. By definition of Lebesgue integral, [ fdu = 0.

Now assume [ fdu = 0. Take E = {w: f(w) >0} and E,, = {w: f(w) >n~'} for all n € N. Then we
have E =J2 | E,, and

0<u(E)= lim pu(E,) < le n/ fdu < ILm n/fdu:() = wpE)=0, f=0a.c.
n o0 En n (o ]

n—oo

Finally assume f = g a.e.. Take h = max{f, g}, then h — f is a nonnegative measurable function, and
h—f=0ae. Asaresult, [hdy= [ fdp. Similarly, we have [hdu = [ gdp. O

Now we introduce the second important convergence theorem. The Fatou’s lemma is useful when we do

not know whether limit and integration are interchangeable.

Theorem 1.44 (Fatou’s lemma). Let (f,)52, be a sequence of nonnegative measurable functions, and let
f(w) =liminf,, o fr(w) for allw € Q. Then

/fdugnnrggf/fndu. (1.8)

Proof. Let gn(w) = infy>, fr(w). Then g is measurable, and

/gndus/fkdu, k>,

which implies

<i .
/gndu_ggg/ﬁedu
Furthermore, (g,,)22, is a monotone increasing sequence converging to f. By monotone convergence theorem,
/fdu = lim /gndu < lim inf /fkdu.
n— 00 n—oo k>n
This is indeed the inequality |(1.8)| O

Remark. Even though f = lim, . fn (pointwise), the limit and the integration are not interchangeable in

general. For example, let f, = nxjo,,-1). Then f = lim, , fn = cox{oy, but

0:/fdu< lim /fnd,u:l.
n—oo

We will discuss a sufficient condition of interchangeability between limit and integration later in the Lebesgue

dominated convergence theorem.
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1.3.4 Integrable Functions and Lebesgue Integration
In this section, we extend the definition of Lebesgue integral to signed measurable functions.

Definition 1.45 (Lebesgue integrable functions). A measurable function f is said to be integrable if
/f*d,u<oo and /f*du<oo.

We denote by L(£2,.%, ) the set of all integrable functions. The Lebesgue integral of f is defined as

[ran=[rrau- [ auer,
/Afdli:/fXAdM-

Remark. A measurable function f is said to be quasi-integrable if at least one of f* and f~ is integrable, and

In addition, given A € %, define

the Lebesgue integral of f takes value in R = R U {—o00, 00}.

Proposition 1.46 (Linearity of Lebesgue integral). For all f,g € L*(Q,.%,p) and all o, B € R,
Jtar+soan=a [ran+s [gan
Proof. By Proposition [1.42

Jatau=[@ntan- [ au=a [rrau-a [ du=a [ an

Let A={f>0,9=>0}, B={f<0,g<0}, PA={f>0,0<0, f+9g=>0}, ,={f<0,9>0, f+g >0},
Ny ={f<0,9>0, f+g<0}, No={f>0,9<0, f+g<0}. Then Q=AUBUP, UP,UN;UNy, and

/(f+g)du=/(f+g)+du—/(f+g)*dﬂ
=/A(f++g+)du+/Pl(f+—g—)du+/2(g+—f—)dﬂ

—/B(f‘+g‘)du—/Nl(f‘—g+)du—/N2(g‘—f+)du
:/Aﬁdwr Plf*du+/sz+du—/deu— sz*du— fmdu

Ny
+/g+du+/ g+du+/ g+duf/g’du*/ g’du*/ g du
A P2 N1 B Pl N2
:/f*duf/f*du+/g+duf/9’du:/fdu+/gdu~ O

Proposition 1.47 (Absolute integrability). Let f be a measurable function. Then f € LY(Q,.Z,u) if and

only if | f] € LY(Q, F,u). In that case,
‘/fdu‘ < [1714n. (1.9)

Proof. Note that f = f* — f=, |f| = f* + f~. Then f and |f] is integrable if and only if f* and f~ is
integrable. Moreover, |(1.9)| follows from the triangle inequality. O

20



The Lebesgue’s dominated convergence theorem concerns about interchangeability of limit and integration.

Theorem 1.48 (Lebesgue’s dominated convergence theorem). Let (f,)52, be a sequence of measurable func-
tions such that f, — f a.e., where f is also a measurable function. If there exists g € L*(),.#, u) such that
|fn] < g for alln € N, then all functions f,, and f are integrable, and

/fdu:nli_)rréo/fndu.

Proof. We may assume f,, — f pointwise by redefining f and f,, on a set of measure zero. For all n € N, we
have |f,| < g, then |f| < g. By Proposition all functions f,, and f are integrable. Since g + f,, > 0, and
g — fn >0, we apply Fatou’s lemma [Theorem [1.44] to obtain

/(g + f)du < liminf/(g + fa)dp = /gdu+liminf/fn du,
n—oo n—oo
and

/(g—f)duSlinIr_l)iOIéf/(g—fn)duz/gdu—limsup/fndu.

n—oo

Hence we have

limn sup / Fudp < / £ dpr < liminf / fodi,

n— oo
and the result follows. O

Remark. If (Q, %, 1) is a complete measure space, then f is automatically measurable. Inspired by this proof,

we summarize another commonly used version of Fatou’s lemma as follows.

Corollary 1.49 (Fatou’s lemma). Let (f,)52, be a sequence of integrable functions.

(i) If there exists an integrable function g such that f, > g for alln € N, then
/lim inf f,, dp < lim inf/fn dp
n—oo n—oo
(i) If there exists an integrable function g such that f, < g for alln € N, then

limsup/fn dup < /limsup fndp.

n—o0 n—oQ

Finally we discuss integral transform among different measure spaces.

Theorem 1.50 (Integral transform). Let (Qy,.%1, 1) and (Qa, %o, ua) be two measure spaces. If function
T:(Q, %1, 1) = (Qa, Fo, u2) is measure-preserving, i.e. po = Typy is the pushforward of py, then

/fOTd,ul :/fdug, Vf € LI(QQ,927‘[L2). (110)
Proof. For all A € #,, we have
/XA oTdp = p1 (T™'A) = pa(A) = /XA dpa.

Then holds for all nonnegative measurable simple functions f. Similar to the procedure of defining
Lebesgue integral (Definition and Definition [1.45)), it holds for all f € L*(Qa, %2, p2). O
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1.3.5 Integration on Product Spaces and Fubini’s Theorem

Now we discuss Lebesgue integral on product spaces and the interchange of integrals. We first present the

general conclusion in Theorem [1.51

Theorem 1.51 (Fubini’s theorem). Let f € L'(Q1 x Qo, %1 @ Fo, 11 @ piz).
(i) For all wy € Qq, the function wy — f(wi,ws) is integrable.
(ii) The function wy = [o f(wi,ws) dpe(ws) is integrable.

(iii) For all wy € 4, the function wy — f(wy,ws) is integrable.

(iv) The function wy = [ f(wi,w2)dui(wi) is integrable.

(v) The following integrals are equivalent:

/leﬂzdel ® p2) = /Q1 < o, f(wth)duz(wz)) dp (w1) = /92 ( o f(wl’WZ)dﬂl(w1)> dpaa (ws).

The proof of Fubini’s theorem uses Tonelli’s theorem. We first prove the following proposition.

Proposition 1.52. Let (1, %1, u1) and (Qa, %2, p2) be o-finite measure spaces, and denote their product
space by (1 X Qo, F1 @ Fa, 1 ® o). For all A € F1 @ Fo, we define the slices

Ay, = {wa € Dyt (wy,wa) € A}

Then the following hold for all A € %1 ® Fy:
(i) A, € Fo for allw € Q5
(ii) The function fa : wy — po(Ay,) is measurable;

(iii) (1 @ p2)(A) = [, p2(Aw,) dpa(wr) := fo, fadpr.
A similar statement also holds for slices A“? = {w; € Q7 : (w1,wq) € A}.

Proof. Denote by .# the collection of all subsets of €y x Q5 which satisfy (i), (ii) and (iii). We prove that
M D F1 @ Fy. Clearly, all measurable rectangles in 21 x Q9 satisfy (i), (ii) and (iii). Hence .# D %1 X Fo.

Step I: We prove that for any increasing sequence (A,,)52, of sets in ., it holds A :=J;2 | A, € A
(i) For all wy € Q4, we have

Ay = (U An) = U(An)o.q € F;
n=1 w1 n=1

(ii) Note that (Ay)., is an increasing sequence, we have

p2(Ay,) = lim ps ((An)w,) = fa= lim f, is measurable.
n—oo

n— oo

(iii) Note that fa, is monotone increasing, by monotone convergence theorem,

(11 @ p2)(A) = lim (1 @ po)(An) = lim [ fa, dpn = [ fdp.

n—oo [ o

Step II: Similar to Step I, we can prove that for any decreasing sequence (B,)%2; of sets in .# such that
p1((B1)w,) < oo for all wy € Oy and (g @ pa)(B1) < oo, it holds B := (17—, B,, € .

Step III: We prove that for any sequence (E,)22, of disjoint sets in .#, it holds .-, E,, € .#. Clearly, if
E, F are disjoint sets in .#, we have EUF € .# . Then our result immediately follows from Step I by choosing

increasing sequence A,, :=Jy_, Ex in 4.
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Step IV: Denote by o7 the collection of all finite unions of measurable rectangles in 7 x 5. Then & is an
algebra. By o-finiteness of {21, choose an increasing sequence (X,,)22; such that pq(X,) < co for alln € N
and Q =, , X,,. Similarly choose an increasing sequence (Y,)5; for Q.

Let of, ={Aec o AC X, xY,},and A4, ={M € .4 : M C Xn x Y,}. Then o, C #,. Clearly, o7, is
an algebra, and ., is a monotone class by Steps I and II. By monotone class theorem, o(%,) C .#,. Since
o(7,) contains all measurable subsets of X,, x Y,,, so does .#. As a result, # D ., contains all measurable
subsets of X,, x Y,, for all n € N. Since .# is closed under countable unions, .# O .%; ® Z5. O

The Tonelli’s theorem gives the integral of nonnegative functions on product measure spaces.

Theorem 1.53 (Tonelli’s theorem). Let f: (0 x Qo,.F1 @ Fa, i1 @ o) — Ry be a measurable function.
(i) For all wy € Qq, the function wy — f(wi,ws) is measurable.
(i) The function wy — fQQ f (w1, w2) dpe(we) is measurable.

(iii) For all we € Q1, the function wi — f(w1,ws) is measurable.

(iv) The function wy +— le f(wr,w2) dpg (w1) is measurable.

(v) The following integrals are equivalent:

/QIXQ2 fd(pm ® po) = /szl ( o, f(w17w2)du2(w2)> dpr(wi1) = /Qz ( o, f(wlawz)dﬂl(w1)> dpz(w2).

Proof. By Theorem [1.52] the theorem holds for all indicator functions x4, where A € F#; x %#;,. Consequently,
it holds for all nonnegative simple functions ¢. For a general nonnegative measurable function f, choose
a monotone increasing sequence ,, of nonnegative simple functions such that f = lim,, . @,. Applying

monotone convergence theorem, we know that the theorem holds for f. O
Proof of Fubini’s theorem. Since f = f+ — f~, using Tonelli’s theorem to f* and f~ completes the proof. [

Remark. If f ¢ LY (2 x Qo,. %1 ® Fo, 111 @ p12), we cannot change the order of integration. For example,
consider the function on f :[0,1] x [0,1] — R:

22— 2 2 y
flz,y) = T2 0udy arctan (;)
Then
foo Uy ceytn)ao= [ iae =T
0. \Jo, (@2 +92)? [01]14-1‘2 4’
foo ULy e an= | -
0,1 \Jjo,1 ( (22 +92)2 01]1‘1'?! 4’
and
o2 — 2
Y dzdy = o
/[0,1] /[0,1] (22 4+ y2)?
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1.4 Signed Measures, Jordan Decomposition and Radon-Nikodym Theorem

Definition 1.54 (Signed measure). Let (€2,.#) be a measurable space. A signed measure p on (€, .%) is a
set function u : % — R that satisfies the following:

(i) p(0) =0;

(ii) (Countable additivity). If (A4,)22, is a sequence of disjoint sets in %, then

m (U An) = ul(Ay). (1.11)

When the left-hand side of [(1.11)|is finite, the right-hand side converges absolutely.
A signed measure p is said to be finite if it only takes values in R. A signed measure p is said to be o-finite
if there exists {Q2,}52; such that Q = [J)2, Q,, and —co < p(£;,) < oo for all n € N.

Remark. One immediate consequence of (ii) is that a signed measure p may take oo or —oo as a value, but it
cannot take both, because the expression oo — co is undefined.

Theorem 1.55 (Hahn decomposition theorem). Let p1 be a signed measure on a measurable space (€2,.F).
Then there exist measurable sets P, N € F that satisfy the following:

(i) PIIN is a division of Q. (In other words, PUN =Q and PN N =1.)

(ii) For all A € . with A C P, u(A) > 0. (In other words, P is a positive set.)
(#ii) For all B € % with B C N, u(B) <0. (In other words, N is a negative set.)

Proof. We may assume that p does not take oo as a value. Otherwise apply the following proof on —p.

Denote by & the collection of all positive sets in .%, then ) € &. Let M = sup ¢4 p(A), and choose
{A,}22, C & such that u(A,) — M. Clearly, P = J,—, A, is a positive set, and u(P) = M.

We prove that N := Q\P is a negative set. If not, there exists a measurable set £ C N with u(E) > 0.
Clearly, E is not a positive set. (Otherwise, PUFE € &, but u(PU E) = u(P) + u(E) > M = sup 4¢ » 1(A),
a contradiction!) Hence there exists B C E with u(B) < 0. We choose the smallest positive integer ki such
that there exists B; C F with u(B;) < —kj . Since k; is the smallest, once k; > 1, any measurable subset A
of E satisfies u(A) > —(ky — 1)L

Again, F\Bj is not positive. Then we choose the smallest k3 € N such that there exists Bo C E\B; with
w(Bs) < —k; . Repeat this procedure, we obtain a sequence k,, € N and B,, C .# such that

o B, C E\ (UZ;% Bk) and u(B,) < —k: ', and
e Once k,, > 1, any measurable subset A of E'\ ( n Bk) satisfies u(A4) > —(k, — 1)L
Take C' = E\ (U,~, By). By assumption that p does not take oo,

] o) 1
M(C):M(E)—ZM(Bn)ZM(E)-I-ZI?<oo = ky — 00 asn — o0.
n=1 n=1""

Since any measurable subset A of C satisfies u(E) > — lim,, o0 (k, — 1)7! = 0, C is a positive set disjoint
from P. However u(PUC) = u(P) + u(E) + Y 07 k' > M = sup ¢ » u(A), again a contradiction! O
Remark. We called a set E € % a p-null set if u(A) = 0 for any measurable subset A of E. Following this
proof, the Hahn decomposition P IT N is unique up to adding to/subtracting p-null sets from P and N:

Given a Hahn decomposition P’ IT N’ the set P N N’ is a positive set and also a negative set. The same
applies to N N P’. Then PAP' = NAN' = (PN N')U (NN P')is a p-null set.
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Corollary 1.56 (Jordan decomposition). Given a signed measure p on a measurable space (Q, F), take the
Hahn decomposition 0 = PII N on u. Define

pt(A) = u(ANP), u (A)=-u(ANN), VA€ Z.

Then p* and p~ are two (finite) measures on (Q, F), and we have the Jordan decomposition yu = pu*™—pu~.
Since the Hahn decomposition is unique up to the difference of a p-null set, the Jordan decomposition is unique.
The measure |p| := pu™ + ™~ is called the variation of . Its mazimum value ||p|] = |p|(Q) is called the total

variation of .

Now we discuss the relationship between signed measures and Lebesgue integration. We first introduce the

absolute continuity and singularity of signed measures.

Definition 1.57. Let p be a measure on a measurable space (€, %).
(i) (Absolute continuity). A signed measure v is said to be absolutely continuous with respect to u, denoted
by v < p, if v(A) =0 for all A € & such that u(A) = 0.
(ii) (Singularity). A signed measure v is said to be singular with respect to u, denoted by v L p, if there
exists A € .Z such that u(A) =0 and v(Q\A) = 0.

The following theorem tells that every measurable function f is associated with a signed measure.

Theorem 1.58. Let f € LY(Q,.%,u). Definev:.F — R by

V(A):/Afd,u, VAe Z.

Then v is a (finite) signed measure on (,.F). Furthermore, for any € > 0, there exists § > 0 such that
for all A € F with u(A) < 6, we have v(A) < e. In particular, v is absolutely continuous with respect to .

Proof. We may assume f > 0, and the result follows from f = f+ — f~.
Clearly v(0) = 0. Let (A,)22, be a sequence of disjoint sets in .#. Then Y ;_, fxa, is a monotone
increasing sequence of nonnegative measurable functions that converges pointwise to fx 4, where A = UZO=1 A,.

By monotone convergence theorem,

v(A) =/fo dp = lim Z/fXAk dp =Y v(A,).
n—>ook:1 n=1

Thus v is a signed measure on (§2,.%). Now fix € > 0. We define E,, = {w : f(w) > n} for all n € N. Since
f is integrable, u(E,) — 0. Again by monotone convergence theorem,

/fdu: lim /fXQ\En dp = 3IN >0 such that/ fdu<%.
n—oo EN

Then for all A € . with u(A) < /2N, we have
/ fdM:/ fo\ENdu+/ fxENduéNu(AH/ fdu<e
A A A En

For the last statement, note that if v(A) > 0, then v(A) > e for some € > 0, and there exists 6 > 0 such
that p(A) > 6 > 0. Hence u(A) = 0 implies v(A) = 0. O

In fact, the converse of Theorem [1.58] also holds true. It is the generalization of the fundamental theorem

of calculus on measures, known as Radon-Nikodym theorem.
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Theorem 1.59 (Radon-Nikodym theorem). Let p and v be two o-finite measures defined on a measurable

space (Q, F). If v < p, then there exists a nonnegative measurable function f:Q — Ry such that

V(A):/Afd,u, VAe Z.

The function fil—,’: = f, called the Radon-Nikodym derivative of v with respect to u, is uniquely

determined up to a p-null set.

Proof. Step I: We first assume that both p and v are finite. Denote by F the collection of all measurable
functions f : Q — R such that (i) f > 0 a.e., and (ii) [, fdu < v(A) for all A€ .Z. Then f=0is in F, and

F is closed under finite maximum:
[ (o} du= | fudn+ | fodu < AN {H > L)) + AN (A > f)) = w(A).
A AN{f1>f2} An{f1<f2}

Define M = supycr [ f du, we prove that M = v(Q). Let f, be a sequence in F such that [ f, du — M.
We choose an increasing sequence g, = max{ f1,- -, fn} € F. By monotone convergence theorem, the function

g = lim,_, g, lies in F and satisfies

/gd,u/:nli_?;o/gndﬂani)n;o/fnd/‘:M =4 /gdu=M~

Argue by contradiction. If M < v(€), choose 0 < € < V(S()S;)M and define v'(A) = [, gdu + eu(A). Then

§:=sup (v —v')(A) >v(Q) = (Q) =v(Q) — M —eu(Q) > 0.
AeF

Using Hahn decomposition theorem on signed measure v — v/, there exists a positive set P € .% such that
v(P)—v'(P) =0 > 0. Since v'(4) < v(A) + eu(A) and v < p, we have v/ < u, and p(P) > 0. By maximal

property of P, we have v/(A) < v(A) for all A C P. (Otherwise v(P\A) — v/(P\A) > §.) Then
/ (9+exp)dp = / gdu+eu(ANP) = / gdp+ ' (ANP) <v(A\P) +v(ANP)=v(A), VAe Z.
A A A\P

Hence g + exp € F. However, [(g+ exp)du = [gdpu+ ep(P) > M, a contradiction! As a result, we have
Jgdp =M =v(Q). Since g € F, it holds

OSV(A)—/ng:/ gdp —v(Q\A) <0, VA e Z.
A o\A

Note that g : @ — R is integrable. The set E = {w : g(w) = oo} is p-null. Choose f = gxo\ g, then f is the
desired real-valued function.

Step II: If 1 and v are o-finite, take a disjoint sequence (£,,)52 such that @ = (J;2; Q,, and x(2,), v(2,) < 00
for all n € N. For each n, by the finite case, there exists a measurable function f, : 2, — R such that

v(A) = / fndy, YA € F with A C Q.
A

o0

Let f=>""_, fn. Apply monotone convergence theorem to (> ,_; f)

n:lz

I/(A):Zy(QnﬂA):Z/Afndu:/Afdu, VAe Z.

n=1 n=1
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Step I11: Finally we show that f is uniquely determined up to a p-null set. Let h :  — R be another function
satisfying the desired property. Then

/(f—h)duzo, VAc Z.

A

Take A = {w: f(w) > h(w)}, we have [ (f —h)*dp =0, and (f —h)" =0 a.e.. Similarly (f —h)” =0 a.e..
Hence f = h a.e., as desired. O

Corollary 1.60. Let p (resp. v) be a o-finite measure (resp. finite signed measure) on a measurable space
(Q,.F). If v < p, then there exists f € L*(Q,.%, u) such that

u(A):/Afd,u, VAe Z.

The Radon-Nikodym derivative Z—Z = f is uniquely determined up to a u-null set.

Proof. Use the Jordan decomposition of signed measure ¥ = vT — v~. Then there exist measurable functions
g,h : Q — R, such that

1/+(A):/gdu, V_(A):/hdu, VAe Z.
A A

Since v is finite, g and h are integrable. Then f = g — h is the desired integrable function. O

Theorem 1.61 (Lebesgue decomposition theorem). Let p and v be two o-finite measures on a measurable

space (Q,.F). Then there exist unique measures Vo < p and v1 L p such that v = vy + vy.

Proof. Define the measure A = p + v, then u,v < A, and X is o-finite. By Radon-Nikodym theorem, there

exists nonnegative measurable functions f, g : 2 = R such that
wa) = [ gan vy = [ gan vae s,
A A

Let E = {w: f(w) = 0}, and define v1(A) = v(ANE), vy = v(AN E°) for all A € %#. Clearly, 11 L p,
since 11 (X\F) = v1(0) = 0 = u(E).
It remains to show vy < p. If u(A) =0, we fix any n € N and let B,, = {w € A: f(w) >n~'}. Then

Og)\(Bn)gn/ fd/\gn/ fdx=nu(A) =0.
B, A

Then the set B = AN E° = J;—, By, has measure zero. Hence 0 < 1y(A) = v(B) < A(B) = 0.

Finally we prove uniqueness. If v = v + v with vj < p and v] L p, there exists B’ € .% such that
Vi (X\E") = u(E’) = 0. Then for all measurable A C X\(E U E’), we have vo(A) = pu(A) = v{(A). Moreover,
for all measurable A C EU E’, since vy, 1) < u, we have vy(A) = y{(A) = u(A) = 0. Therefore vj =vp. O

We can apply [Theorem 1.60|to the Jordan decomposition of a signed measure v = v+ — v,

Corollary 1.62 (Lebesgue). Let u (resp. v) be a o-finite measure (resp. o-finite signed measure) on (Q, F).

Then there exist unique signed measures vy < p and v1 L p such that v = vy + v

Remark. When v is not absolutely continuous with respect to u, we can apply Radon-Nikodym theorem to
the pair vy < p.
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1.5 Convergence of Measurable Functions and Measures
1.5.1 Convergence in Measure

Definition 1.63 (Cauchy sequence in measure). Let (f,)22; be a sequence of measurable functions on
(Q, %, ). If there exists a function f such that for all € > 0 and all n > 0, there exists N such that
w(|fn — fm] = m) < e for all n,m > N, then f, is said to be a Cauchy sequence in measure.

Definition 1.64 (Convergence in measure). Let (f,)52; be a sequence of measurable functions on (€, %, ).
If there exists a function f such that for all n > 0,

lim 1 (|fn = fl 2 n) =0,
n—00

then f is said to converges to f in measure, and we write f, - f.
Theorem 1.65. A function sequence (f,)52, converges in measure if and only if it is a Cauchy sequence.
The proof of this theorem makes use of a powerful subsequence lemma.

Lemma 1.66. If (f,)n, is a Cauchy sequence in measure, there exists a subsequence (fn, )72 that converges

a.e. to a measurable function f.

Proof. Since f, is a Cauchy sequence, we can choose a subsequence f,, such that
1 1
u(Ek)<2—k, where By, = |fnk+1*fnk|2§ .

Let Fy = Ugey Bk, and E = Ny, Fn. Then p(Fy) < 27N+ and p(E) = limy o0 u(Fy) = 0. For each
w € Q\E, we have w ¢ Fy for some N € N, which implies |fn, (W) — fa,(w)| < 27F for all K > N. Hence
fn, (w) is a Cauchy sequence, which converges to some f(w) € R. For w € E, define f(w) = 0. As a result,

fn — [ a.e., which is measurable. O

Proof of Theorem [1.65. Given € > 0 and n > 0. If f,, & f, there exists N such that pu (|f, — f| > 1/2) < ¢/2
for all n > N. Then for all m,n > N, we have

15—l 2 ) < ({0 o) = 101 = T} 0 et o) — s = 1)) <

Conversely, if f,, is a Cauchy sequence in measure, by Lemma [I.66 one of its subsequence f,, converges
a.e. to a measurable function f. Furthermore, if we choose F} in Lemma [1.66] for all £ > N, we have

(@) = F@)] € 3 1Ai@) = fin(@)] € g, Voo € O\,
=k

which implies
1 1
% \fnk—f\>2,T1 S/’L(F]C)<F'

Hence f,, © f. Now given €,1 > 0, we choose k > 0 such that u(|f,, — f| > 1/2) < €/2, and choose N > 0
such that u(|fn, — fm| > n/2) < €/2 for all n > N. Then

pla =1z m < p ({1 = fuul 2 FHU {112 5}) <
for all n > max{ny, N}. Therefore f, © f. .
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The following theorem shows that a pointwise convergent function sequence also converges in measure.

Theorem 1.67 (Egoroff). Let (Q,.%, 1) be a finite measure space. If a sequence of functions (f,) converges
to a function f p-a.e., then f, 5 r

Proof. Let ¢ > 0 and n > 0. By Theorem [1.37, choose E € % such that u(E) < € and f,, converges f
uniformly on Q\E. Then there exists N such that |f, — f| < n for all n > N and all w € Q\E. Hence
w(|fn — f1 >n) < u(E) < e for all n > N. Since e > 0 and 1 > 0 are arbitrary, f,, & f. O

For finite measure spaces, the condition of almost sure convergence in Fatou’s lemma and Lebesgue domi-

nated convergence theorem can be replaced by convergence in measure.

Theorem 1.68. Let (Q2,.%, 1) be a finite measure space.

(i) (Fatou’s lemma). If (fn) is a sequence of nonnegative measurable functions such that f, % f, then

/fdu < liminf/ frndu. (L.1)
Q n— oo Q

(ii) (Dominated convergence theorem). If (f,) is a sequence of integrable functions such that f, £ f, and

there exists an integrable function g such that |f,| < g for each n € N, then

/Qfd“:nli_ﬁﬂo/ﬂf”d”' (1.2)

Proof. (i) By the very definition of limit infimum, we take a subsequence (f,, ) such that

lim /fnk du:liminf/fndu,
k—oo Jq n—oo Jo

and fp, £ f still. By Lemma we may further assume f,, — f a.e. by passing to a further subsequence.
The inequality (1.1)) then follows from the classical Fatou’s lemma [Theorem [1.44].

(ii) The result follows by applying (i) on sequences g — f,, and g + fy,. O

Remark. As we will see in Theorem we can further weaken the condition that (f,) is dominated by an

integrable function.
Finally, we study the continuous transformation of u-convergent sequences.

Theorem 1.69 (Continuous mapping). Let (Q, F, u) be a finite measure space, and ¢ : R — R a continuous
function. If f,, : Q — R is a sequence of measurable functions that converges in measure p to f, the transformed

sequence (¢ o f)22, also converges in measure p, and the limit equals ¢ o f.

Proof. Fix n > 0. For each k € N, define
1
E, = {x € R : there exists y € R such that |y — z| < z and |¢p(y) — ¢(z)| > 77} .
Since ¢ is continuous, the sequence Ej | §, and p(Ey) | 0. Then for each k € N,
1 1
M(‘gbofn_(bof' 277):,“ |f_fn| < %7 |¢Ofn_¢of| 277 +M |f_fn| > E’ |¢Ofn_¢of| 277
1
<8+ (17 = Fl > 1) (B0, a0 o,

Since y is finite, we let k& — oo and apply Proposition [I.13] to get the desired result. O
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1.5.2 LP Convergence and Uniform Integrability

For completeness of our discussion, we give a brief review of L? spaces.

Definition 1.70 (LP-spaces). Let (£2,.%, u) be a measurable space. For 1 < p < oo, define L£P(Q,.%, i) to be
the set of all measurable functions f such that |f| is integrable, i.e. [y |f[Pdp < co. We define

1/p
1l = ( / Iflpdu) ez,

By Minkowski’s inequality, || - ||, is a seminorm on LP(Q2, %, ). Let f ~ ¢ g2y f = g a.e. be a equivalence
relation on LP(Q,.%, u). We define LP-space as the quotient space

LP(Q, F, ) = LP(Q, F )] ~,

and maintain the norm ||[f]||, = || f||,. This is a well-defined norm, since || f||, = ||gp if f ~ ¢. For simplicity,
we drop the brackets and use f to denote its corresponding equivalence class [f] in LP(Q,.%, ). Then the
space (LP(Q2,.Z, 1), | - |lp) is a normed space.

Theorem 1.71 (Chebyshev inequality). Let 1 < p < oo, and f € LP(Q, F,u). Then
! p
u(lf1>n) < ﬁllfﬂp’ v > 0.
Proof. Let E ={w :|f(w)| > n}. Then
= [ 15w an= [ 151 au= (o). v > o =

Remark. As a result of Theorem the convergence in LP-norm implies the convergence in measure.

Theorem 1.72 (Riesz-Fisher). LP(Q, #,u) is a Banach space. That is, every Cauchy sequence (f,) in

LP(Q, %, 1) converges in LP norm to a function in LP(Q, %, u).

Proof. By Chebyshev’s inequality, f, is also a Cauchy sequence in measure, and there exists a subsequence
fn,, that converges a.e. to some measurable f. Given € > 0, we choose N such that ||f, — fim|, < € for all
n,m > N. By Fatou’s lemma,

/|f—fm\pd,u:/klim | frs —fm|pdu§liminf/|fnk — fm[Pdp < €P, ¥Ym > N.
—00 k—o0

Hence f — fum, € LP(Q,.Z, 1), [ = fm + (f — fm) € LP(Q, Z, ). Since € > 0 is arbitrary, ||f — fmll, = 0. O

Now we introduce uniform integrability of function classes.

Definition 1.73. (Uniform Integrability). Let (X,.%, 1) be a finite measure space. A collection of integrable
functions F C L1(Q2,.7, u) is said to be uniformly integrable, if

lim sup/ |f]dp = 0. (1.3)
N=oo fer Jyr1>Ny

Remark. If g is an integrable function such that |f| < g for all f € F, by dominated convergence theorem,

/Q|f|1l{|f|>N}d,u§/let{g>N}du—>/QgIL{g:oo}du=0 as N — oo.

Therefore, F is uniformly integrable if it is dominated by an integrable function g.
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The following theorem gives a characterization of uniformly integrable function classes in finite measure

spaces, which has a similar form to the Arzela-Ascoli theorem in functional analysis.

Theorem 1.74. Let (Q,.%,u) be a finite measure space. A collection of functions F C LY (Q,.%, u) is
uniformly integrable if and only if it satisfies the following:

(i) (Uniform L'-boundedness). sup ez || fll1 < oc.

(i) (Uniform absolute continuity). For all € > 0, there exists 6 > 0 such that for all A € F with p(A) < 9,

/|f\d,u<e, VfeF.
A

Proof. Let F be uniform integrable. For all A € % and n > 0, we have

/If\dué/ Ifldu+/ |f|dMS/ Fldu+ Nu(A), Vf e F.
A AN{|f|>N} AN{|fISN} {IfI>N}

Then we can verify that F satisfies (i) and (ii):
(i) Choose A = Q. Since u(2) < oo, and F be uniform integrable, both terms are uniformly bounded.
(ii) Given € > 0, we choose N such that sup » f{|f|>N} |fldp < €/2 and 6 = 55.

Conversely, if F satisfies (i) and (ii), by Chebyshev inequality,

1
sup u(|f| = N) < Nsup||f||1 —0 as N — oo
fer fer

Given € > 0, we choose the ¢ specified in (ii), and choose Ny such that u(]f| > N) < § for all N > Ny and
all f € F. By uniform absolute continuity of F, we have sup ¢ » f{|f|>N} |f|dp < € for all N > Ny. Since € is
arbitrary, F is uniformly integrable. O

With uniform integrability, we can deduce L'-convergence using convergence in measure.

Theorem 1.75. Let (Q,.%, 1) be a finite measure space, and f, € L'(Q,.F,u). Let (£,)3%, be a sequence of
integrable functions that converges to f in measure . The following are equivalent:
(i) (fn)S%y is uniformly integrable;
(i) limp oo ([ fo — flli = 07 (i) limp o0 [ fulln = || f]]1-
Proof. We prove (i) = (ii) = (iii) = (i). The statement (ii) = (iii) is trivial.
(i) = (ii). Given N > 0, we define f¥ = max{—N, min{f, N}}. Then

|fn_f|Slfn_fvjz\["i_‘f?iv_fN'""_‘fN_ﬂ

We fix N > 0. By continuous mapping theorem [Theorem , we have fN & N Since |fN — V| < 2N,
by dominated convergence [Theorem [1.68|, || fY — fV||; — 0 as n — co. Then

lim | f = flly < sugllfév = Faln A+ IEY = Y+ Y = fll < sugllfiV = I+ 1Y = Fla
n—00 ne ne

Now we control the remaining two terms. By uniform integrability of (f,),

SUPnyJLV*ffLV”lSSUP/ [frldp — 0 as N — oo.
n€N neNJ{|fn|>N}

To control || f, — fll1, we apply Fatou’s lemma to get ||f|l1 < liminf, o |[fnlli < sup,ey|[fulli < co. By
dominated convergence theorem, we also have ||f~ — f||; — 0. Hence lim,, o || fn — f|l = 0.
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(iii) = (i). We define the continuous function

|£L’|, xE(—M+1,M—1),
Un(z) = (M —1)(M —|z|), ze[-M,-M+1]U[M —1,M],
0, x> M.

Fix € > 0. Note that || f]|1 < oo, and ¥n(f) — |f| a.e.. By dominated convergence theorem, we choose N so
large that [, (|f| —¥n(f))du < €/3. We also choose ng according to the following criteria:
e Since || fullt = ||f]l1, there exists ng such that ||fnll1 < ||f|l1 + ¢/3 for all n > ng;
e By continuous mapping theorem and dominated convergence theorem, we have ||¥n(f) —¥n(f)|[1 — 0.
We then choose ng such that ||¢n(fn) — ¥ (f)]1 < €/3 for all n > ny.

Consequently, for all n > ng,
€ €
[ ndans [nl-extyans [ 1flans§ - [ o+ § <
{lfnl=N} Q Q 3 Q 3

By taking N larger, we can make f{\fn|>N} |fnl < efor 1 <n < ng, and (f,) is uniformly integrable. O

Remark. The condition of Lebesgue dominated convergence theorem can be weakened as follows. If (2, .7, i)

is a finite measure space, (f,,)%; C L'(Q,.Z,u) is a uniformly integrable sequence, and f,, £ f, then
lim [ f,du= /fd,u.
n— oo

1.5.3 Weak Convergence of Measures

Definition 1.76 (Weak convergence). Let € be a metric space with its Borel o-algebra %. Let Cp,(£2) be the
set of all bounded continuous functions on €. Let u, be a sequence of probability measures on (2, %). If
there exists a probability measure p on (€2, %) such that

[ann [ 1w vreco.
then u, is said to converge weakly to p1, and we write (1, — .

Review: Semi-continuity. Recall that a function f : Q — R is upper semi-continuous at wy if for any real
y > f(wp) there exists a neighborhood U of wy such that f(x) < y for all z € U. In a nutshell, f does not
take a much larger value than f(wg) at a point closed to wy.

Similarly, a function f is said to be lower semi-continuous at wq if if for any real y < f(wp) there exists a
neighborhood U of wy such that f(z) > y for all z € U. In addition, If f is upper (resp. lower) semi-continuous

at each w € Q, we say f is upper (resp. lower) semi-continuous.

Lemma 1.77. Let Q be a metric space. For every nonnegative lower semi-continuous function f : Q — R,

there exists a sequence of nonnegative bounded Lipschitz continuous functions f, such that f, 1 f pointwise.

Proof. For every n € N, define g, (z) = infyeq {f(y) + nd(x,y)}. Clearly, we have 0 < f,, < fry1 < f.
Furthermore, for all z,y € 2,

Symmetrically ¢, (y) — gn(z) < nd(x,y). Hence g, is n-Lipschitz. It remains to show g, / f pointwise.
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Fix z € Q, and choose 0 < ¢ < f(x). Since f is lower semi-continuous, there exists 6 > 0 such that
f(y) > f(x) — e for all y € O(z,d). Choose N > f(z)/6. If n > N, we have f(y) + nd(z,y) > N§ > f(x) for
all y ¢ O(z,9), and f(y) + nd(z,y) > f(y) > f(z) —e for all y € O(x, ). Hence f(x) — € < gn(x) < f(x) for
all n > N. Since 0 < € < f(x) is arbitrary, g,(x) 7 f(z). Then f, = min{g,,n} is the desired sequence. [

The following lemma states that the converging point of a weakly convergent sequence is unique.

Lemma 1.78. Let Q be a metric space equipped with its Borel o-algebra $B. Let u, be a sequence of probability
measures on (0, B). If i, — o and p, = i, then p = p'.

Proof. By definition of weak convergence, [ f,du = [ f, dy for all f € Cy(Q).
Let G be a closed set, then x¢ is lower semi-continuous. By Lemmal[I.77} we choose a sequence of bounded
Lipschitz continuous functions f,, /* xg. By monotone convergence theorem,

w(G) = lim [ f,du= li_>m /fnd,Lt/Z,u/(G).

n—oo

Let .7 be the topology on 2, i.e. .7 is the collection of all open subsets of Q. Then u|z = p'| 7. Since T
is a m-system, and o(.7) = %, by Lemma w=p. O

The Portmanteau lemma gives multiple equivalent definitions of weak convergence.

Theorem 1.79 (Portmanteau lemma). Let Q be a metric space with its Borel o-algebra B. Let u, be a
sequence of probability measures on (Q,%). The following are equivalent:
(i) ffd,un — ffdu for all bounded continuous functions f. In other words, j, — ji;
(ii) [ fdun — [ fdu for all bounded Lipschitz continuous functions f;
(iii) liminf,, oo [ fdun > [ fdu for all lower semi-continuous function f bounded from below;
(iv) limsup,, oo [ fdu, < [ fdu for all upper semi-continuous function f bounded from above;
(v) liminf, o un(G) > w(G) for every open sets G;
(vi) limsup,, , o n(F) < u(F) for every closed sets F;
(vii) 1My, 00 pin (B) = pu(B) for all Borel sets B with i(0B) = 0, where 8B = B\B is the boundary of B.

Remark. A Borel set B is said to be a u-continuity set if u(0B) = 0. Conversely, if a Borel set B is not a

p-continuity set, it is said to be a p-discontinuity set.

Proof. (1) = (ii) is clear. (iii) < (iv) follows by taking negation. (v) < (vi) follows by taking complements.

(ii) = (iii): Without loss of generality, assume f > 0 is lower semi-continuous. By Lemma choose a
sequence fj of nonnegative bounded Lipschitz continuous functions such that fi 7 f pointwise.
Since f is Lipschitz and f < f, by (ii) and monotone convergence theorem, we have

hminf/fd,unZliminf/fkdun:/fkdu, VEkeN = liminf/fdunzklim /fkd,u:/fdu.
n—oo n— oo — 00

n— oo

(iii) + (iv) = (i): Let f be a bounded continuous function. By (iii) and (iv). Then

liminf | fdu, > | fdp > limsup/fd,un = lim /fd,un = /fdu.
n—oo n—oo

n— oo

(iii) = (v): If G is an open set, xg is bounded and lower semi-continuous. Take f = x¢ in (iii).

(v) = (i): Pick f € C(R2), and without loss of generality assume 0 < f < 1. Then the function

X{(w,t):f(w)>t} = X(0,00) (f(w) — 1)
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is measurable. By Fubini’s theorem,

1 1 1
/ p(f >t) dt:/ (/ X{(w,t):f(w)>t} du) dt =/ (/ X{(w,t):t<f(w)}dt> du = /fdu-
0 0 Q Q 0

Since f is continuous, {w : f(w) >t} = f~((¢,00)) is open. By (v), liminf,, oo pin(f > t) > u(f > t). Using
Fatou’s lemma, we have

1 1
liminf/fdunzlirginf/ un(f>t)dt/ lirginfun(f>t)dt2//,t(f>t)dt:/fdu.

n—roo

By repeating the same procedure on — f, we have limsup,, .. [ fdp, < [ fdu. Then (i) follows.
(v) 4+ (vi) = (vii): Let B € #. Then

. V) . ()
w(B) < liminf p,(B) < liminf p,(B) < limsup p,(B) < limsup u,(B) < wu(B).
n—oo

n—oo n—oo n— oo
If u(6B) = 0, all above inequalities become equalities, and they equal u(B).

(vii) = (vi): Fix a closed set F' C 2, and define the collection of sets {Bp(r) : > 0}, where
Bp(r):={weQ:dw,F)<r}.

Claim. There exists a countable subset C' of [0, 00) such that Bg(r) is a py-continuity set for all r € [0, c0)\C.
Proof of claim. Given r > 0, let Dp(r) = {w € Q: d(w,F) =r}. Then {Dg(r) : r > 0} is a partition of .

By continuity of d(-, F'), Br(r) is a closed set. Furthermore, if w € 9Bp(r) = Q\Bp(r) N Bp(r), choose a
sequence w, € Q\Bp(r) such that w, — w. Again by continuity of d(-, F'), d(w, F') = limy,_,cc d(wn, F') > 7.
Hence d(w, F') = r, which implies § Bp(r) C Dp(r).

Let C ={r >0: pu(Dp(r)) >0} and C,, = {r > 0 : u(Dp(r)) > 1/n}. Then |C,| <n, and C = J,—, Cp
is at most countable. Furthermore, for each r € [0, 00)\C, it holds

0 < pu(0BF(r)) < u(Dp(r)) = 0.

Therefore Br(r) is a p-continuity set, and C' is the desired countable set. O

Now we choose a sequence 7, | 0 in [0,00)\C. Then Bp(ry) | F. By (vii),

p(Br(ry)) = lm_ pn(Br(ry)) 2 limsup u, (F), vk € N.

n—roo

Since Bp(ry) | F,
p(F) = klirrgo w(Bp(ry)) > limsup p, (F).

n— oo

Hence (vi) follows. O
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2 Random Variables

2.1 Random Variables and Independence

From now on, our discussion builds on a probability space (2, %, P).

2.1.1 Random Variables and Distribution Functions

Definition 2.1 (Random variables and distribution). Let (2, %#,P) be a probability space. A (real-valued)
random variable is a real-valued measurable function X on (€,.#). In other words, a real-valued function
X : Q — R is a random variable if

(X<a}={weQ: X(w)<z}eF VeecR < X ' (BR)cCZ.
The collection X 1 (%(R)) is said to be the o-algebra generated by X. The function F : R — [0, 1],

Flz)=P(X <z)=P{weQ: X(w)<z}), VzeR (2.1)

is said to be the cumulative distribution function (c.d.f.) of X, written X ~ F.

Remark. Generally, a measurable extended real-valued function X :  — R is also called a random variable,
if we have P(|X| =o00) =P({w € Q: X(w) € {—00,00}}) = 0.

Proposition 2.2. Let F' be the c.d.f. of a random variable X. Then F satisfies the following:
(i) F is monotone increasing on R;
(ii) F is right-continuous, i.e. F(x) =lm. o+ F(z +¢€) for all x € R;

(iii) F(—o0) :=limy__oo F(z) =0, and F(00) = lim,;_,o F(x) = 1.

In fact, any function F : R — [0, 1] satisfying the properties (i)-(iii) is called a c.d.f..

Proof. Clearly F' is monotone increasing, and its left and right-hand limits exist everywhere. Then
. . 1 : 1 > 1
lim F(z+e)= lim F(x—i—) = lim P({W:X(w) Sx—l—}) :IP’(U {w:X(w) Sx—i—})
e—s0+ n—00 n n—00 n ] n

=P({w: X(w) <2}) = F(z).

Then (ii) holds, and (iii) follows from a similar procedure. O

Remark. Inspired by this proof, we can also associated P(X < x) with F' by the following formula:

P(X<x):P<1Dl{w:X(w)§x—;}> :n1LHgOP<X§x—711> = lim F(z— o).

Since P(X = z) = F(z) — lim._,o+ F'(x — ¢€), F' is continuous at a point = € R if and only if P(X = z) = 0.

Definition 2.3 (Distribution measure). A random variable X ~ F on (Q,.#,P) determines a pushforward
measure i = Po X! on (R, Z(R)):

pr(B)=P(X'B)=P(X € B)=P({w: X(w) € B}), VB € #(R).
The pushforward pp is said to be the distribution measure of X, written X ~ pp. It is easy to check that

pr((=00,0]) = F(b), pr((a,00)) =1—=F(a), pr((a,b])=F(@®)—-F(a), Va<b. (2.2)
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Remark. Let . be the collection of all finite unions of intervals of the following forms:
(=00, b], (a,00), (a,b].

Then . is a semiring of subsets of R, and o(.%) = #(R). Given a c.d.f. F: R — [0, 1], we define a pre-
measure pup on . by equation (2.2)). Using Carathéodory’s extension theorem, ug can be uniquely extended
to a probability measure on #(R). Thus we find a one-to-one correspondence between a c.d.f. F': R — [0, 1]

and Borel probability measure pr on (R, (R)). In later discussion, we may not distinguish them.
Let’s see what the c.d.f. of a random variable may looks like.

Definition 2.4. Let u be a Borel measure on R. A point = € R is said to be an atom of p if p({z}) > 0.

(i) (Discrete measure). u is said to be discrete, if there exists a countable subset C' of R such that

pA) =Y w{e}), VAeBR).
zeCNA
The atoms of p are D := {z € R: u({z}) >0} C C.

(ii) (Continuous measure). g is said to be (absolutely) continuous if yu < m, where m is the Lebesgue
measure on R. The Radon-Nikodym derivative p := j—jjl is said to be the density function of p. If p is a
probability measure, p is said to be the probability density function (p.d.f.) of p.

(iii) (Singular measure). p is said to be singular (continuous) if p has no atom and g L m. In other words,
1 is concentrated on a Lebesgue-null set F, where u takes zero at each point of E.

We give an example of singular measures on R.

Ternary Cantor sets and devil’s staircase. A ternary Cantor set K is obtained by repeatedly removing
the middle thirds from the compact unit interval [0, 1]:

1 2 1 21 27 8
K,y =10,1 K, = - -1 Ky = Z 2z i °1
1 [07 ]a 2 [073:|U[37 :|7 3 |:0,9:|U|:9,3:|U|:3,9]U|:9, ]a
Since ternary Cantor set K = ﬂzo:l K, is the intersection of a decreasing sequence of non-empty compact

sets, it is itself compact. Furthermore, it can be written as the set of numbers in [0, 1] with a ternary expansion
omitting the digit 1 (the ternary numbers 0.cics - - with ¢, = 1 digit is 1 are removed from K,):

}(—-{5322: @Le{uz}}.

n=1
It is not hard to see that (i) K is an uncountable set, since {0, 2}" is uncountable, and (ii) K is a Lebesgue-null

set in R, since m(K) = lim,,—, oo m(K;,) = lim, o (2/3)™ = 0.

We define a function sequence (F,) on [0, 1] by the following recursive formula:

1F,(32), 0<wz<i,
Fi(z) =z,  Fa(z) =43, i1<z<2
F+iF(Br-2), 2<az<l
This is a sequence of continuous monotone increasing functions, with
1 1 1
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Therefore, the sequence (F;,) converges uniformly to a function F' on [0, 1], called the dewil’s staircase, which
is also continuous and monotone increasing. Furthermore, for each connected component (a,b) of [0, 1]\ K, we
have F(a) = F(b). Hence F' = 0 almost everywhere on [0, 1].

Note that F(0) = 0 and F(1) = 1, we define F = 0 on (—00,0] and F =1 on [1,00). Then F is a c.d.f..
Let ur be the distribution measure of F'. Since F is continuous, ur has no atom. Furthermore,

pr(R\K) = pr([0,1\K) = pp (U [0, 1]\Kn> = Y (F(b-F(a) =0
n=1 (a,b)€[0,1]\K

Therefore pp L m, and pp is a singular measure on R.

Theorem 2.5 (Decomposition of Borel measures). If u is a o-finite Borel measure on R, there exist uniquely

discrete, continuous and singular o-finite measures g, fbe and ps such that p = pg + pe + ts.

Proof. Let D = {x € R: u({x}) > 0}. Since u is o-finite, D is at most countable. Then pq(A) = p(AN D) is
a discrete measure. (g = 0 if D = ().) Furthermore, 4 is unique and supported on all atoms of p.

By Theorem [.61] the measure y — pq has a unique Lebesgue decomposition g — pg = e + fs, where
te < m and ps L m. Since p — pg has no atom, the result follows. O

Remark. Likewise, a c.d.f. F' admits a unique convex combination F' = aFy + SF. + (1 — a — 8)F, where the

associated distribution measures of F,, F,. and F are discrete, continuous and singular, respectively.

Definition 2.6 (Random vectors). When X7, X5, -+, X,, are all random variables, the function
X=X, ,X,): Q> R"
is said to be a random wvector. The function
F(zy, - ,zn) =P(Xy <21, , Xpp < p)
is called the joint distribution (function) of (X1,---,X,). For each k, the function
Fy(x) =P(Xy =2) = F(oo, - ,00, T 100, ,00)

is called the marginal distribution (function) of Xj.

Remark. By Theorem [1.35] a random vector is also a measurable function X : (Q,.%#) — (R", Z(R")).
Furthermore, the c.d.f. F:R" — [0,1] of X satisfies the following;:

(i) F is monotone increasing with respect to each variable on R;

(ii) F is right-continuous on each variable;

(iii) For all xy,---, 2, € R, limy, 5 oo F'(21, - ,2,) =0, and limg, ... o, oo F(21,- - ,20) = 1.

Lemma 2.7. Assume that two random variables X and Y has the same distribution measure. We say they
are identically distributed and write X LY. For any measurable function ¢ such that p(X) and o(Y) are
well-defined, we have p(X) 4 o(Y).

Proof. Denote by p the distribution measures of X and Y, respectively. For all b € R, we have

P(p(X) <b) =P(X € ¢ ((—00,0])) = (7 ((—00,b])) =P(Y € o™ ((—00,b])) = P((Y) < b).

Then ¢(X) and ¢(Y) has the same c.d.f., hence the same distribution measure. O
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2.1.2 Independence

Definition 2.8 (Independence). Let (€2,.%,P) br a probability space.
(i) (Independent events). A pair of events A, B € .# are said to be independent if P(AN B) = P(A) - P(B).

Also, n events Ay,--- , A, € F are said to be mutually independent if for all I C {1,--- ,n}, it holds
P (ﬂ Ai> = [[P4).
i€l iel

(ii) (Independent o-algebras). Two two sub-c-algebras %1 and .%; of .% are said to be independent, if each

pair of events A € %, and B € %5 are independent.

Remark. A group of pairwise independent events are not always mutually independent. For example, consider
the discrete measure on 2 = {1, 2, 3,4} with a probability mass of 1/4 at each atom. Let A = {1,2}, B = {2,3},
C ={1,3}. Then P(AN B) =P(A)P(B) = 1/4, and so do event pairs (B,C) and (C, A). Nevertheless, A, B
and C are not mutually independent, since P(ANBNC) = 0.

Definition 2.9 (Independent random variables). Two random variables X and Y are said to be independent

if their joint distribution is the product of marginal distributions:
P(X <2,Y <y)=P(X <2)P(Y <y), Vz,y e R.

Similarly, given n random variables X, .-, X,,, they are said to be (mutually) independent if

n

P(X) a1, Xy S ) = [[P(X < @), Yy, 2, €R. (2.3)
i=1
Clearly, if (2.3)) is satisfied, then for all index sets I C {1,--- ,n}, we have
i€l iel
Theorem 2.10. Two random variables X and Y are independent if and only if for all A, B € Z(R),

P(X €AY e B)=P(X € A)P(Y € B). (2.4)

This theorem can also be stated as follows:
(i) X andY are independent if and only if 0(X) and o(Y) are independent.
(ii) If X ~pux andY ~ uy, then X and Y are independent if and only if (X,Y) ~ ux ® py .

Proof. We only prove that (2.4) holds when X and Y are independent. Given A = (—o0, z], let
My ={BeBR):PXcAYecB)=PXecAPY € B)}.
Clearly, .#4 is a A-system. By independence of X and Y, we have .#y := {(—o0,y] : y € R} C .#4. Since
My is a w-system, and since B(R) = o(#4p), by Sierpinski-Dynkin 7-A system, we have .#Z4 = Z(R).
Given any B € #(R), we let

MB={Ac BR):P(X €AY cB)=P(XcAPY € B)}.

We can also verify that .#F is a A-system, and .#, C .#P. Again by Sierpiniski-Dynkin 7-\ system, we have
MB = B(R). Hence (2.4) holds for all A, B € B(R). O
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Corollary 2.11. If X andY are two independent random variables, and 1, ¢ : R — R are Lebesgue-measurable
functions, then ¥(X) and p(Y) are independent.

Proof. Let A and B be two Borel sets on R. Then

P($(X) € A,p(X) € B) =P(X € ¢7'(A),Y € ¢7'(B))
=P(X € v~'(4)) (Y € ¢~'(B))
=P((X) € AP(p(Y) € B).

Then we finish the proof. O

Remark. More generally, we say two collection of random variables {X, }oer and {Ys}sec, are independent if

for any two random vectors (Xo,, -, X,,,) and (Yg,,---,Y3,), it holds

]P((Xau"' 7XOém) EA?(Yﬁlv"' 7YBn) GB) :P((Xan"' 7X0¢m) EA)~P((Y51,~" ’YBn) EB)

for all Borel sets A C R™ and B C R".
The o-algebra generated by the random variable collection {X,}aer is the smallest sub-c-algebra of .7
such that every X, is measurable. By definition,

o ({Xataer) Co (U U(Xa)> .
acl

On the other hand, since every o(X,) is contained in o ({Xa}aer), the union |J,; 0(X4) is also contained in
0 ({Xa}aer), and so

o ({Xataer) Do (U U(Xa)> .
acl
Hence we have

o ({Xatacr) =0 <U O'(Xa)> =0 U 0(Xay, s Xa,,)

acl meN, oy, ,am €l

Now we claim that {X,}aer and {Yg}ges are independent if and only if o({Xa}acr) and o({Ys}ges) are
independent. We fix 4 = o(Ys,,---,Y3, ). For each A € 4, the class

(BeZ: P(ANDB) = P(A) - P(B)}

is a A-system containing every o(X,,, -, Xa,,). Since the union of o-algebras o(X,,, -, Xa,,) generated
by finite subcollections is a w-system, the above A-system also contains o({X4}acr), by Sierpiriski-Dynkin
m-A theorem. Since both A € ¢ and ¢4 = o(Ys,,---,Ys,) is arbitrary, 0({X4}aer) is independent of all
o(Yp,, - ,Yp,) generated by finite subcollections. Similar to the previous procedure, we can run over all
A € o({Xa}aer) to conclude that o({Xq}taer) is independent of o({Ys}ser)-
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2.2 Expectation

Definition 2.12 (Expectation). Let X ~ F be a random variable on (2, %#,P). If X is integrable, the

expectation of X is defined as the Lebesgue integral
EX = / X dP.
Similarly, for any Lebesgue-measurable function ¢ : R — R, if ¢ o X is integrable, define
E[p(X)] = /cponP.

Theorem 2.13 (Integral transform). Using the integral transform formula in Theorem we immediately
know that the expectation of ¢(X) equals the Lebesgue-Stieltjes integral

Blp(0) = [poxdr= [odur = [ () dF(a),
Particularly,
EX = /wdup(x) :/:rdF(x).
If X ~ up is a discrete random variable, let A be the set of all atoms of pr. Then we have

Elp(X)] = ) pl@)ur({z}).

z€A

If X ~ pp is a continuous random variable with density p, i.e. pp is continuous and ‘fi”—mF = p, then
BLAC0)] = [ Lader = pr(d) = [ Lapdm.
By simple function approximation, for all measurable ¢ with p(X) integrable, we have
Ble()) = [ gpdm = [ p(e)p(a)da.

Another useful formula for calculating expectation follows from Fubini’s theorem.

Theorem 2.14. Let X be a nonnegative random variable. Then
oo
EX :/ P(X > z)dx.
0

Proof. By Fubini’s theorem,

e} 0o 00 X
/ P(X > z)da = / E[l{xss]de =E [/ Tixoa) dx] —E V dx} = EX.
0 0 0 0

Note that the function

Lixsa) = Lixw)>ap = L(o,00) (X (W) — @)

is defined on 2 x R. Since X is measurable, so is 1{x~,y- O
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Proposition 2.15. Let X and Y be two random variables. The following properties of expectation follows
from Lebesgue integral:
(i) If X > 0 a.s., i.e. P(X >0) =1, then EX > 0. Additionally, if EX =0, then X =0 a.s..
(i) For all o, B € R, E[aX + Y] = «EX + SEY.
(iii) For 1< p < oo, denote ||X||, = (E|X[?)"/.
e (Hélder’s inequality). If p,g > 1, r > 1 and % + % =1, then | XY, <[ X]|, 1Y,
e (Moment inequality). If 1 < p < q < oo, then || X||, < [| X|q-
o (Minkowski’s inequality). If 1 <p < oo, then | X + Y|, < || X, + [[Y]l,-
(iv) (Jensen’s inequality). If g : R — R is a convex function, and both EX and Elg(X)] are well-defined, then
Elg(X)] > g(EX). In addition, if g is strongly convex and E[g(X)] = g(EX), then X = EX a.s..

Proof. (iii) We first assume r = 1. The convexity of  — — Inz implies Young’s inequality:
1 1 Poobe poobe 1 1
lnap+lan>ln(a—|—> = S+l <ab, Vab>0, —+-=1.
p q p q p q P q

Then we have

1|X[P 1|y XY N 2.5
pIXIp  alYIG — IXIL, IV, » ¢ '

Taking expectation on both sides of (2.5 concludes. For the case r > 1, we have

1 1 1

XY = XYl < Xl Il = 1K, 1Yl 2+ o=

p/T q/r

Hence we have Holder’s inequality. By taking Y = 1 in Hélder’s inequality, we have the moment equality. To
obtain Minkowski’s inequality (p > 1), take 1/¢g =1 — 1/p. Then

[X+Y|P<E[X+YP X +E[X +Y]P Y]]
< IX1, (]E {|X + Y|(p71)qD1/q + Yl (E [\X + Y|(”71)q])1/q (By Holder’s inequality)

—1
= (1X[lp + Y1) 1X + Y27 = (Xl + [V [lp) 1X +Y[P

(iv) Since g is a convex function defined on an open set R, its subgradient set 0, g at = is nonempty for every

x € R. By taking o = EX and « € 05,9, we have
9(x) = g(xo) + a(x — m9), Vz €R. (2.6)

Taking expectation on both sides of (2.6 immediately yields Jensen’s inequality.
Now assume g is strongly convex, then the inequality (2.6) becomes strict when x # xy. Let

p(x) = g(z) — g(zo) — az — 20),

then ¢(x) = 0 implies x = o, and ¢(X) is a nonnegative random variable. If E[g(X)] = g(zo), we have
E[p(X)] = 0. By (i), we have ¢(X) =0 a.s., and X = z¢ a.s.. O

41



2.3 Conditional Expectation and Distribution
2.3.1 Conditional Expectation

In this subsection we introduce conditional expectation. In contrast to expectation, which takes real number,

the conditional expectation is a random variable.

Definition 2.16 (Conditional expectation). Let & be a sub o-algebra of %, i.e. ¥ C F and ¥ is a o-algebra
of subsets of Q. Let Y be a random variable. If E|Y| < oo, the conditional expectation of Y with respect to 4
is defined as any random variable ¢ satisfying the following:

(i) € is Y-measurable, i.e. £~ (B(R)) C Y;

(ii) E[Y14] = E[¢14] for all A € 9.
Remark. We define a finite signed measure u : 4 — R by assigning u(A) := E[Y14] for all A € 4. Then
P(A) = 0 implies u(A4) =0, and p < P|¢. By Radon-Nikodym theorem, we take

d
po B )= / pdPly = E[pl4), VA € .
dPly A

Then p is the desired ¥-measurable function. Furthermore, if £ is a conditional expectation of Y with respect
to ¢4, we define A4,, = {w : p(w) > £(w) + n~1}. Then A,, is ¥-measurable, and

0<P(p>&+n"") <nE[(p—&La,] =E[Y14,]-E[Y14,]=0

for all n € N, and letting n — oo gives P(p > &) = 0. Similarly, we have P(¢ > p+n~!) = 0. Hence £ = p a.s..
Therefore, the conditional expectation, written E[Y|¥], exists and is almost surely unique.

In fact, the expectation E[Y] can be viewed as the conditional expectation E[Y|.%], where #y = {Q, 0} is

the smallest o-algebra on €.

Proposition 2.17 (Properties of conditional expectation). Let 4 C .# be a o-algebra of subsets of Q. Let X
and Y be two integrable random variables, that is, X,Y € L'(Q, % ,P).
(i) (Total expectation formula). E[E[X|¥9]] = EX. In addition, if S is another sub o-algebra of F such
that 7 C 4, then E[E [X|¥9] | = E[E [X|#]|¥9] = E[X|H#] a.s..
(i) (Monotonicity). If X > 0 a.s., then E[X|¥9] > 0 a.s.. Hence X <Y a.s. implies E[X|¥9] < E[Y|¥9] a.s..
In particular, |E[X|¥]| < E[|X]|9] a.s..
(i11) (4 -linearity). For any ¢4-measurable random variable & and n, it holds E[§¢X +nY] = EEX + nEY a.s..
(iv) (Independence law). o(X) is independent of ¢ if and only if E[p(X)|¥9] = E[p(X)] a.s. V measurable .
(v) (Conditional Jensen’s inequality). If g : R — R is a convex function such that g(X) is integrable, then
Elg(X)I9] > g (E[X[9]) a.5..
(vi) The following inequalities almost surely hold:

e (Conditional Holder’s inequality). If p,g > 1, r > 1 and % + % = %, then
E(XY[ 9] <E[X]P|9)PEY]9)Y as.
e (Conditional moment inequality). If 1 < p < q, then
E[|X[?|9]"? < E[X|19])"? a.s..
e (Conditional Minkowski inequality). If p > 1, then
E[|X + Y[P|9]"? <E[X]?|9]"? + E[[Y|P|4]'? a.s..

42



Proof. (i) Let £ = E[X|¥], then E[X1 4] = E[{1 4] for all A € ¢. Choose A = Q, so we have E [E [X|¥¢]] = EX.
If A2 is another sub o-algebra of .# such that 7 C ¢, then a ¥-measurable function is also J#-measurable,
and E [E [X|5]|¥4] = E[X|] a.s.. Let £ = E[X|¥], and n = E[E[X|¥4]|5¢]. Then for all A € 5 C ¥, we
have E[nl 4] = E[¢14] = E[X 1 4], which implies E[X|#] = n a.s..

(ii) Let ¢ = E[X|¥], and define A4,, = {w: {(w) < —n~'} C 4. Then
—n'P(A,) > E[¢14,] =E[X14,]>0 = P(A,)=0, Vn €N,

Let A = {w: &(w) < 0} = U2, Ap. Then P(A) = lim,_,o, P(A4,) = 0, which implies £ > 0 a.s.. Since
|X]— X+ and | X| — X~ are a.s. nonnegative, we have |E[X|¥]| < E[|X]|¥] a.s..
(iii) The R-linearity of E[|¢] follows from linear operator E : L*(Q, #,P) — R. Now we prove that E[-|¥4] is
@-linear. For all A € 4, we have

E[X1A|g] = ]IAE[X‘g] = E[X]IA]IB} = ]lAE[X]lB]7 VB e%.
By simple function approximation, for a ¥-measurable function ¢ such that £X € LY(Q,.#,P), we have

E[¢X1p] = (E[X1p], VB ¥ = E[tX|¥9] = (E[X|¥).

Hence E[-|¢4] is a ¥-linear operator.

(iv) If 0(X) and ¢ are independent, we have
Els(X)1p]=P{X € A}NB)=P(X € A)P(B) =E[14(X)]|E[15], VAec B(R), BeY.
Since A is arbitrary, by simple function approximation, for any measurable ¢ such that E |o(X)| < oo,
Elp(X)1p] = E[p(X)]|E[15] = E[E[p(X)|ls], VB €4 = E[p(X)|¥] = E[p(X)] as..
Conversely, if E[X|¥], then for all A € #(R) and all B € ¢4, we have
P{X € A} N B) = E[la(X)1p] = E[E[1A(X)15|9]] = E[1p]E[LA(X)] = P(B)P(X € A).

(v) Since g is a convex function, there exists a countable set C C R? such that g(z) = sup(, y)es(a +br). That
is, g is the supremum of a countable collection of affine functions. Then a 4+ bX < g(X) for all (a,bd) € S.
By monotonicity and linearity of conditional expectation, we have a + bE[X|¥4] < E[g(X)|¥] a.s. for all

a,b € S. Since S is countable, we have

P ( sup  (an + bn E[X|9]) > ]E[g(X)I%) =P ( (| {an+b.EX|¥] > E[g(X)I%]})
(an,bn)ES (an,bn)ES
< nlggoZP(ak + 0 E[X|9] > E[g(X)|9]) = 0.
k=1

Hence g(E[X|¥]) < E[g(X)|¥] a.s..

(vi) The conditional Holder’s inequality follows from Young’s inequality and monotonicity of conditional ex-

pectation. The remaining part of this proof is totally parallel to Proposition m (iii). O
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Remark. Given a random variable X € LP(Q, % P), where 1 < p < co. By conditional Jensen’s inequality,
EX9])’ <E[X|"|¥9] as.
implies
IEX 9], <E[E[XP1¢]] = [X]}

Hence E[-|¥4] : LP(Q), .#,P) — LP(,.%#,P) is a bounded linear operator, and ||E[-|¥4]|| < 1. Particularly, it can

be viewed as a projection operator on the Hilbert space L?(§,.%,P) of square-integrable variables.
The convergence theorems for expectation can be extended to conditional expectation.

Theorem 2.18. Let 4 be a sub o-algebra of 7.
(i) (Conditional monotone convergence theorem). Let (X)), be a increasing sequence of L' nonnegative
random variables such that X, 1 X € L*(Q,.Z,P). Then

lim E[X,|¥9] =E[X|¥9] a.s..
n— oo
(ii) (Conditional Fatou’s lemma). Let (X,,)%°, be a sequence of nonnegative L' random variables. Then

E [limiann’g} < liminf E[X,|¥] a.s..

n—oo n— oo

(iii) (Conditional dominated convergence theorem). If (X,,)%2 is a sequence of random variables such that
X,, = X a.s., and there exists a integrable random variable Y € L*(Q2, 7, P) such that | X,| <Y a.s. for
alln € N, then

E[X|9] = lim E[X,|¥] a.s. and in Lt

Proof. (i) Define Y;, = E[X — X,,|¢]. By monotonicity of conditional expectation, Y;, is a decreasing sequence.
We denote by Y the limit of sequence (Y;,). For each A € ¢,

E[Y,14] =E[(X — X,,)14].
Since | X — X,,| < |X| € LY(Q,.Z,P), by Lebesgue dominated convergence theorem,

E[Y14] = lim E[Y,14] = lim E[(X — X,,)I4] =E [ lim (X — X,,)14| = 0.
n—oo n—oo

n—oo

Since Y > 0 is ¥-measurable, Y = 0 a.s., and the desired limit follows.

(ii) Let Y, = infy>, Xy, which is a increasing sequence of nonnegative L' random variables. By monotonicity

of conditional expectation,
E[Y,|¥9] < E[X;|¥4], for all k> n.

Hence E[Y,,|¥4] < infy>,, E[X§|¥], and by (i),
E { lim YHM = lim E[Y,|¥] < liminfE[X,|9] as..
n—oo

n— oo n—0o0

(iii) The almost sure convergence follows by applying (ii) on sequences (Y + X,,) and (Y — X,,). For the L!
convergence, note that 0 < |X,, — X| < 2Y. By Lebesgue dominated convergence theorem,

E[|E[Xn|¢] - E[X|9]|] < E[E[|X, — X[|9]] = E[X, — X[ = 0.

Hence E[X,,|¢] converges to E[X|¥] in L'-norm. O
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Theorem 2.19. Let H = L?(Q,.%,P) be the space of square-integrable random variables. Define
(X,Y) =E[XY], VX, Y € H.

Then (H, (-,-)) is a Hilbert space. Given a sub o-algebra 9 C F, we also define Hy = L*(Q,9,Ply), then Hy

is a closed subspace of H, and the conditional expectation operator E[-|¥] is the projection onto He, i.e.

E[Y|¥] = argminE [(Y — X)?], VY € H. (2.7)
XeHy

Proof. The construction of Hilbert space H and Hg follows from completeness of LP-spaces. To prove that

E[-|¢4] is the projection onto Hy, it suffices to show & := E[Y'|¢] is orthogonal to Y — &:

(6,Y = &) =E[Y -] =E[E[EY - 9] =E[EE[Y —¢|¥4]] = 0.
The equation (2.7)) follows from the definition of projection. O
Similar to Theorem [2.13] we also have the integral transform formula for conditional expectation.

Theorem 2.20 (Conditional integral transform). Let (Q, #1,P1) and (Q2, F2,P2) be probability spaces, and
let T : (1, 71) = (Q2,.F2) be a measure-preserving transform, i.e. Py = Py oT~L. If ¢ € L1 (Qy, %o, Py),
and Gy C F4 is a sub o-algebra,

Erlp o TIT %] = Eali|s] o T, (2.5)

where B and Eq are expectation operators on (Q1, F1,P1) and (Qq, Fo,Py), respectively.

Proof. Let &3 = Ea[p|%)]. Then & := & 0T is a T~ '%-measurable function on (Q,.%;). By Theoremm
we have E;[¢p o T] = Eq[4] for all ¢ € LY(Qy, o, Ps). For any A; € T~1%, we have Ay := TA; € %, and

Ei[€1-1a,] =Ei[(§20T) 1a,] =Ei[(§20T) - (Ta, oT)] =Es[(§2- 1a,) o T] = Ea[&2 - 1 a,]
=Eolp - 1a,] =Eq[(p-1a,) 0 T]=Eq[(poT)  (La,0T)] =Es[(poT) - 1a,]

Since Ay € T~'%, is arbitrary, we have Ei[p o T|T71%] = & o T a.s., which is (2.8). O

Definition 2.21 (Conditional expectation given random variables). Let X and Y be two random variables.
IfE|Y| < oo, the conditional expectation of Y given X is defined as

E[Y]X] = E[Y]o(X)],

where 0(X) = X }(%(R)) is the o-algebra generated by X.

Theorem 2.22 (Doob-Dynkin). Let (2,.%) and (I',9) be measurable spaces. Given a measurable function
T:Q =T, leto(T) =T 19 C.F be the o-algebra generated by T. A real-valued function g : Q — R is
o(T)-measurable if and only if there exists a 4-measurable function ¢ : T — R such that g = poT.

Proof. The sufficiency is clear, so we only prove the necessity. Let g be nonnegative and o(T)-measurable.
By simple function approximation, there exists {A,}52; C o(7T) and nonnegative numbers {«, }22; such that
g=>0" a,1,, . Since 4, € o(T), there exists B, € ¢ such that A,, = T~'B,, namely, 1, = 1p, o T.
Hence we define ¢ = > ° a,1p,, which satisfies ¢ o T = g. For a general o(T)-measurable function
g, there exists ¥-measurable function ¢, ¢~ : I' — R such that g© = ot oT and g = ¢~ oT. Let
E={ypeT:ot(y)=¢ (y) =0} €¥. ThenT 'E = (), since co—o0 is undefined. Then ¢ = I\ g(eT—¢ ™)
is the desired ¢-measurable function. O
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Remark. By Theorem since E[Y|X]: (%,.7) — (R, Z4(R)) is a 0(X)-measurable function, there exists a
Borel-measurable function ¢ : (R, Z(R)) — (R, Z(R)) such that E[Y|o(X)] = ¢(X). In other words, E[Y|X]

is the composition of a measurable function ¢ and the random variable X.

Theorem 2.23. Let X ~ ux andY ~ uy be two independent random variables. If ¢ : R? — R is measurable
and p(X,Y) is integrable, then

B [p(X,Y)IY) = Elp(X. o),y = [ (oY) dux (), (2:9)

Proof. Define ¢(y) = [ p(z,y) dux(z), y € R. For all A € Z(R), we have

E[(Y)1a(Y)] =/w(y)11A(y) dpy (y) =/</<p(af,y)llA(y) dux(w)) dpy (y)
= / e(z,y)La(y) d(px @ py)(z,y) = Elp(X, Y)La(Y)]. (By Fubini’s theorem)

Hence we have E [p(X,Y)|Y] = ¢(Y). O
Remark. In fact, the equation (2.9 has a more direct form:

Elp(X, Y)Y = y] = E[p(X,y)|Y = y] = E[p(X,y)].

Given a sub c-algebra & of %, we can define conditional probability P(-|¢) by conditional expectation:
P(A|9) = E[14|¥]. This automatically induces a probability measure P(-|¢)(w) for each w € Q.
2.3.2 Regular Conditional Distributions

Our study on the regular conditional distribution is based on a more general case. Let (2, .%#,P) be a probability
space, and let X : (Q,.%) — (E, &) be a measurable mapping.

Definition 2.24 (Regular conditional probability). Let ¢4 be a sub o-algebra of #. A regular conditional
probability is a function P(-|¥4)(-) : .F x Q — [0, 1] satisfying the following:
(i) For P-a.e. w €,
P(A|9)(w) =E[14|9] (w), forall A€ Z;

(ii) For P-a.e. w € Q, P(-|¥4)(w) is a probability measure on (2, .%).
This is a special case of the following definition when X is the identical mapping.

Definition 2.25 (Regular conditional distribution). Let ¢4 be a sub o-algebra of %#. Let X : (Q, %) — (E, &)
be a random mapping. We define px4(-,-) : & x @ — [0, 1] as follows:

x4 (B,w) =P(X (B)|9)(w), forall Be&.

The function px|y : € x Q@ — [0,1] is called a reqular conditional distribution of X given ¢, if
(i) w px|w(B,w) is ¥-measurable for each B € &, and
(ii) px|(-,w) is a probability measure on (E, &) for P-a.e. w € Q.

Moreover, for all A € 4 and B € &, we have

Plwe A, X € B) = /A“XW(B’W) P(dw).

Remark. According to the last identity, P(X € B|¥) = ux»(B,-) a.e. for every B € &.
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Theorem 2.26. Let ux|y be a regular conditional distribution for X given . If f : (E,8) — (R, A(R))
satisfies E[f(X)] < oo, then

B0 = [ f@)dixa, as.

Proof. The case f = 1 g follows from the definition. Linearity extends the result to simple f and monotone

convergence to nonnegative measurable f. The general result follows by writing f = f* — f~. O

Theorem 2.27 (Existence of regular conditional distribution). Let 4 be a sub o-algebra of %, and let (E,&)
be a Polish space (a separable and completely metrizable space) equipped with the Borel o-algebra. Then every
random mapping X : (Q, ) — (E,8) has a regular conditional distribution px|q given 4.

Proof. In a Polish space F, the Borel algebra & is generated by the collection % of open balls of rational radii
and centers in a countable dense subset of E. Since the algebra generated by a finite collection is finite, the
algebra ¥ generated by % is countable since it can be written as a countable union of finite algebras ¥,.
Step 1. We apply Ulam’s Theorem [Proposition (iii)] to the probability measure Po X! on (E,&) to
conclude that, for each B € ¥, there exists a sequence of compact sets B; C B such that P(X~1(B;)) 1
P(X~1(B)). Without loss of generality we may assume By C By C -+ C B. By Theorem m (1),

lim P(XY(B;)|9) =P(X '(B)|¥9) as. (2.10)
J—00
We consider the algebra 2 generated by the union of (i) all sets in ¥/, and (ii) the set of all compact B; for
all B € #. This algebra is countable. Furthermore, P(X ~(D)|¥4) is 9-measurable for each D € 2, and
(i) for each D € 2, P(X~Y(D)|¥9) > 0 a.s.;
(i) P(X~YE)|¥9) =1 as., and P()|¥9) =0 a.s.;
(iii) for any sequence of disjoint sets Dy, Do, - € 2,

k k
P{Xx* UDj % :ZP(X_l(Dj)L@) a.s. for each k € N;
j=1 j=1

(iv) For any B € ¥ and for the specific sequence (B;)32; as chosen, holds.
Since (i)-(iv) consists of countably many equations, they all hold on some Q\N with N' € ¢ and P(N) = 0.
Step II. We prove that p, := P(X ~1(+)|4)(w) is countably additive on the algebra ¥ for every w € Q\N.
Argue by contradiction. If p, is not countably additive, by property (iii), i.e. the finite additivity of p,,,
there exists V; | 0 with § := lim;_,o pt,,(Vj) > 0. For each j, by property (iv), we take K; € 2 such that
K; c Vj and pu,(V;\K;) = 3795. Then for each n € N,

| >

po (Ky N Ky 0N Ky) > po(Va) = > 3776 >
j=1

Hence the intersection ﬂ?:l K; is nonempty. Since K; is a compact set in E, by the finite intersection
property, ﬂ;’;l K is nonempty, contradicting the fact V; | 0.

Step II1. By Carathéodory’s extension theorem, for each w € Q\.A", P(X ~1(-)|¢)(w) extends to a probability
measure [, on & = o(¥). For all w € A", we can let p, be any fixed probability measure v. If B € ¥,

/ fio(B) P(dw) = / P(X Y(B)|9)dP =P(w e A, X € B), foreach Ac¥. (2.11)
A A

We let .4 be the collection of all sets B € & satisfying the above condition. Then .# is a monotone class
containing the algebra ¥, and by the monotone class theorem, .# D o(¥) = &. Since N € 4, w — u,(B) is
¢-measurable. Therefore x4 (B,w) := ., (B) defines a regular conditional distribution of X given ¢. O
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Remark. The regular conditional distribution p x| is unique in the sense that if 1’ also satisfies the definition
of j1x|¢, then for Plg-a.e. w, the two laws pix ¢ (-,w) and (-, w) are identical.

To see this, we note that since 7" is countable, Py almost surely, pux ¢ (B,w) = p/(B,w) = P(X € B|¥)(w)
for all B € 7. For all such w, the collection of subsets of ' on which there is agreement is a monotone class,

which includes o(¥) = &. This justifies the uniqueness of the regular conditional distribution.

We have a more elementary proof for the case (E, &) = (R, Z(R)).
Proof of Theorem[2.27 For all rationals r € Q, define
F(r[-) = P(X € (o0, 1] [9) := E[lueq:x (w)e(—oc,m}¥]-

Clearly, for r < s, we have 1{x¢(—oo,r]} < L{xe(=00,s]}- By monotonicity of conditional expectation, we have
F(r|-) < F(s|-) for P-a.e. w € Q. Denote A, , = {w € Q: F(rlw) > F(s|lw)}, so P(A, ) = 0. Moreover, by
dominated convergence theorem (Theorem [2.18)), there exist null sets {B,}reqp C .% and C € % such that

1
lim F(T+
n

n—oo

w) = F(r|lw), Yw € Q\B,

as well as

inf F(rjw)=0 and supF(rjw)=1, VweQ\C.
reQ reQ

Let £ = (Ur,seQ:r<s Ans) N (UreQ BT) UC. Then pu(N) = 0. For w € Q\E, define

F(z|w) == Teg}fo(r\w), Vo e R.

Since F(-|w) is monotone increasing on Q, F(w)|g = F(-|w). By construction, F(-|w) : R — [0,1] is a c.d.f., and
we can extend this to a unique probability measure x|« (-,w) on Z(R) by Carathéodory’s extension theorem.
Hence f1x¢(-,w) is a Borel probability measure for P-a.e. w € Q.

For w € E, define F(-|w) = Fy, where Fy is an arbitrary but fixed c¢.d.f.. Then for 7 € Q and B = (—o0, 7],

w = x|y (B,w) = 1p(w)Fo(r) + Loy g(w) F(r|w)
is .Z-measurable, since F'(r|w) is ¥-measurable by definition. We define
72 ={B € BR):wr uxg(B,w) is F-measurable} .

This is a A-system, because
(i) pxjo(R,w) =1, which implies R € Z;
(ii) For EC F' € 2, pxg(F\E,w) = px9(F,w) — pxw(E,w), hence F\E € Z;
(iii) For increasing sequence By, € %, ix|g(B,w) = lim, o fix|@(Bn,w), hence B := U,_,Bn € 2.
Note that {(—oo,r],r € Q} is a m-system generating Z(R). By Sierpinski-Dynkin 7-A theorem, we have
P = B(R). Then ux4(B,-) is F-measurable for all B € Z(R). Furthermore, for all A € ¢ and B € #(R),

/AMXVg(B,w) P(dw) =E []IAE[]I{XGB”g]] = E[]IAO{XEB}] = P(w cAXe B)

Thus we complete the full proof. O

Remark. If X is independent of ¢, the conditional distribution s x|« (-,w) is the same as the unconditional

distribution px for P-a.e. w € Q.
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Finally, we study the regular conditional distributions given random variables.

Theorem 2.28 (Conditional distribution). Let X and Y be two random mappings taking values in a Polish
space (E,&). We denote by ux = Po X! the distribution measure of X on (E,&). Then there evists a
function py|x(-|-) : & x E —[0,1], called the regular conditional distribution of Y given X, such that
(i) x — py|x(Bl|z) is &-measurable for each B € &;
(ii) py|x(-|z) is a probability measure on (E,&) for ux-a.e. x;
(iii) for all A,B € &,
P(X €AY eB)= /AMY‘X(BM) px (dx).

We write Y[ X ~ py|x.

Proof. We let ¥ = o(X), and fix the regular conditional distribution pyy : & x @ — [0,1]. For each
B € &, by 4-measurability of w — py | (B,w) and the Doob-Dynkin Theorem [Theorem [2.22], there exists a
&-measurable function pp : E — [0, 1] such that py 4 (B,w) = pp(X(w)).

We define pyx(-|) : & x E — [0,1] by setting uy|x (B|z) = ¢p(x) for B € & and v € E. We prove that
My |x is the desired regular conditional distribution.
(i) Clearly, for each B € &, py|x(B|-) = ¢p is &-measurable.
(ii) We let Qg be the set of w such that py|4(-,w) is a probability measure on (E,&). Then P(Q) = 1, and
for each x € X (Q), there exists w € X~ '(z) C Qp such that py x(-|z) = ¢ (X(w)) = pyg(-,w). Since
px (X (Q0)) = P(Q0) = 1, we know that iy |x(-|z) is a probability distribution for ux-a.e. .
(iii) For each B € &, the random variable py|x(B|X) = ¢p(X) = py|»(B,-) = P(Y € B|¥) a.s.. We then
use the integral transform formula [Theorem [1.50] to obtain

PXeAyen) - [ BBl [ 1 BIX @)1 e Bw) = [ jayi (Blo) x (),
-
Thus we find the desired regular conditional distribution py|x. O

Remark. (I) In particular, if X and Y are two real-valued random variables, there exists a two-variable

measurable function (z,y) + Fy|x(y|x) such that F'(:|z) is a c.d.f. for px-a.e. x, and

P(Xga,ng):/ Fyx(b|lz) px(dz), a,beR.

(70010']

Also, {Fy|x (-|7)}zer is called the family of conditional distribution functions of Y given X.

(II) If X and Y are two real-valued random variables have a joint density p(z,y) > 0. Define

p(z,y)dy
py|x (Blz) = "[B(mi, Be #R), z R

Jp p(z,y) dy

This is a regular conditional distribution of Y given X.
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2.4 Stochastic Convergence

Review: Convergence of Random Variables. Here are several categories of convergence of measurable
functions we covered in We summarized them in random variable version. Let X, : (,.%) —
(R, Z(R)) be a sequence of random variables. Let X be a random variable.

(i) (Almost sure convergence). X,, is said to converge almost surely to X if

P(hm Xn:X):l.

n—oo

(ii) (Convergence in Probability). X, is said to converge in probability to X if for all n > 0,
lim P(| X, — X|>n)=0.
n— oo

(iii) (Convergence in LP-norm). Let 1 < p < oo. X, is said to converge to X in LP-norm if

lim E|X, — X[? = 0.

n—oo

All these modes of convergence can be generalized to the case of random vectors by giving RP a proper
metric, e.g. the Euclidean distance and LP-distance.

Since a probability space (£2,.%#,P) is a finite measure space, almost sure convergence implies convergence
in probability. Also, by Chebyshev inequality, convergence in LP-norm implies convergence in probability.
Moreover, if X, is a uniformly integrable sequence that converges to X in probability, it also converges to X

in L'-norm. Now we introduce another convergence of random variables.

Definition 2.29 (Convergence in distribution). A sequence of random variables X,, ~ F,, is said to converges
in distribution to a random variable X ~ F' if

lim F,(z)=F(z) < lim P(X,<z)=PX <=z

n—oo n—oo

for each points x of continuity of F', and we write X LA X,,. We also say that the sequence of cumulative

distribution functions F,, converges weakly to F, and write F,, — F.

Remark. In fact, a sequence of random variables converges in distribution if and only if their distribution

measures converges weakly. This is used an alternative definition of convergence in distribution.

Theorem 2.30 (Portmanteau lemma). Let X,, ~ F,, be a sequence of random variables, and X ~ F. Then
X, 4 x if and only if the following equivalent conditions hold:
(i) E[f(X,)] = E[f(X)] for all bounded continuous functions f;
(i) E[f(X,)] = E[f(X)] for all bounded Lipschitz continuous functions f;
(#ii) liminf, o E[f(X,)] = E[f(X)] for all lower semi-continuous function f bounded from below;
(iv) limsup,,_, . E[f(X,)] < E[f(X)] for all upper semi-continuous function f bounded from above;
(v) liminf, . P(X, € G) > P(X € G) for every open sets G;
(vi) limsup,,_,  P(X, € F) <P(X € F) for every closed sets F;
(vii) lim,_ P(X,, € B) = P(X € B) for all continuity sets B, i.e. P(X € 9B) = 0.

Proof. = (i): Without loss of generality, we let bounded continuous function f take values in [—1,1]. Assume
that F' is continuous. By X, 4 X, we have lim,, . P(X,, € I) = P(X € I) for all closed intervals I on R.
Given € > 0, choose a sufficiently large I so that P(X ¢ I) < €¢/5. Since f is uniformly continuous on the

compact set I, we choose a partition I = U§:1 I; such that f varies at most €/5 on each I;. Take a point z;
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from each [;, and define ¢ = f(x;)1;, then ¢ is a simple function, and

ELF (X)) ~ Blo(X)]l = £ +B(Xa ¢ 1), [ELA(X)] - Efp(X)]| = S+ B(X ¢ 1) < & (2.10)

Since lim,, oo P(X,, € I) = P(X € I) and P(X ¢ I) < €/5, there exists Ny such that P(X,, ¢ I) < ¢/5 for
all n > Ny. Note that

[Elp(Xn)] = E[p(X)]| <} [P(Xy € I;) = P(X € Ij)| [ f ()] (2.11)

-

1

J

We also choose Ny such that |P(X,, € I;) —P(X € I;)| < ¢/(5k) for all I; and all n > N;. Combine
with and use triangle inequality, then |E[f(X,,)] — E[f(X)]| < € for all n > max{Ny, N1}. Since € > 0
is arbitrary, (ii) holds for all continuous c.d.f. F'.

If F:R — [0,1] is not continuous everywhere, we use rarity of discontinuity sets. The collection of sets
{(=00,a] : a € R} has disjoint boundaries, and at most countably many of them are discontinuity sets, say
P(X = a) > 0. As a result, there exists a dense subset D C R such that F' is continuous at each o € D. We
choose closed intervals I with boundaries on D.

(vii) = For each point = of continuity of F', choose B = (—o0, z]. O
Remark. This theorem can be easily extended to the case of random vectors.
A continuous mapping preserves several modes of stochastic convergence of random variable sequences.

Theorem 2.31 (Continuous mapping). Let X be a random variable. If g : R — R is continuous everywhere
on a set C such that P(X € C) =1, then g preserves the following modes of convergence:

(i) If X, “3 X, then g(X,) % g(X);

(i) If Xp = X, then g(Xn) = g(X
(iii) If X, 5 X, then g(X,) % g(X

P .
— g9(X);
d

— 9(X)

Proof. (i) is trivial. (ii) Given n > 0, define
E, = {xeC:HyERsuch that |y — x| < % and |g(y) — g(z)| >77}, keN.
Since g is continuous everywhere on C, the sequence Ej N\, 0. Then
P9(X,) ~ 900 2 ) < P(X € B + P (1, ~ X1 2 1) 212

Given € > 0, we first choose K such that P(X € Ek) < €/2, then choose N such that P(|X,, —X| > 1/K) < ¢/2
for all n > N. Hence is controlled by arbitrarily small € > 0.

(iii) Let FF C R be a closed set. If x € g—1(F), there exists sequence z; € ¢~ *(F) such that x;, — z and
g(z) € F. Since F is closed and ¢ is continuous on C, if x € C, we have g(x) € F. Hence the following
inclusions hold for all closed F":

g F)cgTi(F) cg (P uCe

Using the Portmanteau lemma, we have

limsup P(¢(X,,) € F) < limsup P (Xn € g*l(F)) <P (X c g*l(F)) < P(g9(X) € F),

n—oo n—oo

where the last inequality holds because P(X € C) = 0. Again by Portmanteau lemma, g(Xp,) 4 9(X). O
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Another important property associated with weak convergence is uniform tightness. Any random variable
X is tight or O,(1), i.e. for each e > 0, there exists M > 0 such that P(|X| > M) < e. This is a consequence
of the properties of c.d.f. Fx(z) =P(X < z).

Definition 2.32 (Uniform tightness). A collection of random variables {X,,a € J} is said to be uniformly
tight, if for every € > 0, there exists a constant M > 0 such that

supP (| Xo| > M) < e.
acJ

Clearly, any finite collection of random variable is uniformly tight.
The following Prohorov’s theorem is a generalization of Heine-Borel theorem.

Theorem 2.33 (Prohorov). Let X,, be a sequence of random variables.
(i) If X, 4 X for some random variable X, then {X,, : n € N} is uniformly tight;
(i) If {X, : n € N} is uniformly tight, then there exists a subsequence X, that converges in distribution to

some random variable X .

Proof of [Theorem 2.32 (i) Given ¢ > 0, we choose My such that P(|X| > M) < ¢/2. By Portmanteau’s
theorem, we have limsup,,_, . P(|X,,| > My) < P(|X| > Mp). Hence we can choose N such that

sup P(|X,,| > My) < P(|X| > My) + fce
n>N 2

Note that any finite collection of random variables is uniformly tight. Then we choose M; such that
P(|X,| > M) <eforall j=1,--- ,N —1. Let M = max{Mo, M;}, then sup,,cyP(|Xn| > M) <e. O

The proof of Theorem [2.33] (ii) uses Helly’s selection theorem.

Theorem 2.34 (Helly’s selection theorem). Let f, : R — [-M, M| be a uniformly bounded sequence of
monotone increasing functions. Then there exists a subsequence (fn, )72, that converges pointwise to an

monotone increasing function f:R — [—=M, M].

Proof. Choose a countable dense subset Q = {ry,k € N} of R. Then f,(r1) is a bounded sequence. By
Bolzano-Weierstrass theorem, choose a convergent subsequence f1,(r1) — f(r1). Then fi,(r2) is a bounded
sequence, and again we choose one of its convergent subsequence fo,(r2) — f(r2).

“diagonal trick”: Repeat this procedure, so for each k € N, we choose a subsequence fy, such that
fun(r;) — f(r;) for all indices j < k. Since (fin)nz, is a subsequence of its predecessor (fr—1.n)ne1,
(fan(rE))S2, is a subsequence of (fin (1)), from n = k on, and we have lim, oo fun(ry) = f(rg) for
all k € N. Hence we obtain a subsequence fy, that converges to f pointwise on Q. Clearly, f : Q — [-M, M]
is increasing.

For all irrationals = € R\Q, choose a increasing rational sequence ry;, — x, and let f(x) = lim; oo f(7%;).
Note this limit exists because f(ry,) is a bounded increasing sequence. Clearly, f is increasing on R and
bounded by M, and ry, < x < ry, implies fon(rx,) — f(rr;) < fan(x) = f(2) < fun(rr,;) — f(ry,) for all n € N.

Finally we prove f,, — f pointwise on R. Given ¢ > 0. If z € R\Q is a point of continuity of f, we choose
rationals r < x < r’ with |f(rg,) — f(rk;)| < e Then

—e <lminf (fon(r) = f(r')) < fun(z) — f(2) < lmsup (fun (') = f(r)) <e

n—00 n— o0

Hence f,, converges pointwise to f, except possibly at points of discontinuity of f. Being monotone
increasing, f has at most countably points of discontinuity. Since f,,, is uniformly bounded by M, we repeat

the “diagonal” trick to obtain a subsequence of f, that converges everywhere on R. O
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Corollary 2.35 (Helly’s selection theorem). Let F,, : R — [0,1] be a sequence of cumulative distribution

functions. Then there exists a subsequence F,, such that F,, (x) — F(z) at each point x of continuity of a

possibly defective distribution function F, i.e. F only satisfies properties (i) and (i) in|Proposition 2.2

Proof. By[Theorem 2.33] we choose a subsequence F,,, of F,, that converges pointwise to an increasing function
G : R — [0,1]. Define F(z) = lim._,q+ G(z + ¢€) for all z € R. Then F is right-continuous on R, and F,,

converges to F' at all points of continuity of F. O

Proof of | Theorem 2.32 (1)l Let X,, ~ F,,. By Helly’s selection theorem, there exists a subsequence F),, of the

c.d.f. sequence F;, that converges to a possibly defective distribution function F. It suffices to show that F' is
proper. That is, lim,—,_~ F(z) = 0 and lim,_, o, F(z) = 1.

Given € > 0, by uniform tightness of {X,,,n € N}, we choose M > 0 such that F(M) > 1 —e. Since the
points of discontinuity of F' are rare, we slide M slightly larger so that M is a point of continuity of F'. Then
F, (M) — F(M) > 1—e¢. Since € > 0 is arbitrary, F'(z) — 1 as x — co. The case x — —o0 is similar. O

Now we discuss the relationship between convergence in probability and convergence in distribution.

Theorem 2.36. Let X,,, X, Y, and Y be random variables. Let c € R be a constant. Then
(i) IF X, 5 X and Y, 5 Y, then (Xn,Yy) = (X,Y);
(i) If Xp, 5 X and | X, — Y| 5 0, then Y, % X;
(i) If X» 5 X, then X, % X;
(iv) X, L. if and only if X, A c;
W) IF X, 5 X and Y, % ¢, then (X, Y,) % (X, ¢);

Proof. (i) The result follows since p((xn, yn), (z,y)) := \/|:c — o2+ |y —ynl® < |z —z0| + |y — Ynl-

(ii) For every bounded 1-Lipschitz continuous function f : R — [0, 1], we have
[E[f(Xn)] = E[f(Ya)]] < €E[l{x, v, <] + E[L{x, v, 1>] < € + P(| Xy = Y[ > €), Ve > 0.

Since € > 0 is arbitrary, and P(|X,, — Y,| > €) converges to zero, we have E[f(X,)] — E[f(Y,)] — 0. By
Portmanteau lemma, E[f(Y;,)] — E[f(X)], and Y, 4 X,
(iii) Since X 4 x trivially, this is a special case of (ii).
(iv) The “only if” case is a special case of (iii). For the converse, given any ¢ > 0, by Portmanteau lemma,
X, ﬁ) ¢ implies X, E) c:

limsupP(|X,, — ¢| > €) = limsupP(X, € R\(c —¢,c+¢)) <P(c e R\(c—¢,c+¢€))=0.

n—oo n—oo

(v) Since p((Xn,Yn), (Xn,¢)) = |Yn — ¢ 50, by (ii), it suffices to show that (X,,c) 4 (X,c). For every

f € Cy(R?), the mapping = + f(z,c) is also bounded and continuous. By Portmanteau lemma, we have
E[f(Xn, )] = E[f(X,c)]. Thus (X,,¢) 4 (X, ¢), and the result follows. O

We have the following useful corollary.

Lemma 2.37 (Slutsky). Let X,,, X and Y, be random variables. If X, 4 X and Y, Lee R, then
(i) Xp+Y, %5 X +¢;
(i) XY, % X ;

(iii) If ¢ £ 0, then Y, 1X, % 71X

Proof. By [Theorem 2.35 (v)| and continuous mapping theorem [Theorem 2.30 (iii)]. O
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Finally we introduce small 0o and big O symbols.

Definition 2.38 (Stochastic o and O symbols). The notation op(1) denotes a sequence of random variables
that converges to 0 in probability. The notation Op(1) denotes a sequence of random variables that is uniformly

tight. More generally, given a sequence of random variables R,,,

X, =op(Ry) & X,=Y,R, and Y, - 0;
X, =Op(R,) < X,=Y,R, and Y, = Op(1).

Theorem 2.39 (Calculus with o and O symbols). (i) op(1) 4 op(1) = op(1);
(ii) or(1) + Op(1) = Op(1);
(#1) Op(1)op(1) = op(1);
(iv) (1+o0p(1))~! = Op(1);
(v) op(R,) = Ryop(1), Op(R,) = R,Op(1);
(vi) op(Op(1)) = op(1);

Proof. (i), (v) follows from definition.

(ii) Let X,, = op(1) and Y,, = Op(1). Given € > 0, choose M such that P(|Y,,| > M/2) < ¢/2 for all n € N,
and choose N such that P(|X,,| > M/2) < ¢/2 for all n > N. Then P(|X,, +Y,| > M) < e for all n > N.
Since (X, + Y,)52 y is uniformly tight, so is (X, + Y5,)02 .

(iii) Let X,, = op(1) and Y;, = Op(1). Given € > 0, choose M such that P(|Y,,| > M) < €/2. Given n > 0,
choose N such that P(|X,,| > n/M) < ¢/2 for all n > N. Then P(|X,,Y,| >n) < e for all n > N.

(iv) Let X, = op(1). For any € > 0, there exists 0 < n < 1 and N > 0 such that P(|X,,| > ) < e. Then
P((1+ X,)" > ﬁ) <e Asaresult, ((1+ X,) ")y is uniformly tight, and so is ((1 + X,,)71)52,.
(vi) Follows from (iii) and (v). O

Theorem 2.40. Let R: R — R be a function such that R(0) = 0. Let X, = op(1). Then for every p > 0,
(i) If R(h) = o(Jh|P) as h — 0, then R(X,) = op(|Xn|P);
(i) If R(h) = O(|h|?) as h — 0, then R(X,) = Op(|X,|?).

Proof. Define g as g(h) = |h|"PR(h) for h # 0 and ¢g(0) = 0. Then R(X,,) = | X,|Pg(X,,).

(i) By assumption, ¢ is continuous at 0. Then ¢g(X,,) 5 g(0) = 0 by continuous mapping theorem.

(ii) By assumption, there exists 6 > 0 and M > 0 such that |g(h)| < M for all |h| < §. Then we have
P(lg(X,)| > M) <P(|X,| > J§) = 0, and the sequence g(X,,) is uniformly tight. O
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2.5 Characteristic Functions

Definition 2.41 (Characteristic function). Let X ~ p be a (real-valued) random variable, where u is a

distribution measure. The characteristic function of X is defined as

px :R—=C, ¢ox(A\) =E [ev‘x] = / M du(r), i2 = 1.
R

Proposition 2.42 (Properties of characteristic functions). If ¢x is the characteristic function of a random

variable X ~ u, the following are true:

(1) ¢x(0) = 1;
(ii) ¢x : R — C is bounded and uniformly continuous.
(i1i) If E[|X|"] < oo for some n € N, then ¢x is n-differentiable, and its k-th derivative is

(N =E[(X)*], k=1,--- ,n. (2.13)

Furthermore, all these derivatives are uniformly continuous. Particularly, we have ¢ (0) = i*E[X*].
(iv) ¢x is twice differentiable if and only if E[X?] < co. Generally, for each k € N, ¢x is 2k-differentiable
if and only if E[X?F] < co.

(v) If X is a continuous variable, then limy_, 1o ¢x(A) = 0.

Proof. (i) is clear by definition. To prove (ii), note that |¢x(A)| < 1 for all A € R. For uniform continuity, we

use the following inequality:

- i . 0
e? — 1 = 2ie? sm§ =

e -1l <2

0
2 <
sm2‘9

Then for all A\j, A2 € R, we have

6x (A1) — dx(Da)| = ‘114: [(e%”?)x - 1) ei>‘2X] ’ <E sin QLZADT] o 91

ei(M*)\z)X _ 1’ < 2/
R

Given € > 0, we choose [~ R, R] such that u([~R, R]) > 1 — ¢/4. Then whenever |\ — A\2| < 5%, we have

),

Hence ¢x is uniformly continuous.

()\1 — )\2)1’ R

2

()\1 — )\2)1’
2

sin sin

dp(z) <2 /

—R

du(z) + = < 2/ < dp+ - =e (2.15)
[-R,

(iii) Assume E|X| < co. By Lebesgue dominated convergence theorem, since X [exp(ieX) — 1] < | X]|,

_ ieX _ . ieX _ . .
lim dx(A+€) —ox(N) M E [eleo\x] ) [hm elelxx] ) [iXel)\X] .

e—0 € e—0 € e—0 €

Hence ¢x is differentiable. Furthermore, by monotone convergence theorem, we choose R; > 0 such that
E[| X1 x>k} < €/2. Alike|(2.14) and |(2.15), whenever |[A; — Xz < €/(2R?), we have

2l ()\1 — /\2)13

2

z sin dup(z) + % <e.

0c00) = 0 )l = E X — )] <2 [

Therefore the derivative ¢y is uniformly continuous. Now assume |(2.13)| holds for k — 1. If E[| X |*] < oo,

(k—1) (k—1) ieX ieX
_ _1 ) -1 ) )
TS 0 ks G GV T | (iX)k_lel’\X] —E [hm ¢ (iX)k_le"\X] — B [(iX)*e*] .

e—0 € e—0 € e—0 €
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Therefore ¢x is k-differentiable. Again by monotone convergence theorem, we choose Ry > 0 such that
E[|X|"1{x|> R3] < €/2. Whenever [A; — Xg| < ¢/(2R; ), we have
Ry, (/\1 — )\Q)if
2

2" sin

AP0 = 9P 0a)] =B [N - X)) <2 [

dp(z) + fce
n 2

Hence ¢()?) is uniformly continuous. By induction we finish the proof of (iii).

(iv) We only proves necessity, since (iii) implies sufficiency. By definition, if ¢’ (0) exists, we have

40) = Jim XX Z200) gy [ 200D 22 400 < iy [ 1220 g
R -0 Jr

X h—0 h? h—0 h? Hw).
By Fatou’s lemma, we have

.1 —cos(hx . 1 — cos(hx
E[X?] /R:czdp(a:)Q/R}lllg})m()dp(x) §2hm1nf/RhQ()dp(:c) "% (0) < co.

h—0

Generally, if 2 (0) exists, then E[X2~2] < 0o, and by (iii), 60" > (\) = E[(1X)%*~2¢*X]. Then

(2k—2) (2k—2)
CO(0) = 1im X W FOx TN Z200) _ [ (pan-a2eos(ha) =2
X (0) = lim 3 = lim R(w) = du(z)

1-— h
:(_1)k—12%%/Rw2k—2(3§25($) dp(z).

By Fatou’s lemma, we have

E[X?] = /]R 22 dp(z) = 2 /R lim 2622 = 0ShT) 4 oy

h—0 h?
1-— h _
< 211211_36&/]1%1"%2(7;(@ dp(x) = (—1)’“19%)2?’“ 2(0) < oo.

Then (iv) follows from induction.

(v) Since X is continuous, there exists a density function p € L'(R) of X, and ¢x(\) = [ p()e** dz. The
conclusion immediately follows from Riemann-Lebesgue lemma. We give a complete proof here.
Firstly, suppose p € C.(R). For A # 0, the substitution  — x —  implies

. s : . s ;
ox (A :/pwe”\xdx:/p T — — el)‘welmdxz—/p z——)edx
X & () & ( ,\) & ( ,\)

Use the two formulae to compute ¢x (A), we have

ox 0 < 3 [ |p0) = p (- 5)| s

p(z) —p(z— g)‘ — 0 as |A\| = oo for all z € R. By Lebesgue dominate convergence
theorem, |¢x (A)] — 0 as [A| = occ.

Since p is continuous,

For the general case p € L'(R), we use function approximation. Since C.(R) is dense in L'(R), we can
choose f € C.(R) such that ||f — g|j1 < € for any € > 0. Then

limsup |¢x (A)| < lim sup ‘/(p(x) — f(x))e™ dx| + limsup ‘/ f(x)e*dz| <e40=ce.
A—+oo A—=+too A—too
Since € > 0 is arbitrary, we have [¢px (A)] = 0 as A — *oo. O
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In fact, we can determine a measure distribution uniquely by its characteristic function.

Theorem 2.43 (Inversion formula). Let F be a c.d.f., and ¢ is the associated characteristic function.

(i) For any two points a < b of continuity of F,

Distinct c.d.f. F have distinct characteristic functions.

(ii) For any ¢ € C.(R),
/sodF— hrrg%/@(w) (/ et pp(t)e 3t dt) dz.

(iii) If |orll1 == [|or(t)]dt < oo, then F has density function p:

and sup,cp p(z) < Qﬂ”‘lsFHl < 00.

Proof. (ii) Let Z ~ N(0, 1) be independent of X ~ F. Then for all ¢ € C.(R) and ¢ > 0,

]Ecp(XJr\/SZ)}: / (X +V6N) —dA}

f
=E 7/ (X + VOME [e7 4] dA] =K [&/@(X—k\/g)\)ei’\zd)\}
B | [ el F” dg] = = [ wlOr [ ag

e e ()] g ot 5 () )

Note that ¢ is continuous and bounded. Let § N\, 0, we obtain (ii) by dominated convergence theorem.

(iii) If @ < b are points of continuity of F', then by (i),

1 T e—lat _ o—ibt
F(b) — < lim — £)| dt.
PO - F@)l < Jim o= [ 15— or ()
Since | <P lat)ltexP( )1 < |b - al, we have
b — al
[E(6) = Fla)l < ——l¢Fls- (2.16)

For general a < b, we can find two sequence a,, / a and b, \, b of points of continuity of F'. Hence the
estimate |(2.16)| holds for all @ < b, and F' is continuous. As a result, F' has density p, and

F(b) — F(a) i/ elat _ eibt or(t)dt.

b—a 27 ) i(b—a)t
Let b\, a, the equation in (iii) holds, and the estimate of upper bound follows from O

The proof of (i) requires some technical lemma.
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Lemma 2.44 (Dirichlet). Let o € R. Then

T sin(at)

lim dt = 7sgn(a),

T—o0 T
where sgn(a) = ]1(0,00)(04) — L(—os,0) ().

S

Proof. The case a = 0 is clear. It suffices to prove the case a = 1. Since (s,t) — e %! is absolutely integrable

on [0,00) x [0,00), by Fubini’s theorem,

00 s 00 00 o0 o0 <1
/ Lntdt:/ (/ e‘“sintds) dt:/ (/ G_StSintdt> dsz/ T eds= >
| ; ; ; 0 0 o l+s 2

The result follows by changing variables. O

Proof of |Theorem 2.42 (i), Let a < b be two points of continuity of F', and X ~ F. By Fubini’s theorem,

1 T e—lat _ —ibt 1 T e—lat _ —ibt

— t)ydt = — ———E [ dt
o |y g ordt=oo | it [£*]
& i /T e—lat _ ,—ibt 6itX &
271— -T it
_E [1 /T sin(tX — at) — sin(tX — bt) SitX dt} (2.17)
2 T t

Note that fOT st qp < [ #2tdt < 7 for all T > 0, the integrand in |(2.17)[is bounded by 2. By Lebesgue

dominated convergence theorem,

1 [T e—iat _ ,—ibt
1m4f/ T Gr(t)dt=E
T it

T . . o . )
lim i/ sin(tX — at) t sin(tX — bt) it X dt]
-7

1
= SElsen(X — a) - sgn(X —b)] (By [Comma 2.13)
1
3 (1—-2F(a) — 1+ 2F(b))
= F(b) — F(a),
where the last row follows from continuity of F' at a and b. O

Remark. In high-dimensional case, a similar conclusion follows: Let up be a distribution measure on Z(RP),
and let ¢p(A) = [5, exp (i(z, A)) dup(z) be the characteristic function of yup. Let A C R? be a cell of the form

A={(z1, - ,zp) 1 aj <z <bj forall j},
where a; < b; for all j and pp(0A) = 0. Then

1

p iajt; ibjt;

eI — e
12 A) = lim 7/ Il { - }(ZS t dt7 where ¢t = (¢ P ,t GRP 2.18
F( ) T (27T)p [ ’ ]p] n ltj F( ) ( 1 p) ( )

Note that at most countably many hyperplanes perpendicular to the coordinate axes can have positive ug
measure. As a result, the cells A with u(0A) = 0 form a 7-system that generate Z(RP). Thus a distribution

pr is uniquely determined by its characteristic function ¢ by [(2.18)] and [Lemma 1.22]
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Corollary 2.45 (Independence). Let X andY be two random variables. Let ¢x and ¢y be the characteristic
functions of X and Y, respectively, and let ¢x y be the characteristic function of (X,Y). Then X and Y are
independent if and only if

ox, v (u,v) = dx (u)py (v).

Proof. The necessity is clear. We prove sufficiency here. If ¢x vy (u,v) = ¢x(u)py (v), by inversion formula,
px,y([a1,b1] % [az,b2]) = px([a1,b1]) X py ([az, ba]) for all continuity rectangles [a1,b1] X [ag, be], which form
a m-system that generates Z(R?). Then the result follows from [Lemma 1.22 O

We also have the following useful corollary, which allows us to simplify some future proofs by doing only

the 1-dimension case.

Lemma 2.46 (Cramér-Wold device). Let X and Y be two p-dimensional random vectors. Then X Ly if
and only (X, ) < (Y,a) for all @ € RP.

Proof. The necessity is clear. For sufficiency, note that when (X, o) < (Y, «) for all @ € RP, the characteristic

functions of X and Y are the same. O
We can use characteristic functions to investigate the tail properties of distribution functions.

Proposition 2.47. Let ¢x be the characteristic function of a random variable X. For each €,§ > 0, there
exists a constant K > 0 depending only on 6 such that

iz < [ [i-me (ox (2))]
E [X*1{x|<}] < Ké? [1 —Re (qu (té)ﬂ .

€

Proof. We redefine that % =1 and 1_8;)50 = %, so both 2% and 1_;% become uniformly continuous

functions on R. Then for any ¢ > 0, there exists K > 0 such that

sinz 1 1—cosz 1
Let X ~ F and let n = §/e. Then
sin(nX
P(|X‘ > 6) =K [Il{MX\Z(S}] < KE |:1 — (;7():|
Ui
1 1
=K-E [K/ cos(ntX)dt] = K/ [1 — Re(odx(nt))] dt, (By Fubini’s theorem)
0 0
and
2 1 2 K 2
E[X*1xiza] = SE InXPlgaxics] < 5B - cos(nX)] = K& {1 - Re (ox (1))
Thus we complete the proof. O
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2.6 The Continuity Theorem and The Central Limit Theorems
2.6.1 Lévy’s Continuity Theorem

Definition 2.48 (Quantile). Given a c.d.f. F : R — [0, 1], the quantile of distribution F is defined as
F~Y(p) =inf{a €R: F(a) > p}, ¥p € (0,1).

Remark. The quantile F~1 : (0,1) — R satisfies the following properties:
(i) F71:(0,1) — R is monotone increasing.
(ii) F~! has at most countably many points of discontinuity. To see this, let E be the set of these points.

Then for each = € E, since F~! is monotone, define

lp:= lim F~! < lim F~Y(y) =: 7.

P ET W) < i ) =
Since Q is dense in R, choose ¢, € QN (I4, 7). Since F~! is monotone increasing, the intervals (I,,7,)
are pairwise disjoint. Thus we obtain a bijection x — ¢, from F to a subset of Q. Hence E has at most
countably many elements. In fact, this conclusion holds for all monotone functions on R.

(iii) F~! is left-continuous. This follows from the right-continuity of F:

{aeR:Fm)zp}ﬁ{aeR:Fm)zp;} = F'(p)= lim F~! <p}1)

Lemma 2.49 (Galois inequality). Let o € R and p € (0,1). Then F(a) > p if and only if F~'(p) < a.
Particularly, we have F(F~(p)) > p and F~'(F(a)) < a.

Proof. The “only if” case follows from definition. Conversely, assume o > F~1(p) := inf{z € R : F(z) > p}.
Then we have o +n~t € {z € R: F(z) > p} for all n € N. By right-continuity of F,

F(a) = lim F(a—l—i) > p.

n—oo

Thus we finish the proof. O
Corollary 2.50 (Quantile transformation). Let U ~ Unif(0,1). Then F~*(U) ~ F.
Proof. By Galois inequality, for all z € R, we have P(F~1(U) < z) =P(F(z) > U) = F(z). O

Theorem 2.51 (Weak convergence of quantiles). Let F,, be a c.d.f. sequence, and F a c.d.f.. Then F, % F
if and only if F;;1(p) — F~Y(p) for each point p of continuity of F~*.

Proof. Assume F,, = F, and let Z ~ N (0,1). Since F' is discontinuous at at most countably many points,

we have F,,(Z) “¥ F(Z), and F,(Z) % F(Z). By Portmanteau lemma [Theorem 2.29 (vii)], if the function

p+— P(F(Z) < p) is continuous at p € (0,1), we have P(F(Z) = p) =0, and P(F,,(Z) < p) = P(F(Z) < p).
Let ® be the c.d.f. of standard Gaussian variables. By Galois inequality,

O(F, M (p) = P(Z < F N (p)) = B(Fu(2) < p) "= P(F(2) < p) = (F'(p))
for each point p of continuity of ® o F~1. By continuity of ®, these contain all points of continuity of F~1.
Again, by continuity of @1, we have F;!(p) — F~!(p) for each point p of continuity of F~1.

Conversely, assume that F; (p) — F~!(p) for each point p of continuity of F~1. Let U ~ Unif(0, 1), then
F7YU) %Y F~Y(U), since F~! has at most countably many points of discontinuity. Since F;'(U) ~ F,, and

F~YU) ~ F, we have F,, % F. O
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Theorem 2.52 (Skorokhod’s almost sure representations). Let F,, : R — [0,1] be a sequence of c.d.f.’s such
that F,, % F, where F is also a c.d.f.. Then there exists a probability space (0, .F,P) and a sequence of random
variables X,, on it such that X, ~ F, for alln € N, and X, =g X, where X ~ F.

Proof. We use the quantile transformation. Let © = [0,1], and let P be the Lebesgue measure on [0, 1]. Define

X(w) = F}w) and X, (w) = F,;}(w) for all n € N. Then X ~ F, and X,, ~ F,,. By [Theorem 2.50, X,, — X

on ) except possibly at countably many points of discontinuity of F~!, which form a null set. O

Corollary 2.53 (Convergence of characteristic functions). Let F,, be a c.d.f. sequence, and let ¢p, be the
sequence of associated characteristic functions. If F,, = F, where F is a c.d.f., then o, = ¢r pointwise.

a.s.

Proof. By Skorokhod’s representation theorem, we can choose X, ~ Fj,, and X ~ F such that X,, = X.

Then e ¥n 3 AX for all A € R. By Lebesgue dominated convergence theorem, ¢r, — ¢r pointwise. O

Theorem 2.54 (Lévy’s continuity theorem). Let X,, be a sequence of random variables, and let ¢, be the
sequence of associated characteristic functions. If ¢, converges pointwise to a function ¢ : R — C, the following
are equivalent:
(1) {Xn}o2, is uniformly tight, i.e. imp;— oo sup, ey P(|Xp| > M) = 0.
(ii) X, 4 x for some random variable X .
(iii) ¢ is the characteristic of some random variable X, i.e. ¢(\) = E[e*¥];
(iv) ¢ is continuous everywhere on R;

(v) & is continuous at 0.

Proof. (i) = (ii): Let F, be the c.d.f. of X,,. By [Theorem 2.32 (ii)| for every subsequence of X,,, we can
extract a further subsequence which converges some random variable X ~ F. By or = @,
hence F' is uniquely determined by ¢. We can fix X and conclude that every subsequence X, of X, has a

further subsequence that converges in distribution to X.

It remains to show X, > X. If not, choose f € Cy(R) such that E[f(X,,)] does not converge to E[f(X)].
Then there exists ¢ > 0 such that for all £ € N we can find n, > k such that |E[f(X,,)] — E[f(X)]] > e
As a result, E[f(X,, )] has no subsequence converging to E[f(X)], and X,,, has no subsequence converging in
distribution to X, a contradiction! Hence X, % X. (This is called the subsequence trick.)

(ii) = (iii) follows from [Corollary 2.52 (iii) = (iv) and (iv) = (v) are trivial.
(v) = (i): Following [Proposition 2.46] we set 6 = 2 and K = 5. The following estimate holds for all n € N:

e [ ione (o, (2))]

By Lebesgue dominated convergence theorem,

i r = [ iono (s (2))] o

Since ¢(0) = 1, and ¢ is continuous at 0, the right-hand side of the above estimate converges to 0 as T' — oc.
Given € > 0, we choose Tp such that lim,_,., P(|X,| > Tp) < €/2, and choose N such that P(|X,,| > Tp) < €
for all n > N. Then {X,,}> v is uniformly tight, and so is {X,,}22,. O

Remark. We can summarize a commonly used conclusion from [Theorem 2.53] which can be viewed as a

converse of [Corollary 2.52

Let F}, be a c.d.f. sequence, and let ¢, be the sequence of associated characteristic functions. If ¢r, — ¢

pointwise, and ¢ is continuous at 0, then ¢ is the characteristic function of some c.d.f. F, and F,, = F.
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2.6.2 The Central Limit Theorems

Theorem 2.55 (Khintchine’s weak law of large numbers). Let (X,,)°; be a sequence of independent and
identically distributed (i.3.d.) random variables such that E[|X1|] < oco. Denote p:=E[X;] < 0o. Define

Then X, £ L.

Proof. Without loss of generality, assume p = 0. Let ¢ : R — C be the characteristic function of X;. Then

the characteristic function of X,, is

on(N) =E [[[ 75| = ¢ (2>n
j=1

Since E[| X1|] < oo, ¢ is differentiable, ¢'(0) =iEX; = 0, and ¢’ is uniformly continuous. Fix A € R. Given
any € > 0, we can choose N such that |¢/(¢)] < e for all |¢| < |A|/N. Hence

A/n "
<1 + &' (t) dt> -1
0

Since € > 0 is arbitrary, ¢,,(\) — 1 pointwise. By Lévy’s continuity theorem, X, < 0. By Theorem
(iv),we have X,, — 0. O

lim |¢,(A) — 1| = lim ’(;5 <A> - 1‘ < lim
n— o0 n

n— oo n—oo

< max {el’\‘6 -1,1- e_l/\‘e} .

Theorem 2.56 (Lindeberg-Lévy central limit theorem). Let (X,,)52; be a sequence of i.i.d. random variables
such that E [|X1]?] < co. Denote i :=EX; < 0o, and 0 < ¢* := Var(X;) < co. Define

Then Z, % Z, where Z ~ N(0,1).

Proof. Without loss of generality, assume that u = 0 and 02 = 1. Let ¢ be the characteristic function of X;.

Then the characteristic function of Z,, is

L i X A "
() =E vzRl Y (Al
n(N) leIle ¢ ( ﬁ)
Since E[|X1]?] < 00, ¢ is twice-differentiable, ¢'(0) = iEX; = 0, and ¢"(0) = —E[X?] = —1.

\ Wo Nt CESYN
) = / — /" —1_ 2 " dt.
¢<\/ﬁ) 1+/0 & (1) dt 1+/0 /Ogb(u)dudt 1 2n+/0 /0(1+¢(u))du '

Note that ¢” is uniformly continuous. Given e > 0, choose N such that |1 + ¢" (u)| < € for all |u| < |\|/V/N.
Then for all n > N, we have

A2(1+e) A A2(1—¢) A2(1+e) ) A2(1-¢)
_ < <1_— - < <e T T .
1 o <o i) S 1 o™ = e < nh—>Holo on(N) <e

Since € > 0 is arbitrary, lim, o ¢, (N) = e’>‘2/2, which is the characteristic function of Z ~ N(0,1). O
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Theorem 2.57 (Lindeberg-Feller central limit theorem). Let (X,,)%2, be a sequence of independent random
variables such that EX,, =0 and 0 < 02 :==E [XE] < 00. Define

n 1 n
2 2
s, = g Oy Lp=— E X5.
Sn
k=1 k=1

Then Z, 5 N(0,1) and
maxj<kg<n 0‘,%

n11_>11010 52 =0 (2.19)
if and only if the following Lindeberg’s condition is satisfied:
U 5
Jdim ;]E (X2 x, 5es01] =0, Ve>0. (2.20)

Proof of Suffieiency. Suppose the Lindeberg’s condition ([2.20)) holds. Then for 1 < k <n and all € > 0,

= Imax

2
maxi<gp<n O
s2 1<k<n

1 1 1 o
ZE Xt xi<esy] + 7B [Xzfl{xuzesn}]} <E+ 5 E X x ]

2
Sn n nop_—1

Then (2.19)) is true follows by letting n — oo and € | 0. Let ¢,, be the characteristic function of X,,. To prove
Z, — N(0,1), we need to show that the characteristic function of Z,, satisfies

_ - A —2%/2
¢z,(\) =[] o» (Sn) —e as n — oo. (2.21)
k=1
The result then follows from Lévy’s continuity theorem. We claim that (2.21)) holds if and only if

nli_)ngoz (m (3) — 1) + %2 =0, (2.22)

k=1

We first prove the following (2.23)), which together with (2.22) implies ([2.21)):

exp {,; <¢>k (A) - 1)} - kHl o (A)‘ 0, (2.23)

(N-1

lim
n—oo

Claim I. If ¢ : R — C is a characteristic function, so is A — e?
Let (¥,,)22, be a sequence of i.i.d. random variables, and let N ~ Poisson(1l) be a random variable
independent of Y,,’s. Define W = Zivzl Y. Then the characteristic function of W is
E [eiAW] -F [E [ei)\W|N]] -F W(/\)N} — Z Ld)()\)n = (N1

Claim II (Product comparison). Given {ay, - ,an}, {b1, - ,0n} C {2z € C: |z| < 1}, it holds

n n n
e — 10| <D las — bl
j=1 j=1 j=1

The case n = 1 is clear. Then prove the case n = 2:
la1by — agba| = |ay(by — bg) — (a1 — b1)b2| < lay — b1| + [az — bal.

We apply this formula to H;:ll aj, H;:ll bj,an, by, so the general case follows from induction.
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Proof of (2.23)). By Claims I and II,

ool 3 (0 (2) 1)} - [T (2)

By Taylor’s theorem, we have

oo (2) 1) -0 (D) ean

A )\2 /\2 2 )\2 2
o <> - 1’ Lt o sup /(1) = 1= 5 x 7k
Sn

n teER 282 o

Given any 0 < € < 1, by (2.19), we can choose N such that |¢(A/s,) — 1| < €/2 for all n > N and all
1 <k <n. Since |e* —z — 1| < ¢|z]| for all |z| < €/2, following (2.24)), we have

= A n A by praml A2
o3 (o (2) )} -1 () (2)- sy ya-5 wew
k=1 k=1

Since € > 0 is arbitrary, the limit (2.23]) holds.

n
<Y elon
k=1

Proof of (2.22)). Given € > 0, we use the following expansion

()4 el

2%

=:Ank

=D E[Anslyxi<esy] + DB [Anilxgzesay] = Sil+ ST
k=1

n,e
k=1
Now we bound the two terms. For the first term

n

<Y E
k=1

3

< Z E |An,k]l{\Xk\<€Sn}
k=1

1A
| 2x
3! | sy, k

]1{|xk<esn}]

=1

AP zn:E [|X 1 |A| ZE|X 2= AP (2.25)
3 kI Ly x,<esn} HT= g .
=1

By Lindeberg’s condition, we can bound the second term as n — oo

n n )\
<Y ElAuilgx ey <D E stk
k=0 k=1 n

2 n
A
ll{kan}] =5 D E[Xix,2e0] 2 0. (226)
k=1
Since € > 0, we can bound (2.22)) by arbitrarily small numbers, and the result follows

Remark. In estimates (2.25) and (2.26), we used the following estimate in case n = 2

n

, i0)*
62072(]{!)

k=1

) { 20" 0n+1
< min (

}, Vo € R.
n+1)!

The following proof of necessity is given by William Feller

Proof of Necessity (Theorem [2.57). Assume that (2.19) holds and Z,, 4 N(0,1). Note the proof of (2.23)) only
uses (2.19). Then both (2.21) and (2.23) hold, which together imply (2.22). Let € > 0. If A # 0, we have

n

1 A2 X7
2 E[X e =1- 3 ZE{ 252 11Xyl <esn) | -
" k=1
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z_

’ to obtian

Then we use the estimate 1 — cosx < 5

n

1
= D E[Xfx 0] < 53

S
" k=1

IN

IN

IN
Xl
/\/\/P/\/\
o [N~}
+
(]
=
)
7~
e
N TN N
@ | >
~——
I
—
~—
_|_
Xl
(]
=
ly
\%
®
<

By (2.22)), the first term converges to 0 as n — oo. Since A # 0 is arbitrary, we obtain the Lindeberg’s
condition ([2.20) by letting A\? — oo. O

We also have another form of Lindeberg-Feller theorem which applies to triangular arrays. The proof
follows the same approach as before.

Theorem 2.58 (Lindeberg-Feller). For each n € N, let (X, m) =1 be independent square-integrable random
variables with BXy, m = 0 for all1 <m <n, and let s2 =" | E[X? 1. If Lindeberg’s condition holds,
i.e. for each € >0,
1 2
Jim D EX L x>es] = 0.
" m=1
Then we have

1
lim max —E[X2 1=0
Jim max 5 E[XC ] =0,

and Z,, = si S Xnm 4 N(0,1) as n — co.
A “standardized” form alternative is given below.

Theorem 2.59 (Lindeberg-Feller). For each n € N, let (X,, m)l—1 be independent square-integrable random
variables with EX,, ,, =0 for all 1 <m <n. Assume that

(i) o E[X2,.] =02 >0 asn— oo, and

(i1) (Lindeberg’s condition). for each € > 0,

nh—>H;o Z E[X'rQL,m]l{|Xnm|>e}] =0.

m=1
Then we have

lim max E[X2,]=0, (2.27)

n—oo 1<m<n n,m
and Sy, = Xp1+Xno+ -+ Xnp A N(0,1) as n — co.

Proof. Without loss of generality we assume o2 = 1. The proof of (2.27) is similar to Theorem We let
®n,m be the characteristic function of X, ,,,. By Lévy’s continuity theorem, it suffices prove that

¢Sn ()\) = H ¢n,m(A) — e_>\2/2 as n — OO7

m=1
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which is valid if

i _ M- Sn,m (N)— _
nl;rrgo Z (Pnm(A) —1)+— =0 and nhHH;O H e H Hnm(A)| = 0. (2.28)
m=1 m=1 m=1
To prove the first identity in (2.28]), we fix any € > 0 and use Lindeberg’s condition:
— n,m n,m 2 2 — n,m
=:An,m
n n )\2 n
<D E[Anmlyx, ol + D0 ElAnmlyx, .0l + 5 1= D EIXZ ]
m=1 m=1 m=1
Z | nm| + [Al Z nm {|Xnm\>€} Z nm 6
m=1 =1
Letting € | 0 yields the desired result. For the second identity in (2.28)), note that
)\2 " )\2
—1l < Z 1< =
[Gnm(A) = 1] < T - supghy (B)] =1 < 5 max B Xl
Fix € > 0. For large enough n, we have
[T ¥t =TT bnm] < 3 Jetm 1 = 6 )|
m=1 m=1 m=1
<§n:e|¢ (\) —1|<—Z]E X
>~ ) n,m 2 .
Again we let € | 0 to conclude the proof. O

In practice, the Lindeberg’s condition is not convenient to verify. In many cases, we would rather use one
of its sufficient condition proposed by Lyapunov.

Theorem 2.60 (Lyapunov Condition). Let ( )°° be a sequence of independent random variables such that

n=1
EX, =0 and 0 < o2 :=E [XEL] <oo. Let 82 =03 +- o2, If there exists 6 > 0 satisfying the Lyapunov
condition
1
lim ZE | Xk|*T] =0, (2.29)

n—00 %*5 =
then the Lindeberg’s condition (2.20)) holds, and so the central limit theorem [Theorem applies.

Proof. If there exists § > 0 that satisfies the Lyapunov condition (2.29)), then

1 n ) n Xk; 2
= D E[X M xan] = ) E |5
=1

1{xk|>esn}1

" k=1
- X ’ 1 - 244
SZE — ]l{|Xk‘Z€5n} S 2+6ZE |X | ]—)0 as n — o0.
Sn | |€sn s
k=1 k=1
Hence the Lindeberg’s condition (2.20)) is satisfied. O
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3 Martingales and Local Martingales

3.1 Processes, Filtrations and Stopping Times

Definition 3.1 (Stochastic processes). Given a probability space (£2,.#,P), a metric space (E,d) and a
nonempty set T, a stochastic process is a function (¢,w) — X;(w) defined on the set @ x T and taking values
in E such that X;(-) is measurable for each t € T.

Remark. We can also view a stochastic process as a collection X = (X;);ec7 of E-valued random variables
indexed by elements of 7. If T is a topological space given the discrete topology, we call (X;);c7 a discrete

stochastic process. Furthermore, if 7 = Ny, we call the process (X,)5%, a stochastic sequence.

Definition 3.2 (Filtrations). Let 7 be Ny or Ry. A filtration on (2,.%,P) is a collection (%;)ic7 indexed
by elements T of increasing sub o-algebras of %, i.e. F, C F; for all s < t.

Remark. We can also define the limit of a filtration (%¢),c1 by Foo =0 (User Zt)- If T =N, then
FoC I CFyCCFpC Fpy1 Coor C Foo CF.
If T =[0,00), then for all t > s > 0,
FoC Fs CFt C Foo CF.
Definition 3.3 (Adaptation). Let 7 be Ny or Ry, and let (.%#;):eT be a filtration on (€, .#,P). A stochastic

process (X¢)ie7 is said to be adapted to (Fy)ieT, if X is F-measurable for each ¢t € T.

Remark. A stochastic process (X;);>o automatically induces a canonical filtration
FX = O'({XS}SSt)7 teT.
It is the minimal sub o-algebra where every X, with s < ¢ is measurable. We also call this the o-algebra

generated by {X}s<¢. Clearly, the process (X;);>0 is adapted to its canonical filtration.

Definition 3.4 (Stopping time). Let 7 be Ny or R,. A random variable 7: Q — T := T U {oo} is said to be
a stopping time of the filtration {F; her if {7 <t} € % for all t € T. Without ambiguity, if the filtration is

fixed, we say that 7 is a stopping time.
Remark. If 7 is a stopping time, then the set {7 < t} is also .Z;-measurable for all ¢ € T, since
> 1
{r<t}=J {rgt—}.
n=1 n
Furthermore,
%) (&
{r=00} = (U{Tgn}> € Foo.
n=1

We may modify the definition of stopping time in discrete case. If 7 = Ny, then 7 : Q — Ny is a stopping time
of the filtration {.#,}52, if and only if {r = n} C %, for all n € Ny, since {7 < n} =;_,{T = k}.

Definition 3.5 (o-algebra generated by a stopping time). Let T be Ny or R, and let 7 be a stopping time
of the filtration (% )ie7. The o-algebra generated by T is defined as

Fr={AeF:An{r <t} e F, VteT}.
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Remark. We need to check that .7, is a o-algebra. Clearly, Q € Z,. If A € %, then for all t € T, we have
Acn{r <t} ={r <t}n(An{r <t})¢ € %, which implies A° € Z.. Finally, given {A,}2°, C %, we have

8

n=1

(GA,L>H{T§t} U @nn{r<th) e #, vteT.

Then Uzozl A, € Z.. Therefore .7, is a o-algebra.

Definition 3.6 (Stopped processes). Let (X;);c7 be an adapted process, and let 7 be a stopping time. The
stopped process (X[ )ie7 is defined by

th(w) = Xt/\‘r(w) (LU), Yw € Q.

On each path, X7 (w) = X;(w) for t < 7(w), and X[ (w) = X;(u)(w) for t > 7(w). Then this definition can be
viewed such that the process (X¢)ie7 is stopped at the time 7.

Now we work on the case T = R,..

Definition 3.7 (Right-continuity). Let (%):>0 be a filtration on (2, .%#,P). For every t € Ry, define

fH_: g\s, and yoo—&-:yoo
s>t
Then %+ is a o-algebra, and the collection (%4)i>0 is also a filtration on (Q,.Z,P). If #, = F#,4 for all

t € Ry, then the filtration (% ):>0 is said to be right-continuous. By construction, the filtration (%4 )i>0 is

automatically right-continuous.

Definition 3.8 (Completeness). Let (.%;);>0 be a filtration on (2, %, P), and let 4" be the sets of all (Fo, P)-
negligible sets, i.e. A € A4 if there exists A’ € F, such that A’ D A and P(A’) = 0. The filtration {%;}1>0
is said to be complete if A C Fy.

Remark. If (#;)i>0 is not complete, we can complete it by letting #, = o (F, Uo(A)) for every t € R,.
Apply this completion procedure to the canonical filtration %, = o ({X,}s<:) of a stochastic process {X;}1>o0,
we obtain the completed canonical filtration of {X:}i>0.

Let (#)t>0 be a complete filtration on (€2,.%,P). By definition, if two random variables &

Z-measurable, then 7 is also .%;-measurable.

2y, and € is

Definition 3.9 (Measurability and progressiveness). A stochastic process (X;)¢>0 over a metric space (E,d)
is said to be measurable if the mapping
(w,t) — Xi(w)

defined on Q x R equipped with the product o-field # ® Z(R.,) is measurable. In addition, we fix a filtration
(Z1)i>0 on (Q, F,P). If for each ¢t > 0, the mapping

(w,s) = Xs(w)

defined on © x [0,¢] equipped with the product o-field .%; ® Z(]0, t]) is measurable, then the process (X;);>0

is said to be progressive.

Remark. By definition, a progressive process (X;);>o is both adapted and measurable. In later discussion, we
fix the filtration (.%;);>0 on a probability space (2, #,P) as well as the state space (E,d).
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Proposition 3.10. Let (X;);>0 be an adapted stochastic process. If (X;)i>0 is (sample) right-continuous,
i.e. for all w € Q, the mapping t — X, (w) is right-continuous, then (Xi)i>o is progressive. The same

conclusion holds if one replaces right-continuous with left-continuous.

Proof. We only prove the case of sample right continuity. The case of sample left continuity is similar. Fix
t > 0. For each n € N, define

k—1)t kt n
XS("):XM ifse{(),>,k€{1,~-~,n} and Xt()th.
n n n

The sample-right-continuity of {X,};>o implies that for all w € Q,

lim X (w) = X (w), Vs € [0,].

n—oo

Furthermore, for every Borel set B € #(E),

{ws)eaxp:XMw)e B} = (U {Xu(w) € B} x [““”’i’jf)) U({X, € B} x {t}).
k=1

n
This belongs to the product o-algebra .7 @ %([0,t]). Hence the mapping (w, s) — X§”> (w) is measurable on
(@ x [0,t], % @ A(]0,t])), and so is the pointwise limit (w, s) — Xs(w). O

Remark. If the filtration {#;};>0 was complete, we would only require that the sample path t — X;(w) is
left /right-continuous for P-a.e. w € Q.

Proposition 3.11. Write 4, = F;4 for every t € [0, 00].
(i) A random variable T : Q@ — [0,00] is a stopping time of the filtration (¥;)i>0 if and only if {T <t} € F
for allt > 0. This is equivalent to the condition that T At is Fi-measurable for all t > 0.
(ii) Let T be a stopping time of the filtration (%;)¢>0. Then

Fry ={A€e F  AN{T <t} € F, Vt >0} =9,.

Proof. (i) Assume {7 < s} € %, for all s > 0, and fix ¢t > 0. Then for all s > ¢,

{r<tt= ) {T<t+i}e§s:{r§t}euyszgt.

neEN: t+n-1<s s>t

Conversely, if 7 is a stopping time of {¥; }+>0, then for all ¢ > 0, we have

%)
1
Tt} = <t—— Fy.
t<t= U {ret-iles
neNit—n=1>0c___
€Y, _,-1CF:

If 7 At is F-measurable, we have {7 < s} € % for all s < t. Then we have {T < t} € .%; by taking s,, ¢
and {r <t} =2 {7 < sn}. Conversely, if T is a stopping time of {#,,},>0, we have {7 < s} € ¥, C .Z, for
all s <t, and 7 At is thus .#;-measurable.

(ii) By definition, &, :={A € Fo : AN{r <t} €%, Vt > 0}. f AN{r <t} € .% forall t > 0, then

1
An{r <t} = ﬂ <Aﬂ{’i’<t+n}>€9\5,vs>t20iAﬂ{TSt}G%,VtZO.

neN:t+n—1<s
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Conversely, if A € 4., we have

An{r <t} = U <A0{7<t—:l}>e<%7 vt > 0.

neEN:t—n=1>0

€Y 1/nCTFt
Hence the conclusion follows.

Proposition 3.12 (Properties of stopping times). Let 7,0 be two stopping times of the filtration (F;)i>0
(i) T is a stopping time of (Fi4)i>0, and Fr C Fri. If (Fi)i>0 is right-continuous, we have F, = F.
(i) If T =t is a constant stopping time, then F. = F, and Fry = Fyt.

(iii) T is Fr-measurable.

(v) Given A € Fo, define
T(w), we A,

“)= 00, wé¢ A.

Then 74 € Z. if and only if T is a stopping time.
(v) If o <7, then &, C F,, and Foy C Fry.
(vi) Allo AT, oV 7 and o + T are stopping times, and {oc < 7},{c =7} € Fopr = Fo N F;.

O

T+

(vii) A function w — Y (w) defined on {17 < oo} is F.-measurable if and only if for each t > 0, the restriction

of Y to the set {r <t} is F-measurable.

(viii) If (15,)22, is a monotone sequence of increasing stopping times, then Too = lim, o0 T, 1S @ Stopping time.

(ix) If (1,)22, is a monotone sequence of decreasing stopping times, then Too = limy, o0 Ty @S a stopping time

of the filtration (Fi4)i>0, and

oo
Tt = m Tt

n=1

In addition, if (7,)22, is stationary, i.e. for each w € Q, there exists N, € N such that 7(w) = 7, (w)

for alln > N, then T is a stopping time, and

Proof. (i) By Remark of Definition and Proposition T is also a stopping time of (Fiy)i>0. The

statement %, C %, follows from .%; C %;. (ii) immediately follows from definition.

(iii) For all « € R, we have
{r<atn{r<t}={r<ant}eF, vt>0 = {r<aleF.
(iv) The result immediately follows from the definition of .%;, since
{rA<ty=An{r <t}, vt >0.
(v) If Ae Z,, then An{o <t} € % for all t > 0. Since o < 7, we have {0 <t} D {r < t}, and

An{r <t} =(An{o<t)n{r <t} e 7.
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(vi) For all ¢t > 0, we have
{onT<t}={o<t}u{r<t}eF, {ovr<t}={o<t}n{r<t}e s,

and {o+7>t}={r>t}uU U {t—g<7<t}n{oc>q}| € F.
9€Qn (0,4]

Hence 0 A7, 0 V7 and o 4 7 are stopping times. By (v), Zonr C %, NZ%,. Conversely, if A € %, N %,

AnN{oAnT<t}=(AN{o <tHUAN{T <t}) € F, YVt >0 = A€ Fopr.

EFy EFy

Hence F,n, = F, N.Z,. By Proposition (i), for all ¢ > 0, both 0 At and 7 At are .Z;-measurable, and

fosrin{fo<ti={o<tin{ont<rtntle F = {o<7}eF,
{o<nn{r<tt={o<tin{r<tin{ont<TAt}e€F = (o<1} T

Then {0 <7} € F, NF = Fopr,and {o =7} ={o <7} N{0 > 7} € Fonr.

(vii) We first assume that for each ¢ > 0, the restriction Y|(,<¢) is .#;-measurable. Then for every Borel set
B e B(E), we have {Y € B} n{r <t} € %#. Since Y is defined on {7 < oo}, we have

(YeB)= fj ({Y € BYn{r <n)) € Zu.

Hence {Y € B} € .Z,.. Conversely, if Y is .%,.-measurable, then {Y € B} N {7 <t} € % for all t > 0.
(viil) For every ¢ > 0, {1ec <t} =)oy {mn <t} € Z.

(ix) For every t > 0, {70 <t} =, —; {mn <t} € %;. Hence 7 is a stopping time of {F };>0 by Proposition
.11 (i). By (v), we have F, C %, for each n € N. Conversely, if A € .7, for each n € N,

Anfre <t} = AN{ma <t € F, V>0 = Ac F, .
n=1

Hence #,_4 = (., #-,+. Furthermore, if 7, is stationary, then {7, <t} =J, 2, {mn <t} € %. Thus 7
is a stopping time, and %, C %, for each n € N by (v). Conversely, if A € %, for each n € N,

An{re <tl=JAN{m <t} e F, V>0 = Ac Z, .
n=1

Hence (.~ Z-, = F O

Too *

Proposition 3.13. Let X = (X;);>0 be a progressive process of (Fi)i>o0. If T is a stopping time of (F1)i>0,
then the function X, : w — X ) (w), defined on the set {T < oo}, is .F.-measurable.

Proof. By Proposition (vii), it suffices to show that the restriction of X, to {7 <t} is .%#;-measurable for
all t > 0. The restriction X,|{,<¢ is a composition of two measurable mappings:

T At is Fy-measurable : ({1 <t}, %) = ({F <t} x [0,t], % @ B([0,1])), w = (w,7(w) At),
X is progressive : ({7 <t} x [0,t], # ® #([0,t])) = (E, B(E)), (w,s)— X(w).

Hence XT|{TS,5} is Zi-measurable, and the result follows. O]
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Remark. We may also consider the discrete-time case. Let (X,,)22, be an adapted sequence. Then for all
B € B(E), we have {X, € B}n{r <t} = U\ _,{X, € B}n{r =n} € % for every t € N. Then we have
{X,; € B} € %, and X, is always .%,-measurable.

We introduce a common category of stopping times called hitting times.
Proposition 3.14. Let (X;)i>0 be a adapted process taking values in (E,d), and let A C E be a measurable
subset of E. The hitting time (or début) of A is defined as
Ta=inf{t>0: X, € A}.
Given a random time o : Q — [0, 00], the first hitting time of A after o is defined as

T4 =inf{t >0 : X; € A}.

Note that we set inf () = co. Then
(1) If (Xi)e>o0 is right-continuous and G C E is an open set, then T¢ is a stopping time of the filtration
(Fiq)t>0. Furthermore, if o is a stopping time of the filtration (Fiy)e>0, S0 is TG.
(i1) If (X¢)i>0 is continuous and F C E is a closed set, then Tp is a stopping time of the filtration (F;)i>0.

Furthermore, if o is a stopping time of the filtration (F4+)1>0, S0 is TE.

Proof. (i) Fix t > 0. If 7¢(w) < t, then there exists 7¢(w) < s < t such that X;(w) € G. Since G is open, and

t — Xy (w) is right-continuous, we can choose a rational ¢ € (s,¢) such that X,(w) € G. Hence

{re<ty= |J {X,€GleF, vt>0.
qEQﬂ[O,t)

Then by Proposition (i), 7¢ is a stopping time of {%;+ }1>0. Furthermore, if o is a stopping time of
{yﬂ_}tzo, we have

{r& <t} = U ({o < g}n{inf{s > q: X, € G} < t})
q€(0,t)

U [{e<an U {x-ea}]|esm, vi>o

a€(0,t) reQnNg,t)
(ii) Fix t > 0. If 7¢(w) < t, choose sy, | s := 7¢(w) such that X, € F. Since ¢t — X;(w) is continuous and F'

is closed, we have X; (w) = X(w) € F. Hence

T <t} = X, eF} = inf d(X,,F)=0p € %, Vt >0.
(e <= | (e { ot ax,. ) =07

where the second equality holds because d(-, F') is continuous, and the inclusion holds because d(-, F') is Borel-
measurable and X, is #;-measurable for all ¢ € Q N [0,¢], and countable infimum preserves measurability.

Furthermore, if o is a stopping time of {%;+ }1>0, we have

{re<tt= |J ({o<a}n{inf{s >q: X, € F} <t})

q€(0,¢)
= U <{0 <q}n { inf d(X,,F)= 0}) € F, Vt > 0.
reQNq,1]
q€(01)
Therefore 77 is a stopping time of (F4)i>o. O
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Remark. Similarly, given any Borel set A € #(R), we can define the hitting time of A associated to a discrete
process X = (X;)52,:

Ta=min{n e Ny : X,, € A}, 75 =min{neNy:n >0, X, € A}.

It is easy to show that 74 is a stopping time for any measurable set A, since {74 < n} = |J}_,{Xx € A}
Furthermore, if o is a stopping time, then the first hitting time 79 after o is also a stopping time:

{ngn}:O({azk}ﬂ{k<7’j§n})zo {oc=k}nNn U{XJ»EA} € Fn, Vn € Ny.
k=0 k=0 j=k+1

Finally we introduce a technical lemma about stopping times which resembles the form of simple function

approximation.

Proposition 3.15. Let 7 be a stopping time.
(i) If 0 : 2 — [0,00] is a F,-measurable random variable such that o > 7, then o is also a stopping time.

(i) Furthermore,

- L2"TJ+1_§:I€+1

Tn on on

1{k27'rL§T<(k+1)27n} + 0011{7—:00}, neN
k=0

is a sequence of stopping times decreasing to T.

Proof. (i) Since o is F,-measurable, we have {oc <t} € %, and {0 <t} = {o <t} N{r <t} € F# for all

t > 0. Hence o is also a stopping time.

(ii) Note that 7,(w) = inf{k2™" : k27" > 7(w),k € Z}. Then we have 7, | 7. Since 7, is a measurable

function of 7, it is % -measurable, hence a stopping time by the first assertion. O
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3.2 Discrete-time Martingales
3.2.1 Definition and Properties

Definition 3.16 (Discrete-time martingales). Let (X,,)%%, be a real-valued and L' process that is adapted
to the filtration { %, }°°,. Here L' means E|X,,| < oo for all n > 0. Then
(i) (Xn)22, is said to be a martingale it E[X,,|.%] = X, for all n > m > 0;
(i) (Xn)52, is said to be a supermartingale if E[X,|%,] < X, for all n > m > 0;
(iil) (X,)5%, is said to be a submartingale if E[X,|%#,,] > X, for all n > m > 0;

All these notations depends on the choice of the filtration {.%,}22 , which is fixed in later discussion.

No

Remark. The set of all martingales in (L*(€,.%,P)) ° is a vector space.

Proposition 3.17. Let f: R — R be a convex function such that E[f(X,)] < co for all n € Ny.
(1) If (X)) is a martingale, then (f(X,))S2,, is a submartingale.

(i) If f is monotone increasing and (X)), is a submartingale, then (f(X,))S2, is a submartingale.

Remark. The proof simply uses conditional Jensen’s inequality. Here are some useful corollaries:
(i) If (X,)2%, is a martingale and p > 1, then (]X,|?)52, is a submartingale;
(i) If (X,,)5°, is a submartingale, then (X,[)%° is a submartingale.
Definition 3.18 (Predictable processes). A discrete process (H,)52, is said to be predictable if Hy is a

constant and H,, is .%,_i-measurable for all n > 1. We define the integral (or the martingale transform) of

(Hp)S%y with respect to an adapted process (X,)5%, by
(H-X)o=HoXo, (H-X)pn=FH" X)p-1+H(Xn —Xpn_1)=HoXo+ ZHk(Xk — Xk—1), Yn eN.
k=1

Clearly, (H - X),, is an adapted process. We can easily check the following facts:
e If X, is a martingale, so is (H - X),.

e If X, is a submartingale (or supermartingale) and H,, is nonnegative, so is (H - X),,.
Remark. If 7 is a stopping time, the process H, = 1(;>,) is nonnegative and predictable. Then
n

(H-X)n=Xo+ > iron(Xi — Xe1) = Xnar.
k=1
Therefore, if (X,,)22; is a submartingale, so is the stopped process (X)) ; = (Xpar)S2 ;.

Theorem 3.19 (Doob’s decomposition theorem). Let (X,,)22, be a submartingale. Then there exists an
increasing predictable L' process (A,)%, staring with Ag = 0 and a martingale (M), such that X, =

M, + A, for each n >0, and the decomposition is unique.
Proof. We first prove the existence. Define My = Xy, Ag = 0 and
M, = Xo+ Y (X —E[Xi|Fi1]), An=) (B[Xp|Fp 1] — X 1), Vn > 1.
k=1 k=1

Then (M,)%2; and (A,)S2, are the desired processes. To prove uniqueness, let X, = M, + A] be another
decomposition satisfying the conditions given. Then Y, = M,, — M) = A,, — A/, is a martingale and a

predictable L' sequence, which implies Y,, = E[Y,,|#,_1] =Y,_1 = -+ = Yy = 0. Hence Y,, = 0. O
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Remark. We have a similar conclusion for supermartingales: If (X,,)22 ; is a submartingale, then there exists
an decreasing predictable L' process (4,)52, staring with Ap = 0 and a martingale (M,,)%, such that

X, = M, + A, for each n > 0, and the decomposition is unique.

Theorem 3.20 (Doob’s optional stopping theorem for discrete-time submartingales). Let (X,,)22; be a sub-
martingale, and let T be a bounded stopping time. Then

(i) E[X-] > E[Xo];

(i1) If 7 is bounded by N € N, then E[Xn|%#,] > X;;

(iii) If o is another bounded stopping time and o < 7, then E[X,|.%,] > X,.

Proof. (i) By definition, we have {7 > k} = {r <k —1}° € F,_; for all k € N. Then

N N
E[X.]=E | Xo+ Z(Xk = Xi—1)L(r>py | = E[Xo] + Z]E [(Xk = Xi-1)L {721
k=1 k=1
N
= E[Xo] + Y E[E[(Xy — X3—1)|Fio1] Loy ] = E[Xo].
k=1 >0
(ii) If A € #,, we have AN {r =n} € %, for all N € Ny, and
N N
E[XN]IA} = E [XN]IAO{T:n}] = ZE [E [XN|971] ]lAﬂ{T:n}]
n=0 n=0
N N
> ZE [XnﬂAﬁ{T:n}] = ZE I:XTIlAﬂ{T:n}] = E[XT]IA]
n=0 n=0

Since X is #,-measurable, we have E[Xy|.%,] > X.

(iii) Since ¢ < 7 < N, we have %, C %#,. We use Doob’s decomposition X; = M; + A; of submartingale,

where M, is a martingale and A, is an increasing predictable sequence. By (ii),
M, = E[My|%,| = E[E[MN|.%;]|-Z,] = E[M,|%,].

Clearly, A, > A,, and E[A,|.%,] > E[A,|%,] = A,. Hence E[X | %, = E[M.+A,|%,] > M,+A, = X,. O
We give another characterization of martingales.

Theorem 3.21. Let (X,,)%, be an adapted and L* sequence. Then (X,)S%, is a martingale if and only if
E[X,] = E[Xo] for every bounded stopping time T.

Proof. The direction “=" follows by Theorem (i). To prove the converse, assume that E[X | = E[X,] for

every bounded stopping time 7. To prove that (X,,)52, is a martingale, we show that for each n € N,
E[X,|Fn-1] = Xno1 & E[X,14] =E[X,_114], VA€ F,_1.

Let 7= (n—1)14 +nl s, so 7 is a bounded stopping time, and E[X] = E[X;] = E[X,_114] + E[X,, 1 4c].
Since n is a constant stopping time, we have E[X,,]| = E[X(]. Then E[X,,14] = E[X,,_114]. O
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3.2.2 Martingale Convergence Theorems and Application
Now we discuss the convergence of martingales.

Definition 3.22 (Upcrossing number). Given a real sequence (z,)52, and a < b, the upcrossing number of
this sequence along [a, b] before time n, denoted by Ul (n), is the largest integer k such that there exists a

strictly increasing sequence
0<s51 <t <9<t < - <sp<tr<mn
of integers such that x,;, < a and x;; > b for all j € {1,--- ,k}. The total upcrossing number Uk b](oo) of this

sequence along [a, b] is defined as the limit of monotone increasing sequence U (a,b] (n), which possibly takes co.

Definition 3.23 (Upcrossing number). Given an adapted random variable sequence (X,,)22, the associated

upcrossing number is define as U[ff’b] (n) :we— U[);(b‘]”)(n), where n € N. It can be depicted by a sequence of

stopping times. Let 79 = —oo, and define
oj=min{k € Ng:k>7_1, Xj <a}, j=min{k € Ng: k>0, Xy >0b}, j>1.
Then the upcrossing number of (x,)52, along [a, b] before time n € N is U[fib] (n) = max{j : 7; < n}, and
U[ff’b](oo) = lim,, 0 U[fib] (n) =max{j : 7; < oo} = min{j : 7; = oco}.
Remark. The upcrossing number U[Z(, b (n) is an integer-valued random variable.

Proposition 3.24 (Doob’s upcrossing inequality). If (X,,)32, is a submartingale, then for all real numbers
a<bandalln eN,

E [U[fib] (n)} < E[(Xn - a)bJr__a(XO - a)+] ) (31)

Proof. Define stopping times {o;}32, and {7;}%2, as in Definition Then {U[fyb] (n) >k} = {7, <n}, and

1, ifor <n <71k for somek € N,
H, =

0, otherwise.

defines a nonnegative predictable process, since

{Hn:1}:6 (X < a}n nﬁ (X; < b}
m=1 j=m+1

Define Y,, = (X,, —a)™. Then Y, is a nonnegative submartingale, and we have Uﬁb] (n) = U[}o/ p—a) (). By
definition, H - Y satisfies

(H-Y), =0+ Z H,(Yn —Yy-1) = (b—a)- U[}O/,b—a] (n)=(b—a)- U[)a(,b] (n)
k=1

Note that (1 — H) - Y is also a submartingale. Then
(b—a)-E [U[{;b] (n)} <E[H-Y)] =E[Y, — (1 - H)-Y),] <E[Y,] — E[(1 — Hy)Yo] = E[Y,] — E[Yy].

This is indeed the inequality (3.1]). O

We present Doob’s first martingale convergence theorem below.
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Theorem 3.25 (Doob’s convergence theorem for discrete-time submartingales). If (X,)5 is a submartin-
gale, and sup,cy E[X,F] < 00, then Xoo = limy 00 Xy, a.s. emists, and Xoo € LY(Q, Zoo, P).

Proof. Let M := sup,,cn E[X,/] < co. Then for all a € R,
(r—a)t <2t +a,VzeR = E[(X, —a)T|<E[X,]+a <M+a, ¥neN.

By Fatou’s lemma and Proposition [3.24} the total upcrossing number Uf ;,(n) T U 5 (00) satisfies

E Xn - + M
E [U[fl{b](oo)] < liminfE {U[ff,b](n)} < liminf B )T Ml o vRsb>a

n—o0o n—00 —a T~ b-a

Then for all real numbers a < b, we have
P (U§7bl(m) < oo) =1.

Consequently,

P (lim inf X, < limsup Xn) =P U {lim inf X,, <a < b < limsup Xn}

n—00 n—00
n—00 n—00
a,beQ:a<b

=rl U {U[f;b](oo) <oo} =0.

a,beQ:a<b

Therefore Xo, = lim,, ;o X, a.s. exists. Now we prove that X, € L}(Q,.%,P). By Fatou’s lemma,

E[XL] <liminfE[X,;/] < M < oo,

n—00

and

E[XZ] < liminf E[X, ] = liminf E[X;} — X,,] < M — E[X,] < oc.

n— 00 n—oo

Therefore E| X | < oo, and X, € L(Q,.7,P). Since every X,, is .F-measurable, so is the a.s. limit X .. O

Remark. The Theorem does not imply L'-convergence. As a counterexample, consider the random walk
Xo=0, X, =Y 1_; &, where {£,}72, are i.i.d. Rademacher variables. Let ., be the canonical filtration of
(Xn)5 g, and define 7 = min{n € N : X,, = 1}, which is a stopping time. Then the stopped process Y;, = Xpar
is a submartingale. Since E[Y,F] < 1, the sequence Y,, converges a.s.. Furthermore, Y,, — Y., = 1 a.s., because
Y1 =Y, £1once Y, <1. On the other hand, E[Y,] = E[X,,,] = E[X,] =0 for all n € Ny.

Theorem 3.26 (Supermartingale convergence theorem). A nonnegative supermartingale (X,)52, converges
almost surely, and the limit X satisfies EX, <EXj.

Proof. Since (—X,,)52 is a submartingale and E[(—X,,)"] = 0 for all n, it converges almost surely to some
—Xo € LY(Q,.Z,P) by Theorem The inequality EX o, < EXj follows from Fatou’s lemma. O

Next we show some applications of the Martingale convergence theorem.

Proposition 3.27 (Bounded increments). Let (X,,)22, be a martingale such that | X, — X,—1| < K a.s. for
alln € N, where 0 < K < co. Then with probability 1,
o cither the martingale (X,)52, converges to a finite limit,

e orliminf, ,. X,, = —o0 and limsup,,_, ., X,, = oc.
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Proof. We may assume Xy = 0 without loss of generality. Let N € (0,00) and 7y = inf{n € N: X,, < —N},
which is a stopping time. Then the stopped martingale (X,ary )22, is bounded below by —N — K > —o0,
and X,ary + K 4+ N converges almost surely by Theorem Consequently, lim,, .., X,, exists and is finite

everywhere on {7y = 0o}, except on a P-null set. This statement also holds on
U {Tn =0} = U {igan > —N} = {hnn—1>1<>r<l>an > —oo}.
N=1 N=1

Therefore, with probability 1, either (X,,)%2; converges to a finite limit or liminf, ., X,, = —oco. Applying

the same conclusion on (—X,,)22 ;, either (X,,)5; converges to a finite limit or limsup,,_, ., X, = oo. O

n=1»

We are applying this result to prove the second Borel-Cantelli lemma.

Theorem 3.28 (Second Borel-Cantelli Lemma). Let (:%,)52, be a filtration with %y = {0,Q}, and (E,)32,
an adapted event sequence, i.e. E, € F, for each n € N. Then

{Z P(E,|%n-1) = oo} = {(E,)s2, occurs infinitely often}  a.s..
n=1

Remark. We say two measurable sets A = B a.s., if AAB = (A\B) U (B\ A) has probability zero.

Proof. Let X, = >"}_, 1p,, which is a submartingale. By Doob’s decomposition theorem, we take X, =

M, + A,,, where M, is a martingale and A,, is a predictable increasing sequence. To be more specific,
M, Z]lEk _]P)(Ek|yk: 1 ZIP Ek|e/’k 1)
k=1 k=1

Note that both (X,,)52; and (4,,)52; are monotone increasing. We need to show that

n=1 n=1
{A = 0} = {Xoo = 0} a.s..

Since |M,, — M,,—1| < 1, by Proposition with probability 1, exactly one of the following cases holds:
e M, = X, — A, converges to a finite limit. On this event, X, = co if and only if A, = oo.
e liminf,, .. M, = —oo and limsup,,_,., M,, = co. On this event, we have both X, = oo and A, = oo.

Then we complete the proof. O

Corollary 3.29 (Second Borel-Cantelli lemma). If (E,)S, is a sequence of independent events such that
S P(E,) = oo, then

n=1

P((E,)2 occurs infinitely often) = (ﬂ U E )

n=1k=n
Next we discuss the LP convergence of martingales.

Proposition 3.30 (Maximal inequality). If (X,)22, s a submartingale, then for every n € N,
AP ( max. X;F> A) <E {X"']l{ Joax. X;F> )\}] <E[X[], VYA>0, (3.2)
and

AP (Or<nkaé( |1 Xy| > A) < 2E|X, |+ E|X,|, VA > 0. (3.3)

78



Proof. Let 7 = n Amin{m € Ny : X;i > A}, and E = {maxo<r<, X;” > A}. Then 7 is a bounded stopping
time, and £ = { X > A}. By Markov’s inequality,

AP(E) = AP(X; > \) <E[X;F1g]. (3.4)

Since (X;F) is a submartingale, we have E[X] < E[X;'] by Theorem Noticing that X, = X,, on E¢, we
have E[X 1] < E[XF1g]. Then the first inequality in (3.2 follows, and the second is trivial.
The proof of (3.3) is similar, but we let 7 = n A min{m € Ny : |X,,] > A}. By Markov’s inequality and
applying Theorem on supermartingales (X,,) and (X;I), we have
AP (|X;| > \) < E|X,| = 2E[X]] - E[X;] < 2E[X,] - E[Xo] < 2E|X,| + E[Xol.

Then we finish the proof. O

Proposition 3.31 (Doob’s LP-inequality). If (X,)5% is a submartingale and 1 < p < oo, then

E [Oglggn(xg)p} < (&)pE [(X;})P], VneN. (3.5)

Proof. We use a corollary of Fubini’s theorem: for p > 0 and a nonnegative random variable Y € LP(Q, #,P),

E[Y?] = // p)\pflll{,\gy}d/\dl[”:/ pAPTIP(Y > A\)dA.
0 0
Let (X,,)52, be a submartingale in LP, and Y := maxo<x<, X,. For each M > 0,

E[((Y AM)P] = / pAPTIP(Y AM > N)d) < / p)\p_QE[X,j]l{YAMZ,\}] dX (By Proposition [3.30))
0 0

=E [X:[/ PN Ly anrsay dA} = <pl) E[X,;F(Y AM)P]. (3.6)
0

Note that ¢ = p/(p — 1) is the conjugate exponent of p, by Holder’s inequality,

Y B B A MY (37)

n

E[X( A M) < (BIGH) Y (BLY A M) @=01))

Combining (3.6) and (3.7), we have E[(Y A M)?] < E[(X,])?] for all M > 0. Letting M — oo, the monotone
convergence theorem implies (3.5)). O

Remark. As p | 1, the coefficient (ﬁ)p blows up, and an estimate of the same form does not exist for p = 1.
As a counterexample, we consider the Gambler’s ruin: A gambler has 1 dollar, and in each play he earns
or loses 1 dollar with probability 1/2. He exits the game until he loses all his money. To model the game,
let So =1, and S, = 1+ > ;_, &, where &;,&, -+ is a sequence of i.i.d. Rademacher variables, and let
7o = inf{n > 0:5,, = 0}. The stopped martingale X,, = S, 1, is the money the gambler holds after n plays.

According to the martingale property, E[X,] = 1 for each n € N. If we let 73y = inf{n > 0: X,, = M}, the
martingale (X, ar,,) will converge to a random variable X,,, valued in {0, M}, and E[X,,] = 1 by dominated

convergence theorem. Hence P(max,,>o Xy, > M) = M ™!, and

oo (oo}
1
| e ] = 3P (mag a2 00) = 30 =0
M=1 M=1

By monotone convergence, E L max Xm} 1 00 as n — 00, which cannot be bounded in terms of E[X,,] = 1.
<m<n
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Theorem 3.32 (Convergence theorem for LP-bounded martingales). If (X)), is a martingale such that
SUp,,eny, E|Xn|P < 00, where 1 < p < oo, then X,, converges a.s. and in LP-norm.

Proof. Let Y = sup,, ¢y, |Xn| and M = sup,,cy, E[X,,[P. By [Theorem 3.27, there exists X, € LP(Q,.7,P)
such that X,, - X a.s.. By Doob’s LP-inequality [Proposition 3.22] and monotone convergence theorem,

p \" p \" r \
E| max |[X,P| < (=) EX.P< (=) M = Ey?<(—/—) M< .
1<k<n p—1 p—1 p—1

Since | X, — Xo| < 2Y, by Lebesgue dominated convergence theorem, ||X,, — Xl|, — O. O
Next we discuss the convergence of uniformly integrable martingales.

Theorem 3.33 (Convergence theorem for uniformly integrable submartingales). For a submartingale (X,)5,
the following are equivalent:

(i) (Xn)2%, is uniformly integrable.

(ii) (X,)S%, converges a.s. and in L'.

(iii) (X)), converges in L1.

Proof. We first show that (i) = (ii). Since (X,);%, is uniformly integrable, we have sup,,cy, E|X,| < oc.
By Theorem X, converges a.s. to some X, € L1(Q, %, P). By uniform integrability of (X,,)%,, the
convergence also holds in L. The implication (ii) = (iii) is trivial, and (iii) = (i) is by Theorem m O

Proposition 3.34. Given Z € LY(Q, %, P), the following collection is uniformly integrable:
{E[Z|¥9] : ¥ is a sub-o-algebra of F}

Proof. Since Z is integrable, by Theore for every € > 0, there exists ¢ > 0 such that E[|Z|14] < € for
all A € # with P(A) < 4. Given M > 0, and define Xg = E[Z|¥9], Yo = E[|Z||¥4]. Then |X¢| < Yy, and

E[| Xg|1fxy>0y] < EYg iy, sanl = EllZ[1 v, >

By Chebyshev inequality, P(Yy > M) < E[Yy]/M = E|Z|/M. 1If M > E|Z|/d, we have E[|Z|1y,>a] < €
Note the choice of M is independent of 4. Since € > 0, we have

< <
0 ]V}gnm;ICIPE[\X%\ﬂ{\X@|>M}] hm@;ggE[lZ\l{\pr}] 0.

Hence the collection of conditional expectations is uniformly integrable. O

Theorem 3.35 (Doob’s convergence theorem for uniformly integrable martingales). For a martingale (X,)52,
the following are equivalent:
(1) (Xn)22, is uniformly integrable.
(i) (Xn)32
(iii) (X)), converges in L1.
(iv) (X)) is closed, i.e. there exists Z € L*(Q, F,P) such that X,, = E[Z|.Z,] for all n € Ny.

Proof. By Theorem we have (i) = (ii) = (iii). To show (iii) = (iv), we let X = lim, 0o X, in L'

Since the conditional expectation is a bounded linear operator on L(Q, %, P),

1
oy converges a.s. and in L.

E[Xwl|Fn] = lim E[X,,|F,] =X
m—r oo
Finally, (iv) = (i) is by Proposition O
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Corollary 3.36 (Lévy’s upward theorem). Let (%,)%%, be a filtration. If Z € L*(Q, Z,P),
E[Z|Z,] — B|Z| %] a.s. and in L'

Proof. We define a uniformly integrable martingale X,, = E[Z|.%,], which converges both a.s. and in L'. Let
Xoo € LY, Z,P) be the a.s. and L' limit. It suffices to show that X, = E[Z|.Z,]. Let A € |J,—,. Then
A € Z, for some n € Ng, and

E[Xoola] = E[E[XooLa|70]] = E[E[Xoo|Fn]la] = E[X,14] = E[Z14].

Since |J;—,#n is a w-system, and the sets E satisfying E[Xo1g| = E[Z1g] is a A-system, by Sierpiniski-
Dynkin 7-A Theorem, we have E[X1g] = E[Z1g] for all E € Z#, and the results follows by definition of

conditional expectation. O

Remark. Given Z € LY(Q,.Z,P), the martingale X,, = E[Z].%,] is also called a Doob’s martingale. According
to Theorem every uniformly integrable martingale is a Doob martingale. Furthermore, even if the choice
random variable Z in Theorem [3.35 (iv) is not unique, by Corollary the conditional expectation E[Z].Z ]

is unique and equals X .
We discuss two 0-1 laws, which can be proved by constructing Doob martingales.
Corollary 3.37 (Levy’s 0-1 law). If %, 1 Zo and A € Fo, then P(A|.Z,) — 14 a.s. and in L',

Corollary 3.38 (Kolmogorov’s 0-1 law). Let (X,,)22, be a sequence of independent random variables, and
4, = 0(Xn+1, Xnta, ) for all n € Ng. Define the tail o-algebra 9., as follows:

Yoo = () %n-

neNp
Then Yoo is P-trivial, i.e. P(A) € {0,1} for all A € 9.
Proof. Let %, = 0(X1,---,X,), which is independent of ¥,,. Then for all n € Ny, we have A € 4, C 9,
and P(A|.%#,) = P(A). Also A € #, and by Corollary P(A|#,) — 1 4. Hence P(A) € {0,1}. O

3.2.3 Doob’s Optional Stopping Theorem
In this part, we study the expectation of X, where 7 is a stopping time.

Theorem 3.39 (Optional stopping theorem for nonnegative supermartingales). Let (X,,)52, be a nonngeative

supermartingale, and let T be a stopping time. Then
E[X,] < E[Xy].

Proof. The nonnegative supermartingale (X,,) has an a.s. limit X, which is integrable. Also, the stopped

process X,rr — X, a.s.. By Fatou’s lemma,
E[X;] < liminf E[X ;]
n—oo
Note that n A 7 is a bounded stopping time, for each n € N,

E[Xar] < E[Xo].

Hence E[X,] < E[X]. O
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Theorem 3.40 (Optional stopping theorem). Let (X)) be a submartingale, and let T be a stopping time.
If at least one of the following conditions holds:

(i) T is a bounded stopping time;

(ii) E[r] < oo, and there exists ¢ > 0 such that B[| X, +1 — X,| |Fn] < ¢ for all n € Ny; or
(iii) The stopped process X7 is uniformly bounded, and 7 < oo a.s.;
Then X, is a.s. well-defined, and E[X;] > E[X].

Proof. The case (i) is proved in Theorem To prove the case (ii), we write the stopped process as
X7 :XO‘FZ(Xk*Xk—l)]l{kST}a Vn € Ny,
k=1

which is dominated by

X7] < 1 Xol + D 1Xk = Xxoa|Lirspy-
k=1

Note that

E |[Xo| + Z | Xk — Xi—1[Lr>ny | = E[Xo| + ZE [E[| X — Xp—1]|Fr-1] Lrory] < oo
k=1 k=1

< E|X0| + CE[T].

Hence (X)) is dominated by an integrable random variable, which implies (iii). Finally, if (iii) holds, we use
the following fact:

E[X;;] = IE[*Xvn/\’r] > E[XO], Vn € No,

which holds because n A 7 is a bounded stopping time. By uniform integrability, the convergence X;] — X,
holds both a.s. and in L', and E[Xo] < E[X"] — E[X7]. O

For uniformly integrable martingales, we have a stronger optional stopping theorem.

Theorem 3.41 (Optional stopping theorem for uniformly integrable martingales). Let (X)), be a uniformly
integrable martingale, and X oo = lim,, oo X,, a.s.. If T is a stopping time, then X, € L'(Q, 7 ,P) and

X, = E[Xoo| 7]
with the convention that X, = X, on {7 = oco}. If o < 1 is another stopping time, then E[X,.|.Z,] = X,.

Proof. By Theorem we have E[X|%#,] = X,,. Then for all A € %, An{r=n} € .%,, and

EXoola] =Y E[XooLanirony] +EXooLanr—co]

n=0

=Y E[Xnlangr=n}] + E[Xoo L anr=oc)]
n=0

=Y E[XrLangr=n] +E[X:Lanfr=oe}] = E[X,14].
n=0

Since X, is % -measurable, we have E[X,|%#,] = X,. Furthermore, if o < 7 is another stopping time, then
Fo C Fr,and E[X,|.Z,] = E[E[X | %] Z5] = E[X | F6] = X O

82



3.2.4 Backward Martingales and Applications
To end this section, we also introduce backward martingale, which is a powerful tool in some scenarios.

Definition 3.42 (Backward martingales). A backward filtration is an increasing sequence of sub o-algebras
(Zn)ne—n, indexed by nonpositive integers, i.e. #, D Z%,_1 for all n € —Ny. Let (Y,,)ne—n, be an adapted
sequence of integrable variables indexed by nonpositive integers.

(i) (Yn)ne—n, is said to be a backward martingale, if E[X,| %] = X, for all m < n < 0.
(ii) (Yn)ne-n, is said to be a backward submartingale, if E[X,,|.%,] > X, for all m < n < 0.
(iii) (Yn)ne-n, is said to be a backward supermartingale, if E[X,|.%#,] < X, for all m < n < 0.

Remark. Likewise, we define the limit of the backward filtration (%, )nec—n, by

Theorem 3.43 (Doob’s convergence theorem for backward submartingales). If (X,)ne-n, @ a backward
submartingale such that lim,_,_ E[X,] > —oo, then (Xp)ne—n, is uniformly integrable and converges a.s.
and in L' to a random variable X _ € L' (Q, F_o0,P). Moreover, E[X,,|F_] > X_o for alln € —Ny.

Proof. Since X,,, Xp41, -+, Xo is a submartingale, by Doob’s upcrossing inequality [Proposition ,

E[(Xo — a)* — (X, —a)*] _ E|Xo| + o
b—a - b—a

E {U[ff,b] (n)} < , Va <b.

Since U[ff () T U[)a(vb](foo), by monotone convergence theorem, we have P (U[ffb](foo) < oo) =1, and

P U {U[)a{b](foo) < oo} =1

a,beQ:a<b

Similar to our proof of Theorem X,, converges a.s. when n — —oo. Since every sequence (X )g<n is
F,-measurable, the limit X_ o is .%,-measurable for each n € —Nj, hence is .%_,.-measurable.

To prove uniform integrability, we fix € > 0. Since E[X,,] | L := lim,,,_ E[X,,] > —00, we can choose
N € —Nj such that E[X,,] > E[Xy]| — €/4 for all n < N. Then

E [|XalL{x,1501] = B [Xalqpx,>a0)] — ElXa] < E [EXN|Zallgx, 0] — E[Xn]+ 5
< B [Xnlgx,>um] +
< E [IXn1811x, 500 powisr/z] + B (XN L, s oz ] + ]
<E[|Xnlgxy>nm/2y] + %E [1XnlLgx, 5003] + 2

Hence
€
E [|Xn|L{x,>0m3] < 2E [|XN|Lqxy)>0e/23] + 3
for all n < N. Choose M > 0 so that the first term is less than ¢/2. Hence (X,,),<n is uniformly integrable,

and so is (Xy)ne-n,. Therefore || X, — X_ool[1 — 0. Moreover, for all A € F_ =(,c_n, Zn;
E[Xn]lA] — E[Xm]lA] = E[Xn]lA] - ]E[E[XHgm]]lA] > E[Xn]lA] — E[Xn]lA} >0, Vm<n.

Let m — —oo. By Lebesgue dominated convergence theorem, E[X,14] > E[X_o14] for all n € —Ny. Hence
we have E[X,|Z_] > X_. O
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Remark. If (X, )ne—n, is a backward martingale, the requirement lim,,, o E[X,,] = E[X(] > —o0 is satisfied.
As we can see, a backward martingale always converges a.s. and in L', with no additional condition required.
Moreover, the limit is given by X_ ., = E[X(|-Z— o).

We also have an immediate corollary of this theorem: If %, | #_ is a backward filtration, and Z is a
integrable random variable, then E[Z].%,] — E[Z|%_4] a.s. and in L'.

The convergence theorem for backward martingales is useful in probability theory. Typically, we apply it
to study the exchangeability of random variables.

Definition 3.44 (Exchangeable o-algebra). Let X7, X5, -+ be a sequence of random variables, and define
Foo = 0(X1,Xa, ). For each n € N, define the n-exchangeable c-algebra by

én ={A € F : Ais invariant under permutation of Xy, Xo, -+, X, }.
Also, define the exchangeable algebra by

& = ﬁ S
n=1

Remark. If A is included in the algebra %, generated by the random sequence (X,,)52 ;, it is of the form
A= {(X15X27"') € B}7

where B is a Borel set in the product space RY. If A € .%,, is invariant under permutation of Xi,---, X,
then for any bijection 7 : {1,--- ,n} = {1,--- ,n}, we have

T(B) = {(Tr(1), Tn(2)>* " »Tr(n)> Tnt1, ) 1 (¥1,T2,--+) € B} = B.

For example, for any ¢ € R, the set {X; + --- + X, < ¢} is n-permutation invariant. Furthermore, for any

measurable function ¢ : R®™ — R, if A is n-permutation invariant,

Eo(X1, -+, Xp)1a] = E [@(Xray, - X)) La] -
Therefore, the conditional expectation is also permutation-invariant:

E [0(Xr@) - Xem)|En] = Elp(X1, -+, Xn)| &)

Theorem 3.45 (Hewitt-Savage 0-1 law). The exchangeable algebra & of an i.i.d. sequence (X,,)02 is trivial,
i.e. P(A) € {0,1} for all A€ &.
We first prove the following lemma.
Lemma 3.46. Let ¢ : RF — R be a bounded measurable function, and define
An@: TN Z QD(XZ'U"' aXik)’

(i1, ik )€k

where I, 1, consists of sequences of distinct integers 1 <i3 < --- <iy <n, and (n)y =n(n—1)---(n—k+1)
is the number of such sequences. Then Anp — Elp(X1,---, Xk)] a.s..

Proof. By definition, A, is &,-measurable, and

1
Anp = E[Anp|éy] = i Yo Elp(Xi,- Xa)lEn] = Elp(Xy, -, Xi)|6)-
(i17"‘77;k)eln,k
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Since &, | &, by backward martingale convergence theorem, A,¢ — E[p(X71, -+, X;)|€] a.s. and in L. To
finish the proof, we need to prove that E[p(X1, -, Xg)|&] = E[p(X1,- -, Xk)]. Note that

1 1
AngO:i Z @(Xilv"'7X’ik)+W Z (,O(le,7sz)
K iciel, . M igiel,

Since ¢ is bounded, the first term involving X; is bounded by £||¢||o, which converges to 0 as n — co. Then

the a.s. limit E[p(X1, - , X)|&] is measurable with respect to o(Xs, X3, - - - ). Repeating the same procedure,
Elp(X1,---, Xy)|&] is measurable with respect to o(X,,, Xy41,---) for all n € N. Acutally, the conditional
expectation E[p(X1, - -+ , Xj)|&] is measurable with respect to the tail o-algebra (2, 0(Xn, Xp41, -+ ), which

is trivial by Kolmogorov’s 0-1 law [Corollary [3.38]. Consequently,
P(E[p(X1,---, Xy)|€] > q) € {0,1}

for all ¢ € Q. Therefore E[p(X1, -+, X})|&] is a constant a.s., which is E[p(Xq, -+, X)]. O

Proof of Theorem[3.}5 By Lemma Elp(X1, -, Xk)|€] = Elp(X1, -, Xk)] holds for each bounded
measurable function ¢. Then the exchangeable o-algebra & is independent of o(X7, -, Xj) for all k € N.
Since Jpo 0(X1, -+, X)) is a m-system, by Sierpiriski-Dynkin mr-A theorem, & is independent of o( X1, Xo, -« ).
Then & is independent of itself, and P(A) = P(AN A) = P(A4)? for all A € &, which concludes the proof. [J

Theorem 3.47 (De Finetti’s theorem). If X7, Xo,--- is a sequence of exchangeable random variables, i.e.
for all n € N and all permutations = of {1,--- ,n},

d
(le' te aX’rL) = (Xo(l)a' te aXa(n))v

then X1, X5, -+ are i.i.d. conditional on the exchangeable o-algebra & .

Proof. We let f : R*"! = R and g : R — R be bounded measurable functions. Then the tensor product
o(xy, - ,xk) = f(z1, -+ ,zr—1)g9(zk) is also bounded, and

n

(Mi—1Anf nAg= > f(Xiy, Xiy )Y 9(X))

€10 k-1 j=1
k—1
= Z f(Xi17' t ’Xik—l)g(Xik) + Z f(Xiu' n 7X'Lk—1) g(le)
1€l 1 €10, —1 m=1

k—1
= (WkAnp + (M)i-1 Y Anom,
m=1

where ¢, (21, ,zk-1) = f(21, -+ ,xx—1)g(xm). Rearranging the identity, we have
n 1 .,
App=—"——A,f - Apg— — Anom.
L— +1 f C— +1 mz::l v

According to the proof of Lemma with exchangeability, A, — E[p(Xi, -, Xk)|&] for all bounded
functions ¢ : RF — R. We let n — 0o in the last display to obtain

Blp(Xy, -, Xp)|6] = E[f (X1, -+, Xi—1)[6] - E[g(Xk)|&].
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By induction, for all n € N and bounded measurable functions fi,--- , f,, we have

E[f1(X1)f2(X2) -+ fu(Xn)|€] = E[f1(X1)[€] X E[fa(X2)|E] X - -+ X E[fn(X0)|&].

Hence X7, X5, -+ arei.i.d. conditional on &. O
The backward martingale method gives a beautiful proof of Kolmogorov’s strong law of large numbers.

Theorem 3.48 (Kolmogorov’s strong law of large numbers). Let (£,)52; be a sequence of i.i.d. random
variables such that E|&1| < co. Then

f GG tE
1m
n

n—oQ

~ =K as..

PT‘OOf. Let Sn = 51 + - +€n7 and an = Sn/n Let f,n = U(Sn>§n+17§n+27 te ) \L yfoo Then

Sn+1 _ E [€n+1|y—n—1]

1
E[X—n|3z—n—1] =—-K [Sn-i-l - €n+1|§—n—1} =
n

n n
Sn Sn
= SR + = anfh
n nn+1)
where in the third inequality we use the exchangeability of &1,--- ,&,+1 and the fact Sp41 =& + -+ + &€t

By backward martingale convergence theorem, X _,, — X _ a.s. and in L', and X_., = E[£1]|.%_o]. Also,
by definition we have #_,, C &,, and F_,, C &. By Hewitt-Savage 0-1 law, E[§;|-F_ ] = E&; a.s.. O
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3.3 Continuous-time Martingales
3.3.1 Definition and Properties

Definition 3.49 (Continuous-time martingales). Let (X;);>0 be a real-valued and L' process that is adapted
to the filtration (#;);>0. Here L' means E|X;| < oo for all ¢ € R;.. Then
(1) (Xi)e>o is said to be a martingale if E[X,|.%,] = X, for all t > s > 0;
(i) (X¢)e>o0 is said to be a supermartingale if E[X;|.%;] < X, for all t > s > 0;
(iil) (X¢)e>o0 is said to be a submartingale if E[X;|.#] > X for all t > s > 0;

All these notations depends on the choice of the filtration {.%#;};>0, which is fixed in later discussion.

Remark. Similar to Proposition we have an immediate corollary of conditional Jensen’s inequality. Let
f:R — R be a convex function such that E[f(X;)] < oo for all t € R.
(i) If (X4)i>0 is a martingale, then (f(X;)):>0 is a submartingale. Particularly, (]X¢|):>0 is a submartingale.
(ii) In addition, if f is monotone increasing and (X;):>o is a submartingale, (f(X};)):>0 is a submartingale.

Particularly, (X;)¢>0 is a submartingale.

Proposition 3.50. Let (X;)i>0 be a submartingale. Then for allt > 0,

sup E|X;| < oo.
0<s<t

Proof. Clearly, E[X,] = E[E[X;|%0]] > E[Xo]. On the other hand, since (X;") is also a submartingale, we
have E[X}] < E[X,"] for all 0 < s < t. Note that |z| = 227 — 2. Hence we have

E|X,| = 2E[X}] - E[X,] < 2E[X;] — E[Xo] < o0, Vs € [0,1].

The result immediately follows. O

Proposition 3.51. Let (X;):>o be an L? martingale. Then for all reals 0 < s < t and all finite partitions
s=tyg <ty <--- <ty =t, we have

k
E | (X, — X, )% Ze| =E[X] - X2|7] =E[(X; - X.)°| 7] .
j=1

Proof. For each j=1,--- k,

E[(X,, - X, )1 %] =E[E[(X,, - X, ?|%,_]| 7, =E [E[X} - X7

ti—1

|‘9\tj71:|

7|
Then the desired result follows by summing over j. O

Now we extend the inequalities in Proposition [3.30] and Proposition to continuous-time martingales.

Proposition 3.52. Let (X;):>0 be a right-continuous submartingale.

(i) (Mazimal inequality). For everyt >0,

AP ( sup | X,| > )\> < E|Xo| + 2E|X¢[, YA > 0.

0<s<t

In addition, if (X;)i>0 is nonnegative, then

AP (X[ > A) <E[Xy], VA >0, where X; = sup X,.

0<s<t
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(i) (Doob’s LP-inequality). If (X;)i>0 is a right-continuous martingale, then for every t > 0,

P
E { sup Xs|p] < <p> E|X:P, Vp > 1.
0<s<t p—1

Proof. We fix t > 0 and take a countable dense subset t € D C R. If f is a right-continuous function, we have

sup f(s) = sup f(s)

s€DN[0,t] 0<s<t

Here is a brief interpretation using diagonal trick. Let M = supg< <, f(s), then we can find a sequence
Sn € [0,¢] such that f(s,) / M. Since f is right continuous, and D > ¢ is dense in R, we can find a sequence
DN [0,#] 3 tnk ¢ sn such that f(t,x) — f(sn) for every n. Then f(tn,) — M, and sup,epnpo,, f(s) = M.

Hence, by right-continuity of s — X(w) and the fact that t € D, we have sup,¢ pryo ¢ [ Xs| = supg< <y | Xsl-
Furthermore, we can view D N[0,] as the union of an increasing sequence of partitions Dy = {t&, 5 ... &},
where 0 < th <th <. <th =t

(i) For each k € N, we can apply the maximal inequality [Proposition [3.30] of discrete form on sequence
Y, = Xy, which is a submartingale of the filtration ¢, = Fyr

nAk
AP <n€1%x 1X,| > )\> < E[|Xo|] + 2E[| X[, Yk € N, A > 0.
s k

Note that maxsep, [Xs| / supsepnio, | Xs| = supg<s<; | Xs| as k — co. By monotone convergence theorem,
AP (max | Xq| > A) AP sup | Xs| > A | < E[|Xo|] + 2E[| X¢]], VA > 0.
s€Dx s€[0,t]

The case of nonnegative submartingale is similar.

(ii) Similar to the proof of (i), we apply Doob’s inequality [Proposition [3.31] of discrete form:
» \?
E XplP| < —— ) E[| X 1.
[iﬁ%’i k|:|<p_1> [1X:/”), vp >

Since max,ep, |Xk| / supg<s<; | Xs|, we use monotone convergence theorem to get the desired result. O
Remark. If (X¢)i>0 is a submartingale, then for any dense subset D C R and every ¢ > 0,

1

IP( sup | X,| > /\) < 5 (E[IXo[] + 2E[| Xi[]) , ¥A > 0.

s€DNI0,t]

Let A — 0o, we obtain that sup,cpnjo.q | Xs| < 00 a.s. for all t > 0.

3.3.2 Martingale Convergence Theorems

Definition 3.53 (Upcrossing number). Given a function f: E — R and a < b, where E C R, the upcrossing
number of this sequence along [a,b], denoted by U[]; ] (E), is the largest k& € N such that there exists a finite
and strictly increasing sequence s1 < t; < sp < ty < --- < 8 < i, of elements of E such that f(s;) < a and
f(t;) >bforall j € {1,---,k}. If there exists no such sequence, we take U[J;yb] (E) = 0. If such sequence exists

for all k € N, we take U[J; b](E) = 00,

A function f: E — R is said to be cadlag (French: continue a droite, limite a gauche), if for all t € E, the
left limit f(t—) < oo exists, and the right limit f(¢t+) exists and equals f(¢).
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Lemma 3.54. Let D be a countable dense subset of Ry, and f: D — R. Assume that for every T € D,

(i) the function f is bounded on D N[0,T], and

(i) U[J;b] (DN0,T)) < oo for all rationals a < b.
Then the right limit f(t+) = limpssy f(8) exists for allt € Ry, and the left limit f(t—) = limpssre f(s) exists
for allt € Ry . Furthermore, the function g : RT™ — R defined by g(t) = f(t+) is cadlag.

Proof. We first fix t € Ry, and prove that f(t+) = limpssys f(s) exists. Take D 3 T' > t. By assumption (i),
there exists M > 0 such that |f(¢)| < M for all t € DN[0,T]. Take a sequence in s, € D N[0, T] such that
Sn 4 t. By Heine-Borel theorem, every subsequence of f(s,) has a further subsequence that converges. We
prove that all such subsequences converges to the same point, which implies that f(s,) converges.

Argue by contradiction. If there exists two subsequence s,, and ¢, such that f(s,) — a and f(¢,) =b > q,
take two rationals a < p < ¢ < b. Then for any k € N, we can find a f(t,,) > ¢, and s,, < t,, such that
f(sn,) < p, and t,, < Sp, such that f(t,,) > q, ---, and sp, < ty, such that f(s,,) < p. Thus we obtain
an upcrossing sequence sp, < tn, < Sn,_y < Ynp_, < - < Sp, < by, of elements of D N [0,7T]. Therefore,
Up,q(DN[0,T]) > k for all k € N, a contradiction to (ii)!

As a result, all such sequences D N [0,7] s, J t converges. They should converge to the same point.
Otherwise, we can construct a sequence not converging by interlacing two sequences that converges to distinct
points. Therefore, the right limit f(t+) = limpssy: f(s) exists for all ¢ € Ry. Similarly, we can prove that the
left limit f(t—) = limpsspe f(s) exists for all ¢t € Ry 4.

Now we prove g(t) = f(t+) is cadlag. Given ¢ > 0, we take § > 0 such that |f(s) — f(t—)| < € for all
se(t—46,t),and |f(r) — f(t+)| < efor all r € (¢t,t + ). Take r,, L7 € (¢,£+6), and s, | s € (t — d,t). Then

l9(r) = FH)] = T [F(ra) = () < e and |g(s) = f(t=)] = Tim [[(s0) = f(t-)] <.

Hence lim,.j; g(r) = f(t+), limgy, g(s) = f(t—), and g is cadlag. O

Theorem 3.55. Let (X,;);>0 be a submartingale, and let D be a countable dense subset of Ry.

(i) For P-a.e. w € Q, the restriction of path t — X:(w) to D has right and left limits everywhere:

Xt_,_(w):Dgrith(w), vVt € Ry, Xt_(w)zl}grs%th(w), vVt e Ryy.

(ii) For every t € Ry, the limit X,y € L' (Q, Z1y,P), and E[Xy| %] > X, with equality holds if the mean
function t — E[X,] is right-continuous (in particular, if (Xy)i>0 is a martingale). The process (Xi4)i>0 is a
submartingale with respect to the filtration (Fiy)i>0.

Remark. In (ii), if X;4 is undefined on a negligible set N, we can just take Xy, (w) =0 for w € N.

Proof. (i) Fix T € D. Then sup,cpnjo ) |Xs| < 0o a.s.. As in the proof of Proposition [3.52) we take an
sequence Dy, increasing to D N [0,7T]. Using Doob’s upcrossing inequality [Proposition [3.24] and monotone
convergence theorem, for all a < b, we have

E[(Xr —a)" — (Xo —a)7]
b—a

E [Uﬁib](D N [OvT])i| < <oo = U[f;b](D N[0,7T]) < oo a.s..

Set the negligible set N as

N={J { sup |Xs|oo}ﬂ U {U§7b](Dn[O,T}):m} = P(N)=0. (3.8)

TeD s€DN[0,T] a.beQ

Outside N, the assumptions in Lemma [3.54 are satisfied, and the result follows.
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(ii) We supplement the definition X4 (w) = 0 if limps,)¢ Xs(w) does not exist, which occurs negligibly. Then
X4 is F-measurable. Fix ¢ € R, and choose ¢, | t. Then we have X; — Xy, a.s.. Set Y, = X;_, for all
n € —Np. Then Y,, is a backward submartingale with respect to the backward filtration %,, = %#;_:

]E[Yn‘gn—l] = E[Xt—n|yt—(n—1)] Z Xt—(n—l) = Yn—l, V’n (S _NQ.

By Proposition we have sup,e o7 E[|Xs]] < oo, which implies lim,,, o E[Y,] > —oco. Using
Doob’s convergence theorem for discrete-time backward submartingales [Theorem [3.43], we have X; — X,y
in L', and X;; € LY(Q, %, P). Due to convergence in L', we have

]E[Xt-i-‘ﬁt] = ll)m E[th|§t] Z Xt7 and E[Xt+] = ILHI E[th]

Note the first equality holds because the conditional expectation operator E[-|.%#;] is a bounded linear
operator on L'(Q,.%,P). In addition, if the mean function s — E[X,] is right-continuous, the second equality
implies E[X; ]| = E[X}], which requires E[X4|.%:] = X;.

Let s < t, and take s, | s such that s, <¢,,. Then X, — X 4 a.s. and in L'. Moreover, if A € Fst,

E[X/ 1 14]) = lim E[X,, 14] > lim E[X,, 14] = E[X, 14].
n—oo n—oo

Since X4 is Fsy-measurable, we have E[X4|%,y] > X Therefore, (X;4)i>0 is a submartingale with
respect to the filtration (F4)i>o. O

Theorem 3.56 (Cadlag modification). Let (%;)i>0 be a right-continuous and complete filtration. Let (X;)i>0
be a submartingale such that the mean function t — E[Xy] is right continuous. Then (Xi)i>0 has an a.s.

modification with cadlag sample paths, which is also a submartingale with respect to (F)i>0-

Proof. Let D be a countable subset of R, , and let IV be the negligible set defined in|(3.8)] We take Y; := X
with the refinement Y;(w) = 0 for w € N. By Lemma the sample paths of (Y7);>o are cadlag.
Since Xy is .#-measurable by right-continuity of (%#;):>0, and since the negligible set N falls in all .%#,

by completeness of (%;):>0, the function Y; is F#-measurable. Furthermore,
Xy =E[Xi4|F] = Xy 2Y,, VEER,.

Hence (Y3)¢>0 is an a.s. modification of (X;);>0, which is adapted to the filtration (#;);>¢. Furthermore, we
have E[Y;|Z,] = E[X;| %] > X; =Y, for all t > s > 0. Hence (Y;):>0 is also a submartingale. O

Theorem 3.57 (Doob’s first martingale convergence theorem). If (X;);>¢ is a right-continuous submartingale
and sup, > E[X;"] < 00, then Xoo = limyjoe Xy, a.s. exists, and Xoo € L' (Q, .7, P).

Proof. Let D be a countable subset of R, and let M := sup,~ E[X,"] < co. For all @ < b, we can follow the
proof of Theorem m (i) and use monotone convergence theorem to conclude

E[(Xr —a)* — (Xo—a)*] _ M+1a

M + |al
< — 1
b—a ~ b—ua <0

-~ b—a

E [0, (Dn10,1)] < E U3 y(D)]

Hence U[ffb](D) < oo a.s. for all a,b € Q with a < b, and X = limpsipeo Xt € [—00, 0] a.s. exists. We can
further exclude values co and —oo P-a.e., because the Fatou’s lemma gives

E[XL) < lminfEIXf] <M, E[Xy) < Iminf EIX] = Iminf E[X;" — X,] < M — E[X].

Hence Xo, € L1(Q, .#,P). Finally, since (X;);>0 is right-continuous, we can drop the restriction t € D. O
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Similarly, we need uniform integrability of martingale to obtain convergence in L!.

Theorem 3.58 (Doob’s second martingale convergence theorem). Let (X,);>0 be a right-continuous martin-
gale. The following are equivalent:

(i) The collection {X;}ier, is uniformly integrable.

(ii) X; converges a.s. and in L*-norm.

(iii) (Xt)i>0 is closed, i.e. there exists Z € L*(Q, F,P) such that X; = E[Z|F] for all t € R.

Proof. (i) = (ii): By Theorem m the limit X = lim; o Xy a.s. exists. Since {X;}scr, is uniformly
integrable, convergence in L' also holds by Theorem m

(ii) = (iii) follows from the continuity of conditional expectation operator on L(, .7, P).

(iii) = (i) follows from Theorem m O
Remark. If (i)-(iii) are satisfied, the limit X, = lim;_, oo X satisfies E[X oo |.%¢] = lims 00 B[ X |.F2] = X

Theorem 3.59 (Convergence theorem for LP-bounded martingales). Let (X;)i>0 s a martingale such that

sup;>o E[| X¢[P] < oo, where p > 1. Then X, = limy oo X; a.s. and in LP.

Proof. Let Y = supysq |X¢|, and M = supysq E[|X;[?] < oo. By Theorem [3.58 there exists Xoo € LP(2, 7, P)
such that X; — X a.s.. By Doob’s LP-inequality [Proposition m (ii)] and monotone convergence theorem,

p \’ p \’ p \’
E [ sup |Xs|p} < () E[1X,7] < () M o= Y < () M < .
0<s<t p—1 p—1 p—1

Since | X; — Xoo| < 2Y, by Lebesgue dominated convergence theorem, || X; — X, — 0. O

3.3.3 Optional Stopping Theorems

Given a right-continuous submartingale (X¢);>o such that sup,s E[X;] < oo, and a stopping time 7, we

define the random variable
Xr(w) = Xrw) (W) rcoo) (W) + Xoo (W) {700} (w), where Xoo = tlgglo X; a.s..

By Proposition and Proposition (X1)i>0 is progressive, and the restriction of X, to {7 < oo} is
Fr-measurable. Meanwhile, {X o1 (;—oy < a} C {7 <t}if a >0, and {Xoolrooe) < afN{r <t} =0 if
a < 0. Therefore, {Xool{;—ey < a}N{7 <t} € F forallt > 0, and X o1{;—y is Fr-measurable. As a

result, the random variable X, is .%,-measurable.

Theorem 3.60 (Optional stopping theorem for submartingales). Let (Xi):>0 be a right-continuous submartin-
gale. Let 7 and o be two stopping times such that o < 7. Then X,, X, € LY(Q,.Z,P), and E[X,|.%,] > X,,
if either of the following conditions holds:

(i) T and o are bounded stopping times;

(1) (Xt)i>0 is uniformly bounded by some U € L* (2, %o, P) from above, i.e. Xy <U for allt > 0.

Proof. (i) Suppose 7 < M, where M € N. Akin to|Proposition 3.14] we define two sequences of stopping times

on < T, that decrease to o and 7, respectively:

M2™ -1 M2™ -1
E+1 E+1
Op = Z 7]1{k2—n<ag(k+1)2—n}, and Tn = Z 2T]I{k2’"<7'§(k+1)27"}7 n € N.

on
k=0 k=0
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We fix n > 2. Then the sequence (Xyo-n)72, is a discrete-time submartingale with respect to the fil-
tration (Fpo-n)32,. Furthermore, both 2"7,_; and 2", are stopping times of (Fyo-n)5,, since 2"7,_1 =
min{k € {2,4,--- ,M2"} : k27" > 7} implies

{2"r,—1 < p} = {T < EJ 21‘”} € Fpo—n, Vp €N,
and 2"7, = min{k € {1,2,--- ,M2"} : k27" > 7} implies
{2"1, <p} ={r <p27"} € Fpp-n, VpEN.

By the optional stopping theorem for discrete-time submartingales [Theorem (iii)], we know that
E[X,, ,|%:.] > X,,. Hence Y,, := X, _ is a backward submartingale. Furthermore, by [Theorem (i, i)],
we have E[X,, ] > E[Xy] for all n € N. Apply Theorem the sequence (X, )52, is uniformly integrable.

Since 7, (w) \ T(w), and the sample path ¢t — X;(w) is right-continuous, we have X, — X, a.s., and this
convergence also holds in L. Also, X, — X, a.s. and in L'. Then for all A € .Z,, we have

(By Theorem [3.20) E[X, 14] >E[X,, 14], VneN = E[X,14]>E[X,14],

where the = follows from L' convergence. Hence E[X,|.%,] > X, .

(ii) Apply (i) to bounded stopping times 0 and 7 A n, we have E[X ] [Xo] > —o0. Since X; is bounded

>E
> E[Xy] > —oco. Similarly we have

from above by U, by Fatou’s lemma, E[X;] > limsup,,_, ., E[X an]
E[X,] > E[X(] > —cc. Hence X, X, € L'(Q, Z#,P).

Fix A € Z, C %,, and define 74(w) = 7(w)1 4 + 0ol 4c. According to Proposition (d), both 74 and

o4 are also stopping times. By (i), we have

0 <E[X,apn] —E[Xyanm]
) [Xn]lAc + Xranlan{o<n} + Xn]lAm{U>n}] -k [Xn]lAc + Xolan{o<n} + Xn]lAﬁ{<7>n}]
=E [X‘r/\n]lAﬁ{agn}] -E [XU]IAQ{US”}}

Note that 1 an(o<n} = Lan{o<oo) and X;a, — X7 as n — oo. By Lebesgue dominated convergence theorem,
we have E[X 1 an(s<oo}] > E[XoLanfs<oo})- Clearly, E[X: 1 anfs=cc}] = E[Xs1 gn{o=cc}]. Hence

E[E[X,|Z,]14] = E[X,14] > E[X,14], VA € .Z,.

Since X, is F,-measurable, we have E[X,|%,] > X,. O

Theorem 3.61 (Optional stopping theorem for uniformly integrable martingales). Let (X;)¢>0 be a uniformly
integrable right-continuous martingale. Let T be a stopping time. Then we have

E[Xw| %] = X, € LY(Q, Z,P).

Furthermore, if o is another stopping time such that o < 7, then E[X,;|%,] = X,.

Proof. Using Proposition [3.15] we define a sequence of stopping times 7,, \, 7 as follows:

Zk+1
Tn = Z 2n 1{]{:2’"<TS(1€+1)27”} —+ OO]I{T:oo}v n e N
k=0

Clearly, 2"7, is a stopping time of the filtration {.F(1)2-»}32,. Apply Theorem to discrete-time
martingale {X(y41)2-n }he, With respect to the filtration {.# 4 1)2-n}32, which is uniformly integrable, we
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have E[X|Z,, | = X,, € LY(Q,Z,P). Since 7,(w) \, 7(w), and the sample path ¢ — X;(w) is right-
continuous, we have X, — X, a.s.. Furthermore, {X,, }22, is uniformly integrable, so the convergence also

holds in L. For all A € Z, C %, , E[Xo|Z,,] = X,, implies E[Xoo14] = E[X;, 14]. Then

n

E[X,14] = lim E[X,, 14] = E[Xoola], VA€ Z, = E[Xoo|F] =X,

n—roo
Furthermore, if o < 7 is a stopping time, then E[X;|.%,] = E [E[X | % ]| %o = E[X oo |-Z0] = X O
Given an adapted process (X;);>0 and a stopping time 7, we denote by X7 = X, the stopped process.

Corollary 3.62. Let (X;);>0 be a right-continuous submartingale. Let T be a stopping time.
(i) The stopped process (X7 )i>o is a submartingale.

1) In addition, if (X¢)i>0 98 a uniformly integrable martingale, so is the stopped process (X[ )i>qg. Moreover
(it) ) > y integ gale, pped p D> :

Proof. (i) Fixt > s> 0. If A € #; C %, we have AN{7T > s} € Z,, and AN {r > s} € F#; by the very
definition of .%,. Hence AN {1 >t} € Fs N F, = Frps, and

E [ngr]lA} —-E [X:]IA] =E [X‘r/\t]lAﬂ{Tgs}] +E [X‘r/\t]lAﬂ{T>s}] —E [XT/\SﬂA]
E [XT/\S]IAI’W{TSS}] +E [X‘r/\t]lAﬁ{‘r>s}] —-E I:XT/\S]IA}
E

[(XT/\t - X‘r/\s)]lAﬁ{'r>s}] =E [E [XT/\t - X‘r/\s|y7/\s] 1Aﬂ{7‘>s}] =0,

where the last inequality follows from Theorem [3.60} because 7 A's < 7 At are two bounded stopping times.

(ii) Fix t > 0. If A € #, we have AN {7 >t} € #, and AN {7 >t} € %, by the very definition of .Z#,.
Hence AN{r >t} € % N.F. = Frat, and

E [XT]IA} —-E [Xg]lA] =E [Xr/\t]lAm{rgt}] +E [X‘r]lAﬁ{T>t}] —E [X‘r/\t]lA]
=E [(Xr - XT/\t)ﬂAm{r>t}] =K [E [XT - XT/\t|jT/\t] 1Am{7>t}] =0,
where the last inequality follows from Theorem because 7 At < T is a stopping time. Since A € Z; is

arbitrary, and X] = X, s is #;-measurable, we have E[X,|%;] = X]. Since X, € L'(Q,.Z,P), the stopped
process (X7 );>0 is uniformly integrable. O
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3.4 Continuous Semimartingales
3.4.1 Finite Variation Processes

Review: Functions of bounded variation. Given a function f : [0, 7] — R, we define the total variation
of f on interval [0,T] as

Vi f = sup Z|f(xj)—f(xj,1)|: neN, 0=zg<z1<--- <2, =T

Jj=1

If Vi f < oo, we say that f :[0,7] — R has bounded variation.

We can show that every function of bounded variation is the difference of two monotone increasing functions.
If f:[0,7] — R is a function of bounded variation, we define v¢(0) = 0 and v¢(t) = Vi f for all t € (0,7,
which is the total variation of f|( . Then we have vy(t) —vs(s) = VI(f) > |f(t) — f(s)[ forall 0 < s <t < T.
Therefore, both vy + f and vy — f are monotone increasing functions on [0,7], and f = %(vf +f)— %(’uf —f).
In addition, if f(0) = 0, we can require both v¢ + f and vy — f to be nonnegative.

Furthermore, if f : [0,7] — R is a cadlag function of bounded variation such that f(0) = 0, there exists a
finite signed measure p such that p([0,¢]) = f(¢) for all ¢ € [0,T].

Since vy is monotone on [0,T], vy has a left limit vy(s—) at every s € (0,7, and a right limit vy (t+) at
every t € [0,T). We prove that v(t+) = vs(t) for all t € [0,T). Fix € > 0. Since f is right-continuous, choose
d > 0 such that |f(z) — f(t)] < e/2for all z € (¢,t+ ). We also choose a partition t = xg <21 <--- <z, =T
such that 377, [f(z;) — f(zj-1)| > V' f — 5. Then for all < min{ay,d}, we have

VIS~ % <N (g) = -l S F@) = F@ 4 |f (o) = f@)] + D 1f () = flaj)l < §+ Vi f.
j=1 j=2
Hence vs(z) —vs(t) = Vof =V f — VI f <€ for all z € min{zy,d}, and vy is right-continuous. As a result,
both vy + f and vy — f are nonnegative, monotone increasing and cadlag functions on [0,7]. Akin to the
Carathéodory extension procedure of a c.d.f. in the Remark of Definition [2:3] there exists two Borel measures
pt and p~ such that pt([0,¢]) = L (vp(t) + f(t)) and p=([0,¢]) = L (vp(t) — f(t)) for all ¢ € [0,T]. Then
w=pt —p~ is a signed measure with u([0,¢]) = f(¢) for all ¢ € [0, 7.

Moreover, the total variation measure |u| of p satisfies |u|([0,T]) = vs(T) = V' f. For any partition
0=wx9 <a1 < <axp, =T, we have 3.0, [f(z;) — f(zj—1)| < [ul([0,T]), hence Vg f < |u|([0,T]). To
prove the opposite, we define a probability measure P(A) = % on Z([0,T]). Let PII N = [0,T] be the
Hahn decomposition associated with p, and define Y = 1p — 1. Let 0 =t <t} < --- < th = T be an
increasing sequence of partitions of interval [0,¢] such that the mesh maxi<;<, (7 —t}_;) — 0, and let %,
be the sub o-algebra generated by intervals (¢7,t7_;]. Then (£,);2, is a filtration with %, = %([0,T]),
and X,, = E[Y|%,] is a uniformly integrable martingale sequence. Furthermore, by properties of conditional

expectation, X, is a constant on each subinterval (¢7_;,t"], and

J—17
T | ] et D (07 I I S SV
n|(ty_,t7] — n n - n n - n nly n n ’ —J = 'n-
(-] P((t7_1,7]) P(EF_1 67D [el([0, TDP((ET_y, ¢7]) |l (7, 87])

Now it suffices to prove that 2521 ‘f(t;t) - f(t?_l)’ — u([0,7]). By Doob’s convergence theorem for
uniformly integrable martingales, we have X,, — Y a.s. and in L. As a result,

kn ny _ f(gn
E|X,| = ; ‘f(tfu)([o’g%l)’ —E[Y|=1.
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Review: Functions of finite variation. A function f : Ry — R is said to have finite variation, if the
restriction f|jo, ) has bounded variation on [0, 7] for all ' € R, ;. In addition, if f(0) =0 and f is cadlag, we
can find a unique o-finite signed measure p on B(R;) such that p([0,t]) = f(¢) for all ¢ € Ry, and |u|([0,¢])

is the total variation of fi 4.

Review: Lebesgue Stieltjes integral. Let f :[0,7] — R be a cadlag function of bounded variation with
f(0) = 0, so we can find a finite signed measure on [0,7] such that u([0,¢]) = f(¢) for all ¢ € [0,T]. If
©:[0,7] — R is a measurable function such that f[O,T] lp| d|p| < oo, define the Lebesgue-Stieltjes integral

T T
/0 o(s)df(s) = /[O’T]wduv / () [df(s)] = /[OT]wldu-

)

It is seen that the function ¢ +— f(f ©(s)df(s) is also of bounded variation on [0,7]. To see this, note the
associated signed measure is v(A) = [, ¢ dy, and the total variation on [0, T] is |v[([0,T]) = f[O,T] lo] |[dp] < o0.

Also, if f : Ry — R is a cadlag function of finite variation with f(0) = 0, we can define the Lebesgue-
Stieltjes integral

[eS) T
| e = tin [ ets)dss)
0 —Jo
for all measurable functions ¢ such that [ [¢(s)| |df(s)| < co.

Review: Approximation of Lebesgue Stieltjes integral. We can approximate a Lebesgue-Stieltjes
integral of a continuous function by differentiating on a mesh. Let 0 = {f < <--- <t} =T be a sequence

of partitions whose mesh maxj<;<, (t7 —t}_;) — 0. Then

T kn kr
/0 on(s)df(s) = Z(p(t;‘) (f(t?) - f(t;'ll)) , where @ (s) = 90(0)]1{0}(3) + ZSD(t?)]l(tyfl,t; (s)-
j=1 j=1

By continuity of ¢, we have ¢, — ¢, and all these functions are dominated by a constant maxsco, 7y [(s)|.

By Lebesgue dominated convergence theorem, we have

k

T n
| eoare) = lim 3ot (1) - £630)).

Definition 3.63 (Finite variation processes). An adapted process (X:):>o is said to be a finite variation
process if all its sample paths ¢t — X;(w) are functions of finite variation on Ry. In addition, if all sample

paths ¢ — X, (w) are monotone increasing, the process (X;);>o is said to be an increasing process.

Remark. If (A;);>0 is a finite variation process, then
t
v, :/ dA,|, vt € R,
0

is an increasing process. Writing A; = %(Vt +A) — %(V} — A;) shows that any finite variation process can be

written as the difference of two increasing processes. Note that V; is .#;-measurable, because

kn
Vi, = lim E Apm — A ‘ , where 0 =t} <t} <.-- <t} =t is an increasing sequence of partitions of [0, ¢].
n—o00 J -1 n
i=1
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Proposition 3.64. Let A = (A;)i>0 be a finite variation process, and let H = (Hy);>¢ be a progressive process
such that fg |Hs(w)] |[dAs(w)| < oo for allt € Ry and all w € Q. Then the process H - A defined by

t
(HA)t :/ HSdAS, Vt€R+
0

is also a finite variation process.

Proof. Tt suffices to show that H - A is an adapted process, namely, if h : Q x [0,¢t] — R is measurable on
Fi x PB(]0,t]), and fot |h(w, s)| |[dAs(w)| < oo for all w € Q, then w fg hw, ) dA4(w) is Fz-measurable. Let
h(w,s) = 1p(w)l q(s), where F' € F; and (p,q] C [0,t]. Then

/0 hw, ) dAL(@) = 1r(w) (A4(w) - A4, @)).

Clearly, 1p(Aq — A,) is Fi-measurable. Now we define
¢
Z = {G € 7 @ B(0,t]) : w— / 1g(w,s)dAs(w) is ﬁt—measurable} .
0

Note this is a A-system containing {F X (p,q] : F € Z;, (p,q] C [0,t]}, which is a m-system generating
F @ A([0,t]). By Sierpinski-Dynkin 7-A theorem, we have .4 = .%; @ #([0,1]). Hence w — fot h(w, s) dAs(w)
is Z-measurable for all simple functions h. The remaining part follows from simple function approximation

and the Lebesgue dominated convergence theorem. O

Remark. If the filtration (%#;);>0 is complete, then Proposition holds for all progressive process (H¢)>0
such that fg |Hs(w)| |[dAs(w)] < oo for all t € Ry and P-a.e. w € . To clarify this, we redefine H - A = 0 on
the P-null set where fot |Hs(w)||dAs(w)| < o0.

3.4.2 Continuous Local Martingales

The local martingales is a large class of stochastic processes.

Definition 3.65 (Continuous local martingales). An adapted continuous process X = (X;);>o with Xy =0
a.s. is said to be a continuous local martingale, if there exists an increasing sequence (7,,)22 ; of stopping times
such that 7,, 1 0o, and the stopped process X™ = (X/™);>0 is a uniformly integrable martingale. In that case,
the sequence (7,,)52; of stopping times is said to reduce process X.

More generally, an adapted continuous process X = (X;)¢>0 is said to be a continuous local martingale if

the process ¥; = X; — Xj is a continuous local martingale. Here we do not assume X is L'.

Remark. In the Definition [3.65] one can replace “uniformly integrable martingale” by “martingale”. In the
latter case, T, A n is a sequence of stopping times such that X™”" is uniformly integrable, and 7,, A n 1 oco.

The following two basic facts about continuous local martingales immediately follow from Corollary [3.62}

Proposition 3.66. Suppose X = (X;)i>0 is a continuous local martingale. Then:
(1) For any stopping time 7, the stopped process (X7 )i>o is also a continuous local martingale.
(#) If (1,)52 is a sequence of stopping times reducing X, and (0,)52, is a sequence of stopping times such
that oy, 1 00, then (o, ATp)S%, also reduces X .

Remark. We can show that all continuous local martingales form a vector space. To see this, let X and X’

be two continuous local martingales reduced by stopping time sequences (7,,)2°; and (7/,)5,, respectively.

oo

Using property (ii), we know that (7, A 7/)52 is a stopping time sequence that reduces process X + X’.
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Proposition 3.67. Let X = (X;);>0 be a continuous local martingale.
(i) If (Xi)i>0 is nonnegative and Xo € L' (Q, .7, P), then (X;)i>0 is a supermartingale.
(ii) If there exists random variable Z € L*(Q, . F,P) such that |X:| < Z for all t > 0, then (X;)i>0 is a
uniformly integrable martingale.
(iwi) If Xo = 0, the sequence of stopping times 7,, = inf{t > 0: | X¢| > n} reduces X.

() If W is a Fo-measurable (real) random variable, then (WX;)i>o is also a continuous local martingale.

Proof. (1) Write X; = X + Y;. By definition, there exists a sequence (7,,)%2; of stopping times reducing Y.
Whenever ¢t > s > 0, since Xo € L'(Q,.7,P), we have

YS/\Tn = IE[Y;/\T71 |gs] = Xs/\‘rn = IEp(t/\'rn |ys] (39)
Since X is nonnegative, by Fatou’s lemma (conditional version), we have

X, = liminf Xy, = liminf E[Xyn,, [ 7] > E [ lim Xtm|ﬁs] = E[X,|Z,].
n—oo n— oo n—oo

(ii) Following we use Lebesgue dominated convergence theorem, because | X;n,, | < Z € L1(Q, Z#,P) for

alln € Nand t > 0. Then Xyr,, — X¢ in LY, and X, = E[X;|.%,] for 0 < s < t.

(iii) By Proposition (ii), 7, = inf{t > 0: X; > n} is indeed a stopping time. By (ii), the stopped process
X™  bounded by n, is a uniformly integrable martingale for each n € N, and the result follows.

(iv) It suffices to show the case Xy = 0. Choose the stopping times 7,, defined in (iii). Clearly, the process
(W Xinr, )e>0 is adapted, and |W Xy, | < n|W/|is L'. Furthermore, since (7,,)5%; reduces (X;)i>0, and W is
Fo-measurable, we have E[W Xiar, |Fs] = WE[Xiar, | Fs] = WXpr, for all ¢ > s > 0. Hence (7,,)%2 also
reduces (WX,);>0, and the conclusion follows. O

Proposition 3.68. If X = (X;);>0 is both a continuous local martingale and a finite variation process with
Xo =0, then there exists a negligible set N such that Xy(w) =0 for allt € Ry and all w € Q\N.

Proof. Since X is a finite variation process, fo |dX| is an increasing process with continuous sample paths.

For every n € N, define the stopping time

t
Tn:lnf{t>0/dXs|>n}7
0
tATn

and set Y3 = X{". ThenY; < [;7 " |dX,| <n. By Propositionm (ii), Y is a uniformly integrable martingale.
Let 0 =tg <t1 <--- <t =t be a partition of [0,t]. By Proposition we have

P
E [Yt2] = ZE{(Y% - Yt]‘l)Z} < ]E{ sup |Yi]~ - Kfj—l | Z |Y;j - Y;fjl‘] < nE[ sup |Ytj - Ytjfl @
- =

= 1<j<k 1<5<k

Now we take a sequence of increasing partitions 0 = 7" < 7" <--- <}’ =t of [0, ] whose mesh converges

to 0. By continuity of sample paths of Y and Lebesgue dominated convergence theorem, we have

sup  |Vim(w) =Yy (W)| =0 as m o0, VweQ = E — 0.

sup ’th - Yt’.’il‘
1<j<km ’ ’

1<j<km

Note we are able to use dominated convergence theorem because Y is bounded by n. Hence E[Y;?] = 0, and
X[™ =0 a.s.. Letting n — oo, we then have X; = 0 a.s. for all € Ry. To show that X (w) =0 for a.s. w € Q,
we take a countable dense subset D C R;i. Then N = {w € Q:3t € D, X;(w) # 0} is a negligible set. By
continuity of sample paths of X, we have X;(w) =0 for all t € Ry and all w € Q\N. O
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Remark. Let X = (X;)i>0 and Y = (Y;);>0 be two stochastic processes. If there exists a negligible set N C Q
such that X;(w) = Yi(w) for all t € Ry and all w € Q\N, then X and Y are said to be indistinguishable. Note

this is a stronger condition than a.s. modification.

3.4.3 Quadratic Variation and Covariation

From now on we assume that the filtration (.%;);>0 is complete.

Theorem 3.69 (Quadratic variation). Let X = (Xi)i>0 be a continuous local martingale. There exists
an increasing process denoted by (X, X) = (<X,X>t)t20, which is unique up to indistinguishability, such that
X?—(X, X) is a continuous local martingale. Furthermore, for every fizedt > 0, if 0 = tf <t} < -+ < ty =t

is an increasing sequence of partitions of [0,t] with the mesh maxi<;<g, [t} —t]_1[ — 0, then

J

(X, X); = lim i (th ~ X 1>2 (3.10)

n—oo
Jj=1

in probability. The process (X, X) is called the quadratic variation of X.

Proof. Step I: Let Y; and Y/ be two processes satisfying the conditions given in the statement. Then the
process Y/ — Y, = (X? — Y;) — (X2 — Y/) is both a finite variation process and a continuous local martingale.
According to Proposition m Y/ — Y: =0 a.s., and the statement of uniqueness follows.

Step II: Now we prove existence. We first assume that Xg = 0 and X is bounded. Hence X is a uniformly
integrable martingale by Proposition m (ii). We fix T' > 0 and an increasing sequence of partitions of [0, T
with the mesh max; <<y, [t} —t7_;| — 0. The for every s > r > 0 and every bounded .7,-measurable random
variable Z, the process (Z (Xsat — Xrat));>o is adapted and L', and for all 0 <t < ¢,

E UE[Z (Xs/\t - Xr/\t) |ﬂ}]|ﬂt,] =0 if ¢/ < T,

E [Z (Xs/\t - Xr/\t) |<7azt/] =
ZE[XS/\t—XTLg}I} :Z(XS/\t/—XT) if t/Z'I".
Hence (Z (Xsnt — XT/\t))tzo is a bounded martingale. Following this, the process

J

n 2
M = ZXt;L—l (Xt?/\t — Xt;“‘,l/\t) , satisfying XQ? — QMZ;L; = Z (th - thgl) )

i=1
is also a bounded martingale.
Claim. limy, ;o0 E [(ME — M7*)?] = 0.
Proof of the Claim. We fix m < n and evaluate the product E[MZ}M]:
K ki
E[Mr M7 = E X, (Xop = Xep, ) X, (X = Xy )|
i=1 j=1
k"l
= > E [ X, (Xop = Xip, ) X (X = Xy )|

=1 (e (et

= > > E [ Xy, (X = X, ) Xy, (X~ X, )]

_7=1 i(tn), trn.]D(tJ 1,t"] l(tln, 1 H.]C(trn t;n]

= Z E [XtZ"1Xt?1 (Xt" - th 1>2] (3.11)

=1 :(t7 ] D (7 7]

<
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The second equality holds because once t7_; > " (resp. ¢} < #",), we can take conditional expectation with
respect to ﬂt?ﬂ (resp. jt?il) to eliminate the corresponding term in the double sum. The fourth equality
because once | < j (resp. | > j), we can take conditional expectation with respect to yt;,l (resp. Fn ) to
eliminate the corresponding term in the triple sum. As a special case of we have

E [(M2)?] = ilﬁj [Xf_ (Xt;; - Xt;_l)z} . (3.12)

And by Proposition [3.51]

km

st =l (e -

k

3

E {XE%E [(Xt;n th;ril)Q

3l

2
3 E {Xfm E [ (X0 - Xy,

ﬂtm :|:|
i—1
1 j:(t;L—l :t;L]C(t;'il ’t;n]

3 E [XE;H 1 (Xt; . Xtyl)Q] . (3.13)

F=1 (D ()t

1

.
I

I
M7

i

Il
N

Note that for every j € {1,--- k,}, there is a unique ¢ € {1, -,k } such that (¢ ,,¢7"] D (¢

=1 Y tn]'
Combining |(3.11)} [(3.12)[ and |[(3.13)] we have

J=12%

kn

E[(Mp— Mgy =Y 3 E [(Xtyl - Xtyil)Q (% - Xt;I)Q]

J=1 (| A (e ]

2 " 2
<E sup (Xep, = X, ) > (X = X )
1<j<kn, (72t ]D(E7_ 7] j=1
1
r 4 3 kn n2|?
<E sup (th_ll - Xt;nél) E <Z (Xt;, - Xt?ﬂ) > (3.14)
| 1<5<kn, (5t 1D ()5t j=1

By continuity of the sample paths of X and the fact that X is bounded (so we can use dominated convergence
theorem), the first term in |(3.14)| converges to 0 as n,m — oco. Hence our result follows if we can bound the
second term with a finite constant independent of n. Suppose that | X;| < K for all ¢ > 0. Then

2 2
E {(Xt? - Xt;l_l) (Xt;; - Xt_;;_l) }

K o\ 2 kn 4
2| (X (xa - x.)) | = 2 (o - ) ] 2
j=1

j=1 1<j<i<ks,
En 9 kn—1 5 kn 5
<4K*3 E [(Xt? - X ) ] +2Y E|(Xp-Xg,) D E [(Xt? - X, |yt?]
=1 ' j=1 ' ' i=j+1 '
k=1 2 2
— 4K’E [(XT . Xo)z} +2Y E [(X%L _ Xt;:l) E [(XT _ Xty) |3§7H (By Proposition B-51)
j=1
< 12K°E [(XT _ XO)Q} < A8K*.
Hence we can bound the second term in by 4v/3K?, which completes the proof. O
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Proof of Theorem[3.69 (Cont). Step III: By Doob’s LP-inequality [Proposition (ii)] and our claim,

0< lim IE{ sup (M} —Mg")ﬂ < lim 4B (Mg - ME)’| 0.
n,m—oo 0<t<T n,m—00
Hence for all ¢ € [0,7], (M}*)2; is a Cauchy sequence in L?(Q,.#,P) and thus converges in L2. We choose

a subsequence ny " oo such that

E [ sup (M — M:'k)r‘} <27F vkeN.
0<t<T

As a result,

oo 0o 00
E Mnk+1 _ Mnk 27]6 Mnk+1 o Mnk s
kZZIO;?ET‘ t ¢ |] <I; <o = ;02?2T| . | < o0 a.s

Therefore, except on a negligible set N where the series in the above display diverges, the function sequence
t — M]"™(w) converges uniformly on [0,7] as k — oo. Let Yi(w) = limp 00 M{**(w) for all t € [0,T] if w ¢ N,
and otherwise Y;(w) = 0 for all ¢t € [0,7]. Then (Y;);>0 has continuous sample paths. Also, Y; is adapted by
completeness of our filtration (.#;):>¢. Moreover, since (M} )22, converges in L?, it must converges to the a.s.
limit Y; in L?. Also, since the conditional expectation is a bounded linear operator in L?(Q2,.#,P), we can
pass the martingale property of M;* to Y; to obtain that E[Y;|.#s] =Y, for all 0 < s < ¢ < T. Hence (Yiar)i>0
is a continuous martingale.

Meanwhile, the process X7 — 2M]* restricted to the finite sequence (t?)?;l is increasing. Take the limit
ny 1 00, we have X2 — 2M" = X? —Y; on [0, T| except possibly on the negligible set N. Set V,/ = X? — 2V,
on Q\N, and V;I' = 0 on N. Then Vi = 0, V' is F-measurable for all ¢ € [0,7], and V7 has increasing
continuous sample paths. Also, X2, — V,1 is a continuous martingale.

For every T' € N, by the uniqueness argument proposed in Step I, we have VﬁT = Vﬁ‘}l a.s.. Hence we
can define an increasing process (X, X); = VI for all t € [0,7] and all T € N. Clearly, X? — (X, X); is a
continuous martingale. To obtain note that X2 - — V2, and X2, 7 — (X, X)ar are martingales. Again
by the uniqueness argument, we have V.1, = (X, X)o7 a.s., and particularly, V' = (X, X)r a.s.. Note that
M} — Y = (X2 — V) in L?, we have

k
n 2 2
X3 -oMp =Y (Xt? - Xt;:l) L VI = (X, X)r as..

j=1

Then the proof for the case where Xy = 0 and X is bounded is completed.
Step IV: If Xy = 0, but X is not bounded, let 7, = inf{t > 0 : |X;| > n}. By Proposition [3.67] (iii), the

stopped process X ™ is a bounded martingale, and we set V" = (X™ X™). Again, the uniqueness argument
shows that Vt[n] and Vt[f\f; U are indistinguishable. Then there exists an increasing and continuous process V'
such that Via., = Vt[n] a.s. for all t > 0, and X7, — Vjar, is a martingale for every n € N. As a result,

X? —V, is a continuous local martingale, and taking (X, X); = V; suffices.
To obtain (in probability), note that for all n > 0,

k k 2
m 1 m 2
P> (X, - X0, )" = (X, X)| >0 < = 3 (X;; - nggl) — (X, X)inr || +P(rn <t). (3.15)
j=1 j=1 2

In (3.15), the first term converges to 0 as m — 0o, because holds in L? when we replace X and
(X, X)t by X™ and (X, X)¢ar, , respectively. Also, the second term converges to 0 as n — oo by definition.
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Step V: For the general case, we write X; = X+ Z;, so X? = Xg+2XoZ, + Z7. By Propositionm (iv), the
process XoZ; is also a continuous local martingale. Hence X2 — (Z, Z); remains a continuous local martingale.
Meanwhile, |(3.10)| does not change by adding a .#y-measurable variable X. O

Remark. According to our proof in Step V, the quadratic variation of a continuous local martingale X =
(Xt)1>0 does not depend on the initial value Xy, i.e. if we write X; = X+ Z;, then we have (X, X), = (Z, Z),.

Proposition 3.70. Let X = (Xy)i>0 be a continuous local martingale.
(i) If T is a stopping time, then (X7, X7 = (X, X)irr-
(ii) Assume Xo =0. Then (X, X) =0 if and only if X =0 a.s..

Proof. (i) Since the stopped process X2, — (X, X ), is a continuous local martingale, the result follows.

(i) Assume (X, X); = 0 for all ¢ > 0. Then X? — 0 is a nonnegative continuous local martingale, hence a
supermartingale by Proposition [3.67] This implies E[X?] < E[X?] =0, and X; = 0 a.s.. To prove that X =0
a.s., take the intersection of {X; =0, t € D} for a dense set D C R, then use sample path continuity. O

Theorem 3.71. Let X = (X;);>0 be a continuous local martingale such that Xo € L*(Q, #,P). Then the
Jollowing are equivalent: (i) X is a martingale, and sup;>oE|X,|* < oo; (ii) E[(X, X)o] < 00. Furthermore,
if these properties hold, then X2 — (X, X) is a uniformly integrable martingale, and in particular we have

E[X3] = E[X3] + E[(X, X))

Proof. Without loss of generality let Xy = 0.

(i) = (ii): By Doob’s LP-inequality [Proposition |3.52] and monotone convergence theorem, we have

E [ sup |Xt2} <4E|X7|?, VT >0, and E [sup|Xt|2] < 4supE|X|* < 0o
0<t<T >0 >0

Define o, = inf{t > 0 : (X, X); > n} 1 co. Then the continuous local martingale X7, — (X, X)no, is

dominated by the integrable variable sup;> |X¢|* + n. By Proposition (ii), this is a uniformly integrable

martingale, and

BUX. X)ens,] = B [X2.,,] < B [sup || < dsup B3P
>0 >0

Let n — 0o and ¢ — 00, we have E[(X, X)oo] < 4sup,>q E[|X¢|?] < oo by monotone convergence theorem.

(ii) = (i): Let 7, = {t > 0: |X¢| > n}. Then the continuous local martingale X2, — (X, X);s, is dominated
by the integrable variable (X, X), + n?. According to Proposition m (ii), this is a uniformly integrable
martingale. By Fatou’s lemma, we have

E [Xirr, ] =E[X, X)inr,] SE[X, X)oo] <00 = E[X7] <lminfE [X7, ] <E[X, X)oo] < oo.

n— o0

Meanwhile, the sequence | Xiar, | T X:| as n — 00, and (Xiar, )52, is uniformly integrable:

im supE (| Xenr, [L1x,, 120n] < Jim supE (X5, JE [Lx,,.,, 1200)]

SE[(X, X)oo] lm E[Lgx,120n] = 0.

As aresult, X;n,, — X; a.s. and in L'. By Proposition (iii), (X¢ar, )e>0 is a martingale, and we have
E[Xt/\r”
Finally, if (i) and (ii) hold, the continuous local martingale X? — (X, X); is dominated by the integrable
variable (X, X) o + sup;sq | X;|*. By Proposition w (ii), this is a uniformly integrable martingale. O

F| = Xsnn, forallt > s > 0. Convergence in L' implies E[X;|.#,] = X,, hence X is a martingale.
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The following corollary is derived by applying Theorem on (Xiar)e>o for each T'> 0.

Corollary 3.72. Let X = (X;)i>0 be a continuous local martingale such that Xo € L?(Q2, %, P). Then the
following are equivalent: (i) X is a martingale, and X; € L*(2,.#,P) for all t > 0; (i) E[(X, X){] < oo for
all t > 0. Furthermore, if these properties hold, then X? — (X, X); is a martingale.

Corollary 3.73. Let X = (Xi)i>0 be a continuous local martingale such that (X, X)s < 0o a.s.. Then X

CONveErges a.s..

Proof. If (X, X)so < 00, the stopping time T, = inf{t > 0 : (X, X); > n} a.s. increases to oo as n — oo.
By Theorem the local martingale X 7= is a L?-bounded martingale, which converges a.s.. On the event

{{X, X) < 00} we have T}, = oo a.s. from some n on, which completes the proof. O
Definition 3.74 (Bracket). Let X = (X;)i>0 and ¥ = (Y;);>0 be two continuous local martingales. The

bracket (or quadratic covariation) (X,Y) is defined as the following finite variation process:

(X, )= ((X+Y, X +Y) — (X, X): = (Y,Y)y), t>0.

N |

We have the following properties and approximation formula for the bracket.

Proposition 3.75. Let X = (X;);>0 and Y = (Y1)i>0 be two continuous local martingales.
(i) (X,Y) is the unique (up to indistinguishability) finite variation process such that X;Y: — (X,Y): is a
continuous local martingale.
(i) The mapping (X,Y) — (X,Y) is bilinear and symmetric.
(i4i) For any increasing sequence of partitions 0 = t5 <ty < --- <ty =1t of [0,t] with mesh tending to 0,

kn
(X,Y)y = lim > (X = Xpn )(Vir = Yin ) in probability.

n—00 4
Jj=1

(iv) For every stopping time 7, (X7, Y ™)y = (X7, V) = (X, Y )inr-

(v) For every stopping time 7, X™(Y —Y7™) is a continuous martingale.

(vi) If X and Y are two L*-bounded continuous martingales, X;Y; — (X,Y); is a uniformly integrable mar-
tingale. Consequently, (X,Y ) is well-defined as the a.s. limit of (X,Y); ast — o0, and E[XY] =
E[XoYo] + E[(X,Y)oo].

(vit) (X,Y); =0 a.s. for all t > 0 if and only if XY is a continuous local martingale. In this case, the two
continuous local martingales X and Y are said to be orthogonal.

Proof. (i) Since XY = (X +Y)? — X? — Y2, the process X;Y; — (X,Y), is a continuous local martingale.
The uniqueness argument is similar to Theorem |3.69

(ii) is a consequence of the uniqueness argument. (iii) follows from [(3.10)|

(iv) According to (iii), we have

(XY ) = (X", YY) =(X,Y): on{r >t}
(XT,Y7) — (X7, YY) = (X7, Y)y — (X7,Y)y =0 on {r <t}.

(v) is a consequence of (iv), since X7 (Y: —Y;) = X7Y; — (X7, V), — (X7Y7 — (X7, Y7),).
(vi) is a consequence of Theorem [3.71]

(vii) If XY is a local martingale, so is (X,Y) = XY — (XY — (X,Y)), which is also a finite variation process.
Conversely, if (X,Y); =0 a.s. for all ¢ > 0, then XY = (XY — (X,Y)) + (X,Y) is a local martingale. O
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Theorem 3.76 (Kunita-Watanabe). Let X and Y be two continuous local martingales, and let H and K be

two measurable processes. Then

/OOO|H|K|d<XY |<(/ H?2d(X,X) )1/2(/ K2d(Y,Y) )1/2.

Proof. Given t > s > 0, we abuse the notation (X,Y), = (X,Y); — (X,Y),. Let s = 5 <t} <--- <t} =t
2
be a increasing sequence of partitions of [s,¢] with the mesh tending to 0. Let S% , = Z?Zl (Xt;; — Xt}tl) ,
2
Sty = Z?ll (Yt] — Yt;‘_1> ,and S%y = 2?21 (Xt;; — Xt;‘_l) (Y} — Y}n 1) By Cauchy-Schwarz inequality,
we have S%, < ,/S%S%, . Note that (X, V). — \/(X, X)L(Y,Y)! thgn /S5 Sy For all >0,

]P(<X,Y>g— X, X)LY,Y ) > ) ( VX XY, Y Sxy+m>n)—>o

By taking the union of all rationals 7 > 0, we have (X, Y)! — \/(X, X)1(Y,Y)L < 0 a.s.. Since t > s >0
are arbitrary, (X,Y)! — /(X, X)t(Y,Y)t < 0 holds for all rationals ¢t > s > 0 for a.s. w € Q. By continuity
of X and Y, we have for a.s. w € Q that (X, Y )L — \/(X, X)L(Y,Y)% <0 for all reals t > s > 0.

Now we fix w € Q with (X, Y)! — \/(X, X){(Y,Y)! <0 for all reals ¢ > s > 0. Then all remaining results

are deterministic. For any subdivisions s =ty < t; < --- < t; = t, we have

k k k
Z‘XY“ ‘<Z\/XX“ \/YY>tJ1§ XX DY = VX X)L Y
; j=1 Jj=1

Jj=1

Let the mesh of our partition tends to 0, we obtain

/ (X, Yl < VX X)L

Fix T > 0, and let .#7 be the collection of all A € %([0,T]) such that

/A|d<X7Y>u| < \//Ad<X,X)u\//Ad<Y,Y>u. (3.16)

By monotone convergence theorem, .Zp is a monotone class, and it contains the collection of all finite inter-

sections of closed intervals in [0, 7], which is an algebra. By monotone class theorem [Theorem [I.11], we have
Mr = PB([0,T)). As a result, holds for all bounded Borel sets A € B(R.). Also, for all nonnegative
simple functions h,k on [0,7], choose finite partition Aj,---, Ay, of [0,7] such that h = > a;14, and
k=>"",B;14,. Then we have

IN

/h(s)k(s) |d(X,Y),] :Zaiﬂi/A‘ |A(X,Y),] Zag/Ado(,X)u Zﬂfﬂd@/,ﬂu

- \//h(s)2d<X,X>s\// k(s)? d(Y,Y)s

Note that every nonnegative measurable function on [0, 7] is the limit of an increasing sequence of nonnegative

simple functions [0, 7], and every nonnegative measurable function h on R is the increasing limit of hljg 1

as T'— oo. Hence an application of monotone convergence theorem finishes the proof. O
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3.4.4 Continuous Semimartingales
Definition 3.77 (Continuous semimartingales). A process X = (X;);>0 is said to be a continuous semi-
martingale if it can be written as

X ZMt—FAt’ Vt€R+, (317)

where M = (My)¢>0 is a continuous local martingale and A = (A;);>0 is a continuous finite variation process.

Remark. Thanks to Proposition the decomposition |(3.17)[is unique up to indistinguishability. We call
this the canonical decomposition of a continuous semimartingale X.

Definition 3.78 (Bracket). Given two continuous semimartingale X = M + A and Y = M’ + A’ (which are

canonical decompositions), we define the bracket (X,Y) = (M, M'), which is a finite variation process.

Proposition 3.79. Let X = (X;)i>0 and Y = (Y})i>0 be two continuous semimartingales. Let t > 0. Let
0=ty <ty <--- <ty =t be any increasing sequence of partitions of [0,t] whose mesh tends to 0. Then

kn
(X, V) = lim - (X = Xy, ) (Yip = Yiy, ) in probability.

n—oo 4
j=1

Proof. Let X = M + Aand Y = M’ + A’ be the canonical decompositions. Then

kn kn kn
(X = Xy, ) (Yip = Vi, ) = 3 (Mep = My ) (M1 = 2y )+ 30 (Mg = My, ) (47 — 47, )
j=1 j=1 j=1
n kn
+32 (Ag — g ) (M = ¢ )+ 30 (4 g, ) (44 - 4 )
j=1 =1
According to Proposition [3.75] (iii),
kn
Tim 3 (Mt? . Mt;_ll) (Mt’? — Mt’?il) — (M, M"), = (X,Y), in probability.
j=1

Also, note that

=

=~ t
(Mt;‘ — Mt;Ll) (A;}z - AQ}LI) < </0 |dA/§|> sup Mt; — Mt;,l‘ — 0, a.s.,

T 1<j<kn

<.
Il

K t
!/ !/ ! !
Z; (At; fAt;_ll) (Mt;, fMt;;l) < </0 |dAs|> s [V fMt;_Ll‘ =0, as.,
j= <j<kn
kn t
li / / !/
_ (Aty - At;;l) (At? - At?,il) < </0 |dAs|> sup |Gy~ Atﬁl] 50, as.,
j:l SISRn
where the a.s. convergence holds by continuity of sample paths of M, M’ and A’. O
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4 Brownian Motions: Part I

4.1 Pre-Brownian Motions and Brownian Motions

Definition 4.1 (Gaussian spaces). A (centered) Gaussian space H is a closed subspace of L?(€,.%,P) that
contains only centered Gaussian variables.

Remark. To justify the closedness of a Gaussian space H C L?(2,.#,P), we let H > X,, ~ N(0,02) L X.
Convergence in L? implies E[X?2] = 02 — ¢2. Then for all A € R, by dominated convergence theorem,

iIAX : IAX : Th 2 o 5
E [e ] = 7}1—>H;<>E [e ”] = 7}5206}(1) <—2)\ ) = exp (—2)\ ) .
Hence X ~ N(u,0?) € H. Furthermore, since L?(, %, P) is a complete space, so is a Gaussian subspace.

We can make H a Hilbert space by define the inner product (X,Y) = E[XY] for X,Y € H. In this space,
orthogonality and independence are equivalent. To be specific, in the Gaussian space H, two variables X and
Y are independent if and only if they are orthogonal, i.e. E[XY] = 0. To see the “if” case, note that X,Y are
jointly Gaussian. Then for all s,t € R,

E [CXF] — exp <—822E[X2] — StE[XY] - t;E[Y?}) — exp (—‘fE[Xﬂ - iE[Yﬂ) — E [*X]E [].

By Corollary X and Y are independent. Likewise, assume that G, K are two subspaces of the Gaussian
space H. Then G L K if and only if the sub o-algebras ¢(G) and o(K) generated by G and K are independent.

We also point out the equivalence between orthogonal projection onto a Gaussian space and conditional
expectation. If H is a Gaussian space, and G is a closed subspace of H, then for all X € H, the conditional
expectation E[X|o(G)] is the projection of X onto G. To see this, let £ be the orthogonal projection of X onto
G, so that X —¢ 1L G. As aresult, E[X|o(G)] =E[§ + (X —&)|o(G)] = E[¢|o(G)] =&.

4.1.1 Gaussian White Noises and Pre-Brownian Motions

Definition 4.2 (Gaussian white noise). Let (E, &) be a measurable space, and let p be a o-finite measure on

(E,&). A Gaussian white noise with intensity p is an isometry W from L?(E, &, i) into a Gaussian space.

Remark. (1) According to the polarization identity, an isometry W also preserves inner product. Therefore, if
f,g € L*(E, &, 11), then we have

E[W ()W (g)] = (f.9) = / fgdpu, and in particular, E[W(f)? = ||f]3 = / P du

If f=14 with u(A) < oo, we write W(A) = W(1L4), and W(A) ~ N(0, u(A)).
(ii) Given any o-finite measure p on (FE, &), we can always find a Gaussian white noise with intensity p on an

appropriate probability space (£2,.#,P). Let {ex, A € A} be an orthonormal basis of L?(E, &, u). According
to Corollary we define (2, .7,P) = (R, B(R)®*,G), where G extends Gaussian measures

1

Bt = e

/ e s ET ) Az Vi, b, €T, VA € BRM).
A

Then the coordinate maps (my)xea is a collection of independent standard Gaussian variables. For every
feL*E,&, u), we define

W(f)=> (f.ex)m.

A€A
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This series converges in L? since {ey, A € A} is an orthonormal basis of L?(E, &, ). Hence W takes values in
the Gaussian space H = span (mx),c,- Since W maps an orthonormal basis in L?(E,&, 1) to one in H, it is

an isometry. Thus we find a Gaussian white noise W with intensity pu.

(iii) Given a measurable set A in (E, &, u) with u(A) < oo, we can approximate u(A) with a Gaussian white
noise W with intensity u. Let A= A7 II--- I A} be a sequence of partitions of A such that

i (et =0

n— oo jE{l,---,kn}
Then W(A?), j=1,---,k, are independent Gaussian variables, and IE[W(A;‘)Q] = u(A;). Furthermore,

2

kn kn kn
n\2 _ n\2 ny) 2 _ n\2 n
B\ ZwW-u ) | =3 e [(W(47)? = u(ap)?] = 2D (A < 20(4) max w(45) 0.
J= = j=
This implies

krn

nan;oZW(A?)Q =u(A) in L2
j=1

Definition 4.3 (Pre-Brownian motion). Give R the Borel o-algebra #(Ry) and the Lebesgue measure m,
and let W be a Gaussian white noise on R with intensity m. The process (By)¢>o defined by

By =W (1), Vt € Ry

is said to be a pre-Brownian motion.

Remark. By definition, a pre-Brownian motion B = (By);>¢ is a Gaussian process, i.e. the linear combination

of any finitely many observations By, ,--- , B, is Gaussian. The covariance function of this process is given by

K(S,t) =E [BSBt] = /]]-{O,S]Q[O,t} dm =sA t7 VS,t S R+.

Proposition 4.4 (Characterization of pre-Brownian motions). Let B = (By);>0 be a (real-valued) stochastic
process. The following are equivalent:
(i) (Bt)t>o0 is a pre-Brownian motion.
(11) (Bi)i>o0 is a centered Gaussian process with covariance K(s,t) = s At.
(iii) By =0 a.s., and for every t > s > 0, the random variable By — B; is independent of o(By,r € [0,s]) and
distributed according to N(0,t — s).
(iv) By =0 a.s., and for every choice of 0 =tg <ty < --- < ty,, the variables {B;, — By, _,,j = 1,--- ,n} are
independent, and for every j = 1,--- ,p, the variable By, —By,_, is distributed according to N (0,t;—t;_1).

-1
Proof. The facts that (i) = (ii) and that (iii) = (iv) are clear.
(ii) = (iii). Let H be the Gaussian space spanned by {B,,r € [0, s]} and X;. Then B; — B, € H is a centered

Gaussian variable, and

E[(Bi— By)?] =t—2(sAt)+s=t—s,
E[(B,—Bs)B,]=tAr—sAr=r—r=0, Vr €]0,s].

Hence X; — X, ~ N(0,t — s), and X; is independent of all X,. with r € [0, s].
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(iv) = (i). It suffices to show that there exists an isometry W between L?(R.,%(R,),m) and a Gaussian

space H. For all step functions f =37 A1 jin L*(Ry, B(R,),m), define

ti—1:t;

W(f) = Z)\j(Btj - Btj—l)'
j=1

If f,g € L*(Ry, B(R,), m) are two step functions, we can find a partition 0 =ty < t; < --- < t,, such that
F=300 N1, and g =377 vl 4,1 According to (iii), we have
EW ()W (9)] =E | Y Y Awk(By, = By, )(Bi, — Bi )| = > Nwylty —t51) = /fg dm.
=1

j=1k=1

Therefore W is an isometry from the vector space of all step functions in L?(R,,%(R,),m) into the
Gaussian space spanned by {B;,t € R.}. Since the step functions are dense in L?(R., Z(R.),m), we
immediately extend W to an isometry between L?(R,, %(R.), m) and span {B;,t > 0}. O

Remark. According to our proof of (iv) = (i), we can determine a Gaussian noise W with intensity m given
a pre-Brownian motion B = (B;);>0. For all f € L?(Ry, Z(R.), m), we write the notation

W(f) = /0 T H5)dB, W(fLpy) = /0 /(s)dB.,

and

t
W () :/ F(r)dB,, ¥t > s > 0.

The mapping W : f — fooo f(s)dB; is called the Wiener integral with respect to B = (B;)i>o. Clearly, we

have W (f) ~ N (0, [;7|f[*> dm).

Proposition 4.5. Let B = (B;)i>0 be a pre-Brownian motion. The following statements are true:
(i) (Symmetry). —B is also a pre-Brownian motion.

(i) (Scale invariance). For all A > 0, the process

1
B} = 1 B

is a pre-Brownian motion.

(iii) (Simple Markov property). For all s > 0, the process
B =B, — B
t - s+t S

is a pre-Brownian motion that is independent of o(B,,r € [0, s]).
(iv) (Time inversion). The process B defined by By = 0 and

B\t:tB

o=

is (indistinguishably) a pre-Brownian motion.

Proof. The statement (i) is clear. (ii) follows from Proposition (iv). For (iii), Proposition (iv) implies
that Bgs) is a pre-Brownian motion, and the independence argument follows from Proposition (iii). The
statement (iv) follows from Proposition (ii). O
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4.1.2 Sample Path Continuity and Brownian Motions

Before introducing Brownian motions, we first discuss continuity of sample paths of a stochastic process. For

the convenience of a chaining argument, we consider the set of dyadic rationals
m
T LAY

which is a dense subset of R .

Theorem 4.6 (Kolmogorov continuity lemma). Let X = (X;)icq,n1 be a process taking values in a metric

space (E,d), where I C Ry is a compact interval. Assume there ezist €,q,C € (0,00) such that
E[d(Xs, X,)Y < C|t — 5|, Vs, t €QynI. (4.1)
Then for each o € (0, ¢), there exists a random variable My with (M < 00) =1 such that
d(Xs, Xy) < M|t —s|*  forall t,s € QaNI.
Proof. Without loss of generality, we take I = [0,1] and fix o € (0, £). Let
Gn = {d(Xip-n, X(j_1)2-n) <27 forall 1 <i<2"}.

We apply Markov’s inequality and a union bound to obtain
P(G7) < ZP (d (Xig—n, X(i—1)2-—n) <27°7)
< 9—aqn ZE 12_”7 (z 1)2_n)‘Z] S Cv27n(efozq)7 (42)

where the last inequality follows from (4.1). Now we introduce a useful chaining argument.

Lemma 4.7 (Chaining). On the event Hy = (),—y Gn, for all s,t € Q2N [0,1] with |s —t| <27V,

d(Xs, Xy) < |t — s|“.

— 92—«
Proof of the lemma. We fix t > s > 0 with s,t € Q2 N[0,1]. We take m > N and 1 < j < 2™ such that

s<(j—1)27™ < j2=™ < t. Then we can write s and ¢ as binary expansions

l
s=(j—1)27™ 252—’” Lot=j27m 4 ) 627 where 6y,--- 05,0, 0] € {0,1}.

i=1

We take the finite sequences s; | s = s and t; T ¢; = t defined by partial sums. On the event Hy,

d(Xg, X1) < d(Xg, X(j-1)2-m) + d(X(j_1y2-m, Xjom) + d(Xjo-m, X¢)

l
d(Xo_ Xo,) + d(X (512, Xjo-m) + > d (Xp,_, x,.)
=1

27a(m+i) + 27777,0( + Z 2*a(m+i) S ?;._2;_04 .
=1

-

@
Il
-

o,

<
I
—

Since |t — s| > 27™, the result follows. O
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Proof of Theorem[4.4 (Cont). Applying a union bound on (4.2)), we have

P(HE) < D P(G) < C Y 27nleman) < g Nlemaa),
n=N n=N

Since € — ag > 0, we have
oo

> P(Hf) < oo

N=1
Using the Borel-Cantelli lemma, we know that there exists a random N, with P(V, < co) = 1 such that Hy,_
occurs. When N, < oo, we have

d(Xs, X;) < C|t —s|* for all s,t € QN [0,1] with [t — 5| < 27N,

We can extend this to all s,t € Q2 N[0, 1] by a similar chaining argument similar to Lemma [4.7}

2N 42 N
d(Xs, Xy) < W|t—s| , forall s,t € Qyn[0,1].
Taking M, = ?igj‘a concludes our proof. O

Corollary 4.8 (Kolmogorov’s continuity lemma). Let X = (X;)i>0 be a process taking values in a complete

metric space (E,d). Assume there exist €,q,C € (0,00) such that
E[d(X,, X:)Y] < C|t — s|**¢, Vs, t >0. (4.3)

Then there exists an a.s. modification X of X that is locally a-Hélder continuous for each o € (0, g)

Proof. We first consider the process (X:):er, where I C R is a compact interval. According to Theorem [4.6

the process (X¢)tes is a.s. Holder continuous of exponent o on Q2 N I. By completeness of (E, d), we define

%) = limg,nrss—t Xs(w) if My(w) < 0o
. =
o otherwise,

where zg € E is an arbitrary fixed point. Then ()?t)te 7 has Holder continuous sample paths of exponent a.
Next, we need to show that the process X is an a.s. modification of X. We fix t € I , and take a dyadic
sequence (t,,) C Q2 NI converging to ¢. The assumption and Markov’s inequality imply X, 5 X, and
we also have X; — )A(;t a.s. by definition of X. Hence X; = )Z't a.s..
Finally, we apply our conclusion repeatedly on I,, = [0,n] for n € N. Then (X;);>0 has an a.s. modification

()N(t)tzo whose sample paths are locally Holder continuous of exponent « for all « € (0, g) O

Corollary 4.9. Let B = (By);>0 be a pre-Brownian motion. Then it has an a.s. modification whose sample

paths are locally Hélder continuous with exponent a for all o € (0, %)

Proof. Take § > 0. For all s,¢t > 0, we have
E|B, — By|**0 = [t — s|'"T3E|Z|>*0, where Z € N(0,1).

By the last corollary, process B has an a.s. modification B whose sample paths are locally Holder continuous

)

, m). If 0 is great enough we can take « arbitrarily close to % O

of exponent « for all o € (0

This Corollary justifies the existence of a Brownian motion, which is specified by the following definition.
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Definition 4.10 (Brownian motion/Wiener process). If B = (B;);>¢ is a pre-Brownian motion and B is
continuous, then process B is said to be a (standard) Brownian motion/Wiener process. More generally, if
B — By is a continuous pre-Brownian motion and By is independent of the process B — By, then B is also

called a Brownian process.

Remark. If B is a standard Brownian motion starting at By = 0 and Z is a random variable independent of
B, we can obtain a Brownian motion B + Z starting from Z.

Proposition 4.11. Let B = (B;)¢>0 be a Brownian motion starting from By = 0. The following statements
are true:
(i) (Symmetry). —B is also a Brownian motion.
(it) (Scale invariance). For all A > 0, the process B} = Byz; is a Brownian motion.
(i11) (Simple Markov property). For each s > 0, the process (Bsi¢)i>0 i a Brownian motion. Furthermore,
(Bst+t — Bs)i>0 is a Brownian motion starting from 0 and independent of #s = o(B,,r < s).

(iv) (Time inversion). The process B defined by By = 0 and B; = tB1 is a Brownian motion.

Proof. The Proposition mostly follows from Proposition [I.5] and the continuity of transforms applied. The
only unclear thing is the continuity of B at point 0 in (iv). We need to show that limsoe %Bt =0.

If t € N, the conclusion is clear by the Strong Law of Large Numbers [Theorem [3.48]. For the general case,
we need the following lemma.

Lemma 4.12 (Kolmogorov’s maximal inequality). Let (X,,)52, be an independent sequence of random vari-
ables with EX,, = 0 and E[X2] < oo for all n € N. The partial sum sequence S,, = Z?zl X satisfies

2
P ( max |Sk| > )\> < E[S"], A > 0.
1<k<n A2

o

Proof of the lemma. By definition, the sequence (S,)22; is a martingale sequence. We define the stopping

time 7 = min{m € N : |S,,,| > A}. Then

1 2

LS gy ety 2 _ E[S]]
:FZ]E\X,,J gﬁZ]E|Xm| == O
m=1 m=1
Proof continued. For any m,n € N, we apply Kolmogorov’s maximal inequality for A = n~2/2 to obtain

P ( sup By yga-m — Bl > n2/3> <n YPE|Byy1 — Bol? =nY3
0<k<2m

We then take m 1 oo and apply Borel-Cantelli Lemma to conclude

P sup |By — B,| > n?/3 for infinitely many n € N | = 0.
te[n,n+1]

For any € > 0, almost surely, we can find N > 2% such that % < e and Sup e nq1] | Bs — Bal < n2/3 for all
n > N. Consequently, for all ¢ > N,

1Bl _ Byl By =Be| _ [Biu|  [4*°

<e+t713 < 2
=t t ST oot ==
Hence % — 0 ast T oo, and B is continuous at 0. O
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4.2 Canonical Construction and Wiener’s Construction
4.2.1 Kolmogorov Extension Theorem

Definition 4.13. Let {(Qq, %), a € J} be a collection of measurable spaces. We define the collection of all

measurable rectangles by
H Fo = { H Ay Ay € Fy, for all a € J,and A, = Qg except for finitely many o € J} .
aed acJ

Akin to the proof (i) of Theorem we can prove that [[,c; Za is a semi-ring. Similar to the definition of

product of two measurable spaces, we define the product o-algebra:

X)) Fo=0 (H %)

acJ acJ
The measurable space (J,c; Qa:@ucsFa) is said to be the product space of {(Qa, Fa), a € J}.

Remark. Every coordinate mapping 7g : (Wa)aes + wg is measurable when defined on {(Qq, %#,),a € J}.

Furthermore, for all finite subset I C .J, the projection mapping 7y : (Wa)acs — (Wa)acr is measurable.

Proposition 4.14. Let I be the collection of all finite subsets of J. For I € Ip, define ®iel Fo to be the
sub o-algebra consisting of all measurable cylinders A with base in [[,c; Q. That means, A= B X [] ¢ Qa
Q.. Then

aecl

for some measurable B C [],¢;

Q7 (U @)

acJ I€Tr acel

Proof. Clearly ®iel Fo C QueyFa for all I € Ip. On the other hand, every element of [[,.; %, is
contained by some ®i€1 Fo- O

Proposition 4.15. Let {P;,I € Zr} be a collection of probability measures defined on finite product spaces
{(Hael o, Quer ﬁa) I e IF}. The following compatibility condition is mecessary and sufficient for the

existence of a finitely additive probability measure P on @, ; Fao such that the pushforward (r1).P = Pr.

Compatibility: If I C Iy are two finite subsets of J, then (7,1, )«Pr, =Py, .

Proof. We only prove sufficiency, since necessity is clear. For every cylinder A = B x [],c;c Qa such that
B € @Q,c; Fa, define P(A) = P;(B). By compatibility condition, we obtain a finitely additive function P on

7 =Urez, ®iel F o, which is an algebra. We extend P to @, ; Fa = 0(&). For A € @, c; Fa, define
P(A) =sup{P(F): F C A, Fe«}ecl0l]

Then for any collection of disjoint sets Ay,---, A, € Qe Fa, We have

> P(A) =) sup{P(F;): F; C A;, F € o/}

j=1 j=1

=sup{ P UFj tF; CAj Fjed, Vje{l,--- ,n} =P UA]
j=1 j=1

Thus we complete the proof of finite additivity of P on @, ; Za- O
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Proposition 4.16 (Compact class). A class € of subsets of Q is said to be compact, if every countable
subclasses of € with finite intersection property has nonempty intersection. That is, for all sequences
(Cn)5ey C € such that (,_, Cx # 0 for alln € N, it holds (),—, Cr, # 0.

If € is a compact class, so are the following: (i) The class €5 containing all countable intersections of

elements of €; (ii) The class €5 containing all finite unions of elements of €.
Proof. (i) Since every countable intersection of elements of % is also a countable intersection of elements of
the compact class €, the result follows immediately.

(i) We take a sequence D,, = |J;} C}' € € such that ();_, Dy # 0, and prove that ;2 D,, # 0. For each
n € N, define the multi-index set I, = []_, {1, ,my}. Then according to distributivity law, we have

o= (Uet) = U (Aes) #0
k=1 k=1 k=1

j=1 acl,

Hence for every n € N, there exists a multi-index « € I,, such that (;,_, C¥ +# 0, and we define

g, = {ae H{l"" ,my} ﬂcﬂ;k #@}, Vn € N.
k=1 k=1

Clearly, the definition of J, only concerns about the first n elements. Then J,, # 0 for all n € N, and (J,,)52,

is monotone decreasing. Now we choose a sequence al™ € .J,, for each n € N. By induction on k, we are able
[n]

to determine a sequence of € {1,---,my;} such that aj,, = o, for infinitely many n. As a result, for each
k € N, we can find n > k such that a}, = ol’l, which implies a* € J, C Ji. Hence a* € |Ji2, Jp, and by
compactness of ¢ we have (y—; Di D ey CL“Z # (), completing the proof. O

Remark. This definition is also in accordance with compactness in topology. If X is a topological space, and
A is the collection of all compact subspaces of X. If (K,,)22, C ¢ is a sequence such that (), _, K; = 0,
define L,, = (;_, K;. Then the increasing sequence (K1\Ly,)5Z; forms an open cover of K;. By compactness
of K1, there is a finite subcover, and we can find N € N such that Ly = 0.

Theorem 4.17 (Daniell-Kolmogorov extension). Let {P;,I € Zr} be a collection of probability measures de-
fined on finite product spaces {(Hael oy Roer ﬂa) I e IF} that satisfies the compatibility condition in
Proposition [{.15. If for each a € J, there exists a compact class €, C F, such that

Po(A) =sup{P,(C): C € 6,,C C A}, VAe Z,.

Then there exists a unique probability measure P on (HaeJ Qs Rucs ﬂa) that extends each Pr.

Proof. Step I: Let P be the finitely additive set function found in Proposition We first prove that there

exists a compact subclass € of the semiring ./ =[] F4 of all measurable rectangles such that

aelJ
P(A) =sup{P(C):C €¥,C C A}, VAec.ZL. (4.1)

Let 7 ={C x [[,45 : B € J, C € €}. Then every countable intersection D = (1, (Cn X [ 25, ) of
elements of & has the form [[ ;. ; Bg, where Bg = (,,.5, _g} Cn- If the countable intersection D is empty, let
B € J be such that Bz = (). By compactness of 63, there exists a finite subset Iz C {n : 8, = 8} such that
Mner, Cn = 0, which implies (¢, (Cn X []o5, 2a) = 0. Therefore Z is a compact subclass of .. Again,

the class € of all finite intersections of elements of Z is compact.
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Now we prove [(4.1)} Take any ¢ > 0. If A is a measurable rectangle with base [j_; Aa; C [Ij=; Qa;,
choose €1, 3 Cj C Ay, such that Py, (Cj) > Po, (Ar;) — 5. Then @ > C = (;_,(C; x [Toza, ) C A, and

P(A\C) =P U((Aa].\cj)x HQQ> Z (AL \Cj) =€ lo.

j=1 azta; j=1

Step II: We prove the o-additivity of P on .. We take the class %5 consisting of all finite intersection of
elements of ¥, which is again a compact class by Propositionm (ii) and is contained in the ring % generated
by . according to the Remark under Similar to the proof of in Step I, we can prove
that P(A) = sup{P(C) : C € €,,C C A} for all A = [[,_, Ay € Z by taking C' = [[;_, Cx € %, with
P(A\Ck) < €/n for arbitrarily small e. We prove that P is o-additive on #, hence on ..

Given € > 0, we take a sequence Z > A, | 0, and take €5 > C,, C A,, with P(A,) < P(C,) + €2™™. Then
N, Crn C Ny Ay = 0, and there exists N € N such that ﬂgzl C,, = 0 by compactness of €,. As a result,

N N N
IF’(AN)IP’<AN\<HC,L>> (U AN\C> Z (A\Cp) < € 0.

Therefore P is continuous at (). If (B,,)52, C Z is a sequence of disjoint sets, take A, = (J;—, ;1 Bx. Then we
have A,, | 0. Finite additivity of P implies

IE”(DBn> Z]P’ P(Ay) =0 as N — oo.
n=1

Step III: According to Step II, P is a finite pre-measure on the semiring .#” which generates &, ;-#o. By
Carathéodory’s extension theorem, P can be uniquely extended to a probability measure @, ; #o. On the
other hand, the finite additive function P is uniquely defined on ., which is specified by the family of measures

{P;,I € Ir} on finite-dimensional subspaces. Therefore the extension P is unique. O

Proposition 4.18. Let ) be a Hausdorff topological space, and equip Q) with the Borel o-algebra %B. Let €
be the collection of all closed sets in ), and JZ the collection of all compact sets in 2. Let P be a probability

measure on (Q, B). We define the collections Z. of closed reqular sets and %y, of regular sets as

%C—{BG%’:]P’(B)— sup ]P’(C)}, %k—{BGQE:]P’(B)— sup IP’(K)}.
Ce%:CCB KeX :KCB
We say P is tight if Q € %),. We say P is closed inner regular (resp. inner regular) if Z. = B (resp.
Ry, = PB). The following statements are true:
(i) The collection Z* = {B € %, : Q\B € %.} is a o-algebra. In addition, if P is tight, then the collection
Ky ={B € Xy, : W\B € %} is also a o-algebra.
(ii) If Q is metrizable, then P is closed inner regular. In addition, if P is tight, then it is inner regular.

(i4i) (Ulam). If Q is a Polish space (a separable completely metrizable space), then P is inner regular.

Proof. (i) Clearly, Q € Z, and B € % implies QO\B € Z*. Given any sequence (A,)5, C %%, we prove
A= UZO=1 A, € Z. Let € > 0. Take closed sets C,, C A,, such that P(C,,) > P(A4,,) — €37 ", and D,, C Q\4,
such that P(D,,) > P(Q\A,,) — 27", Then there exists N € N such that P(4) > P (U, —, A,) —€/2. Note that
UL, €, € A'is closed, and

—P<gcﬂ><;+ﬁv<g,¢1ﬂ> (HC>< +IP><§J1A\C)><E

113



Meanwhile, ()2, D,, C Q\A is also closed, and

P(Q\A)—P(ﬂDn>:P<U((Q\A\D) Z (NA)\D,) <

n=1 n=1

Since € > 0 is arbitrary, we have A € #Z*. Hence £} is a o-algebra.
If P is tight, we have Q,0 € %}, and B € %}, implies Q\B € #;;. Similar to the above proof, since finite

unions and countable intersections of compact sets are still compact, we conclude %, is a o-algebra.

(ii) Let d be the metric of Q. If U C Q is an open set, take its complement F' = Q\U, and define F,, =
{r€eQ:d(x,F)>1/n}. Then F,, 1 U, and U € Z defined in (i). Since Z; is a o-algebra containing all open
sets in 2, we have Z) = %, and P is closed inner regular.

In addition, if P is tight, we can take a compact set K such that P(Q\K) < ¢/2 for every € > 0. For
any Borel set B € 4, take closed set F' C B with u(B\F) < ¢/2. Then FN K C B is a compact set, and
P(B\(K N F)) <P(B\F)+P(Q\K) < e. Since € > 0 is arbitrary, B € #,. Hence P is regular.

(iii) Following (ii), it suffices to show that P is tight. Let (w,)52; be a dense sequence in 2. For any n > 0
and w € Q, let B(w,n) be the closed ball centered at w of radius 7. Given € > 0, by density of (wy)52,, we

are able to take IV, € N such that
(Q\ B <wn>> < gms VmeN.

Let K = () _, UN" B (wn, 7). Then K is both closed and totally bounded. Since € is a complete metric
space, K is compact. Furthermore, we have

P(O\K) < iim_ew.

Hence P is tight, and the result follows from (ii). O
Theorem and Proposition together imply the following conclusion.

Corollary 4.19. Let {(Qy, Ba), € J} be a family of Polish spaces equipped with their Borel o-algebras. For
any compatible family {P;,I € Ip} of probability measures defined on {([T,c; Qo Ques Ba) 1 € Ir}, there
exists a unique probability measure P on (HaeJ oy Qe s %’a) that extends each Pj.

Remark. Let E be a metric space equipped with its Borel o-algebra %. The product space (E7, #%7) is
called the canonical space. Since every evaluation map 7, : (E7,%%7) — (E, %), x ~ z(t) is measurable,
we can define a process (7;)iez on (E7,2%7), which is called the canonical process. Given a probability
measure u on (E7,2®7), the sample paths of the canonical process (m;)¢c7 are distributed according to .

Given (X;)ieT is a stochastic process defined on (€,.%,P) whose state space is the metric space E, the
mapping ® : (Q,.#) — (E7,%%7T) defined to map w to its sample path ¢ — X;(w) is measurable. In fact,
for every measurable rectangle A € E7 with basis [1j=, At,, its pre-image o-1(A) = Nj=1 thl(Atj) e F
Since ®~! preserves complement and countable union operations, and #®7 is generated by all measurable
rectangles, we obtain that ® is measurable. As a result, the process (X;)ic7 determines a pushforward
probability measure y = ®,P on the canonical space (E7,%%7). Furthermore, the canonical process (m;)¢cr
defined on (E7, 2%7 | 1) is identically distributed to (X;)ie7-

According to our previous discussion, we can construct a stochastic process indexed by T and taking values

in F by constructing a probability measure on the canonical space (E7, Z%7).
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4.2.2 Construction of Brownian Motions

Example: the canonical construction of Brownian motion. Let C(Ry) be the space of all real-valued

continuous function defined on R ;. We give C'(R.) the metric

=1 sup (0 — o(t)
d — il
(59 = 2 35 T supye 110 — )

, Vf.geCR").

This metric induces the compact convergence (c.c.) topology on C(Ry), because a sequence f, € C(R4)
converges uniformly on each compact set to f € C(Ry) if and only if d(f,, f) — 0. Then for each t € Ry,
the coordinate mapping 7; : C(R4) — R, f+— f(t) is continuous. Consequently, if we give C(Ry) the Borel
o-algebra & generated by c.c.topology, then all coordinate mappings {m;, ¢ € R} are measurable.

Proposition 4.20. € coincides the o-algebra generated by coordinate maps ;= f — f(t).

Proof. Let %, be the smallest o-algebra on C(R,) for which the coordinate mappings m, : f — f(t) are
measurable for all ¢ € Ry. It is clear that %, C ¥.

We know that C(R,) is separable with respect to the c.c. topology, because we can approximate each
f € C(Ry) within arbitrary precision with a polynomial with rational coefficients on some [0,7n]. As a result,

every open set in C(R ) with respect to the c.c.topology is a countable union of base sets of the form

Bio,n)(fo,€) = {f € C(Ry): sup |f(t) = fo(t)] < 6} 7

tel0,n]

where fo € C(R,) and € > 0. By continuity, every base set

Bog(fo,) = (| m 'B(folt),e) € Bp.

teQN[0,n]
Hence every open set in C'(Ry) in the c.c.topology is contained in Z,. Therefore %, coincides €. O
Wiener Measure. To construct a measure on the space of continuous functions on R, we first consider the

space R?2 of functions on dyadic rationals Q,. For each measurable rectangle A = {f(t;) € A;,i =0,1,--- ,n},
where 0 =ty <t; <--- <t, in Qo and Ag, A1, -+, 4, € B(R), define

1 4,(0 n s )2

= expy — A5 T A=) 21+---dz,, where zg =0.

v(A 40 (23 =) g h 0
\/(27'(')" H?:l(t] —tjfl) Ap X XAy, j=1 (t] 7tj—1)

This is a pre-measure on the semi-ring .% of measurable rectangles, which extends uniquely to a measure v on
the product o-algebra %(R)@2, which is generated by ..

We denote by C(Q2) the set of all functions f : Q2 — R that is uniformly continuous on [0, 7] for each
T > 0, and consider the process B(w) = w;, where w € RQ . Then for all s,t € Qq, we have

z2
E,|B; — B|* = e 2T do = 3|t — |2

1 * 4
\/ 27|t — s /_oom
By Kolmogorov’s continuity lemma, with probability 1, the process (Bi)teq, is uniformly continuous on each
compact interval [0,T]. Therefore v is concentrated on the subset C'(Qs), i.e. ¥(C(Q2)) = 1.
On the restricted measure space (C(Qz), € (Q2),v), we define a mapping ¢ : C(Qz) — C(R,) that sends
each f € C(Q2) to its continuous extension on Ry . Then v is a measurable mapping, and we define W to be
the pushforward of v, i.e. W = v o4 ~1. This is called the Wiener measure on (C(Ry), € (Ry)).
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For any 0 =tg < t; < --- < t,, by dominated convergence theorem, we have

W(A) = ]1120 ©) / exp{— Z M} dz ---dz,, where zy =0.
\/(271')” H]:l(t] — tjfl) Apx- Ay j=1 J j—1

If we choose (2,.7#,P) = (C(R),%¢(Ry), W), then the canonical process (m;);cr, is a Brownian motion.
This is a consequence of Proposition (iv) and the fact that (m;);cr, has continuous sample paths. In fact,

the distribution law of every Brownian motion (B;);>¢ is determined, which is the Wiener measure W.

Example: Wiener’s construction of Brownian Process. Let {e,,n € N} be a countable orthonormal
basis of L([0,1]), which is a separable Hilbert space. According to Corollary it is possible to construct a
collection of independent standard Gaussian variables (Z,,)%2 ; on an appropriate probability space (2, %, P).

We define a process (B)co,1] as follows:

o0

By =Y (lpg,en) Zn, ¥t€[0,1] (4.2)

n=1
Since Y071 [(Ljo,1,€n)|> = t < 00, the series |(4.2)| converges in L?. Consequently, (B;):ecjo,1] is a Gaussian
process. Furthermore, for any partition 0 =ty <t; < --- <t, =1, we have

oo

00
E [(Btj _Btj—l)(Btk - Btk—l)] = Z ]l(tJ 1,t5]) €m <]1(tk 1,tk]) €n> <em7€n>

—1n=1
m=in =E[Zom Zn]

oo oo
E ]1(tJ 1,t5] em €m;, E ]l(t,c 1Ltk €n €n
m=1 n=

= (L, 050 Ly ta]) = Oty — tj—1)-

I
T

Consequently, the process (Bi):c[o,1] has independent increments, and By, — By, , ~ N(0,t; —t;_) for
each j. By Proposition (iv), (Bt)tefo,1) is a pre-Brownian motion on [0, 1]. If we choose a particular basis
for L2(0,1]): eo = 1, and e,,(t) = v/2cos(nnt), ¥n € N, we obtain a process

oo 2"—1
t 2 kt
Bt—tzo+§:%2 =tZ+ Y v2sintkrt) vy eqo.1].
n=1 n=1 k=2n—1

We set Sy, (1) = S2m 1 V2sbrt) 7, and write By = £ 20 + Y00 San (£). Let T = supye(o.1] |Sm(t)]. Then

k=m

2m—1 iprt 2m—12m—1 i(k—j)mt
T2<V2sw | Y 2 =V2sw Y S 7.7
T ep| =k tel0] S i Jk !
2m—1 2m—12m—k—1
Z7 ZkaH
< \[ + 2\/5 sup 1l7rt
Z e Zm Z Ot l)
2m—1 m—1 2m—Il—1
72 i s
=2 k4 2v2 sup ellmt okt
D B Ly 1 DL DRy
2m—1 m—1|2m—I[—1
7Z? AN
< 22
‘[Z + \[; 2 Kk +D)
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Let us bound the expectation of the second term:

2m—l—1 om—l—1 2m—1—1 1/2
2y Liq ( ZkZi+i ) ( 1 1
E Z <, |E = Z 2 2 S 5
= k(k+1) = k(k+1) = k(k+1) m3/
m—12m—1—1
VAYARY, 1
= K —.
— ; k(k+1) vm

Since Y21 g2 < m~!, we have E[T?] < ¢/y/m for some constant ¢ > 0 not dependent on m. Consequently,
k= m

o0 o0 o0 1
;::OT% < ;\/E[Tgn] < C;::OW < 0.

By Weierstrass M-test, with probability 1, the mapping t — Bi(w) converges uniformly on [0, 1], and the

E

uniform limit is continuous on [0, 1]. By redefine the sample path of (B;):e[o,1] on a negligible set, we obtain
a Brownian motion (Bi)se[o,1) on [0,1]. To construct a Brownian motion (B;);>o on R, we concatenate

Brownian processes defined on each [n — 1,n]:

%Zﬁ”, t€n—1nl,

B,=B, 1+ (t—n+ 1)Z(§") + Z
=1

where (Z,g")),;“;l is a family of independent standard Gaussian variables.
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4.3 Sample Paths of Brownian Motion

Let (By)¢>0 be a Brownian motion. We take the canonical filtration (%;)i>0 of (By)¢>o:
Fr =0 (Bs,0<s<t), vVt >0.
Then (By)¢>0 is a martingale with respect to (F;)¢>o.

4.3.1 Blumenthal’s 0-1 Law and Recurrence

Theorem 4.21 (Blumenthal’s 0-1 law). The germ o-algebra Fo, = (),5, -F: is P-trivial.

Proof. Let 0 < t; < --- < t,, and let g be a bounded continuous function on R™. According to continuity and
dominated convergence theorem, for all A € %, we have

E []lAg(Bt17 T 7Bt71,)] = lelig]E []lAg(Btl — B, , By, — BE)] :
By the simple Markov property of Brownian motions [Proposition (iii)], By, — Be, -+ , By, — B is inde-
pendent of #, D Zpy whenever 0 < € < t;. Hence

n

E[1ag(Bt,,---,B:,)] = P(A) leiﬁ)l]E[g(Btl — B¢, , By, — B.)] =P(A)E[g(By,, -+, Bt,)]-

For any open set U € #(R"), take a sequence g, (z) = d(x,U¢)/(d(z,U¢) + n~') of bounded continuous

functions such that g, T 1y pointwise. Then
E []lA]lU(Bh T ’Btn)] = ]P)(A) E[]IU(BIH L 7Btn)]'

Since Z(R™) is generated by all open sets in R™, an argument of -\ theorem implies that % is independent
of o(By,, -+, B, ). This holds for all finite marginals 0 < ¢; < --- < t,, hence Fy, is independent of
o(By,t > 0). By right-continuity of ¢ — By(w), By = lim, ¢ B; is measurable with respect to o(By,t > 0), and
we have o(By,t > 0) = o(By,t > 0) D Foq. Therefore Fy; is independent of itself, and the result follows. O

Proposition 4.22. Let (B;):>0 be a Brownian motion with By = 0.
(i) Almost surely, for each € > 0,
sup Bs >0 and inf B, <0.
0<s<e 0<s<e
(i1) (Recurrence). For every o € R, define stopping time 7, = inf{t > 0 : B, = a} (with respect to the
canonical filtration, with the convention inf ) = co). Then we have T, < 0o a.s.. Consequently, it holds

limsup By = o and liminf B; = —0c0 a.s..
ttoo ttoo

Proof. (i) We choose a positive sequence €, | 0, and define the decreasing intersection

Then for each ¢t > 0, there exists €, € (0,t) such that

A:ﬂ{ sup BS>O}€ft.

k=n 0<s<er
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Hence A € Zp4. By Blumenthal’s 0-1 law, either P(A) = 0 or P(A) = 1. We claim P(A) = 1, so the result
follows. To show P(A) = 1, note that

1
]P’<Sup BS>0>2P(BQL>O):2, VneN = P(4)>

1
0<s<en 2

(ii) By the simple Markov property of Brownian motions [Proposition m (ii)], for each A > 0, the process
B} = %th is also a Brownian motion. Since all Brownian motions starting at 0 are identically distributed

[according to the Wiener measure on C'(Ry)], we have

]P’(sup B5>)\>:]P’< sup B;\>1>:IP’< sup BS>1>
0<s<1 0<s<1/A2 0<s<1/A2

Let A | 0. By monotone convergence theorem, we have

1:P<sup BS>O):P(susz>1>:]P’<supB§>1)

0<s<1 $>0 s>0

=P (supBS > a) <P(1y < 20), Va>0.
s>0

Therefore 7, < oo a.s. for each a > 0, which holds only if limsup;,, B: = 00 a.s.. Symmetric arguments of
(i) and (ii) follow by replacing By by —Bs. O

Remark. We fix a number M > 0. By the second statement, with probability 1, we can find s; > 0 such that
Bs, > M, then sy > s such that By, < —M, and then s3 > sy such that B, > M, etc. Following this
procedure, we find a sequence 0 < s1 < s < --- where B crosses the interval [—M, M] during each [s,,_1, $p]-
By continuity of ¢ — B, there exists a sequence 0 < ¢,, 1 oo such that B;, = 0 at each ¢,,. Therefore B returns

to 0 infinitely often. In words, one-dimensional Brownian motions are recurrent.
We have a stronger recurrence statement ragarding the return time of Brownian motions.

Proposition 4.23. Let (By);>0 be a Brownian motion with By = 0, and let 7o = inf{t > 0: By = 0} be the

(first) return time. Then 79 =0 a.s..

Proof. We define 7. = inf{t > 0: B, > 0}, and 7_ = inf{t > 0 : B, < 0}. By Proposition [£.22] (i), we have
T+,7— € [0,€) for each € > 0. Hence 7 = 7— = 0. Since B hits both (0, 00) and (—0c0,0) a.s. immediately, by
continuity of the path ¢ — By, we have 79 = 0 a.s.. O]

Up to now we only discuss the behavior of Brownian motions near ¢ = 0. By using a time inversion trick,

we extend our result to get information about the behavior as ¢t — oc.

Proposition 4.24. Let (B;)i>0 be a Brownian motion with By = 0. The tail o-algebra

T = (] o(Bss>t)

0<t<oo
is trivial, i.e. if A€ T, then either Py(A) =0 or P, (A) = 1.
Proof. 7 is exactly the same as the germ o-algebra for the process Et =tB 1, and the result follows from
Proposition (iv) and Blumenthal’s 0-1 law. O
4.3.2 Monotonicity, Smoothness and Non-Differentiability

The following proposition follows immediately from Remark IIT under Definition [£.2] which is a property of

Gaussian white noise.
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Proposition 4.25. Let (By);>0 be a Brownian motion. Let 0 =t <t} < --- < tp =1 be a sequence of
partitions of [0,t] with the mesh maxi<j<, (t} —t}_1) — 0. Then

kn
. 2_ 4 o712
nhﬂrr;(} E (Bip = Byn )" =t in L”.

j=1
This statement implies a lot of properties of the sample path of Brownian motions.

Corollary 4.26. Let (B:)i>0 be a Brownian motion.

(i) Almost surely, the sample path t — By is not monotone on any nondegenerate interval [a,b].

(1) Almost surely, the sample path t — By has infinite total variation on any nondegenerate interval [a, b].
(i11) (Bi)i>0 has finite quadratic variation (B, B), = t.

Proof. (i) By simple Markov property of (By);>o and Proposition we have

sup B > By, inf By < By, Ye>0, VgeQ, as..
q<t<g+te q<t<g+e

For any nontrivial interval [a, b], we just choose ¢ € Q and e > 0 with [¢,q + €] C [a, b].

(ii) By simple Markov property of (By);>0, it suffices to consider intervals [0, t]. Choose an increasing sequence
of partitions of [0,¢] as in Proposition we have

< sup ‘Bt;l —Bt;}71

1<j<kn

k k
n n 2 2
) S (BB |23 (BB ) B
=1

Jj=1

As n — oo, we have sup <y, |Bir — Bir | — 0 by continuity, which implies Z?gl |Bin — Bin_ | = 00 a.s..
The result follows by taking intersection of all 0 < ¢t € Q. (iii) is a consequence of Theorem O

Proposition 4.27 (Non-differentiability). Let (B;)i>o0 be a Brownian motion with By = 0. Then

B B
lim sup ZL — 00 and liminf =t = —00  a.s..

1o Vit 1o/t

Consequently, by simple Markov property of (Bi)i>o, for every s > 0, the function t — By has a.s. no right

derivative, hence is non-differentiable at s.

Proof. We prove that for all a > 0, almost surely,

B,
sup — > a, Ve>0. (4.3)
0<s<e VS

This statement holds only if limsup, |, % = oo. Take a decreasing sequence 0 < €, | 0, and define the

decreasing intersection

o0
B
A= sup — > a} € Foy.

nrj]_ {0§5£5n \/g o

According to Blumenthal’s 0-1 law, we have either P(A) = 0 or P(A) = 1. Note that

B B 1 g2 1 g2
P sup —=>a|>P s o :—/ e zdxr = PA 2—/ e 2 dx > 0.
(Oﬁsgﬂl \/g ) ( V €En > V21 Jao ( ) V2T Ja

Therefore P(A) = 1, and the result follows. A symmetric argument holds if we replace By by —B,. [
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Proposition 4.28 (Global non-differentiability). Let (B:)i>0 be a Brownian motion. Almost surely, the
sample path t — By is not Holder continuous with exponent v at any point for each v > % In particular, the

sample path t — By is not Lipschitz continuous at any point, hence is nowhere differentiable.

Proof. We fix v > %, and take k € N such that v > % + % Given C' > 0, let
. k
Ay, =< w € Q: there exists s € [0, 1] such that |B; — Bs| < C|t — s|” for all |t — s| < (-

For 1 <m <n—k+1, define

Ym,n: II_laX Bm+j 7B7n+j—1 s
0<j<k—11 "n T

and

E, = {there exists 1 < m <n —k+ 1 such that Yy, ,, < 5
n

(2k — 1)0} |

On the event A,,, we apply the triangle inequality to get

2k —1
Bm+j — Bm+j-1 S’Bk+j—Bs + |Bs — Brti g(kniv)c, j=0,1,---,k—1
for some 1 <m <n —k+ 1. Therefore A, C E,, and
2k —1)c\"

k
=(n—k+1)-P <|31 < w> < (2k —1)FCFnE R
n'—z2

Since v > 1 4 1, we have P(4,) — 0 as n — oco. Noticing that (A,) is a increasing sequence, we have
P(A,) =0 for all n € N. Also, since C is arbitrary chosen, with probability 1, the path of (B;) is not Holder

continuous with exponent v at any point in [0, 1]. O

4.3.3 Growth Rate and the Law of the Iterated Logarithm

In this part, we discuss the growth rate of the Brownian motion as the time goes to infinity.

Proposition 4.29 (Growth Rate). Let (B;)i>0 be a Brownian motion with By = 0. Then with probability 1,

B B
lim sup—t =00, and liminf =% = —oo0.

o0 Vit ttoo  \/t

Proof. For each M € (0, 00),

I (ﬁ(’j{fff M}>

B, .
> limsup P ( > M) = limsupP (B; > M) > 0.
n—00 \/ﬁ n—00

By Proposition the probability of this event is 1. Since M > 0 is arbitrary, the first result holds. The

second result follows from symmetry. O

An accurate evaluation of the Brownian growth rate is given by the law of the iterated logarithm.
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Theorem 4.30 (Law of the iterated logarithm). Let (B;)¢>0 be a Brownian motion with By = 0. Then
B,

limsup —————= =
Hﬁi?p V2tloglogt

Proof. We first give a tail bound of By ~ N(0,1), which is a standard Gaussian variable
oo t —¢? /2
‘ ‘ Yo > 0.

ae=’/? 1 oo e‘t2/2 /2
(14+a2)V2r  V2rJo (14 t2) \/ Vo aV/2m
4 | B;| given in Corollary for all r > 1 and

Let h(t) = v/2tloglogt. Using the law of M; := supy<s<; Bs
all § > 0, whenever n > ng :=1+ @, we have

Mrn |BT"’L| 6 1
= e n— < _
P(h(r"—l) >\/r+§> P(W >\/2 <1+T>loglogr > Cn—1)""1

—a?/2

S\C«.

where C' = C(,r) is some constant independent of n. Hence we have

= B = M = 5
P sup —= >Vr+6]| < ]P( Tn__ > r+5)§C nTlTr < .
Sr( e vers) < e (e >

s€[rn—1 n=ng

By Borel-Cantelli lemma, we have

B
(hm sup —— < Vr -+ > sup —— >Vr+46 for finitely many n | = 1.
n— o0 h( ) s€[rn—1,rm] h‘( )

Let 6 L 0 and r | 1, we have P (hmsupnﬁoo O 1) =1

Now we prove limsup,,_, Wg) > 1 a.s.. Given n > ng, we have /2log(nlogr) > 1, and

-1 B,n — Bpn- C
P ( Bun — Bpuor > | ——h(r™) | > P [ 222 > f2log(nlogr) | > ———
r =1 — 1) ny/logn

for some constant C' = C(r) independent of n. Hence

> r—1
S ) RS S

n=ng n=n

Since (Bi)¢>o has independent increments, the second Borel-Cantelli lemma [Corollary implies that a.s
) for infinitely many n. A symmetric argument of the first part of our proof implies

Byn — Bpno1 > /=2 R(r
Hence for a.s. w € Q, we can find some N(w) such that for all n > N(w)

lim inf,, o % > —1 a.s..

B > —2h(r™ Y > ———h(r™).
1 > =2h(r"77) > \/;h(r)

Hence B,n > (1 — \%) h(r™) occurs infinitely often. Consequently, for all > 1, we have

P(limsup}f;) > 1—5}) =1.
r

t—o0

Letting r — oo suffices.
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4.4 Strong Markov Property and Applications
In this section we discuss the strong Markov property of a Brownian motion (B):>¢ starting from By = 0.

Let 7 be a stopping time (with respect to the canonical filtration (%)i>0 of (By)i>0). We define

]1{T<OO}BT (W) = 1{7’(c;.))<oo}B‘r‘(o.i) (OJ)

This is a .%,-measurable variable. To see this, note that (B;):>¢ is an adaptive and continuous process, hence
is progressive [Proposition [3.10]. Then the desired result follows from Proposition

4.4.1 Strong Markov Property

Theorem 4.31 (Strong Markov property). Let 7 be a stopping time with P(T < co) > 0. Let
B =1(rcoe)(Brys — B;), VtER,.

Then (Bt(T))tZO is a Brownian motion under the measure P(-|T < 00), and is independent of F-.

Proof. We first deal with the case 7 < 00 a.s.. Fix A€ %, and 0 =ty < t; < --- < t,. We claim that

E[ﬂAg(B(T) B(T)

to t1

7351))] :P(A)E[Q(BtoaBtp"' 7Btn)]

for all bounded continuous functions g : R® — R. If we take A = , a similar argument to the proof of
Theorem implies that (Bt(OT), Bg), e ,Bt(:)) L (By, By, ,By,) for all choices 0 =ty < t; < -+ < t,.
Since sample paths of (Bt(T))tzo are continuous, Proposition implies that (Bt(T))tZO is also a Brownian
motion. Furthermore, (Bt(oT), Bg), . ,Bt(:)) is independent of %, and (B,ST))tZO is independent of .Z,.

Now we prove the claim. For p € N, take [t], = min{k277 : k277 > ¢, k € Z} with convention [c0], = oo,
and write 7, = [7],. By continuity we have Bt(Tp ) Bt(T) a.s., and dominated convergence implies

(") ) ] — () pm) (70)
E[Lag(B, B B{)| = lim E[Lag(B]", B, B[]

to t1 )"
o0
= lim Z]E [Lan{(k—1)2-r<r<k2-»}9 (Bra-rit, — Bio-v, Bro-vst, — Bro—v,- -, Bra—rir, — Bra—»)]

- h—>m ZP(A N {(k - 1)2_p <7< k2_p})E [g (Btoa Btu e 7Btn)] = P(A)E [g (Bto’ Btu e 7Btn)] ’
P Ook:O

where the last row follows from the fact that
An{(k—1)27P <7 <k27P} = (Aﬂ {r < k2*p}) N{r <(k—1)27P}° € Fpo-»

and simple Markovian property of (By)¢>0. Thus we completes the proof for case 7 < 0o a.s.. For the general

case P(1 < 00) > 0, we have
E[Langr<sctg(Biy Bi .-+ Bi))] = (AN {7 < 0} Elg(By, Brys -+ . Br,)).

Then the desired result follows in a straightforward way. O

Remark. In Section [6.2.2] we will introduce a stronger statement. We show that, for any stopping time 7 with
respect to the filtration (%#;4)>o and measurable function ®. : Ry x C(R4) — Ry,

E[®,(Xrtt)e>0)|Fr1] = Ex, @
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4.4.2 Zero Set

Let (By)¢>0 be a Brownian motion starting from By = 0. We study the property of the zero set

Since t +— By is continuous, this random set is almost surely closed. By Proposition [£:22] we know that
0 is a limit point of Z, and Z is unbounded. To be specific, we define 7 = inf{s > 0 : By = 0} and
v = inf{s > t: Bs = 0}. Then 19 = 0 a.s., and v; < oo a.s. for each t € R,..

Proposition 4.32. With probability 1, the zero set Z has no isolated points.

Proof. The recurrence of (By);>o implies P(v; < o00) = 1, and
P (70 ((Bu,+s)s>0) > 0] Fy,) =Pg (10 > 0) = 0.
We take expectation and then take a union bound to obtain
P (79 ((Bu,+s)s>0) > 0 for some t € Q) = 0.

If a point u € Z(w) is isolated from the left, i.e. u = vy(w) for some rational ¢, the above result implies that u

is a limit point from the right. Therefore Z has no isolated points almost surely. O

Remark. In fact, the zero Z is an uncountable set. To see this, we note that Z(w) is a closed subset of R,
hence is a complete metric space. By Baire’s category theorem, Z(w) is not a countable union of nowhere
dense sets. If Z(w) is a countable set, then at least one singleton {u} C Z contains an open ball in Z(w). This
implies that w is an isolated point, which contradicts Proposition

Proposition 4.33. With probability 1, the Lebesgue measure of Z is zero.

Proof. For all t # 0, we have P(t € Z) =P(B; = 0) = 0. Then

[ee] oo o0
Em(Z)]=E |:/ ez dt:| =E [/ 1iB,—0} dt:| = / P(B; =0)dt =0.
0 0 0
Hence m(Z) = 0 almost surely. O

4.4.3 Hitting Times, Reflection Principle and Exit Times
In this part, we study the hitting time

Ta =inf{s >0:Bs=a}, a>0

of a Brownian motion (By);>o starting from By = 0. Then we can view (74),>0 as an increasing random

process, which has jumps and is not continuous.
Theorem 4.34 (First passage process). The process (7q)a>0 has stationary and independent increments.

Proof. We fix 0 < a < b. Then 7,((Br,+¢)t>0) = T» — Ta. By Proposition T < 00 a.s. for all a > 0. For
any bounded measurable function f, by the strong Markov property,

Eo [f (70 — 7a)[F7,] = Eo [f (6 ((Br, +4)t20))| 77, ] = Eaulf(16)] = Eo[f (To-a)]-

d . . .
Hence 7, — 7, = Tp_q, Which proves stationarity.
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Now we let 0 =ag < a1 <--- < a, and let f1,---, f,, be bounded measurable functions. Then

Hfi(Tai - Tai—l)] = ]EO <ﬂ\7'(1n1:|‘|

=1
n—1
- ]EO [H fi(Tai - Tai71) ]EO I:f(Ta7L7a7L71):|

i=1

n—1

H fi(Ta; — Ta;_1)Eo {f(Tan — Tan_y)

i=1

Eo

:EO

n—1
H fi(Tai - Taifl)Eanf1 [f(Tan)]
=1

=...= HEO [f(’]’ai,ai_l)] = HEO [f(Tai - Tai—l)] )

where the last equality follows from the fact 7,, — 74, _, 4 Ta;—a;_,- Lhis proves independence. O

Theorem 4.35 (Reflection principle). Given t >0, let My = supg< <, Bs. For any a >0 and b € (—o0, al,

In particular, we have M, < | By].

Proof. Consider the hitting time 7, = inf{s > 0 : B; = a}. By Proposition (ii), we have 7, < o0 a.s..
And by Theorem the process Bt(T“) = B, ++ — B;, = B, 4+ — a is a Brownian process independent of
F,.. Consequently, (1,, B(")) 4 (Ta, —B(™)), whose distribution equals the product of the law of 7, and the
Wiener measure W on C(Ry). Let H = {(s,f) e Rx C(Ry) : s <t, f(t —s) <b—a}. Hence

P(M,>a,B,<b)=P(r, <t,B, <b)=P (Ta <t,B™) < b—a) :P((Ta,B(TG)) € H)
=P ((Tm —B™)) ¢ H) —P(r, <t,—B{) <b—a)
=P(r, <t,By > 2a —b) =P(B; > 2a —b).
For the last assertion, note that
P(M;>a)=P(My > a,B; > a)+P(M; > a,B; <a) =P(B; > a) + P(B; > 2a — a) = 2P(B; > a).

Thus we complete the proof. O

Remark. According to|(4.5), we also have

P(By <z)-P(B;>2y—x) ify>0, <y

P(Mt SyaBt §$): .
P(M; <y) ify >0, x>y.

This gives the density of (Mg, By):

b 1 L2 _ (2y—a)? 212y —x) _y-o)?
- — [ — 2t 2t = — 2t > O, <.
P (1 7) = 5 < ore (6 +e )) Yo , y>0, <y

Corollary 4.36 (Law of hitting times). Given a > 0, the hitting time 7, is identically distributed to a2Bf2,

Proof. By the last assertion of Theorem we have
2
P(r, <t)=P(M; >a) =P (|By| >a) =P(B? >a®) =P ( < t) ,
which holds for all t > 0. O
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Remark. Since By ~ N(0,1), we can derive the density of 7,:

2l g2 d

a a a2
(1) = e — | = e 21l .
o) = S E G () = o Freon

This also implies E[r,] = oo for all a > 0.

To further study the law of process (M});>0, we discuss the time reversal of Brownian motions.

Proposition 4.37 (Time reversal). Set B; = By — By_; for every t € [0,1]. Then (Et)te[o,l] is a Brownian

motion on [0, 1], which has the same law as (Bt)ie[o,1-

Proof. Clearly, By = 0, and (Et)te[o,l] has continuous sample paths. We show that (B;)c[o,1) and (Et)te[o,l]
has the same finite-dimensional marginal distributions, which are extended to the Wiener measure on C([0, 1]).
Take a partition 0 =ty < t; < --- < t, = 1. Then the increments

(§t17§t2 - §t17"' aBtn 7§tn—1) = (Bl - Bl—tuBl—tl - Bl—tzv"' 7B1_tn—1)

are jointly Gaussian and independent, and the desired result follows. O
Corollary 4.38. Let My = supy<s<; Bt. Then M; — B; 4 M, 4 | By| for every t > 0.

Proof. Fix t > 0. Akin to Proposition we define B, = B, — B;_, for every s € [0,t]. By symmetry

and time reversal property of Brownian motions, all (Bs)scjo,4, (Bs)se[o,¢] and (—Bs)seo,g have the same law.

Consequently, supg<,<; Bt 4 supogsgt(—ét), which is in fact M; 4 M; — B;. O

To derive more property of the hitting times, we make use of the martingale property of Browninan motions.

The following proposition is obtained by direct calculation.

Proposition 4.39. Let (%,);>0 be the canonical filtration of a Brownian motion (By)i>o. All these processes
are martingales with respect to (F,)>0: (i) By; (i) Bf —t; (iii) exp(6B, — 16%t), 6 € R.

Proposition 4.40 (Laplacian transform of hitting times). Given a > 0, the hitting time 7, satisfies
E [e_’\T“] = e‘am, VA > 0.

Proof. We consider the martingale N/ = exp(0B; — 16%t), where 6 > 0. By Corollary N, is a
martingale bounded by e?® from above, hence is uniformly integrable. As a result,

E[NY] = Jim B[Nf,,,] = E(N{] = 1.

Since 7, < 00 a.s., we have

1=E [Nfa} =E {exp (0a - ;027'&)} .

Setting 6 = /2, the above reads E [e—”a] — e—aV2A, 0
To move forward, we alsop study the exit time of the Brownian motion from an interval.

Proposition 4.41 (Exit times). Given a € R, set the hitting time 7, = inf{s > 0: B; = a}.

(i) (Law of the exit point from an interval). For every a < 0 < b, we have

—a

b
]P’(Ta<7b):m, and IP’(Tb<Ta):b_a.

126



(i) (First moment of exit times). For every a <0 < b, the exit time T = 7, A T satisfies E[r] = —ab.

(i4i) (Laplacian transform of exit times). For every a > 0 and every A\ > 0, the exit time T = T, A Ty Satisfies

cosh (”7“ \/ﬁ)

E [e_AT] — — 7([)_7(1\/5) .

Proof. (i) We define a stopping time 7 = 7, A 7. By Corollary we choose the stopped martingale
(Biar)i>0, which satisfies |Biar| < (—a) V b, hence is uniformly integrable. As a result, E [B;] = E[By] = 0.
Note that 7, # 7 a.s., and E[B;] = aP(1, < 73) + bP(7, < 7,), the result follows.

(ii) Consider the martingale A; = B? —t. Then E[A;,] = E[Aq] = 0, which gives E[BZ,,] = E[t A 7]. On the
other hand, the monotone convergence theorem implies E[t A 7] — E[r] as ¢ — co. On the other hand, since

B2, < a?Vb? we have E[B?, | — E[B2] as t — 0o by dominated convergence theorem. Note that
E [BZ] =E [a®’1(5,—a) + *L(p. 1} ] = a®P(1, < 7)) + b*P(1, < 74) = —ab.

(iii) Similar to Proposition (iii), we take the following martingale:

N, = %exp (\/2)\ (Bt _ ;r b) - At) + %exp (—\/2)\ (Bt _¢ ;r b) - At)

— ¢ M cosh <\/2/\ <Bt _a ; b)) . t>0.

Since 0 < Nyar < cosh (b’Ta vV 2)\), it is a uniformly integrable martingale. Consequently,

E[N,] = lim [Nin,] = E[No] = cosh <a2+b\/ﬁ> .

n—oQ

On the other hand, since B; € {a,b} a.s., we have

—b b— b—
E[N,;]=E {e_h <]1{BT_G} cosh (a2v2)\) + 1B, —py cosh ( 5 a\/2)\>)] =K [e_”\T] cosh ( 5 av?A) .
Then the desired result follows. O
Proposition 4.42. Let a <0 <b, and 7 =74 A7, = inf{t > 0: B, ¢ [a,b]}. Then
3
1T)]E[TQ] < E[B} < 30E[r?].

Proof. By the martingale property of the process B} — 6tB? + 3t and the optional stopping theorem,
E [B{\, — 6(t AT)Bj\, +3(tAT)?] = 0.
For each A\ > 0, by the Cauchy-Schwarz inequality,
3
E [Bf\, +3(tAT)?] = E[6(t AT)Bi,] < 3XE[(t AT)?] + 1E [B}\.]
Since Binr € [a, b], by the dominated convergence theorem and the monotone convergence theorem,
3 4 2
1- X E[B;] < 3(A — 1)E[r”].
We set A = % and A = 5 to get the desired result. O

127



4.4.4 The Local Maxima

In this part, we study the times where a Brownian motion attains its local maxima:

./\/l{tZO:Bt max B forsomee>0}.
SE[t—e,t+e]

Lemma 4.43. Let [a,b] and [c,d] be two disjoint intervals in [0,00). Then the mazima of (By)i>o0 on them

are almost surely different.

Proof. Without loss of generality, assume b < c¢. By the simple Markov property, the maximal increment
SUpyeie,q) Bt — Be 4 SUPyeo,q—c Bt and is independent of (Bjs)se(o,q- Then

P| sup B;= sup B; | =P | sup By— B.= sup B; — B. | =0. O]
te(a,b] t€le,d] t€la,b] tee,d]

Lemma 4.44. For a standard Brownian motion, almost surely, every local maximum is a strict local mazimum.

Proof. By Lemma with probability 1, (B;);>o has different maxima on any pair of disjoint rational
intervals. If some t* € M is not strict, we derive a contradiction by selecting another local maximum s* # t*

in (t*—¢,t*+¢) with B¢« = By« and finding two disjoint rational intervals containing s* and t*, respectively. [J

Theorem 4.45. Let (B;)i>0 be a standard Brownian motion.
(i) Almost surely, M is a countable dense subset of [0,00).
(i) For each t > 0, almost surely, t ¢ M, i.e. the Brownian motion does not attain a local maximum at t.

(i1i) For each A € R, almost surely, A is not a local mazimum of (B;)¢>o.

Proof. (i) By Lemma almost surely, M is contained in the range of the mapping

[a,b] — inf {t € [a,b] : By = m[a)li] Bs}
se|a,

from all rational intervals into [0, 00), which is countable. By Corollary (1), (Bt)¢>0 is not monotone in
any nondegenerate interval, hence it almost surely has a local maximum in every nondegenerate interval.

(ii) Fix ¢ > 0. By Proposition and simple Markov property of Brownian motions, with probability 1, we
have sup, <<y Bs — By > 0 for each € > 0, which implies that ¢ ¢ M.

(iii) For every rational interval [a, b] C [0, 00), we have

1 «2
Pl max Bs=A) =E |P| max B; = \| %, :/ e 2P| max Bs=A—2z | =0.
(sG[a,)l(;] ) [ <s€[a§)] ):| R \/% (sE[O,b}Ea] )

Then with probability 1, (B:):>0 does not attains the maximum A on any rational interval [a, b], and the result
follows from Lemma [£.44] O

4.4.5 The Arcsine Laws

The arcsine laws are a collection of results for one-dimensional Brownian motion.

Proposition 4.46 (Arcsine laws). Let (By);>0 be a Brownian motion starting from By = 0.
(i) (Sign change). Let L = sup{t € [0,1] : By = 0}.
(i4) (Leftest mazimum). Let My = supy<<; Bs, and define U =inf{t > 0: By = My}. ThenU <1 a.s..
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The laws of L and U are both given by

P(L<t)=PU<t)= 2 arcsin(vt), 0<t<1.

™
Proof. (i) The case for L is rather straightforward:
P(L < t) /oo L -%p (B — Biys) d vl sz( ) d
<t)=2 e 2t sup — s) >y y:2/ e 2P(r, >1—1)dy
o V2mt s€0,1—1] ' " 0o V2mt Y
Yy y y

:2/ e 2t ( e_2zdz) dy: —/ ( e_2t_2zdy> dz
o V2t 1—t V2723 T Ji—e \Jo Viz3
1 [/ 1 tz s=rtr 1 [t $3/2 9z
= — ———dz = — ——ds
T Ji_s V3t + 2 T Jo tv/1—50s
1/t 1 2
= — —ds
T Jo +/s(1—3s)

= Zarcsin(V).
T
(ii) Define By =By — By_; forall t € [0, 1], which is a Brownian motion on [0,1]. Then for all € > 0,

Bi—M; <B;— sup Bs= inf By;<0 a.s.
1—e<s<1 0<s<e

Clearly, we have 0 < U <1, and {U =1} C {B; = M;}. Hence P(U < 1) = 1.
Fix 0 <t <1, and let M; = supy<s<; Bs. By simple Markov property, (Biys — Bt)se[o,kt] is independent
of (Bs)seo,)- Define Ny = supg<,<1_(Bi+s — Bt). Then Ny is independent of (M, By, My — B;), and

Let Z1,Z5 be N(0,1) i.i.d., and @ is uniformly distributed on [0, 27). By calculus,

P(U<t)=P (\/1 —t|2,] < \/£|ZQ|) =P <\/% < t> =P (|sin0| < \/%) = %arcsin(\/i).

Hence we complete the proof. O

Remark. We also point out some details about random times L and U not discussed in the arcsin laws:
(i) Both L and U are not stopping times;
(ii) By Theorem almost surely, 0 is neither a local maximum nor a local minimum of (By);>o. As a
result, (By)i>0 always changes its sign at L;
(iii) By Lemma almost surely, the maximum of (By);>¢ on [0,1] is unique and strict. Consequently, U
is the unique moment at which (B;);>¢ achieves its maximum on [0, 1].

We will introduce one more arcsine law for Brownian motions in Theorem [9.12
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5 Stochastic Integration

ar

In this chapter, our discussion is based on a probability space (£2,.#,P) and a complete filtration (%#;);>o. All

processes we study are indexed by R, and take real values.

5.1 Construction of Stochastic Integrals
5.1.1 From Elementary Processes to L?-Bounded Martingales

Preliminary: Space H?. Given a filtered probability space (2, .7, (%;)i>0,P), we denote by H? the vector
space of all continuous martingales M = (M;)¢>o that are bounded in L? [i.e. sup,so E[M?] < o] with My = 0,
and we write M ~ N if M, N € H? are indistinguishable. Then we define H?> = H?/ ~, and for brevity we
write [M] = M for all M € H?. By Theorem a continuous local martingale falls in H? if and only if
My =0 and E [(M, M)s] < co. Consequently, the martingale M = (M;);>0 has a.s. and L? limit X, such
that E[Moo| %] = M, for all t € R,.

If M, N € H?, the bracket (M, N) = 1((M+N, M+N)—(M, M)—(N, N)) then satisfies E[|(M, N) ] < co.

This gives rise to a bilinear form:
(M, N2 = E[(M, N)oo] = E[MsNo] = | Mllzz = E[(M, M) o] = E[MZ].

One can easily show that (-, )y forms an inner product on H?, of which positive definiteness follows from
Proposition m Furthermore, (H?2, (-, -)y2) is a Hilbert space.

Proof of completeness. Let M) € H? be a Cauchy sequence with respect to the norm || - [|g2. Then

2
lim E [(ng —Mgom>) } — lim HM(”) —M<m>‘

2
7,M—00 7,Mm—00 H?2

Then Még) is a Cauchy sequence in L2, and we denote Z = lim,_, o Még) in L2. On the other hand, the
Doob’s L2-inequality [Proposition m (ii)] and an argument of dominated convergence theorem imply

2 2
E {Sup MM - Mt(m)‘ } < 4E {(Mggﬁ - Mgom>) } .
>0

Hence (Mt(n));:o:1 is a Cauchy sequence for every ¢t > 0, which converges in L2. To conclude the proof, it

suffices to show that the limit process is in H?. We choose a subsequence M ("*) such that

E [sup ‘Mt(""“) - Mt(n’“)

t>0

2
} <27k = E {sup Mt( k1) —Mt( ®)

t>0

:| S 2—k/2.

Consequently, we have Y77 | sup;> |Mt(n’°+1) - Mt("’“)| < 00 a.5.. By Weierstrass M-test, the limit process
My = limg_ 00 Mt(""') is a a.s. uniform limit on R, hence has continuous sample paths. On the zero probability
set where the uniform convergence does not hold, we take M; = 0 for each t > 0. By completeness of the
filtration (%;):>0, the process M = (M;);>o is adapted. Also, the continuity of conditional expectation passes
Mt(""“) = ]E[Mégk)L?t] to M, = E[Z].%,] as k — o0, hence (M;);>0 is a uniformly integrable martingale, which

converges to M, a.s. and in L?. By uniform convergence, we have M, = Z a.s.. Therefore

2 2 2
lim ‘M(") —M‘ ~ lm E (M<"> —MOO) — lim E (M<"> - Zoo) ~0.
n—oo H?2 n—o0 o0 n—oo o0
Thus M € H? is indeed the limit of sequence M completing the proof. O
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Preliminary: Progressive o-fields. Given (2, .%,P), we define the progressive o-field on Q x Ry as
P ={ACOxRL: AN (2 x[0,t]) € F ® AB([0,1]), Vt e Ry} C F @ B(R,),

where the inclusion holds since A = (J7— (AN (2 x [0,n])). Clearly, if A € &, the process X;(w) = L 4(w,?)
is a progressive process. Furthermore, one can verify that & is indeed a o-algebra on {2 x Ry, and a process
(X¢)e>0 is progressive if and only if the mapping (w,t) — X;(w) is &?-measurable.

Preliminary: Space L?(M). Given a process M € H2, the Theorem determines to an increasing
process ((M, M)s)s>0, which is called the quadratic variation of M. Then for every A € &, one can define

0
This is a measure on (2 x Ry, #2). We denote by £2(M) the space of all progressive progresses H such that
IHZ20r) = E UO H?d(M, M)s} < o0,

and choose the quotient space L?(M) that makes | - | z2(ar) @ proper norm. Then L>(M) = L*(QxRy, 2, uy)
can be viewed as an ordinary L?-space, and we can define the inner product

(H,K)2(a) = E [/OOO H, K, d(M, M)s}

Remark. Recall that X7 = X, is the stopped process associated with a stopping time 7. If M € H?, then we
have (M7, M7). = (M, M), which implies that M™ € H?. Furthermore, if H € L*(M), the process 1y .| H
defined by (Lo 1 H)s(w) = Lo, r(w))(s)Hs(w) also belongs to L*(M). Note that L, H is progressive since it
has left-continuous sample paths.

Definition 5.1 (Elementary processes). An elementary process is a progressive process of the form
n
Hy(w) =Y Hi(@)la, 0,05,
j=1

where 0 = tg < t; < --- < tn, and H;) is a bounded .%;,  -measurable random variable for all j € {1,--- ,n}.

Clearly, the set & of all (equivalence classes of) elementary processes is a subspace of L?(M).
Proposition 5.2. For every M € H?, & is dense in L*(M).

Proof. Fix M € H?. By elementary Hilbert space theory, it suffices to show that L?(M) > K L & implies
K = 0. Assume that K € L?(M) is orthogonal to &, and set

t
Xt:/ K,d(M,M),, Vt>0.
0

According to Proposition [3.64] since

e[ [ imaonan.] < (=] [ w2aar M>s])1/2 (=] [ M>s])1/2 < 1K agary [ M 5

the process (X;)¢>¢ is a finite-variation process. In addition, it is bounded in L*.
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Now we prove that (X¢):>o is a continuous martingale. Given 0 < s <, let H, = Y1, ,, where Y is a

bounded .%,-measurable random variable. Then
¢
0= <H,K>L2(M) =K [Y/ K, d{M, M}u} =E[Y(X: — X)]

Since E[Y (X; — X,)] = 0 for all bounded .#s-measurable random variable Y, we have E[X; — X |.%;] = 0.
Note that X = (X;):>0 is adapted, and by definition it has continuous sample paths. Hence X is a continuous
martingale. By Proposition we have X =0 a.s., i.e.

t
/st<M,M>S:O Vt>0, as. = K;=0 dM,M)s-a.e., a.s..
0

Therefore || K||z2(ar) = 0, and the result follows. O

Theorem 5.3 (Stochastic integrals for L?-bounded martingales). Let M € H2. For every elementary process
H € &, we define the following formula:

Hy = Hpla,_,)(s) = (H-M)y=Y Hg (Mypn— My p)
j=1 j=1

This defines a process H-M € H?, and the mapping H — H - M extends to an isometry from L*(M) into H2.
Furthermore, H - M is the unique martingale of H? that satisfies the property

(H-M,N)=H-(M,N), VN ¢eH? (5.1)

where the quantity H - (M, N) in the right-hand side is the integral with respect to a finite variation process.

If T is a stopping time, we then have
(LjoqH) - M=(H-M)"=H-M". (5.2)

The process H - M is called the stochastic integral of H with respect to M.

Proof. Since the process H - M does not depends on the choice of partition when H is given, it is easy to see
that H — H - M is a linear mapping. Then we verify that H — H - M is an isometry from & into L?(M).

We fix the process H = (H;)s>0 of the form given in the theorem. For every j € {1,---,n}, define
Mt(j) = H(jy(Mi;ne — My, _,n¢) for all £ > 0. Akin to our proof of at Step II, the process
(Mt(j))tzo is a continuous martingale, and it belongs to H?. Hence H - M = Z?Zl M) also belongs to H2.
Moreover, note that

<M(j), M(j)> = Z H(2j) (M, M)y ne — (M, M)y, nt), (By the approximation formula)
t
j=1
<M(J),M(’“)>H2 = [MS)MQ)} = E [H) Hy (M, — My, )(My, — M, _,)]

E
=E [E [HjHpy(My, — My, )(My, — My, )|F, ]| =0, V1<j<k<n.

By orthogonality of M ()’s and bilinearity of quadratic variation, it holds

n

t
(H-M,H-M), =Y HZy (M, M) n — (M, M), nt) :/ HZ2d(M,M)s.
j=1 0
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Consequently, we have
I 8 = B[ A M) =B | [ H2AOLAD.| = WA, 20

By linearity, if H = H' in L?>(M), then H-M = H'- M in H2. Therefore the mapping & — H? is well-defined.
Since it is norm-preserving and linear, it is an isometry. By Proposition and the fact that H? is complete,
we can uniquely extend this mapping to an isometry from L?(M) into H?.

Now we verify the property . We fix N € H2. The Kunita-Watanabe inequality [Theorem implies

o0
| [ IH1A0L V)| < Lo [Vl < oo, vH € 201),
0

Then the variable (H - (M, N)),_ = [;~ Hyd(M,N), is well-defined and in L'. For the case where H is an

elementary process, we have

<HM,N> = Z?:1<M(J)7N>
(MU N, = HE ((M,N)ine = (M, Ny a),  VE> 0.

This gives (5.1)) in the case H € &
n t
(H-M,N), = ZH@-) ((M,N);ne — (M, N>tj_1At) :/ Hyd(M,N); =(H-(M,N));, Vt>D0.
j=1 0
To prove the general case where H € L?(M), note the continuity of the linear mapping X ~ (X, N)o
from H? into L'(Q, .7, P):
1/2 1/2
E (X, N)ool] = E [(X, X)oo] * BN, N)oo]/* = [1X [l | N 52

Let H™ € & be a sequence that converges to H in L?(M). Then H™ . M — H - M in H?, and

(H-M,N)w = lim <H<">.M,N> = lim (H(”)~<M,N)) — (H - (M,N))w,

n— 00 oo n— 00 oo

where the last equality holds in L' by Kunita-Watanabe:

e|
Hence we have (H - M, N)o, = (H - (M, N)). By replacing N with the stopped martingale N* for any ¢ > 0,
one obtain (H-M, N); = (H- (M, N));. For uniqueness, let X € H? satisfy (5.1). Then (H-M — X, N) = 0 for

all N € H?, which implies (H - M — X, H-M — X) = 0. By Proposition [3.70] (ii), we have H - M — X =0 a.s..
Finally it remains to show (5.2]). By Proposition (iv), for all N € H?, we have

Nlge -
pocapy 1V

/ T(HY — H) AN,
0

} < HH§”> —H,

<(H : M)T7N>t = <H : M5N>t/\7' = (H : <M7N>)t/\r = (]]‘[O,T]H : <M7N>)t7
which implies the first inequality. The proof for the second one is similar:
(H-M",N)=H-(M",N)=H-(M,N)" =1y H-(M,N).

Note that the property (5.1) can be used as an alternative definition of the stochastic integral H - M. O
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Remark. We use the following notation for a stochastic integral:
t 00
/ H;dMs; = (H-M):, Vt>0, and / H;dM; = (H - M) .
0 0

The property (5.1) gives commutativity of stochastic integral and bracket:

. t
</ HSdMS,N> :/ H,d(M,N),
0 t 0

The following proposition concerns about associativity.

Proposition 5.4 (Associativity). Let K = (K;)s>0 and H = (H)s>0 be two progressive progresses.

(i) Let A = (Ay)s>0 be a finite variation process, and [~ |Hy||dAs| < 0o a.s.. If [ K Hy| |dAs| < o0 a.s.,
then (KH)- A=K - (H - A).

(ii) Let M € H?, and H € L*(M). Then KH € L*(M) if and only if K € L*(H - M). In this case, we have
(KH)-M =K - (H - M).

Proof. The statement (i) follows from an analogous deterministic result. Using the property (5.1) twice and
(i) gives (H-M,H - M) = H? - (M,M), and K?-(H - M,H - M) = K?H? - (M, M). Then the first assertion
of (ii) follows from a monotone convergence argument:

E[(K*H?-(M,M)) | =E[(K*>-(H-M,H-M))_]
For the second assertion, note that

(KH)-M,N)=KH-(M,N)=K - (H-(M,N)) =K - (H-M,N), VN eH?

The result immediately follows from the uniqueness argument in O]

Remark. Let M, N € H?, H € L?*(M) and K € L*(N). Using (5.1) and (i) gives a more general result:

. . t
(H.M,K.N>t</ HSdMS,/ stNs> :/ H,K,d(M,N),.
0 0 t 0

According to Proposition (vi), we have

E [(/OtHdes> </Ot stNsﬂ =E UOtHsst<M,N>S} :

Note that H - M = fo H,dM, is a martingale of H2. For all 0 < s < t < oo, we have

t t
E {/ H, dMS} =0, and E {/ H,dM,
0 0

According to Theorem the second moment of the stochastic integral is given by

()

Next we will discuss stochastic integrals for local martingales and semimartingales.

ﬁs] :/ H, dM,.
0

—]E{/JH?d(M,M)S}
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5.1.2 Stochastic Integrals for Local Martingales and Semimartingales

Preliminaries: Space L%OC(M). Let M be a continuous local martingale. Similar to the case M € H?,
we can define a Hilbert space L?(M) associated with M containing all progressive processes H such that
E [ fooo HZd(M,M),| < oc. Furthermore, we denote by L2 (M) the set of all progressive processes such that

loc

t
/Hfd(M,M>s<oo, YVt >0, a.s..
0

Clearly, L?(M) is a subspace of L _(M).

loc

Theorem 5.5 (Stochastic integrals for continuous local martingales). Let M be a continuous local martingale.
For every H € L2 (M), there exists a unique continuous local martingale starting from 0, denoted by H - M,

such that for every continuous local martingale N,
(H-M,N)=H-(M,N). (5.3)
If T is a stopping time, we then have
(LjonH) - M=(H-M)"=H-M". (5.4)

In addition, if K = (Ks)s>0 is a progressive process, then KH € L2 (M) if and only if K € L (H - M). In
this case, we have (KH) - M =K - (H - M).

Proof. Without loss of generality, we assume that My = 0, since we can replace (My);>0 by (M — Mop)i>0. We
also assume that the property [ HZd(M, M), < oo for all ¢ > 0 holds for all w € € by resetting H = 0 on a

negligible set if required. For all n € N, we choose a sequence of stopping times 7,, increasing to co as follows:

t
Tn:inf{tZO:/ (1+ H?)d(M, M), Zn}.
0

By definition, (M ™, M™ ), = (M, M)¢x-, < n, hence the stopped martingale M™ belongs to H?. Furthermore,
/ H2A(M™ M™), = / CH2A(M, M), <n
0 0

Hence H € L?(M™), and the definition of H - M ™ make sense by Theorem Note that for all n > m > 1,
the property implies (H - M™)™ = H - M™ . Let (H - M)y = limy,_,oo(H - M™), for every t > 0, where
the limit exists for all w € Q (we find m with 7,,,(w) > ¢, then (H - M™)4(w) = (H - M™ );(w) for all n > m).
Then H - M is an adapted process, and (H - M)™ = lim, ,oo(H - M™ )™ = H - M™ & H2. Consequently,
H - M has continuous sample paths, and is a continuous local martingale.

Now we verify Let N be a continuous local martingale with Ny = 0, and choose stopping times
7/ =inf{t > 0:|N;| > n}, 0, = 7 A7,,. Then N™» € H2. Note that M™ € H2, and H € L*(M™). Hence

(H-M,NY" = ((H-M)™ N™)=(H-M™ N»)y=H-(M™ N=)=H-.(M,N) = (H - (M,N))°".

Since 0, — 00 as n — 00, the equality [(5.3)|follows. The uniqueness of H - M follows from a similar argument
presented in the proof of Theorem The equality [(5.4)| is a consequence of |(5.3)| as is shown in the proof
of Theorem [5.3] Finally, the associativity follows in an analogous way in Proposition O

Remark. (i) (Consistency of two definitions). If M € H? and H € L?(M), the two definitions of H - M given
in Theorems and coincide. To see this, note that the definition of H - M in Theorem [5.5| satisfies
H - M € H2. This is a consequence of the property which gives (H - M, H - M) = H? - (M, M).
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(ii) (Connection to Wiener’s integral). A Brownian motion B = (B;);>o is a continuous martingale with
respect to the natural filtration .%; = 0(B;,0 < s < t). According to the Remark of Proposition for each
h e L*(Ry, B(R;),m), we can define the Wiener integral fg h(s)dBs = W (h1jg4), where W is the Gaussian
white noise associated with B. This definition coincides with the stochastic integral (k- B);, where we view h

as a (deterministic) progressive process. For all step functions h = Z?:l Al we have

i—1,t5]
t n
/ h(s)dBy = W (ko) = 3 A (Biyne = Biy i) -
0 ;
7j=1
Then for all continuous local martingales IV, we have

n

([ 30BN =S A (B N = By N1 = SONB, Nhiyns = (BN} ) = (- (BN

Jj=1

Therefore we have fg h(s)dBs = (h- B); for all step functions h. For the general case h € L?(R,, Z(Ry), m),
the quadratic variation (B, B); = t implies h € L?(B), and the result follows from a density argument.

(iii) (Moment formulae). In the setting of Theorem we again write fg Hy,dM, = (H-M)y. If M,N
are continuous local martingales, H € L2 (M) and K € L% _(N), the first formula in the Remark under

loc loc

Proposition [5.4] still holds true for (H - M, K - N):
t
<H-M,K'N>t:/ H,K;d{M,N),, Vt>0;
0

whereas the formulae for moments of fot H,dM, may fail.

We can make an extension. For a continuous local martingale M and a progressive process H € LIQOC(M ),

and for some fixed ¢ > 0, assume the following condition holds:
t
E U HZd(M, M)S} < 0. (5.5)
0
According to Theorem the stopped process (H - M) is a martingale of H2. As a result, we have

E[/OtHSdMS] -0, E [(/OtHSdMsﬂ =E {/(:Hfd(M7M>S]

Consequently, regardless of whether the condition |(5.5)| holds, we have the following bound:

E [(/OtHdes>2

This result remains true if we replace ¢ by a stopping time 7.

<E Uot HZd(M, M)S} : (5.6)

Preliminary: Locally bounded processes. A progressive process H = (H,)s>0 is said to be locally

bounded if supg<,<; |Hs| < o0 a.s. for all t > 0. In this case, for every finite variation process V', one have

t t
/ |H| |dVs| < sup |H (/ |dVS|) < oo a.s., VYt>D0.
0 0<s<t 0

In particular, an adapted and continuous process is locally bounded progressive process.
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Theorem 5.6 (Stochastic integrals for continuous semimartingales). Let X be a continuous semimartingale
with canonical decomposition X = M + A. If H is a locally bounded progressive process, the stochastic integral
H - X is the continuous semimartingale with canonical decomposition H-X = H - M + H - A. The following
properties hold for this stochastic integral:

(i) The mapping (H,X) — H - X is bilinear.

(i) If K is another locally bounded progressive process, then K - (H - A) = (KH) - A.

(iii) For a stopping time T, we have Hljg - X = (H - X)" = H - X"

(iv) If X is a continuous local martingale, resp. if X is a finite variation process, so is H - X ;

(v) If H is of the form Hy(w) = 3°7_1 Hejy (W), .1,)(s), where 0 = to < t1 < -+ < t,, and H(;) is a

F,_, -measurable random variable for every j € {1,--- ,n}, then
(H-X); = ZH(j) (th/\t - th—l/\t) :
j=1

Proof. The properties (i)-(iv) follow from the results obtained when X is a continuous local martingale, resp.
a finite variation process. To obtain (iv), it suffices to consider the case where X = M is a continuous local
martingale with My = 0. We may even assume that M € H? by stopping it at a suitable time and using

We choose the following sequence of stopping times, with the convention inf () = oo:
Tk = iIlf{t Z 0: ‘HS| Z k} = inf {tj,1 : |H(j)| Z k} .

Then 7% 1T 0o as k — oo. Furthermore, for every k,
Hs]l[o,-rk](S) = Z H(kj)]l(tj717tj](s), where H(kj) = H(j)]l{Tthj,l} S k
j=1

Consequently, H1y ;,] is an elementary process, and its stochastic integral with respect to M € H? is
n

(H - M)ipr, = (Hljor,) - M) = ZH(kj) (th/\t - th_l/\t) .

Jj=1
Then the desired result follows by letting k& — oo. O
We introduce two important convergence results for stochastic integrals.

Theorem 5.7 (Dominated convergence theorem for stochastic integrals). Let X = M + A be the canonical
decomposition of a continuous semimartingale X, and let T > 0. Let (H™)22, be a sequence of locally bounded
progressive processes such that lim, ., H® = Hg a.s. for every s € [0,T], where H is a locally bounded

progressive process. Let K = (K)s>0 be a nonnegative progressive process such that
T T
/ K2d(M,M), < 0 a.s., and / K, |dAs| < o0 a.s.. (5.7)
0 0

If the sequence (H™)S2 4 is dominated by K, i.e. |H!| < K; a.s. for every n € N and every s € [0,T], then
H™-X — H - X uniformly on [0,T] in probability, i.ec.

t t
/H:dXsf/ HydX,
0 0

Note the property (5.7) holds if K is a locally bounded progressive progress.

lim P | sup >e| =0, foreache>0.
n—oo te[0,7)
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Proof. Since |HY — Hs| < 2K, a.s. and fOT K|dAg| < 00, by Lebesgue dominated convergence theorem,

T
lim |H — Hq||dAs] =0 as..
0

n— oo

So we only need to deal with the case when X = M is a continuous local martingale. For every N € N, choose
the following stopping time:

t
™ :inf{te [0,7) :/ K2d(M, M), zN}AT.
0
By assumption (5.7), we have P(ry =T) — 1 as N — co. Furthermore, on [0, T,
(H" — H)-M|* < ((H" = H) - M,(H" — H) - M) = (H" — H)* - (M, M).

Hence for every ¢ € [0,T7,

2

tATN tATN ™~
[ —mya] < [ -2 ae . = [ - m)*a0d ).,
0 0 0

Since [j¥ K2d(M,M), < N, and |H — Hy| < 2K, and H — H, as. for each s € [0,T], by Lebesgue
dominated convergence theorem,

lim E | sup

n—oQ [tG[O,T] n—oo

tINTN
[ - mya,
0

2] < lim E MTN(HQ — H,)*>d(M, M}S] =0.

Then for every € > 0,

t tATN
P( sup / (H —Hs)dMg| > €| <P(ry <t)+P| sup / (H} — Hs)dM,| > €
tefo,7] [Jo te[o, 7] 1Jo
1 tATN 2
<P(ry <t)+ 5E | sup / (H — Hg)dMg| | .
€ tel0,7] 1J0
Letting n — oo and N — oo, we obtain the desired result. O

Corollary 5.8 (Dominated convergence theorem for stochastic integrals). Let X = (X;)i>0 be a continuous
semimartingale. Let (H™)?2, be a sequence of locally bounded progressive processes such that lim, oo HY =
H; a.s. for every s > 0, where H is a locally bounded progressive process. Let K = (K)s>0 be a nonnegative
progressive process satisfying for every T > 0. If |H}| < K, a.s. for every n € N and every s > 0, then
for every stopping time T with T < o0 a.s.,

T

lim H!dX, = / H,dX in probability.
0

n—oo 0

Proof. We fix N > 0. Then H" - X — H - X uniformly on [0,T] in probability, and for every e > 0,

IP’(/ HngS—/ H,dX; >e) <]P’</ H;’dXS—/ H,dX;
0 0 0 0

t t
<P| sup / H?dX, —/ H,dX,
tefo,N] |Jo 0

We then let n — oo and N — 0o to obtain the desired result. O

> €, T<N)—HP’(T>N)

>6> +P(r > N).
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For continuous integrands, we have the following useful approximation result.

Proposition 5.9. Let X be a continuous martingale, and let H be an continuous adapted process. For every

t >0 and every sequence of partitions 0 =ty < 1} <--- <t =t whose mesh tends to 0, we have

/ HydX, = lim Zth (Xen — Xyn ) in probability. (5.8)

7j=1

Proof. For every n € N, we define H} = Hyp and H} = Z?;l Hin  Lgn | 4np for all s > 0. Then H™ is a
left-continuous adapted process, hence is progressive. By Theorem (v), we have

kn
/H”dX Zthlxtn—th ), VneN
Jj=1

We take K; = maxo<,<s |H;|. This is a locally bounded progressive process dominating H™. Since H is
sample continuous, we have H" — Hy a.s. for all s € [0,¢]. Using Theorem concludes the proof. O

Remark. Note in m we evaluate H at the left end of every interval (t7_;, J] The result fails if we replace
Ht’;_l by Ht;t To see a counterexample, we take H =Y to be another continuous martingale. Then

kn kn kn
D Ve (Xep = Xip ) =D Yer (Xew = Xop )+ D (Xep = Xop )(Yep — Vi)
j=1 j=1 j=1

The convergence results in |(5.8)| and [(3.10)|imply lim,,_, ngl Yin (Xun — Xyn ) = fot Y dXs + (X, Y)s, and

t t
XY, — XoYo = / X, dY, +/ Y, dX, + (X, Y),. (5.9)
0 0

This is known as the formula of integration by parts.
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5.2 Itd’s Formula and its Consequences

Theorem 5.10 (It6’s Lemma). Let X1 --- XP be p continuous semimartingales, and let F € C*(RP). Then

for every t > 0, we have

Pt 1 2
OF(XL,--- O2F o, XP) o
1. Py — ... XxP E s J § ioxd
F(Xtv 7Xt) - F(X07 vXO) + . 1/ OxJ dX +5 / 8:6181‘3 d<X 7X >s~
Proof. We write (X!,---,XP) = X for brevity. Fix ¢ > 0, and consider an increasing sequence of partitions

0=1t§ <ty <---<{p =t whose mesh tends to 0. According to Taylor’s theorem,
F(X) = F(Xo) + 3 (F(Xy) — F(Xoy.,))

P kn P
OF : . 1 T ; ; ;
= F(Xo) + Z 7(Xt” )(ng - Xglnfl) + D) Z f;’,jz(Xt“ Xt” 1)(thf - thﬁl)’

(a) (b)
where the quantity f "} can be written as

0?F

fi,j —
b Qi

(1=OXep , +EXm)

for some random variable £ : Q@ — [0, 1]. By Proposition the term (a) converges to f 1 g gfg (X )dX?

in probability as n — co. So it remains to find the limit of term (b). For brevity we write D;; F' = az & . By

uniform continuity of the second derivatives of F' on compact intervals, we have for all 7,5 € {1,--- ,p} that
sup f:,Jl — DijF(th_l) < sup sup ’DWF(IZ’) — DljF(Xtr'_l)‘ —0 a.s..
1<I<kn

1915k \ e [Xg AXp X VX]
T€|Xep AXen Xin VXin

By Proposition [3.79) Y57, (X? fn — Xin 1)(Xgln — Xg{il) 5 (X, X7), < co. This gives an estimate of (b):

k’!l
S DyF (X (X — X )(Xhy — Xy )

1— 1
=1

k’L

% % j j P
Zf (Xin — thn_l)(Xgln Xgln_l)’ =0 as n— .
=1

According to[(5.9)| the process X*X7 = (X'X7)s>0 is also a semimartingale. We then transform (b) as

lim i Di;F(Xop )(Xfp — Xip V(X — X )

/ D F(X,)d(X'X7), / D F(X)X:dXI — / Dy F(X)X?dX! (in probability)
= /0 Dy F(X,) d(X X7, / DijF(Xs)d(X" - X7)s — /0 DijF(Xs)d(X? - X%,  (by associativity)
= /Ot Dy F(X,)d(X", X7),. (by linearity and[(5.9))

Thus we finish the proof of It6’s formula. O

Remark. The formula [(5.9)| of integration by parts is a special case of It6’s lemma.

140



Proposition 5.11. Take a twice continuously differentiable function F(r,x) in R%. Ité’s formula implies

LOF Y(OF  10°F
F(X,X), X:) = F(0,Xo) + (X, X)S,Xs)dXs—i—/ “— ts553 (X, X)s, Xs)d(M, M),
0 3 0 or 2 Ox
For a continuous local martingale M, F((M, M), M) is a continuous local martingale if 2E + %%QJF =0

Remark. We take F(r,z) = exp()\:c——r) where A € C. Then both the real and imaginary parts of F': R? — C
satisfies the above condition, and BF = \F. We define

/\2
g(AM)fGXP()\Mt2<M,M>t>7 VtZO
Consequently, &(AM) is a complex continuous local martingale (i.e. both its real and imaginary parts), and

t
EAM); = Mo -\ / EAM), dM,.
0

5.2.1 Multidimensional Brownian motions

A d-dimensional Brownian motion is a stochastic process {B; = (B}, -+, B{),t > 0} with values in R? whose
component processes B!, ... B¢ are independent Brownian motions. A Brownian motion (Bt)t>0 is called a

(#)-Brownian motion if it is adapted and has independent increments with respect to the filtration (#)i>0.

Theorem 5.12 (Lévy’s characterization of multi-dimensional Brownian motions). An adapted and continuous

process B = (BY,--- ,BY) is a (%;)-Brownian motion if and only if its component processes By,--- , Bg are
continuous local martingales such that (B%, BY); = dijt for alli,j € {1,--- ,d} and allt > 0.
Proof. We only prove the sufficiency part, since the other direction is clear. Take a = (al,---,aq) € R?

with |a|? = 27:1 3. Then aX; = ijl ;B! is a continuous local martingale with quadratic variation
(a"B,a' B) = |a|?t. By Proposition the process (exp(ia'B; — %|a|2t))t20 is a continuous local martin-

gale bounded on each compact interval [0,¢], ¢ > 0, hence is a martingale. As a result, for all t > s > 0,
1 1
E {exp (iaTBt — 2a|2t> ‘ ﬁs] = exp (iaTBS — 2|a|23> = E [exp(iaT(Bt — Bs))|ﬁs} — ezl (t=s)

Given any A € %, we take the measure P4 (E) = P(ANE)/P(A), VE € .%#. Comparing the characteristic
functions, the law of By — B does not change from P to P4. Then E[f(B; — Bs)14] = P(A)E [f(B; — Bs)]
for all nonnegative measurable functions. Choosing f to be indicator functions do we obtain that B; — B, is
independent of F, and B; — Bs ~ N(0, (t — s)I4). Since B is adapted and continuous and has independent

Gaussian increments, it is a (.%#;)-Brownian motion. O

Remark. (i) (Rotational invariance of Brownian motions). If B is a d-dimensional Brownian motion and

Q € R%*? is an orthogonal matrix, then QB is also a d-dimensional Brownian motion. To see this, we note

d d
<Xi7Xj>t = <Z QikBkaszlBl> Z szle B B t = ZszQJkt = 61]t
t

k=1 =1 k=1
(ii) Let B = (B',--- , BY) be a d-dimensional (.%;)-Brownian motion. By Itd’s formula, for a twice continuously
differentiable real-valued function F'(z1,--- ,z4) on R,
p p 1 [P F g
F(B;, -+ ,Bf) = F(By) oo, B dAB] + = ——(Bi,-- ,BY)ds.
(t’ O+Z/ ’ s) S+Q;A ax?( 59 ’ S)S
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We denote by A the Laplacian operator. Then

F(B) = F(B,) + /Ot VF(B,)-dB, + % /Ot AF(B,)ds.

Likewise, for a twice continuously differentiable real-valued function G(t,zy,--- ,74) on Ry x R% we have
K troGg 1
0 0

5.2.2 The Dambis-Dubins-Schwarz Theorem

Now we introduce a time-changed Brownian motion representation of continuous local martingales. Before

presenting the general conclusion, we first prove some technical results.

Lemma 5.13. Let M = (M;);>0 be a continuous local martingale. Almost surely, we have My, = My for all
0 <a<b such that (M, M), = (M, M),.

Proof. Fix 0 < a < b. Consider the continuous local martingale N; = M; — M;x,, whose quadratic variation
is given by (N,N); = (M, M); — (M, M)inq. We choose the sequence of stopping times 7, = inf{t > 0 :
(N,N); >1/n}. Since (N™ N7} < 1/n, we have N™ € H? and

E [N ] =E[(N,N)irr, ] < =, Vt€[a,b].

S|

On the event Ay = {{M, M), = (M, M),} C {7, > b}, we have

n— oo

E [Njla,,] =E[Ngn, 1a,,] <E[Ng. ] < =" Ny =0 a.s. on Agp.

S|

We set Eqp = {(M, M)y = (M, M), = My # Mo} = Apap) N {My, # M, }, which satisfies P(E, ) = 0. Take

E= |J Ew = PE)=0
a,beQ, 0<a<b

On event Q\E, whenever (M, M), = (M, M),, one can choose Q 3 a,, | a and Q 3 b,, T a. Then (M, M), =
(M,M),, for all n € N, and M, = M, . By sample-continuity of M, we obtain M, = M. O

Theorem 5.14 (Dambis-Dubins-Schwarz). Let M = (M;);>0 be a continuous local martingale such that
My =0 and (M, M) = 00 a.s.. Then there exists a Brownian motion 3 = (Bs)s>0 such that almost surely,

(My)i>0 = (B, My, )e>0-

Proof. For every s > 0, choose the stopping time 75 = inf{¢t > 0 : (M, M); > s}. Since (M, M) = o0 a.s.,
we have 7, < 00 a.s., and we reset 75(w) = 0 on the event E = {(M, M), < oco}. By completeness of the
filtration (%;);>0, the variable 7, remains a stopping time. By construction, for every w € £, the function

s+ T5(w) is increasing. On the event Q\E, we have

limr, = inf (V{t=0:(M M), >r}=inf{t >0: (M M), > s},

r<s

lif}Tr:infU {t>0: (M, M), >r}=inf{t > 0: (M, M); > s}.

r>s

Hence s — 75(w) is left-continuous, and has right limit 75 = inf{t > 0: (M, M); > s} at s > 0.
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For every s > 0, we set 8, = M, . By Proposition B = (Bi)t>0 is an adapted process with respect to
the time-changed filtration ¥, = %, for every s > 0, and ¥, = #. The completeness of (¢;):>0 also follows
from (#;);>0. Moreover, the sample path s — 3, is caglad, with the right limit at s given by 8,4 = M, on
the event Q\E. Note that (M, M), = (M,M). = s for every s > 0. By Lemma we have almost surely
M, . = M, for all s > 0. Therefore, the sample path of § = (8,)s>0 is almost surely continuous.

Now we verify that (3s)s=o and (32 — s)s>0 are martingales with respect to the filtration (¥;)s>9. For
every n € N, by Theorem the stopped processes M ™ and (M™)? — (M, M)™ are uniformly integrable

martingales, since (M, M) = (M, M), = n < co. By optional stopping theorem, for every 0 < s <t < n,

E [ﬂt|gé] =K [M:—;n|y7's} = MTS = ﬁsv
E (6] —tl%] =E [(M])? —(M™, M™). | F:,] = (M]")? = (M, M) pr, = 57 — 5.

The case d = 1 of Theorem implies that § is a (%4;)-Brownian motion.

On the other hand, by the very definition of 7. and 7,1, for all s > 0, we have (a7 0y, < 8 < T, m). s
and (M, M), ., = (M, M)z ary,, = (M, M)s. According to Lemma almost surely, the equality
Mg =M, = B(m,my, holds for all s > 0, concluding the proof. O

(M,M)s

Remark. In this theorem, the Brownian motion 8 = (8;);>0 is no longer adapted with respect to the original
filtration (#;);>0, but with respect to the time-changed filtration (¥;);>0.

Corollary 5.15. Let M and N be two continuous local martingales such that My = No = 0. Assume the
following conditions holds almost surely: (i) (M, M), = (N,N); for all t > 0; (ii) (M,N); = 0 for all
t > 0; (iti) (M,M)s = (N,N)oo = 00. Let 3 and ~y be the Brownian motions such that My = B ary, and
Ny =y(n,ny, for allt >0 almost surely. Then 3 and v are independent.

Proof. We choose the stopping times 75 = inf{t > 0: (M, M), > s} =inf{t > 0: (N, N); > s} for all s > 0, so
both S, = M, and vs = N,, are (¥,)-Brownian motions, where (¢);>0 is the time-changed filtration ¢, = .%,,.

Since the continuous local martingales M and N are orthogonal, the process M N is also a continuous local
martingale. By Proposition m (vi), the stopped process M™ N7 is a uniformly integrable martingale. By

optional stopping theorem, for all 0 < s < ¢t < n, we have
E B9 =E [M;nN;rtnLgZTs] = M::N;—: = Bs7s-

Hence (Bivi)i>o0 is a (%)-martingale, and again by Proposition m (vi), we have (8,7) = 0. According to
Theorem (8,7) is a two-dimensional (%;)-Brownian motion, hence 8 and v are independent. O
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5.2.3 The Burkholder-Davis-Gundy inequality

Now we introduce a useful inequality connecting the local maxima of a continuous local martingale with its

quadratic variation.

Theorem 5.16 (Burkholder-Davis-Gundy inequality). Given a continuous martingale M with My = 0, we
define the local mazima M} = supg<,<;|M;| for all t > 0. Then for every p > 0, there exist constants

Cp, cp > 0 depending only on p such that for every stopping time T,
B [(M, M)P/?] <E|M; P < CLE[(M, M)2/?].
Remark. By the case p = 1 of the Burkholder-Davis-Gundy inequality, if M is a continuous local martingale

with My = 0 such that E[(M, M)ééz] < 00, then M is a uniformly integrable martingale.

Proof. By replacing a continuous local martingale M with M7, it suffices to deal with the case 7 = co. We
can further assume that M is bounded by replacing M with M ™, where 7,, = {t > 0: |M;| = n}, and the
result of n — oo follows by monotone convergence theorem.

Step I. We first prove the inequality E|MZ|" < C,E[(M, M>§é2].
Case I: p > 2. Apply Itd’s formula to |z|?:

t B 1/t _
= [ o P s aM, + 5 [ oo - DIMLP2 a0 ).,
0 0

Note that M is a bounded. Then M € H?, and the process (fgp|M5\p_lsgn(Ms) dMS) - is also a martingale
t>

in H?. Consequently, we have

E sy < Vg [ [t aor, M>s} < P2V g p-2(ar, o),

IN

p(p—1) =) 912/P
PE B[0P E (M, 00"
On the other hand, the Doob’s LP-inequality Proposition [3.52] gives
» \*
Bl < (L) Bl
p—1

Combining the last two displays, we have

E|M; [P < ((pf 1>pp(p2_ ”)WE [<M, M>f;/2} . (5.10)

Case I1: p < 2. Since M € H?, the process M2 — (M, M) is a uniformly integrable martingale, and E[(M,)?] =

E[(M, M),] for every stopping time 7. Given z > 0, consider the stopping time 7, = inf{t > 0: M? > x}. If
7 is a bounded stopping time, we have

E [(M, Ar)? E[{(M, M), Ar] _ E[M, M),

B((M2)? 2 2) = B(ry <) = B (Mo ? 2 ) < AMrene)'] EUMM)rope] BV M|

v - x T x

Consider the stopping time o, = inf{s > 0 : (M, M); > z}, so {{M,M); > z} = {0, < t}. For every ¢t > 0,
we use the preceding bound with 7 = o, A t:

P ((M{)? 2 z) SP((M7,0,)° 2 ) + Plog < 1) <@ 'E[(M, M)o,ne] +P (M, M), > z)
= zilE [<M7 M>t]1{(M,M)t<w}] +2P (<M7 M>t > JC) .
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Now we integrate both side with respect to 227/~ dz. For the left-hand side:

0 (M7)?
/ P((M;)? > ) Sa?/* " do = E / L dx] =E[(M;)].
0 0

Similarly, [[°P((M,M), > z) La?/?>~1dz =E [(M, M)fﬂ]. Furthermore,

T E ML, Popi2=2 90 — | [ (M, M <M’M>tpp/2—2d AT
; [(M, M) Lgar, 0y, <)) 2% z=FE | (M, M), ; 2% Tl =5 (M, M), .

This gives the bound
4 —
E|M; " < 5—2E [(M, M)'?] (5.11)
—-p

Note both |(5.10)| and |(5.11)| hold for ¢ = co by monotone convergence theorem.

Step II. Now we prove the inequality E|MZ|" > ¢, E[(M, M}gf]. By Itd’s lemma,

t
M? = 2/ My dM, + (M, M),.
0
For x,y > 0, we note the inequality

207 (2P + yP), p>1,

|z +ylP <
||P + |y|?, 0<p<l.

We let . = M2 and y = —2 fg M, dM, to get

E [(M, M>§42} < max {1, 2%—1} (]EMOOV’ +25E

) e’} p/2
/ My dM; / M, dM; .
0 0

We then apply the Burkholder-Davis-Gundy inequality to the continuous local martingale f(f Mg dM, and the

(/OOC MZ2 d(M, M>t>p/4]

< OB IV P20t 2] < Gy [Elnag o (0, 1027).

p/2
< 2P |E|IMZLIP+E

Cauchy-Schwartz inequality to get
00 p/2
/ M, dM,
0

E <C,E

Therefore

E[(M, M%) <2°C, <E|M:o|p + \/EM:QPE [z, M>gé2}> .
We rearrage the above inequality to obtain
2
< E (M, M%) - 2plcp¢E|M:o|p> < (277207 +27C) BIML |,

which implies

E [<M, M>§;ﬂ < (21’—10,, + /220202 + 2v0p)2 E|M?P.

Then we finish the proof. [
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5.3 The Representation of Martingales as Stochastic Integral

On a probability space (€, .#, P), we choose a filtration (.%;);>0 on 2 to be the completed canonical filtration
of a Brownian motion. An interesting conclusion is that all martingales with respect to this filtration can be
represented as stochastic integrals with respect to the Brownian motion.

In this section, we fix a Brownian motion B = (By);>0, and assume (%#;);>0 to be the completed canonical
filtration of B. Before formally presenting this result, we first introduce some technical lemma.

Lemma 5.17. The vector space generated by the random variables of the form
n
exp iz/\j(Btj thj_l) , where 0=typ <ty <---<t, and A, -,y €ER
j=1

is dense in the space LE(Q, Foo,P) of all square-integrable complez-valued .F . -measurable random variables.

Proof. By elementary Hilbert theory, it suffices to show that Z = 0 is the only variable that satisfying
n
E | Zexp z‘ZAj(Btj —~B;, ) || =0
j=1

for all choices of 0 =ty < t; < --- <t, and A1, -+, A\, € R. Define the complex measure p on R” by
:LL(F) =E [Z]IF(BtuBtz - Btu e ’Btn - Btn—l)] s VF € ’@(Rn)

Then the Fourier transform of u satisfies

/ e p(de) =E | Zexp i> N(By, —By,_,)|| =0, VAeR"™
n =
By Lévy’s continuity theorem, we have y = 0. Hence E[Z1 4] = 0 for all A € o(By,,---, B, ). A monotone
class argument shows that E[Z1 4] holds for all A € o(By,t > 0), and further by completion, for all A € F.
Hence Z =0 in L4(Q, Zu, P). O

Theorem 5.18. For cvery Z € L?(), Z.,P), there exists a unique progressive process H € L?(B) such that
7 =E[] +/ H, dB,. (5.12)
0

Consequently, for every L?-bounded martingale M (resp. for every continuous local martingale M), there
exists a unique process H € L*(B) (resp. H € L2 _(B)) and a constant C € R such that

loc

t
M, = C+/ H,dB,, Yt>0. (5.13)
0

Proof. Consider the first assertion. If both H and H’ satisfy this (5.12]), the second moment formula gives

(/OOO<HS H;>st)2

This shows uniqueness. For existence, let 7 be the vector space of all Z € L?(Q, %, P) for which there exists
an associated H € L?(B) satisfying (5.12). By Proposition for any step function h = E?Zl N1t

J

0=E

E{/OOO(HSH;)st} = H=H in L*B).
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where 0 =ty <ty <---<t, and A, -+, A\, € R, we have
exp (lz )\j(Bt]. — Btj_l) + 5 Z )\?(tj — tj1)> = éa(lh . B)t =1+ 1/ éa(lh . B)Sh(s) dBS
Jj=1 j=1 0

Since & (ih - B)sh(s) is a bounded continuous local martingale, both its real and imaginary parts are in L?(B).
This implies that both the real and imaginary parts of exp (z Z;‘L:1 Aj(By, — Btj71)> are in 7. According to
Lemma J contains a dense subset of L?(Q, Z,,P).

To prove the first assertion, it remains to show that # is closed, which implies # = L?(Q, %, P). We
assume that Z,, € # is a sequence of random variables that converges to Z in L2. Let H™ € L?(B) be the
associated progressive process. Then

00 oo 2
)~ O sy = [ [ (0 50| < [( |~ iy a, )
0 0

—E|(Zn — Zim — ElZ0] + ElZ0])?] <1120 ~ Zull3.

Hence H™ is a Cauchy sequence in L?(B), which converges to some H € L?(B) by completeness of L*(B).
Consequently, Z,, = E[Z,] + fooo H™ dB, converges to Z = E[Z] + fooo H,dB, in L2.

We turn to the second assertion. The uniqueness argument is similar. If M is a L?-bounded martingale,
then M; converges a.s. and in L? to some M., € L*(Q, %, P). Since (fg H; dBg)s>0 is bounded in L?, it is
a uniformly integrable martingale. We can find the process H € L?(B) that satisfies for M,,. Then

e’} t
Mo = E[M.] +/ HydB, = M, = E[Ms| %] = E[M.] +/ H,dB,, V> 0.
0 0

Finally, if M is a continuous local martingale, we have My = C a.s. for some constant C' € R because %
is P-trivial. We then choose stopping times 7, = {t > 0: |M;| > n} so that M™ are bounded martingales.
According to the preceding result, there exists H™ € L?(B) such that

t
M., =C + / H™ dB,, Vt>0.
0

By uniqueness of the progressive process in this representation, we have H™ = H (”)]I[O)Tm] in L2(B) for all
n > m. Consequently, we can find H € L?*(B) such that H™) = Hlyo 7, in L?(B) for all n € N, and the
representation formula (5.13)) follows by letting n — co. The uniqueness argument is similar. O

Remark. In this theorem, we do not require the L?-bounded martingale M to be continuous. Next we discuss

some consequence of this representation theorem.
Proposition 5.19. The filtration (%)i>0 is right-continuous.

Proof. Let Z be a bounded %, -measurable random variable. By Theorem there exists H € L?(B) such
that Z = E[Z] + f(;)o H;dB;s. Given € > 0, Z is #;4. measurable. By continuity of H - B, we have

t+e t
7Z =E[Z|F.] = E|Z] +/ H,dB, “% E[Z] +/ H,dB,, €l0.
0 0

As aresult, Z = E[Z] + fot H,dB; a.s.. By completeness of the filtration (%#;)¢>0, Z is also #;-measurable.
Hence for all A € .%#;,, the variable Z = 1 4 is .%; measurable, and A € .%;. Therefore %, = %;. O
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Remark. We also can define the left limit of (%#;);>0 at any ¢ > 0:

0<s<t

A similar argument to Proposition (5.19) implies that .#,_ = .%,. Namely, the completed filtration (.%;);>0
generated by a Brownian motion B is also left-continuous.

Proposition 5.20. All martingales with respect to the filtration (F,)i>0 have an a.s. modification with con-

tinuous sample paths.

Proof. Following Theorem an L?-bounded martingale is continuous according to the representation for-
mula . Now we consider a uniformly integrable martingale M. This suffice since we can replace a
martingale M by the stopped martingale M for every a > 0.

Since M is a uniformly integrable martingale, we have M; = E[My| %] for all ¢ > 0. By Theorem [3.56]
and Proposition M has an a.s. modification with cadlag sample paths, which we still denote by M for
simplicity. Let Még ) be a sequence of bounded random variables that converges in L' to M., and introduce the
martingales Mt(n) = E[Még )|§t]. These martingales are then bounded in L?, hence continuous. Furthermore,
the Doob’s maximal inequality Proposition [3.52] (i) gives

P(suth(") ~ M| > >\> < %E’M&?) ~ M|, va>o.

t>0

We choose a subsequence nj such that

1 1
P(sup|M™ —M,|>—)<— VkeN
(st =01 > ) = g e

which implies

n 1 P
P <sup |Mt( k) _ M| > o8 for infinitely many k) = 0.
>0

)

Here we use Borel-Cantelli lemma. Consequently, sup, |Mt(n’° — M| — 0 a.s., and the sample paths of M,

being the uniform limit of a sequence of continuous functions, is continuous. O
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5.4 Stochastic Differential Equations

We start from a deterministic process (y:)i>0, of which the dynamic is specified by the following ordinary
differential equation (ODE):

t
dy: = b(t,y)dt <  yr=wyo +/ b(s,ys)ds
0

To model a noisy system, we simply introduce a random perturbation of the term o dB;, where o > 0 is a
constant, and B; is a Brownian motion. This form implicitly assumes independence of perturbations affecting

disjoint time intervals, and we get
t
dy; = b(t,y)dt +0dB, <& y:=1yo —|—/ b(s,ys)ds + o By.
0

We generalize the above equation by allowing o depending on the time ¢ and the state y;:

t

t
dye = bty dt + oty dB: & yi=yo+ [ b(s,ys)ds + / o(s,y,) dB,.
0 0

This gives rise to the following definition of stochastic differential equation.

Definition 5.21 (Stochastic Differential Equation, SDE). Let o = (04j)ic[p],jelq : R+ x R? — RPX? and
b= (bi)icp) : Ry x R? — RP be locally bounded measurable functions. A solution of the stochastic equation

E(o,b), which is given by
dXt = O'(t, Xt) dBt + b(t, Xt) dt,

consists of:
e A filtered probability space (,.%,P) and a complete filtration (% );>o;
e A g-dimensional (.%;)-Brownian motion B = (B!, .- | B?) starting from 0;
e An (Z;)-adapted and continuous process X = (X1, -+, XP) taking values in RP, such that

t t a t
X = Xo +/ o(s, Xs)dBs —|—/ b(s, Xs)ds %l X=X+ Z/ 0ii(s,Xs)dBI —|—/ bi(s, Xs)ds.
0 0 =iJo 0

If Xg ~ §, for any = € RP, we say that X is a solution of E*(c,b).
There are several notions of existence and uniqueness for stochastic differential equations.

Definition 5.22. For the stochastic differential equation E(o,b), we say that there is
o weak existence, if for every x € RP, there exists a solution of E*(a,b);
o weak existence and weak uniqueness, if in addition, for every x € RP, all solutions of E*(o,b) have the
same law;
o pathwise uniqueness, if, whenever the filtered probability space (Q, #, (%)t>0, P) and the (:#;)-Brownian
motion B are fixed, two solutions X and Y such that Xg = Y| a.s. are indistinguishable.
Furthermore, we say that a solution X of E(c,b) is a strong solution if X is adapted with respect to the

completed canonical filtration of B.

Remark. We give an example of stochastic differential equation where weak existence and weak uniqueness
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hold, but pathwise uniqueness fails. Let (5;);>0 be a Brownian motion with 8y = = € R, and consider

t
B, = / sen(B.) B, where sgn(z) = 1(p,00) (1) = 1 (oo 0)(2).
0

Then (B¢)i>0 is a continuous local martingale with quadratic variation (B, B); = t, hence is a Brownian
motion by Theorem Furthermore, by associativity of stochastic integrals, one have

t t
[ sen(saB, = [ sn(g a5, = 60~ 6o, vt zo.
0 0
Therefore, (5¢):>0 solves the following stochastic differential equations:
dX; =sgn(X;)dBs, Xo=uz.

For this equation, weak existence holds, and again by Theorem [5.12] we know that any solution of this equation
must be a Brownian motion. Hence weak uniqueness also holds. Nevertheless, pathwise uniqueness fails for
this equation. For example, if we set z = 0, then both 8 and —f solve the preceding SDE with the same
Brownian motion B starting from 0.

5.4.1 Existence Theory for SDEs with Lipschitz Coefficients

Now we study the properties of SDE E(o,b) where functions ¢ and b are continuous on R} x R? and Lipschitz

in the variable . Then there exists a constant L such that for every t > 0 and z,y € R?,

lo(t,2) —a(t,y)| < L]z -yl
[b(t, x) = b(t, y)| < Llx —yl.

Here we use | - | to denote the Euclidean norm of vectors and the Frobenius norm of matrices.

Lemma 5.23 (Gronwall’s lemma). Let T'> 0 and let g : [0,T] — Ry be a bounded measurable function. If

there exist two constants a > 0 and b > 0 such that
t

g(t) < a—l—b/ g(s)ds, Vtel0,T],
0

then we have g(t) < ae®® for allt € [0, T).

Proof. A simple recursion on g gives
t S1
g(t) <a+a(bt) + b2/ (/ g(52)d52> ds; < ---
0 0
bt)2 bt)™ t s1 Sn+41
<a+a(bt)+ a(T) 4.4 a% +ptt / dsy / dsy - / dsnt+19(Snt1)-
n: 0 0 0

Since g is bounded, we let 0 < g(t) < M for all t € [0,T]. Then

— (bt)"  M(bt)"*!
g<t>sGkZ=0 T T

Letting t — oo produces the desired result. O

The following theorem gives the existence of a solution of SDE in the Lipschitz case.

150



Theorem 5.24. Let functions o and b be continuous on Ry x R? and Lipschitz in the variable x. Then
pathwise uniqueness holds for the SDE E(o,b). Furthermore, for every complete filtered (0, F, ()0, P),

every (F;)-Brownian motion B and every x € RP, there exists a unique strong solution of E*(o,b).
Proof. We prove the case p = ¢ = 1. The multi-dimensional case is similar. To tackle pathwise uniqueness, we
fix the complete filtered probability space (Q, %, (%#;)i>0,P) and the (% )-Brownian motion B with By = 0.
Let X and Y be two solutions of E(c,b) with Xo = Yy a.s.. We fix M > 0, and set

T=inf{t > 0:|Xy| V|V > M}
Then t — E[(X;rr — Yiar)?] is a bounded measurable function. Moreover, for every ¢ > 0,

tAT tAT
Xinr = Xo +/ o(s,Xs)dBs +/ b(s, X,)ds,
0 0

and a similar formula holds for Y;»,. We fix T > 0. For all ¢ € [0,T], use the bound (5.6):

</Otm (o(s,Xs) —o(s,Ys)) st> </0tAT e bt ds) 21

< 2K [/OMT (o(s,Xs) — o(s,Yy))? ds] +2FE [T /OW (b(s, X,) — b(s, Yy))? ds]

2

E [(Xtm— - K/\T)Q:| <2E +2E

<2(1+T)L°E [/OW(XS - Y:)? ds]
<201+ T)L*E [/Ot(XW — Yirr)? ds] .

By Lemma we have E [(XMT - Yt/\T)Q] =0, and Xianr = Yinr a.s. for all t € [0,7]. Let M — oo and
T — oo, we then have X; = Y; a.s. for all ¢ > 0. The indistinguishability of X and Y then follows from
sample-continuity and a density argument.

Next we construct a solution of E*(c,b) using Picard’s approximation. Define by induction:

t t
X)=2 X!==z +/0 o(s,z)dBs +/0 b(s,x)ds,

t t
Xt":m—k/ a(s,Xg—l)dBSJr/ b(s, X" 1)ds, ne€N.
0 0

Clearly, X™ is continuous and adapted to the completed canonical filtration of B. We fix T' > 0, and find a
strong solution on [0, 7. Define

gn(t) =E | sup |X* — X712, vtelo,T].
s€0,t]

Since o(-,x) is continuous, the process (fg o(s,z) dB;) is a continuous local martingale with finite

>0
quadratic variation, hence is a martingale by Corollary Consequently, we can use Doob’s L2-inequality
[Proposition (ii)] and boundedness of functions o(-,z) and b(-,x) on [0, 7] to find some constant Cp > 0
depending only on T such that g1 (t) < Cr for all ¢t € [0, T].

Now we bound g,, by induction. For any n € N, one have

t t
X xn :/O (o(s, X7) — o(s, X71)) dB, +/0 (b(s, X™) — b(s, X2 1)) ds.
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We then use the Burkholder-Davis-Gundy inequality [Theorem [5.16]:

E| sup (X3+! - X7)?
s€[0,t]
S 2 S 2
< 2E | sup / (o(r, X)) —o(r,X* ")) dB,| | +2E | sup / (b(r, X)) = b(r, X~ 1)) dr
s€[0,t] [J0 sef0,t] /0

< 20,E [/Ot (o(r, X7) — o(r, X771))? dr] +2F [T /Ot (b(r, X) — b(r, X 1))* dr}

<2(Cy+T)L’E Ut(X;L — Xnh? dr]

0

Consequently, we have
t
Gni1(t) < 2(Cy +T)L2/ gn(s)ds, Vtel0,T].
0

Since g1(t) < Cr for all ¢t € [0,T], an induction gives

(2(Cy + T) L)

gn(t) S C’T (n — 1)' )

vt € [0,T).

Hence we have

M8

9n(T )1/2<°O = ZSUP |Xn X7 1‘<oo a.s..

ne1 1t€[0,7]

By Weierstrass M-test, the sequence of processes (X[',t € [0,T])52, converges a.s. uniformly to a limiting
process (X, t € [0,7T]), which also has continuous sample paths on [0,7] and is adapted to the completed
canonical filtration of B. Furthermore, using Lipschitz property of o (¢, -) and b(¢, -) and dominated convergence

theorem for stochastic integrals [Theorem , the following convergences hold in probability:

t
lim (/ o(s,Xs)dBs — / sX)dB)—O
n—oo
hm(/bsX ds—/bsX" >:0,
n—oo

where we use Y-, SUP,e0,4 |X;’ — Xs"’1| to dominate the stochastic parts. By passing these limits to the
definition of X', we conclude that X} is a strong solution of E*(o,b) on [0,T]. Let T — oo, we obtain a process

X = (Xt)t>0 solving E*(c,b), and the uniqueness of this strong solution follows from pathwise uniqueness. [

Theorem 5.25. Equip both spaces C(R,RP) and C(R4,RY) with the Borel o-algebra of the compact conver-

gence topology, and complete this o-algebra on C(Ry,RP) by W-negligible sets, where W is the Wiener mea-

sure. Under the assumptions of the preceding theorem, there exists a measurable mapping F, : C(R;,R?) —

C(R4,R?) such that

(1) for everyt > 0, the mapping w — F(w), coincides W-a.s. with a measurable function of (W(r))o<r<i;

(ii) for every w € C(R4,R?), the mapping x — F, (W) is continuous;

(i1i) for everyt > 0, and for every choice of the complete filtered probability space (Q, F,(Fi)i>0,P) and of
the (F)-Brownian motion B with By = 0, the process X; = Fy(B); is the unique solution of E*(0,b);
furthermore, if U is an Fo-measurable RP-valued random variable, the process Fy(B): is the unique
solution of E(c,b) with Xo = U.
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Proof. Step I: For brevity, we only consider the case p = ¢ = 1. We let 4, be the o-algebra generated by
projection mappings {7, : 0 < s <t} and all W-negligible sets in C(R4,R), so (4):>0 is a complete filtration.
By Theorem 5.24] with the filtered probability space (C(R,R), 9, (4):>0, W) fixed, and with the Brownian
motion Bi(w) = w(t) fixed as the canonical process, there exists a unique (up to indistinguishability) and
strong solution X* = (X7);>¢ of E*(0,b) for every z € R.

Step II: Let d be a metric on C'(RT,R) that induces the compact convergence topology. We fix ¢ > 2, and
prove that there exists a constant C; > 0 depending only on g, such that for all z,y € R,

E[d(X", X*)7] < Cilz — yl°. (5.14)

Then by Kolmogorov’s lemma [Theorem 4.6] applied to the process (X*),cr taking values in C'(R4,R), we find
a modification (X7)zer of (X7),ecr with continuous sample paths. Define Fy(w) = X% (w) = (XZ(W))>0.
Then F, : (C(R4,R),9) = (C(R4,R), %) is a measurable mapping with property (ii).

To this end, we define the stopping time

=inf{t>0:|X7|V|X!|>n}, n=1,2,---

We fix some T' > 1. For every ¢t € [0,T], we apply Jensen’s inequality, Burkholder-Davis-Gundy inequality
[Theorem [5.16], Holder’s inequality and Lipschitz property as follows:

IE sup |Xs/\'rn )(g/\ﬂ1 ‘q
s€[0,t]
SATn q SATp q
< 391 | —y|94+E | sup / (o(r,X7)—o(r,X?))dB,| + sup / (b(r, X)) = b(r, XY?))dr
s€fo,t] |J0 s€lo,t] [JO

+E

( /O o X7) — o, XY))? dr) " ( /0 b X2) — b, X)) dr) qD

t
< 30! <|x —ylT+ thgflE [/ |J(r ATy Xyipr, ) — o(r ATy, XffATn)’q dr}
0

re]

< 3q71 <|1, _ y|q + KQT%71 (Cq =+ Tq/2) E |:/ ’ TATh T‘/\Tn

t
+t97IE [/ 6(r AT, X0y ) = b(r ATy, X2as)
0

)

We let C; = 3771 K9(1+C,). Then we obtain the following estimate by using Gronwall’s lemma [Lemma [5.23]
on the bounded function ¢t — E {SUPse[o,t] | XYnr, — X }

E|: sup |Xs/\7'n X:://\‘rn

q} < Clla —y|Texp (CLTT '), Vte[0,T).
s€[0,t]

A monotone convergence argument follows by letting n — oo:

E[ sup | XY — Xgﬂ < Cllz —y|%exp (Cht?), Yt >0.
s€[0,t]

We define the following metric d on C'(R4,R), which induces the uniform topology:

=3 o (s i)~ wion1).

=1 s€[0,k]
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where o, > 0 is a real sequence such that Y7, ay converges. Choose (ay) such that Y7 | o exp(Clk?) < oco.
Again by Holder’s inequality, one have

sup |X¥ — XY|?
s€[0,k]

< Cgle =yl

g—1
E[d(XT, XY) (Z ak> Z B

k=1

where Cy = C; (302, o) (X opey ar exp(Ck?)). This complete the proof of || For the assertion (i),
we point out that for any ¢ > 0, the mapping w — Fj(w); = X} = X7 is ¢,-measurable. The result then
follows from Doob-Dynkin theorem [Theorem [2.22].

Step III: We prove the first part of assertion (iii). Fix a complete filtered probability space (Q, Z, (F)i>0, P)
and an (.%#;)-Brownian motion B. Clearly, the process Fy(B) = (F;(B)¢):>0 has continuous paths, and is also
adapted since F(B); coincide a.s. with a measurable function of (Bs)scjo by (i), and since the filtration
(Z1)i>0 is complete. Then it remains to show that F,(B) solves E*(o,b).

By construction of F, and the fact that X* = X W-a.s., for all t > 0, we have

F,(w)== —|—/0 o(s, Fp(w)s)dw(s) —|—/0 b(s, Frp(w)s)ds, for W-a.s. w € C(Ry,R).

By Proposition we have the following approximation:

[t anor = i S (U7 m ) (w () - (U52)) 6

Jj=

in probability W (dw). Since W is the law of B, by Proposition we have

n—o0 on
j=1

omn . ¢
— 1)t
Fu(B)y=z+ lim Y o <(J ) 7Fx(B)<j;”1>t) (By —Bu )+ / b(s, Fo(B),) ds
0

t t
= :E+/ o(s, Fx(B)s)dBs +/ b(s, Fr(B)s)ds, a.s.,
0 0

where the a.s. convergence follows by passing the convergence in probability to an appropriate subsequence.
Therefore, F,(B) is the desired solution of E*(o,b).

Step IV: We prove the first part of assertion (iii). The mapping = — Fj(B):(w) is continuous for any fixed
w € Q, and the mapping w — F,(B)¢(w) is F;-measurable for any fixed w € Q. Then (z,w) — F,(B)¢(w) is
A(R) ® F-measurable according to a similar procedure in Proposition If U is a %#p-measurable random
variable, then Fy(B); is a composition of w— (U(w),w) and (x,w) = F(B)(w), hence is Jt -measurable.

Let H(x,w); = Fp(w); — 2z — fo w)s)ds. We use the convergence result in probability W.
Since B ~ W, and U is a .%g- meaburable varlable, which is independent of B, we have that

2n )
— 1)t
HW. By =3 o ((] 2 ) uz;») (By ~Buzne),
i=
where the series converges in probability, and the limit is the stochastic integral fo (s, Fy(B)s)dBs. Hence

/bs Fy(B ds—/ o(s, Fy(B),) dB,.

Consequently, Fiy(B) = (Fy(B))>o solves the SDE E(c,b) with initial value U. O
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5.5 Girsanov’s Theorem and Cameron—Martin Formula

In Section 5.2, we show that the class of continuous semimartingales is invariant under composition with
C?-function. In this section, we study the effect on the class of continuous semimartingales of an absolutely
continuous transformation of probability measures. We consider two probability measures P and @ on the
same measurable space (2,.#). To avoid confusion, we write Ep and Eg for the expectation under P and
@, respectively. Unless otherwise specified, our notions of semimartingales refer to the underlying probability

measure P. We will point it out explicitly when consider these notions under Q.

5.5.1 Girsanov’s Theorem

Throughout this subsection, we assume (.%;);>¢ is a complete and right continuous filtration. Most of the
time we may assume that P and ) are mutually absolutely continuous, hence the filtration (%;);>¢, being
complete with respect to P, is also complete with respect to Q.

Proposition 5.26. Assume that Q is a probability measure on (2, Foo) which is absolutely continuous with
respect to P on Fy for every t > 0. Let D be the Radon-Nikodym derivative of @ with respect to P on Fy:

_

D, =
" dpr|,’

teR,.

Then D = (Dy)1>0 is a P-martingale, and D has a cadlag modification thanks to Theorem . Furthermore,
the following two assertions are equivalent:

(i) the martingale D is uniformly integrable;

(i1)) Q < P on F.

Proof. We fix t > s > 0. Then for all A € %, we have Q(A) = Ep[14D;]. For the martingale property,
Ep[Ds14]) =Ep[Dila] = Q(A), VA€ F,C ..

Hence we have D = E[D;|%;], and D is a martingale. If (i) holds, let Z be the a.s. and L! limit of (D;);>o.
Using a monotone class argument, we have Ep[Z1 4] = Q(A) for all A € F,, hence Q < P on Z,. If (ii)
holds, let Dy be the Radon-Nikodym derivative of @ with respect to P on %;. Then Ep[D| %] = D; for
all ¢ > 0, which implies uniform integrability. O

In the sequel, we assume that the martingale D = (D;);>0 has cadlag sample paths.

Proposition 5.27. Under the assumption of the preceding proposition, for every stopping time T, we have
dQ = D.dP on Z. N{r < oo}. Furthermore, if @ < P on %, we have

_de
T dP|,

D,
Proof. For the uniform integrable case where QQ < P on %, by optional stopping theorem [Theorem |3.61],
Q(A) =Ep[Dola] =Ep [Ep[Doo|#-)1a] = Ep [D,14], VA€ Z,.

Since D, is %,-measurable, the second assertion follows. For general case, we use the fact that the stopped

martingale (Dsa¢)s>0 is uniformly integrable for every ¢t > 0. Then

QAN{r <1t}) =Ep [Drnilangr<iy] =Ep[Drlangr<iy], VA€ Z.

Letting t tends to infinity concludes the proof. O
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Remark. Let X = (X;)>0 be an adaptive process with cadlag sample paths. If XD is a P-local martingale,
then X is a Q-local martingale. To see this, we take a stopping time 7. Then for any s > 0 and any A € %,
AN{r > s} € FsN.F, = Frps. Let t > s > 0. If the stopped process (X D)™ is a P-martingale, then

Eq[Xinr1a] = Eq[XinrLangr<si] + EQ[XiarLan(r>sy]
= EQ[XS/\T]IAO{TSS}] + EP[Xt/\TDt/\T]lAm{T>s}]
= EQ[XS/\T]IAO{TSS}] + ]EP[XS/\TDS/\THAH{T>S}] = EQ [Xs/\'r]]-A]'

Hence X7 is a @Q-martingale. In addition, a sequence of stopping times increasing P-a.s. to co also increases
Q-a.s. to co. Consequently, if X D is a P-local martingale, then X is a @-local martingale.

Proposition 5.28. Under the preceding assumption, the martingale D is Q-a.s. strictly positive, i.e.
g(f) Dy >0, Q-a.s..

Proof. For every n € N, define the stopping time 7, = inf{¢t > 0 : D; < 1/n}. Then the event {7, < oo} is
F, -measurable, and D, < 1/n on {7, < co} by right-continuity of D. Hence

1
Q(tn <o00) =Ep [DTn]l{Tn<OO}] < o
which implies
Q (ﬂ{m < oo}) =0.
n=1
Then Q-a.s. there exists n € N such that 7,, = co. This complete the proof. O

Remark. If we further assume that P and @ are mutually absolutely continuous, then the martingale D is also

P-a.s. strictly positive.

Theorem 5.29 (Girsanov). Suppose the assumption of the preceding proposition holds, and assume that the

martingale D = (Dy)i>o is continuous. If M = (My)i>o is a continuous P-local martingale, then
M =M - D" (M,D)
is a continuous Q-local martingale. Furthermore, if N is another continuous P-local martingale, then
(M,N)=(M,N) = (M,N).

Proof. By Proposition the process D=1 - (M, D) is P-a.s. of finite variation, and the process M is a

P-semimartingale. According to the integration by parts formula, we have
(MD)y = MyDyg +/ M, dD, +/ DydMg + (M, D);
0 0
= MyD, —|—/ M,dD, +/ Dy,dM; — (M, D); + (M, D);
0 0
N t t
= MyDyg +/ MydDy +/ Dy dM;.
0 0
Consequently, the process MD is a continuous P-local martingale. By the Remark under Proposition
the process M is a continuous @-local martingale. The last assertion holds because the bracket of a finite

variation process and a semimartingale vanishes. O
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Proposition 5.30. If D is a continuous local martingale taking strictly positive values. There exists a unique

continuous local martingale L such that

D, = &(L), = exp (Lt - %(L, L>t> .

Moreover, L is given by the formula
t
Ly = log Dy +/ D;tdD,. (5.16)
0

Proof. We first prove uniqueness: If both L and L’ has the desired property, then L — L' = %(L’, L'y — %(L7 L)
is a continuous martingale of finite variation, hence is constantly zero [Proposition [3.68]. To show the second
assertion, use [t6’s formula to the process log D:

t 1 [t 1
log D; =log Do+ | D;'dD,~ 5 [ DIA(D.D). = Lo~ H(L. D).
0 0

where L is given in (5.16]). O

We then have another form of Girsanov’s theorem.

Theorem 5.31 (Girsanov). Suppose the assumption of the preceding proposition holds, and assume that the

martingale D = (Dy)i>0 is continuous. If M = (My)i>o is a continuous P-local martingale, then
M=M-D"-(M,D)y=M— (M,L).

is a continuous Q-local martingale, where L is given in (5.16). Moreover, D~! = éa(—Z)

Proof. The first identity immediately follows from associativity of stochastic integral. For the second assertion,
we use the identity L = L — (L, L):

E(=T): = exp (-Et _ %@, E>t> — exp (—Lt + ;<L,L)t) — &)

This proves the second assertion. O

Remark. (i) According to|[Theorem 5.30] if P and @ are mutually absolutely continuous on .%.,, then the role
of P and @ can be exchanged by replacing L with ~L.
(i) In particular, if M = B is an (.%)-Brownian motion under P, then B = B — (B, L) is a Q-continuous local

martingale, and <§ , E)t = (B, B); = t. By Lévy’s characterization of multi-dimensional Brownian motions

[Theorem 5.11|, Bis an (%1)-Brownian motion under Q.

Theorem 5.32. Let L be a continuous local martingale such that Ly = 0. Consider the following properties:
(i) (Novikov’s criterion). E [exp (3(L,L)s)] < o0.
(it) (Kazamaki’s criterion). L is a uniformly integrable martingale, and E [exp (3 Loo)]| < o0.
(iwi) &(L) is a uniformly integrable martingale.
Then (i) = (ii) = (iii).
Proof. (i) = (ii): The process &(L) is a nonnegative continuous local martingale, hence is a supermartingale
by Proposition m (i). By Fatou’s lemma,
E[£(L)oo] < lim E[&(L);] < E[&(L)o] = 1.

t—o00
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By property (i), we have E[(L, L)) < oo, and L is a continuous martingale that is bounded in L? by
Theorem [3.60} By Cauchy-Schwarz inequality,

E [exp <;Lm>} —E [g(L);g%%@’%} < \/Im\/ﬂi [e%@v”w} < \/IE [e%@@w} < .

(if) = (iil): If L is a uniformly integrable martingale, by optional stopping theorem, for any stopping time 7,

one have L, = E[L|-%;]. By Jensen’s inequality,

E [exp (;Lﬂ <E [exp (;Lm) |34’T} .

Since exp (%LOO) is integrable, the collection of random variables exp (%LT) is uniformly integrable, where T

runs over all stopping times. On the other hand, set Zt(a) = exp (ilTLZL) Then for all 0 < a < 1,

E(aL), = (E(L))" (20—

By Hélder’s inequality, for any measurable set I' € .# and any stopping time 7, one have

2 a? 1—a? 2a(l—a)
E[1r&(al),] < E[&(L),]" E []1FZ§G>] <E [npzﬂ <E [np exp (;LT)] ,

where we also use Jensen’s inequality and the fact 12+

% > 1 in the last inequality. Consequently, the collection

of random variables &(aL), is uniformly integrable, where 7 runs over all stopping times. Let 7, A 0o be a
sequence of stopping times reducing &(aL). Then for all ¢t > s > 0, by uniform integrability,

E[&(aL):|.F5] = li_>m E[&(aL)ipr,|-Fs) = lim &(aL)spr, = &E(al)s.

n—oo

Hence &(alL) is a uniformly integrable martingale, and

1= Bffo)o] <BLEDIE[2] 7 < B E e (51| o

which implies E [6'(L)s] = 1. Again, by Fatou’s lemma, E[& (L) |-Z:] < &(L):. On the other hand, we have

Hence E[&(L)wo|-%t] = &(L)¢, and &(L) is a uniformly integrable martingale. O

Remark. Let L be a continuous P-local martingale satisfying property (ii). To apply Girsanov’s theorem, we
let @ be the probability measure with density & (L)~ with respect to P. According to [Proposition 5.25| the
Radon-Nikodym derivative is %| 7z, =Dy =&(L);.

5.5.2 The Cameron-Martin Formula

Motivation. Girsanov transformation and SDE. Let 8 = (8;):>0 be a p-dimensional (.%#;)-Brownian

motion under P. Consider the following continuous local martingale:

t
L= [ 45808,
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If there exists g € L?*(Ry, %(R.), m) such that |b(t,z)| < g(t) for all (¢,x) € Ry x RP, the Novikov’s criterion

is satisfied. Then the associated exponential martingale is given by

D= sy = e ( [ vsip0as 3 [ s.p0Ras)

We set dQ) = D,,dP, which is a probability distribution. By Remark II under the following
process B is an (%#;)-Brownian motion under Q:

Bt:ﬂt—/otb(s,mds

Consequently, X = [ solves the following SDE under probability measure Q:
dXt == dBt + b(t, Xt) dt

Here we only assume that b : R, x R? — R? is dominated by a function g € L?(Ry, Z(Ry), m).

Proposition 5.33. Consider the following two SDEs admitting unique strong solution on R :

dXt = /.L(t, Xt) dt + O'(t7 Xt) dBt,
dY; = (n+v)(t,Y;) dt + o(t,Y;) dBy,

where By is a p-dimensional (F;)-Brownian motion under P, and o : Ry x RP — RP*P s almost everywhere

invertible. Furthermore, the Novikov’s condition is satisfied:

o (5 [ o v) s v as) | <o

Then, if Xq 4 Yy, the following identity holds for all bounded functional ® : C(Ry) — R:

E[®(X) = E [@(Y) exp (— / "o, Y) (s, V) ds - / N a(s,m-lu(s,wws)] .

Proof. Define the following continuous P-local martingale:

t
Ly = —/ o(s,Ys) w(s,Ys) dB,.
0
Since the Novikov’s criterion is satisfied, we can use the exponential martingale:
t 1 [t
&(L); = exp (—/ o(s,Ys) tw(s, Ys)ds — 5/ |a(s,Y5)_1u(s,YS)|2st> .
0 0
Define d@Q = &(L)o dP, and the (.%#;)-Brownian motion under P:
_ t
B;=B;— (B,L); = By —I—/ o(s,Ys) tw(s, Ys) ds.
0

Then we have dY; = u(t,Y:) dt + a(t Y:) dBt Consequently, Y; solves the first SDE under probability measure
Q and (%, Q)-Brownian motion B. By uniqueness of the strong solution, if Xy = YO, then X and Y has the
same law under P and @, respectively. The final result follows by Ep [®(X)] = Eg [®(Y)]. O
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We specialize the previous discussion to the case b(t,z) = g(t), where g € L2(R,, (R, ), m). We set

h(t) :/0 g(s)ds, VteRy.

The set s of all functions h that can be written in this form is called the Cameron-Martin space, and we
write the derivative of h € # in sense of distribution by 7 = g € L>(R, B(Ry), m). As a special case of our

previous discussion, given a Brownian motion B under P, we construct the probability measure
[e'e] 1 t )
dQ = Dy dP = exp g(t)dBs — 3 lg(t)]*ds ) dP.
0 0

Then the process B, = B, — h(t) is a Brownian motion under Q. Consequently, for every nonnegative

measurable function on C(R4,R), one have
Er [Dao®((Bi)iz0)] = Eq [2((Bi)izo)] = Eq [ ((Be + h()iz0 ) | = Ep [@((By + h(t))i0)]

We rewrite this formula to the following form.

Theorem 5.34 (Cameron-Martin formula). Let W be the Wiener measure on C(Ry,R), and let h be a

function in the Cameron-Martin space €. Then for every nonnegative measurable function ® on C(Ry,R),
/W(dw)fb(w +h)= /W(dw) exp (/ h(s)dw(s) — 5/ |h(s)|? ds) D(w).
0 0

Remark. The integral [ h(s)dw(s) is viewed as the Wiener integral, where w ~ W.

Application: Law of hitting times for Brownian motion with drift. Let (B;):>0 be a real Brownian
motion with By = 0, and define the hitting time 7, = inf{t > 0 : B; = a} for every a > 0. Now given y € R,
consider the stopping time

Vg = inf{t > 0: By + ut = a}.

Clearly, if © = 0, we have v, = 7,, and the desired law is given by Corollary For the general case, we fix
t > 0, and use Cameron-Martin formula to the following function:

h(S) = N(S A t)v h(S) = /L]l{sgt}a (I)(W) = ]l{maxsg[gyt] w(s)>a}r W S C(R—HR)

Then we have

P(v, <t)=E[®B+h)=E [exp (,uBt — M;t) n{raq}} :

By optional stopping theorem [Theorem [3.60], we have

p e
exp (MBt/\'ra -5 (A Ta)) =E {eXp (MBt - 275) I«%Am] :
Consequently,
p p
P(v, <t)=E [exp (uBtm -5 (A %)) ]l{'ra<t}:| =E [eXp (ua - 2@) ]l{ra<t}}
t
a 1 2

_ — S (us—a)?g
= e S.

/0 V2rs?

Therefore, v, has a density supported on Ry: p,,, (¢) = J;Tﬁe_ﬁ(“t_“)z, t>0.
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6 Markov Processes

6.1 Transition Semigroups and Feller Semigroups

Definition 6.1 (Markovian transition kernels). Let (E, &) be a measurable space. A Markovian transition
kernel (or transition kernel, for short) on E is a mapping @ : E x & — [0, 1] satisfying the following properties:
(i) For every x € E, the mapping & > A — Q(z, A) is a probability measure on (E, &);
(ii) For every A € &, the mapping E 3 x — Q(x, A) is &-measurable.

Remark. (i) If E is a finite or countable set equipped with the o-algebra & of all its subsets, we can then
characterize a transition kernel @ by the matrix (Q(z, {y}))z,ycE-

(ii) Let B(F) be the vector space of all bounded measurable real functions on F, and we define the norm
| f|| = sup,eg |f(x)] for all f € B(E). Given a function f € B(F), we define

QﬁE%R7Qﬂ@=LQm®ﬁ@-

For every A € &, we have Q1 4(z) = Q(x, A), hence the function Q1 4 is measurable. A simple function

approximation argument shows that @ f is measurable for all f € B(E). Furthermore,

arl = s ([ @i < istsm ([ owan) =151

Clearly, B(E) is complete under the norm || - ||. From this perspective, we can view @ as a bounded linear
operator on the Banach space B(FE) such that ||@Q]] < 1, which is called a contraction on B(E).

Definition 6.2 (Transition semigroups). A collection (Q¢);>o of transition kernels on E is said to be a
transition semigroup on E if the following properties hold:

(i) Qo(x,-) = 0, for every z € E.

(ii) (Chapman-Kolmogorov identity). For every s,t > 0 and every A € &,

Qmwm=é@@®WMA)

(iii) For every A € &, the mapping (¢, z) — Q¢(z, A) is measurable with respect to Z(Ry) x &.

Remark. If we view (Qy)¢>0 as bounded linear operators on B(E), the Chapman-Kolmogorov identity implies
that Q115 = QQs for all s,t > 0. This give rise to the associative property: (Q,Qs)Q: = Q(QsQ:) for all

r,s,t > 0. Hence (Q)¢>0 is a semigroup of contractions on B(E).

Definition 6.3 (Resolvent). Let A > 0. The A-resolvent of the transition semigroup (Q¢):>o is the linear
operator Ry : B(E) — B(FE) defined by

Ryf(z) = /OOO e MQ f(x)dt, Yfe B(E), =€ E.

Remark. The resolvent has the following properties:

(i) Ry : B(E) — B(FE) is a positive and bounded linear operator. Note that Ry f > 0 for all f > 0, and

sw ([Terau@ar) < [TeNsias [TeNila = IRl < S

zeFE 0
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(ii) (Resolvent equation). For all A, 1 > 0, we have Ry — R, + (A — p)R\R,, = 0:

R ) = [~ ( [ wan [~ dt) s

= /0 e s (/000 e MQurif(z) dt) ds "= /000 e~ (A= (/900 e HQ,f(x) dr) ds
_ [ o ([ —-wys [T e —6”>
/0 Q,f(x)e ™™ </0 e " ds> dr /0 < - Qrf(z)dr.

Consequently, if we fix f € B(F), it holds
A —
(s = R 1l = 3= sl sl < B o e 0,400)

Hence A — Ry f is a continuous mapping from (0, +o0) into B(E).

(iii) For every A > 0 and every n € N, we have

N f(z) = /OOO (in_il)!e*’\stf(x) ds.

Clearly, this equality holds for n = 1. Hence we can prove the general case by induction:

tn—l

B o) = e = [ ([T e @) a

_ /000 (/OO We—*scgsf(x) dt) dr

0 S _ \n—1 o n
:/0 /O %e_Astf(ﬂf)drds:/o %e_stsf(x)ds.

Preliminary: LCCB space. From now on, we deal with a special topological space E, which is Locally
Compact, Hausdorff, and has a Countable Basis # (LCCB).

Since E is locally compact, for each = € E there exists an open neighborhood U, with compact closure.
Consequently, one can find a basis set B, € £ such that + € B, C U,, and B, is compact. We choose
By C P to be the collection of all basis sets with compact closure. Then B, € Bk for all x € E, and
E=Uge B B is a countable union of compact sets. Therefore, F is a g-compact topological space.

By o-compactness of E, we choose an increasing sequence (C,)5; of compact subsets increasing to E.

o0

Then one can construct an increasing sequence (K,,)22 ; of compact subspace of E such that

KiCK;CKyCK{C--CK,CKp,, CKppnC-or, E=[]JK, (*)
n=1

We start by choosing a neighborhood U, with compact closure for each 2 € F and setting Ko = 0. If K,,_;
is constructed, then K,,_; UC, is compact, and there exists z1,--- , x such that K,,_; UC,, C Uz, U---UU,,.
We construct K, = U,, U---U ka, which is also compact. Then we have K,,_; C K, and UZO:1 K, D
Un_ 1 (Kn)° D Ur, C, = E. Clearly, for any compact subset K of E, {(K,)°}52, is an open cover of K,

hence there exists K,, such that K C K,.
Preliminary: Continuous functions vanishing at infinity. Let F be a locally compact Hausdorff space.

A continuous function f : E — R is said to be vanishing at infinity, if for all € > 0, there exists a compact
K C F such that |f(z)] < € for all z € E\K, or equivalently, {x € E : |f(x)| > €} is compact. In addition, If
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(K,)$2 is a sequence of compact sets specified in (ED, then we have

lim sup |f(z)] =0.
"HoomEE\Kn

We denote by Cy(F) the vector space of all continuous real-valued functions on E vanishing at infinity.
This is a closed subspace of B(FE). Consequently, Co(F) is a Banach space given the supremum norm.

In addition, since EF is a locally compact Hausdorff space, it admits the Alexandroff compactification
E* = EU{oo}, whose topology consists of all open sets in FE and all sets of the form (E\K) U {cc}, where
K is a compact subset of E. Consequently, for every f € Cy(E), we can extend it to a function of C,(E*) by
setting f(oco) = 0. Conversely, for every f € Cy(E*), we have f|g — f(o0) € Co(E).

Riesz-Markov Theorem. If F is a locally compact Hausdorff space and L : Cyp(E) — R is a bounded
linear functional, then there exists a unique regular (finite signed) measure p such that Lf = [ fdp for all
f € Co(E). Furthermore, ||L|| = |p|(E).

Using Cy(E) to separate points of a LCCB space E. If X is a second-countable normal space, we
choose a basis # = {B,}>; of X. We define I. := {(m,n) € N? : B,, € B,}, and for each (m,n) € I,
by Urysohn’s lemma, we can find a continuous function f,,,, : X — [0,1] such that f,, .(B,) = {1} and
fmn(X\Bpn) = {0}. Since for every pair of distinct points z1,x2 € X, there exists disjoint neighborhoods
B, >z and B, 3> zo. Therefore, F = {fy, n : (m,n) € I.} C C(X) is a countable collection of functions
separating points of X, i.e. for all x1,x9 € E with z1 # x5, there exists f € F such that f(z1) # f(x2).

Now we consider a LCCB space E. If E* = E U {oo} is the Alexandroff compactification of E, then
U, := E*\ K, is a countable local base of co, where {K,,}52; is specified in @, because for any neighborhood
V of oo in E*, {Ko}22, is an open cover of the compact set E*\K. Consequently, we can construct a
countable collection F € C(E*) of functions separating points E*, and we may set these functions to 0 at co.
By restricting these function on E, we obtain a countable collection of functions in Cy(FE) separating points

of E. We again use this conclusion when finding the cadlag version of a Feller process.

Vague convergence. We equip a metrizable space E with its Borel o-algebra &. Let p,, be a sequence of

probability measures on (F, &). If there exists a probability measure p such that

/Efdun—>/Efdu, Vf € Cu(E),

then p,, is said to vaguely converges to . Clearly, weak convergence implies vague convergence.

In a LCCB space E, we can prove that weak convergence is equivalent vague convergence. Let pu, be a
sequence of probability measures converging vaguely to u, and fix € > 0. For any g € Cy(E) with ||g]] < M,
we let ¢ € C.(E) be a function supported on K such that | g ®dp > 1 — 337, By vague convergence, there
exists Ny such that quSdun > 1— g5 for all n > N. Since g¢p € C.(E), we also choose Ny such that

| [ 9¢ dpn — [ 90 dp| < €/3 for all n > Ny. Then
/g(l—¢) du'
E

/gdun—/gdu‘= +‘/ g¢dun—/g¢du‘+
E E E E

<2M /(1¢)d,u‘+’/ g¢dun/g¢du‘<e, VYn > max{Ny, Na}.
E E E

/Eg(l — @) dpn

Since € is arbitrarily small, we have |’ p9du, — /  9du, and the weak convergence is clear.
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Definition 6.4 (Feller semigroups). A transition semigroup (Qy):>o is said to be a Feller semigroup if
(i) For every t > 0, we have Q:Cy(F) C Co(E).
(ii) For every f € Cyo(E) and every x € E, limy o Q. f(z) = f(z).

Remark. Consider the A-resolvent. For any sequence z,, € F, by dominated convergence theorem,

lim Ry f(zn) ZT}LII;O/e_’\SQSf(JJn)dS = /e_)‘s nli_{r;onf(xn) ds, VfeCy(E).

n— oo

In the last equality, we use the fact sup,s |e™**Qs f(zy)| < |If|| for all n € N. Consequently, if (Q¢):>0 is a
Feller semigroup, we also have RyCy(E) C Co(F) for all XA > 0.

Proposition 6.5. Let (Q:)i>0 be a Feller semigroup, and let Ry be its A-resolvent, where X > 0. Define
R={Rrf:[feCy(E)}. Then R does not depend on the choice of A, and R is a dense subspace of Co(E).

Proof. For any p1 # A, the resolvent equation gives Ry f = R,,g, where g = f — (A — p)Ryf € Co(E). Hence R
does not depend on the choice of A. For the second assertion, note that

/\ILH;O ARNf(x) = AILI&AA e Q. f(z)ds = )\ILHOIO/O e Qi f(z) dt:/ e tf(x)dt = f(z),

0

where the last equality holds by dominated convergence, since sup,s |e*5Qs/)\f(x)| < |If|| for all A > 0.
Furthermore, for all A, x> 0 and all € E, we have

oo

(ARx — pRy,) f(x) = /000 ()\e_’\s - pe_“s) Qsf(x)ds = /0 et (Qt/)\ - Qt/#) f(z)dt

t

oo 1 1
= [Tt (E-g) @@t < \A - M\ T

Hence ||[(ARx — uR,) f|| = 0 as A\, u — 00, and ARy f € R converges in Cy(E) as A — oo by completeness, and
the pointwise limit f must be the limit Cy(E). Consequently, S is dense in Cy(F). O

Remark. In the proof, we also conclude that limy_,o [[ARxf — f|| = 0 for all f € Cy(E).

Proposition 6.6 (Strong continuity). Let (Q)i>0 be a Feller semigroup, and fix f € Co(E). Then
li — fll=0.
im [|Qf — fIl =0

Consequently, the mapping t — Quf is uniformly continuous from (0,00) into Co(E).

Proof. By Fubini’s theorem, since (s,y) — e **Q,f(y) is dominated by e=**||f||, it holds

QiR f(z) = e /00 e_ASQSf(a:) ds < eMRyf — /t e’\(t_s)st(x) ds
0

t
Consequently, we have
|QiRAS — Bafll = (X — 1) [ BAf]| + teMf >0 as ¢ L0.

Therefore we have limy o ||Q:f — f|| = 0 for all f € M. The continuity of @); — Id and a standard density

argument extend this conclusion to all f € Cy(FE). For the second assertion, note that for all ¢ > s > 0,

1Qcf = Qs fl = Qs(Qe—sf = I = Qt—sf = fl 20 as t =5 0.

Since this convergence is uniform for all s € (0, 00), the mapping ¢t — Q. f is uniformly continuous. O
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Definition 6.7 (Infinitesimal generator). Let (Q);>0 be a Feller semigroup. Define the space ®(L) by

D(L) = {f € Cy(E) : W converges in Co(E) when t | O} .

Then D (L) is a subspace of the vector space Cy(FE). Define the linear operator L : (L) — Cy(E) as follows:

o Qf— f
Lf =lim=—

s v.]CGC'O(E‘)

The operator L : ©(L) — Cy(FE) is called the infinitesimal generator (or generator, for short) of (Q¢)¢>0.

Proposition 6.8. Let L be the generator of Feller semigroup (Q¢)i>0-
(i) For every f € ©(L) and every s >0, Qsf € D(L), and L(Qsf) = Qs(Lf). Furthermore,

@f=f+ [ Qiras=f+ [ 1« gas-1Q (61)

(ii) D(L) =R, and Ry is the inverse of A\Id —L for all A > 0, namely, (AId —L)R) = R\(A1d —L) = Id.
(i1i) The semigroup (Q)i>o0 is determined by the generator L:

Q; = et := lim e i A (Ad—L)~*
A— 00 =0 k!

Proof. (i) For all s > 0, @, is a bounded linear operator on Cy(E), and Qs f € Co(F) for all f € D(E) C Co(E).

Semigroup property and continuity of Q4 implies

w o, (Qtft—f> = Q.f€DL), LQsf) = Qu(Lf):

Similarly, we have h™! (Qu1nf — Q) = Q+(Lf) when h | 0. Moreover,

Quf — Qunf
h

lim
hl0

e =tm o (22=1) - quws

R10
<tim@n (DI=L - 1r) |+ imi@es - @oal
Qnf—f

h

< lim
h10

- 1|+t ILs - Qu(L ] =0
Consequently, for every = € E, the mapping ¢ — Q; f(x) is differentiable. By fundamental theorem of calculus,
t t
@f-f= [ @Enas= [ L@.pds. vieR,,
0 0

(i) If f € ®(L), we use|(6.1)[and Fubini’s theorem:

Ry(\Id—L)f = /oo Ae Q, f ds — /oo e MQ (Lf)ds
0 0

-/ T e <f+ / L(Qu) dt) as— [ TN LQuf) ds
=f+ /OOO (/too Ae M L(Q.f) ds) dt — /Oo e M L(Qsf)ds = f.

0
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Apparently, we have ©(L) C 8. On the other hand, for g € Cy(E), by dominated convergence theorem,

. QuRxg—Ryg .. 1 /Oo Y
lim 22— 22 — lim — —
}5101 5 }ifg n e (Qien — Q) gdt
1 %) h
= lim — (1 — e_Ah) / e MQuingdt — / e MQigdt | = ARag — g.
hi0 h 0 0

Hence Ryg € ©(L), and 58 = ©(L). Moreover, the first assertion in (i) implies
LRyg=MRyg—g = ((AId-L)Ryg=y.

(iii) Fix f € Co(E). For every A > 0, if (A\Id—L)g = f for some g € D(L), then g = Rx(AId—L)g = Rxf.
Hence the resolvent R) is uniquely determined by inverting the operator AId —L, which is defined on Cy(E).

For every A > 0, we define Ay := AR\L = MR, — AId. Then A, : D(L) — Cy(F) is a bounded linear
operator, and ||Ax|| < 2A. Then we define the following series, which converges in norm:

oo o0 oo
(tA)" 2R, “ IR N2
otAx — kz::o ' = et = HetA R AIdH < kZ:Oe A o < g::oe A = 1

T+S

By commutativity principle (i.e. e = eTe for commutative bounded linear operators ST = T'S), the

collection (etA*)tZO is a semigroup of contractions. Moreover, since AyA4, = A, A\ = “T;\)‘L(R,\ - R,)L,

t t
etAA _ etAu _ / dietAM-&-s(AA—AM) ds = / e(t—s)AMesAA (A)\ _ AH) ds.
o ds 0

Hence for all f € ©(L), since Ayf — Lf as A — oo,

H(emA - etA“) fll < A=A f = etbf .= )\lim e f eists in Co(E).

— 00

Clearly, the mapping ‘X : ®(L) — Cy(E) is a contraction. Since D (L) is dense in Cy(E), we can extend the
definition of e*’ from D (L) to Co(E). The following shows that (e'l);>¢ is a semigroup: Vf € D(L),

He(t+s)Lf _ etLestH _ H(e(t+s)L _ e(t+s)AA)fH + HetAA(esAA _ esL)fH i ’|(etA>\ _ etL)estH

< H(e(”s)L — e(”S)A*)fH + ][5 — e B fI| + || (e — e )es L f|| = 0 as A — cc.
We also note strong continuity so that (e'%);> is a Feller semigroup: Vf € D(L),
et f = FIl < (e = e fll + e f = FIl S HILF = Axfll+ [ f = f =0 ast L0,

Furthermore, the generator of (e'F);>¢ is L:

t t eth_f
eNf— f :/ Aye!fds = etbf—f :/ Lettfds = lim—— = L.
0 0

t10 t

Since the resolvent Ry f = fooo e MQ, f dt is the Laplacian transform, it has a one-to-one correspondence with

L

the transition semigroup (Q;):>0. Hence we can recover Q; = €' uniquely from the generator L. O

Remark. Note that the domain of operator (AId —L)Ry is Cy(E).
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6.2 Markov Processes and Feller Processes
Now we fix a probability space (€2,.%#,P) and a filtration (%;):>o0.

Definition 6.9 (Markov processes and Feller processes). Let (Q:):>0 be a transition semigroup on E. A
Markov process with respect to the filtration (.%;);>¢ with transition semigroup (Q:):>o is an adapted process
X = (X¢)i>0 with values in E such that for all f € E and all s,t > 0,

E [f(Xs+e)[Fs] = Qe f(Xs). (6.2)

Without specifying a filtration, we implicitly mean that the definition holds for the canonical filtration
FX = 0(Xs,0 < s <t). Clearly, a Markov process X with respect to any filtration (%;);>¢ is also a Markov
process with respect to the canonical filtration (F;%);>o0.

A Markov process with values in F is called a Feller process if its transition semigroup is Feller.

Remark. Particularly, for all A € &, one can take f = 14 in|[(6.1)| to obtain
]P)(X5+t E A|y3) == Qt(XS,A).

It is seen that the conditional distribution of X1 given the history %, only depends on the current state Xj.
Furthermore, given the law v of Xy, we have for all 0 < t; < --- <t, and all Ag, A1, -+, A, € & that

P(Xo € AQ,th S 141,)(752 S AQ, ce. ,th S An)

— [ stdao) [ Quanda) [ Quosy e [ Qun (e dn) (6.3)
Ap Aq Ay An
More generally, if fo, f1,--- , fn € B(E), we have

E [fo(Xo)f1(Xt,) - fu(Xe,)]

- [E Y(dzo) fo o) [E Qus (20, ) f1 (1) /E Quut, (w1, da) fo(s) - - /E Quur (s dn) fulen):

Now we discuss the existence of a Markov process with transition semigroup (Q¢)¢>0. According to
with the initial v given, we obtain a pre-measure PtZ 4, =P(Xo €, Xy, €-,--+, X, €) on all measurable
rectangles €™, which can be uniquely extended to a measure on the product space (E™,&®"). In addition,
the collection of all finite marginals {P;] ., :n €N, 0 <t} <--- <t} satisfies the compatibility condition
given in roposition [£.15] according to the Chapman-Kolmogorov identity.

We further assume that E is a Polish space. Then according to Corollary which is a consequence

of the [Daniell-Kolmogorov extension theorem| the compatible family {P] ., :n €N, 0 <t <--- < t,}

of probability measures has a unique extension P” on the canonical space (E®+,&®®+). Consequently, the
canonical process {7 };>0 on (E®+ &¥%+) is a Markov process under P? with transition semigroup (Q):>o
with respect to the canonical filtration, and the law of m( is given by ~.

To summarize, if F is a Polish space, we can construct a E-valued Markov process (X;):>o with transition

semigroup (Q¢)¢>0 under any given initial distribution .

Alternative definition of Feller Semigroup. Let (Q;);>0 be a transition group, and for every = € E, let
(XF)i>0 be a Markov process with semigroup (Q;);>o starting from Xy ~ 6,. Then (X[)i>0.0er is a Markov
family, and the law of every process (X&);>¢ is given by P% := P,

Clearly, if (Qt)t>0 is a Feller semigroup, then every process (X7);>o is a Feller process. In fact, we

can characterize a Feller semigroup by the following properties of the law of Markov families (X[);>0,zck-
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Following our discussion of vague convergence, one can easily show that

VeeE and V>0, X! 5 X7 as y—»z o  QCo(E) C Co(E):;
VeeE, XF 52 as t10 &  Quf(x)— flx), Vf € Co(E).

6.2.1 Sample Path Regularity

Now we study the sample path property of Feller processes. Recall that we assume E to be a LCCB space.

Proposition 6.10. If (X;);>0 is a Markov process with transition semigroup (Qi)i>0, and h € B(E) is a

nonnegative function, then the process (e~ Ry\h(X;))i>0 is a supermartingale.

Proof. Clearly e=**Ry\h(X;) is bounded, hence in L'. For every s,t > 0, we have
QsRyh = / e MQuishdt = e’\s/ e MtQu hdt < eMRyh.
0 0

By the following inequality holds for (X¢);>o:
Ele ") Ryh(Xpys) [ Fi] = e MTIQRAR(X,) < eMRAR(X,)

Therefore (e MRyh(X}))i>0 is a martingale. O
We first consider the case where E is a compact space.

Lemma 6.11. Let E be a compact Hausdorff space with a countable basis. Let (X;);>0 be a Feller process with
semigroup (Q¢)i>0, with respect to the filtration (F;)i>0. Then the process (Xi)i>0 has a cadlag modification.

Proof. Let 2 € C(F) be a countable collection of functions separating points of E. We first show that a
sequence z,, € F converges if h(x,) converges for all h € . By compactness of F, every sequence of points
of F has at least one limit point, and a sequence converges if and only if the limit point is unique. If x,y €
are both limit points of x,, then h(z) = lim, o h(z,) = h(y) for all h € 7, and = = y by definition of 7.
Consequently, x,, converges a unique limit point.

We take a sequence f, € Cff (E) separating the points of £, and take J# = {R,f, : p € N,n € N}. This is
also a countable subset of C'(E) that separates the points of E, since ||pR,f — f|| = 0 as p — oo.

Let D be a countable dense subset of R. By Proposition if h € 2, there exists p € N such that
(e7P'h(X¢))t>0 is a supermartingale. By Theorem (i), the left limit limpss), A(Xs) [resp. the right limit
limpssre h(Xs)] exists for all t € Ryy [resp. ¢ € Ri] except on an event Nj of probability zero. We take
N = Upece Nu, hence (h(X¢))tep has side limits on Q\N. Then we define

Xi(w) = limpssyt Xs(w), we NN
)Zt((,d) = To, weN
where xg € E is a fixed point. Clearly this is a cadlag process.

Finally, it remains to show that ()?t)tzo is a modification of (X;);>o. For any ¢ > 0, take D > t,, | ¢. Then
for all f,g € C(E), we have

E[f(X:)g(X)] = lim E[f(X:)g(Xs,)] = lim E[f(X:)Qs,-19(X)] = E[f(X:)g(X)].

n—oo n— oo

By functional monotone class theorem, E[p(Xy, X;)] = E[o(Xy, X;)] for all bounded Borel function on E x E.
We take ¢(z,y) = 1{y—y), which gives P(X; = X;) = 1. Hence (X;):>0 is a modification of (X¢)¢>o. O
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Theorem 6.12 (Regularity of sample paths). Let E be a LCCB space. Let (X;);>0 be a Feller process with
transition semigroup (Q¢)i>0, with respect to the filtration (F)i>0. Set Fog = F oo, and denote by N the
class of all zero probability sets in (;5:;0, Define the modified filtration: % =0 (% Ua(AN)), Vt>0.

The process (X¢)i>o0 has a cadlag modification ()?t)tzo, such that ()N(t)tzo is a Feller process with respect
to the modified filtration (%)QO.

Proof. Let E* = EU{oco} be the Alexandroff compactification of E. According to Lemmal[6.11] and note that
Ny, € Z for all h € 7, we can find a cadlag modification ()N(t)tzo taking values in E* and adapted to the
filtration (:?Vt)tzo. We also point out that the filtration (%)tzo is right continuous, so the stopping time we
are about to define makes sense.

It is necessary to show ()?t>t20 is also cadlag as a process taking values in E. We take a strictly positive

g € Co(E), then the function h = Rig € Co(E) is also strictly positive, and (e~*h(X;)),.  is a nonnegative

>0
and cadlag supermartingale with respect to the filtration (%;);>0. We set

-1
Tn, = inf {t >0:e'h(Xy) < } , and 7= lim 7,,
n t—o0

which are stopping times with respect to the filtration (% );>0 by Proposition By optional sampling
theorem [Theorem [3.60], we have

E [e’th(f(t)} <E [e*Tth()?TnM)} -~ E []1{776,&}67%@)] <E [1{Tngt}677"h()?7n)} <

S |-

Letting n increase to oo, we have
E []I{Tgt}e_th(jzt)} S 0.

Since ]P’()N(t = o0) = 0, and since h is strictly positive, we have 7 > t a.s.. Note that ¢ > 0 is arbitrary.
Then 7, — 00 a.s., and inf¢[g 4 e‘sh(f(s) > 0 a.s. for all t > 0. As a result, almost surely, we have X, # 00
and X, # oo for all s > 0. This extends cadlag property to E.

Finally we verify that (Xt)tzo is a Markov process with semigroup (Qy)¢>0 with respect to the filtration
(%)@0. It suffices to prove that, for all s > 0,¢t >0 and A € %, f € Co(E), we have

E[1af(Xor)] = B [14Quf (X)) (6.4)
We may assume A € F,, since it a.s. equals to some .Z,-set. Taking D > s, | s, we have

E []lAf(Xert)} =E []E []lAf(Xert)'ysn]] =E []IAQt+sfsnf<XSn)] . (65)

Since Qqs_s, f converges uniformly to Q¢ f, and X, “= X, %3 X, " X, setting n — oo in (6.5) gives
E[laf(Xete)] = E[1aQ:(Xs)]. As ()?t)tzo is a modification of (X;):>0, this is equivalent to (6.4). O

Remark. In fact, we prove the existence of a Feller process with cadlag sample paths in this theorem. Assume
we are given a process (X¢)i>o together with a family (Py)zecp of probability measures such that, under Py,
(X1)i>0 is a Markov process with semigroup (Q¢):>0 with respect to the filtration (%;);>0, and Xy = z a.s..
Then we define a new filtration (.%;):cj0,00] by T =0 (Frr Ua(A")), where A7 is the class of all F.-sets
that have zero P, probability for each x € E. By the same arguments as in the preceding proof, we can then
constructed an (%)—adapted cadlag process (Xt)tzo such that for all z € E,

. Pz()?t =X;)=1forallt >0, and

e under P,, (Xt)tzo is a Feller process with semigroup (Q)¢>0 with respect to the filtration (%)te[o,oo]'
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Notations. In later discussions, we often make use of this cadlag property of Feller processes, which, as is
indicated by this theorem, is not a harmful assumption. For every « € E, we use P, to denote the probability
measure on D(E) which is the law of Feller process (X7 )>o starting from Xg ~ J,. Moreover, we use E, to
denote the expectation taken with respect to P*.

If ®: D(F) — R is a measurable map, the mapping x — E,[®] is also measurable. To see this, it suffices
to consider the case ® = 14, where A € 2. If A depends on only finitely many coordinate maps:

A={feD(E): f(t1) € By, , f(tp) € B,,}, where 0<t; <---<t,, and By,---,B, €&, (6.6)

then the mapping x — E,[1 4] has an explicit form:

E,[1a] = Qt, (v, dy1) Qtz—tl(yhdyz)'“/ Qty—t, (Yp—1,dyp),
BP

Bl B2

which is measurable. The remaining case then follows from a m-\ theorem argument.

In addition, for any initial law, the expectation [E., taken with respect to P7 is given by

E,[14] = / ) [ Quldn) [ Quunnodie)-- /B Qut s (gpr.dyy) = /E E.[Laly(dz).

B2

Using an argument of 7\ system and a simple function approximation, we obtain
E,[®] = / E,[®]y(dz), V measurable mapping ®: (D(E),7) — (R4, B(R4)).
E

6.2.2 Markov Properties

Theorem 6.13 (Simple Markov property). Let (X;)i>0 be a Markov process with semigroup (Qt)i>o0 with
respect to the filtration (F)i>0. Assume that process (Xi)i>o has cadlag sample paths. Let s > 0, and let
® :D(E) — Ry be a measurable map. Then

E[®(Xs+t)i>0)|Fs] =Ex, @ a.s..

Proof. Following our preceding discussion, Ex_[®] is a composition of X, and the mapping = — E.[®]. It
suffices to consider the case ® = 1 4, where A is given in . For ¢1,--- ,¢, € B(E), we have

E [p1(Xstt) - 0p(Xste, )| F]

E [01(Xott,) - 0p1(Xstt, ) E [0p(Xoqt, )| Fott, ] | F]
E [901 sttr)  Pp1(Xogty 1) Qty—ty 1 Pp(Xagt, 1 )| Fs]
E

s+t1 * Pp— 1(Xs+tp 1 /Qtp—tp 1(Xs+tp 1adyp)§0p(yp) dprS]

- / Qe (Xo, dyn )1 (1) / Qua—rs (1 dy) 0 (y2) - / Quy 1y (o1, )2 1),
E E E

Taking ¢; = 1, immediately gives the desired conclusion according to . O

Theorem 6.14 (Strong Markov property). Let (X;);>o be a Feller process with semigroup (Q)i>o with respect
to the filtration (%;)i>0. Assume that process (X;)i>o has cadlag sample paths. Let T be a stopping time of
the filtration (Fi+)i>0, and let ®. : Ry x D(E) — R4 be a measurable map. Then

E []1{7—<oo}q)7—((X'r+t)t2())‘y'ﬂ»] = ]l{T<OO}EXT(I).,— a.s..
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Proof. The right hand side of the last display is a measurable mapping, since the mapping {7 < 0o} > w —
X;(w) is Zr-measurable by Proposition and the mapping z — E,[®] is measurable. To show the desired

conclusion, it suffices to show that for any A € %,

E [Lan{r<oo}@r((Xrt)i20)] = E [Lanfr<co}Ex, -] .

We approximate 7 by the smallest multiple of 27" greater than 7, i.e. 7, = % We consider the
mapping ®,(f) = ¢o(s) [1/~, ©i(f(t:))) > 0, where ¢, is nonnegative, bounded and measurable on R, and

1, - ,m € B(E). By the previous conclusion,

E [Lan{r, <co}®r, (Xrn40)i>0)] = ZE [Langr,=k2-n} Pra-n (X2 ie)e>0)]
k=1

M

E [T angr=k2-»}E [@ra—n ((Xpa-n1t)20)| Fra—n]]

3
Il
—

M

E [Langr=k2-n}Ex,,_, Pro-n]

3
Il
-

=

[]lAm{-r<oo}EXTn (I)‘rn] =K []lAn{T<oo}¢(TnaX-rn)] .

where ¢(s,z) = E,®5 = ¢o(s) [[2, @+, ¢i(x). According to Riesz-Markov Theorem, since a finite signed
measure on F is determined by its values against all Cy functions on E, we may assume @1, , @, € Co(E).
We also assume ¢ € Cp(R4). Then 1 is a bounded and continuous map on Ry X E. By dominated convergence

theorem and right-continuity of ¢t — X;, we let n — oo to obtain

E [1AQ{T<OO}(PT((XT+t)t20)jI =K []lAﬂ{T<oo}EXT (DT] .
By monotone class theorem [Theorem [1.38], we concludes the proof of strong Markov property. O

Remark. In this theorem, we assume that 7 is a stopping time of the filtration (%1 )i>0. This is a more
general assumption than a stopping time of the filtration (.%;);>0. Where we use this assumption is that by

Proposition |3.11
{rmn=k2""}={(k—1)27" <7 <k27"} € Fpo-n,
and since A € F .,
AnN{(E—-1)27" <7< k27"} € Fpo-n.

We can use this statement to generalize the Blumenthal’s 0-1 law.

Theorem 6.15 (Blumenthal’s 0-1 law). Let (X;)i>0 be a Feller process with cadlag sample paths, and let
(F)i>0 be the canonical filtration. Then for each x € E, the germ o-algebra Foy is trivial under Py, i.e.
P.(A) € {0,1} for each A € Fyy.

Proof. For each A € Fy,, by the strong Markov property,
14 =E,[14]%0+] = E. 14 =P, (A).

Hence P, (A) is either 0 or 1. O
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6.3 The Generators and the Feynman-Kac Formula

In this section, we are going to discuss some properties of generators. We first study the Brownian motion,

whose generator has a simple form.

Example 6.16. A Brownian motion B = (Bt)i>0 s a real-valued Markov process with transition semigroup

e Vi>0, x€R, Ae BR).

Qo(z, A) =T 4(x), Qiz,A)= /A \/;H

We first verify that (Q;):>o is a Feller semigroup. We fix f € Cy(R), and there exists M > 0 such that
I/l < M. For any xy € R, by Lebesgue dominated convergence theorem,

& 1 —2g)?

. . _(y—=)? o 1 _
lim Q:f(x) = lim ——e 2 f(y)dy = ——e 2
—o0

T—T0 z—=xo J_ oo /27t 27t

f(y) dy = Q¢ f(xo).
Given any € > 0, we choose K > 0 such that |f(y)| < ¢/2 for all |y| > K, and choose o > 0 such that
P PN /_a L o<
e 2t dz — e 2t dz =
\/ﬁ 2M —o0o V27t 2

Then for all x > K + «, we have |f(z + z)| < ¢/2 for all z > —a, and

—« oo 1 L2
Q. f (z dy‘<M/ o Ea dz+/ \/767|f(2—|—.’1})|d2’<04.

—a V27t

=

Hence we conclude that Q. f € Co(R). To show continuity of (Q)¢>0, we fix n > 0. Then we choose § > 0
such that |f(y) — f(xo0)] < n/2 for all |y — xo| < §:

n
<7
2

_w—=z)?
2t

(f(y) = f (o)) dy

/ 1 / 1 _w o) q
— —c¢ 2 Y
ly—wo|<s V27t ly—zo|<s V27t

and choose tg > 0 such that

_ (y—z0)?
e e dz < — Ea < g, vt € (0,10).

v -
/|z>6 2mto 4M | ly—wo|>5 V2T

(f(y) = f(x0)) dy

Consequently, we have [(Q+f — f)(xo)| < n for all ¢ € (0,%9), and Q¢ f(xo) = f(zo) as t ] 0.
Resolvent and generator. For A > 0, the resolvent is

mf@) = [ eMa@a- [ ( e dt>f()dy

ra(y—z)

_ / T L B[] £y dy,

—0o0 |y—$|

where the hitting time 7, = inf{t > 0: By = |y — z|} has density \‘}’%e

Proposition |4.40

L dpreanyo L -lv—sivax,

PO e
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This gives the formula of Rjy:
1o
Ry f(z) = \/ﬁ/ Tl mT VA £(4)) dy.

Now we find the generator L of (Q;)i>0. If h € D(L), there exists f € Cy(R) such that Ryf = h. Taking
A=1/2, and sgn(z) = 1;>01 — L {z<0}, we have

ho) = [ ey = W)= [ sty - a)e ) dy.
Furthermore, b’ is differentiable: for all x € R,
W(x+6)—H(x)= / sgn(y —z — 0)e” V"0l f(y) dy — / sgn(y — z)e V" f(y) dy

x4+

= /R\[x,mﬂs] sgn(y — x) (e*\yﬂc*&I _ e*lyfz\) f(y)dy _/ (eyfmfé + emfy) f(y)dy,

x

Hence we have

. hW(x+0)—h'(x)
%1151 5 = h(x) — 2f(z).

A similar argument also holds for the left limit, hence h”/ = h — 2f. By Proposition we have
1 1 1 " 2 "
éId—L h= §Id—L Ripf=f = Lhzih , where he D(L) C {he C*R):g,9" € Co(R)}.

In fact, we can show that D(L) = {g € C*(R) : g,¢" € Co(R)}. If g is a twice continuously differentiable
function with g, g” € Co(R), we take f = £(g9 — ¢g”) € Co(R). Then h = Ry,of € D(L), and the preceding
argument gives b = h — 2f. This yields (h—g)’ =h—g = (h—g)(x) = C1e* + Cye™*, where C1,C5 € R.
Since h — g € Cy(R), we have g = h € D(L).

Proposition 6.17. Let d € N, and let B = (By)1>0 be a d-dimensional Brownian motion. The infinitesimal

generator of B is equal to %A on the space C2(R?).
Proof. For f € Cy(R%), we write

Qif(z) = W /Rd e_|Z|2/2f(:1c + 2v/t) dz, (6.7)

where |2]? = 27:1 23 If f € C§(RY), the chain rule gives
2

0 0
%f(x—i-zu) = 2" Vf(z + zu), Wf(x—kzu) = 2"V f(x + zu)z,

where V2 f = [#;mjf]i,je[n] is Hessian matrix of f. By Taylor’s formula, there exists 6(t, z) € [0, 1] such that

Quf () = f(z) + (2m) =2 / 2T f (@ 4 0t 2)2v/1) 2 dz

Ra

t st
= f(@) + 5Af(x) + (27) d/2§J(t,x)»
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where

d
Ty = [ o122
(t,2) /R >

ij=1

82f an
(3$28$J (l’ + Q(t, Z)Z\/i) - 89613% (l‘)) ZiZj dz.

We set the following function F, and use uniform continuity of second partial derivatives of f:

82f o f

F(z,z,t) = max

= limsup F(z,z,t) = 0.
i,j€[d]

10

/ e 1272 2|2 4.
|z|>R

Since the first term converges to 0 as t | 0 by dominated convergence theorem for any R > 0, we have

Moreover, for any R > 0, one have

o f
O0x;0x;

|J(t,z)]| g/ F(z,t,2)e 27 /2|\z||2dz+2 max
|[z|<R

o’ f / 2
hm — fA e 1?2212 d2, VR >o.
@ = 0= gar| < s | G2 L| [ g
Take R — co. Then we have Lf = 1Af for all f € C3(R). O

Remark. For the case d > 2, the space C2(R%) is not equal to D(L). One can show that D (L) is the subspace
of Cp(R?) of functions f such that 6f taken in weak sense is in Co(R).

Generally, we have the following relationship between Brownian motions and heat equations.

Theorem 6.18 (Brownian motions and the heat equation). Let p € C(R). Then the function u : Ry x R? —
R, (t,2) — Qup(x) solves the following heat equation:

where (Q1)i>0 is defined in .

Proof. We write u; = Q¢ for t > 0, so u; € C>°(R?). For each t > 0, we fix 0 < € < t. By Proposition

t—e 1 t 1
U = Qe +/ iA(QS+E¢) ds = u. +/ iAus ds
0

€

Since $Au, = Qs—c(5Auc) depends (uniformly) continuously on s € [e, 00) we have

Qup _ . Qi — Qs

1
= ~Au,.
Ot sot t—s g 2t

Furthermore, since (Q¢):>0 is a Feller semigroup,

li =1
Him lmQttp ®.

Thus we conclude the proof. O

The following theorem gives a characterization for the generator domain of a Feller semigroup (Q;):>¢. For

any « € E, we can construct a Markov process (X[)¢>o such that P(Xy = ) = 1 with semigroup (Q¢)¢>0.
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Theorem 6.19. Let h,g € Co(E). The following conditions are equivalent:
(i) h € ©(L) and Lh = g;
(i) For every x € E, the process

hxz) - / 9(X7) ds

is a martingale with respect to the filtration FF = o(XZ,0 < s <t).

Proof. (i) = (ii): Let h € ®(L) and Lh = g. By |(6.1)| we have

t
Qih=h +/ Qugds,
0

which implies
E [h(X7,)|FF] = Quh(XF) = h(XT) + / Qrg(X7) dr. (6.8)

Meanwhile, use the boundedness of g, we have

E [/ttJrsg(Xf)d?“

Combining and , we have the martingale property:

)= [ Bz = [

Qu_rg(XF) dr = /0 Qo(Xp)dr.  (6.9)

t

t+s t
B k) - [ st ar] g | <o - et vess oo
0 0

(ii) = (i): For every x € E and every t > 0, we have

Q) - [ " Qugla)dr —E o - [ (x3) ar| = o),

where the first equality follows from Markov property, and the second from martingale property. Hence

N e Y _
ltl%l ; g= ltlfél A (Qrg—g)dr =0.
Since g € Cy(E), we have h € D(L), and Lh = g. O

Now we introduce one special case of Feynman-Kac formula, which reveals the relation between parabolic

partial differential equations and stochastic differential equations.

Theorem 6.20 (Feynman-Kac formula). Let v € Co(FE) be a nonnegative function. For every t > 0, define
for every ¢ € B(E) and every x € E that

Kup(z) =E [(p(th)exp <— /Otv(Xf)dsﬂ ;

where (X7 )i>0 s a cadlag Feller process with semigroup (Q)e>o starting from Xo ~ 6.
(1) (Ki)i>o0 is a semigroup of contractions on B(E).
(it) If ¢ € D(L), then

gK lt=0 = Ly —v

qp tPle=0 = L ¥
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Proof. (i) Fix x € E, and let (X;);>0 be a cadlag Feller process with semigroup (Q;);>¢ starting from Xo ~ d,.
Clearly, K, is a contraction: Kip(z) < E[p(Xy)] = Qrp(z) < |l¢||. Next, we let m(f) = f(t) be the projection
map from D(E) — E, and fix s,t > 0. By definition of K; and simple Markov property,

Kulf)e) = 5 [ exp (- [Tox)as)]

~E [Ex. {(gp o ) exp (— /Otu o, dr)] exp <_ /OSU(XT)drﬂ

—E g {@(Xsﬂ)exp (— /Otv(Xsw)dr)‘fSX} exp (_ /OSU(Xr)dr>]

— oo (- [ o) ar)] = oo

ii) Since Le— [i f(r)dr — fls)e™ Jrm 47 the fundamental theorem of calculus gives
ds
t t t
1—e™ Jo v(Xp)dr _ / ’U(),’s)ei Jiv(Xr)dr ds.
0

By Fubini’s theorem and simple Markov property, for every ¢ € B(E), we have

Kup(z) = E [(p(Xt) (1 —/OtU(XS)eXp (- /stv(Xr)dr> ds)}
= et~ [ B[etxuxgen (- [uexar)] as
= Qup(2) —/OtE [U(XS)E [@(Xt)exp (—/ju(Xﬁdr)‘ﬂf” ds
= Qupla) - [ B [o(X0) Kisp(X)] ds
= Queta) - [ ' Quv Krp)() ds.

Hence lim; g K+ = ¢. Furthermore,

‘1/(; QS(U Kt—scp)(x) dS*’U(-T)QO(x) :% A QS(U Kt_scpfvgo)(x) dS +% /0 (Qs *Id)(USD)(f) dS

IN

I I
2 Ieme = velods+ 3 [ 1@~ 1)) ds

IN

I I

i [ ol e = el dst 3 [ 1@~ 1w ds
0 0

Letting ¢t | 0, the last display converges to zero. Consequently, we have

d d d [t
dth<P|t:0 = aQtﬂt:o - &/0 Qs(U Kt—s@(x) d5|t:0 = Ly — vy,

which complete the proof. O

Remark. To find the derivative of the mapping ¢ — Kyp, we use the semigroup property:

d

d
—K = 7Ks s=0 —
dt ad ds +1#ls=0

dsKS (Kt)|s=0 = LKp — vK; .
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Therefore, for any f € B(FE), the function

ult,0) = Kif(a) = E | f(xp)exp (- [ tv(X;”)ds)]

solves the following initial value problem (which is often a parabolic PDE):

ou
% Lu—vu, t>0
u(0,z) = f(z).

Here (X7) is a cadlag Feller process with generator L starting from Xy ~ d,. Letting v = 0 gives the
Kolmogorov backward equation, which coincides the form of (6.1)).
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6.4 Diffusion Processes

In this section, we discuss the solution of SDE E(o,b)
dX; = U(Xt) dB; + b(Xt) dt, o= (Uzj)ze[p],je[q b= (bi)ie[p]~ (6.10)

in form of a Markov process. The processes with continuous sample paths that are obtained as solutions
of SDE are called diffusion processes. The function b : RP — RP is called the drift coefficient, and
o : RP — RP*? ig called the diffusion coefficient.

We tackle with the homogeneous case where o (t, x) = o(x) and b(¢, x) = b(x), and we maintain the Lipschitz
assumption: there exists a constant K > 0 such that for all z,y € RY,

lo(x) o) < Kle—yl,  [b(z) = b(y)| < K|z —yl.
Here we use | - | to denote the Euclidean norm of vectors and the Frobenius norm of matrices.

6.4.1 Markovianity of Time-Independent SDEs

Theorem 6.21. Assume that X = (Xy)i>0 is a solution of SDE (6.10)) on a complete filtered probability space
(Q,. 7, (F)i>0,P). Then (Xy)i>0 is a Markov process with respect to the filtration (F;)i>0, with semigroup

Qif(z) =E[f(X])], t=>0,
where X* = (X{)¢>0 is an arbitrary solution of E*(0,b). Using the notation of[Theorem 5.24), we also write
/ f(F W(dw). (6.11)
Proof. We first prove that, for any f € B(RP) and any s,t > 0, we have
E[f(Xs4e)|Fs] = Quf(Xs),
To deal the time shift s, we define filtration (.%#]);>0 and processes (X})i>0, (B})i>0 as follows:
F| = Ferr, X, =Xys1, BL=DB,— B,

Then (#]):>o is still complete, X’ is adapted to (F);>0, and B’ is a ¢g-dimensional (.%/)-Brownian motion.

Furthermore, the approximation formula ([5.8)) for the integral of continuous adapted processes gives
s+t s+t
X! = Xopy = X, + / o(X,)dB, + / b(X,) dr

t t
=X+ / o(X.)dB. + / b(X))dr.
0 0

Consequently, X’ solves E(c,b) on the space (2, Z, (%])i>0,P) and with Brownian motion B’, with X = X,.
By [Theorem 5.24 (iii), we have X’ = Fx_(B’) a.s., which implies

E (X, 0|74 = E[£(X])|F.] = E[f(Fx, (B))|.7]
/ F(Fx.(w),) W(dw) = Quf(X.),

where in the third equality we use the independence of B’ and .Z;.
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Now it remains to verify that (Q;)¢>0 is a transition semigroup. Clearly, ()¢ is an identity map, and
(t,z) = Quf (x) is a continuous map, hence is measurable. Finally, one have

Quief(2) = E [X%,,] =E[E [X%,,|7.]] = E[Qu(X?)] = / Qu (. dy) Qe f (4)

which is the Chapman-Kolmogorov equation. This completes the proof. O
We then give an estimate for the second moment of a diffusion process.

Lemma 6.22. Fiz z € RP, and let (X[)i>0 be a solution of the SDE E*(o,b). Then there exists a constant
C, > 0 depending only on x, such that for allt >0,

E[|X7 — 2]?] < CreC=+) (¢ 4 42).
Proof. By triangle inequality and Lipschitz property, for all ¢ > 0, we have
o(XF)P < (Jo(@)] + [o(X}) — o(x)))? < 2lo(x)|* + 2K X[ — . (6.12)

A similar formula also holds for |b(X)]2.
We define a stopping time 7 = inf{t > 0 : | X} — x| > M} for some M > 0, and fix T > 0. Then the
function ¢ — E [|X],, — «|?] is bounded on [0,T]. For any t € [0,7], we have

E [|Xz, — 2] < 28 [( [ ot a,) cs as) ]
< 2E [/OW |a(X§)|2ds] +2E [T/OMT |b(X§)|2ds}

< AT (|o(z)|? 4+ T)b(z)|?) + 4K%(1 + T) /MT E[| X7 — z|*] ds
0

2
+2E

< AT (o (@) + Tlb(x)*) + 4K*(1+1T) /Ot [[XEnr — al?] ds
where we use in the third inequality. By Gronwall’s lemma , we have
E[|XZ2,, — 2] <AT(|o(2)]? + T|b(z)[?)e S 0T vt e [0, 7).
Let M — oo, and use the monotone convergence theorem. Then for all ¢ > 0, we have
E [|X7 — 2f?] < 4t (|o(2)[? + t]b(x)[?) K¢+,

Setting C; = 4max {|o(z)[?, |b(z)|?, K?} concludes the proof. O
To move forward, we have the following conclusion.

Theorem 6.23. The semigroup (Q¢)i>0 is a Feller semigroup, and its generator L satisfies (L) D C%(RP).
In addition, for every f € C2(RP), we have

1 p p
Lf:@%f“ ”a axj Z

where o* is the matriz transpose of o.
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Proof. (1) We first fix f € Co(RP), and verify that Q:f € Co(RP). Since z — F,(w) is continuous for every
w € C(RT,RY), the continuity of Q;f follows from (6.11)) and dominated convergence theorem. Let XZ be a
solution of E*(o,b). By Markov’s inequality and [Lemma 6.20} there exists a constant C, > 0 such that

N CpeCe 1) (¢ 4 42)

SE[IX7 — 2] <

vt > 0.

Then we have

Ce= 4 || ] ¢+ )
AQ

Qi f (2)] < [E [f(XD)L(xz—aj<ny] | + IFIP(XF — 2] > X) < S [f(y)l +
y: ly—=|<
Since f € Cy(RP), the first term of the last display converges to 0 as x — oo for all A > 0. Then we have
limsup,_, . |Q:f(z)| < C||f|| (#* +¢)/A? for all A > 0. This implies Q;f(z) — 0 as z — oo.
Now we fix 2 € RP, and verify that Q:f(xz) — f(x) as t | 0. For any A > 0,

E[f(X2)] - f(z)] < - f(x) = F@)| + 2| FI P (XF — 2] > A)
Yy—x|=
20, || F[(t + £2)
/\2

< sup |f(z) - fy)l +

yily—z|<A
— sup |f(z) = f)], as t10.

yily—m|<A

Taking A | 0 gives Q:f(z) — f(x).

(ii) To prove the second assertion, we use Itd’s formula to f(X7), where f € C?(RP). Recall that
4 a gt t
XP' =z + Z/ oie(X7)dB” +/ bi(XT)ds
0
4 q t
(X, X, Z/ oo (X))o (X7) ds = / (00™)iy (X7) ds.
k=1 0
Using Itd’s formula [Theorem 5.9] and associativity of stochastic integrals, one have

fXY +Z/ P X AXT 4 5 Z/ T 8% Y A(X T, XY,

P q p 2

i=1 k=1 i,j=1

Define g = = zp: (JU*)--ﬁ + zp: b of . Then the process
xr j - (9.’131

i,j=1 i=1

_ ! tO_ xaf T k Y _ f(x) — ' Y ds
M =303 [owngh o ant = s - s - [ o

i=1 k=1 8

is a continuous local martingale. Since f € CZ(RP), both f and g are compactly supported continuous
functions, hence the process (My);>o is uniformly bounded. By Proposition m (ii), M is a martingale.
According to Theorem fe€®(L), and Lf = g, which complete our proof. O
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Remark. Let ¥ = oo™ be the covariance matrix. We can formally write the generator L of E(o,b) as

1
L:§Z~V2+b-v,

where V? is the Hessian matrix. Fix f € C2(RP), and let u(t,z) = Q;f(z). Then u: Ry x R? — R solves the

following Kolmogorov backward equation:

Now we discuss two typical SDEs and their generators.

Example 6.24 (Ornstein-Uhlenbeck process). Let A > 0. An one-dimensional Ornstein-Uhlenbeck process is
the solution of the following SDE:

dX; =dB;, — \X,dt.

By applying Ité’s formula to eM Xy, we have
t t
eMX, = X+ / eMdX, + A / M X, dt,
0 0
which implies
t
X, = Xpe M +/ e Mt=9) 4B,.
0

Conditional on X, the mean and covariance of (X¢)i>o are given by
1
E[X(|Xo] = Xoe ™™, Cov(X,, X/ Xo) = 5= (e**lﬂi - e*MS”)) .

The generator of this process is given by

0* 9
Lf(z) = %aTCJ;(x) - /\xa—i(x), feCR).

1
) 2X
by K(s,t) = %e"“s_t'. In this case, X is a stationary Gaussian process.

Moreover, if we set the starting law as Xo ~ N(0, 55), then the covariance function of X = (X¢)i>0 is given

Example 6.25 (Geometric Brownian motion). Let ¢ > 0 and u € R. A geometric Brownian motion with

parameters o and u is the solution of the following SDE:
dXt = O'Xt dBt + ,LLXt dt.

Since

[e§] t
Xt = X() + / O'Xt dBt + / /J,Xt dt,
0 0

the quadratic variation of X is

t
(X, X) = 2/ X7 dt.
0
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Assume Xo > 0. By applying Ité’s formula to log X, we have

t 1/t 1 o?
log X; = log X dX; — = [ = d(X,X); = log X, B B
og Xy = log Xo + L x, X 2/0X1£2 (X, X)t =log Xo+ 0 t+<M 2)

Therefore, starting from Xo > 0, we have

o2
X = Xpexp (O'Bt + (M — 2) t) .

Note that M; = exp (oBt — %zt) is a martingale. Conditional on Xo, the mean and covariance of (Xy)i>o0 are

given by
E[X,|Xo] = Xoe, Cov(X,, Xi|Xo) = X2et s+t (602(5“> - 1) .

The generator of this process is given by

0
Liw) = St @ e @), pecm)
Furthermore, for any partition 0 = tyg < t1 < to < -+ < th_1 < t, < -+, we have independence of the
successive ratios:
Xp—Xo Xo— Xy Xn — Xn-1
XO ) Xl b ) Xn_l b )

which is a consequence of independent increment property of Brownian motions.

6.4.2 The Fokker-Planck Equation

Hermitian Adjoint of the Generator. Now we discuss the adjoint L* of generator L in sense that

| @)= [ j@)rg) .

Since both f and g are compactly supported on RP, we can choose a common compact support I' C RP. Using

[ v1-@g)yam == [ 19 g)am

integration by parts,

and
/v2 (Bg)d /Vf (Zg)) dm = /fv2 (2g) dm.

Consequently, we have
* 1 2
L :iv X —V-b (6.13)

This operator is useful in our derivation of the Fokker-Planck equation, which reveals the dynamics of the

probability density flow of a diffusion process.

Theorem 6.26 (Fokker-Planck equation). Let (X);>0 be a diffusion process with diffusion o : R — R and
drift b : R? — R, and let pg be a probability density function on RP. Let p(t,-) be the probability density
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function of X; for everyt > 0. If p € CY2(Ry x RP), then p solves the following Fokker-Planck equation:

2
p(0,) = po(x).

Proof. Let q(-|t, z) be the probability density function of Q;(-,x), where t > 0. Let f € C?(RP). Then we have

im g ([ Foatleo) ds - (@) = Lf@) = 550 V1) + bo) o), Vo R

For any ¢t > 0, we use interchangeability of derivative and integration:

q 9

. f() ot (ylt,r)dy = o ., f(W)a(ylt, =) dy

_ 1?11 [ lalwle+s,2) — aylt, ) () dy

—tint ([ [ atleontls armazdn- [ acinse) )
il [ 4Cele) ( [ atols. ) an - 1)) a

sl0 S

:/ q(z|t,x)Lf(z)dz:/ L*q(z|t,z) f(z) dz.
RP RP

Here the third equality uses Chapman-Kolmogorov identity, and the fifth uses dominated convergence. Since
the above equation holds for all f € C%(R), one have the following result:

= Wlt,x) = L q(ylt, ) = %VQ -N(2)q(ylt,z) = V - b(y)q(ylt, ). (6.14)

Now assume that Xy ~ pg. Then we have

plt.y) = / alylt2)poe) da

By applying this integration to both sides of ([6.14]), one obtain the desired result. O
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6.5 Jump Processes

In this subsection, we study the Markov processes where the state space E is finite or countable and equipped
with the discrete topology. Note that a cadlag function f € D(FE) satisfies that for every 0 < ¢t < oo, there
exists € > 0 such that f(s) = f(t) for all s € [t,t + ¢).

Consider a Feller semigroup (Q¢):>0 on E. According to our discussion in Section we can construct
a probability space 2, a right-continuous filtration (.%;);c[0,o], @ family of probability measures (P;).er and
a cadlag process (X)¢>o such that under each Py, (X;):>0 is a Markov process with semigroup (Q¢):>0 with
respect to the filtration (%;)ie(0,00], and Pp(Xo = x) = 1.

By the cadlag property of sample paths, for P,-a.e. z € E, there exists a sequence of times

OZTo(w) <T1(Cd) STQ((JJ) <... <o

such that
(i) Xi(w) = Xo(w) for each ¢ € [0, T} (w)),
(ii) for each j > 1, the condition Tj(w) < oo implies that X7, (w) # X7,(w), Tj41(w) > Tj(w) and
Xi(w) = X1, (w) for each t € [Tj(w), Tj11(w)), and
(iii) Tj(w) 1 0o as j — oo.
In other words, T;(w) are the moments at which (X;);>¢ jumps to another point. One can easily verify that
(T))nen are stopping times:

n<ty= |J X #Xo}eF, {Tn<t}= nﬁ{Tn<t} N U (X #X}| ez

q€[0,t)NQ j=0 q€[Th—1,t)NQ
We first study the law of the first jumping tine T7.

Lemma 6.27. For each x € E, there exists A(x) > 0 such that Ty is exponentially distributed with parameter
Az) under P,. (We make the convention that an exponential variable with parameter 0 is equal to 0o a.s..)
Furthermore, if A(xz) > 0, then X1, and Ty are independent under P,.

Proof. We let s,t > 0, and define ®(f) = 1¢()=f(0), vrefo,¢]} for f € D(E). Using the simple Markov property
[Theorem [6.13] and the fact that X, = x on the event {77 > s}, we have

Pw(Tl > 5+ t) =E,; [1{T1>S}(I>((XS+T)T20)] =E,; []I{T1>S}EXS‘I)((XT)T20)]
=E, []I{T1>S}P$(T1 > t)] = Pw(Tl > S)Paj(Tl > t).

Since 17 > 0 a.s., this memoryless property implies that 77 is an exponential variable under P, with parameter
Az) = log m. If AM(z) > 0, we have P,(T1; < co) = 1. We fix y € E and consider the mapping

B(f) = 0, f is constant
1(y,(f)=y}y» [ is non-constant, and 1 (f) is the value of f after its first jump.
Then
Po(Ty > t, X1y = y) = Eo [Lyr, >0 Bx, [P((X;)r20)] = Po(Th > 1) Pu(X1y = y),
which gives the desired independece. O

Remark. If A(x) = 0, the point « € F is said to be an absorbing state of the Markov process, in the sense that

Py (X, =0,Vt > 0) =1.
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For each point z € E with A\(z) > 0, we set
H(l’,y) :PI(XTl :y)v yGE\{ZE}

Then II(z, ) is a probability measure on E with II(z,z) = 0.

Proposition 6.28. Let L be the generator of (Qy)i>0. Then ®(L) = Co(E). For every x € E and ¢ € Cy(E),
e if \M(x) =0, then Lo(x) =0;
o if AM(z) >0, then

Lo(x) = Ax) Y T(a,y)(e) —e@) = Y Lz, y)ey),

yeE\{z} yeE

where

L(z,y) = i(f()g(x’y)’ fo\{m}’ (6.15)

Proof. Let ¢ € Co(E). If A(z) =0, it is trivial that Qip(z) = E, [p(X:)] = ¢(z) and so

i Q@) — (@)
t10 t

=0.

If AM(z) > 0, we use the strong Markov property of (X;);>¢ to obtain

Po(To €8) < Po(Ty <1.To STy +1) = Es [Lir, <o Py, (T < 1)
=E, [1{T1§t} (1 _ e—t)\(XT1)):| = P,(T, < t)E, [1 _ e—tA(le)}

= (1 - e_t)‘(l')) Z I(z,y) (1 - e_t)‘(y)) .

yeE\{z}

We fix any € > 0. Then there exists a finite subset F' C E\{z} such that II(z, F) > 1 — ¢, and

< 1 — e~ tA(T)
lim GRS < lim et <Z I(z,y) (1 - e_t’\(y)) + e) = Aa)e.

t10 t t10 e
Next, we decompost Q. (z) as follows and use the independence of T} and X7, under P, to obtain

Qup(x) = Euo(X1)] = Eo [o(Xo) L icryy] + EBa [0(X)1in <ty — Bo [(X1)1irp<iy] + Ea [0(X)Tin,<4y]

= <p(z)eit)‘(‘r) + (1 _ eft)\(z)) Z (z,y)p(y) + Ey [(‘P(Xt) —p(X1)) H{ngt}] .
yeBE\{z}

Combining the last two displays, we have

i | LEEZAE o) S M) (o) — el < 2l ZEED < 2@
yeE\{z}

Since € > 0 is arbitrary, the result follows. O

Remark. By taking ¢ = 1,3, we can interprete L(x,y) as the instantaneous transition from x to y:

L(w,y) = Llgy(2) = T P(Xe = )| o, v EE.
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Construction of a jump process. In practice, one usually starts from the transition rates of the process.
Assume we are given a collection (A(z))zecg of nonnegative numbers, and for every z € FE with A\(z) > 0, a
probability measure II(z, ) on E with II(z,2) = 0. Then we define the generator L : E x E — R via .
If a corresponding semigroup (Q:)¢>0 exists, by Proposition it must satisfy the differential equation

d
&Qt(z7y) = QtL(l',y)

Hence @Q; = e*” in the sense of the exponential of matrices.
e Since L1g =0, we have Q1 = 1. Hence Q(z,-) is a transition kernel.
e The property e(+9)L = etLest implies the Chapman-Kolmogorov equation for (Q;)¢>0. Hence (Qt)i>0
is a transition semigroup on E.
e Clearly, Q; = ¢!’ — Id as t | 0. Hence Q4(x,-) is a Feller semigroup.
After getting (Q;)i>0, we can immediately construct a Feller process (X;);>o with cadlag sample paths.
The next proposition provides a complete description of the sample paths of (X;);>o under P,. For the

sake of simplicity, we assume that there are no absorbing states.
Proposition 6.29. Assume that A(y) > 0 for everyy € E. Let x € E. Then
(i) Py-a.s., the jump times Ty < Ty < --- are all finite;
(i) under P, the sequence (Xo, X1, Xr,, ) is a discrete-time Markov chain with transition kernel 11
started from x;
(iii) conditional on (Xo, X1, X1y, ), the interval times (T, — Tp—1)52, are independent, and for every

n € N, the conditional distribution of T,, — T,,—1 1s exponential with parameter A(Xr, _,).

Proof. (i) Since A(z) > 0, it is clear that P,(T1 < 0o) = 1. Let ® = 1 {1, <o0}. By the strong Markov property,

Po(Thq1 < 00) = By [1i1, <oo} 14T i1 T <oo}] = Ba [Li1, <00} @((X1, 14)1>0)]

=E
=E, [1{7, <00} Exs, @] = Ey [17, <00} Pxy, (Tt < 00)] = Py(T,, < 0).

where the last equality holds because A(y) > 0 for all y € E. By induction, every T, is P,-a.s. finite.
(ii) & (iii). Let y,2z € E and f1, fo € B(R). By the strong Markov property,

Eo [1xn, =y 1T (= J2(To = T1)| = Ba [y, 4 f1 (T)Ex [ ey, =2 fo(T1)]

= H(z,y)H(y,z) dsleisl)\(m)fl(sl) d52€752)\(y)f2(82).
0 0

By induction, with the convention yy = x, for every n € N, y1,--- ,y, € E and f1,--- , fn € B(Ry),

Ep []l{Xleyl}]l{XTz:yz} n 1{XTn:yn}f1(T1)f2(T2 =T1) - fu(Th — Tn—l):|

W e . (6.16)
= 1(yo, y1)I(y1, y2) - - H(Yn—1, Yn) H/ dsge™ MWD f ().
k=170

Hence the desired result follows. I

Remark. For a jump process with absorbing states, we have an easy extension of the above theorem. Let
A={ye E: Ay) =0}, and let II(y,y) = 1 for each y € A. We define X, = limy4oc X; if the limit exists, i.e.
(Xt)¢>0 hits an absorbing state. Then under P,, the sequence (Xo, X1, X1, --) is a discrete-time Markov
chain with transition kernel II started from z. Furthermore, with the convention oo — oo = oo, conditional on
(Xo0, X1y, X1y, - ), the interval times (T,, — T),—1)52; are independent, and for every n € N, the conditional

distribution of T, — T}, is exponential with parameter A(Xr, _,).
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6.5.1 Poisson Point Process.

Definition 6.30 (Lévy processes). A Lévy process is a real-valued stochastic process (X)¢>o satisfying:
(i) Xo=0as..
(ii) (Independent and stationary increments). For every 0 < s < ¢, the increment X; — X is independent of
(X,,0 <r <s) and has the same law as X;_;.
(iii) X converges in probability to 0 when ¢ | 0.
For each ¢t > 0, we denote by Q+(0,dy) the law of X;. For every x € R, we let Q:(z,dy) be the image of
Q+(0,dy) under the translation y — = + y.

Proposition 6.31 (Markovianity of Lévy processes). The collection (Q;)¢>o is a Feller semigroup, and (X;)i>0

is a Markov process with semigroup (Q¢)>0-

Proof. Step I. We first verify that (Q¢):>0 is a transition semigroup. Let ¢ € B(R) and x € R. For any
s,t > 0, by property (ii), the law of (X, X;1s — X;) is given by the product measure Q:(0,) ® Qs(0, ), and

AQt(w’dy)AQs(y,dz)w(Z) = /RQt(O,dy)/RQs(O,dZ)w(fcﬂLy+Z)
=E[p(z + Xi + (X415 — Xp))] = E[p(z + Xi15)] = /RQHS(J% dz)p(2).

Thus we establish the Chapman-Kolmogorov equation. The measurability of the mapping (¢, z) — Q:(x, A)
follows from the strong continuity we are going to establish in order to verify the Feller property.

Step II. We next verify the Feller property. If ¢ € Cy(R), by dominated convergence theorem, the mapping
x — Qro(x) = E[p(r + Xt)] is continuous, and E[p(z + X;)] — 0 as |z| — co. Hence Qrp € Co(R).
For each € > 0, by uniform continuity of ¢, there exists 6 > 0 such that |p(z) — p(y)| < € for all z,y € R
with | — y| < 0. By property (iii),
li — <limE X)) —
i Qup () — (@) < i Bl + X,) = ()

<ImE [lo(z + Xe) — o(@)| Lq1x,1<6y] + 2l @00 ltiigp(\xt| >0) <e.

Since € > 0 is arbitrary, we have Q:p — ¢ as t | 0, and the convergence is uniform.

Step III. Finally we verify the second assertion. For every s,¢t > 0 and ¢ € B(R),
E[p(Xe40)| X, 0 < 7 < 8] = E[p(X, + (Xeps — X,)|X,,0 <7 < o]

_ / Qu(0, dy)p(X, +y) = / Qu(X.. dy)p(y) = Qua(X.).
R R

Therefore (X;);>0 is a Markov process with semigroup (Q:):>o0 O
The Poisson point process lies in the intersection of Lévy processes and jump processes.

Definition 6.32 (Poisson point processes). Let A > 0. A Poisson point process with intensity X is an integer-
valued stochastic process (X;)¢>o satisfying:
(i) Xo=0as..
(ii) (Independent and stationary increments). For every 0 < s < ¢, the increment X; — X is independent of
(X,,0 <r <s) and has the same law as X;_;.
(iii) For every ¢ > 0, the law of X; is Poisson:
A)*

P(X,=k)="p—e™, k=012
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Remark. According to Proposition a Poisson point process (X;);>o with intensity A is a Markov process

with Feller semigroup

AL)™
(m)‘ e_)‘t7 n,m=0,1,2---.

Qu(n,n +m) =

For every n € Ny, the first jump time T satisfies
Po(Ty >t) = Py(X; =n) = Po(X; = 0) = e M.

Hence the jump rate A(n) = A for all n € Ny. Furthermore, the generator of (Q)¢>o is

-\, m=0,

d d
L(n,n+m) = &Pn(Xt = n+m)|t=0 = &PO(Xt = m)|t=0 =49A m=1,
0, m > 2.

According to (6.31)), the transition probability IT is
II(n,n+1)=1, and II(n,m)=0 forall m#n+1.

Therefore X7y = 1 a.s.. By Proposition all jump times 77 < Tp < --- are finite. By strong Markov
property, we have X7, =n a.s. for alln € N.

Proposition 6.33. Let (X;);>0 be a Poisson point process with intensity A\ > 0. Define the n'" arrival
T, =inf{t > 0: X; =n}.

Then (T, — Tr—1)22, are i.i.d. exponential variables with parameter \.

Proof. According to our previous discussion, almost surely, 7}, is the n*® jump time of the process (Xt)e>o0-

Furthermore, we have
(XO,XTNXTza"' 7XTn7"') = (071a2a"' ,Tl,"') a.s..

We then let y, = k for each k € Ny in (6.16)) to get
E[fl(Tl)fQ(TQ*Tl)"‘fn(Tn*Tnfl)]: H/ eiAka(s)dsa vfla"' 7fn€B(R+)~
k=170

Thus we complete the proof. O

Remark. Consequently, the law of the n'!' arrival is the distribution Gamma(n, \).

Proposition 6.34 (Conditioning). Let Uy,--- ,U, be i.i.d. and uniform on [0,t], and let UMD < ... < U™ pe
the corresponding ordered statistics. Let (X¢)i>o0 be a Poisson point process with intensity A > 0. Conditioning
on the event {X; = n}, the arrival times (Ty,--- ,Ty,) and (UMD, ... UM™) are identically distributed.

Proof. The event {X; = n} has probability %e"\t. On this event, the joint density of (T3, -+ ,T;,) is

p(Th=ti,-- T =t,, Xy =n)= (H )\6_’\“"‘_'5’“1)) e AEmtn) — N\ A
k=1

Dividing the above result by P(X; = n), we know that the conditional density of (Ty,---,T,) is n!/t" on the
region {0 <t; <--- <t, <t}. This is the distribution of (U(l), e 7U(")). O
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7 Local Times

In this section, we study the theory of local times of continuous semimartingales. Throughout this section, we
fix a filtered probability space (2, F#, (F)i>0,P) with a complete filtration (#;);>¢. Before we proceed, we

review some properties of convex functions.

Proposition 7.1 (Convex functions). Let f : R — R be a convezx function. Then
(i) f is locally Lipschitz continuous;
(ii) the right derivative
oy o fl@+h)— f(x)
exists for each x € R, and D™ f is right-continuous on R; and
(iii) the left derivative
—ey o f@) = flz—h)
D@ =im =

exists for each x € R, and D™ f is left-continuous on R.

Proof. (1) We first prove that f is locally bounded. Fix 0 < N < oo. Then for every 2 € [N, N], we have

fla) < TEE ) 4 ST RN < max{F(V), F(-N)} < oc,
and 1 1 1 1
F(0) < 5 7(x) + 5 7(~2) < L f(2) + 2 max{F(N), f(~N)}.
Hence

2f(0) —max{f(N), f(=N)} < sup |f(z)] < max{f(N), f(-=N)}.

z€[—N,N]

To prove local Lipschitz continuity, we fix z,y € [-N, N] with « < y. By convexity of f, we have

F) € 1)+ RGN~ F) < S+ 5w f(e)
and 2 )
—_ -
f@) < 10+ 5, 2N = J) S Jw)+ Sy swp - fG).
Hence
)@l _ 2
PEFEE O NV

which proves Lipschitz continuity.

(ii) For each z € R, we fix = < y < 2. By convexity of f,

Fy) < 2250 + 2 p ().

zZ—x Z—x

Hence we have

fy) = fz) _ f2) = f(2)

y—x z—x

By local Lipschitz continuity of f, the net (M)h . is bounded. Hence the limit
>

. f(z+h)— f(x)
D* f(x) :%%f
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exists for every x € R. Furthermore, DT f is monotone increasing on R, since

Jw) = f@) ()= f@)  fG) - W)

w—z z—x z—y

forallz < w <y < z.

Letting w | = and z | y, we have DV f(z) < DT f(y) for all x < y. To prove right continuity, we assume
a = limy, D" f(y). Then DT f(z) < o, and DT f(y) > « for all y > x. Hence it suffices to show that
DT f(z) > a. By convexity of f, we take 0 < h < z — y to obtain

[ =fly) o fy+h) = Fly) ¢
> =D > a.
g 2 im Y fly) =z a
We then let y | = to obtain
MZ@, for all z > x.
z—x
Finally, we let z | « to conclude that D f(z) > . Thus we complete the proof. O

7.1 Tanaka’s Formula and Local Times

Motivation. Let X = (X;);>0 be a continuous semimartingale. If f : R — R is a twice continuously

differentiable function, the Itd’s formula asserts that (f(X¢))¢>o is still a semimartingale, and

F00) = £ + [ PO+ 5 [ a0, (11)

In fact, if f: R — R is not twice continuously differentiable but convex, then (f(X¢))¢>o is still a semimartin-
gale, and we can obtain a representation of f(X;) similar to (7.1)).

Theorem 7.2. Let f : R — R be a convex function, and let (X;)i>o0 be a semimartingale. Then (f(Xy))i>o0 is

also a semimartingale. Furthermore, there exists a continuous increasing process (A{ )i>0 such that
t
F0X) = F(Xo) + [ D p(X) aX. + A, (7.2
0
Proof. Step I. We let ¢ be a nonnegative C* function supported on [0, 1] such that fol ¢(x)dr =1, and let

(o) = n((m) x ) =n [ " o) f( — ) dy.

Then f, is C*° on R, and by standard mollification results, f,, — f pointwise, and f; = n¢(n-) * D~ f. By
left continuity of D~ f, for every = € R,

1/n
() =n ; ¢(ny) D™ f(z —y)dy — D~ f(x).

Finally, since f, is also convex, we have f// > 0 on R for all n € N.

Step II. Let X = M + V be the canonical decomposition of semimartingale X. For each N > 0, define
t
m={ez0sxs+ [lani+ onon, > v,
0

By It6’s formula,

tATN 1 tATN
FuKine) = )+ [ fux) a5 [ Ry )., (73)
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By definition of 7, we know (M, M), < N. Since f}, is uniformly bounded on every compact interval [0, ¢],

by the Dominated Convergence Theorem [5.7] for stochastic integrals, as n — oo,
tIANTN t/\TN
/ (X)) dXs — / s)dX, in probability. (7.4)
0
For every t > 0, define
tINTN
AP = [(Xinr) = $(Xo) = [ D7 F(X) X,
0

By definition, ¢ A{ N is continuous. Since f,, — f and fI — D~ f pointwise, by (7.3]) and (7.4)),
1 tATN
AN = lim f/ I (Xs)d(X,X)s in probability.
0

Since f > 0, the process A" is increasing. Furthermore, for N’ > N, we have A/ AJZI/V = APN. Therefore there
exists a continuous increasing process Af = (A4f);>¢ such that AJ o = A/ for every N > 0. Furthermore,
we can obtain ([7.2)) by letting N 1 oo in the definition of A{ N O

Remark. We can adapt our proof to show that
t
FOX) = £(Xa) + [ DY) AX, + A
0

for some continuous increasing process (Z{ )i>o0- If f is twice continuously differentiable, we have Dt f = D~ f
and A = A = 5 fo F"(X,)d(X, X),. However, in gencral we may have Af # Af.

Theorem 7.3 (Tanaka). Let (X¢)i>0 be a semimartingale and a € R. Then there exists an increasing process
(LE(X))t > 0 that satisfies the following Tanaka’s formula:

t
X, — a| = | Xo — df +/ sgn(X, — a) dX, + LE(X), (7.5)
0
t
|
(X, — a)* = (Xo— a)* +/ 1y AX, + 5 LE(X), (7.6)
0

Lracx). (7.7)

t
(tha)f = (Xg—a)f 7/ ]I{nga}dXs+ 9
0

The increasing process (LE(X))i>o is called the local time of X at level a. Furthermre, for every stopping
time T, we have (L¢\(X))i>0 = (LF(X7))t>0-

Proof. We apply Theorem [7.2| on the convex function f(x) = |x —a|. Then the process (L¢(X)):>0 defined by
t

L{(X)=|X¢y —a| —|Xog—a|— / sgn(Xs —a) dX, (7.8)
0

is an increasing process, and (7.5)) follows from definition. Also Lt " (X) = L¢(XT) for all stopping times T,
since fo sgn(X7T —a)dXT = JAT sgn(Xs — a)dX,. To show and (7.7, we apply Theorem n to convex
functions (x —a)™ and (z —a)~ to obtain

t ¢
(-0 = (o= + [ Do X+ AT, (=) =(No-a) = [ LiveadXo+ 47
0 0
where (A{)i>0 and (A?™)i>0 are two increasing processes. Taking the difference of the above two identities,
we see that A%t = A%~ By comparing the sum of the above two identities with (7.8)), A¢™ 4+ A%~ = L¢(X).

Hence A" = A7~ = 1L¢(X), and we prove | and (7.7). O
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Next, we study the variation property of local times. We write by dL%(X) the random measure associated
with the function s — L%(X).

Proposition 7.4. Let X be a continuous semimartingale and let a € R. Then almost surely, the random

measure dL%(X) is supported on {s > 0: Xs = a}.
Proof. We set Y; = | X; — al. By (7.5)), since sgn(z) =1 for all x € R, we have (YY), = (X, X);, and

dY, = sgn(Xs — a)dX, + dL¢(X).

By applying It6’s formula to Y;2, it holds
t
(X; —a)? =Y +2/ Y dYs + (Y, Y),
0
t t
=(Xo—a)*+ 2/ (X, —a)dX, + 2/ | X, —a| dLY(X) + (X, X),.
0 0
In the other hand, if we directly apply It&’s formula to (X; — a)?, we have
t
(X, —a)? = (Xo—a)® + 2/ (Xs—a)dX, + (X, X),.
0

Comparing the two results, we have
t
/ | Xs —aldLE(X) = 0.
0
Then we finish the proof. O

Remark. This proposition shows that (L¥(X));>o may only increase when X; = a. To some degree, (L (X))i>0

measures how long the process stay at level a before time ¢, which justifies the name “local time”.

7.2 Continuity of Local Times and Generalized It6’s Formula

In this subsection we discuss the continuity of local times L%(X) with respect to the space variable a. It is
often helpful to view L%(X) = (L¥(X))t>0 as a random function in C(R4,Ry), which is equipped with the
compact convergence topology. Throughout this section, we let X = M 4 V be a continuous semimartingale
with its canonical decomposition.

7.2.1 Continuity of Local Times

Theorem 7.5 (Cadlag). The process (L*(X))aer with values in C(Ry,Ry) has a cadlag modification, which
we consider from now on and for which we keep the same notation (L%(X))qcr. For each a € R, we denote
by Lo~ (X) = limy, LP(X) the left limit of b — L°(X) at level a. Then

t t
L{(X) - Ly (X) = 2/ Tix,—a) dVv, = 2/ Tix,—a) dX,, t>0. (7.9)
0 0

In particular, if X is a continuous local martingale, the process (LE(X))aer,t>0 15 jointly continuous.
The proof of this theorem uses Tanaka’s formula and the following technical lemma.

Lemma 7.6. Let p > 1. There exists a constant C, > 0 such that for every —oo < a < b < oo,

E [(/Ot 1 facx,<py (M, M)Sﬂ < Cp(b—a)? (IE [<M, My;/?} +E [(/Ot st|)pD . (7.10)
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Furthermore, for each a € R, write Y* = (Y*)i>0 for the random function in C(R4,R) defined by

t
Yt“:/ 1ix,5a) dM,.
0

Then the process (Y *)q.cr has a continuous modification.

Proof. (i) We first prove the inequality ((7.10). We may assume b = —a = r for some r > 0, otherwise we may

a

assume r = b% and replace X with X — b"'T“. Let f be the unique function in C?(R) such that

J0)= f/(0) =0, and f”(x)=<2—x|)+

r
Then |f/| < 2r on R. Since f” >0 on R and f”(x) > 1 for z € [—r,r], and by Itd’s formula, we have

1

¢ t
wx.<my d(M, M), (X AM, M)y = f(X,) = f(Xo)— | F(X,)dX,. ,
2/]1{’“X<} /f )s = f(Xy) — f(Xo) /Of( ) (7.11)

Recalling that |f’| < 2r. By the Burkholder-Davis-Gundy inequality [Theorem ,

(|Mt—Mo|+/0t|dv;|)p
(/ t |dvs>p ) , (7.12)

and we henceforce use C), to denote any constant depending only on p, which may vary from line to line. Next

E|f(X) = f(Xo)[" < 2r)"E |X; — Xo|” < (2r)"E

< Cy(2r)P (E [(M, MY/ 2} +E

we control fg f'(Xs) dXs, which can decomposed as

/f VX, = /f ) dM, +/f
]El < (W/:E [(/Otdw)p

and again by the Burkholder-Davis-Gundy inequality,

([ rsauonon)

Combining the last three displays and the estimates ((7.11)), (7.12)), we obtain the inequality (7.10]).

Note that

< C,E

< Gy (2ry'E [(M, M)}

(ii) Fix p > 2. By the Burkholder-Davis-Gundy inequality, for every —oo < a < b < oo and t > 0,

t p/2
<C,E ( / n{a<xs<b}d<M,M>s) ] (7.13)
0

E | sup [v) - Y7
s€[0,t]

We define stopping time
t
Tn :inf{tZO : (M,M}t—l—/ |[dVs] Zn}.
0

tATRH p/2
E [(/ ]l{a<XsSb} d<MaM>6>
0
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We then use ([7.13]) with ¢ replaced by t A 7,,, and letting ¢ — oo, to obtain
E [sup|Y2,, — Y&, |P| < Cp(b—a)P/? (np/‘* + nW) . (7.14)
s>0

Since p > 2, by Kolmogorov’s continuity lemma [Corollalry7 there exists an a.s. modification of the process
a— (Y, )s>o0 valued in C(R;,R). We write (Y (")) g for this continuous modification.

If 1 <n <m, for every fixed a € R, we have (Yj””“)szo = (Ys(/@n’a)szo a.s.. By a continuity argument
(choose a dense subset of R and use continuity on the space variable a), the equality holds for all s > 0 and all
a € R a.s.. Therefore, we can find a continuous process (f’“)aeR valued in C(R4,R) such that for each n > 1,
(Ys(")’a)szo = ()78‘}7”)820 for all a € R a.s., which is the desired continuous modification. O

Remark. We apply the inequality (7.10) on the semimartingale X™  where 7, has the same definition as in
the above proof. We then let a 1 b and apply dominated convergence theorem to obtain

tATH
E ‘/ 1. —py d(M, M),| =0.
0
Finally we let 7, — oo to obtain that fot Tix,—py d(M, M), = 0 a.s. for every ¢t > 0. Hence

t
/ Tix.—pydM, =0 as., beR, t>0. (7.15)
0

Proof of Theorem[7.5. We slightly abuse the notation and write (Y*),cr for the continuous modification
obtained in the second assertion of Lemma We also define

t
Z8 :/ Lix.5aydVs, t>0.
0

For each ag € R, by the dominated convergence theorem, for all 7" > 0,

T T
lim Tix,>ay — Lix,>a03/dVs = 0, ggr;/ Tix, >0y — Lix,>a0}| dVs =0,
0 G 0

alag

It is seen that Z8* — Z;° as a | ap and Zf — fg 1¢x,>a03 dVs as b 1 ag, and both convergences are uniformly on
each compact interval [0, T]. Hence the process a — Z has cadlag sample paths. Since a — Y, is continuous,
By Tanaka’s formula [Theorem , for each a € R, we have

(L{)e>0 =2 ((Xt —a)t = (Xg—a)T - Y~ — Zf)tzo a.s.. (7.16)
which provides the desired cadlag modification, because

a— (Xy—a)m —(Xg—a)t - Y2

has continuous sample paths. Furthermore, one can evaluate the jump by
t
L -1 =2 =20 = [ A avi
0

By (7.15)), we finish the proof of the second identity of (7.9). O

Remark. Our cadlag modification (L%(X))qcr is done for the spatial process (L%(X))qcr taking values in
C(R4+,R). Hence for each fixed a € R, the processes (L{(X));>0 and (Z?(X))tzo are indistinguishable.
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7.2.2 Ito6-Tanaka Formula

Now we study an extension of It6’s formula using the cadlag property of local times. If f is a convex function
on R, the left derivative D~ f is a left-continuous increasing function on R, and there exists a unique Radon
measure D?f(dx) on Ry such that D?f([a,b)) = D~ f(b) — D~ f(a) for every a < b, which can be interpret as
the second derivative of f in the sense of distributions. For all —oco < a < b < oo,

D™ f(b) =D f(a) + /R ﬂ{agz<b}D2f(d95)-

By the fundamental theorem of calculus for absolute continuous functions and Fubini’s theorem,

/ D) dy = )+ [ b (0770 + [ 1ceen D210 )
— f(@)+(b-a)D"f(a / / 1 ucaey) dy D2 f(da).

Hence

f(b) Zf(a)—F(b—a)D*f(a)—F/ (b—x)T D?f(dz), —o0o<a<b< oo (7.17)

[a,20)

We can then identify the increasing process (Af);>o in Theorem [7.2| using the local times (L%(X))qer and
the distributional derivative D?f. This is a generalization of the Ito’s formula.

Theorem 7.7 (It6-Tanaka). Let f: R — R be a convezx function. Then for every t > 0,

f(Xy) = f(Xo) /D f(X)dX, + = /L;;(X)D2f(da). (7.18)

Proof. We first assume that (X;);>o is bounded, so there exists K > 0 such that |X;| < K for all ¢ > 0, and
L*(X) =0 for |a| > K by Proposition By Tanaka’s formula, for every a € R,

1
(Xi—a)t=Xo—a)" +Y* + 28 + 5Lf(X), t>0. (7.19)

where .

t
Y;a:/ ]l{Xs>a}dMsa and Zta:/ ]1{X5>a}d‘/sv t > 0.
0 0

By Fubini’s Theorem,

t
/[K K] ZED" f(de) = /0 /[K K] L(x,5a) D*f(da) V.
! t
:/ /ﬂ{_KSKXS}sz(da) a :/ (D™ f(X) = D™ f(=K)) AV (7.20)
0 JR 0

Next, we introduce the stopping times 7, = {t > 0: (M, M); > n}, and consider the continuous modification
of a — fot/\T" 1{x,>q} dM, provided by Lemma Define

tATn
M = / (/ Lix,>a} dMS) D*f(da), t>0.
[-K,K] 0

Then f(f 1yx,>ay dM; is a local martingale reduced by 7, and by Fubini’s theorem,

(t+€e)ATy
E(M/{. 7] = Mf™ + /[ KK]EK / ﬂ{x@a}dMs) \ﬁ] D*f(da) = M{™, t+e>t20.

NTp
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Hence (M/"™);>¢ defines a continuous martingale in H2. For any N € H2,
tATh
E[(M/" N)o] =E [ML"N,] =E [/ (/ 1{x,>a} dMS) NOODQf(da)]
[-x,K] \Jo

/[_K,K] ([ tecmmannm,) 2| =5 | [ < /[ B
(L

)

» Lix,5a) D? f(da)) d(M, N)S]

=E

Lix,>a) D? f(da)> dMS> Noo] .

Since (M, N) — E[(M, N)oo] = E[M,,Ns] is an inner product on H?, we have the following Fubini’s theorem
for stochastic integrals:

tAT, tATh
Mtf’n = / (/ ]l{Xs>a} dMs> DQf(da) = / </
[-K,K] \JO 0 - K,K]

)

1ix,>ay D? f(da)) dM;.
Letting n — oo, and apply the monotone convergence theorem, we have
t
/ Y,* D*f(da) :/ (D™ f(Xs) = D™ f(-K))dM,, t=>0. (7.21)
[-K,K] 0
We then integrate (7.19)) with respect to D?f(da) on [~ K, K], and apply (7.17), (7.20) and (7.21) to obtain
_ b _ 1
FOX) + (X0 = Xo)D™ f(-K) = f(Xo) + [ (D F(X.) = D™ f(-K)) dX. + /[ LD/ (o)
0 —K.K

Note that fot dX, = X; — Xy, and LY(X) = 0 for |a| > K, we obtain (7.18]) for bounded semimartingales. For
the case when X is unbounded, we stop X when it first leaves [— K, K] at the stopping time T%. Then

t ATk 1
FXim) = 1)+ [ D7) 4%+ 3 [ L (X)D2 (o).

By continuity of f and the monotone convergence theorem, we let K 1 oo to conclude ([7.18]). O
Remark. The Ito-Tanaka formula ((7.18)) also holds for each f that is a difference of two convex functions.

Corollary 7.8 (Occupation times formula). Almost surely, for all t > 0 and all nonnegative Borel functions
P on R,

/t<I>(Xs)d<X,X>S :/@(a)Lg(X) da. (7.22)
0 R

More generally, we have a.s. for all t > 0 and all nonnegative Borel functions ® on Ry x R that

/FsX d(X, X), // F(s,a)dL%(X) da. (7.23)

Proof. We first fix ® € C.(R) with ® > 0 and f € C?(R) with f” = ®. Then holds for each ¢ > 0
(by a continuity argument) outside a zero probability set Ng by comparing Itd’s formula and the It6-Tanaka
formula. Next, we take a countable dense subset {®,}52, of C.(R) and take N' = [J;2; Np,. Then the
formula holds for all ® € C.(R) outside the zero-probability set A". An application of the Monotone
Class Theorem m gives the general result for nonnegative measurable functions ®. Consequently, ([7.23])
holds for all functions F' of the type F(s,a) = 1[4, (s)1a(a), where 0 < o < 3 and A € #(R). Again an
application of Theorem [1.38| gives the general result. O
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7.2.3 Approximation of Local Times

We have the following proposition which gives another reason for the terminology “local time”.

Proposition 7.9. Let X be a continuous semimartingale. Then almost surely for allt > 0 and a € R,

t

1
LX) =lim = [ Lo (X d(X,X).. (7.24)
€ 0

Proof. By the occupation times formula ([7.22)), almost surely for all ¢ > 0 and a € R,

t a-+te
/ Tia,ate) (Xs)d(X, X)s = / L{(X) da.
0 a

Since a — L%(X) is right-continuous on R, the result follows. O
Remark. An analogue of the above argument also gives

1 t
Lo (X) =lim = [ T(g_ea(Xs)d(X, X),.
el0 € Jo ’

In particular, if X is a continuous local martingale, we have

a : 1 ‘
LY(X) = 16%1%/0 Lo care)(Xs) d(X, X)s.

We also have the following estimate for the moments of local times.

Corollary 7.10. Letp > 1. There exists a constant C, such that, for any continuous semimartingale X with

canonical decomposition X = M + V', we have for every a € R and t > 0 that

BILHCOP < G, (B[00 + [(/ avl)]).

Proof. This estimate follow from (7.10] in Lemma [7.6] the approximation (7.24) and Fatou’s lemma. O

Next, we introduce the downcrossing approximation of local time. We let X be a continuous semimartingale,

and introduce two sequences of stopping times
05=0, 7,=inf{t>0,:X;=¢}, and o) =inf{t >7;_,: X, =0}
Define the downcrossing number of X from level 0 to level € before time ¢ by
N[OX,e](t) =inf{n e Ng:0, <t}.

We have introduced this notation with slight difference in the proof of martingale convergence.

Theorem 7.11 (Downcrossing representation of the local time at zero). For each t > 0, we have
. 1 , .
161&1 eN[OXd (t) = §L?(X) in probability. (7.25)

Furthermore, if there exists p > 1 such that

E [(M, M)P/% 4 (/OOO |dV5>p] < 00,
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then

limE {sup

1
N, (X
€10 150 € [05]() 2 t( )

p} = 0. (7.26)

Proof. For notation simplicity, we write L, for L(X) in our proof. By Tanaka’s formula,

tATS

1
(Xinre)* — (Xongs ) = / 1ix,50) AXs + 5 (Lenss = Lunss) (7.27)

tAoE,

Note that L°(X) does not increase on the intervals of the type [7¢_;,0¢), n =1,2,---. By (7.27) we have

n—1%n

1 1 — 1 &
sLi=3 3 (Lonosys = Linas ) = 5 O (Ltnrs = Linas)
n=1 n=1
00 tATS
= Z (Xt/\'r;)Jr - (Xt/\o;)+ - / 1{Xs>0} d X
n=1 tATE,

= Z (Xinre)T = (Xinoe )" / Z Lioe re)(5)1(0,q(Xs) dX. (7.28)
=1

n=

[

Noting that (Xiare )T — (Xinoe )T = €l <4y, we have
Z Xt/\-,- Xt/\ae) ) = EN!L(t) + U(G),
n=1
where 0 < u(e) = (X;)1 — (XC’;(t )t <, with n(t) = N[o ¢(t). Recalling (7 (7:28), we have
1
2L €N[0 € = / (o5 .,.s] )]1(0’6] (Xs) dXs. (729)
(i) Since 0 < 3707 1 ige re1(5) L0, (Xs) < L(g,q(Xs) for all € > 0, by Theorem we have
lim Z Lo 7¢)(8)L(0,q(Xs)dX, =0 in probability.

el0

Recalling ([7.29]), we obtain (|7.25)).
(ii) By the Burkholder-Davis-Gundy inequality [Theorem [5.16|, for every e > 0 and T > 0,

p
/Zn(agf 8)1 (g, (X,) dX, 1

p/2
</ o" TE] )]1(0,6] (Xé) d<M7 M>5> (/
T p
(M, M) + < / |dvs|>

By (7.11)) and the dominated convergence theorem, we have

sup
0<t<T

(o8 ,-r6 0 e]( )

p
Ist>

< C,E

lIimE

su
el0 P

0<t<T

p

Letting T 1 oo and by ([7.29)), we conclude ([7.26]). O
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7.3 Brownian Local Times

In this subsection, we study the local times of the standard Brownian motion B = (B;);>0 on R. We fix

(Z+¢)1>0 to be the completed canonical filtration of B.

Theorem 7.12 (Trotter). There exists a unique process (L (B))i>0,qcr, called the local time of the Brownian
motion B = (By)i>0 such that
(i) the map (t,a) — L¥(B) is continuous, and the map a — L¥(B) is Holder continuous with exponent
for each v < % and uniformly in t on every compact interval;
(i) for every fivred a € R, the map t — L§(B) is increasing;

(iii) a.s. for everyt > 0 and every nonnegative measurable function on R,

t
/ ®(B,) ds — / B(a) L2 (B) da;
0 R
(iv) a.s. for every a € R, supp(dL%(B)) C {s > 0: Bs; = a}, and for fized a € R,
supp(dL§(B)) ={s>0:Bs; =a} a.s.. (7.30)

Proof. (i) and (ii) are properties of local times [Theorem [7.5]. To prove Holder continuity, the estimate (7.14)
implies that for every p =2+ 6§ > 2,

E| sup [Y? — Y*| < Cs(b—a)'+3 (t¥ +t¥) , abeR,
0<s<t

where Y = fot 1¢B,>q} dBs. By Kolmogorov continuity lemma [Corollary, there exists an a.s. modification

of (Y%)4er that is locally y-Holder continuous for each v € (0 and so is

5
’m)v
L{(B) = (By —a)" — (Bo —a)" =Y.

Letting § — 0o, we conclude that a +— L¢(B) is Hélder continuous with exponent v for each v < 1 and

2
uniformly in ¢ on every compact interval. Note that (B, B); = t, (iii) follows from Corollary

(iv) The inclusion supp(dL%(B)) C {s > 0: B; = a} holds a.s. if a € R is fixed, hence simultaneously for all
rational a a.s.. The continuity argument (i) allows us to get that the inclusion holds for all a € R outside a
zero probability set. In fact, if there exists a € R such that L¢(B) > L%(B) for some 0 < s <t and B, # a
for all r € [s,t], we can find a rational b sufficiently close to a such that the same properties hold when a is
replaced by b, which gives a contradiction.

Finally we verify the a.s. equality for fixed @ € R. For each ¢ € Q, let 7, := inf {t > ¢ : B, = a}.
Then our claim will follow if we can verify that a.s. for every e > 0, LY | (B) > L% (B). By the strong Markov
property at time 74, it suffices to prove that if ()52, is a Brownian motion started from Sy = a, then a.s. for
every € > 0, L%(8) > 0. Without loss of generality we can take a = 0. By Tanaka’s formula and an scaling
argument,

£6) =16 - | en(8,) 4B, L Ve 4| - vE | sz as, = verkeo)
0 0

Since E[LY(B3)] = E|B1] > 0, we have P(L%(3) > 0) = P(L{(8) > 0) > 0. By Blumenthal’s 0-1 law, the event

A= () {L3-.(8) > 0}

has probability 1, which concludes the proof. O
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7.3.1 Laws of Brownian Local Times

In this part we study the law of local times of Brownian motions. The following lemma gives an integral

representation of Brownian local times.

Lemma 7.13. Let B = (By;)i>0 be a standard Brownian motion, and

t
By = —/ sgn(Bs)dBs, t>0.
0

Then 8 = (B¢)>0 is also a standard Brownian motion, and L{(B) = supg< <, fs.

Proof. Since (8, )¢ = t, by Lévy’s characterization of Brownian motions [Theorem|5.12], (8;)¢>0 is a Brownian
motion. By Tanaka’s formula, |B;| = LY(B) — 3, which immediately shows that L{(B) > supg<,<; 8, since
LY(B) > LYB) = s + |Bs| > Bs, for all s > 0.

To show the opposite inequality, let U; be the rightest zero of B in [0,¢]. By the support peroperty of local
times, we have LY(B) = L(L),t (B) = Bu, <supg<s<;Bs, which concludes the proof. O

Recalling that we write
M; = sup Bs.
0<s<t
d d .
Corollary asserts that M; = My — By = | By| for every t > 0. We have a stronger conclusion.
Theorem 7.14 (Lévy). The two processes (Mg, My — By)i>o and (LY(B),|Bt|)i>0 have the same law.

Proof. By Lemma and Tanaka’s formula,

(L{(B),|Bil)ez0 = ( sup fs, sup f; —@) a.s..
t>0

SG[Oft] SG[O,t]

Since (Bs)s>0 is a standard Brownian motion, the result follows. O
Remark. By the remark under Theorem we can obtain an explicit formula for the density of (LY(B), |By|).
Corollary 7.15. P(L% (B) = o0) =1 for every a € R.

Proof. By the point recurrence of 1-dimensional Brownian motions, P(My, = co0) = 1, and by Theorem
we have P(LY (B) = o) = 1. If a # 0, by the strong Markov property, Br, +; — a is a standard Brownian
motion, where T, := inf{t > 0: B; = a}. Hence P(L% (B) = c0) = 1. O

Next we study the law of local times indexed by stopping times.

Proposition 7.16. Let B = (By):>0 be a standard Brownian motion.
(i) Let a # 0 and T, = inf{t > 0: B, = a}. Then LY, (B) has an exponential distribution with mean 2|a|.
(ii) Let a >0 and U, = inf{t > 0: By = |a|}. Then Ly; (B) has an exponential distribution with mean a.

Proof. By simple scaling and symmetry arguments, we may take a = 1. Since L% (B) = oo by Corollary
we fix s > 0 and take 75 = inf{t > 0: LY(B) > s}, which is an a.s. finite stopping time. Furthermore, B,, = 0
by the support property of local time. By the strong Markov property, (B})i>0 = (Br.+¢)t>0 is a standard
Brownian motion started from 0 and independent of .%#, . By Proposition @

Ts+t

L{(B') = leifg < Ljg,e)(Bs) ds = LESH(B) - LQS (B) = LESH(B) - S
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(i) On the event {L}, (B) > s} = {7, < T1},
L%1 (B) —Ss= L%lf‘l's (B/) = Lol/ (B/)7

where TY = {t > 0: B{ = 1}. Since the event {7, < Ty} € %, and B’ is independent of .%,_, the conditional
distribution of LY, (B) — s given that L}, (B) > s is the same as the unconditional distribution of L%, (B).
Hence the distribution of L%l (B) is exponential. Furthermore, by the monotone convergence theorem, Tanaka’s
formula , and dominated convergence theorem,

E[L}, (B)] = Im E Ly, (B)] = 2lim El(Binr,)*] = 2E[(Br,) "] = 2.

(ii) The proof is similar to (i), but we apply Tanaka’s formula (7.5) to show that E[L{, (B)] = 1. O

Now we turn to the result on the support of the random measure dL?(B). We consider the time change
associated with (LY(B))s>o, i.e.
7 =inf{s >0: LY(B) > t}, t>0.

By construction, (7;);>0 has cadlag increasing sample paths, since

T = inth;JO{s >0: LS(B) >t+h} = }ilI;%Tt+h = lgil&THh.

Furthermore, by Theorem and Theorem M (Te)e>0 4 (T¢)¢>0 and has independent increments.

Proposition 7.17. Let D be the countable set of jump times of (7¢)¢>0. With probability 1,
supp(dL2(B)) ={s>0: B, =0} = {r,: s > 0} U {r,_ : s € D},
Remark. We may write

C= U(Tsfﬂ—s,‘)v

s>0

where (7,_,7,) is nonempty if and only if the local time L°(B) has a constant stretch at level s, and in that

case the stretch is exactly [7s—,7s]. Then C is a countable union of open intervals, and
{rs:s>0}U{rs_ : s€ D}

is the complement of C.

Proof. The first equality is (7.30). Next, for each s > 0 and € > 0, we have L2 (B) = s and L2 | (B) > s,
which implies 7, € supp(dL?(B)). Since supp(dLY(B)) is closed we also have 7,_ € supp(dL%(B)). Hence

{15:5>0}U{r,_ : s € D} Csupp(dL(B)). (7.31)
Finally, for every t € supp(dL?(B)), we have either
LY (B) > LY)(B) for every e >0,

or, if t > 0,
LY_(B) < LY(B) for every ¢ > 0,

or both simultaneously, which implies ¢ = 705y or t = 70(p)_, respectively. Hence the opposite inclusion of
(7.31)) holds, and the second equality is valid. O
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8 Brownian Motions: Part 11

8.1 Brownian Motions and Harmonic Functions

Brownian motions are closedly related to harmonic functions. We are going to address this particular topic.

Definition 8.1 (Harmonic functions). In this section we always assume U is an open subset of R%. A function
u € C?(U) is said to be harmonic, if

0%y 9%u

Remark. Let V be a bounded open subset of U with V' C U. We define the stopping time 7 = {t > 0: B; ¢ V}.

By Itd’s formula, for every x € V', the process u(Bia,) is a local martingale under P,:
tAT
u(Biar) = u(By) +/ Vu(Bs) - dBs.
0
The quadratic variation of this process is given by
tAT
(w(BT),u(B7)), = / Vu(B,)[2ds, ¢ 0.
0

Since V is a compact set, by Corollary the stopped process (u(Biar))i>0 is a true martingale.

Theorem 8.2. Let u € C?(U) be a harmonic function, and let V be a bounded open subset of U with V C U.
For everyx €V,

Proof. Since V is bounded, (B;)i>o leaves V with probability 1. For each ¢ > 0 and = € V, by optional
stoppping theorem,
E; [u(Binr)] = Eq[u(Bo)] = u(z).

Since u € C?(U) and V € U, we let t T 0o and use dominated convergence theorem to conclude the proof. [J

8.1.1 Mean Value Property

In this section, we study the mean value property of harmonic functions. For any open ball B(z,r) C U, we
can relate the mean value of harmonic function u € C?(U) both on the ball B(z,7) and on the sphere dB(z, )

to its value at z. We denote by 3, , the uniform probability measure on the sphere 0B(z,r), i.e.

1 a1 4nn/d
dZwJ = 57'(' 27'1 dF(§> dS,
Theorem 8.3 (Mean value property). Let U C RY be an open set, and u € C?(U). Then the following
assertions are equivalent:
(i) w is harmonic in U.

(i) For all open balls B(x,r) C U,
u(x) = /udEz’r. (8.1)

(i1i) For all open balls B(x,r) C U,



Proof. (1) = (ii). We let V = B(x,r) in Theorem [8.2] By rotational variance of Brownian motions, the law of

B, under P, is the uniform distribution on the sphere 0B(x, ), and the desired result follows.

(i) = (i). Fix € > 0 and U, = {x € U : d(x,U®) > 2¢}. It suffices to prove that u € C?(U.) and Au = 0 on
U.. We take a standard mollifier ¢ € C2°(B(0, 2¢)), for example, ¢(z) = eXp(—ﬁ)]lB(o)e)(Jj). Then

u(z) = Cy /0E rd_le_ﬁu(x) dr = /0E rd-1 /qb(y —z)u(y) dE, . (y) dr

= Oy / ¢(y — w)u(y) dy = Co(¢ * u)(x),
B(z,e€)

where C7,C5 are constants depending only on € and d, and we switch from Cartesian coordinate to spherical
coordinate. Since ¢ is C'°°, the convolution ¢ * u of the last display is in fact a C°° function on U,.
Next, we apply 1t6’s formula to u(B;) under P, for z € U, and 0 < r < € to obtain

B [olBure, )] =ute) + 32 [ [ duzas]

where 7, = inf{t > 0: B; ¢ B(z,r)}. Also, E;7,, < E, [inf{s > 0: B! — 2| =r}] < co. By dominated

convergence theorem, we let ¢ T oo on both sides of the last display to obtain

B, [u(B,. )] = u()+ 3. | [ BuBas].

By the mean value property of u,

E, [ /O Au(BS)ds} —0 (8.3)

for all r € (0,¢). If Au(x) > 0, by continuity of Au, we can take ro € (0, ¢) such that Au > ¢ in B(x,rg) for

some § > 0. Then we have
Tz,rg
E, [/ Au(By) ds] > 60K, 750, >0,
0

which contradicts (8.3]). Hence Au(x) < 0. Similarly we have Au(x) > 0. Therefore Au(x) = 0.
(ii) = (iii). Fix € U and r > 0 with B(z,r) C U. Then

i T 4
/ u(y)dy:/ / ude)\:/ %—;Ad*/udzz,A d\ = m(B(z,7))u(z),
B(x,r) 0 JoB(an) o I'(5)

where we use the fact
nd2

—r.
L(g+1)
(iii) = (ii). Assume u has the mean value property (8.2)). Define ¢ : (0,00) — R by

m(B(z,r)) =

vl

1

2
P(r) = ﬁ/ udS = Cd/udEg”7 where Cy = T
r OB(x,r)

r(g)

Then for all » > 0 with B(z,r) C U, we switch from Cartesian coordinates to polar coordinates to obtain

rdm(B(Jc, Nu(x) = m(B(z,r))u(z) = /

B

dy = " ds.
RoLY / L) ds

Differentiating with respect to r, we know that 1 (r) is constant on 0 < r < d(z,U¢). Using the well-known
fact that dm(B(x,r))/dr = Cyr?~1, we have ¥(r) = Cqu(zx), which complete the proof. O
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An immediate corollary of this property is the maximum principle for harmonic functions.

Theorem 8.4 (Strong maximum principle). Let U be a bounded, open subset of R, and let u € C2(U)NC(U)

be a harmonic function on U. Then

max ¢ = max u. (8.4)
U oU

Moreover, if U is connected and there exists x* € U such that u(z*) = maxgu, then u is constant within U.
Remark. According to our proof, a harmonic function u € C?(U) must be smooth.
Proof. Suppose such a point «* € U exists. For all 0 < r < d(z*,0U), the mean value property implies

M =) = ST e S S M

which holds only if v = M within B(z*,r). Hence the set {x € U : u(x) = M} is both open and relatively
closed in U, which equals U if U is connected. The identity (8.4]) follows from this. O
8.1.2 Recurrence and Transience of Multi-dimensional Brownian Motions

Radial harmonic functions. In this subsection, we apply harmonic functions to study the recurrence and

transience of Brownian motions in R?, where d > 2. A harmonic radial function = +— ¢(]z|) on R?\{0} satisfies

0=As6(z)) = ¢"(a) + S (e) & ")+ T Ler) =0,

|| r

By solving the differential equation, we know that ¢ must be of the form

a+blogr, d=2,
o(r) = r > 0. (8.5)
a+br?=?d, 4> 3,

In our following discussion, we use the function

logr, d=2,
o(r) = r>0. (8.6)
r2=d, d>3,

Then  + ¢(|x|) is a harmonic function in R?\{0}.

Theorem 8.5. For each a > 0, we define the hitting time 7, = inf{t > 0 : |B| = a}, with the convention
inf() = co. Let v € RN\{0}, and let € and R be such that 0 < e < |z| < R. Then

1 -
ogR log|gc\7 d=2,
log R —loge
P, (e < 7R) = (8.7)
R4 _ |z[2—d
R2—d _ 2-d d=3.
Consequently, we have Py (19 < 00) =0, and for every e € (0, |z]),
1, d=2,
P, (7. < 0) = e\ 92 (8.8)
) e
||



Proof. Let ¢ be the function defined in (8.6]), which is harmonic in the annulus A, g = {y € R? : € < |y| < R}.
Let 7 =inf{t > 0: B; ¢ Ac r}. Then P,(7 < 0o) = 1. Furthermore, by Theorem [8.2

o(|z]) = Ex¢(|B-|) = Py (1 < 7r) ¢(€) + (1 = Py (7 < 7R)) ¢(R).

This implies

o(R) — &(|z])

B(R) — ¢(e)

We fix R > |z|. As €] 0, the limit 7. 1 79 holds P, a.s.. Hence we pass € | 0 to assert P, (79 < 7g) = 0. Since
R > |z| is arbitrary, and 7 1 oo, P, a.s., we let R 1 oo to conclude that P, (79 < co) = 0. Finally, we fix
0 < e < |z| and Py(7e < 00) = limg_.o0(7e < Tr) to conclude (3.8). O

P, (1 < Tr) =

Remark. By translation invariance of Brownian motions, for any pair of distinct points x,y € R%, we have
P, (3t > 0 such that B; = y) = Py_y (70 < 00) = 0.

By this theorem, multi-dimensional Brownian motions are point-transient.

Theorem 8.6. Let (B;);>0 be a d-dimensional Brownian motion.
(1) If the dimension d = 2, then (By);>0 s neighborhood recurrent, meaning that for every nonempty set
U CRY, the set {t >0: B, € U} is unbounded.
(i1) If the dimension d > 3, then (By)i>o is transient, meaning that

lim |Bi| =00 a.s..
t—oo

In other words, (By)i>o leaves any bounded set with probability 1.

Proof. (1) We first consider an open ball B(0,¢). By Theorem starting from x # 0, the Brownian motion
(Bt)e>0 never hits 0 but hits any open ball centered at 0. Thus, almost surely, for every M > 0, (Bt)t>o0
leave B(0,2¢) at some time later than M, and then visit B(0,€) by strong Markov property. By translation
invariance, given any open ball B(z,¢€) in R¢, the Brownian motion B hits it at arbitrarily large times, a.s..

Note that every contains an open ball of rational radius centered at a point with rational coordinates. The
conclusion follows from a countable union argument.

(ii) Assume without loss of generality that the starting point of (By);>¢ is  # 0. Since z — |2|?>~% is harmonic

in RN\ {0} and P, (79 < 00) = 0, the process (|B;|*~?);>0 is a local martingale under P,. By Proposition
(|Bt\2_d)t20 is a nonnegative supermartingale, which a.s. converges as ¢ — co. The a.s. limit must be 0,
otherwise the path ¢ — B, would be bounded. Hence |B;| — o0 as t — . O

Remark. (I) According to the neighborhood recurrence property of planar Brownian motions (d = 2), the
sample path {B;(w)}:>o is almost surely dense in R?.

(II) In regard of the growth rate of |By|;>¢ when d > 3, we fix a sequence t,, T co. For each € > 0,

~ (1 1Bl } - <|Bt | )
P —2 <e >limsupP | —= <e| =P(|B1| <€) > 0.
<NG1 nyN{ Vin oo\ VEn (1Bil=e)

By Blumenthal’s 0-1 law, the probability on the left-hand side must therefore be one, and

| By

liminf — =0 a.s..

t—o0 \/i
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8.1.3 The Dirichlet Problem

In this part, we assume U is an open and bounded subset of R?, and study the boundary-value problem

Au=0 inU,
(8.9)
u=g on JdU,

where g is a continuous function on U, and u € C?(U) N C(U) is the unknown.

Proposition 8.7. Define exit time 7 = {t > 0: By ¢ U}, and let g be a bounded measurable function on OU.
(i) The function u(x) = E,[g(B;)] is harmonic in U;
(i) In addition, if g is continuous on U, and u solves the Dirichlet problem , then u(x) = E,[g(B)]
for each x € U.

Proof. (1) It suffices to verify that u(x) = E,[g(B;)] satisfies the mean value property. For each z € U, we fix
B(z,7) C U and define 7, = inf{t > 0 : |B; — z| = r}. For each w € C(R,,R?) with w(0) € U, we define
®(w) to be the value of ¢ at the first exit time of w from D, i.e. ®(w) = g(inf{t > 0: w(¢t) ¢ D}). Then

9(B;) = ®((Bt)i>0) = ®((Br, , +t)t>0) Pz a.s..

By the strong Markov property of Brownian motions,

u(@) = Balg(B,)] = Ey [9((Br, ,+)i20)] = Ex [En., [®((B)iz0)] | = Ea [u(Br,.,)] -

Since the law of B,, = under P, is the uniform probability measure ¥, , on dB(x,r), we conclude the proof.

(ii) For each x € U, we fix B(z,r) C U. For each 0 < € < r, we set Ue = {x € U : d(z,U®) > €}, and define
Te =inf{t > 0: B, ¢ U.}. Since u is harmonic in U, by Theorem [8.2]

u(z) = Eq [u(Br,)].-

It is clear that 7. is monotone increasing as € | 0, and the limit 79 < 7. On the other hand, we have B, € 0U by
te continuity of sample paths, which implies 79 > 7. Therefore 7. | 7 as € | 0. By the dominated convergence
theorem, we have u(z) = E;[u(B;)] = E,[g(B.)]. O

Remark. The second assertion implies that if a solution to the Dirichlet problem exists, it must be unique
and has the form u(x) = E;[g(B-)]. We next study the existence of solutions.

Definition 8.8 (Exterior cone condition). Let U C R? be open. If y € OU, we say U satisfies the exterior
cone condition at y if there exists an open cone C with apex y and € > 0 such that C N B(y,e) C U°.

Lemma 8.9 (Brownian motions avoiding a cone). Define exit time 7 = {t > 0: B; ¢ U}. Under the exterior

cone condition, we have for every y € OU and every n > 0 that

lim P, 0.
USay (r>m)

Proof. For every ¢ € R? with |v| = 1 and every v € (0, 1), consider the circular cone
Cle,) ={zeR":z"¢> (1 -9}

By the exterior cone condition, there exists ¢ € R%, v € (0,1) and € > 0 such that y + C(&,~) N B(0,7) C U°.
For notation simplicity we define the truncated cone C' = C(£,v) N B(0,7), and fix a smaller truncated cone
D =C(&3)NB(0,%). For an open V C R, let 7 = inf{t >0: B, € V}.
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By Proposition [3.14} the event {7¢(¢ /2) = 0} is contained in the germ o-algebra (), %, where (F;)i>0
is the canonical filtration (By)¢>o. For any s > 0,

Po (ro(en/n <5) 2 Po (BIE = (1= 2) B >0) =Po (YTe = (1-2) >0) =0 >0,

where the law of Y is the uniform probability measure on the unit sphere 9B(0,1). We let s | 0 and apply
Blumenthal’s 0-1 law [Theorem to obtain that 7¢(¢ 4/2) = 0, Po-a.s.. By continuity of Brownian motions,
we also have 7p = 0, Py-a.s.. On the other hand, for each r € (0, 5), we set D, = {x € D : || > r}. Then
D.1tDasr |0, and 7p, | 7p = 0. Thus, for any § > 0, we fix r > 0 so small that Po(7p, <n) >1- 4.
Since y + C' C U¢, we have the estimate

Po(r <) 2 Pe(ryrc <0) = Po(ry—atc < n).
We also note that D, C C. When |y — z| < £d(D,,dC), the shifted cone y — z + C' D D,.. Therefore

Px(7'<’l’})>]P0(TDT <n)zlfﬂ

Since # > 0 is arbitrary, we conclude the proof. O

The exterior cone condition is sufficient for the existence of solution to the Dirichlet problem.

Theorem 8.10 (Solution of the Dirichlet problem). Let U be an open bounded subset of R? such that each
y € OU satisfies the exterior cone condition. Then for each continuous function g on OU, the solution of the
Dirichlet problem is uniquely given by the function

u(x) = E.[g(B;)], whereT=1inf{t >0: B, ¢ U}.

Proof. Following Proposition (i), it suffices to show that limys,—,y u(x) = g(y) for each y € OU. We fix
€ > 0. By continuity of g, there exists 6 > 0 such that |g(z) — g(y)| < €/3 for all z € OU N B(y,d). Also, we
fix M > 0 such that |g(z)| < M for all z € 9U. Then for all 5 > 0,

lu(x) — g(y)| < B [l9(Br) — 9(y) [ 1ir<ny] + Ea [l9(Br) — 9()[1r5ny]

)
<E, {lg(BT) - g(y)|]l{7§n}ﬁ{supt€[0_’n] |Bt—z\§5/2}] + 2MP, < Sl[ép] |Bt - fL'| > 2) + 2M]P)z(7' > 7])
te|0,n
(i) Under the event {7 < n} N {supycp,, |Br — x| < 6/2}, we have |B; —y| < |B; — 2| + |y — 2| < ¢ for all
ly — x| < 6/2. Then
€
E, |:|g(BT) - g(y)|]l{‘r§n}ﬂ{supt€[0,n] |Bt7w\§5/2}:| < g
(ii) By translation invariance and continuity of Brownian motions, we apply dominated convergence theorem
to conclude Py (SuPte[o,n] | Be| > g) 1 0asnl 0. Hence we fix n > 0 so small that

) ) €
P.| sup |Bi—z|>= ]| =Py | sup |By| > - | < —.
(tG[O,n] ' 2 t€[0,n] . 2 6M

(iii) By Lemma [8.9] we can fix r € (0,6/2) such that P, (7 > n) < €¢/(6M) for all 2 € U N B(y,r). Combining
the last three estimates, we conclude that |u(z) — g(y)| < € for all € U N B(y,r). Since € > 0 is arbitrary, we
have limgys,—yy u(z) = g(y), which completes the proof. O

Remark. In fact, our proof can be extended to certain unbounded open sets. For example, if U = {z € R? :

xq > 0} is the upper half-space, the above theorem also applies if g is bounded and continuous on 9U.
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8.1.4 The Poisson Kernel and Exit Distributions

In this part, we study two special cases Dirichlet problem and derive the corresponding exit distributions.

Half-space. We define the Poisson kernel of the upper half space U = {(z,y) € R?: 2z € R?"1 3 > 0} to be

(5)

xd/2"

cay
/2’

——~——  where ¢g =
(Jz[* +y?)

p(z,y) =

The choice of ¢4 implies f]Rd—l p(z,1)dz = 1. We next compute the partial derivatives:

Op dz; 9%p d (d +2)x? .
= - _— = Lo 1 = 1 LR — 1
or, - WP+ o TRt \aPage POV i=hodoL
and
aop (1 dy (x )aip_ d (d+2)y> (2.9)
ay~ \y P+2) " o T P \ e+ P

As a result, Ap(z,y) = 0. Therefore p is harmonic on U.

Theorem 8.11. Let g: R™1 — R be bounded and continuous, and
ueg)= [ plo-gu)g©ds we R y>0,
Rd—1

Thne u solves the Dirichlet problem on U ={(x,y) : x € R y > 0} with boundary value g.

Proof. We write pe(x,y) = p(z — &, y) for £ € R"™!. Then p¢ is a harmonic function for every £ € R"~1.

Interchanging the integral and derivative (which is justified by the dominated convergence theorem), we have

Now it remains to verify the boundary condition. Since g is bounded, we may assume |g| < 1 by scaling.
For each € R"~! and € > 0, by continuity of g, we take d > 0 such that |g(¢) — g(x)| < € for all |¢ — 2| < 4.
The choice of ¢4 ensures that fRn,l pe(z,y)de =1 for all y > 0. By definition of the Poisson kernel p, there

/ p(@y)dsz/ p(E1)dE > 1 — ¢
B(0,6) B(0,2)

for all y € (0,y.). Then we have

exists ys > 0 such that

fu(z, ) — g(z)] < /

|§—x|<é

P — € 9)lg(€) — g(x)] dé + / p(z — € 9)lg(€) — g(x)] dé

|E—z|>6

= /Exlqp(w — & yledd+ 2/ p(§,y) A€ < 3e.

|€]>6
Since € > 0 is arbitrary, u(z,y) — g(x) as y | 0. This complete the proof. O

Next, we study the exit distribution on the half-space U, i.e. the law of the position where a Brownian
motion B exits from the half-space U. According to Theorem for all bounded continuous functions g,

Eoplo(Br)] = / P — € 9)g(€) de,

Rd—1

where 7 = inf{¢t > 0: B, € 0U}. This expectation determines the law of B..
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Corollary 8.12. The law of B, under P, ) is given by the probability density function

¢dy d—1
Pz (& 0) = pe(z,y) = , feRSL
oy (z— &P + 52"

In fact, by translation and rotation invariance of Brownian motions, we can adapt the above conclusion
to any hitting time for a hyperplane in R? (the starting point should not be on the hyperplane). This fact

inspires a probabilistic proof of Liouville’s theorem for harmonic functions.
Theorem 8.13 (Liouville’s Theorem). If u € C?(R?) is a bounded harmonic function, then u is constant.

Proof. Since u is a bounded harmonic function on R?, the process (u(B;)):>o is a continuous local martingale.
By Proposition w (ii), (u(B¢))e>0 is a uniformly integrable martingale.

Let 2 and y be two distinct points in R?, and take H the hyperplane in R? such that the reflection in H
maps z to y. Define ry = inf{¢t > 0: B, € H}. Then B;, has the same exit distribution under P, and P,.
By the optional stopping theorem [Theorem for uniformly integrable martingales,

w(@) = Ee[u(Bry )] = Ey[u(Bry )] = u(y).
Since z,y € R? are arbitrary, we conclude the proof. O

Unit ball. We define the Poisson kernel of the unit ball B(0,1) = {z € R?: |z| < 1} to be

1—|af?

|z —y|4’

K(z,y) = K,(z) = where y € S9! = 9B(0,1).

Then the partial derivatives are

oK, _d(xi — ;) (1 —|z]?) 2x;

dx; o —ydt2 fr— g

and 2 2 2 2

FKy _ dd+2)(wi —y) (1= |2z°)  d(1 —[z[?)  ddwi(ri—y) 2

Oz} |z — yld+ |z =yl |z -yt |z -y
Note that |y|?> = 1. Then

2d(1 — |z[2) 2d , ) 2d
AK, = R 2y - 2
1= emge Ty T m

Therefore y — K (x,) is a harmonic function on the unit ball B(0, 1) for each y € S9!, Next, we show that
for each z € B(0, 1), the mapping y — K (z,y) is a density function on the unit sphere S~ i.e.

| K - (8.10)
9B(0,1)
where 3 = ¥ ; is the uniform probability measure on S?~!. Define

F(z) = K(z,y)dX(y), =€ B.

Sd—1

By Fubini’s theorem and the mean value property of z — K(z,y), we can verify mean-value property of F:

/Fder /szdE )dX, (2 /szdZmT )dX(y /nydZ F(z). (8.11)
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By rotation invariance of (z,y) — K(x,y) and 3, we know that F is a radial harmonic function, which
is of form ({8.5)). Moreover, noticing that F' is bounded in any punctured neighborhood of 0, we know that F
must be a constant. Hence F' = F(0) = 1.

Theorem 8.14. Let g be a continuous function on S*~' = 9B(0,1), and

wz) = | K@) dXly), e BO1).

Then u solves the Dirichlet problem on the unit ball B(0,1) with boundary value g.

Proof. Similar to , we can prove that u has the mean-value property, hence is harmonic in B(0,1). To
verify the boundary condition, we fix gy € S?~! and € > 0. By continuity of g, we may assume |g| < 1 on S9!
by an scaling argument, and take § > 0 such that |g(y) — g(yo)| < € for all y € S~ N B(yp,d). Meanwhile,
for z € B(0,1) with |z — yo| < § and y € S with |y — yo| > 6, one have

1— |z)? 2\¢
Klo) = g < (5) A= leP) Lo, sz .

lv —yld —

Then there exists d; > 0 such that for all z € B(0,1) with |z —y| <y,

/ K(z,y)dS(y) < e.
Sa=1\B(yo,9)

Therefore, for all z € B(0,1) with |z —y| < dy,

() — glgo)] < /

K (. 9)lg(x) — 9(y0)] dS(y) + / K(z.9)lg(x) - g(s0)| dZ(y)
Sd—lﬁB(yg,é)

S4=1\B(yo,)

</ e (o) dS() +2 [ K (z,y) S(dy) < 3e.
Sd_lﬂB(y07§) Sd_l\B(y0,6)

Since € > 0, we prove the boundary condition u(z) — g(yo) as B 3  — yo. O

Again, we compare this result with Theorem [8I0] to get the exit distribution of the Brownian motion
(Bt)>0 from the unit ball B(0,1).

Corollary 8.15. Let 7 = inf{t : By ¢ B(0,1)} be the exit time of Brownian motion (By)i>o from unit ball
B(0,1). For every x € B(0,1), the law of B, under P, has density y — K (z,y) with respect to the uniform
probability measure d¥(y) on S41.
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8.2 Occupation Times and Green’s Functions
8.2.1 Green’s Functions
We start from the following fundamental result about the occupation time of the Brownian motion.

Proposition 8.16. Let (B;);>0 be a d-dimensional Brownian motion andt > 0, and let U C R? be a nonempty

bounded set. Then for any x € R?,
P, (/ 1y(B;) dt = oo> =1
0

(i) if d < 2, we have
E, V 11U(Bt)dt} <0
0

Proof. Since a bounded set is contained in an open ball and contains an open ball, we may assume that U is

(i) if d > 3, we have

an open ball. By shifting, we can assume U = B(0, ).
(i) Let d < 2 and D = B(0,2r). Define Ty = inf{t > 0: B, ¢ D}. For each k € N, define

Sy =inf{t >Ty_1 : B, €U}, and Ty =inf{t > Sy : B: ¢ D}.

Almost surely, these stopping times are finite. By the strong Markov property, for each k > 1,

Ty To
Pw (/ ILU<Bt) dt Z € ysk+> = PBsk (/ ]lU(Bt) dt Z 6>
Sk 0
To Tk
= EI [PBsk </ ]lU(Bt) dt Z 6)] = Pm (/ ]lU(Bt) dt Z 6) 5
) 0 Sk

where we get the second inequality by rotation invariance. Since the second expression does not depend on k,

the random variables

Ty
/ Ly(B)dt, k=1,2,-
Sk

are i.i.d.. Since these random variables are not identically zero and nonnegative, they have positive expectation.

By the strong law of large numbers,

1y(B;)dt > lim / 1y(B)dt = a.s..
[ romoas m 35 [ 1vim)

(ii) Let d > 3 and py(x,y) = (2rt) =2 exp(—%) the transition kernel of the Brownian motion. Then

e o0 1 |z—y|? 0 S i ‘x _ y|2
dt= [ — S a= [ () e (- d
/0 pe(z,y) /0 (27rt)d/2 e’ /oo (ﬂ'|x — y|2) ¢ ( 2s? ) ’

_ 00 d
_ e =yl d/ sd2,-s gg 1:(5—1)
| 7

2rd/2

Apply Fubini’s theorem and switch from Cartesian to polar coordinates, we obtain

EOU ILB(O’T)(Bt)dt] /IPO(BteB(Or ))dt = // pe(0, ) dy dt
0 Or)

d 1

pt (0,y)dtdp =

d
2

d
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To extend the conclusion to x # 0, we apply the strong Markov property at the exit time 7 from B(0, |z|) of

a Brownian motion starting at 0 and the rotational invariance to obtain

Ea; |:/ ]13(077‘)(3,5) dt:| = ]EO |:/ ]lB(O,'I‘)(Bt) dt:| S EO |:/ ]lB(O,r)(Bt) dt:| < o0,
0 T 0

which completes the proof. O

Remark. We write o
(I)(xay) :/ pt(ﬂf,y)dt
0

the Green function or the potential kernel, because ®(x,-) is the electrostatic potential of a unit charge at x.

For the case d > 3, we have

INCIE
O(z,y) = ——2—"—,
(@9) 27r%|x —yld—2

In the case d < 2, we have fooo pt(x,y) dt = co. Hence we have to take another approach to define a useful ®.

Definition 8.17. Let (B:):>0 be a d-dimensional Brownian motion. A transient Brownian motion is the
process (Bt).eo,r) in either of the following two cases:

(i) d >3 and T = o0

(ii) d > 2 and 7 is the first exit time from a bounded open domain U C R<.

We use the convention that U = R? in case (i).

Proposition 8.18 (Transition subdensity). For a transient Brownian motion (Bt)ic(o,7], there exist a family
of transition (sub)densities p;(-,-) : R x R - Ry, 0 <t < oo such that

P.(BieAandt<7)= / p;(x,y)dy for every Borel set A C R,
A

Moreover,
(i) for each t >0, we have p}(x,y) = p;(y,z) for almost every x,y € RY;
(ii) if T is the first exit time from a bounded open domain U C R%, then for each t > 0 and each x € U, we
have pf(x,y) =0 for almost every y ¢ U.

Proof. We fix t > 0 throughout the proof. For the existence of the density, by the Radon-Nikodym theorem,
it suffices to check that P,(B; € A, t < 7) = 0 for every Borel set A C R? of Lebesgue measure 0.

(i) If d > 3 and T = oo, we can drop the requirement ¢ < 7 and choose the heat kernel p} = p;.

(ii) If d > 2 and 7 is the first exit time from a bounded open domain U C R, for each compact subset K C U,
x € K and n € N, define

on

P;K,n(zyy):/ / HptZ*"(Zk—laZk)dzl"‘dZZ"—h
K K

k=1

where zg = x and z9» =y, and p is the transition density of d-dimensional Brownian motion. Then
P, (B; € A, and Byp-» € K forall k =0,1,--- ,2" — 1) = /Ap;Km(x,y) dy
for every Borel set A C R?. Since Py k. 18 decreasing in n, by the monotone convergence theorem,
P (Bre Aand ¢ <) = lim [ wisca(e.)dy = [ (e (312
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where pf i (7,y) = limy 00 P} ;¢ ,, (7, y) and 7xc = inf{s > 0: B; ¢ K}. The symmetry of p, implies that p; ;. ,
and py - are both symmetric. We construct an increasing sequence (Km)2_, of compact sets exhausting U,
eg. Ky ={zeU:d(z,U% > L1} Then

Uit t=U NBeknt=()J{B:€Kn}={B.cU}={t <}

Taking a monotone limit in (8.12)) produces a symmetric version p;(z,y) of the transition density. For the
second statement, by (8.12]), we note that p;K(:m ) = 0 a.e. on K¢ for each compact K C U. Hence the
monotone limit p}(z,-) =0 a.e. on U°. O

Remark. Let f € C°(R?) be a nonnegative function. Then for each ¢t > 0 and x € U,

/Rd pi (z, ) f(y) dy = By [f(B)lpp<ry] = Eo [f(Br) (1 — Lipsry)] = Ee [f(B)] — Ex [LgisryEn, [f (Bi—r)]]
= / pe(z,y)f(y)dy — E, {ll{m} / pt—r(Br,y) f(y) dy
Rd Rd

= [ ) = Ex [ (B )1 )] £

Therefore, we can choose a version of density p;(z, ) = pi(z, ) — E, [pt_T(BT, ~)1{T<t}]. To summarize, we
use the following typical version of transition subdensities in Proposition (8.18):

(i) If d > 3 and T = o0, we have pf(x,y) = pi(z,y).

(ii) If d > 2 and 7 is the first exit time from a bounded open domain U C R?,

p;tk (iE, y) = Dt (.’t, y) - Em [ptf‘r(B'rv y)]l{7—<t}} . (813)

Definition 8.19 (Green’s function). For a transient Brownian motion (B;)co,-] With transition (sub)densities
(p;) as above, we define the Green’s function G : R? x R? — [0, oc] by

Gla,y) = / piey)ds, z,y€RL
0

Remark. By Proposition if 7 is the first exit time of a bounded open domain U, we can choose for each

x € U a version of Green’s function such that G(z,-) = 0 on U°.

In probabilistic terms, with = € U is fixed, the Green function G(z,-) is the density of the expected

occupation measure for the transient Brownian motion (B;)o<i<, started in x.

Proposition 8.20. Let G' be the Green function for a transient Brownian motion (Bi)icjo,-. For every
meausrable functtion f: R? — [0,00] and x € R?,

E, [ / f(Bt)dt] — [ Gl ).
0 R4
Proof. If f : R — [0, 00] is measurable, Tonelli’s theorem implies
E, Bhdt| = | B, [f(B)lop]dt = *(z, dyd
s = [T g a= [T ] siensm) a
=[] viena swa= [ c@nrma

Then we finish the proof. O
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Proposition 8.21. Let (B;)o<i<- be a d-dimensional transient Brownian motion.
(i) If d > 3 and T = oo, the Green’s function is

L5 -1

—d d
WW—M2 , zyeRY

Gz, y) = @(z,y) =
(ii) If d > 2 and T is the first exit time from a bounded open domain U, the Green’s function is
G(z,y) = ®(z,y) — E; [®(Br,y)], =,y €R, (8.14)

where 1
——log |z -y, d=2,
T

R PVCR)

2—d
27T7d/2|x—y| , d>3.

Remark. In fact, if d > 3, we have |B| = o0 a.s., and the results in (i) and (ii) cocincide.

Proof. The result in (i) is already proved, so we focus on (ii). For every =,y € RY, we take (a;);>0 such that
/ Ipt (2, y) — ar| dt < oco.
0
Assume ®(z,y) = [;° (p:(z,y) — a;) dt. By §13),

Gla) = | T ptay) dt = / " (el y) — a) dt — E, [ / Y e (Broy) — ar) n{m}dt}

- [ e - ayar -, { | teetBrm - at_7>dt] = B(a.y) ~ B [8(B,.y).

If d > 3, we simply take a; = 0, and the result follows from (i). Otherwise, if d = 2, we let a; = ie’%, SO

27t
oo 1 :c—y2 1 1 oo 1 1/(2t)
@(x,y):/ — (e' 2t em) dt=— [ = / e=*ds | dt
0 27t 21 0 t |z—y|2/(2t)

= — e’ / — |ds=——log|z — yl.
2m Jo le—y[2/(25) T u

Combining the last two displays completes the proof. O
Finally, we study some analytic properties of the Green’s function.

Proposition 8.22. Let G : R? x R? — [0,00] be the Green’s function for a transient Brownian motion
(Bt)tefo,r in U C RY. Then

(i) G(z,y) < oo for all x # y;

(i1) for each y € U, the function x — G(z,y) is harmonic on U\{y};
(iii) G(z,y) = G(y,x) for all x,y € R%.

Proof. These results are clear by the expression of G when d > 3 and 7 = co. Hence we focus on the case that
U C R? is a bounded open domain and d > 2. Since G vanishes outside U x U, we may assume x,y € U.

(i) For each y € U, the function ®(-,y) is bounded on OU. Since B, € U a.s., B, [®(B,,y)] < co.

(ii) By Proposition the function hY(z) = E, [®(B,,y)] is harmonic.

(iil) The symmetry of G follows from the almost-everywhere symmetry of p} together with the continuity. O
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8.2.2 Poisson’s Equation

In this part, we assume U is an open and bounded subset of R?, fix f € Cy(U), and study the boundary-value
problem

Au=f inU,

u=0 on OU.

(8.15)

Similar to our discussion in the remark after Definition by 1t&’s formula, if u € C?(U) N C(U) satisfies
(8.15)), the process
1 tAT
Mt = U(Bt/\T) — 5/ f(BS) dS7 t> 0
0

is a martingale under P, for each z € U, where 7 = inf{t > 0: B, ¢ U}.

Proposition 8.23. Let f : U — R be a bounded continuous function.
(i) If there exists a bounded solution of (8.15)), it must be

u(z) = —%]Ew UOT £(BY) dt} L wel (8.16)

(ii) If the above u € C%(U), it satisfies Au = f. In addition, if every y € OU satisfies the exterior cone
condition [Definition[8.§], then u is a solution of (8.15).

Proof. (i) Since U is bounded, we have E;7 < oo for each € U. If both u and f are bounded continuous
functions on U, then [M;| < [|ulls + 57| f|loc- Since

jim M, = u(B) -~ 5 [ sy =3 [ e

t1Too

by the dominated convergence theorem and martingale property,
1 T
t1oo 2 0

(ii) We let u be defined as in (8.16)), fix x € U and B(z,¢) C U. Using the strong Markov property at the
stopping time 7. = inf{t > 0: B; ¢ B(x,¢)}, we have

E UOT F(B.)ds
f(z)

B fu(B)] — u(w) = 35, | [ r)as| = (L2 4om) 5

7| = [ swaas s, [ [ rmyas| = [T s as- Gum)

Therefore

On the other hand, by Taylor’s theorem and the martingale property of ((Bi — z)2? — t);>0 under P,

E. [u(Br,)] — u(z) = E,

—

Vu(z) " (B,, —x) + %(Bn — )" D?u(x)(B,, — 1:)] + o(€?)

2 9%y : u(z
= Z a—(z)Ex[(BJ - x)Q] + 0(62) = a 2( )EITE + 0(62).

Since E, 7. = %, the last two displays imply




Letting € | 0 gives Au(z) = f(x). Finally, to verify the boundary condition under the extorior cone condition,
we fix y € OU and U 3 z,, — y. Then

e by Lemma[8.9] P, (r > n) =0 as n — oo for every n > 0;

e since U is bounded, sup, .y E,7 < (diamU)? < oo and ||ul/oc < Mﬂfﬂm < o0.

Then for any 1 > 0, by the simple Markov property at 7,

IN

1 TAN 1 T
|u($n)| §Ezn |:/0 |f(Bs)| ds] + 5 Ewn |:]1{'r>77}/77 f(Bs> d3:|

n n n
§||f||oo + |Ewn []l{'r>77}u(Bn)] < *”fHoo + ||u||oonn(T > 77) - §Hf||oo

IN

Since n > 0 is arbitrary, we let 1 | 0 to conclude that u(z) =+ 0as U >z — y € 9U. O

Poisson’s equation and Green’s function. To determine if (8.16) solves the boundary-value problem
(8.15)), it remains to study the differentiability of (8.16]). By Propositions and

E{ /0 f(B»dt} - /U G, y)f(y) dy = /U (e, y)f(y) dy — E, [ /U (B, y)f(y)dy] -
For simplicity, we assume f € C°°(U). We write

w(z) = /U (2, y)f(y) dy,

so u(z) = w(zr) — Ex[w(B;)]. Some fundamental results about convolution imply that w € C*°(U), and by
Proposition the function z — E, [w(B,)] is also smooth. Therefore u is the solution of (8.15)). Further
studies show that one only requires f to be Holder continuous to ensure that w € C%(U).

Half-space. We let the dimension d > 2, and consider the Brownian motion (B;)o<;<, in the upper half
space U = {(z1, - ,24) € R : 24 > 0}, where 7 = {t > 0: B; ¢ U}. Let

g = (y17"' 7yd—1a_yd)

be the reflection of any y = (y1,--- ,v4) € R? through the hyperplane {z € R? : 24 = 0}.

Theorem 8.24. Ifx € U and f € C.(U) is nonnegative, then

B | [ 1ow| = [eenswa- [ ewiima. acv
In other words, the Green’s function for the transient Brownian motion (By)o<i<r 1S
G(z,y) = ®(z,y) — (. 7), zyel.
Proof. We define the reflected Brownian motion
B, = (B}, ,BI"',-BY), t>o.
By the strong Markov property, By 4 B, on the event {7 >t} under P,. Since supp f C U,

E, [£(B)) — F(B)| =E. |(£(B) = F(B) Lirsy | +Ex |(£(B) = £(B))) 1r<y]
—E. [(£(B) = F(B)) oy | = Ex [f(B) o]

216



Since f > 0, we apply Tonelli’s theorem to obtain
o0
0

E, [ / Tf(Bodt} — [ BB ] dt - / N /U (pel,y) — polw, ) () dy

- / / " i y) — pol ) () dt dy = / Bz ) (y) dy — / B, 5)f () dy.
U Jo U U

Thus we finish the proof.

O

Unit ball. We let the dimension d > 2, and consider the Brownian motion (By;)o<t<, in the unit ball

B(0,1) = {z € R?: |z| < 1}, where 7 = {t > 0: B, ¢ B(0,1)}.

Theorem 8.25. If f is bounded and measurable then for each x € B(0,1),

e, | [ swoa - [ o, Genf)dy

where

e

Y
8B(0,1) |JI . Z|d (I)(Z>y) dE(Z) = (I)(:L'ay) - <1L’y|, )

|yl

(8.17)

is the Green’s function for the transient Brownian motion (Bi)o<i<- on B(0,1). We use the continuous

extension of G(x,-) aty = 0.

Proof. By Theorem and Fubini’s theorem, for each x,y € B(0, 1),

E, [ / ' f(B»dt} -/ o Wy E l /| o FEDIO) dy]

2
=/ CI’(ﬂcvy)f(y)dy—/ [ 1~ o]
B(0,1) B(0,1)

|z — 2|

B(z.y) d2<z>] 7(y) dy.

Then the first equality in (8.17) is valid. To show the second equality, ny Theorem it suffices to show
that the second term is harmonic in 2 on B(0,1) and equals ®(x, %) on the boundary S~ = 9B(0,1). Indeed,

when |z| =1,

2
y
zly| — Wl = ZPyl> =22 Ty +1=[y]> — 22y +|z]* = |z — y|>.

We fix 0 < |y| < 1. Then the mapping

Dz, 5 )—llog\y| d=2
y ) 2 T )
:r'—><I><x|y—> = g_dyl
[yl Iyl @(x y ) d=3

> lyl?

is harmonic on B(0,1). For the case y = 0, note that

®(B,,0) = E, [®(B,,0)] = lim ® <x|y|, y)
y—0 |yl

is constant. Thus we finish the proof.
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8.3 Planar Brownian Motions and Holomorphic Functions

In this subsection, we focus on the planar case d = 2 and study the relation between holomorphic functions
and planar Brownian motions. We let B = (B;);>0 be a 2-dimensional Brownian motion, where it is helpful

to identify R? with the complex plane C. We write
By =X, +iY;, t>0,

and say that B is a complex Brownian motion.
Let U C R? be open. A function ® : U — C is said to be holomorphic if it is complex differentiable in U.
A holomorphic function ®(x,y) = u(x,y) + iv(z, y) satisfies the Cauchy-Riemann equation

ou Ov ou ov

0w 0y oy o
By the Cauchy-Riemann equation, both the real and imaginary parts of ® are harmonic. Consequently, both
(u(By))i>0 and (v(B))i>0 are continuous local martingales.

8.3.1 Conformal Martingales

We first introduce a special class of complex-valued local martingales.

Proposition 8.26. Let Z = X 4+ 1Y be a continuous complex local martingale. Then there exists a unique
continuous complex finite variation process (Z,Z) with (Z,Z)o = 0, such that Z? — (Z,Z) is a complex local
martingale. Furthermore, the following are equivalent:

(i) Z? is a complex local martingale;

(i) (Z,Z) =0;

(iii) (X, X)=(Y,Y) and (X,Y) =0.

Remark. A complex local martingale Z = (Z;);>¢ satisfying the equivalent properties of the above statement

is called a conformal local martingale.

Proof. Tt suffices to define (Z, Z) by C x C-linearity:
(X +iY, X +1Y) = (X, X) — (V,Y) + 2i(X, Y).

The uniqueness easily follows from Proposition [3.68] O
The conformal local martingales have some nice properties.

Proposition 8.27. Let Z be a conformal local martingale, and ® : C — C be twice continuously differentiable

function (as a function of two real variables). Then

@(Zt):cb(Zo)Jr/O g‘f(zs)dzs+/o gf(Zs)dZSJri/O A(Z,) (2, 7). (8.18)

In particular, if ® is harmonic, then (®(Z;))i>0 s a local martingale. In addition, if ® is holomorphic, then
t

©(2) = 0(Z) + [ ¥(2)dZ. (8.19)
0

Furthermore, if (X, X)oo = 00 a.s., there exists (possibly on an enlargement of the probability space) a complex
Brownian motion (8;)¢>0 such that
Zy = Bix,x),, t=0. (8.20)
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Proof. We write ® = u + iv. By Itd’s formula,

! ou L ou 1 L 9%u L 9%u
Z) = u(Z —(Zs)dX —(Zs)dYs + = —(Z X, X —(Z Y. Y
wz) =z + [ Grayax.s [ Fayang ([ T . [ S@av.)
Slnceg—z:%%—éa—z and%:%g—z—i—%g—’y‘,and (X,X)=(Y,Y)=1(Z,Z), we have
t ou Zo+ Z, t o Z.—Zs 1 [t —
7)) = u(Z Mizyats"zs MizyaZ=—2s ¢ - | Auw(Z)d(2,7),
uz) = uzo)+ [ Grz)aR g [ Szyat gt [auz)az2)

t Ou

t du — 1/t —
=u(Zy) + | &(Zs)dZs—k/o g(Zs)dZs-i-Z/o Au(Z,)d(Z,Z)s.

The same formula holds if we replace u with v. Hence (8.18)) holds.
Furthremore, since (X,Y) = 0 and (X, X) = (Y,Y), we apply Theorem to both X and Y and use
Corollary to conclude the existence of a complex Brownian motion 8 such that (8.20) holds. O

Finally, we study the conformal invariance property of complex Brownian motion, which asserts that the

image of complex Brownian motion under a holomorphic function is a time-changed complex Brownian motion.

Theorem 8.28 (Conformal invariance). Let ® : C — C be a non-constant holomorphic function, and let
B = (By))i>0 be a complex Brownian motion starting from z € C. There exists a complex Brownian motion

B = (Bt)t>o0 such that
®(By) = Bix,x), foreveryt>0, P.-as.,

where X = Re ®(B) and
t
(X,X>t:/ |®'(B,)[*ds, t>0.
0

Furthermore, the mapping t — (X, X)¢ is strictly increasing.

Proof. If ® is an entire function, so is ®2, and ®(B)? is a continuous local martingale. By Proposition m
®(B) is a conformal local martingale. By (8.19)),

O(B,) = ®(2) + /Ot ®'(B,)dB,.

For X = Re ®(B), we have
t
(X, X); :/ |®'(B,)|*ds, t>0.
0

Since @’ is holomorphic and not identically zero, it has at most countably zeroes in C, and
PP (there exists ¢ > 0 such that ®'(B;) = 0) = 0.

Therefore ¢t — (X, X); is strictly increasing.

Finally, following Proposition it remains to show that (X, X)o = o0 as.. If (X, X)s < 00, by
Corollary [3.73] the process X; would a.s. converge as ¢ tends to infinity. On the other hand, since ® is a
non-constant entire function, one can find two disjoint open sets Uy, Us C C with ®(U;) N ®(U,) = (. By
recurrence of planar Brownian motion, both {¢ > 0: B, € U1} and {t > 0: B; € Us} are a.s. unbounded, and
®(B;) cannot has a limit as ¢ — oo. Thus we conclude the proof. O

Remark. This conclusion remains true if ® is a non-constant holomorphic function on C\N, where N is a set
1
z

satisfying that B hits N with zero probability. For example, we consider the holomorphic function ®(z) =
on C\{0} and a complex Brownian motion B started from some zy # 0.
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8.3.2 The Skew-product Representation

We next study the decomposition of the planar Brownian motion in polar coordinates.

Theorem 8.29. Let B = (B;)i>0 be a complex Brownian motion started from z = rel® € C\{0}, where r > 0
and 0 € (—m,w|. Then there is a planar Brownian motion (8,7) started from (logr,0) under P,, such that

B, = exp (Bu, +ivm,) for everyt >0, P.-a.s.,

where

t
ds
Ht: T 3 tZO
o |Bsl?

Proof. By the scaling and the rotational invariance of the Brownian motion, we may assume z = 1, where
r=1and § =0. We let W = (W' W?) be a complex Brownian motion started from 0. By Theorem (8.28)),

there exists a complex Brownian motion Z such that
t 1
eV = Zc,, where C; :/ e2Weds, t>0.
0

Consider the inverse function C; of Ry — R : ¢ +— Dy, which, by the formula for inverse functions, is

tods

t
Ht:/ exp (—2Wés)d8: CaTE
0 o |4l

Therefore
Zy = exp (Wg,) = exp (Wllﬂ + iW%t) ,

which is the desired result except we did not get it for B but for the complex Brownian motion Z introduced

in the course of the argument. To complete the proof, we let

ﬂt = log Birlf{sZO:fOS |Br|=2dr>t} and Yt = arg Binf{sZO:foS |By|=2dr>t}> t>0.

Since 8 and y are deterministic functions of B, there laws should be same if we replace B by another complex
Brownian motion Z started from 1. Hence (5,7) 4 (W7, Ws), and (8, v) are the desired Brownian motions. [

Remark. We can write H; as the inverse of its inverse, which is
S
Ht:inf{szﬂz/ eQﬁTdr>t}.
0

log |B:| = ﬁinf{sz():f; e2Br dr>t}-

Consequently,

Therefore |B;| is completely determined by the Brownian motion 8 and independent of . Furthermore, the

the smaller the modulus of B, the more rapidly the argument of B varies.

8.3.3 Asymptotic Laws of Planar Brownian Motions

In this section, we apply the skew-product decomposition to certain asymptotic results for planar Brownian
motion. Let B = (By)¢>0 be a planar Brownian motion that starts from z € C\{0}. We write

0y = arg By = vm,,

which is the continuous determination of the argument of B;.
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Winding and Unwinding. The argument 6; of B; is a time-changed one-dimensional Brownian motion
vu,, where Hy = fg |Bs|72ds. If By = z # 0, we fix the open disc D = B(z, ‘;—l) By Proposition (Bit)t>0
a.s. stays in the disc D for arbitrarily long time, and |Bs|~2 is bounded from below. Therefore H,, = co a.s.,
and we have

lim sup 6; = oo, liminf #; = —co, a.s..
t—o00 t—o0

In other words, the planar Brownian motion winds itself arbitrarily large numbers of times around 0, then
unwinds itself and does this infinitely often.

Next, we study the asymptotics of the random time change (H;);>0. We fix 8 to be the Brownian motion
obtained in the skew-product representation of (B;)t>o. For each a > 0, write 8¢ = a~!S3,2; for the time-
scaling. For each such Brownian motion we look at the first hitting time of level b:

T¢ =inf{t>0:8¢=b}, beR.

>6):0.

Proof. Step I (Laplace’s method). We show that, for every continuous function f : [0,¢] — R,

Lemma 8.30. For every e >0 and |z| =1, we have

3 (’ 4Ht _T%logt

limP
oo (logt)? !

tToo

1 t
lim flog/ e ) ds = max f(s).
0

aToo @ 0<s<t

By replacing f by its maximum in the limit, we obtain the upper bound. For the lower bound, we assume
f(r) = maxo<s<¢ f(s) = M and by continuity fix ¢ > 0 such that f(s) > M —n for all |s — r| < §. Then

1 t 1 tA(r+6) 1 5 M —
flog/ e“f(s)dszflog/ eaM=n) g — 8 +af 77)—>M—17 as a1 oo.
a 0 a 0V (r—9) a

Since n > 0 is arbitrary, we let 1 | 0 to obtain the opposite inequality.

1 1
Step II. Since |z| = 1, we have 8y = 0 under P,. By scaling we have Tf_:fgt — Tf’_lsgt < Tt..—T}_.. Then,

by the strong Markov property,

Llogt Llogt

. 5 5 . 1 1 . 1
lim P (Tf;rﬁ —rpEt s 77) =lmP, (T}, ~ T\ > ) = lImP. (T} > n) = 0.

. Llogt 1logt llogt .
Since T12+eg <TP ' <T f_eg , it suffices to show that

. 4Ht Lllogt . 4Ht Llogt

limP, | ——— > Tp2 = lim P T2 =0.

troo 2 ((logt)2 7 M > 0 and tios * ((logt)2 < e 0
We are going to prove the first result.

Step III. We write a = %logt. Then

2ma 2ma
4H 1o a” Ty . 1 a T1+s
{(10g;)2>T1é+1€gt}_{/ 62B5d5<t}—{2a10g/ €2ﬁ5d5<1}. (821)
0 0

Note that
2ma a 1
1 @ Ty 1 1 T 1 1 Tiye
il log/ e20s s — 8¢ + — log/ exp (2a52) ds 4 0ga + — log/ exp (2afs) ds.
2a 0 a 2a 0 ’ a 2a 0
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By the Laplace’s method (Step I), almost surely,

1 T11+5
lim — log/ exp(2afs) ds= sup fs=1+e.
atoo 2a 0 OSSST11+E

By (8.21)), for each € > 0, we have

4H, 1o 1 a’Tfy,
imP, [t > 72" ) = lim P, [ — log / e ds < 1
tToo (log t)2 € atoo 2a 0

1 1 Tiye
lim P, < o8l — log/ exp (2af5) ds — (1 +¢)
a— o0 0
Step IV. In the same way one can show that

2a
4H, 1,
lim P, L _aleet)
tfoo (logt)?

which finishes the proof. O

>e>=0.

Remark. Since the law of T does not depend on the choice of a, this lemma implies that

4H; 4
W%le{t>05t:1}

as t T oo. The density of the limiting distribution is given by Corollary [£:36]
Next, we study the typical size of the argument 6, of a planar Brownian motion (B;);>¢ when ¢ is large.

Theorem 8.31 (Spitzer’s law). Let (6;)¢>0 be the continuous determination of the argument of the complex
Brownian motion B started from z € C\{0}. Then for every xz € R,

2, @ 1
imP, (22 <o)< [ — 1 qy
t%g <logt _ac) _/_oo m(1+ y?) Y

20,

Togi Comverges to a standard symmetric Cauchy distribution.

In other words, as t 1 oo, the law of

Proof. By scaling we may assume |z| = 1. Given a > 0, we define v = a~!7,2,, t > 0. Then
a"t6, = a_lfyHt = Ya-2g,-

By Lemma , for a = %log t, we have a 2H; — T2 — 0 in probability as ¢ 1 oo, and

20,
lim P — — v
Hoo * <’ logt T

>6):O7 for all € > 0.

Since 8 and ~ are independent, the law of fy%la does not depend on the choice of a > 0. Hence ligtt converges
to yp, in distribution, where T3 = {t > 0: 8; = 1}. By Proposition the characteristic function of vz, is

E[e2n] =E [E[e2n| 1)) =B [ 37 ] = e,
which is the characteristic function of the standard Cauchy distribution. O

Next we study the law of minimum modulus. We know that a planar Brownian motion stated from z # 0
hits the origin with probability zero, but info<s<¢ |Bs| — 0 as ¢t 1 co by the neighborhood recurrence property.
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Proposition 8.32. Let B = (By);>0 be a planar Brownian motion started from z # 0. Then for every b > 0,

1
lim P, [ min |B,| < )< ——.
100 0<s<t 1+2b

Proof. We may also take |z| =1 by scaling. Then

A

lo min |B = min = min .
g<0<s<t| 3|) ogsgtﬂH‘“ ogngtﬂs

Let a = %logt. Then

2 1
—1lo min |Bg] | == min B, = min a,
logt & (0<s<t | 6> a 0<s<H, Bs 0<s<a—-2H, P

By Lemma [8:30]

min 2 — min B¢ — 0 in probability as t T oc.
0<s<a—2H, ° 0<s<Tg¢ °

Since the law of ming<s<7e B¢ does not depend on a,

2
—log ( min |Bs> — min fs in distribution.
logt 0<s<t 0<s<Ty

To get the desired result, we fix b > 0, define T_o, = inf{t > 0: 8; = —2b} and note that

1
i < -2 = =
P <0<Hsn<nT1 fs = 26) P (T <T) = 1755

Then combining the last two displays completes the proof. O

Finally, we introduce the Kallianpur-Robbins law for the time spent by Brownian motion in a disc.

Theorem 8.33 (Kallianpur-Robbins). Let B = (By)t>0 be a complex Brownian motion started from z € C.

Then for any R > 0,
2

t
— | 1 d
10gt A {lBs|<R} $

converges in distribution as t 1 oo to an exponential distribution with mean R2.

Proof. We fix t > 0 and let a = %log t. Then

2

¢ 1/t | y
@/0 ]l{\Bs\<R}ds:g/0 Ligy, <togry ds = a/0 15, <tog rye>> ds

a”2H, allogR R
= a/ 1gacat10g ye>" ds = a/ EYLE 5y () da = / rL;ﬁ;}gf’“(ﬂa) dr,  (8.22)
0 —o00 0

where the last second equality follows from the occupation time formula [Proposition , and we apply the
change of variable r = €@ in the last one. Ast 1 oo, we have a~!logr | 0 for every r > 0, and a 2H; —T® — 0
in probability by Lemma m From the joint continuity of Brownian local times [Theorem , for every
e€ (0,R), as t T oo,

1
sup |L%_,87 (%) — L9..(B°
o e - )

— 0 in probability.

By (8.22)), we have

— 0 in probability.

2 [t R .
@/0 Ljp,|<ryds — 5 Lra(57)

Since L. (8%) 4 LY., (B) for each a > 0, the desired result follows from Proposition [7.16 O
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9 General Random Walks

9.1 Donsker’s Invariance Principle
In this section, we discuss the approximation of general random walks by Brownian motions. What we are
interested in is the behavior of the partial sum sequence

Sp=X1+Xo+ -+ X,,

where X1, X5, - -+ ~ F are square-integrable i.i.d. random variables. One important conclusion we will use is the
Skorokhod’s embedding theorem, which asserts that any L? random variable can be viewed as the Brownian

motion evaluated at an appropriate stopping time.

Theorem 9.1 (Skorokhod’s embedding theorem). Let X be a random variable with EX = 0 and E[X?] < oo,
and (By)t>0 a Brownian motion starting at By = 0. Then there exists stopping time T for the Brownian motion
such that B, £ X and E[r] = E[X?].

Proof. We first assume X is supported on a two point set {a, b}, where a < 0 < b. Then
E[X?] = a®P(X = a) + b*P(X = b) = —ab.

We choose 7 = 7,5 = inf{t > 0: B; € {a,b}}, which is the exit time from [a, b]. By Proposition we have
B, £ X and E[r] = —ab = E[X?]. To handle the general case, we approximate the distribution of X by a

mixture of two-point distributions. Here we use the binary splitting martingale.

Definition 9.2 (Binary splitting martingale). A discrete-time martingale (X,,)52  is said to be binary splitting
if, whenever the event
A($07x17"' 7xn) = {XO = QZO,Xl = X1, 7Xn = ‘rn}

for some g, x1, -+ ,x, € R has positive probability, the random variable X,,;; conditioned on the event

A(xzo, 21, - ,x,) is supported on at most two values.
One can approximate a square-integrable random variable with a binary splitting martingale.

Lemma 9.3 (Dubins’ embedding theorem). Let X be a random variable with E[X?] < co. Then there exists
a binary splitting martingale (X,,)%_, such that X, — X a.s. and in L*.

Proof. Let Xo = EX, and define, iteratively, for all n € N that
§n = ix>x,y — Lix<x,}s G = 00,1, ,&n1), and X, =E[X|F,].
Then (X,,)52 is a binary splitting martingale. Since sup,,cy E[X?2] < E[X?] < oo, by martingale convergence
theorems [Theorem and [3.36], X,, converges a.s. and in L? to X := E[X|¥95], where %, = 0 (Uy— %n)-
Now it remains to show that X,, = X. We claim that

X — Xoo| = lim & (X — Xpy1), a.s.. (9.1)
n—oo

In fact, if X (w) = Xo(w) then both sides are 0. If X (w) < X (w), there exists N(w) > 0 so that &, (w) = —1
for all n > N(w). The case X (w) > X (w) is symmetric. Then

El&n(X = Xni1)] = E[GE[X = X514 (|90]] = 0.

Since the collection (|X — Xy41|)nen is uniformly integrable, (9.1) implies E|X — X| = 0. O

224



Proof of T heorem (Continued). We take the binary splitting martingale constructed in Lemma Then
X, is supported on the two points a' = E[X1(xoy] and b' = E[X1{y>03]. We take the exit time 71 =
inf{t > 0: B, ¢ (a’,b")}, then B,, £ X, and E[r] = E[X2].

Conditional on B, = a', we take a} = E[X1{xq}] and b7 = E[X1{,1<x<0}], so X, is supported on
the two-point set {af,b7}. On the event {B;, = a'}, we may take 75 = inf {t > 7 : B; ¢ (a},b?)}. Then
(B.,|B;, = a') < (X3 X; = a'), and E[nl(p, =ay] = E[X31{x,—q1}). Similarly, conditional on B,, = b,
we take 7o = inf {t > 71 : B, ¢ (a},03)}, where a3 = E[X1(o<x<p1}] and b3 = E[X 1 x>p13]. Then similar
properties hold on the event {B,, = a'}, and we conclude that B, £ X,, and E[rs] = E[X3].

Repeating this approach, we can find an increasing sequence of stopping times 73 < 75 < --- such that
B, 2 X, and E[r,] = E[X?2] for all n € N. In fact, B,, determines which of the 2" regions of the real line
the limit lim,, ,oc B, should lie in. By Proposition 7o T 7 a.s. for some stopping time 7. Furthermore,
by monotone convergence theorem and Lemma [9.1

E[r] = lim E[r,] = lim E[X?] = E[X?].

n—oo n— oo

Since B, converges in distribution to X and a.s. to B, by continuity, we have B, 4x. O

Skorokhod’s second embedding theorem concerns about extracting a random walk from a Brownian motion.
Theorem 9.4 (Skorokhod’s embedding theorem). Let (B;)i>0 be a Brownian motion starting at Bo = 0. Let
X1, X, be an i.i.d. sequence with a distribution F', which has mean 0 and finite variance. Define

Sp=X1+ +X,, n=0,1,2---.

Then there exists an increasing sequence of stopping times 0 =19 <1 <15 < --- for (By)i>0 satisfying
(i) B, 4 Sp for allm=10,1,2,---, and
(i) The increments (T, — Tn—-1)52, are i.i.d..
Proof. Following Theorem let 71 be a stopping time with B, £ X, and E[r] = E[X?]. By the strong
Markov property, B, +. = (Br, +t — Br, )i>0 is a Brownian motion independent of %, .
With 7,,_; fixed, we follow the same approach on the Brownian motion B;, 4. and take 7, be a stopping
time such that B,, — B, _, 4 X, and E[r, — 7,_1] = E[X?], and 7, — 7,1 4 71. The increment 7,, — 7,1

independent of .%,,_,. Thus we find the desired sequence (7). O

Corollary 9.5 (Central limit theorem). If (X,,)52 is an i.i.d. sequence with mean 0 and variance 1, then
! En:X 4 N(0,1)
i i 1).
Vi 2

Proof. By Brownian scaling, for each n € N, we define a Brownian motion by W, (t) = 2

%22 (2).

By the weak law of large numbers, 7= — E[X 2] = 1 in probability. For any € > 0, we pick 6 > 0 such that

P (3t € (1 — 6,1+ 9) such that |B; — Bi| > ¢€) <

|

Next, we take N > 0 great enough so that P (|2 — 1| >6) < . Then P (’Wn () — Wn(l){ > €) < € for all

n > N. Since € > 0 is arbitrary, W, (%") - WL LN 0, and W,, (T ) — N(0,1) by Slutsky’s lemma. O

In
n
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Next, we will derive a functional central limit theorem for general random walks. For an i.i.d. sequence
X1, X, -+ with mean 0 and variance 1, we consider the random walk S,, = X1+ X5+ -4+ X, as a continuous
time process by defining

S#t) =S+ (t = [t]) (Sar = Spy) . 20,

In other words, we fix S(n) = S,, at all nonnegative integer points n € N and take S(-) to be the linear
interpolation on each interval [n,n + 1].

Theorem 9.6 (Donsker’s invariance principle). Let X1, Xo, -+ be a sequence of i.i.d. random variables with
mean 0 and variance 1, and S, = X1 + Xo---+ X,,. Define

S(t) =Sy + (t— [t]) (Siey+1 = Spey), t=0.

Then on the space C([0,1]) equipped with the uniform topology,

S’(nt))
— (Bi)iepp)  weakly
<\/ﬁ te[0,1] <101

as n — oo. Essentially, for each bounded contionuous function v on C([0,1]),

Ezb(s\(/%)) — E(B). (9.2)

Proof. For each n € Nand 1 <m < n, we take X, ,,, 4 m/vnand Sy = X1+ 4+ X, 4 'm/\/n. By
Skorokhod embedding theorem, we take stopping times 7', - -+, 7, such that Sy, = Brn. In fact, we at first
fix (B¢)t>0 to be a Brownian motion independent of n, and then define the triangular random variable array
(Xn,m)neN,1<m<n in the same probability space.

Let 71,72, -+ be the stopping times constructed in Theorem [9.4] By the scaling invariance of Brownian
motions, B,:/+/n is also a Brownian motion, and 7,2 4 Tm/m. Hence for each s € [0,1], by the weak law of
large numbers, we have T[Lns ;s in distribution, and also in probability. Next, we need the following lemma
to control the error between S* and B:

Lemma 9.7. If T[LRSJ — s in probability for each s € [0,1], then

sup |Sp(nt) — Byl — 0 in probability
t€[0,1]

as n — oo, where Si(nt) = Sy, ) + (nt — [nt]) (S, nt)+1 — Sn,|ne)) 4 S(nt)//n.

Proof of Lemma[9.7 Since ¢ — By is uniformly continuous on the compact interval [0,1] (in fact, Holder
continuous with exponent 0 < v < %), for any € > 0, there exists 6 > 0 such that 1/§ € N and

P(|By — Bs| < eforallt,s € [0,1] and |t —s| < 2J) >1—e. (9.3)
Note that T[lnsj — s in probability. We take N5 > 1/§ such that for all n > Ny,
P (}Tfnm —kd| <G forall k=1,2,--- ,1/5) >1—e (9.4)
Since m +— 77 is increasing, for s € (kd — 6, k), we have

Tlat1ys) — k0 < Tlhg) = 8 < Tlogsy — (k= 1)6.
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Under the event in (9.4), the above bound is controlled by +2§. Hence for all n > Ny,
P (|TfmJ — 5| < 26 for all s € [0, 1]) >1—e (9.5)

On the intersection of the two events (9.3) and (9.5)), we have

s

|Snm — Bm| = |Brm — Bz| <¢, foralll<m<n.

To deal with the interpolation, we let ¢t = ™% where m € N and 6 € (0,1). By the triangle inequality,

1S5 (nt) — By| < (1= 0)|Sp,m — B | +0[Sn i1 — Bmaa |+ (1= 0)|By — Bm | + 0| By — Bma | < 2
for all n > Ns. Since € is arbitrary, we conclude the proof. O
Proof of Theorem[9.6, We take 1 to be a bounded continuous function on C([0,1]). It remains to show that
E4p(55(n)) — E4p(B) — 0.

We fix € > 0, and let G5 = {w € C([0,1]) : if ||w — D||eo < I then |Pp(w) — P(@)| < €} for § > 0. Since ¥ is
continuous, Ge s T C([0,1]) as 6 L 0. Let R,, = ||S’(n-) — B||lco. Then
[E(Sy(n)) —E(B)| < E [[¢(S;(n)) = ¥(B)lLg. snir.<sy] +E [W(SZ(TL')) —(B)[lce (R, >5)
< e+ 2[¢loo (P(GE5) + P (Rn > 9)) .

We can bound [Eq)(S}:(n-)) — E¢(B)| by 2¢ by choosing small enough ¢ and then large enough n. Since € > 0
is arbitrary, we complete the proof of Theorem O

Remark. (I) For any M € N, by considering a similar triangular array (X, m)nen,1<m<nm, We can conclude

S(nt))
— (Bt)tejo,m) weakly
(\/ﬁ te[0,M] ol ]

on the space C(]0, M]) equipped with the uniform topology.

(IT) According to our proof, the identity (9.2) remains valid if ¢ is bounded and W-a.s. continuous on C([0, 1]),
where W is the Wiener measure on C([0, 1]).

With a subtle remark on the topology of the continous function space, we can extend this result to [0, 00).

Theorem 9.8 (Donsker’s invariance principle). Let X1, Xo, -+ be a sequence of i.i.d. random variables with
mean 0 and variance 1, and S, = X1 + Xo---+ X,,. Define

S(t) =Sy + (= [t])S|t)41, t=0.

Then on the space C([0,00)) equipped with the compact convergence topology, as n — oo,

(i

) — (B)i>0 weakly.
>0

Proof. The compact convergence topology on C([0,00)) is induced by the metric

> su w(t) — ot
d(w, ) = Z 9—M Ptefo, M) |w(?) (~)‘ C we C((O,oo]).
M=1 1+ SUP¢elo,M] |w(t) — ()]
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We claim that d(*222, B) — 0 in probability. In fact, by Lemmal9.7), for all M > 0,

Sh(nt)
n

sup ‘
tel0,M]

— Bi| — 0 in probability.

Given any € > 0, we choose M, > 0 such that ZE=M6+1 2~M < ¢ and N, > 0 such that if n > N,

S*(nt
P| sup ’ n(nt) — By >
te[0,M] \/ﬁ

We take a union bound over all 1 < M < M, to conclude that, with probability at least 1 — ¢,

e> < A; for M =1,2,--, M..

(nt) o
Sx(n _ t M
d ( ) E 2 S D) + E 2 < 2e
L+ supseio,ng | =7~ — Be|  M=mc1

Since € > 0 is arbitrary, our claim is true.
Let ¢ be a bounded continuous function on the space C((0,00]) with the compact convergence topology.
Then the final part of our proof of Theorem [0.6] can be adapted by replacing

Ges ={we C((0,00]) : if d(w,w) < § then |P(w) — P(@)| < €}
and R, d(s AG) B) Thus we complete our proof. O
9.1.1 The Law of Iterated Logarithm

We can generalize the Law of Iterated Logarithm [Theorem [4.30] to random walks.

Theorem 9.9 (Hartman-Wintner). Let X1, Xo, -+ be a sequence of i.i.d. random variables with mean 0 and
variance 1, and S, = X1 + Xo---+ X,,. Then

limsup ——m— =1 a.s..
n—oo +/2nloglogn
Proof. As in the proof of Donsker’s invariance principle, we choose stopping times 71,7, --- with S,, = B,

and 7,/n — 1 a.s.. Following Theorem [4.30} it suffices to show that

Sy — B
limsupL =0 as.

1o Vtloglogt

Step I. Fix € > 0. With probability 1, there exists to(w) such that 1%_6 <7 < (L+e)t for all t > to(w). We

let M; = sup{|B, — Bi|, 1oz < s <t(1+€)}, and tp = (1 4+ €)". If ), <t < tgy,

M, < sup |Bs — Br| <2 sup |Bs — By, _,|- (9.6)

8,r€[tk—1,tx42] SE[tp—1,tky2]

Note that tj4o — tp_1 = 0ty_1, where 6 = (1 + €) — 1. By scaling, for h > 0,

IF’( sup |B5Btk1|>\/5h> P(Sup BS|>\/E> §2P<Sup B5>\/E>
S

S tk—l:tk+2] 86[0,1] SE[O,I]

4 2 8
_ /2 40 < ] S p—h/2
e x e ,

V2 /\/ﬁ — Vrh
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where the last estimate is from the tail bound in the proof of Theorem [£.30] We set h = 3tj,_1 loglogt;_ for
large enough k£ in the last display to obtain

k—1)log(1 — 3tk
P < sup |Bs — By, _,| > \/35tk_1loglogtk_1> < \/ 8(( Jlog(1 + €))7
sE€|

o1 thra] 3(1+¢)k—1(log(k — 1) + loglog(1 +¢€))"

By Borel-Cantelli lemma, the above events occur for only finitely many k. By , for large enough ¢,

|S\t) = Bt| = |Br,, — Be| < M; < \/35tk,110glogtk,1 < \/35tloglogt,

TLt)

where we choose k to be such that (14 €)¥ =, <t <441 = (1 + €)¥*1. Hence with probability 1,

. Sit) — Bt
1 — < V34
1rtr/1ri:1p Vitloglogt —

Since § = (1 +¢€)® — 1 and € > 0 is arbitrary, we set € | 0 to conclude the proof. O

9.1.2 The Arcsine Laws

In this part we extend the arcsine laws we discuss in Proposition [£46] to random walks, and also introduce

another arcsin law for the positive set of one-dimensional Brownian motions.

Proposition 9.10 (Last sign change). Let X1, X5, -+ be a sequence of i.i.d. random variables with mean 0
and variance 1, and the associated random walk S, = X1 + Xo---+ X,,. Define L, to be the last time the

random walk changes its sign before time n, i.e.
Ln = max{l S k § n: SkSk—l § 0}

Then Ln—" converges in law to the arcsine distribution.

Proof. We define a function ¢ : C([0,1]) — [0, 1] by
Y(w) =sup{t € [0,1] : w(t) =0}, w e C([0,1]).

Then ¢ is continuous at every function w € C([0,1]) such that w takes positive and negative values in every
neighbourhood of every zero and w(1) # 0. To see this, we fix such a function w € C([0,1]) and € > 0. Let
0o = infieppw)te1) [w(t)], and take §; > 0 with (—=d1,61) C w((¥(w) — €,¥(w) +¢€)). For any 0 < § < dg A 6y
and w € C([0,1]) with [|&@ — w|le < ¢, the function @ has no zero in (¢ (w) + €, 1] but has at least one zero
in (Y(w) — €,9%(w) + €), since there exists s,t € (P(w) — €, Y(w) + €) with &(s) < 0 and &(t) > 0. Thus
|th(w) — 1 (@)| < €, which shows that ¢ is almost everywhere on C([0,1]) under the Wiener measure.

By Donsker’s invariance principle and the Portmanteau lemma,

w(‘g\%)) 4 9(B) asn — oo.

Also note that

vn n n
which converges to 0. By Slutsky’s lemma, LT’” — 4(B), which is arcsine distributed. O

Now we are going to introduce another arcsine law for Brownian motions.
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Lemma 9.11 (Richard). Let (S,)%2, be the simple, symmetric random walk on integers. Then for alln € N,

{k € {1,2,---,n}: Sk >0} 4 min{k €{0,1,--- ,n}: S, = 1r%a<xn5j} (9.7)
Proof. We let Xy, = Sy — Si_1 for each k = 1,--- ,n. We rearrange the tuple (X1, -+, X,,) as follows:
e For the terms X} with Si > 0, place them in decreasing order of index k.
e For the terms X} with Si < 0, append them in increasing order of index k.
We denote by (Y7,---,Y;,) the rearranged tuple, and write S, = Y7 + --- + Y}, for the corresponding partial
sums. We first claim that (X1, ,X,,) 4 (Yy,---,Y,).
(i) If all partial sums are nonpositive, then trivially the conditional distributions are the same.
(ii) Otherwise, we condition on the event max{j € {1,--- ,n} :S; > 0} =k, so Y1 = X},. Then the tuples
(X1, -+, Xg) and (Xgq1, -, Xn) 4 (Yiq1, -+ ,Yy,) are conditionally independent. Furthermore, the
ii.d. increments Xi,---, X) are conditionally exchageable (conditioned on Sy = 1if k <n, or S, > 1
if k =n). Hence the conditional law of (X, X1, -+, Xj—1) remains the same. Repeating this argument
now for (X, -+, Xi_1), we see after finitely many steps that the two tuples have the same law.
As a consequence, we have (S1,---,Sp) 4 (S1,--+,Sl). We check that

1<j<n

Hke{1,2,--- ,n}:Sk>O}|dmin{k6{0,1,~~ ,n}: S, = max S;}

Indeed, this holds trivially for n = 1. When X,,11 is appended there are two possibilities:

e if S,,11 <0, then Y11 = X,,41, and the position of the leftest maximum in (S},)7*} does not change.

e if S,11 > 0, then Y3 = X,,;1, and the position of the leftest maximum in (S},)7*} is shifted by one
position to the right.

Thus we complete thr proof by induction. O

Theorem 9.12 (Lévy’s Arcsine law). Let (By)i>o0 be a Brownian motion starting at By = 0. Then the

Lebesgue measure of the positive set of B in [0,1] satisfies the arcsine law, i.e.
2 .
P(m{s €[0,1]: By > 0} < t) = = arcsin(v/1),
i

where m is the Lebesgue measure on [0,1].

Proof. We define a function ¢ : C([0,1]) — [0, 1] by

¢(w) = inf {t €10,1] : w(t) = max w(s)} , w e C([0,1]).

s€[0,1]

Then ¢ is continuous at every function w € C([0,1]) with a unique maximum, hence almost everywhere
continuous under the Wiener measure. To see this, we fix such a function with w € C([0,1]) and € > 0. Let
M; be the supremum of w on [0, p(w) — €] U [¢p(w) + €] and My = max;e[o,1)w(t). Then for all @ € C([0,1])
with [|& — w||ee < (Mo — M), we have |¢(@) — ¢(w)| < €, which shows the almost everywhere continuity of ¢.
By Donsker’s invariance principle, the right-hand side of divide by n converges in distribution to ¢(B),
which has the arcsine distribution by Theorem Next, we define a function ¢ : C([0,1]) — [0,1] by

PYw)=m{te[0,1]:w(t) >0}, welC(0,1]),
which is continuous at every w € C([0,1]) with the property

léifgm{t €10,1] :w(t) € (—¢,¢)} =0, (9.8)
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because for every w € C([0,1]) with [|@ — w||cc < €, one have
m{t€0,1]:w(t) > e} <YP@) <m{t€[0,1]:w(t) > —e}.

The property is equivalent to the property m {t € [0,1] : w(t) = 0} which the Brownian motion has
almost surely, hence v is almost everywhere continuous on C([0, 1]) under the Wiener measure. Note that

S(nt) |k e{l,---,n}:S,=0]
7ol " |

‘|ke{1,-~-,n}:5k>0| B
n

m{te[o,l]:

which converges to 0 in probability, since
1 & 1 & 2k 1 & /1
— ) P(Sop=0)=—)» 272 ~ = — —0.
g P =0 =55 ()~ 5

Again by Donsker’s invariance principle, the left-hand side of (9.7 divided by n converges in distribution to
Y(B) =mA{t €[0,1] : By > 0}. This complete the proof. O

Corollary 9.13 (Arcsine laws for random walks). Let X1, Xa, -+ be a sequence of i.i.d. random variables
with mean 0 and variance 1, and the associated random walk S, = X1 + Xo--- + X,
(i) (First maximum). Let

Un—inf{lgkgnzsk— max S]}.

1<j<n
(i) (Occupation times of half-lines). Let
n
My =3 Us;>0,
j=1
Then both U, /n and M, /n converge in law to the arcsine distribution as n — oo.

Proof. We use the almost everywhere continuity of the mappings ¢ and 1 we constructed in the proof of
Theorem [9.12| and apply Donsker’s invariance principle. O
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9.2 Martingale Central Limit Theorem
9.2.1 Square Integrable Martingales and Brownian Embedding

Theorem 9.14. If (S5,)52, is a square-integrable martingale started from Sy = 0, then lim, o Sy, ezists and

is a.s. finite on the event

{ZE [(Sn - Sn,1)2|ﬁn,1] < oo} ,  where %, = o(Sy,S1, -+ ,Sn)-

n=1

Proof. Let V,, =3 ° | E [(Sn — Sn,1)2|ﬁn,1]. By the martingale property,

E Zn:IE[(Sm— m-1)2|Fm-1]| =E

m=1 m=1 m=1

3" (881 - S| = 3 (Rlsh) - ) - BIS)
Applying Doob’s L%-inequality [Proposition |3.31] to |S,|, we have

E [ max |Sm|2} < 4E|S,|? = 4EV,,.

0<m<

We let n — oo and apply the monotone convergence theorem to conclude that E [supmzo |Sm[?] < 4EVi.
Now since (V)52 is (%, )-predictable, we fix o > 0 and define the stopping time N, = {n € Ny : V,,41 > a}.
Applying the last estimate to the stopped martingale (Span, )52, we have

E [SUP |Sn/\Na|2:| < A4EVy. < 4da.

n>0
By Theorem lim,, 00 Snan,, exists and is a.s. finite. The desired result follows by letting o 1 co. O

Theorem 9.15 (Strassen). If (S,)5%, is a square-integrable martingale with respect to (Fp)5>, started from
So =0, and (Bt)i>0 is a Brownian motion started from By = 0, then there is a sequence of stopping times
0=719<71 <71 <--- for the Brownian motion such that for all k € Ny,

(S0,81,+++ ,8k) £ (Byy, Bry -+ 1 Br,).

d

Proof. We start from B,, = 0 = Sy and apply an induction argument. Assume we have (B, B, * ,Br._,) =

(S0, 51, -+ ,Sk—1) for some k > 1. Then the strong Markov property implies that (B;, ,+: — Br,_,)it>0 is a
Brownian motion independent of %#y_;.

Let ur : Z(R) x Q@ — [0,1] be a regular conditional distribution of Sy — Sk—1 given F;_1. Using the
martingale property, we obtain

0=E[Sk — Sk—1|Fr-1](w) = / xpg(de,w) for P-a.s. w € .
R

By Theorem almost surely, there exists a stopping time 7, for (B, _,4++ — Br,_,)t>0 such that

d
Br, 4+, = Br_, = /J’k('aw)'

Let 7% = 74—1 + 7.. Then (Sp, S1, -, Sk) 4 (Bry, By, -+ , Br,), and the result follows by induction. O

Remark. If (FP)i>0 is the caninical filtration of (B;)¢>0, we have

E [Tn - Tn,l‘ggfl} LB [(Sy— S 1)?Fna], neEN

232



9.2.2 Lindeberg-Feller Theorem for Martingales

In this part, we study the central limit theorem and the invariance principle for martingale difference arrays.
Our discussion follows mostly from [10]. Let %, o = {0, Q} for each n € N. We say that (X, 1m, Zn.m)i<m<n
is a martingale difference array, if for each 1 < m < n,
(1) Xo,m is Fp, m-measurable, and
(i) E[Xnm|Fnm-1] =0.
We assume that the martinale difference array is square-integrable, and write the cumulative variance array
m

s2,=0, &, = ZE[X%k], for every 1 <m <n.
k=1

For simplicity we also write s2 = Si,w Next, define the partial sum array:

m

Spo=0, and Sp,., = ZX"”f for every 1 < m < n.
k=1

Define the standardized linear interpolation process Z,, by

1 ts? — 52 k
Zn(t) = Spk+ 5 X 1
Sn,n Sn’kJrl - Sn,k
for 0 <t <1 and Si,k <ts? < S?L,k_,'_l, where k = 0,1,--- ,n — 1. In other words, t — Z,(t) is composed
of straight line segments joining the points (s7/s2,Sk/sn), k = 0,1,--- ,n. Finally, define the cumulative

conditional variance array:
m
Vam = Z]E (X2 4| Fng—1], 1<m<n
k=1
Under some regular conditions, we can extend the invariance principle to martingales.
Theorem 9.16 (Lindeberg-Feller theorem for martingales). Let (X, m, Fnm)i<m<n be a square-integrable
martingale difference array. Let k,(t) := max{k € Ny : S%k <ts’} forneNand0<t<1. If
(i) for each 0 <t <1, we have
lim S;QmGn(t) =1t in probability,

n—0o0

(ii) (Lindeberg’s condition). and for each € > 0,

Tim 5,2 Y B [XE 11X, 5] = 0.
m=1

then (Zn(t))ief0,1 S (Bt)tef0,1], where (Bt)ieqo,1] is a standard Brownian motion.

Proof. As in Theorem Lindeberg’s condition implies

lim s,? max E[XZ]=0. (9.9)

n— oo 1<m<n

Step I. For each ¢ > 0, we define

Vale) = Z E (X2 L, mlsesnt [ Fnm—1], n=1,2,---.

m=1

Then s;,2V,,(¢) converges to 0 in L? by the Lindeberg’s condition, and also in probability.
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We first construct a sequence €, — 0 slowly enough, so that € ?%s,, 2‘7”(%) — 0 in probability. Let Ny = 0.
By Lindeberg’s condition, for each k € N, we can find Nj, > Nj_; such that P(s; 2V, (k™1) > k=3) < k= for
all n > Ng. For each n € N, we let

1, n < Ny,

E7l, Np <n < Npgg.

€n =

For each § > 0 and large enough n, we may take n € [Nj, Nx41) with & > 1. Then
P(e; 2572V (en) > 6) = P52V (k71) > 0k72) < P(s; 2V, (k™Y > k%) < k' < 6.

Hence € 2572V, (en) — 0 in probability.

Step II. For every 1 < m < n, we define

Xn,m = Xn7m1{|Xn7m|>ensn}7 jzn,m = Xn7m]l{\Xn,m|§ensn} —-E [Xn,m]l{\anm|§ensn}|yn,mfl] .

Then ()~(n7m)1§m§n is a martingale difference sequence, and |)~(nm| < 2€,8,. For every 1 < m < n, we define
m
Sn,O = 07 Sn,m = ZXn,k-
k=1

In the obvious way, we denote by (Z,(t))o<¢<1 the standardized linear interpolation of (s2/s2, gn,k/sn)zzo'

Lemma 9.17 (Freedman). There ezists a standard Brownian motion (By)o<i<1 such that
lim sup |Zn(t) — By| =0 in probability. (9.10)
n— oo 0<t<1
Proof of Lemma[9.17 By Theorem for each n € N, one can find stopping times 7%, 7, --- , 7 for a
Brownian motion (B;);>o such that (s;1§n71,351§n72,~~ ,sglgnm) = (Brp,Brp, -+, Brn). We first show
that 7 w 1 in probability for each ¢ € [0,1]. By the remark under Theorem
E [T" -7 ‘f

m m

B } = s2E [ngm‘ﬁn,m_l} . (9.11)

Tm—1

To proceed the right-hand side, note that E[X,, ;| m—1] = 0. Hence

> 2
IE [be,m’g\mm—l} = E I:X'zﬁ’ﬂ]l{‘xn,'mlgen'sn}|§nv"n_1] - E [Xnam]l{lxn,m,‘ansn} g\nvm_l]

E [X27m|yn,m—l] - IE {ngm‘jn,m—l} - E {)?n,m‘yn,m—l}2

> B [X2 | Fomo1] - 2B [R2 | Fami]

am]
For fixed t € [0, 1], summing over 1 < m < k,(t) gives

kn (t)
Vn,kn(t) - Vn(en) S Z E |:X72L7m‘yn,m71:| S Vn,kn(t)-
m=1

By Step I, we have s,,2V,,(e,) — 0 in probability. We let ¢, = 7% — 77 _, for every 1 < m < n. By (9.11)) and
property (i), for every fixed ¢ € [0,1],

kn (1)
E [Lfn

m=1

FE, } — ¢ in probability as n — oco. (9.12)

m—1
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We observe that

2
=E

2
=K

kn (t)
Em, @t — E [ m|Z

m=1

kn (t)

PG G ™)

m=1

K (£)

T7n 1:|

by orthogonality of martingale increments ¢}, — E [L

s 9’%71]. Next, following the same approach as in the

proof of Proposition we have

S[CE

FB })2’34‘3” }E[(Lw 75 |- ([

m—1

< Oaflnc i ] = e[| ] < B i)
Summing over m and recalling , we get
@ o a0e ey A0 S, 40,
S E |78 ]| < 35 mz::IE[Xn,m] < 33 ;E[Xn’m] =5

T

Hence 7" ,, — (t) E |
kn (t)

5‘%71] — 0 in L%, and by (9.12)), Tho(ry — 010 probability.

Now we prove 1) By the uniform continuity of ¢ — By on [0, 1], for each € > 0, there exists 6 > 0 such
that ! € N and
P(|B: — Bs| < eforallt,s € [0,1] and |t —s| <2§) > 1 —e. (9.14)

By (0.9), we increase Ny so that s,,2 maxi<m<n E[X7 ] < 26 for all n > Ns. Since T () — t in probability,
we take N5 > 61 such that for all n > N,

P (|72 sy — 30| < forall j= 1,2, 07 ) 21— c. (9.15)
Since 7" < 73 < -7, for t € (jo — 6,59), we have
Th(G-1)8) —J0 STty =t < T ey — (U — 1)0.
Under the event in 7 the above bound implies that for all n > Ny,
P (|72 —t] <26 forall s € [0,1]) > 1« (9.16)
On the intersection of the two events and , which has probability at least 1 — 2¢, we have

<e foralll<m<n.

m

-1
Sn Snﬂ’n - Bs%,m/s2

- ’BTn — B e

Finally, to tackle the interpolation, we fix t € (0,1) with ¢ = 5,2 (s2 ,,, + 0E[X2 ,,1]), where 0 <m <n —1
and 0 € (0,1). Then max {|s2 . /s2 —t|,|s2 ,,11/s2 —t|} <26, and

|Zy(t) — By = |(1 = 0) (s, Snym — Bt) + 0 (s, Snymi1 — Bi)|
<(1-9) ( 57 S — Boz_ 2| + ‘B 2 e — Bt’)

+9( +‘BQ

-1
Sy, Sn,erl B 2 +1/8 +1/52 —Bt

)§2e.

Since € > 0 is arbitrary, we establish the convergence result in probability. O
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Step III. Now we estimate the difference between Zn(n-) and Z,(n-). On the event () _{|Xn.m| < €nsn},

k

1
= —— max E [Xnﬂn]l{an,m‘Sensn}‘yﬂﬂm*l]

Zn() = Znl)|
() ) c(0,1])  Sp 1<k<n

IN

1 N
Sn S

m=1 " m=1

- Z [\Xnm\\%m | < Ensg Z (X2, Fama] = 1%‘7n(en).

| A

Consequently, for every ¢ > 0,

P (’ Zn() — Z”(')Hc([o,l]) ~ 5>

=F ({‘ Zu() - Zn(')HC([O 1) o 5} n ﬁ {[Xnml| < Ensn}> +P ( LnJ {1 Xnm| > ensn}>
<P ({6 - SE (%2, |Fam ] > 5} ﬁ (X < ensn}> +P ( U (1%l > ensn}>
<

IP’( Ly E[R2,.|Fnm-] >5>+ (U{|Xnm|>ensn}>

2
€nsy, ©

By Step L ;152> " | E [)A(,Zlm |fn,m,1] — 0 in probabiity and the first term converges to 0. Then it remains
to control the second term:

n— o0
m=1

lim P ( o {|Xn,m| > ensn}> =0. (9.17)

We use the following lemma.

Lemma 9.18 (Dvoretsky). Let (A,)2; be an adapted event sequence with respect to the filtration (4,)5% .
Then for any nonnegative 9y-measuralbe function n and every n € N,

P(O Am‘g0> <"7+P<§TL:P(Amgml) >77‘%0> . (918)

m=1
Proof of Lemma[9.18 We proceed by induction. When n = 1, we want to prove
P(A1[%) < n+P(P(A1|%) > n|%) =0+ Lipas o) >n}-

Let D~ = {P(A1|%) < n} and Dt = {P(A1|%) > n}, which are both in %. Then the above inequality is
trivial on D~ and D7, since

To prove the result for n sets, we note that (9.18) is trivial on D*. Let B,, = A,, N D~ for every m. Since
D~ €% C ¥%,-1, we have 1p-P(B,|%n—1) = 1p-P(A,|%n—1). Applying to the induction hypothesis for
n — 1 sets, for v =6 — P(B1|%) > 0 we have

P(O Bm gl) S'Y"'P(iP(Bmlgml) >7‘g1> .
m=2

m=2
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We take the conditional expectation with respect to % to get
P(B1|%) + P ( U Bm ‘ %) <5+P (Z P(Bp|%m—1) > 6 ‘ %) .
m=2 m=1

Multiplying both sides by 1 -, we have

1p- (IP’(A1|%) +P ( Lnj A ‘ %)) <1p- <5+1P’ <2n: P(Ap|Gm1) > 6 ’ %)) .

Then the result follows from subadditivity of probability. O

Back to the proof of Theorem we let A, = {|Xnm| > €nsn} and 4, = F, . Then

P ( U {1Xnml > ensn}> <n+P (Z P(| Xn.m| > €nsn|Fnm_1) > n)

m=1 m=1
By Chebyshev’s inequality, we have

n

n
Z IP>(|)(n,m| > 6n5n|<g\n,m—l) S 6;23;2 Z E {Xn,m‘yn,m—l} = EJQSZQVn(En)a

m=1 m=1

which converges to 0 in probability. By letting 1 | 0, we complete the proof of (9.17)), and hence

sup |Zn(t) — Zn(t)] = 0 in probability.
te[0,1]

Step IV. By Steps 11 & III and the triangle inequality, sup,¢(o 1] [Zn(t) — Bi| — 0 in probability, and following
the same approach as in the proof of Theorem

Ey(Zn(n-)) —E¢(B) =0
for all bounded continuous functions ¢ € C(]0, 1]). This proves the desired result. O

For convenience in application, we also have an alternative for a single sequence.

Theorem 9.19 (Lindeberg-Feller theorem for martingales). Let (X,,)22; be a square-integrable martingale

difference sequence with respect to the filtration (F,)5%,. For each n € N, define s = > _ | E[X2] and
Vo = ZZ=1 E[anWm_l]- If
(i) $,2V, — 1 in probability, and
(i) (Lindeberg’s condition). for each € > 0,
L2 2
nli)l& Sn Z E [Xmﬂ{‘Xm|>55n}] = O’
m=1
then (Zn(t))ief0,1 S (Bt)tef0,1], where (Bt)ieqo,1] is a standard Brownian motion.
Proof. We let ky,(t) = max{k € Ny : s7 < ts2}, and prove that for each ¢ € [0, 1],
2
s
lim el — (9.19)

n—oo STL
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The result is trivial when ¢ € {0,1}, so we fix 0 <t < 1. By (9.9), for large enough n, we have k,(t) <n — 1,
and 57,y <ts, <7 ), Dividing by s7, we have

2
Sk (t)

<t<
e

52 E[X2 53
kn (t) + [ kn (t)+1] S kn (t) + 572 max IE[XQ ]
s s? 53 ®igmze ©T

Then (9.19) follows by letting n — oo in the above estimate and (9.9).
Let Xpm = X and Fy, p, = #, for each n € N. By , kn(t) — oo as n — 0o, and we change the
notation in (i) to obtain

v,
lim —ael8 — g

n—oo Skn(t)

in probability.

Recalling (9.19)), we have
I Vin ()
m —5—- =t

n—oo S

Then we verify the first condition in Theorem [0.16] and finish the proof. O

in probability.

9.3 Empirical Processes
9.3.1 Brownian Bridges

We consider the Gaussian process (X¢);e[o,1) With mean 0 and covariance function
Cov(Xs, X¢) =tAs—st, 0<s,t<1. (9.20)

It is easily verified that (X¢);e[o,1) has the same finite-dimensional distributions as the process (B; —tB1):e[o,1],

where (By)¢>0 is a standard Brownian motion. Consequently,
E|X,— X' =E|(1 —t+5)(B; — Bs) — (t —s)(B1 — By) — (t — s)B,|"
=3(t—s)* (1 —t+5)? < 3(t —s)%
According to the Kolmogorov’s continuity lemma [Theorem & Corollary , the Gaussian process (X;)i>0
has an a.s. modification with i—Hélder continuous sample path. We can further follow a similar procedure in

Section to construct a measure on the space C([0, 1]) of continuous functions on [0, 1] equipped with the
o-algebra €([0, 1]) generated by the uniform topology.

Definition 9.20 (Brownian Bridges). A Brownian bridge is a continuous Gaussian process (X¢):e[o,1] With
mean 0 and covariance function ((9.20)).

Remark. The law of a Brownian bridge is uniquely determined by the measure on C([0,1]) we discuss above.

In fact, given a standard Brownian motion (B;);>0, we can construct a Brownian bridge (B, — tBl)te[O,l]-

Theorem 9.21 (Ballot process). Let &1,&a,- - , &y be a uniformly random permutation of

and Sy, =& + -+ -+ &. Then the process

_ SLGtJ + (Znt - LQntJ)Sl_2ntj+1
V2n

S*(t)

converges in distribution to a Brownian bridge on [0, 1].
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