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Preface
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Contents
1 Random Field 3

1.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Mean and Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Properties of Covariance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Staionarity and Isotropy of Random Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Properties of Semivariogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Nugget Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Kernel Functions 7
2.1 Inner Product and Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Properties of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Exapmles of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Gaussian Process 11
3.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Hierarchical model for geostatistical process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Analytical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Ornstein–Uhlenbeck process (O-U process) . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Kriging 16
4.1 Simple Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Noise-free observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Observations with additive noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Overlapping observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Universal Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



5 Reproducing Kernel Hilbert Space 21
5.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Construction of RKHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 From Pre-Hilbert Space to its Completion: Moore-Aronszajn Theorem . . . . . . . . . . 21
5.2.2 Eigenanalysis: Mercer’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Kernel Ridge Regression 26
6.1 Nonparametric Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Penalized least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 Generalized loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Equivalence between KRR and Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Karhunen-Loève Expansion 29
7.1 Kosambi-Karhunen-Loève Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Function Approximation with Orthogonal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2.1 Orthogonal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.2 Optimality of truncated Karhunen-Loève expansion . . . . . . . . . . . . . . . . . . . . 32

7.3 Example: Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



1 Random Field

1.1 Definition and Properties
Definition 1.1. Given a probability space (Ω,F ,P), a random field is a family or collection of random
variables indexed by elements in a topological space T . That is, a random field Z(·) is a collection of random
variables

{Z(s) : Ω → R | s ∈ T } , (1.1)

where each Z(s) is a random variable indexed by s. Some examples are shown below.
• Time Series: X(t), t ∈ Z, like random walk;
• Stochastic Process: X(t), t ∈ R, like Poisson process, Brownian process, etc.;
• Spatial Process: Z(s), s ∈ D ⊆ Rd, d ≥ 2;
• Spatio-temporal Process: Z(s, t), s ∈ D, t ∈ R.

1.1.1 Mean and Covariance

For a random field Z(·) defined on D ⊆ Rd, the mean function is defined as a function µZ : D → R, given by

µZ(s) := E[Z(s)]; (1.2)

the covariance function KZ : D ×D → R is defined as

KZ(s1, s2) := Cov (Z(s1), Z(s2)) = E [(Z(s1)− µZ(s1)) (Z(s2)− µZ(s2))] . (1.3)

By definition, the covariance function is symmetric. Furthermore, you can verify that it is positive definite,
i.e., ∀n ∈ N, ∀s1, · · · , sn ∈ D, the Gram matrix defined by K = {KZ(si, sj)}ni,j=1 is positive semidefinite.

1.1.2 Properties of Covariance Function

Suppose that K(·, ·) is a valid covariance function defined on D ×D, where D ⊆ Rd.

Definition 1.2 (Stationarity). A covariance function K is called stationary if ∀s1, s2 ∈ D, K(s1, s2) only
depends on s1 − s2. That is, there exists some K1 : Rd → R such that

K(s1, s2) = K1(s1 − s2) ∀s1, s2 ∈ D. (1.4)

A stationary covariance function is invariant to translation.

Definition 1.3 (Isotropy). A covariance function K is called isotropic if ∀s1, s2 ∈ D, K(s1, s2) only depends
on ‖s1 − s2‖, where ‖ · ‖ denotes L2-norm. That is, there exists some K2 : R+ → R such that

K(s1, s2) = K2(‖s1 − s2‖) ∀s1, s2 ∈ D. (1.5)

Definition 1.4 (Dot product). A covariance function K has rotational invariance if ∀s1, s2 ∈ D, K(s1, s2)

only depends on their dot product s1 · s2. That is, there exists some K3 : R → R such that

K(s1, s2) = K3(s1 · s2) ∀s1, s2 ∈ D. (1.6)
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1.2 Staionarity and Isotropy of Random Field
Definition 1.5. Given a probability space (Ω,F ,P). A random field Z(·) is called stationary (isotropic) if
it satisfies the following 3 conditions:

• Z(·) has constant mean, that is, µZ is a constant,
• Z(·) has finite 2nd moment, that is, Z(·) ⊆ L2(Ω), and
• Z(·) has stationary (isotropic) covariance function.
A random field Z ′(·) is called anisotropic if it is not isotropic.

Definition 1.6 (Geometric anisotropy). A random field Z(·) is called geometrically anisotropic if it is
isotropic after a linear transformation, i.e. there exists a non-singular matrix V ∈ Rd×d such that Z ′ : s 7→
Z(V s) is isotropic.

1.3 Variogram
Definition 1.7 (Variogram). Given a random field Z(·) defined on D ⊆ Rd, the variogram of Z(·) is defined
as the variance of the difference between field values at two locations:

2γ(s1, s2) := Var{Z(s1)− Z(s2)}, (1.7)

where γ is called the semivariogram.

A stationary variogram and semivariogram can be represented as a function of the difference h = s1 − s2

between locations only:
2γ(h) := Var{Z(s+ h)− Z(s)}. (1.8)

In the case of stationary random field, we have

2γ(h) = 2KZ(0)− 2KZ(h), (1.9)

where KZ is the covariance function of stationary field Z(·). Hence, a stationary random field has a stationary
variogram. Analogously, an isotropic variogram and semivariogram can be represented as a function of the
distance ‖h‖ = ‖s1 − s2‖ between locations only:

2γ(‖h‖) := Var{Z(s+ h)− Z(s)}. (1.10)

In general, a variogram gives a description of the spatial continuity of our data.

1.3.1 Properties of Semivariogram

Proposition 1.8. A semivariogram γ has the following properties:
• A semivariogram is nonnegative and symmetric, that is, γ(s1, s2) = γ(s2, s1) ≥ 0 ∀s1, s2 ∈ D;
• The (isotropic) semivariogram at distance 0 is always 0, since Z(s)− Z(s) ≡ 0;
• Let D = Rd. A function γ is a (isotropic) semivariogram if and only if γ(0) = 0 and γ is a conditionally

negative definite function, i.e. for all w1, · · · , wn ∈ R subjected to w1 + · · · + wn = 0 and locations
s1, · · · , sn ∈ Rd, it holds

n∑
i=1

n∑
j=1

wiwjγ(si − sj) ≤ 0. (1.11)

Proof. We only show the third property.
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“Only if” part. Consider a random vector Z = (Z(s1), · · · , Z(sn))⊤ with mean µ = EZ and covariance
matrix K = {K(si − sj)}ni,j=1. Define the semivariogram matrix of Z to be Γ = {γ(si − sj)}ni,j=1. By
definition,

Γ =
1

2
vdiag(K)1⊤n +

1

2
1nvdiag(K)⊤ − K, (1.12)

where vdiag(K) = (K(0), · · · ,K(0))⊤ and 1n is an n-dimensional all-one vector. All diagonal entries of Γ are
zero. Hence for any w ∈ Rn such that 1⊤n w = 0,

w⊤Γw = −w⊤Kw ≤ 0, (1.13)

which implies that γ is negative definite.

“If” part: This proof is adapted from Matheron ,G. (1972) P-4-1 [1]. Suppose γ is a conditionally negative
definite function, i.e. it satisfies equation (1.11), and γ(0) = 0. Now fix s1, · · · , sn ∈ Rd. We are going to show
that ∀α = (α1, · · · , αn)

⊤ ∈ Rn, we have

n∑
i=1

n∑
j=1

αiαj (γ(si) + γ(sj)− γ(si − sj)) ≥ 0. (1.14)

Let α0 = −(α1 + · · ·+ αn) and s0. Note that γ(0) = 0, the inequality (1.14) becomes

−
n∑

i=0

n∑
j=0

αiαjγ(si − sj) ≥ 0, (1.15)

which immediately follows from the conditional negative-definiteness of γ. Then we can construct a Gaussian
process {Z(s) : s ∈ Rd} with mean zero and covariance K such that

K(s, s′) = γ(s) + γ(s′)− γ(s− s′), s, s′ ∈ Rd. (1.16)

It can be verified that the semivariogram of {Z(s) : s ∈ Rd} is γ.

1.3.2 Nugget Effect

Definition 1.8 (Nugget effect). The nugget effect is the variation of the process at a finer scale than the
smallest distance measured:

c0 := lim
h→0

γ(h). (1.17)

It can be caused by random noise or measurement errors, and is shown graphically in the variogram plot
as a discontinuity at the origin of the function.
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Figure 1: A variogram plot

Definition 1.9 (Empirical Variogram). Suppose that we have observations z(s1), · · · , z(sn), an empirical
semivariogram is given by

γ̂(h) =
1

2|N (h)|
∑

(i,j)∈N (h)

{z(si)− z(sj)}2 , (1.18)

where N (h) is a set of observation pairs whose distance is close to h.

6



2 Kernel Functions

2.1 Inner Product and Hilbert Space
Definition 2.1 (Inner product space). Let H be a vector space over R. A function 〈·, ·〉H : H ×H → R is
said to be an inner product on H if it satisfies the follwing three properties:

• (Non-negativeness) 〈f, f〉H ≥ 0 ∀f ∈ H, and 〈f, f〉H = 0 if and only if f = 0,
• (Symmetry) 〈f, g〉H = 〈g, f〉H, f, g ∈ H, and
• (Linearity) 〈αf1 + βf2, g〉H = α〈f1, g〉H + β〈f2, g〉H, α, β ∈ R, f1, f2, g ∈ H.

H is called an inner product space. A norm is induced by the inner product: ‖f‖H =
√

〈f, f〉H.

Remark. An inner product space is also called a pre-Hilbert space. Moreover, For a vector space over C,
the second property is modified as conjugate symmetry: 〈f, g〉H = 〈g, f〉H, f, g ∈ H.

Definition 2.2 (Hilbert Space). A Hilbert space is a complete inner product space. In particular, every
Hilbert space is a Banach space with respect to the norm induced by its inner product.

Remark. Recall the definition of Cauchy sequence and Banach space:
• A sequence {fn}n∈N∗ ⊂ H is called a Cauchy sequence with respect to norm ‖ · ‖H, if ∀ε > 0, ∃N ∈ N∗

such that ∀m,n > N, ‖fn − fm‖H ≤ ε.
• A normed vector space (H, ‖ · ‖H) is called a Banach space if any Cauchy sequence {fn}n∈N∗ ⊂ H

converges to some f∞ ∈ H, i.e. limn→∞ ‖fn − f∞‖H = 0.

Then, the completeness of a Hilbert space H states that every Cauchy sequence in H converges with respect
to ‖ · ‖H to an element in H.

2.2 Kernel Functions
Definition 2.3 (Kernel). Let X be a non-empty set. A function k : X × X → R is called a kernel on X if
there exists an R-Hilbert space H and a map ϕ : X → H such that ∀x, y ∈ X ,

k(x, y) = 〈ϕ(x), ϕ(y)〉H. (2.1)

It is evident that k(·, ·) is symmetric, i.e. k(x, y) = k(y, x) ∀, x, y ∈ X .

Remark. In machine learning, ϕ is called a feature map, and H is called a feature space of k.

Proposition 2.4. All kernel functions are positive definite. More specifically, let X be a non-empty set and
k : X × X → R a kernel on it, then ∀n ∈ N, α1, · · · , αn ∈ R, x1, · · · , xn ∈ X ,

n∑
i=1

n∑
j=1

αik(xi, xj)αj ≥ 0. (2.2)

Proof. Fix α1:n and x1:n. Since k(·, ·) is a kernel on X , there exists an R-Hilbert space H and a map ϕ : X → H,

n∑
i=1

n∑
j=1

αik(xi, xj)αj =

n∑
i=1

n∑
j=1

〈αiϕ(xi), αjϕ(xj)〉H

=

〈
n∑

i=1

αiϕ(xi),

n∑
j=1

αjϕ(xj)

〉
H

=

∥∥∥∥∥
n∑

i=1

αiϕ(xi)

∥∥∥∥∥
2

H

≥ 0. (2.3)
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Then we complete the proof.

Theorem 2.5 (Symmetric, positive definite functions are kernels). A function k : X × X → R is a kernel if
and only if it is symmetric and positive definite.

Proof. In view of the discussion above, it suffices to show that a symmetric and positive function k(·, ·) is a
kernel. Let

H0 =

{
n∑

i=1

xik(·, xi) : n ∈ N, c1, · · · , cn ∈ R, x1, · · · , xn ∈ X

}
, (2.4)

and define 〈·, ·〉H0
: H×H → R such that for

f :=

m∑
i=1

αik(·, xi) ∈ H0, g :=

n∑
j=1

βjk(·, yj) ∈ H0, x1, · · · , xm, y1, · · · , yn ∈ X , (2.5)

〈f, g〉H0
=

m∑
i=1

n∑
j=1

αiβjk(xi, yj). (2.6)

You can verify that 〈·, ·〉H0
is an inner product on H0. Now let H be a completion of H′ with respect to 〈·, ·〉H0

,
then we have

〈k(·, x), k(·, y)〉H = 〈k(·, x), k(·, y)〉H0 = k(x, y) ∀x, y ∈ X . (2.7)

Hence ϕ : x 7→ k(·, x) defines a feature map of k.

2.3 Properties of Kernels
Proposition 2.6. The linear combination, limit and pointwise product of kernels are kernels.

• (Linearity) If k1, k2 are kernels, then ∀α, β ≥ 0, αk1 + βk2 is a kernel.
• (Limit) For any kernel series {kn}n∈N∗ , if limn→∞ kn = k uniformly, then k is a kernel.
• (Pointwise product) If k1, k2 are kernels, then k1 · k2 is a kernel.

Proof. We only show the third property. This is an immediate corollary of Schur’s product theorem. Fix a
positive integer n and x1, · · · , xn ∈ X , and denote matrices

Kl = {kl(xi, xj)}ni,j=1, l = 1, 2. (2.8)

It suffices to show the Hadamard product K = K1 ◦ K2 is positive semidefinite. For any a ∈ Rn, denote A to
be the diagonal matrix such that Aii = ai, then

a⊤Ka = trace
{
(AK1)

⊤K2A
}

= trace {K1AK2A}

= trace
{

K1/2
1 AK1/2

2 K1/2
2 AK1/2

1

}
=
∥∥∥K1/2

2 AK1/2
1

∥∥∥2
F
≥ 0, (2.9)

which concludes the proof.

Below are some immediate corollaries of Proposition 2.6.
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Corollary 2.7 (Polynomial kernels). Let x, y ∈ Rd for d ≥ 1, and let m be a positive integer and c ≥ 0 be a
non-negative real. Then

k(x, y) := (c+ 〈x, y〉)m (2.10)

is a valid kernel.

Corollary 2.8 (Taylor series). Assume the Taylor series

f(z) =

∞∑
n=0

anz
n, |z| < r, z ∈ R (2.11)

converges for some r ∈ (0,∞], with an ≥ 0 for all n ≥ 0. Define X to be the
√
r-ball in Rd. Then

k(x, y) = f(〈x, y〉) =
∞∑

n=0

an〈x, y〉n, x, y ∈ X (2.12)

defines a valid kernel.

Corollary 2.9 (Exponential). The exponential kernel on Rd is defined as

k(x, y) := exp(〈x, y〉), x, y ∈ Rd, (2.13)

and this is a valid kernel.

2.4 Exapmles of Kernels
Definition 2.10 (Gaussian RBF [radial basis function] kernels). Given σ > 0, for x, y ∈ Rd, the Gaussian
RBF kernel is defined as

k(x, y) = exp
(
− 1

2σ2
‖x − y‖2

)
. (2.14)

Now we are going to show that (2.14) is a valid kernel:

Proof. Let Z be a d-dimensional Gaussian vector such that Z ∼ N(0, σ−2Id). Then the characteristic function
of Z can be calculated:

φZ(λ) = E
[
exp

(
iλ⊤Z

)]
= exp

(
−λ

⊤λ

2σ2

)
, i =

√
−1. (2.15)
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Fix n ∈ N∗ and α1, · · · , αn ∈ R, x1, · · · , xn ∈ Rd, we have

n∑
s=1

n∑
t=1

αs exp
(
−‖xs − xt‖2

2σ2

)
αt =

n∑
s=1

n∑
t=1

αsE
[
exp(ix⊤

s Z − ix⊤
t Z)

]
αt

= E

[
n∑

s=1

n∑
t=1

αs exp(ix⊤
s Z) exp(−ix⊤

t Z)αt

]

= E

[
n∑

s=1

αs exp(ix⊤
s Z)

n∑
t=1

αt exp(−ix⊤
t Z)

]

= E

[
n∑

s=1

αs exp(ix⊤
s Z) ·

n∑
t=1

αtexp(ix⊤
t Z)

]

= E

∣∣∣∣∣
n∑

s=1

αs exp(ix⊤
s Z)

∣∣∣∣∣
2
 ≥ 0. (2.16)

Therefore the Gaussian RBF is positive definite, hence is a valid kernel.

Definition 2.11 (Laplacian kernels). Given α > 0, for x, y ∈ Rd, the Laplacian kernel is defined as

k(x, y) = exp
(
−α

n∑
i=1

|xi − yi|

)
. (2.17)

The proof of validity is analogous to Gaussian RBF, with the Gaussian random variable replaced by Cauchy
variable. Note the characteristic function of Cauchy distribution with location parameter 0 and scale parameter
α is µ̂(λ) = exp (−α|λ|).

Definition 2.12 (Matérn kernels). The form of the Matérn class of functions is given by

k(x, y) =
21−ν

Γ(ν)

(√
2ν|x− y|

ℓ

)ν

Kν

(√
2ν|x− y|

ℓ

)
, (2.18)

where ℓ > 0 is a length-scale parameter, ν > 0 is a smoothing parameter, and Kν is the modified Bessel
function of second type.

Remark. In equation (2.18), the parameter ν controls the smoothness of our kernel, and ℓ is the band width.
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3 Gaussian Process

3.1 Definition and properties
The Gaussian process can be seen as an extension of multivariate Gaussian distribution from finite-dimensional
case to infinite-dimensional case. It is a stochastic process or a random field (a collection of random variables
indexed by time or space) such that the joint distribution of every finite collection of those random variables
is Gaussian.

Definition 3.1 (Gaussian process). Given a probability space (Ω,F ,P) and an index set D, a random field
{Z(s) ∈ L2(Ω) : s ∈ D} is called a Gaussian process, if for every finite set of indices {s1, · · · , sn} ⊂ D, the
joint distribution of random variables Z(s1), · · · , Z(sn) is a multivariate Gaussian distribution.

The mean and covariance function of a Gaussian process is defined by

µ(s) := E[Z(s)], k(s, t) := Cov {Z(s), z(t)} , (3.1)

and they completely determine a Gaussian process GP (µ(·), k(·, ·)) .

Properties of Gaussian processes
• A Gaussian process can be seen as a distribution over real-valued functions {f : D → R}. Suppose that
f ∼ GP (µ(·), k(·, ·)) , then ∀n ∈ N∗, x1, · · · , xn ∈ D, the joint distribution of f(x1), · · · , f(xn) is given
by 

f(x1)
...

f(xn)

 ∼ N



µ(x1)

...
µ(xn)

 ,


k(x1, x1) · · · k(x1, xn)

... . . . ...
k(xn, x1) · · · k(xn, xn)


 . (3.2)

• The covariance function k is a kernel which is symmetric and positive definite. A wide range of kernels
can be selected as the covariance function, such as Gaussian RBF and Matérn kernels.

• If a Gaussian process Z(·) is (weakly) stationary, i.e. it has constant mean µ, and the covariance k(s, t)
depends on only the difference between locations s− t, then ∀n ∈ N∗, s1, · · · , sn ∈ D, and ∀h such that
s1 + h, · · · , sn + h ∈ D, then

(Z(s1), · · · , Z(sn))
d
= (Z(s1 + h), · · · , Z(sn + h)) . (3.3)

In a nutshell, weak stationarity implies strict stationarity in Gaussian processes.

Some Gaussian processes with zero mean and different covariance kernels are visualized below.

Figure 2: Sample paths of Gaussian processes with Gaussian RBF kernel as its covariance
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Figure 3: Sample paths of Gaussian processes with Laplacian RBF kernel as its covariance

3.2 Hierarchical model for geostatistical process
In practice, we often apply a hierarchical model to simulate spatial or geostatistical data. A hierarchical model
has two components: a process model, which sets up some latent variable with covariance structure, and a
data model, which generates observations from latent variables with measurement error.

Process Model. Suppose that m(·) ∈ Rp is a column vector of covariates related to the mean function.
Given regression coefficients β ∈ Rp and kernel k(·, ·), let

Z(·) ∼ GP
(
m(·)⊤β, k(·, ·)

)
. (3.4)

Data Model. Conditioning on process Z(·), the observation at location s ∈ D is

Y (s)|Z(·) ∼ N(Z(s), σ2), σ2 > 0; (3.5)

Equivalently, for n locations s1, · · · , sn,

Y (si) = Z(si) + ei, ei
i.i.d.∼ N(0, σ2), i = 1, · · · , n. (3.6)

Hence we can use an error process ϵ(·) to model our observational data:

Y (si) = m(si)
⊤β + ϵ(si),


ϵ(s1)

...
ϵ(sn)

 ∼ N(0,K + σ2In), (3.7)

where K = {k(si, sj)}ni,j=1.

3.3 Analytical Examples
3.3.1 Brownian Motion

Definition 3.2 (Brownian motion/Wiener process). Given a probability space (Ω,F ,R), a stochastic process
{W (t) : Ω → R, t ≥ 0} is a Brownian motion if it satisfies the following:

• P{W (0) = 0} = 1;

• The sample path of W (t) is continuous;
• W (t) has independent and stationary increments;
• W (t) ∼ N(0, σ2t), σ > 0.

12



For convenience of our discussion, we will consider standard Brownian motion in which σ2 = 1. Let W (·) be
a standard Brownian motion, let’s investigate the properties of W (·).

Proposition 3.3 (Mean and Covariance). E[W (t)] = 0, Cov{W (s),W (t)} = min(s, t).

Proof. The mean of W (t) is zero by definition, so we only consider the covariance. Without loss of generality,
suppose s < t (the case s = t is trivial). Note that W (t) has independent increments, we have

W (s) ⊥W (t)−W (s), E [W (s) (W (t)−W (s))] = 0. (3.8)

Hence

Cov{W (s),W (t)} = E[W (s)W (t)]

= E[W (s)2] + E[W (s)(W (t)−W (s))] = s, (3.9)

which concludes the proof.

Proposition 3.4 (Gaussianity). W (·) is a Gaussian process with zero mean and kernel k(s, t) := min(s, t).

Proof. It suffices to show that ∀n ≥ 1, 0 < t1 < · · · < tn, the joint distribution of corresponding variables
W = (W (t1), · · · ,W (tn))

⊤ is Gaussian. Denote Brownian increments

Z = (W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))
⊤
, (3.10)

By stationarity and independence of increments, we have Z ∼ N(0,D), where D = diag{t1, t2 − t1, · · · , tn −
tn−1}. Denote lower triangular matrix

L =
{
1{i≥j}

}n
i,j=1

=



1 0 · · · 0 0

1 1 · · · 0 0
...

... . . . ...
...

1 1 · · · 1 0

1 1 · · · 1 1

 , (3.11)

LZ ∼ N(0,LDL⊤) ⇒ W ∼ N(0,K), (3.12)

where K = {min(ti, tj)}ni,j=1 . Hence W is Gaussian, and W (t) is a Gaussian process.

3.3.2 Ornstein–Uhlenbeck process (O-U process)

Given a probability space (Ω,F ,R). A Ornstein–Uhlenbeck process {X(t) : Ω → R, t ≥ 0} is defined by the
following stochastic differential equation (SDE):

dX(t) = −θX(t)dt+ σdW (t), (3.13)

13



where θ > 0, σ > 0 and W (t) is a standard Brownian motion. Let’s derive the solution of the SDE above:

dX(t) + θX(t)dt = σdW (t),

d
(
X(t)eθt

)
= σeθtdW (t),

X(t)eθt −X(0) = σ

∫ t

0

eθsdW (s). (3.14)

So analytical form of X(t) is

X(t) = X(0)e−θt + σ

∫ t

0

e−θ(t−s)dW (s). (3.15)

Now we are going to investigate the properties of Ornstein-Uhlenbeck process.

Proposition 3.4 Let X(·) be an Ornstein–Uhlenbeck process defined above. Conditional on X(0), the mean
and variance of X(·) is given by

E[X(t)|X(0)] = X(0)e−θt,

Cov {X(s), X(t)|X(0)} =
σ2

2θ

(
eθ|t−s| + e−(s+t)

)
. (3.16)

Proof. The conditional expectation of X(t) is its deterministic part, since the stochastic part is an integral of
Brownian increments with zero mean. It remains to derive the covariace.

Cov {X(s), X(t)|X(0)} = σ2e−(s+t)E
[∫ s

0

eθudW (u)

∫ t

0

eθudW (u)

]
. (3.17)

By the independence of Brownian increments and the Itô isometry, we have

E
[∫ s

0

eθudW (u)

∫ t

0

eθudW (u)

]
= E

(∫ min(s,t)

0

eθudW (u)

)2


=

∫ min(s,t)

0

e2θudu =
1

2θ

(
e2θ min(s,t) − 1

)
. (3.18)

Therefore

Cov {X(s), X(t)|X(0)} =
σ2

2θ

(
e−θ|t−s| − e−θ(t+s)

)
, (3.19)

and we complete the proof.

Proposition 3.5 (Gaussianity). We impose a Gaussian distribution N(0, σ
2

2θ ) on X(0) which is independent
of W (·), then

E[X(t)] = 0, Cov {X(s), X(t)} =
σ2

2θ
eθ|t−s|, (3.20)

which implies that an (unconditioned) Ornstein–Uhlenbeck process is a stationary Gaussian process with zero
mean and Laplacian kernel.

Proof. Since X(0) is independent of W (·), we only need to add the term e−θ(s+t)Var(Z0) to the conditional
covariance. To show that the Ornstein–Uhlenbeck process is a Gaussian process, it remains to consider the
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stochastic part of X(t) :∫ t

0

e−θ(t−s)dW (s) = lim
n→∞

∑
[ti−1,ti]∈πn

e−θ(t−si−1) (W (si)−W (si−1)) , (3.21)

where {πn} is a sequence of partitions of [0, t] with the length of maximum sub-interval going to zero. Since
all Brownian increments W (si)−W (si−1) are Gaussian, the linear combination of finite Brownian increments
is Gaussian. Furthermore, the Itô integral as the L2-limit of a sequence of Gaussian variables is still Gaussian.
Hence X(·) is a Gaussian process.

Remark. A more general form of Ornstein–Uhlenbeck processes has an additional drift term µ:

dX(t) = θ(µ−X(t))dt+ σdW (t). (3.22)

The drift term does not change the form of covariance, but the conditional mean need to be modified:

E[X(t)|X(0)] = X(0)e−θt + µ(1− e−θt). (3.23)
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4 Kriging
Nomenclature. Kriging is a method of interpolation based on Gaussian process, and is also known as Gaus-
sian process regression (GPR). Georges Matheron established the theoretic basis of this spatial interpolation
technique in 1960, and named it kriging (French: krigeage) to honor the pioneering work of Danie G. Krige in
geostatistics.

Given a random field {Z(s) : s ∈ D} with its observation at location s1, · · · , sn, the goal of kriging is to
predict Z(·) at an arbitrary location s ∈ D.

4.1 Simple Kriging
In simple kriging, the mean of spatial field is known. Without loss of generality, set it to be zero. Let
f : X → R be the field of interest and f ∼ GP (0, k(·, ·)) , we will interpolate the value of f at an arbitrary
location using its finite observations. Please note that f is not a random field or a Gaussian process itself
since it is deterministic. Instead, f is a realization of the aforementioned Gaussian process. In the context of
Bayesian regression, GP(0, k(·, ·)) is the prior distribution of f .

We first introduce some notations. Given locations x1, · · · , xN ∈ X , we use K to denote the covariance
matrix of (f(x1), · · · , f(xN ))

⊤
, i.e., K = {k(xi, xj)}Ni,j=1 ∈ Rn×n. We define k(·) : X → RN to be such that

k(x) = (k(x, x1), · · · , k(x, xN ))
⊤
. (4.1)

4.1.1 Noise-free observations

We suppose that our observations are faithful, that is, the observation at location xi is the true value of f(xi).
If we have observations at N distinct locations x1, · · · , xN ∈ X , then our dataset is {(xi, f(xi))}Ni=1 . Denote
f = (f(x1), · · · , f(xN ))

⊤
, the posterior of f at any location is given by the following theorem.

Theorem 4.1 (Posterior of f conditioning on noise-free observations). Under the notations above plus K is
nonsingular, the posterior of f at an arbitrary location x ∈ X is Gaussian. The mean and variance is given by

E [f(x)|f ] = k(x)⊤K−1f, (4.2)
Var {f(x)|f } = k(x, x)− k(x)⊤K−1k(x). (4.3)

Moreover, ∀x, x′ ∈ X ,

Cov {f(x), f(x′)|f } = k(x, x′)− k(x)⊤K−1k(x′). (4.4)

Proof. ∀x, x′ ∈ X , the joint distribution of (f(x), f(x′), f(x1), · · · , f(xn))⊤ can be derived:f(x)

f(x′)

f

 ∼ N

0,

k(x, x) k(x, x′) k(x)⊤

k(x′, x) k(x′, x′) k(x′)⊤

k(x) k(x′) K


 . (4.5)

Then conditional on f, the distribution of (f(x), f(x′))⊤ is still Gaussian:(
f(x)

f(x′)

)∣∣∣∣∣ f ∼ N

{(
k(x)⊤

k(x′)⊤

)
K−1f,

(
k(x, x) k(x, x′)

k(x′, x) k(x′, x′)

)
−

(
k(x)⊤

k(x′)⊤

)
K−1 (k(x), k(x′))

}
. (4.6)

Thus we complete the proof.
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Remark. (I) When x is some xi ∈ {x1, · · · , xN}, the posterior of f(xi) reduces to the Dirac measure centered
on fi. To see this, note that

ei = K−1Kei = K−1k(xi), (4.7)

then

E [f(xi)|f ] = eif = f(xi), Var {f(x)|f } = k(xi, xi)− k(xi)⊤ei = 0. (4.8)

(II) Define µ⊥(x) = f⊤K−1k(x), k⊥(x, x′) = k(x, x′)−k(x)⊤K−1k(x′), the posterior of f is a Gaussian process:

f | f ∼ GP
(
µ⊥(·), k⊥(·, ·)

)
. (4.9)

To show this you need to verify that k⊥(·, ·) is a valid kernel, i.e., k⊥(·, ·) is positive definite. You may use
Schur’s complement to derive the form of k⊥(·, ·).

4.1.2 Observations with additive noise

In a real scenario, the true process f is not accessible due to random fluctuation or measurement error. Like
in hierarchical model, assume that there exists additive noise in our observational data:

yi = f(xi) + εi, εi
i.i.d.∼ N(0, σ2), (4.10)

then the posterior of f at any location need to be modified.

Theorem 4.2 (Posterior of f conditioning on observations with additive noise). Under the notations above
with observations Y = (y1, · · · , yN )⊤, the posterior of f at an arbitrary location x ∈ X is Gaussian. The mean
and variance is given by

E [f(x) |Y ] = k(x)⊤
(
K + σ2IN

)−1
Y, (4.11)

Var {f(x) |Y } = k(x, x)− k(x)⊤
(
K + σ2IN

)−1 k(x). (4.12)

Moreover, ∀x, x′ ∈ X ,

Cov {f(x), f(x′) |Y } = k(x, x′)− k(x)⊤
(
K + σ2IN

)−1 k(x′). (4.13)

Proof. Analogous to Theorem 1, use the joint distribution of (f(x), f(x′), Y ) to derive the conditional (poste-
rior) distribution.

Remark. The posterior of f is a Gaussian process with the mean and covariance function given by Theorem
4.2. A point estimator is the expectation:

f̂(·) = Y ⊤(K + σ2IN )−1k(·), (4.14)

which is a linear combination of {k(·, xi)}Ni=1.

4.1.3 Overlapping observations

In previous discussions, locations x1, · · · , xN are supposed to be distinct. In other words, we have only
one observation for a unique location. Now we suppose that we have N observations at n unique locations
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x̄1, · · · , x̄n with n < N. At each location x̄j , we have aj observations yj,1, · · · , yj,aj , with j = 1, · · · , n, a1 +
· · ·+ an = N and max1≤j≤n aj > 1.

We first introduce some notations.

(x1, · · · , xN ) = (x̄1, · · · , x̄1︸ ︷︷ ︸
a1

, x̄2, · · · , x̄2︸ ︷︷ ︸
a2

, · · · , x̄n, · · · , x̄n︸ ︷︷ ︸
an

) ∈ XN , (4.15)

Y = (y1,1, · · · , y1,a1
, y2,1, · · · , y2,a2

, · · · , yn,1, · · · , yn,an
) ∈ RN , (4.16)

Ȳ = (ȳ1, · · · , ȳn) ∈ Rn, ȳj =
1

aj

aj∑
l=1

yj,aj . (4.17)

Moreover, denote

k̄(x) = (k(x, x̄1), · · · , k(x, x̄n))⊤ ∈ Rn, K̄ = {k(x̄i, x̄j)}ni,j=1 ∈ Rn×n. (4.18)

Let U ∈ RN×n be a block diagonal matrix such that U = diag{1a1
, · · · , 1an

}, where 1aj
is an aj-dimensional

all-one vector, and let A = diag{a1, · · · , an}.

Proposition 4.3. With the notations above, we have

Ȳ = A−1U⊤Y, k̄(x) = A−1U⊤k(x), k(x) = Uk̄(x), K = UK̄U⊤. (4.19)

These equalities can be verified by direct calculation.

Proposition 4.4. Suppose σ2 > 0, then U⊤ (σ2IN + K
)−1 U =

(
σ2A−1 + K̄

)−1
.

Proof. Recall the Sherman-Morrison-Woodbury formula:

(A + UCV)−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1 VA−1, (4.20)

we have (
σ2IN + K

)−1
=
(
σ2IN + UK̄U⊤)−1

= σ−2IN − σ−4U
(
K̄−1 + σ−2U⊤U

)−1 U⊤. (4.21)

Note that U⊤U = A, then

U⊤ (σ2IN + K
)−1 U = σ−2A − σ−4A

(
K̄−1 + σ−2A

)−1 A. (4.22)

Using the Sherman-Morrison-Woodbury formula, we have

σ−2A + σ−4A
(
K̄−1 + σ−2A

)−1 A =
(
σ2A−1 + K̄

)−1
, (4.23)

which concludes the proof.

Theorem 4.5 (Posterior of f conditioning on overlapping observations). Under the notations above, the
posterior of f at an arbitrary location x ∈ X is Gaussian. The mean and variance is given by

E
[
f(x) | Ȳ

]
= k̄(x)⊤

(
K̄ + σ2A−1

)−1
Ȳ , (4.24)

Var
{
f(x) | Ȳ

}
= k(x, x)− k̄(x)⊤

(
K̄ + σ2A−1

)−1 k̄(x). (4.25)
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Moreover, ∀x, x′ ∈ X ,

Cov
{
f(x), f(x′) | Ȳ

}
= k(x, x′)− k̄(x)⊤

(
K̄ + σ2A−1

)−1 k̄(x′). (4.26)

Proof. Plug in Proposition 1 and 2 to the posterior of f given in Theorem 2.

4.2 Universal Kriging
In universal kriging, the mean of spatial field is unknown. To apply regression, we choose a group of basis
functions {m1(·), · · · ,mp(·)} from L2(X ) and denote m(·) =

(
m1(·), · · · ,mp(·)

)⊤
: X → Rp. Assume that

f ∼ GP
(
m(·)⊤β, k(·, ·)

)
, where β ∈ Rp is unknown, and that our observations Y (x)| f ∼ N(f(x), σ2). Note

these assumptions implies the independence of {Y (x)|x ∈ X} given f. Then, we can define the error process

ϵ(x) := Y (x)− m(x)⊤β, (4.27)

which implies the following distribution of observations at x1, · · · , xn:

ϵ(x1:n) ∼ N(0,Σ), Σ = K + σ2In, K = {k(xi, xj)}ni,j=1. (4.28)

Furthermore, the joint distribution of our observations can be induced:

Y := (Y (x1), · · · , Y (xn))
⊤ ∼ N (Mβ,Σ) , M = (m(x1), · · · ,m(xn))

⊤ ∈ Rn×p. (4.29)

Now we derive the best unbiased linear prediction (BLUP) of Y (x) for arbitrary x ∈ X . Generally, we have
the following result.

Theorem 4.6 (Universal kriging). Suppose the covariance matrix of Y = (Y (x1), · · · , Y (xn)) is nonsingular,
and M = (m(x1), · · · ,m(xn))

⊤ is of full column rank. Then for x ∈ X , the BLUP of Y (x) is given by

Ŷ (x) = m(x)⊤β̂ + k(x)⊤Σ−1
(

Y − Mβ̂
)
, (4.30)

where β̂ =
(
M⊤Σ−1M

)−1 M⊤Σ−1Y.

Proof. The derivation of BLUP is straight forward but tedious. We first express the prediction of Y (x) as a
linear combination:

Ŷ (x) = λ0(x) +

n∑
i=1

λi(x)Y (xi) = λ0(x) + λ(x)⊤Y. (4.31)

The unbiasedness of BLUP implies that

m(x)⊤β = E
[
Ŷ (x)

]
= λ0(x) + λ(x)⊤Mβ ∀β ∈ Rp. (4.32)

Set β = 0, we have λ0(x) = 0. To solve the BLUP, which has the minimum variance across all predictions of
the form above, one need to consider the following optimization problem:

min
λ(x)∈Rp

E
[(
Y (x)− λ(x)⊤Y

)2] subjected to M⊤λ(x) = m(x). (4.33)
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The mean square error of BLUP is

E
[(
Y (x)− λ(x)⊤Y

)2]
= k(x, x)− 2k(x)⊤λ(x) + λ(x)⊤Σλ(x), (4.34)

then we can construct the Lagrangian function as:

L(λ(x), ν(x)) = λ(x)⊤Σλ(x)− 2k(x)⊤λ(x) + 2ν(x)⊤
(
m(x)− M⊤λ(x)

)
. (4.35)

Apply Karush-Kuhn-Tucker conditions, the optimal solutions of primal and dual problems satisfy: ∂L
∂λ∗(x) = 2Σλ∗(x)− 2k(x)− 2Mν∗(x) = 0

∂L
∂ν∗(x) = M⊤λ∗(x)− m(x) = 0,

(4.36)

and it can be solved thatν∗(x) =
(
M⊤Σ−1M

)−1 (m(x)− M⊤Σ−1k(x)
)

λ∗(x) = Σ−1k(x) + Σ−1M
(
M⊤Σ−1M

)−1 (m(x)− M⊤Σ−1k(x)
)
.

(4.37)

Let β̂ =
(
M⊤Σ−1M

)−1 M⊤Σ−1Y, then

Ŷ (x) = λ∗(x)⊤Y = m(x)⊤β̂ + k(x)⊤Σ−1
(

Y − Mβ̂
)
. (4.38)

Thus we complete the proof.

Remark. The BLUP satisfies the following properties:
• Eβ̂ = β, Cov(β̂) =

(
M⊤Σ−1M

)−1
.

• For any x, x′ ∈ X ,

EŶ (x) = m(x)⊤β, (4.39)

Cov
{
Ŷ (x), Ŷ (x′)

}
=
(
m(x)⊤ − k(x)⊤Σ−1M

) (
M⊤Σ−1M

)−1 (m(x)− M⊤Σ−1k(x)
)
. (4.40)

4.3 Ordinary Kriging
In ordinary kriging, the spatial field is supposed to have a constant mean, which is unknown. Ordinary kriging
can be handled as a special case of universal kriging where the regressor m(·) ≡ 1 is one-dimensional.

Suppose the mean of our spatial field of interest is β. Inherited from the discussion in universal kriging,
the BLUP of process Y (·) at an arbitrary location x ∈ X is given by

Ŷ (x) = β̂ + k(x)⊤Σ−1(Y − β1n), where β̂ =
1⊤nΣ−1Y
1⊤nΣ−11n

. (4.41)
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5 Reproducing Kernel Hilbert Space

5.1 Definition and Properties
Definition 5.1 (Reproducing kernel Hilbert space, RKHS). Let X be a non-empty set and H be a Hilbert
space of real-valued functions defined on X and equipped with inner product 〈·, ·〉H. A symmetric and positive
definite function k : X × X → R is called a reproducing kernel, and H is a reproducing kernel Hilbert space,
if k satisfies the following two conditions:

• ∀x ∈ X , k(·, x) ∈ H, and
• (Reproducing property) ∀x ∈ X , ∀f ∈ H, f(x) = 〈f, k(·, x)〉H .

By definition, for any x, y ∈ X , it holds k(x, y) = 〈k(·, x), k(·, y)〉H.

Proposition 5.2 Define δx to be the evaluation functional at x, i.e.,

f(x) = δxf =

∫
X
δx(dt)f(t), (5.2)

then ∀x ∈ X , δx is a bounded operator on H, i.e., there exists a corresponding λx ≥ 0 such that

|f(x)| = |δxf | ≤ λx‖f‖H. (5.3)

Proof. Given a Hilbert space H with reproducing kernel k(·, ·), it holds

|δx[f ]| = |f(x)| = |〈f, k(·, x)〉H| ≤ ‖k(·, x)‖H ‖f‖H =
√
k(x, x) · ‖f‖H . (5.4)

Hence δx : H → R is a bounded operator with λx =
√
k(x, x).

Remark. An equivalent definition of RKHS is stated as follows: H is a RKHS if the evaluation functional
δx is bounded for all x ∈ X . We have proven that the first definition implies the second. The proof of the
other direction uses the Riesz representation theorem.

5.2 Construction of RKHS
5.2.1 From Pre-Hilbert Space to its Completion: Moore-Aronszajn Theorem

Theorem 5.3 (Moore-Aronszajn). RKHS and positive definite kernel are one-to-one correspondent, i.e., for
each positive definite kernel k(·, ·), there exists a unique RKHS with k(·, ·) as its reproducing kernel.

Proof. Let X be a non-empty set and k(·, ·) be a positive definite kernel on X × X . Define

H0 = span {k(·, x) : x ∈ X} =

{
n∑

i=1

cik(·, xi) : n ∈ N, c1, · · · , cn ∈ R, x1, · · · , xn ∈ X

}
, (5.5)

then H0 is a pre-Hilbert space with inner product

〈f, g〉H0
=

m∑
i=1

n∑
j=1

aibjk(xi, yj), (5.6)

where f, g ∈ H0 have representations

f =

m∑
i=1

aik(·, xi), g =

n∑
j=1

bjk(·, yj), x1, · · · , xm, y1, · · · , yn ∈ X . (5.7)
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We need to show that 〈·, ·〉H0 is indeed an inner product. It is easy to verify that 〈·, ·〉H0 is a semi-inner
product. Then it remains to show that 〈f, f〉H0

= 0 only if f = 0. Set ‖f‖H0
= 0, and fix g ∈ H0. Then

∀t ∈ R,

0 ≤ ‖f − tg‖2H0
= −2t〈f, g〉H0

+ t2〈g, g〉H0
. (5.8)

If |〈f, g〉H0 | > 0, then set t = ⟨f,g⟩H0

⟨g,g⟩H0
yields a contradiction of (5.8). Since g ∈ H0 is arbitrarily chosen, we

have 〈f, g〉H0
= 0 ∀g ∈ H0. Then for every x ∈ X , f(x) = 〈f, k(·, x)〉H0

= 0. Hence f = 0.

Let H be the completion of H0 under ‖ · ‖H0
= 〈·, ·〉H0

, so H contains all equivalence classes of Cauchy
sequences in H0. Then H has all functions f ∈ RX of the form

f =

∞∑
i=1

cik(·, xi), and
∥∥∥∥∥

n+m∑
i=n+1

cik(·, xi)

∥∥∥∥∥
H0

→ 0 as n,m→ ∞. (5.9)

We claim that H is a RKHS with k(·, ·) as its reproducing kernel. To show this it suffices to check the
reproducing property: ∀x ∈ X ,

〈f, k(·, x)〉H =

〈 ∞∑
i=1

cik(·, xi), k(·, x)

〉
H

=

∞∑
i=1

ci 〈k(·, xi), k(·, x)〉H0
=

∞∑
i=1

cik(x, xi) = f(x). (5.10)

Now we prove that H is unique. Suppose that H̃ is another RKHS with k(·, ·) as its reproducing kernel.
Recall the properties of RKHS, H0 ⊂ H̃, and 〈·, ·〉H = 〈·, ·〉H̃ on H0. Since H̃ is complete, it contains the
completion of H0, i.e. H ⊆ H̃. it remains to prove that H ⊇ H̃. Let H̃ = H ⊕ H⊥, ∀f ∈ H̃, it can be
decomposed as f = f∗ + f⊥, where f∗ ∈ H, f⊥ ∈ H⊥, then ∀x ∈ X ,

f(x) = 〈f, k(·, x)〉H̃ = 〈f∗, k(·, x)〉H̃ + 〈f⊥, k(·, x)〉H̃ = 〈f∗, k(·, x)〉H̃ = 〈f∗, k(·, x)〉H = f∗(x), (5.11)

which implies f⊥ = 0 on X . Hence f = f∗ ∈ H, which concludes the proof.

5.2.2 Eigenanalysis: Mercer’s Theorem

Assumption 5.4 (Regular conditions). In the following discussion, we fix the domain X as a compact set,
and we make the following five assumptions of our kernel function k : X × X → R.

• Continuous: k is continuous on X × X ;
• Symmetric: ∀x, y ∈ X , k(x, y) = k(y, x);
• Bounded: supx∈X |k(x, x)| <∞;
• Square integrable:

∫
X
∫
X |k(x, y)|2dxdy <∞;

• Positive-definite: ∀f ∈ L2(X ),
∫
X
∫
X f(x)k(x, y)f(y)dxdy ≥ 0.

Definition 5.5 (Fredholm integral operator). Fix a kernel k : X × X → R on a compact set X ⊂ Rd, the
operator Tk : L2(X ) → X is defined as

(Tkf)(x) :=

∫
X
k(x, y)f(y)dy, f ∈ L2(X ). (5.12)

Tk is said to be positive definite if ∀f ∈ L2(X ), it holds 〈f, Tkf〉L2(X ) ≥ 0, that is,∫
X

∫
X
f(x)k(x, y)f(y)dxdy ≥ 0. (5.13)
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Proposition 5.6 The integral operator given by the definition above have following properties:
• (Linear) Tk(αf + βg) = αTkf + βTkg, α, β ∈ R, f, g ∈ L2(X );

• (Bounded) By Cauchy-Schwarz inequality,

|Tkf(x)|2 ≤
(∫

X
k(x, y)2dy

)(∫
X
f(y)2dy

)
, (5.14)

furthermore,

‖Tkf‖L2(X ) ≤ Ck‖f‖2L2(X ), Ck =

(∫
X

∫
X
k(x, y)2dxdy

)1/2

. (5.15)

• (Symmetric/Self-adjoint).

〈Tkf, g〉L2(X ) = 〈f, Tkg〉L2(X ) , f, g ∈ L2(X ). (5.16)

• (Eigendecomposition) In functional analysis it is shown that Tk is a self-adjoint compact operator. Riesz-
Schauder theorem gives the eigendecomposition of compact and self-adjoint operator Tk:

(i) Tk has at most countably many eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 such that limn→∞ λn = 0;

(ii) The corresponding eigenfunctions {ϕn}, satisfying Tkϕn = λnϕn, form an orthogonal basis in L2(X ),

i.e.
∫
X ϕi(x)ϕj(x)dx = δij , i, j ∈ N∗.

Proposition 5.7. For every f ∈ L2(X ), it has expansion

f(x) =

∞∑
n=1

〈f, ϕn〉L2(X ) ϕn(x), (5.17)

and the convergence holds in L2 sense.

Proof. Since {ϕn} form an orthogonal basis in L2(X ), f has some representation of the form

f =

∞∑
n=1

fnϕn, {fn} ⊂ R. (5.18)

By orthogonality, it can be calculated that

fn = 〈f, ϕn〉L2(X ) =

∫
X
f(x)ϕn(x)dx, ‖f‖2L2(X ) =

∞∑
n=1

〈f, ϕn〉2L2(X ) =

∞∑
n=1

f2n <∞, (5.19)

then we have ∥∥∥∥∥∥f −
n∑

j=1

fjϕj

∥∥∥∥∥∥
2

L2(X )

= ‖f‖2L2(X ) − 2

n∑
j=1

fj 〈f, ϕj〉L2(X ) +

∥∥∥∥∥∥
n∑

j=1

fjϕj

∥∥∥∥∥∥
2

L2(X )

= ‖f‖2L2(X ) −
n∑

j=1

f2j
n→∞−→ 0. (5.20)

Thus we conclude the proof.
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Theorem 5.8 (Mercer). Under regular conditions, k(·, ·) admits the following spectral representation:

k(x, y) =

∞∑
l=1

λlϕl(x)ϕl(y), (5.21)

Proof. By definition of the integral operator,

〈k(·, y), ϕl〉L2(X ) = (Tkϕl)(y) = λlϕl(y). (5.22)

Proposition 5.7 implies that

k(x, y) =

∞∑
l=1

〈k(·, y), ϕl〉L2(X ) ϕl(x) =

∞∑
l=1

λlϕl(x)ϕl(y). (5.23)

Thus we conclude the proof.

Remark. Further study shows that this converge is absolute and uniform, i.e.,

lim
n→∞

sup
x,y∈X

∣∣∣∣∣k(x, y)−
n∑

l=1

λlϕl(x)ϕl(y)

∣∣∣∣∣ = 0. (5.24)

Corollary 5.9 (Trace of Functions). Under regular conditions, the trace of kernel k can be calculated by∫
X
k(x, x)dx =

∞∑
l=1

λl,

∫
X

∫
X
k(x, y)2dxdy =

∫
X

(∫
X
k(y, x)k(x, y)dx

)
dy =

∞∑
l=1

λ2l . (5.25)

More generally, extend the matrix multiplication to functions:

k(1)(x, y) = k(x, y), k(n)(x, y) =

∫
X
k(n−1)(x, z)k(z, y)dz, n ≥ 2, (5.26)

then we have

k(n)(x, y) =

∞∑
l=1

λnϕl(x)ϕl(y),

∫
X
k(n)(x, x)dx =

∞∑
l=1

λnl , n ≥ 1. (5.27)

Theorem 5.10 (An alternative construction of RKHS). Let H to be a Hilbert space defined as

H =

{
f =

∞∑
l=1

flϕl : ‖f‖2H =

∞∑
l=1

f2l
λl

<∞, {fl} ⊂ R

}
, (5.28)

with the inner product defined as

〈f, g〉H =

∞∑
l=1

flgl
λl

, where f, g ∈ H have representations f =

∞∑
l=1

flϕl, g =

∞∑
l=1

glϕl, (5.29)

then H is the RKHS associated with reproducing kernel k(·, ·).

Proof. Recall that k(·, x) =
∑

l∈N∗ λlϕl(·)ϕl(x),

‖k(·, x)‖2H =

∞∑
l=1

λ2l ϕl(x)
2

λl
=

∞∑
l=1

λlϕl(x)
2 = k(x, x) ≤ sup

x∈X
k(x, x) <∞, (5.30)
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hence k(·, x) ∈ H, ∀x ∈ X .

Now we prove the reproducing property. For an arbitrary f =
∑

l∈N∗ flϕl ∈ H,

〈f(·), k(·, x)〉H =

〈 ∞∑
l=1

flϕl(·),
∞∑
l=1

λlϕl(x)ϕl(·)

〉
H

=

∞∑
l=1

flλlϕl(x)

λl
=

∞∑
l=1

flϕl(x) = f(x). (5.31)

Therefore H is a reproducing kernel Hilbert space with reproducing kernel k(·, ·).

Remarks. (I) To see into the structure of the inner product defined above, let’s derive it under the original
definition of RKHS. Using the reproducing properties, ∀l ∈ N∗,

ϕl(x) =

〈
ϕl(·),

∞∑
l′=1

λl′ϕl′(·)ϕl′(x)

〉
=

∞∑
l′=1

λl′ϕl′(x)〈ϕl(·), ϕl′(·)〉H, ∀x ∈ X , (5.32)

which implies

〈ϕl(·), ϕl′(·)〉H =
δll′

λl′
=
δll′

λl
. (5.33)

It is seen that the orthogonality of eigenfunctions is preserved in RKHS.

(II) The RKHS norm and L2-norm are not equivalent. Note that limn→∞ λn = 0, we have

sup
f∈H

‖f‖H
‖f‖L2(X )

≥ lim
n→∞

‖ϕn‖H
‖ϕn‖L2(X )

= ∞. (5.34)

One interpretation of this non-equivalence is that the RKHS norm measures not only the magnitude of a
function but also its smoothness.
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6 Kernel Ridge Regression

6.1 Nonparametric Regression
6.1.1 Penalized least squares

Suppose that we have a dataset {(xi, yi)}ni=1 which contains n observations of a covariate x ∈ X and a response
y ∈ R. A nonparametric regression model assumes that

yi = f(xi) + εi, i = 1, · · · , n, (6.1)

where {εi}ni=1 are iid error terms with mean zero.
Assume that H is a RKHS with symmetric and positive definite k(·, ·) : X × X → R as its reproducing

kernel, and f ∈ H. We estimate the optimal f∗ as the solution to the penalized least squares:

f∗ ∈ argmin
f∈H

1

n

n∑
i=1

(yi − f(xi))
2
+ J(f), (6.2)

where J : H → R is some differentiable regularization function. The first term (mean square error) measures
the goodness-of-fit, and the second penalizes on the complexity of fitted function. Note that H is usually
infinite dimensional, we can find some f which perfectly matches each data point (xi, yi). However, such f

often suffers from bad generalizability, which is the reason that we add a penalty term to the objective function,
like in ridge regression.

6.1.2 Generalized loss

We continue to discuss the nonparametric regression model given by (6.1). Suppose that f is realizable in
a RKHS H with reproducing kernel k(·, ·). In the RKHS framework, let the regularization term be R(f) =

g(‖f‖H), where g : [0,∞) → R is some strictly monotonically increasing function.
In penalized least squares, we use mean square error as the criterion to evaluate the goodness-of-fit. This

can be relaxed by defining an arbitrary loss function L : (X × R2)n → R ∪ {∞}. Furthermore, we define the
optimal f∗ as the minimizer of the regularized empirical risk functional:

f∗ ∈ argmin
f∈H

L {(x1, y1, f(x1)) , · · · , (xn, yn, f(xn))}+ g(‖f‖H). (6.3)

Here L can be the mean square error:

L {(x1, y1, f(x1)) , · · · , (xn, yn, f(xn))} =
1

n

n∑
i=1

{yi − f(xi)}2, (6.4)

Another example of the loss function is the hinge loss:

L {(x1, y1, f(x1)) , · · · , (xn, yn, f(xn))} =
1

n

n∑
i=1

max{1− yif(xi), 0}, (6.5)

which is commonly used in support vector machine (SVM).
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Recall the Mercer’s theorem, if k(·, ·) has the expansion k(x, y) =
∑

l∈N∗ λlϕl(x)ϕl(y), then f has the
following representation

f(·) =
∞∑
l=1

flϕl(·), fl〈f, ϕl〉H (6.6)

then we rewrite the minimization problem as

min
{fl}l≥1

L

{(
x1, y1,

∞∑
l=1

flϕ(x1)

)
, · · · ,

(
xn, yn,

∞∑
l=1

flϕ(xn)

)}
+ g

√√√√ ∞∑
l=1

f2l
λl

 . (6.7)

As we can see, the optimization problem has an infinite dimensional form, which can be very knotty. The
solution is given by the following representer theorem.

6.2 Representer Theorem
Theorem 6.1 (Schölkopf-Herbrich-Smola, [4]). Suppose we are given a nonempty set X , an RKHS H with
reproducing kernel k : X × X → R, a finite training dataset {(xi, yi)}ni=1 ⊂ X × R, a strictly monotonically
increasing function g : [0,∞) → R and an arbitrary loss function L : (X × R2)n → R ∪ {∞}. Then any
minimizer f∗ ∈ H of the regularized empirical risk functional

R[f ] := L {(x1, y1, f(x1)) , · · · , (xn, yn, f(xn))}+ g(‖f‖H) (6.8)

admits a representation of the form

f∗(·) =
n∑

i=1

αik(·, xi), α1, · · · , αn ∈ R. (6.9)

Proof. Define the subspace of H:

H1 = span {k(·, xi) : i = 1, · · · , n} :=

{
n∑

i=1

αik(·, xi) : α1, · · · , αn ∈ R

}
, (6.10)

and let H = H1 ⊕H2. Then, any f ∈ H can be decomposed to two orthogonal components:

f = f̂ + δ, f̂ ∈ H1, δ ∈ H2. (6.11)

Since δ is orthogonal to H1, and using the reproducing property of H, we have

δ(xi) = 〈δ(·), k(·, xi)〉H = 0, i = 1, · · · , n. (6.12)

Hence f(xi) = f̂(xi) for i = 1, · · · , n, and the first term of R does not change between f and f̂ .

For the second term, it implies by orthogonality that

g(‖f‖H) = g

(√
‖f̂‖2H + ‖δ‖2H

)
≥ g

(
‖f̂‖H

)
. (6.13)

Hence R[f ] ≥ R[f̂ ], and the equality holds if and only if δ = 0. Suppose f∗ is a minimizer of R with expansion
f∗ = f̂∗+ δ∗. Then we simultaneously have R[f∗] ≤ R[f̂∗] (because f∗ is a minimizer) and R[f∗] ≥ R[f̂∗] (by
the conclusion above). Hence R[f∗] = R[f̂∗], and f∗ = f̂∗ ∈ H1, which concludes the proof.
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Remark. The representer theorem finds a finite dimensional subspace H1 which contains the optimal solution
in an infinite dimensional space H. The solution thereupon can be represented by a finite linear combination
of kernel products evaluated on data points in the training set.

6.3 Equivalence between KRR and Kriging
Both kernel ridge regression (KRR) and kriging are nonparametric regression models which are applied in
spatial interpolation. KRR finds an optimal solution through minimizing some loss function, analogous to
other frequentist methods such as maximum likelihood estimation. Kriging, as a Bayesian approach, imposes
a prior distribution (which is a Gaussian process) on the spatial field of interest, and then derives the posterior.

In this part we will reveal the intrinsic connection between the two methods (Frequentist & Bayesian).

Setting of Kriging. Given n observations {(xi, yi)}ni=1 ⊂ X ×R, consider a nonparametric regression model

yi = f(xi) + εi, εi
i.i.d.∼ N(0, σ2) (6.14)

with prior f ∼ GP (0, k(·, ·)) . The posterior of f is a Gaussian process, with

E[f(x)|Y] = k(x)⊤(K + σ2I)−1Y,
Cov{f(x), f(x′)|Y} = k(x, x′)− k(x)⊤(K + σ2In)−1k(x′), (6.15)

where k(x) = (k(x, x1), · · · , k(x, xn))⊤ , K = {k(xi, xj)}ni,j=1, Y = (y1, · · · , yn)⊤.

Setting of KRR. Given n observations {(xi, yi)}ni=1 ⊂ X ×R, and suppose f is realizable in RKHS H with
RK k(·, ·). Choose MSE loss as the loss function, and consider the following kernel ridge regression model:

min
f∈H

n∑
i=1

{yi − f(xi)}2 + λ‖f‖2H. (6.16)

where λ > 0 is a hyperparameter. According to the representer theorem, the solution has a finite dimensional
representation

f(·) =
n∑

i=1

αik(·, xi), (6.17)

then the optimization problem can be reformulated as

min
α∈Rn

(Y − Kααα)⊤(Y − Kααα) + λααα⊤Kααα, (6.18)

where ααα = (α1, · · · , αn)
⊤, K = {k(xi, xj)}ni,j=1, Y = (y1, · · · , yn)⊤. When K is nonsingular, the minimizer is

unique:

α̂αα = (K + λIn)−1Y, (6.19)

f̂(x) =

n∑
i=1

α̂ik(x, xi) = Y⊤(K + λIn)−1k(x), (6.20)

where k(x) = (k(x, x1), · · · , k(x, xn))⊤ . As we can see, the point estimate f̂ is equivalent to the posterior mean
of f in Kriging when we replace λ with σ2.
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7 Karhunen-Loève Expansion

7.1 Kosambi-Karhunen-Loève Theorem
Let X be a compact space, and let (Ω,F ,P) be a probability space. Let {X(s) ∈ L2(Ω) : s ∈ X} be a second
order process over (Ω,F ,P) with zero mean and continuous covariance function k(·, ·), where k(·, ·) is a Mercer’s
kernel, i.e. there exists {λl}l∈N such that λ1 ≥ λ2 ≥ · · · ≥ 0 and an orthogonal basis {ϕl}l∈N∗ ⊂ L2(Ω),

k(s, t) =

∞∑
l=1

λlϕl(s)ϕl(t), ∀s, t ∈ X . (7.1)

Theorem 7.1 (Kosambi-Karhunen-Loève). The process X(·) defined above admits the following expansion:

X(t) =

∞∑
l=1

√
λlξlϕl(t), (7.2)

where the random variables {ξl}l∈N are

ξl =
1√
λl

∫
X
X(t)ϕl(t)dt, (7.3)

and the convergence in (7.2) holds uniformly on X in L2 sense. Furthermore, {ξl}l∈N are uncorrelated, with

Eξi = 0, Cov(ξi, ξj) = δij , ∀i, j ∈ N∗. (7.4)

Proof. By definition, the mean and covariance of {ξl}l∈N are

Eξi =
1√
λi

∫
X
E[X(t)]ϕi(t)dt = 0, (7.5)

Cov(ξi, ξj) = E[ξiξj ] =
1√
λi

1√
λj

∫
X

∫
X
E[X(s)X(t)]ϕi(s)ϕj(t)dsdt

=
1√
λi

1√
λj

∫
X

(∫
X
k(s, t)ϕi(s)ds

)
ϕj(t)dt

=
1√
λi

1√
λj

∫
X
λiϕi(t)ϕj(t)dt

=
λi√
λiλj

∫
X
ϕi(t)ϕj(t)dt

=
λi√
λiλj

δij = δij . (7.6)

Also, we have

E[X(t)ξl] =
1√
λl

E
[∫

X
X(t)X(s)ϕl(s)ds

]
=

1√
λl
k(t, s)ϕl(s)ds =

√
λlϕl(t). (7.7)

To show the convergence, we define XL(·) as

XL(t) =

L∑
l=1

√
λlξlϕl(t). (7.8)
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Then

E
[
(X(t)−XL(t))

2
]
= E

[
X(t)2

]
− 2E [X(t)XL(t)] + E

[
XL(t)

2
]

= E
[
X(t)2

]
− 2

L∑
l=1

√
λlϕl(t)E [X(t)ξl] +

L∑
l=1

λlϕl(t)
2E[ξ2l ]

= k(t, t)−
L∑

l=1

λlϕl(t)
2. (7.9)

Note that k is bounded, which implies

sup
t∈X

|k(t, t)| <∞. (7.10)

By (5.24), we have

lim
L→∞

sup
t∈X

∣∣∣∣∣k(t, t)−
L∑

l=1

λlϕl(t)
2

∣∣∣∣∣ = 0 (7.11)

Hence XL(·)
L2

→ X(·), which concludes the proof.

Remarks. (I) The Karhunen-Loève expansion gives the representation of a stochastic process as an infinite
linear combination of orthogonal functions. 0.1cm

(II) (Gaussian case). For a Gaussian process X(·) ∼ GP(0, k(·, ·)), where k admits Mercer’s property
k(s, t) =

∑
l∈N λlϕl(s)ϕl(t), it can be represented as

X(t) =

∞∑
l=1

√
λlZlϕl(t), Zl

i.i.d.∼ N(0, 1). (7.12)

(III) If X(·) is finite dimensional, i.e. there exists some N such that λn = 0 if n > N, then the Karhunen-
Loève expansion has a truncated version:

X(t) =

N∑
l=1

√
λlξlϕl(t). (7.13)

Note that the proof above need to be slightly modified, since ξn’s with n > N are undefined.

7.2 Function Approximation with Orthogonal Bases
We consider the problem of function approximation. Let X be a compact set. For a space of (real-valued)
functions defined on X , we may seek for a basis {ψi}i∈N such that the first n can be used to approximate the
functions in this space. To evaluate the approximation error, we define the µ-weighted L2 norm:

‖f‖L2(µ) =

√∫
X
|f(x)|2dµ, (7.14)

where µ is a σ-finite measure on X . This norm has an associated (real) inner product

〈f, g〉L2(µ) =

∫
X
f(x)g(x)dµ. (7.15)
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Consider approximating functions in the L2(µ) space

L2(X , µ) =
{
f : X → R, ‖f‖L2(µ) <∞

}
. (7.16)

A basis {ψi}i∈N on L2(X , µ) is a set of functions such that every f ∈ L2(X , µ) can be uniquely represented as

f =

∞∑
l=1

clψl (7.17)

in the sense that the series of partial sums converges in norm:

lim
n→∞

∥∥∥∥∥f −
n∑

l=1

clψl

∥∥∥∥∥
L2(µ)

= 0. (7.18)

7.2.1 Orthogonal Basis

Definition 7.2 (Orthogonality). An orthogonal basis for L2(X , µ) is a collection {ψα}α∈J of integrable
functions such that 〈ψα, ψβ〉L2(µ) = 0 for all α 6= β, and that L2(X , µ) = span {ψα}α∈J . Additionally, if
‖ψα‖L2(µ) = 1 for all α ∈ J , then {ψα}α∈J is said to be an orthonormal basis for L2(X , µ).

Proposition 7.3. Suppose {ψi}i∈N is an orthogonal basis over L2(X , µ). For any f ∈ L2(X , µ), it has the
representation f =

∑
n∈N cnψn.

• (Coefficient Matching). The coefficient cl can be easily found by taking the inner product with a basis
function:

〈f, ψl〉L2(µ) =

∞∑
n=1

cn〈ψl, ψn〉L2(µ) = cl‖ψl‖2L2(µ) =⇒ cl =
〈f, ψl〉L2(µ)

‖ψl‖2L2(µ)

. (7.19)

• (Best approximation). The approximation fN =
∑N

l=1 clψl is the best approximation to f in subspace
SN = span{ψ1, · · · , ψN} in the sense of minimizing the norm of error, i.e.

fN = argmin
g∈SN

‖f − g‖L2(µ). (7.20)

• (Parseval’s theorem). The norm of error is

‖f − fN‖L2(µ) =

√√√√ ∞∑
l=N+1

c2l ‖ψl‖2L2(µ). (7.21)

Examples. In the following discussion, we consider function approximation in the L2-space, i.e. the weight-
ing measure µ is Lebesgue measure.

• (Fourier Series). Consider function approximations on the closed interval [0, 2π], an orthogonal basis is
{1} ∪ {cos(nx)}n∈N ∪ {sin(nx)}n∈N Then we can expand a function f ∈ L2([0, 2π]) to its Fourier series:

f(x) = A0 +

∞∑
n=1

An cos(nx) +
∞∑

n=1

Bn sin(nx), (7.22)
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where the coefficients are

A0 =
1

2π

∫ 2π

0

f(x)dx, (7.24)

An =
1

π

∫ 2π

0

f(x) cos(nx)dx, n ≥ 1, (7.25)

Bn =
1

π

∫ 2π

0

f(x) sin(nx)dx, n ≥ 1. (7.26)

• (Legendre Polynomials). Consider function approximations on the closed interval [−1, 1]. Beginning from
P0(x) = 1, P1(x) = x, one can use Gram-Schmidt process to find a polynomial basis {Pn}n∈N on [−1, 1].

A general solution is given by Rodrigues formula:

Pn(x) =
1

2nn!

dn

dxn (x
2 − 1)n. (7.27)

7.2.2 Optimality of truncated Karhunen-Loève expansion

Let X(t), t ∈ X be a zero mean second-order stochastic process over (Ω,F ,P), with covariance k(·, ·) a Mercer’s
kernel. Let {ψl}l∈N be a orthonormal basis in L2(X ), i.e.

∫
X ψi(t)ψj(t) = δij , Then we can expand X(t) as

an infinite series:

X(t) =

∞∑
l=1

√
νlψl(x)ξl, (7.28)

where

ξl =
1

√
νl

∫
X
X(t)ψl(t)dt. (7.29)

Then the truncated version of X(t) at order p and the corresponding term can be written as

Xp(t) =

p∑
l=1

√
νlψl(x)ξl,

ep(t) = X(t)−Xp(t) =

∞∑
l=p+1

√
νlψl(t)ξl =

∞∑
l=p+1

∫
X
X(s)ψl(s)ψl(t)ds. (7.30)

Furthermore, the integrated mean squared error (IMSE) is defined as

Ep =

∫
X
E
[
ep(t)

2
]

dt

=

∫
X
E

[ ∞∑
m=p+1

∞∑
n=p+1

∫
X

∫
X
X(s)X(u)ψm(s)ψm(t)ψn(u)ψn(t)duds

]
dt

=

∞∑
m=p+1

∞∑
n=p+1

(∫
X
ψm(t)ψn(t)dt

)(∫
X

∫
X
k(s, u)ψm(s)ψn(u)duds

)

=

∞∑
m=p+1

(∫
X

∫
X
k(s, u)ψm(s)ψm(u)duds

)
. (7.31)

The following therorem states the optimality of truncated Karhunen-Loève expansion in the sense of minimizing
IMSE.
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Theorem 7.4 (Optimality of truncated Karhunen-Loève expansion). Among all the truncated expansion
expressed as a finite linear combination of orthonormal basis, the truncated Karhunen-Loève expansion mini-
mizes the IMSE.

Proof. We fix the truncation order p. Recall the expression of IMSE Ep, consider the following optimization
problem:

min
{λl}l>p

∞∑
l=p+1

(∫
X

∫
X
k(s, u)ψl(s)ψl(u)duds

)
s.t.

∫
X
ψl(t)

2dt = 1, l ≥ p+ 1. (7.32)

Construct the Lagrangian function

L =

∞∑
l=p+1

{(∫
X

∫
X
k(s, u)ψl(s)ψl(u)duds

)
+ ζl

(
1−

∫
X
ψl(t)

2dt
)}

. (7.33)

Differentiate L with respect to ψl(·), l ≥ p+ 1, we can obtain a functional derivative:

∂L
∂ψl(·)

= 2

∫
X

(∫
X
k(s, t)ψl(s)ds− ζlψl(t)

)
dt. (7.34)

Set this derivative to zero yields a Fredholm integral equation:

ζlψl(t) =

∫
X
k(s, t)ψl(s)ds. (7.35)

Hence ψl is selected as the eigenfunction of integral operator Tk(·) =
∫
X k(·, s)ψl(s)ds, which yields Karhunen-

Loève expansion.

7.3 Example: Brownian Motion
Recall that the standard Brownian motion W (·) is a Gaussian process with mean zero and covariance k(s, t) =
min(s, t). For simplicity, the domain of this process is assumed to be [0, 1]. The integral equation is∫ 1

0

min(s, t)ϕ(s)ds = λϕ(t), λ > 0. (7.36)

Equivalently, ∫ t

0

sϕ(s)ds+ t

∫ 1

t

ϕ(s)ds = λϕ(t), λ > 0. (7.37)

Take the derivatives on both sides two times, we get∫ 1

t

ϕ(s)ds = λ
d
dtϕ(t), (7.38)

−ϕ(t) = λ
d2

dt2ϕ(t). (7.39)

Solve the second order differential equation (7.39), we got

ϕ(t) = A cos
(

t√
λ

)
+B sin

(
t√
λ

)
. (7.39)
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Take t = 0 in the integral equation (7.36), we have ϕ(0) = 0, which implies ϕ(t) = B sin
(

t√
λ

)
. Plug in this to

(7.38), we obtain

B cos
(

t√
λ

)
−B cos

(
1√
λ

)
= B cos

(
t√
λ

)
, (7.40)

hence cos
(

1√
λ

)
= 0, the eigenvalues are

λl =
1(

l − 1
2

)2
π2
, ϕl(t) = B sin

[
(l − 1

2
)πt
]
, l = 1, 2, · · · . (7.41)

Moreover, the orthonormality condition implies

1 =

∫ 1

0

ϕl(t)
2dt = 1

2
B2 − 1

4

√
λlB

2 sin ((2l − 1)π) =
1

2
B2, (7.42)

hence B = ±
√
2. (The sign does not matter since the standard Gaussian distribution is symmetric.)

Therefore, the standard Brownian motion W (t), 0 ≤ t ≤ 1 can be represented as its Karhunen-Loève
expansion:

W (t) =
√
2

∞∑
l=1

2

(2l − 1)π
sin
[
(l − 1

2
)πt
]
Zl, (7.43)

where {Zl}l∈N
i.i.d.∼ N(0, 1).
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