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1 Wigner Matrices and the Semicircle Law

For a real symmetric matrix A ∈ Rn×n or a complex Hermitian matrix A ∈ Cn×n, we list its eigenvalues

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) including repetitions according to algebraic multiplicity. We define the empirical

spectral distribution (ESD) as

µA =
1

n

n∑
j=1

δλj(A),

which is the (discrete) probability measure on the eigenvalues of A weighted by algebraic multiplicity. For a

measurable function f : R → R, ∫
R
f dµA =

1

n

n∑
j=1

f(λj(A)).

In particular, the spectral moments of A is the moments of the ESD:∫
R
xp dµA(x) =

1

n

n∑
j=1

λj(A)
p, p ≥ 1.

If A is a random matrix, the resulting ESD µA is a random measure on R. To study the asymptotic law of

ESD of random matrices, we need to clarify the convergence mode of random measures.

Definition 1.1 (Convergence of random measures). Let (µn) be a sequence of random probability measures

on a topological space Ω with Borel σ-algebra B, and let µ be another probability measure.

(i) µn converges weakly (or vaguely) almost surely to µ, if with probability 1,∫
Ω

f dµn →
∫
Ω

f dµ for all f ∈ Cb(Ω) (or for all f ∈ Cc(Ω)).

(ii) µn converges weakly (or vaguely) in probability to µ, if for every bounded continuous function f ∈ Cb(Ω)

(or for every compactly supported continuous function f ∈ Cc(Ω)),∫
Ω

f dµn →
∫
Ω

f dµ in probability.

(iii) µn converges weakly (or vaguely) in expectation to µ, if for every bounded continuous function f ∈ Cb(Ω)

(or for every compactly supported continuous function f ∈ Cc(Ω)),

E
[∫

Ω

f dµn

]
→
∫
Ω

f dµ.

Remark. (a) By definition, the weak almost sure convergence implies the other two modes of convergence in

(ii) and (iii). In particular, the direction (i) ⇒ (iii) holds by dominated convergence theorem.

(b) In fact, if µ is a (nonnegative) random measure on R, we can define its expectation Eµ by

⟨Eµ, f⟩ =
∫
R
f dEµ = E

[∫
R
f dµ

]
, f ∈ Cc(R).

In that sense Eµ is a positive linear functional on Cc(R). By Riesz-Markov-Kakutani theorem, the Borel

measure Eµ on R satisfying the above property exists and is unique. According to this notation, the random

measures µn converges weakly in expectation to µ means that Eµn → µ weakly.

(c) Although the weak convergence appears slightly stronger than the vague convergence, they are indeed

equivalent for random measures on R.
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To see this, let µn be a sequence of measures converging vaguely to µ in probability. (The almost sure and

in expectation cases can be handled similarly and deterministically.) Note that a probability measure µ on R
is tight, i.e. for each ϵ > 0 there exists compact interval [−N,N ] such that µ([−N,N ]) ≥ 1 − ϵ. Then given

any bounded continuous function f : R → R and any ϵ > 0, we take ϕ ∈ Cc(R) such that∫
R
ϕdµ > 1− ϵ

3∥f∥∞
.

By vague convergence in probability, there exists N0 such that for all n ≥ N0,

P
(∫

R
ϕdµn < 1− ϵ

3∥f∥∞

)
<
ϵ

2
.

Also, since fϕ ∈ Cc(R), there exists N1 such that for all n ≥ N1,

P
(∣∣∣∣∫

R
fϕ dµn −

∫
R
fϕ dµ

∣∣∣∣ ≥ ϵ

3

)
<
ϵ

2
.

Then for all n ≥ max{N0, N1}, with probability at least 1− ϵ, we have∣∣∣∣∫
R
f dµn −

∫
R
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
R
f(1− ϕ) dµn

∣∣∣∣+ ∣∣∣∣∫
R
fϕ dµn −

∫
R
fϕ dµ

∣∣∣∣+ ∣∣∣∣∫
R
f(1− ϕ) dµ

∣∣∣∣
≤ ∥f∥∞

(∣∣∣∣1− ∫
R
ϕdµn

∣∣∣∣+ ∣∣∣∣1− ∫
R
ϕdµ

∣∣∣∣)+

∣∣∣∣∫
R
fϕ dµn −

∫
R
fϕ dµ

∣∣∣∣
≤ ∥f∥∞ · 2ϵ

3∥f∥∞
+
ϵ

3
< ϵ.

Therefore
∫
R f dµn →

∫
R f dµ in probability, and µn → µ weakly in probability. In our later discussion, we

will not distinguish these two modes of convergence.

Theorem 1.2 (Portmanteau lemma, random version). Let Ω be a metric space equipped with its Borel σ-

algebra B. Let µn be a sequence of random probability measures on (Ω,B). The following are equivalent:

(i) µn → µ weakly in probability;

(ii)
∫
Ω
f dµn →

∫
Ω
f dµ in probability for every bounded Lipschitz continuous function f ;

(iii) for every lower semi-continuous function f bounded from below,

lim inf
n→∞

∫
Ω

f dµn ≥
∫
Ω

f dµ in probability;

(iv) for every upper semi-continuous function f bounded from above,

lim sup
n→∞

∫
Ω

f dµn ≤
∫
Ω

f dµ in probability.

Furthermore, if the above conditions hold, then

(v) lim infn→∞ µn(G) ≥ µ(G) in probability for every open set G;

(vi) lim supn→∞ µn(F ) ≤ µ(F ) in probability for every closed set F .

Proof. It is clear that (i) ⇒ (ii), (iii) ⇒ (iv), and (iii) + (iv) ⇒ (i). Also, (iii) ⇒ (v) since the indicator 1G

for open G is lower semi-continuous. Similarly (iv) ⇒ (vi).

It remains to prove (ii) ⇒ (iii). We assume that f : R → R+ is a nonnegative, lower semi-continuous

function. Take

fk(x) = min

{
inf
y∈R

(f(y) + kd(x, y)) , k

}
, k = 1, 2, · · · ,
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which are nonnegative bounded Lipschitz continuous functions such that fk ↑ f pointwise. By the monotone

convergence theorem,
∫
R fk dµ ↑

∫
R f dµ as k → ∞. Then given any ϵ > 0, we take k ∈ N such that∫

R fk dµ >
∫
R f dµ− ϵ/2, and take N0 large enough that

P
(∣∣∣∣∫

R
fk dµ−

∫
R
fk dµ

∣∣∣∣ > ϵ

2

)
< ϵ

for all n ≥ N0. Then for all n ≥ N0, with probability at least 1− ϵ,∫
R
f dµn ≥

∫
R
fk dµn ≥

∫
R
fk dµ− ϵ

2
≥
∫
R
f dµ− ϵ.

Since ϵ > 0 is arbitrary, we have lim infn→∞
∫
R f dµn ≥

∫
f dµ in probability.

1.1 The Wigner Random Matrices

Definition 1.3 (Wigner matrices). Let (ξij)1≤i≤j<∞ be an upper triangular array of jointly independent

random variables. Suppose that

(i) the diagonal entries (ξii)i≥1 are real-valued i.i.d. random variables, and

(ii) the off-diagonal entries (ξij)1≤i<j are real or complex-valued i.i.d. zero-mean random variables with

variance E|ξ12|2 = 1.

We can define the lower-triangular entries (ξij)1≤j<i as following:

• If (ξij)1≤i<j is real-valued, let ξij = ξji for 1 ≤ j < i. Then (ξij)
∞
i,j=1 is an infinite real symmetric matrix.

The top-left n× n block Wn = (ξij)
n
i,j=1 is called a real symmetric Wigner matrix.

• If (ξij)1≤i<j is complex-valued, let ξij = ξji for 1 ≤ j < i. Then (ξij)
∞
i,j=1 is an infinite complex Hermitian

matrix. The top-left n× n block Wn = (ξij)
n
i,j=1 is called a complex Hermitian Wigner matrix.

Example 1.4. Following are some examples of Wigner matrices:

(i) Symmetric Bernoulli Ensemble. All triangular entries (ξij)1≤i≤j are i.i.d. Rademacher variables, i.e.

P(ξij = 1) = P(ξij = −1) = 1/2.

(ii) Gaussian Orthogonal Ensemble (GOE). The diagonal entries (ξii)
∞
i=1 are i.i.d. NR(0, 2) variables, and

the off-diagonal entries (ξij)1≤i<j are i.i.d. NR(0, 1) variables.

(iii) Gaussian Unitary Ensemble (GUE). The diagonal entries (ξii)
∞
i=1 are i.i.d. NR(0, 1) variables, and the

off-diagonal entries (ξij)1≤i<j are i.i.d. NC(0, 1) variables.

1.2 The Moment Method

We are interested in the asymptotic law of the ESD of Wigner matrices.

Theorem 1.5 (Wigner’s semicircle law). Let Wn be an n× n complex Hermitian Wigner matrix, i.e. Wn is

the topleft n× n block of the infinite matrix (ξij)
∞
i,j=1. Then the ESD of Wn/

√
n satisfies

(i) µWn√
n
→ µsc weakly in probability;

(ii) µWn√
n
→ µsc weakly almost surely;

(iii) EµWn√
n
→ µsc weakly in expectation.

where µsc is the semicircle distribution, whose density function is given by

ρsc(x) =
1[−2,2](x)

2π

√
4− x2, x ∈ R.
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Moment. We can reformulate the spectral moments of Wn/
√
n with the trace of its power:

Mn,k =
1

n

n∑
j=1

λkj =
1

n
tr

(
Wn√
n

)k

=
1

n1+k/2

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

ξi1i2 · · · ξik−1ikξiki1 .

To simplify our analysis, we additionally impose the following assumption, which will be removed later:

max
{
E|ξ11|k,E|ξ12|k

}
<∞, for all k ∈ N. (1.1)

1.2.1 Combinatorics in Spectral Moments

Each ordered tuple (i1, i2, · · · , ik) ∈ [n]k is called a cycle of length k. We use the following terms:

• The m consecutive pairs (i1, i2), · · · , (ik−1, ik), (ik, i1) are called steps of the cycle.

• The distinct unordered pairs from {i1, i2}, · · · , {ik−1, ik}, {ik, i1} are called the edges of the cycle.

• The distinct indices among i1, i2, · · · , ik are called the vertices of the cycle.

• The mixed moment T (i1, i2, · · · , ik) := E [ξi1i2 · · · ξiki1 ] is called the contribution of the cycle to the

spectral moment. In order that the contribution of cycle (i1, i2, · · · , ik) is nonzero, we require that each

edge {ij , ij+1} should be traversed at least twice.

• We say that two cycles (i1, i2, · · · , ik), (i′1, i′2, · · · , i′k) ∈ [n]k are equivalent, if there exists a bijection

π : [n] → [n] such that i′j = π(ij) for every 1 ≤ j ≤ k. In particular, for every cycle (i1, i2, · · · , ik) we

may relabel its each vertice v by the earliest time that v appears in the cycle:

π(v) = min {j : ij = v} , v ∈ {i1, · · · , ik}.

After relabeling, the cycle (π(i1), π(i2), · · · , π(ik)) is equivalent to (i1, i2, · · · , ik). We call such a tuple

the shape of (i1, i2, · · · , ik). For instance, the shape of the cycle (9, 5, 9, 4, 9, 3) is (1, 2, 1, 3, 1, 4).

• Let Sk ⊂ [k]k be the set of all shapes of length k, i.e. tuples obeying the above rules. For every shape

s ∈ Sk, we denote by Is
n the set of all cycles (i1, i2, · · · , ik) ∈ [n]k that have shape s. Indeed, every shape

s ∈ Sk can be viewed as a representative of the equivalent classes Is
n in [n]k.

• The height h(s) of a shape s ∈ Sk is the number of distinct elements it has.

Using the above notations, the expected k-th spectral moment is

E [Mn,k] =
1

n1+k/2

∑
s∈Sk

∑
(i1,··· ,ik)∈Is

n

T (i1, · · · , ik).

Now we discuss the contribution of each shape s ∈ Sk to the spectral moment Mn,k:

• If s is of height h(s) > 1 + k/2, there must exists an edge of s that is traversed only once. Then

T (i1, · · · , ik) = 0 for all (i1, · · · , ik) ∈ Is
n with h(s) > 1 + k/2. (1.2)

• If s is of height h(s) < 1 + k/2, then

1

n1+k/2

∑
i1,··· ,ik∈Is

n

|T (i1, · · · , ik)| ≤
n(n− 1) · · · (n− h(s) + 1)

n1+k/2
Rk ≤ nh(s)−1− k

2Rk ≤ Rk√
n
,

where Rk := max{E|ξ11|k,E|ξ12|k} <∞ for k ∈ N. Since |Sk| ≤ kk, we have

1

n1+k/2

∑
s∈Sk:h(s)<1+ k

2

∑
(i1,··· ,ik)∈Is

n

|T (i1, · · · , ik)| ≤
kkRk√
n
. (1.3)
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• If k is even and s is of height h(s) = 1 + k/2, we focus on the cycles of shapes s that have nonzero

weights, which requires that each edge of the cycle is traversed at least twice. Since a cycle with k/2+ 1

vertices has at least k/2 edges (one can easily prove this by induction), we are reduced to the cycles of

shapes s ∈ Sk for which each of its k/2 edge is traversed exactly twice, once in each direction.

We denote by S∗
k the set of all shapes of height k/2 + 1 that traverse each of its k/2 edges twice. Then

for all s ∈ S∗
k and all cycles (i1, · · · , ik) ∈ Is

n, we have exactly k/2 pairs of conjugate off-diagonal entries

(ξijij+1
, ξij+1ij ), and hence T (i1, · · · , ik) = 1. Then

1

n1+k/2

∑
i1,··· ,ik∈Is

n

T (i1, · · · , ik) =
n(n− 1) · · · (n− k/2)

n1+k/2
≤ 1.

We need to compute the number of elements of S∗
k .

Bijection to Dyck paths. We take a cycle (i1, · · · , ik) with k/2 + 1 vertices that traverses each of its k/2

edges twice. We imagine traversing a cycle from i1 to i2, then from i2 to i3, and so forth until we finally return

to i1 from ik. At each step of this journey, say from ij to ij+1, we either use an edge that we have not seen

before, or else we are using an edge for the second time. We say that the step (ij , ij+1) is innovative if it is in

the first category, and returning otherwise. Clearly, only the innovative steps can bring us to vertices that we

have not seen before. Since we have to visit k/2 + 1 distinct vertices (including the vertex i1 we start at), we

conclude that each innovative leg must take us to a new vertex. We thus recover the shape of the cycle from

a sequence of these steps by starting from 1, and

• if the current step is innovative, create a new edge and add a new vertex not visited before.

• if the current step is returning, it must close an edge that was already opened earlier; hence, return along

the corresponding previously created edge to an already-seen vertex.

Formally, we can associate a shape (s1, . . . , sk) ∈ S∗
k with a path of the simple random walk on Z by

mapping each step (sj , sj+1) as follows: if the step is innovative, we assign it an increment +1; if the step is

returning, we assign it a decrement −1. Since an edge cannot be revisited before it is first discovered, every

prefix of the traversal contains at least as many innovative steps as returning steps. Hence the partial sums

of the walk are nonnegative. Moreover, because the number of innovative and returning steps equal (k/2 of

each), the walk starts at 0, ends at 0, and has total length k. Therefore, the traversal of any shape encodes

uniquely a Dyck path of length k, i.e. a simple random walk on Z with steps ±1 that begins at 0, never goes

below 0 and returns to 0 at the end. Following are some examples.

(+1,+1,+1,−1,−1,−1) (+1,+1,−1,−1,+1,−1) (+1,−1,+1,+1,−1,−1)

(+1,+1,−1,+1,−1,−1) (+1,−1,+1,−1,+1,−1)

Figure 1: There are 5 Dyck paths with 6 steps
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Lemma 1.6. Let k ∈ 2N. Then |S∗
k | = Ck/2, where Cm is the m-th Catalan number:

Cm =
1

m+ 1

(
2m

m

)
, m ∈ N.

Proof. Let k = 2m and encode the traversal of a shape (s1, . . . , s2m) as a walk (x1, · · · , x2m) with steps +1

(innovative) and −1 (returning), as described above. This yields a walk of length 2m with exactly m up-steps

and m down-steps and never going below 0.

Let P be the set of all walks from (0, 0) to (2m, 0), so |P| =
(
2m
m

)
. Then let D ⊂ P be the subset that

never goes below 0 (Dyck paths), and B := P \ D the set of “bad” walks that hit −1 at least once. For any

walk x = (x1, · · · , x2m) ∈ B, let τ be the first time its partial sum equals −1:

τ = min

t ∈ [2m] :

t∑
j=1

xj = −1

 .

Reflect the path after time τ across the level −1:

Rx = (x1, · · · , xτ ,−xτ+1, · · · ,−x2m).

A graphical illustration is given below:

This reflection map sends x to a walk Rx of length 2m that still begins at 0 but ends at −2. Conversely,

given any walk y = (y1, · · · , y2m) from (0, 0) to (2m,−2), there is a unique inverse operation: reflect the path

after its first visit to −1 to obtain a bad walk. Hence the reflection map is a bijection, and the number of

walks in B is the number of walks beginning at 0 and ending at −2, namely
(

2m
m−1

)
. Therefore,

|D| = |P| − |B| =
(
2m

m

)
−
(

2m

m− 1

)
=

1

m+ 1

(
2m

m

)
= Cm.

Since the shape-to-walk encoding is a bijection onto Dyck paths, the number of shapes in S∗
2m is the m-th

Catalan number Cm.

Recurrence relation and the generating function. We consider the set Dm of Dyck paths on [0, 2m].

For 1 ≤ k ≤ m, we let D(k)
m be the set of Dyck paths x such that 2k is the first time it returns to 0. Then we

have two types of paths:

• Irreducible paths. Every path in ∈ D(m)
m never returns to 0 before step 2m. That is, it never goes below

1 on [1, 2m− 1]. Since such a Dyck path always stay at 1 at time 1 and 2m− 1, we can identify it with

a Dyck path from (1, 1) to (2m− 1, 1). Thus we have |D(m)
m | = |Dm−1| = Cm−1.

• Reducible paths. For 1 ≤ k < n, each path in D(k) can be decomposed into an irreducible path on [0, 2k]

and a Dyck path from (2k, 0) to (2m, 0). Thus we have |D(k)
m | = |Dk−1| · |Dm−k| = Ck−1Cm−k.

8



Note that Dm =
⋃m

k=1 D
(k)
m . Then we have the following recurrence relation for Catalan numbers:

C0 = C1 = 1, Cm =

m∑
k=1

Ck−1Cm−k, m ≥ 2.

This is known as Segner’s recurrence relation for Catalan numbers. The generating function for the Catalan

numbers is defined by the power series

C(z) =

∞∑
n=0

Cnz
n.

The recurrence relation given above can then be summarized in generating function form by the relation

C(z) = 1 + zC(z)2.

Note that C0 = limz→0 C(z) = 1, we select the branch

C(z) =
1−

√
1− 4z

2z
=

∞∑
n=0

1

n+ 1

(
2n

n

)
zn.

In fact, we can also use this procedure as an alternative proof of Lemma 1.6.

Now we can compute the expectation of spectral moments of Wigner matrices.

Lemma 1.7 (Estimate for spectral moment). For each k ∈ N,

lim
n→∞

E [Mn,k] =

0, k is odd,

Ck/2, k is even.

Proof. For k odd, the result follows directly from (1.2) and (1.3). For k even, by (1.2), (1.3) and Lemma 1.6,

E [Mn,k] =
1

n1+k/2

∑
s∈S∗

k

∑
(i1,··· ,ik)∈Is

n

T (i1, · · · , ik) +
1

n1+k/2

∑
s∈Sk:h(s)<1+ k

2

∑
(i1,··· ,ik)∈Is

n

T (i1, · · · , ik)

= Ck/2
n(n− 1) · · · (n− k/2)

n1+k/2
+O(n−1/2).

Letting n→ ∞ conclude the proof.

Lemma 1.8. For every k ∈ N, the k-th moment of the Wigner semicircle distribution µsc is

∫
R
xk dµsc(x) =

0, for k odd

Ck/2, for k even.

Proof. The case for odd k follows easily from symmetry. For even k, we assume k = 2m. Then∫
R
x2m dµsc(x) =

1

π

∫ 2

0

x2m
√

4− x2 dx =
22m+2

π

∫ π/2

0

sin2m θ cos2 θ dθ

=
22m+1

π

[∫ π

0

sin2m θ dθ −
∫ π

0

sin2m+2 θ dθ

]

9



We assume I2m =
∫ π

0
sin2m θ dθ for m = 0, 1, 2, · · · . Then

I2m+2 =

∫ π

0

sin2m+2 θ dθ =

∫ π

0

sin2m θ(1− cos2 θ) dθ = I2m −
∫ π

0

sin2m θ cos θ d sin θ

= I2m +

∫ π

0

sin θ d(sin2m θ cos θ) = I2m +

∫ π

0

sin θ(2m sin2m−1 θ cos2 θ − sin2m+1 θ) dθ

= I2m + 2m(I2m − I2m+2)− I2m+2 = (2m+ 1)(I2m − I2m+2).

Then we have

I2m+2 =
2m+ 1

2m+ 2
I2m.

Since I0 = π, by induction, we have

I2m =
(2m− 1)!!

(2m)!!
I0 =

(2m)!

22m(m!)2
π, m = 0, 1, 2, · · · .

Then ∫
R
x2m dµsc(x) = 22m+1 (2m)!

22m(m!)2

(
1− (2m+ 1)(2m+ 2)

4(m+ 1)2

)
=

1

m+ 1

(2m)!

(m!)2
= Cm.

Thus we complete the proof.

Remark. In fact, we proved that ∫
R
xk dEµWn√

n
(x) →

∫
R
xk dµsc. (1.4)

Note that this convergence is deterministic because EµWn√
n

is a deterministic measure.

Lemma 1.9. Let λ1, · · · , λn be the eigenvalues of Wn/
√
n. For every k ∈ N, we have

1

n

n∑
j=1

|λj |k1{|λj |>5} → 0 in probability as n→ ∞.

Proof. Let ϵ > 0. For every m ∈ N, we have

E

 1

n

n∑
j=1

|λj |m1{|λj |>5}

 ≤ 5−mE

 1

n

n∑
j=1

|λj |2m
 .

By Lemma 1.7 and Markov’s inequality,

lim sup
n→∞

P

 1

n

n∑
j=1

|λj |m1{|λj |>5} > ϵ

 ≤ 1

ϵ5m
lim
n→∞

E

 1

n

n∑
j=1

|λj |2m
 =

5−m(2m)!

ϵ(1 +m)(m!)2
<

1

ϵ

(
4

5

)m

.

This inequality holds for every m ∈ N. While the right-hand side decreases to 0 as m→ ∞, the left-hand side

is increasing in m. Therefore

lim sup
n→∞

P

 1

n

n∑
j=1

|λj |k1{|λj |>5} > ϵ

 = 0

for every k ∈ N.
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1.2.2 The Variance of Spectral Moments

Lemma 1.10. For every k, n ∈ N,

Var(Mn,k) ≤
22k+1k2kR2k

n2
, (1.5)

where R2k = max
{
E|ξ11|2k,E|ξ12|2k

}
. Hence for every polynomial P (x) = c0 + c1x+ · · ·+ cmx

m, we have∫
R
P (x) dµWn√

n
(x) →

∫
R
P (x) dµsc(x) in probability.

Proof. For a cycle i = (i1, · · · , ik) ∈ [n]k, we write ξi = ξi1ξi2 · · · ξik for simplicity. Then

Var(Mn,k) =
1

n2+k

∑
i,i′∈[n]k

(E [ξiξi′ ]− EξiEξi′) .

Each pair (i, i′) generates a graph with vertices V(i, i′) = {i1, · · · , ik} ∪ {i′1, · · · , i′k} and undirected edges

E(i, i′) = {i1i2, · · · , ik−1ik, iki1} ∪ {i′1i′2, · · · , i′k−1i
′
k, i

′
ki

′
1}. The resulting graph has at most two connected

components. As before, two pairs (i, i′) and (j, j′) are said to be equivalent if there is a bijection on [n]

mapping corresponding indices to each other.

In order the contribution E [ξiξi′ ]− EξiEξi′ of (i, i′) to be nonzero, the following conditions are necessary:

(a) Each edge in E(i, i′) is traversed at least twice. As a result, there are at most k edges in the graph.

(b) The two graphs generated by cycles i and i′ have at least one shared edge, otherwise by independence

we have E [ξiξi′ ]− EξiEξi′ = 0. As a result, the graph generated by (i, i′) is connected.

We discuss the contribution of a pair in three cases:

• If V(i, i′) has cardinality h ≥ k + 2 and (i, i′) has nonzero contribution, the resulting graph is connected

and should have at least h− 1 > k edges, which contradicts (a). Therefore (i, i′) has zero contribution.

• If V(i, i′) has cardinality h = k + 1 and (i, i′) has nonzero contribution, the resulting graph is connected

and should have k edges. In this case, there are no cycle in the graph, and each edge would be traversed

exactly twice, once in each direction. Since i begins and ends at i1, it must traverse each edge an even

number of times. The same is true for i′. Thus, each edge in E(i, i′) is traversed by either i or i′, but not

both. Then i and i′ generate distinct edges, a contradiction! Therefore (i, i′) has zero contribution.

• If V(i, i′) has cardinality h ≤ k, there are n(n−1) · · · (n−h+1) ≤ nk equivalent pairs. The contribution

of these pairs satisfies

|E [ξiξi′ ]− EξiEξi′ | ≤ 2R2k.

As before, there are no more than (2k)2k distinct equivalent classes of pairs (i, i′). We summarize the above

three cases to obtain

Var(Mn,k) =
1

n2+k
· (2k)2k · nk · 2R2k =

22k+1k2kR2k

n2
.

By Chebyshev’s inequality, for any ϵ > 0,

P (|Mn,k − E[Mn,k]| > ϵ) ≤ 1

ϵ2
(
E[M2

n,k]− (E[Mn,k])
2
)
≤ 22k+1k2kR2k

ϵ2n2
,

which converges to 0 as n→ ∞. Combining the above result with Lemma 1.6 and Lemma 1.7, we have

Mn,k =

∫
R
xk dµWn√

n
→
∫
R
xk dµsc(x) in probability.

Since k ∈ N is arbitrary, the convergence result holds true for any polynomial.

Proof of Theorem 1.5 (i). Let f ∈ Cc(R), and take N ≥ 5 such that supp(f) ⊂ [−N,N ]. We then apply
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Stone-Weierstrass theorem to approximate f on the compact interval [−N,N ] by polynomials: for each ϵ > 0,

there exists a polynomial Pϵ on R such that |Pϵ(x)−f(x)| < ϵ/4 for all x ∈ [−N,N ]. Note that µsc is supported

in [−2, 2] ⊂ [−N,N ]. Then∣∣∣∣∫
R
f dµWn√

n
−
∫
R
f dµsc

∣∣∣∣ ≤ ∣∣∣∣∫
R
(f − Pϵ) dµWn√

n
−
∫
R
(f − Pϵ) dµsc

∣∣∣∣+ ∣∣∣∣∫
R
Pϵ dµWn√

n
−
∫
R
Pϵ dµsc

∣∣∣∣
≤

∣∣∣∣∣
∫
R\[−N,N ]

(f − Pϵ) dµWn√
n

∣∣∣∣∣+
∣∣∣∣∣
∫
[−N,N ]

(f − Pϵ) dµWn√
n

∣∣∣∣∣+
∣∣∣∣∣
∫
[−N,N ]

(f − Pϵ) dµsc

∣∣∣∣∣
+

∣∣∣∣∫
R
Pϵ dµWn√

n
−
∫
R
Pϵ dµsc

∣∣∣∣
≤

∣∣∣∣∣
∫
R\[−N,N ]

Pϵ dµWn√
n

∣∣∣∣∣+ ϵ

2
+

∣∣∣∣∫
R
Pϵ dµWn√

n
−
∫
R
Pϵ dµsc

∣∣∣∣ (1.6)

For the first term, note that∣∣∣∣∣
∫
R\[−N,N ]

Pϵ dµWn√
n

∣∣∣∣∣ ≤
∫
R\[−N,N ]

|Pϵ| dµWn√
n
≤
∫
R\[−5,5]

|Pϵ| dµWn√
n
=

1

n

n∑
j=1

|Pϵ(λj)|1{|λj |≥5},

which converges to 0 in probability as n → ∞, by Lemma 1.9. Meanwhile, we can also control the last term

in (1.6) by Lemma 1.10. Since ϵ > 0 is arbitrary, we have∫
R
f dµWn√

n
→
∫
R
f dµsc in probability.

Hence µWn√
n
→ µsc weakly in probability, and we complete the proof.

Using the variance bound, we can indeed extend the convergence result to the almost sure case.

Proof of Theorem 1.5 (ii). By Chebyshev’s inequality, for every k ∈ N and ϵ > 0,

∞∑
n=1

P (|Mn,k − E[Mn,k]| > ϵ) ≤
∞∑

n=1

Var(Mn,k)

ϵ2
= 22k+1k2kR2k

∞∑
n=1

1

n2
<∞.

By the Borel-Cantelli lemma, we have

P
(
lim sup
n→∞

|Mn,k − E[Mn,k]| > ϵ

)
= 0.

Since ϵ > 0 is arbitrary, we have Mn,k − E[Mn,k] → 0 almost surely as n → ∞. Combining this result with

(1.4), we obtain that ∫
R
xk dµWn√

n
→
∫
R
xk dµsc almost surely.

Using the estimate Ck ≤ 4k, we have

lim sup
k→∞

1

2k

(∫
R
x2k dµsc

)1/2k

= lim sup
k→∞

1

2k
C

1/2k
k ≤ lim sup

k→∞

1

k
= 0 <∞.

By Carleman’s continuity theorem, we have µWn√
n
→ µsc weakly with probability 1.

Remark. (i) Following the same approach as the above proof, it is easy conclude that µWn√
n

→ µsc weakly in

expectation, which is Theorem 1.5 (iii).
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(ii) For every −∞ ≤ a < b ≤ ∞, by the Portmanteau lemma,

1

n
NWn√

n
([a, b]) →

∫ b

a

ρsc(x) dx almost surely,

where NWn√
n
([a, b]) is the number of eigenvalues of Wn/

√
n lying in [a, b], including repetitions according to

algebraic multiplicity.
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1.2.3 Remove the Finiteness Assumption for Higher-Order Moments

Now we will remove the assumption (1.1) and extend the convergence results to general Wigner matrices. We

will use the Lévy metric between cumulative distribution functions to establish weak convergence.

Lemma 1.11. Assume that A,B ∈ Cn×n are Hermitian matrices. Then

(i) For every α > 0,

ρL(FA, FB)
1+α ≤ 1

n

n∑
j=1

|λj(A)− λj(B)|α, (1.7)

where ρL is the Lévy metric between two cumulative distribution function (c.d.f.s):

ρL(F,G) = inf {ϵ > 0 : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x ∈ R} ,

and FA, FB are c.d.f.s of ESDs µA and µB, respectively.

(ii) In particular,

ρL(FA, FB)
3 ≤ 1

n
∥A−B∥2F.

Remark. Recall that the weak topology on the space of Borel probability measures on R is metrized by the

Lévy metric ρL. That is, Fn → F weakly if and only if ρL(Fn, F ) → 0.

Proof. (i) Fix α > 0. The inequality (1.7) is trivial if 1
n

∑n
j=1 |λj(A)−λj(B)|α ≥ 1. Then without probability,

we can take ϵ ∈ (0, 1) such that

1

n

n∑
j=1

|λj(A)− λj(B)|α < ϵ1+α < 1.

Since ϵ is arbitrary, it suffices to prove ρL(FA, FB) ≤ ϵ. For each x ∈ R, let Ax = {j ∈ [n] : λj(A) ≤ x} and

Bx = {j ∈ [n] : λj(B) ≤ x+ ϵ}. Then for every j ∈ Ax\Bx, we have |λj(A)− λj(B)| ≥ ϵ, and

FA(x)− FB(x+ ϵ) ≤ |Ax\Bx|
n

≤ 1

nϵα

n∑
j=1

|λj(A)− λj(B)|α < ϵ.

Similarly FB(x− ϵ)− FA(x) ≤ ϵ. Hence ρL(FA, FB) ≤ ϵ.

(ii) Let α = 2 in (i), and apply Hoffman-Wielandt inequality.

We next show the stability of ESD under low-rank perturbations.

Lemma 1.12 (Low rank perturbation). Assume that A,B ∈ Cn×n are Hermitian matrices. Then

ρL(FA, FB) ≤ ∥FA − FB∥∞ ≤ rank(A−B)

n
, (1.8)

where FA, FB are cumulative distribution functions of ESDs µA and µB, respectively.

Proof. Let r = rank(A−B). Since both sides (1.8) are invariant under a common unitary transformation on

A and B, we may transform A−B as

[
Σ 0

0 0

]
, where Σ ∈ Cr×r is full-rank. Hence we may assume

A =

[
A11 B12

B∗
12 B12

]
, B =

[
B11 B12

B∗
12 B12

]
.

By the Cauchy interlacing theorem,

min {λj(A), λj(B)} ≥ λj(B22) ≥ max {λj+r(A), λj+r(B)} , j = 1, · · · , n− r.
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Let λ0(A) = ∞ and λn−r+1(B) = −∞. For any x ∈ R and choose j with (λj(B22), λj−1(B22)]. Then

max{λj+r(A), λj+r(B)} ≤ λj(B22) ≤ x and min{λj−1(A), λj−1(B)} ≥ λj−1(B22) > x.

Hence

1− j + r − 1

n
≤ min{FA(x), FB(x)} ≤ max{FA(x), FB(x)} ≤ 1− j − 1

n
,

and |FA(x)− FB(x)| ≤ r/n for all x ∈ R. Finally, if 0 < ϵ < ρL(FA, FB), we can find x ∈ R such that

FA(x− ϵ)− ϵ > FB(x) or FA(x+ ϵ) + ϵ < FB(x).

Then FA(x)− FB(x) ≥ FA(x− ϵ)− FB(x) > ϵ for the first case, or FB(x)− FA(x) ≥ FB(x)− FA(x+ ϵ) > ϵ

for the second case. Hence ϵ < |FA(x)− FB(x)| ≤ r/n, and ρL(FA, FB) ≤ r/n.

Now we show how to remove the diagonal elements in a Wigner matrix.

Lemma 1.13 (Removing the diagonal). Let (Wn) be Wigner matrices given in Theorem 1.5. We obtain Ŵn

from Wn by replacing all diagonal entries with 0. Then

lim
n→∞

ρ

(
FWn√

n
, F Ŵn√

n

)
= 0.

Proof. We truncate the diagonal entries (ξii) at
√
n, and let Ξn = diag

(
ξii1{|ξii|≤

√
n}
)n
i=1

. By Lemma 1.11,

ρL

(
FWn−Ξn√

n
, F Ŵn√

n

)3

≤ 1

n

∥∥∥∥∥Wn − Ξn√
n

− Ŵn√
n

∥∥∥∥∥
2

F

≤ 1

n2

n∑
i=1

|ξii|21{|ξii|≤
√
n} ≤ 1

n
. (1.9)

Let Nn = |{i ∈ [n] : ξii >
√
n}| =

∑n
i=1 1{|ξii|>

√
n}. By Lemma 1.12,

ρL

(
FWn√

n
, FWn−Ξn√

n

)
≤ rank(Ξn)

n
=
Nn

n
. (1.10)

Let pn = P(|ξ11| >
√
n) → 0. By Bernstein’s inequality, for any ϵ > 0 and sufficiently large n,

P (Nn ≥ nϵ) = P

(
n∑

i=1

(
1{|ξii|>

√
n} − pn

)
≥ n(ϵ− pn)

)
≤ exp

(
− n2(ϵ− pn)

2/2

npn(1− pn) +
n(ϵ−pn)

3

)
≤ e−

n
2 (ϵ−pn)

2

.

By the Borel-Cantelli lemma,

P
(
lim sup
n→∞

Nn

n
≥ ϵ

)
= P

( ∞⋂
K=1

∞⋃
n=K

{
Nn

n
≥ ϵ

})
≤ lim

K→∞

∞∑
n=K

e−nϵ2/8 = lim
K→∞

e−Kϵ2/8

1− e−ϵ2/8
= 0.

Since ϵ > 0 is arbitrary, Nn/n→ 0 almost surely. Combining (1.9) and (1.10), we conclude the proof.

Finally we present the main result.

Lemma 1.14. For the Wigner matrices (Wn) in Theorem 1.5, one may assume without loss of generality that

the diagonal entries (ξii)i≥1 are 0 and that the off-diagonal entries (ξij)1≤i<j are bounded.

Remark. If we can prove Theorems 1.5 for Wigner matrices with vanished diagonal entries and bounded

off-diagonal entries, we may extend the result to a general Wigner matrix Wn using this Lemma.
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Proof. We define (ξ̃ij)1≤i≤j by removing diagonal entries and normalizing truncated off-diagonal entries:

ξ̃ij =


0 if i = j,

ξij1{|ξij |≤N} − E[ξij1{|ξij |≤N}]√
Var(ξij1{|ξij |≤N})

if i < j,

where N is to be chosen, and let W̃n = (ξ̃ij)
n
i,j=1/

√
n be the corresponding Wigner matrix for every n ∈ N.

Then
1

n
tr
(
Ŵn − W̃n

)2
=

1

n2

n∑
i,j=1

|ξij − ξ̃ij |2

≤ 2

n2

∑
1≤i<j≤n

∣∣ξij1{|ξij |>N} − E[ξij1{|ξij |>N}]
∣∣2

+
2

n2

∑
1≤i<j≤n

(
1

Var(ξij1{|ξij |≤N})
− 1

) ∣∣ξij1{|ξij |≤N} − E[ξij1{|ξij |≤N}]
∣∣2 .

(1.11)

Since (ξij)1≤i<j are i.i.d. and have finite second moments, by the strong law of large numbers,

2

n(n− 1)

∑
1≤i<j≤n

∣∣ξij1{|ξij |>N} − E[ξij1{|ξij |>N}]
∣∣2 → Var

(
ξ121{|ξ12|>N}

)
a.s..

Hence

lim sup
n→∞

2

n2

∑
1≤i<j≤n

∣∣ξij1{|ξij |>N} − E[ξij1{|ξij |>N}]
∣∣2 ≤ E

[
|ξ12|21{|ξ12|>N}

]
, a.s..

Similarly

lim
n→∞

2

n2

∑
1≤i<j≤n

(
1

Var(ξij1{|ξij |≤N})
− 1

) ∣∣ξij1{|ξij |≤N} − E[ξij1{|ξij |≤N}]
∣∣2 = 1−Var(ξ121{|ξ12|≤N}), a.s..

Now given any ϵ > 0, we fix N ∈ N great enough that

max
{
E
[
|ξ12|21{|ξ12|>N}

]
, 1−Var(ξ121{|ξ12|≤N})

}
≤ ϵ3

2
.

By Lemma 1.11,

lim sup
n→∞

ρL

(
F Ŵn√

n

, F W̃n√
n

)
≤
[
lim sup
n→∞

1

n
tr
(
Ŵn − W̃n

)2]1/3
< ϵ, a.s..

Suppose µ W̃n√
n

→ µsc weakly almost surely. By Lemma 1.13,

lim sup
n→∞

ρL

(
µWn√

n
, µsc

)
≤ lim sup

n→∞

[
ρL

(
FWn√

n
, F Ŵn√

n

)
+ ρL

(
F Ŵn√

n

, F W̃n√
n

)
+ ρL

(
F W̃n√

n

, Fsc

)]
< ϵ, a.s..

Since ϵ > 0 is arbitrary, we can make ϵn = n−1 ↓ 0 and take the intersection of the above events to see

lim sup
n→∞

ρL

(
FWn√

n
, Fsc

)
= 0, a.s..

Hence µWn√
n
→ µsc almost surely.
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1.3 The Resolvent Method

1.3.1 The Stieltjes Transform

Definition 1.15 (Stieltjes transform). Let µ be a Borel measure on the real line R. The Stieltjes transform

of µ is the function of the complex variable z defined outside the support of µ by the formula

sµ(z) =

∫
R

1

x− z
dµ(x), z ∈ C\ supp(µ).

In particular, sµ is well-defined on the upper and lower half-planes in the complex plane C.

Remark. (i) By definition, the imaginary parts of sµ(z) and z have the same sign. Since sµ(z) = sµ(z) for

z ∈ C\R, it suffices to study the property of sµ in the upper half-plane C+ = {z ∈ C : Im z > 0}.

(ii) Indeed, the Stieltjes transform sµ : C+ → C+ is a holomorphic function. To see this, we fix z ∈ C\R.
Then |x− z|−1 ≤ |Im(z)|−1, and |sµ(z)| ≤ |Im(z)|−1. For all h ∈ C with |h| < |Im(z)|/2, we have

1

(x− z)(x− z − h)
≤ 2

|Im(z)|2
,

which is bouded uniformly in x ∈ R. By the dominated convergenece theorem,

lim
h→0

sµ(z + h)− sµ(z)

h
= lim

h→0

∫
R

1

(x− z)(x− z − h)
dµ(x) =

∫
R

1

(x− z)2
dµ(x).

Hence sµ is complex differentiable in C+. By holomorphicity, sµ is infinitely differentiable in C+, and

dk

dzk
sµ(z) =

∫
R

1

(x− z)1+k
dµ(x), z ∈ C+, k ∈ N0. (1.12)

Theorem 1.16 (Stieltjes inversion). For any two points a < b of continuity of Fµ, which is the c.d.f. of µ,

µ((a, b]) = lim
η↓0

∫ b

a

sµ(E + iη)− sµ(E − iη)

2πi
dE. (1.13)

Distinct Borel measures µ on R have distinct Stieltjes transform sµ.

Proof. For ξ ∈ R and η > 0, we have

Im(sµ(E + iη)) =

∫
R
Im

(
1

x− (E + iη)

)
dµ(x) =

∫
R

η

(x− E)2 + η2
dµ(x).

Let f ∈ Cb(R). By Fubini’s theorem and dominated convergence theorem,

lim
η↓0

1

π

∫
R
f(E) Im(sµ(E + iη)) dξ = lim

η↓0

∫
R

∫
R
f(E)

η

π ((x− E)2 + η2)
dE dµ(x)

=

∫
R
lim
η↓0

∫
R
f(E)

η

π ((x− E)2 + η2)
dE dµ(x) =

∫
R
f(x) dµ(x).

That is, for all bounded continuous function f : R → R,∫
R
f(x) dµ(x) = lim

η↓0

∫
R

sµ(E + iη)− sµ(E − iη)

2πi
f(E) dE. (1.14)

By Riesz representation theorem, µ is uniquely determined by its Stieltjes transform sµ. The result (1.13)

follows from the Portmeanteau lemma.
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One can relate weak convergence of measures to pointwise convergence of their Stieltjes transforms.

Theorem 1.17 (Stieltjes continuity theorem). Let (µn) be a sequence of probability measures on R.
(i) If µn converges weakly to a probability measure µ, then sµn(z) → sµ(z) for every z ∈ C\R.
(ii) If sµn

(z) converges to a limit s(z) for all z ∈ R\C, then S : C\R → C is the Stieltjes transform of a

sub-probability measure µ, and µn → µ weakly.

Furthermore, assume that (µn) are random probability measures and µ is a deterministic probability measure.

(iii) µn → µ weakly almost surely if and only if sµn
(z) → sµ(z) almost surely for every z ∈ C\R.

(iv) µn → µ weakly in probability if and only if sµn
(z) → sµ(z) in probability for every z ∈ C\R.

Proof. (i) For every z ∈ C\R, the function R → C : x 7→ (x− z)−1 is bounded and continuous. Hence µn → µ

weakly implies sµn
→ sµ pointwise on C\R.

(ii) By Helly’s selection theorem, every subsequence of (µn) admits a further subsequence that converges

weakly to a sub-probability measure. We let (µnk
) be a subsequence that converges weakly to a sub-probability

measure µ. Then sµnk
→ sµ by (i), and we have sµ = s from the hypothesis. By Theorem 1.16, all weakly

convergent subsequences converge to the same µ, and hence µn → µ.

(iii) is an immediate corollary of (i) and (ii).

(iv) The “only if” part is easy, and we focus on the “if” part. Let f ∈ Cc(R), and assume f is supported on

[−B/2, B/2]. We take fη = f ∗ Pη, where Pη(x) =
η

π(x2+η2) is the Poisson kernel. Then f ∗ Pη → f uniformly

on R as η ↓ 0. Given ϵ > 0, we take η > 0 sufficiently small so that ∥f − fη∥∞ < ϵ/5. Then∣∣∣∣∫
R
f dµn −

∫
R
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
R
f dµn −

∫
R
fη dµn

∣∣∣∣+ ∣∣∣∣∫
R
fη dµn −

∫
R
fη dµ

∣∣∣∣+ ∣∣∣∣∫
R
fη dµ−

∫
R
f dµ

∣∣∣∣
≤ 2ϵ

5
+

∣∣∣∣∫
R
fη dµn −

∫
R
fη dµ

∣∣∣∣ . (1.15)

SImilar to our proof of Theorem 1.16,∫
R
fη dµn −

∫
R
fη dµ =

∫
R

sµn
(E + iη)− sµn

(E − iη)

2πi
f(E) dE −

∫
R

sµ(E + iη)− sµ(E − iη)

2πi
f(E) dE.

By (1.12), we have |s′µ(z)| ≤ |Im(z)|−2, and sµ is Lipschitz. We then divide supp(f) into 2k sub-intervals

[E
(k)
j , E

(k)
j+1], j = 1, · · · , 2k of equal length, and approximate the above integral by a Riemann sum:∣∣∣∣∣∣

∫
R
fη dµ− 1

2k

2k∑
j=1

sµ(E
(k)
j + iη)− sµ(E

(k)
j − iη)

2πi
f(E

(k)
j )

∣∣∣∣∣∣ ≤ B∥f∥∞
2kπη2

.

The same result remains true with sµ replaced by sµn
for every n ∈ N. We fix k ∈ N great enough such that

B∥f∥∞/(2kπη2) < ϵ/5. Since for every z ∈ R\C, sµn
(z) → sµ(z) in probability, we take N > 1 sufficiently

large so that for every n ≥ N ,

P
(∣∣∣sµn

(E
(k)
j + iη)− sµ(E

(k)
j + iη)

∣∣∣ ≥ ϵπ

5∥f∥∞

)
<

ϵ

2k
for all j = 1, · · · , 2k.

Hence with probability at least 1− ϵ,

∣∣∣∣∫
R
fη dµn −

∫
R
fη dµ

∣∣∣∣ ≤ 2B∥f∥∞
2kπη2

+
1

2k

2k∑
j=1

1

2π
· 2ϵπ

5∥f∥∞
|f(E(k)

j )| < 2ϵ

5
+
ϵ

5
=

3ϵ

5
.

Combining with (1.15), we finish the proof.
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1.3.2 The Marcinkiewicz-Zygmund inequality

We introduce a useful inequality for error control. This is a special case of Burkholder-Davis-Gundy inequality.

Lemma 1.18 (Marcinkiewicz-Zygmund inequality). Let X1, · · · , XN be complex-valued, independent zero-

mean random variables. Then for every p ≥ 2,

E

∣∣∣∣∣
N∑
j=1

Xj

∣∣∣∣∣
p

≤ (Cp)p/2E

∣∣∣∣∣
n∑

j=1

|Xj |2
∣∣∣∣∣
p/2

, (1.16)

where C is an absolute constant. Furthermore, if (aij)i,j∈[N ] ∈ CN×N , we have

∥∥∥∥∥∥
N∑
i ̸=j

aijXiXj

∥∥∥∥∥∥
Lp

≤ 4Cp

 N∑
i ̸=j

|aij |2
1/2(

max
j∈[N ]

E|Xj |p
)2/p

. (1.17)

Proof. Step I. We first assume that X1, · · · , XN are real-valued, and let ϵ1, · · · , ϵN be i.i.d. Rademacher

variables independent of X1, · · · , XN . We show that

E

∣∣∣∣∣
N∑
j=1

Xj

∣∣∣∣∣
p

≤ 2pEX

[
Eϵ

∣∣∣∣∣
N∑
j=1

ϵjXj

∣∣∣∣∣
p]
, p ≥ 2. (1.18)

Let Yj be an independent copy of Xj for j = 1, · · · , N . Then by Jensen’s inequality,

E

∣∣∣∣∣
N∑
j=1

Xj

∣∣∣∣∣
p

= E

∣∣∣∣∣
N∑
j=1

(Xj − EYj)

∣∣∣∣∣
p

= EXEY

∣∣∣∣∣
N∑
j=1

(Xj − Yj)

∣∣∣∣∣
p

.

Since Xj − Yj is symmetric, we have Xj − Yj
d
= ϵj(Xj − Yj). Then

EXEY

∣∣∣∣∣
N∑
j=1

(Xj − Yj)

∣∣∣∣∣
p

= EXEY Eϵ

∣∣∣∣∣
N∑
j=1

ϵj(Xj − Yj)

∣∣∣∣∣
p

≤ EXEY Eϵ

2p−1

∣∣∣∣∣∣
N∑
j=1

ϵjXj

∣∣∣∣∣∣
p

+ 2p−1

∣∣∣∣∣∣
N∑
j=1

ϵjYj

∣∣∣∣∣∣
p .

Since (X1, · · · , XN )
d
= (Y1, · · · , YN ), we obtain (1.18).

Step II. By the Khintchine inequality for sub-Gaussian random variables, for all a = (a1, · · · , aN ) ∈ RN ,∥∥∥∥∥
N∑
j=1

ajϵj

∥∥∥∥∥
Lp

≤ 2
√

6p ∥a∥2. (1.19)

We use (1.19) conditioning on X1, · · · , XN to get

Eϵ

∣∣∣∣∣
N∑
j=1

ϵjXj

∣∣∣∣∣
p

≤
(
2
√

6p
)p( n∑

j=1

X2
j

)p/2

.

By (1.18), we obtain

E

∣∣∣∣∣
N∑
j=1

Xj

∣∣∣∣∣
p

≤ 2pEX

[
Eϵ

∣∣∣∣∣
N∑
j=1

ϵjXj

∣∣∣∣∣
p]

≤
(
4
√

6p
)p

E

[(
n∑

j=1

X2
j

)p/2]
≤ (Cp)p/2E

[(
n∑

j=1

X2
j

)p/2]
,

where C = 96. Then we finish the proof of (1.16) in the real case.
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Step III. If X1, · · · , XN are complex valued, then both (ReXi)
N
i=1 and (ImXi)

N
i=1 are independent real-valued

variables. Then we apply (1.16):

E

∣∣∣∣∣∣
N∑
j=1

Xj

∣∣∣∣∣∣
p

≤ 2p−1

E

∣∣∣∣∣
N∑
j=1

ReXj

∣∣∣∣∣
p

+ E

∣∣∣∣∣
N∑
j=1

ImXj

∣∣∣∣∣
p


≤ 2p−1(Cp)p/2

E ∣∣∣∣∣
n∑

j=1

|ReXj |2
∣∣∣∣∣
p/2

+ E

∣∣∣∣∣
n∑

j=1

| ImXj |2
∣∣∣∣∣
p/2
 ≤ (2Cp)p/2

2
E

∣∣∣∣∣
n∑

j=1

|Xj |2
∣∣∣∣∣
p/2

.

Then we finish the proof of (1.16) in the complex case.

Step IV. For every i, j ∈ [N ] with i ̸= j, we have

1

2N−2

∑
I⊔J=[N ]

1{i∈I}1{j∈J} = 1,

where the sum ranges over all partitions of [N ] into two sets I and J . Then

N∑
i ̸=j

aijXiXj =
1

2N−2

N∑
i ̸=j

∑
I⊔J=[N ]

1{i∈I}1{j∈J}aijXiXj =
1

2N−2

∑
I⊔J=[N ]

∑
i∈I

∑
j∈J

aijXiXj .

By the triangle inequality, for every k ∈ N,∥∥∥∥∥∥
N∑
i ̸=j

aijXiXj

∥∥∥∥∥∥
Lp

≤ 1

2N−2

∑
I⊔J=[N ]

∥∥∥∥∥∥
∑
i∈I

∑
j∈J

aijXiXj

∥∥∥∥∥∥
Lp

.

Let bj =
∑

i∈I aijXi. We take the following expectation with respect to {Xj : j ∈ J}, denoted by EJ :

EJ

∣∣∣∣∣∑
i∈I

∑
j∈J

aijXiXj

∣∣∣∣∣
p

= EJ

∣∣∣∣∣∑
j∈J

bjXj

∣∣∣∣∣
p

≤ (Cp)p/2EJ

[(∑
j∈J

b2jX
2
j

)p/2]
= (Cp)p/2BpEJ

[(∑
j∈J

b2j
B2

X2
j

)p/2]

≤ (Cp)p/2BpEJ

[∑
j∈J

b2j
B2

Xp
j

]
≤ (Cp)p/2Bp max

j∈J
E|Xj |p, (1.20)

where we take B2 =
∑

j∈J b
2
j . Similarly,

EI |bj |p ≤ (Cp)p/2EI

(∑
i∈I

a2ij |Xi|2
)p/2

 ≤ (Cp)p/2Ap
j max

i∈I
E|Xi|p, j ∈ J,

where A2
j =

∑
i∈I a

2
ij . By Minkowski’s inquality,

EI [B
p] = ∥B2∥p/2

Lp/2 =

∥∥∥∥∥∑
j∈J

b2j

∥∥∥∥∥
p/2

Lp/2

≤

∑
j∈J

∥b2j∥Lp/2

p/2

=

∑
j∈J

CpA2
j

p/2

max
i∈I

E|Xi|p.

Plugging into (1.20), we have

E

∣∣∣∣∣∑
i∈I

∑
j∈J

aijXiXj

∣∣∣∣∣
p

≤ (Cp)p

∑
i∈I

∑
j∈J

a2ij

p/2(
max
j∈[N ]

E|Xj |p
)2

.

20



Note there are in total 2N − 2 nontrivial partitions of [N ]. Then∥∥∥∥∥∥
N∑
i ̸=j

aijXiXj

∥∥∥∥∥∥
Lp

≤ 1

2N−2

∑
I⊔J=[N ]

∥∥∥∥∥∥
∑
i∈I

∑
j∈J

aijXiXj

∥∥∥∥∥∥
Lp

≤ 2N − 2

2N−2
Cp

 N∑
i ̸=j

a2ij

 1
2 (

max
j∈[N ]

E|Xj |p
) 2

p

= 4Cp

 N∑
i̸=j

a2ij

 1
2 (

max
j∈[N ]

E|Xj |p
) 2

p

.

Thus we complete the proof.

1.3.3 The Stieltjes Transform of the Semicircle Law

For a random Hermitian matrix A ∈ Cn×n, the Stieljes transform of the ESD of A is related to the trance of

its resolvent:

s(A, z) := sµA
(z) =

1

n

n∑
j=1

1

λj(A)− z
=

1

n
tr
[
(A− z Id)−1

]
.

We consider the Stieltjes transform of normalized Wigner matrices:

sn(z) := s

(
Wn√
n
, z

)
=

1

n
tr

[(
Wn√
n
− z Id

)−1
]
=

1

n

n∑
j=1

[(
Wn√
n
− z Id

)−1
]
jj

.

To establish Wigner’s semicircle law, if suffices to show that the Stieltjes transform of the ESD of Wn/
√
n

converges pointwise to the Stieltjes transform of the semicircle distribution µsc. To establish this, we first

compute the Siteltjes transform of the semicircle distribution µsc.

Lemma 1.19. The Stieltjes transform of the semicircle distribution µsc is

ssc(z) =
−z +

√
z2 − 4

2
, z ∈ C+,

where C+ = {z ∈ C : Im z > 0}, and the square root of a complex number z in C\R is defined as the branch

with the positive imaginary part.

Proof. We let z ∈ C\R and Im z > 0. The Stieltjes transform of the semicircle distribution µsc is

ssc(z) =
1

2π

∫ 2

−2

√
4− x2

x− z
dx.

We let x = 2 cos θ. Then

ssc(z) =
2

π

∫ π

0

sin2 θ

2 cos θ − z
dθ =

1

π

∫ 2π

0

1

eiθ + e−iθ − z

(
eiθ − eiθ

2i

)2

dθ

= − 1

4πi

∫
|ζ|=1

(ζ − ζ−1)2ζ−1

ζ + ζ−1 − z
dζ = − 1

4πi

∫
|ζ|=1

(ζ2 − 1)2

ζ2(ζ2 − zζ + 1)
dζ

We evaluate the above integral by the residue theorem. The integrand has three poles:

ζ0 = 0, ζ1 =
z +

√
z2 − 4

2
, ζ2 =

z −
√
z2 − 4

2
,

where the square root of a complex number in C\R is defined as the branch with the positive imaginary part.
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By this convention, we have

√
ζ = sgn(Im ζ)

√
|ζ|+Re ζ

2
+ i

√
|ζ| − Re ζ

2
=

Im ζ√
2(|ζ| − Re ζ)

+
i |Im ζ|√

2(|ζ|+Re ζ)
. (1.21)

This shows that the real part of
√
ζ has the same sign as the Im ζ. Applying this to ζ1 and ζ2, the real part

of
√
z2 − 4 has the same sign as Re z. Then both real and imaginary parts of ζ1 are greater than those of ζ2,

and |ζ1| > |ζ2|. Since ζ1ζ2 = 1, we conclude that |ζ1| > 1 > |ζ2|, and the two poles 0 and ζ2 of the integrad

are in the disk |ζ| ≤ 1. Note that

Res

(
(ζ2 − 1)2

ζ2(ζ2 − zζ + 1)
, 0

)
= lim

ζ→0

d

dζ

[
(ζ2 − 1)2

(ζ − ζ1)(ζ − ζ2)

]
=
ζ1 + ζ2
ζ21ζ

2
2

= z, and

Res

(
(ζ2 − 1)2

ζ2(ζ2 − zζ + 1)
, ζ2

)
= lim

ζ→ζ2

(ζ − ζ2)(ζ
2 − 1)2

ζ2(ζ2 − zζ + 1)
=

(ζ22 − 1)2

ζ22 (ζ2 − ζ1)
= ζ2 − ζ1 = −

√
z2 − 4.

By Cauchy’s residue theorem,

ssc(z) =
−z +

√
z2 − 4

2
, z ∈ C+.

Then we finish the proof.

Since the expression of ssc(z) is complicated, directly establish the convergence sn(z) → ssc(z) is difficult.

Luckily, we note that ssc(z) is a fixed point of the function

C\{−z} → C : s 7→ − 1

z + s
.

Inspired by this result, we can do the following reduction.

Lemma 1.20. If z ∈ C+ and

sn(z) +
1

z + sn(z)
→ 0 almost surely,

then sn(z) → ssc(z) almost surely.

Proof. We let A be an event of probability 1 on which sn(z) + 1/(z + sn(z)) → 0, and fix ω ∈ A. To show

sn(z) → ssc(z) a.s., it suffices to establish the convergence in deterministic case. Since the Siteltjes transforms

satisfy |sn(z)| ≤ |Im z|−1, the sequence (sn(z)) is a bounded and has a convergent subsequence (snk
(z)) by

Bolzano-Weierstrass theorem. Furthermore, the limit s = limk→∞ snk
(z) satisfies

s+
1

z + s
= 0, and s ∈

{
−z +

√
z2 − 4

2
,
−z −

√
z2 − 4

2

}
.

Now we select the correct branch. Since Im sn(z) > 0 for all n, we also have Im s ≥ 0. Then

s =
−z +

√
z2 − 4

2
= ssc(z).

Essentially, we show that any subsequence of (sn(z)) has a further subsequence converging to ssc(z). Hence

sn(z) → ssc(z), and we finish the proof.

Now we prove Wigner’s semicircle law through the Stieltjes transform. By Lemma 1.14, we may assume

that the diagonal entries (ξii)i≥1 are zero, and the off-diagonal entries (ξii)1≤i<j are bounded by R < ∞.

We only prove the almost sure convergence result, which is the strongest and implies the other two modes of

convergence (in probability and in expectation).
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Proof of Theorem 1.5 (ii). Let Wn,−j denote the (n− 1)× (n− 1) matrix obtained from Wn by removing the

j-th row and the j-th column. Then Wn/
√
n can be written as

Wn√
n
− z Id =

Wn,−j√
n

− z Id wn,j

w∗
n,j −z

 ,
where wn,j = (ξ1j , · · · , ξj−1,j , ξj+1,j , · · · , ξnj)⊤/

√
n. By Schur’s complement,[(

Wn√
n
− z Id

)−1
]
jj

= − 1

z + w∗
n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

.

We let

sn(z) = − 1

n

n∑
j=1

1

z + w∗
n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

= − 1

n

n∑
j=1

 1

z + sn(z)
+

sn(z)− w∗
n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

(z + sn(z))

(
z + w∗

n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

)
 = − 1

z + sn(z)
− δn(z),

where

δn(z) =
1

n

n∑
j=1

sn(z)− w∗
n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

(z + sn(z))

(
z + w∗

n,j

(
Wn,−j√

n
− z Id

)−1

wn,j

) .
We write

δn(z) =
1

n

n∑
j=1

υn,j
(z + sn(z))(z + sn(z)− υn,j)

, where υn,j = sn(z)− w∗
n,j

(
Wn,−j√

n
− z Id

)−1

wn,j .

Assume maxj∈[n] |υn,j | < |Im z|/2. Since the imaginary parts of sn(z) and z have the same sign, we have

Im(z + sn(z)) ≥ Imz, and

δn(z) ≤
1

n

n∑
j=1

υn,j
|Im z|2/2

≤ 2

|Im z|2
max
j∈[n]

|υn,j |.

Therefore, if maxj∈[n] |υn,j | → 0 almost surely as n → ∞, so does δn(z). Then (1.20) is satisfied, and we can

apply Lemma 1.20 to conclude the proof of the semicircle law. We use the following decomposition:

υn,j =

[
sn(z)−

1

n
tr

(
Wn,−j√

n
− z Id

)−1
]
−

n−1∑
k=1

(
|wn,j(k)|2 −

1

n

)[(
Wn,−j√

n
− z Id

)−1
]
kk

−
n−1∑
k ̸=k′

wn,j(k)wn,j(k
′)

[(
Wn,−j√

n
− z Id

)−1
]
kk′

=: An,j(z) +Bn,j(z) + Cn,j(z). (1.22)

Step I. Let λ1, · · · , λn be the eigenvalues of matrix Wn/
√
n, and µ1, · · · , µn−1 the eigenvalues of matrix

Wn,−j/
√
n. Then for z = E + iη with η > 0,

An,j(z) =
1

n

 n∑
j=1

1

λj − z
−

n−1∑
j=1

1

µj − z

 =
1

n

n−1∑
j=1

[
(λj − E) + iη

(λj − E)2 + η2
− (µj − E) + iη

(µj − E)2 + η2

]
+

1

n
· 1

λn − z
. (1.23)
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By Cauchy’s interlacing theorem, λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn. Then the shift of function

λ 7→ λ−E
(λ−E)2+η2 on disjoint intervals [µ1, λ1], · · · , [µn−1, λn−1] is bounded by its total variation on R:

1

n

n−1∑
j=1

∣∣∣∣ λj − E

(λj − E)2 + η2
− µj − E

(µj − E)2 + η2

∣∣∣∣ ≤ ∥∥∥∥ λ− E

(λ− E)2 + η2

∥∥∥∥
TVλ

=
2

η
.

Similarly,

1

n

n−1∑
j=1

∣∣∣∣ η

(λj − E)2 + η2
− η

(µj − E)2 + η2

∣∣∣∣ ≤ ∥∥∥∥ η

(λ− E)2 + η2

∥∥∥∥
TVλ

=
2

η
.

Then from (1.23), we obtain

|An,j(z)| ≤
5

nη
, j = 1, · · · , n. (1.24)

Step II. Let Xn,j = (Wn,−j/
√
n− z Id)−1. Then

1

n
∥Xn,j∥2F =

1

n
tr(X2

n,j) =
1

n

n−1∑
j=1

1

(λ(Wn,−j/
√
n)− z)2

≤ 1

η2
.

Note that wn,j has independent entries and is independent of Wn,−j . Then

E |Bn,j(z)|6 =
1

n6

n−1∑
k=1

E
[
(n|wn,j(k)|2 − 1)6

]
E |Xn,j(k, k)|6 ≤ R12

n6

(
n−1∑
k=1

E |Xn,j(k, k)|2
)3

≤ R12

n3η6
.

Using the case p = 6 in Lemma 1.18, there exists an absolute constant C > 0 such that

E |Cn,j(z)|6 = E

∣∣∣∣∣∣∣
n−1∑

k,k′=1,
k ̸=k′

wn,j(k)wn,j(k
′)Xn,j(k, k

′)

∣∣∣∣∣∣∣
6

≤ C
(
E∥Xn,j∥2F

)3( R√
n

)12

≤ CR12

n3η6
.

Hence for every ϵ > 0,

P
(

max
1≤j≤n

|Bn,j(z) + Cn,j(z)| > ϵ

)
≤

n∑
j=1

P (|Bn,j(z) + Cn,j(z)| > ϵ) ≤ 1

ϵ6

n∑
j=1

E|Bn,j(z) + Cn,j(z)|6

≤ 32

ϵ6

n∑
j=1

(
E|Bn,j(z)|6 + E|Cn,j(z)|6

)
≤ 32(1 + C)R12

n2η6
.

Since
∑∞

n=1 n
−2 <∞, by the Borel Cantelli lemma, we have

P
(
lim sup
n→∞

max
1≤j≤n

|Bn,j(z) + Cn,j(z)| > ϵ

)
= 0,

and max1≤j≤n |Bn,j(z) + Cn,j(z)| → 0 almost surely because ϵ > 0 is arbitrary.

Step III. Combining decomposition (1.22), estimate (1.24) and Step II, we have max1≤j≤n |υn,j | → 0 almost

surely, and the proof is completed.
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1.4 Extreme Eigenvalues: Bai-Yin Theorem

The former studies only discuss the limiting spectral distribution of Wigner matrices. In practice, we are also

interested in the extreme eigenvalues of random matrices.

Theorem 1.21 (Bai-Yin). Let Wn be an n×n complex Hermitian Wigner matrix, i.e. Wn is the topleft n×n
block of the infinite matrix (ξij)

∞
i,j=1. Assume that E|ξ+11|2 <∞ and E|ξ12|4 <∞. Then

lim
n→∞

λ1(Wn)√
n

= 2, almost surely.

Remark. In addition, if E|ξ11|2 <∞ and E|ξ12|4 <∞, we can apply the above result to both Wn and −Wn to

get the asymptotic result of the operator norm ∥Wn∥2 = |λ1(Wn)| ∨ |λn(Wn)|, which satisfies

lim
n→∞

∥Wn∥2√
n

= 2, almost surely.

By Wigner’s semicircle law, for any ϵ > 0,

1

n
NWn√

n
([2− ϵ, 2]) →

∫ 2

2−ϵ

ρsc(x) dx > 0, almost surely.

As a result, with probability 1, the number of eigenvalues of Wn/
√
n greater than 2− ϵ goes to ∞ as n→ ∞,

and the maximum eigenvalue λ1(Wn/
√
n) is greater than 2− ϵ. Since ϵ > 0 is arbitrary, we have

lim inf
n→∞

λ1(Wn)√
n

≥ 2, almost surely.

Therefore, to establish Theorem 1.21, it suffices to show that

lim sup
n→∞

λ1(Wn)√
n

≤ 2, almost surely.

Like the trick we used in previous subsections, we can remove the diagonal entries of Wigner matrices

without changing the asymptotics of the largest eigenvalue.

Lemma 1.22. Without loss of generality, one may assume all diagonal entries ξii = 0 in Theorem 1.21.

Proof. Use Rayleigh quotient:

λ1(Wn) = sup
∥u∥=1

n∑
i,j=1

zizjξij = sup
∥u∥=1

 n∑
i̸=j

zizjξij +

n∑
i=1

ξii|zi|2


≤ sup
∥u∥=1

n∑
i ̸=j

zizjξij +max
i∈[n]

ξ+ii ≤ λ1(W
◦
n) + max

i∈[n]
ξ+ii ,

where W ◦
n is obtained from setting diagonal entries of Wn to be 0. To generalize the result, it suffices to

show that maxi∈[n] ξ
+
ii/

√
n → 0 almost surely, which implies λ1(Wn) − λ1(W

◦
n) = o(1)

√
n. We take a dyadic

sequence nm = 2m, m = 1, 2, · · · . By Fubini’s theorem,

∞∑
m=0

P
(

max
i∈[nm]

ξ+ii ≥ ϵ
√
nm

)
≤

∞∑
m=0

nm∑
i=1

P(ξ+ii ≥ ϵ
√
nm) ≤ E

[ ∞∑
m=0

nm1{ϵ√nm≤ξ+11}

]

= E

 ∑
m:nm≤(ξ+11/ϵ)

2

nm

 ≤ 2E|ξ11|2

ϵ2
<∞.
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By the Borel-Cantelli theorem, with probability 1, we have maxi∈[nm] ξ
+
ii ≤ ϵ

√
nm for large enough m. Now

for nm−1 ≤ n ≤ nm,

max
i∈[n]

ξ+ii ≤ max
i∈[nm]

ξ+ii ≤ ϵ
√
nm ≤ ϵ

√
2n.

Therefore, with probability 1, one have
maxi∈[n] ξ

+
ii√

n
≤

√
2 ϵ

for large enough n. Since ϵ > 0 is arbitrary, we have maxi∈[n] ξ
+
ii/

√
n→ 0 almost surely.

Lemma 1.23 (Improved moment bound). Let Wn = (ξij)n×n be a random Hermitian matrix in Cn×n.

Assume the upper triangular entries (ξij)1≤i≤j≤n satisfies:

• (ξij)1≤i≤j are jointly independent with mean 0 and variance bounded by 1;

• supi,j∈[n] E|ξij |4 <∞; and

• supi,j∈[n] |ξij | ≤ O(nδ) almost surely, where 0 < δ < 1/2.

Let k ∈ 2N be a positive even integer of size O(log2 n). Then

E
[
tr
(
W k

n

)]
≤ Ck/2n

1+ k
2 +O

(
2kk22n2δ+

k
2

)
. (1.25)

Proof. By our previous discussion in §1.2.1,

E
[
tr
(
W k

n

)]
=

∑
i1,··· ,ik∈[n]

E
[
ξi1i2ξi2i3 · · · ξin−1inξini1

]
=
∑
s∈S∗

k

n(n− 1) · · ·
(
n− k

2

)
E
[
ξi1i2ξi2i3 · · · ξin−1inξini1

]
+
∑
s∈S◦

k

∑
(i1,··· ,ik)∈Is

n

E
[
ξi1i2ξi2i3 · · · ξin−1inξini1

]
≤ Ck/2n

1+ k
2 +

∑
(i1,··· ,ik)∈Is

n

E
[
ξi1i2ξi2i3 · · · ξin−1inξini1

]
︸ ︷︷ ︸

An,k

,

where S∗
k is the set of shapes with k/2+ 1 vertices and k/2 edges, with each edge traversed exactly twice, and

S◦
k is the set of shapes with at most k/2 vertices, with each edge traversed at least twice.

We order the ℓ distinct edges e1, · · · , eℓ by their first appearance in the cycle (i1, · · · , ik), and let α1, · · · , αℓ

be the multiplicity of these edges. Then the αj ’s are all at least 2 and add up to k. By the moment hypothesis,

E|ξij |α ≤
√

E|ξij |2(α−2)E|ξij |4 = n(α−2)δ
√
E|ξij |4.

Since α1 + · · ·+ αℓ = k, we have

E [ξi1i2ξi2i3 · · · ξiki1 ] ≤ O(nδ)k−2ℓ.

Let Nα1,··· ,αℓ
be the number of cycles (i1, · · · , ik) with edge multiplicities (α1, · · · , αℓ). Then

An,k =

k/2−1∑
ℓ=1

∑
α1,··· ,αℓ≥2
α1+···+αℓ=k

Nα1,··· ,αℓ
O(nδ)k−2ℓ.

Given a cycle (i1, · · · , ik), one traverses its k steps one at a time. We use several classifications for the steps:

• High-multiplicity steps, which use an edge ej with multiplicity αj ≥ 3.

• Fresh steps, which use an edge ej with multiplicity αj = 2 for the first time. We subdivide them into:

– Innovative steps, which points at a vertex one has not visited before; and

– Non-innovative steps, which points at a vertex one has visited before.
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• Return steps, which use an edge ej with multiplicity αj = 2 that is traversed by a previous fresh step.

We subdivide them into:

– Forced steps, which start from a vertex v such that, at the time one is performing that step, there

is only one available edge from v; and

– Unforced steps, otherwise.

We assume there are h high-multiplicity edges, leading to ℓ − h fresh steps and theor ℓ − h return step

counterparts. Then the number of high multiplicity steps
∑

αj>2 αj = k − 2(ℓ− h) ≥ 3h, and h ≤ k − 2ℓ.

We assume there are m non-innovative steps among the ℓ − h fresh steps, leaving ℓ − h − m innovative

steps. Then we have either ℓ < k/2 or m > 0.

Furthermore, at any given time point in traversing a cycle (i1, · · · , ik), one define an available edge to be

an edge ej with αj = 2 such that ej is already traversed by its fresh step but not by its return step. Then at

any given time, there are three cases:

• one travels along a high-multiplicity step;

• one explores a fresh step, thus creating a new available edge;

• one returns along an available edge, thus removing that edge from availability.

We assume there are r unforced return steps among the ℓ − h return steps. Let v be a vertex visited by

the cycle which is not the initial vertex i1. Then the very first arrival at v comes from a fresh step, which

immediately becomes available. Each departure from v may create another available edge from v, but each

subsequent arrival at v will delete an available step from v, unless the arrival is along a non-innovative or

high-multiplicity edge. Finally, any return step starting from v will also delete an available edge from v.

This has two consequences. Firstly, if there are no non-innovative or high-multiplicity edges arriving at v,

then whenever one arrives at v, there is at most one available edge from v, and so every return step from v is

forced. (And there will be only one such return leg.) If instead there are non-innovative or high-multiplicity

edges arriving at v, then we see that the number of return steps from v is at most one plus the number of

such edges. In both cases, we conclude that the number of unforced return legs from v is bounded by twice

the number of non-innovative or high-multiplicity edges arriving at v. Summing over v, we obtain that

r ≤ 2

m+
∑
αj>2

αj

 = 2(m+ k − 2ℓ+ 2h) ≤ 2(m+ 3k − 6ℓ). (1.26)

Now we count Nα1,··· ,αℓ
. We first fix m and r and record the corresponding cycles (i1, · · · , ik).

(i) There are n choices for the initial vertex i1;

(ii) For each high-multiplicity edge ej (in increasing order of j), allocate αj locations in the cycle. There are

at most k
∑

αj>2 αj = kk−2(ℓ−h) choices.

(iii) Record the destination of (the first occurence of) ej for each such j, creating nh choices.

(iv) For each innovative fresh step, record the destination of that step, leading to an additional list of ℓ−h−m
vertices with at most nℓ−h−m choices.

(v) For each non-innovative step, allocate a position in {1, · · · , k}, creating km choices.

(vi) For each unforced return step, allocate a position in {1, · · · , k}, creating kr choices.

(vii) Finally, we record a simple random walk of length k, in which we set the difference +1 whenever the step

is innovative, and −1 otherwise. This creates at most 2k choices. Note that the positions of innovative

steps and forced return steps are determined by (v), (vi) and this walk.

Together with h,m, r, one can reconstruct the original cycle (i1, · · · , ik) from the above data: as one

traverses the cycle, the data already tells us which steps are high-multiplicity, which ones are innovative,

which ones are non-innovative, and which ones are return steps. In all edges in which one could possibly
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visit a new vertex, the location of that vertex has been recorded. For all unforced returns, the data tells us

which fresh step to backtrack upon to return to. Finally, for forced returns, there is only one available leg to

backtrack to, and so one can reconstruct the entire cycle from this data. As a consequence, for fixed h, m and

r, and by (1.26), there are at most

nkk−2(ℓ−h)nhnℓ−h−mkmkr2k = n1+ℓ−mkk+r−2(ℓ−h)2k ≤ n1+ℓ−mk2m+9(k−2ℓ)2k

contributions to Nα1,··· ,αℓ
. Summing over the possible values of m, r, for n > 2k2, we have

Nα1,··· ,αℓ
≤ 2kn1+ℓk9(k−2ℓ)

k−2ℓ∑
h=0

ℓ−h∑
m=0

k2m

nm
= 21+kn1+ℓk9(k−2ℓ)+1,

For ℓ < k/2, the numbers α1 − 1, · · · , αℓ − 1 are positive integers and add up to k − ℓ. Then there are
(
k−ℓ
ℓ

)
solutions of (α1, · · · , αℓ) in total, and

An,k = 21+k

k/2−1∑
ℓ=1

O(nδ)k−2ℓn1+ℓk9(k−2ℓ)+1
∑

α1,··· ,αℓ≥2
α1+···+αℓ=k

1 ≤ 21+k

k/2−1∑
ℓ=1

O(nδ)k−2ℓn1+ℓk10(k−2ℓ)+1


≤ 21+kk1+10kn1+kδO

k/2−1∑
ℓ=1

n(1−2δ)ℓk−20ℓ

 ≤ 21+kk1+10kn1+kδ

(
k

2
− 1

)
O
(
n1−2δk−20

)k/2−1

≤ O
(
2kk22n2δ+k/2

)
.

Thus we finish the proof of the improved moment bound (1.25).

Proof of Theorem 1.21. By Lemma 1.22, we assume that the diagonal entries (ξii) are identically zero.

Step I. We pick δ = 0.49 ∈ (0, 12 ) and split each

ξij = ξij1{|ξij |≤nδ} + ξij1{|ξij |>nδ} =: ξ̂ij + ξ̃ij ,

and split Wn = Ŵn + W̃n accordingly. Clearly,∣∣Eξ̂ij∣∣ = ∣∣Eξ̃ij∣∣ ≤ n−3δE
∣∣ξ̃ij∣∣4 ≤ n−3δE |ξij |4.

Then ∥∥EŴnu
∥∥2
2
≤

n∑
i=1

 n∑
j=1

∣∣Eξ̂ij∣∣ |uj |
2

≤ O(n−6δ)

n∑
i=1

 n∑
j=1

|uj |

2

= O(n2−6δ),

and consequently ∥EŴn∥2 = O(n1−3δ), which is smaller than ϵ/3 for large enough n.

Step II. We write Ŵn =Wn +EŴn. For large enough even number n ∈ 2N and k = ⌈log2 n⌉, by Lemma 1.23,

E
[
tr
(
W

k

n

)]
≤ Ck/2n

1+ k
2 +O

(
2kk22n2δ+

k
2

)
≤ 2kn1+

k
2 +O

(
2kk22n2δ+

k
2

)
= 2kO(n1+

k
2 ).

Note that λ1(Wn)
k ≤ tr(W

k

n) = λ1(Wn)
k + · · ·+ λn(Wn)

k. By Markov’s inequality,

P
(
λ1(Wn) >

(
2 +

ϵ

3

)√
n
)
=

(
2

2 + ϵ/3

)k

O(n) ≤ O(n1−log(1+ϵ/6)·logn).

Note the series
∑∞

n=1 n
1−c logn converges for each c > 0. By the Borel-Cantelli lemma, with probability, for

28



large enough n,

λ1(Wn) ≤
(
2 +

ϵ

3

)√
n.

Step III. To control W̃n, we use dyadic sparsification. Take nm = 2m, m = 1, 2, · · · . We first prove that the

entries Wnm
is asymptotically almost surely bounded by O(

√
nm). Note that

P
(
|ξij | ≥

ϵ

6

√
n
)
≤ 1296

n2ϵ4
E
∣∣ξij1{|ξij |≥ϵ

√
n/3}

∣∣4, i < j.

By Fubini’s theorem,

∞∑
m=0

P
(

max
i,j∈[nm]

|ξij | ≥
ϵ

6

√
nm

)
≤

∞∑
m=0

n2mP
(
|ξ12| ≥

ϵ

6

√
nm

)
≤ E

[ ∞∑
m=0

n2m1{|ξ12|≥ϵ
√
nm/6}

]

= E

 ∑
m:nm≤36|ξ12|2/ϵ2

n2m

 ≤ cϵ ·
(
E|ξ12|4

)
<∞,

where the last inequality follows from that for all q > 1 and K ≥ 1,

∑
m:qm≤K

qm ≤ Kq

q − 1
,

and cϵ > 0 is a constant depending only on ϵ. By the Borel-Cantelli lemma, with probability 1, for large

enough m, all entries of W̃nm are bounded by ϵ
√
nm/3.

Now we exploit the sparseness of W̃n to control its operator norm. By Markov’s inequality and the fourth

moment condition, each entry has a probability O(n−4δ) of being zero. Consequently, the probability that at

least one column or row of W̃n has two nonzero entries is at most

n2 ·O(n−4δ)2 = O(n2−8δ)

Note the geometric series
∑∞

m=0 n
2−8δ
m <∞. By the Borel-Cantelli lemma, with probability 1, for large enough

m, all columns and rows of the matrix W̃nm
has at most one nonzero entry, bounded by ϵ

√
nm/6, and∥∥W̃nm

∥∥
2
= sup

∥u∥2=1

∥∥W̃nm
u
∥∥
2
≤ ϵ

6

√
nm.

By Cauchy’s interlacing theorem, ∥∥W̃n

∥∥
2
≤
∥∥W̃nm

∥∥
2
≤ ϵ

6

√
nm ≤ ϵ

3

√
n.

Step IV. By the last three steps and Weyl’s inequality, with probability 1, we have

λ1(Wn) ≤ λ1(Wn) +
∥∥EŴn

∥∥
2
+
∥∥W̃n

∥∥
2
≤ (2 + ϵ)

√
n

for large enough n. Since ϵ > 0 is arbitrary, we take ϵ ↓ 0 and conclude that

lim sup
n→∞

λ1(Wn)√
n

≤ 2.

Combining this result with Wigner’s semicircle law, we finish the proof.
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2 Sample Covariance Matrices and the Marčenko-Pastur Law

General setting. Suppose we observe n independent samples of an m-dimensional feature vector x(j) =

(x1j , · · · , xmj)
⊤, and arrange them as the columns of a data matrix Xn ∈ Cm×n, i.e. Xn = [x(1), · · · , x(n)]

with (real or complex) entries (xij) that are i.i.d., with zero mean, and unit variance. The sample covariance

is the m×m Hermitian matrix

Sn =
1

n

n∑
j=1

xjx
∗
j =

1

n
XnX

∗
n.

We study the empirical spectral distribution (ESD) of Sn, denoted µSn
, which places mass 1/m at each

eigenvalue of Sn. In the high-dimensional regime, we work on a proportional asymptotics model: both the

feature dimension m = mn and the sample size n grow, and their ratio

mn

n
→ α ∈ (0,∞) as n→ ∞.

where α is called the aspect ratio. Note that when α > 1, Sn has rank at most n < m, so a proportion 1− 1/α

of its eigenvalues are exactly zero in the limit.

Theorem 2.1 (Marčenko-Pastur Law). Suppose that (xij)
∞
i,j=1 are i.i.d. complex random variables with mean

zero and variance 1, and Xn = (xij)i∈[mn],j∈[n]. Also assume that mn/n→ α ∈ (0,∞). Then

µ 1
nXnX∗

n
→ µMPα

weakly almost surely,

where µMPα
is the Marčenko-Pastur distribution, which has density function

ρMPα(x) =

√
(λα+ − x)(x− λα−)

2παx
1[λα−,λα+](x), x ∈ R,

and has an atom of mass 1− 1/α at the origin if α > 1, where λα− = (1−
√
α)2 and λα+ = (1+

√
α)2. Here,

the constant α ∈ (0,∞) is the aspect ratio.

Remark. By the Portmanteau lemma, the proportion of eigenvalues of 1
nXnX

∗
n in [a, b] is

1

mn
N[a,b]

(
1

n
XnX

∗
n

)
→
∫ b∧λα+

a∨λα−

√
(λα+ − x)(x− λα−)

2παx
dx+

(
1− 1

α

)
+

1{0∈[a,b]}, almost surely.

2.1 The Resolvent Method

2.1.1 Reduction to the Bounded Case

For covariance matrices, we have a rank perturbation result similar to Lemma 1.12.

Lemma 2.2 (Low rank purterbation). Let A,B ∈ Cm×n. Then

∥FBB∗ − FAA∗∥∞ ≤ rank(A−B)

m
, (2.1)

where FAA∗ , FBB∗ are cumulative distribution functions of ESDs of the corresponding covariance matrices.

Proof. We let D = A−B, and write rank(D) = k, and by Weyl’s inequality,

σj+k+1(A) ≤ σj+1(B), σj+k+1(B) ≤ σj+1(A), j = 0, · · · ,min{m,n} − k − 1.

30



Then for all x ∈ [σj+1(B), σj(B)),

FBB∗(x) = 1− j

m
= 1− j + k

m
+
k

m
≤ FAA∗(x) +

k

m
.

In fact, this implies

FBB∗(x)− FAA∗(x) ≤ k

m
, for all x ∈ R.

Similarly, FAA∗(x)− FBB∗(x) ≤ k/m for all x ∈ R. This completes the proof of (2.1).

Here is another estimate similar to Lemma 1.11.

Lemma 2.3. Let A,B ∈ Cm×n. Then

ρL(FAA∗ , FBB∗)4 ≤ 2 tr(AA∗ +BB∗)

m2
∥A−B∥2F.

Proof. By Lemma 1.11, the Cauchy-Schwartz inequality and the Hoffman-Wielandt inequality,

ρL(FAA∗ , FBB∗)2 ≤ 1

m

m∑
j=1

∣∣σj(A)2 − σj(B)2
∣∣

≤ 1

m

 m∑
j=1

|σj(A) + σj(B)|2
1/2 m∑

j=1

|σj(A)− σj(B)|2
1/2

≤ 1

m

2

m∑
j=1

σj(A)
2 + 2

m∑
j=1

σj(B)2

1/2 m∑
j=1

|σj(A)− σj(B)|2
1/2

≤ 1

m
(2 tr(AA∗ +BB∗))

1/2 ∥A−B∥F.

Then we finish the proof.

Lemma 2.4. In Theorem 2.1, one may assume without loss of generality that the i.i.d. variables (xij)
∞
i,j=1

are bounded.

Proof. We define

xij = xij1{|xij |≤N}, x̂ij = xij − E [xij ] , x̃ij =
x̂ij√
E|x̂ij |2

, i, j = 1, 2, · · · .

and set Xn = (xij)i∈[mn],j∈[n], X̂n = (x̂ij)i∈[mn],j∈[n], and X̃n = (x̃ij)i∈[mn],j∈[n]. By Lemma 2.3,

ρL

(
F 1

nXnX∗
n
, F 1

nXnX
∗
n

)4
≤ 2

m2
nn

2

(
∥Xn∥2F + ∥Xn∥2F

)∥∥Xn −Xn

∥∥2
F

=

 2

mnn

mn∑
i=1

n∑
j=1

(
|xij |2 + |xij |21{|xij |≤N}

) 1

mnn

mn∑
i=1

n∑
j=1

|xij |21{|xij |>N}


≤

 4

mnn

mn∑
i=1

n∑
j=1

|xij |2
 1

mnn

mn∑
i=1

n∑
j=1

|xij |21{|xij |>N}


→ 4E

[
|x11|21{|x11|>N}

]
almost surely.

By Lemma 2.2,

ρL

(
F 1

nX
∗
nX

∗
n
, F 1

n X̂∗
nX̂

∗
n

)
≤ rank(EXn)

mn
=

1

mn
,
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which converges to 0 deterministically. Finally,

ρL

(
F 1

n X̂nX̂∗
n
, F 1

n X̃nX̃∗
n

)4
≤ 2

m2
nn

2

(
∥X̂n∥2F + ∥X̃n∥2F

)∥∥∥X̂n − X̃n

∥∥∥2
F

= 2

 1 + E|x̂11|2

mnnE|x̂11|2
mn∑
i=1

n∑
j=1

|x̂ij |2
(1−√E|x̂11|2

)2
mnnE|x̂11|2

mn∑
i=1

n∑
j=1

|x̂ij |2


→ 2
(
1 + Var(x111{|x11|≤N})

) (
1−

√
Var(x111{|x11|≤N})

)2
almost surely.

Note that as N ↑ ∞, both E
[
|x11|21{|x11|>N}

]
and 1−

√
Var
(
x111{|x11|≤N}

)
converges to 0. Hence given any

ϵ > 0, we can find N > 0 large enough such that

lim sup
n→∞

ρL

(
F 1

nXnX∗
n
, F 1

n X̃nX̃∗
n

)
< ϵ almost surely.

If Theorem 2.1 holds for sample covariance matrices of bounded random variables, then F 1
n X̃nX̃∗

n
→ FMPα

for

all N > 0, and

lim sup
n→∞

ρL

(
F 1

nXnX∗
n
, FMPα

)
< ϵ almost surely.

Since ϵ > 0 is arbitrary, we conclude that F 1
nXnX∗

n
→ FMPα weakly almost surely and complete the proof.

2.1.2 The Steiltjes transform of the Marčenko-Pastur Law

Now we can derive the limiting distribution of the sample covariance matrix 1
nXnX

∗
n by using the Stieltjes

transform. To begin with, we compute the Stieltjes transform of the Marčenko-Pastur distribution.

Lemma 2.5. Let α > 0. The Stieltjes transform of the M-P distribution is

sMPα
(z) =

1− α− z +
√
(1− α− z)2 − 4αz

2αz
, z ∈ C+.

Proof. Fix z ∈ C+. If α < 1,

sMPα(z) =

∫ λα+

λα−

√
(x− λα−)(λα+ − x)

2πα(x− z)x
dx,

where λα− = (1−
√
α)2 and λα+ = (1 +

√
α)2. We let x = 1 + α+ 2

√
α cos θ. Then

sMPα
(z) =

2

π

∫ π

0

sin2 θ

(1 + α+ 2
√
α cos θ − z)(1 + α+ 2

√
α cos θ)

dθ

=
1

π

∫ 2π

0

(
eiθ−e−iθ

2i

)2
(1 + α+

√
α(eiθ + e−iθ)− z)(1 + α+

√
α(eiθ + e−iθ))

dθ

= − 1

4πi

∫
|ζ|=1

(
ζ − ζ−1

)2
(1 + α+

√
α(ζ + ζ−1)− z)(1 + α+

√
α(ζ + ζ−1))

ζ−1 dζ

= − 1

4πi

∫
|ζ|=1

(
ζ2 − 1

)2
ζ((1 + α− z)ζ +

√
α(ζ2 + 1))((1 + α)ζ +

√
α(ζ2 + 1))

dζ.
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This integrand has five simple poles at

ζ0 = 0, ζ1 = −
√
α, ζ2 = − 1√

α
,

ζ3 =
−(1 + α− z) +

√
(1 + α− z)2 − 4α

2
√
α

, ζ4 =
−(1 + α− z)−

√
(1 + α− z)2 − 4α

2
√
α

.

The residuals at these poles are

Res(ζ0) =

(
ζ20 − 1

)2
((1 + α− z)ζ0 +

√
α(ζ20 + 1))((1 + α)ζ0 +

√
α(ζ20 + 1))

=
1

α
,

Res(ζ1) =

(
ζ21 − 1

)2
αζ1(ζ1 − ζ2)(ζ1 − ζ3)(ζ1 − ζ4)

=
ζ1(ζ1 − ζ2)

α(ζ1 − ζ3)(ζ1 − ζ4)
= −1− α

αz
,

Res(ζ2) =

(
ζ22 − 1

)2
αζ2(ζ2 − ζ1)(ζ2 − ζ3)(ζ2 − ζ4)

=
ζ2(ζ2 − ζ1)

α(ζ2 − ζ3)(ζ2 − ζ4)
=

1− α

αz
,

Res(ζ3) =

(
ζ23 − 1

)2
αζ3(ζ3 − ζ1)(ζ3 − ζ2)(ζ3 − ζ4)

=
ζ3(ζ3 − ζ4)

α(ζ3 − ζ1)(ζ3 − ζ2)
=

√
(1 + α− z)2 − 4α

αz
,

Res(ζ4) =

(
ζ24 − 1

)2
αζ4(ζ4 − ζ1)(ζ4 − ζ2)(ζ4 − ζ3)

=
ζ4(ζ4 − ζ3)

α(ζ4 − ζ1)(ζ4 − ζ2)
= −

√
(1 + α− z)2 − 4α

αz
.

Recalling (1.21), we know that Re
√
(1 + α− z)2 − 4α and Re(z − 1 − α) has the same sign, and |ζ3| > |ζ4|.

Note that ζ3ζ4 = 1, we have |ζ3| > 1 > |ζ4|. Hence poles ζ0, ζ1 and ζ4 are inside the contour {ζ ∈ C : |ζ| = 1},
and their residues should be counted into the integral. By Cauchy’s residue theorem,

sMPα
(z) = −1

2

(
1

α
− 1− α

αz
−
√
(1 + α− z)2 − 4α

αz

)
=

1− α− z +
√
(1 + α− z)2 − 4α

2αz
.

If α = 1, the above contour integral becomes

sMPα
(z) = − 1

4πi

∫
|ζ|=1

(
ζ2 − 1

)2
ζ((2− z)ζ + ζ2 + 1)(2ζ + ζ2 + 1)

dζ = − 1

4πi

∫
|ζ|=1

(ζ − 1)
2

ζ((2− z)ζ + ζ2 + 1)
dζ.

The integrand only has three simple poles at ζ0, ζ3 and ζ4. Since the poles ζ0 and ζ4 are inside the contour

{ζ ∈ C : |ζ| = 1}, we have

sMPα
(z) = −1

2

(
1−

√
(2− z)2 − 4

z

)
=

−z +
√
(2− z)2 − 4

2z
.

Finally, if α > 1, the M-P distribution has a point mass 1− 1/α at zero, and

sMPα
(z) =

∫ λα+

λα−

√
(x− λα−)(λα+ − x)

2πα(x− z)x
dx− 1

z

(
1− 1

α

)
,

We can apply the same contour integral trick as in the case α < 1, except in this case the poles ζ0, ζ2 and ζ4

are inside the contour {ζ ∈ C : |ζ| = 1}. Then

sMPα(z) = −1

2

(
1

α
+

1− α

αz
−
√
(1 + α− z)2 − 4α

αz

)
− α− 1

αz
=

1− α− z +
√
(1 + α− z)2 − 4α

2αz
.

Note that
√
(1 + α− z)2 − 4α =

√
(1− α− z)2 − 4αz. Then we complete the proof.
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Like the proof of the semicircle law, we note that sMPα
(z) is a fixed point of the function

C\
{
1− α− z

αz

}
→ C : s 7→ 1

1− α− z − αzs
, (2.2)

Then we can establish the convergence result through the following lemma.

Lemma 2.6. Let α > 0 and z ∈ C+. Then the function (2.2) has two fixed points

s+,− =
1− α− z ±

√
(1− α− z)2 − 4αz

2αz
.

(i) Im (1− α− z − αzs−) ≥ − Im(z/2).

(ii) If ν is a probability distribution supported on [0,∞), then

Im (1− α− z − αzsν(z)) ≤ − Im z. (2.3)

(iii) Let µn be the ESD of the covariance matrix 1
nXnX

∗
n, and let Sn be the Stieltjes transform of µn. If

sn(z)−
1

1− αn − z − αnzsn(z)
→ 0 almost surely,

where αn = mn/n for n ∈ N, then sn(z) → s+ = sMPα
(z) almost surely.

Proof. (i) Note that the square root always has nonnegative imaginary part. Then

Im (1− α− z − αzs−) = Im

(
1− α− z +

√
(1− α− z)2 − 4αz

2

)
≥ − Im z

2
.

(ii) We let z = E + iη, where η > 0. Then

Im(zsν(z)) = ηRe sν(z) + ξ Im sν(z) = η

∫ ∞

0

x

(x− ξ)2 + η2
dν(x).

Then

Im (1− α− z − αzsν(z)) = −η
(
1 + α

∫ ∞

0

x

(x− ξ)2 + η2
dν(x)

)
≤ −η,

which is (2.3). In particulr, if sν(z) is a fixed point of (2.2), it equals s+ = sMPα
(z).

(iii) We fix our discussion on an event of probability 1 on which sn(z)+1/(1−αn−z−αnzsn(z)) → 0. To show

sn(z) → sMPα
(z) a.s., it suffices to establish the convergence in deterministic case. Since |sn(z)| ≤ |Im z|−1,

the sequence (sn(z)) is a bounded and has a convergent subsequence (snk
(z)) by Bolzano-Weierstrass theorem.

Also, as n→ ∞ we have αn = mn/n→ α, hence the limit s = limk→∞ snk
(z) satisfies

s+
1

1− α− z − αzs
= 0, and s ∈ {s+, s−} .

Now we select the correct branch. Since XnX
∗
n/n is positive-semidefinite, its ESD is supported on [0,∞), and

Im(1−α− z−αzsn(z)) ≤ − Im z by Lemma 2.6 (ii). Let n = nk → ∞, we have Im(1−α− z−αzs) ≤ − Im z,

and by (i),

s = s+ =
1− α− z ±

√
(1− α− z)2 − 4αz

2αz
= sMPα(z).

Essentially, we show that every subsequence of (sn(z)) has a further subsequence converging to sMPα
(z).

Therefore sn(z) → sMPα
(z), and we finish the proof.
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2.1.3 Proof of the Marčenko-Pastur Law

Now we use the Siteltjes transform to prove the Marčenko-Pastur law. By Lemma 2.4, we may assume that

|ξ11| ≤ R for some R ∈ (0,∞),

Proof of Theorem 2.1. Step I. We denote by Xn,−j the (mn − 1) × n matrix obtained from Xn by removing

the j-th row, and denote by ρn,j ∈ Rn the removed row. Then we write

1

n
XnX

∗
n − z Id =

[
1
nXn,−jX

∗
n,−j − z Id 1

nXn,−jρn,j

1
nρ

∗
n,jX

∗
n,−j

1
nρ

∗
n,jρn,j − z

]

Using Schur’s complement, we have[(
1

n
XnX

∗
n − z Id

)−1
]
jj

=
1

1
nρ

∗
n,jρn,j − z − 1

n2 ρ∗n,jX
∗
n,−j

(
1
nXn,−jX∗

n,−j − z Id
)−1

Xn,−jρn,j
.

We let θn,j =
1
nρ

∗
n,jρn,j − z − 1

n2 ρ
∗
n,jX

∗
n,−j

(
1
nXn,−jX

∗
n,−j − z Id

)−1
Xn,−jρn,j . Then

sn(z) =
1

mn

mn∑
j=1

1

θn,j
=

1

mn

mn∑
j=1

[
1

1− αn − z − αnzsn(z)
− θn,j − 1 + αn + z + αnzsn(z)

(1− αn − z − αnzsn(z)) θn,j

]
=

1

1− αn − z − αnzsn(z)
− δn(z),

where

δn(z) =
1

mn

m∑
j=1

υn,j
(1− αn − z − αnzsn(z))(1− αn − z − αnzsn(z) + υn,j)

, j = 1, 2, · · · ,

and υn,j = θn,j − (1− αn − z − αnzsn(z)) for j = 1, 2, · · · . More specifically,

υn,j =
1

n
ρ∗n,jρn,j − 1− 1

n2
ρ∗n,jX

∗
n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−jρn,j + αn + αnzsn(z).

We use the following decomposition:

υn,j =
1

n
ρ∗n,jρn,j − 1

− 1

n2

n∑
k ̸=k′

ρn,j(k)

[
X∗

n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

]
kk′

ρn,j(k
′)

− 1

n2

n∑
k=1

(
|ρn,j(k)|2 − 1

) [
X∗

n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

]
kk

− 1

n2
tr

[
X∗

n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

]
+ αn + αnzsn(z)

=: An,j(z) +Bn,j(z) + Cn,j(z) +Dn,j(z).

(2.4)

Assume |υn,j | ≤ |Im z|/2. By Lemma 2.6 (ii), Im(1− αn − z − αnzsn(z)) < −|Im z|, and

δn(z) =
1

mn

mn∑
j=1

υn,j
(1− αn − z − αnzsn(z))(1− αn − z − αnzsn(z) + υn,j)

≤ 1

mn

mn∑
j=1

2υn,j

|Im z|2
.

35



Therefore, if we can prove that maxj∈[n] υn,j → 0 almost surely, then

δn = sn(z)−
1

1− αn − z − αnzsn(z)
→ 0 almost surely,

and we complete the proof by Lemma 2.6 (iii).

Step II. We first study the term An,j(z). By (1.16) in Lemma 1.18, we can find an absolute constant C0 > 0

such that

E |An,j(z)|3 =
1

n3
E

∣∣∣∣∣∣
n∑

j=1

(ρn,j(k)
2 − 1)

∣∣∣∣∣∣
3

≤ C0R
6

n3
.

Then for any ϵ > 0,

P
(
max
j∈[n]

|An,j(z)| ≥ ϵ

)
≤

n∑
j=1

P (|An,j(z)| ≥ ϵ) ≤ 1

ϵ3

n∑
j=1

E |An,j(z)|3 ≤ C0R
6

n2
.

Noticing that
∑∞

n=1 n
−2 <∞, by the Borel-Cantelli lemma,

P
(
lim sup
n→∞

max
j∈[n]

|An,j(z)| ≥ ϵ

)
= 0

Since ϵ > 0, we have

max
j∈[n]

|An,j(z)| → 0 almost surely. (2.5)

Step III. Now we deal with the terms Bn,j(z) and Cn,j(z). We first introduce a technical lemma.

Lemma 2.7. Let X ∈ Cm×n and z ∈ C+. Then∥∥∥∥∥X∗
(
1

n
XX∗ − z Id

)−1

X

∥∥∥∥∥
2

F

≤ mn2
(
1 +

|z|
|Im z|

)2

.

Proof. Note that (A− z Id)−1A = Id+z(A− z Id)−1 for any Hermitian matrix A ∈ Cn×n. Then

∥∥∥∥X∗
(
1

n
XX∗ − z Id

)
X

∥∥∥∥2
F

=

∥∥∥∥∥
(
1

n
XX∗ − z Id

)−1

XX∗

∥∥∥∥∥
2

F

= n2

∥∥∥∥∥Id+z
(
1

n
XX∗ − z Id

)−1
∥∥∥∥∥
2

F

.

Since all eigenvalues of 1
nXX

∗ − z Id ∈ Cm×m have imaginary part Im z > 0, we have∥∥∥∥∥Id+z
(
1

n
XX∗ − z Id

)−1
∥∥∥∥∥
2

F

≤
m∑
j=1

(
1 +

|z|
|Im z|

)2

= m

(
1 +

|z|
|Im z|

)2

.

Then we finish the proof of (2.7).

Since ρn,j has independent entries and is independent of Xn,−j , by (1.17) in Lemma 1.18 and Lemma 2.7,

E|Bn,j(z)|6 ≤ C1R
12

n12

∥∥∥∥∥X∗
n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

∥∥∥∥∥
6

F

≤ C1m
3
nR

12

n6

(
1 +

|z|
|Im z|

)6

,

where C1 > 0 is an absolute constant. Note that E
[
ρn,j(k)

2 − 1
]
= 0 for all k ∈ [n]. Then we apply (1.16) in
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Lemma 1.18 and Lemma 2.7 to obtain,

E|Cn,j(z)|6 ≤ C2R
12

n12
E

∣∣∣∣∣∣
n∑

k=1

∣∣∣∣∣
[
X∗

n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

]
kk

∣∣∣∣∣
2
∣∣∣∣∣∣
3

≤ C2m
3
nR

12

n6

(
1 +

|z|
|Im z|

)6

,

where C2 > 0 is an absolute constant. Then for any ϵ > 0,

P
(
max
j∈[n]

|Bn,j(z) + Cn,j(z)| > ϵ

)
≤

n∑
j=1

P (E|Bn,j(z) + Cn,j(z)| > ϵ) ≤ n|Bn,j(z) + Cn,j(z)|6

ϵ6

≤ 32n

ϵ6
(
E|Bn,j(z)|6 + E|Cn,j(z)|6

)
≤ 32(C1 + C2)m

3
nR

12

n5

(
1 +

|z|
|Im z|

)6

.

Since mn/n → α ∈ (0,∞) as n → ∞, the above probability bound decays in the rate of n−2. Noticing the

fact
∑∞

n=1 n
−2 <∞, we can apply Borel-Cantelli lemma to conclude that

max
j∈[n]

|Bn,j(z) + Cn,j(z)| → 0 almost surely. (2.6)

Step IV. Note that (A− z Id)−1A = Id+z(A− z Id)−1 for any Hermitian matrix A ∈ Cn×n. Then

1

n2
tr

[
X∗

n,−j

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−j

]
=

1

n2
tr

[(
1

n
Xn,−jX

∗
n,−j − z Id

)−1

Xn,−jX
∗
n,−j

]

= − 1

n
tr

[
Id+z

(
1

n
Xn,−jX

∗
n,−j − z Id

)−1
]
= −mn − 1

n
− z

n
tr

[(
1

n
Xn,−jX

∗
n,−j − z Id

)−1
]

Then the term Dn,k(z) in (2.4) satisfies

|Dn,j(z)| =

∣∣∣∣∣αn − mn − 1

n
+
αnz

mn
tr

[(
1

n
XnX

∗
n − z Id

)−1
]
− z

n
tr

[(
1

n
Xn,−jX

∗
n,−j − z Id

)−1
]∣∣∣∣∣

=
1

n

∣∣∣∣∣1 + z tr

[(
1

n
XnX

∗
n − z Id

)−1
]
− z tr

[(
1

n
Xn,−jX

∗
n,−j − z Id

)−1
]∣∣∣∣∣ . (2.7)

Lemma 2.8. Let A ∈ Cn×n be an Hermitian matrix, and obtain A−j ∈ C(n−1)×(n−1) from A by removing the

j-th row and j-th column. Let z ∈ C+. Then

∣∣tr [(A− z Id)−1
]
− tr

[
(A−n − z Id)−1

]∣∣ ≤ 1

|Im z|
, j = 1, 2, · · · , n.

Proof. Without loss of generality, we may assume j = n and write

A =

[
A−n αn

α∗
n ann

]
.

We let βn(z) = ann − z − α∗
n(A−n − z Id)−1αn. By Schur’s complement,

(A− z Id)−1 =
1

βn(z)

[
βn(z)(A−n − z Id)−1 + (A−n − z Id)−1αnα

∗
n(A−n − z Id)−1 −(A−n − z Id)−1αn

−α∗
n(A−n − z Id) 1

]
.
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Then

tr
[
(A− z Id)−1 − (A−n − z Id)−1

]
=

1

βn(z)
tr

[
(A−n − z Id)−1αnα

∗
n(A−n − z Id)−1 0

0 1

]

=
1

βn(z)

[
1 + tr

[
(A−n − z Id)−1αnα

∗
n(A−n − z Id)−1

]]
=

1

βn(z)

(
1 + α∗

n (A−n − z Id)
−2
αn

)
.

We take the eigendecomposition A−n = U∗ΛU , where Λ = diag(λ1, · · · , λn−1) ∈ Rn×n and U is unitary. Then

∣∣∣α∗
n (A−n − z Id)

−2
αn

∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

|(Uαn)j |2

(λj − z)2

∣∣∣∣∣∣ ≤
n∑

j=1

|(Uαn)j |2

(λj − ξ)2 + η2

= α∗
nU

∗ [(Λ− ξ Id)2 + η2 Id
]−1

Uαn = α∗
n

[
(A−n − ξ Id)2 + η2 Id

]−1
αn.

With a similar trick we also have

α∗
n (A−n − z Id)

−1
αn =

n∑
j=1

|(Uαn)j |2

λj − z
=

n∑
j=1

(λj − ξ)|(Uαn)j |2

(λj − ξ)2 + η2
+ iη

n∑
j=1

|(Uαn)j |2

(λj − ξ)2 + η2
,

and

Imβn(z) = −η − η

n∑
j=1

|(Uαn)j |2

(λj − ξ)2 + η2
= −η

(
1 + α∗

n

[
(A−n − ξ Id)2 + η2 Id

]−1
αn

)
.

Therefore ∣∣tr [(A− z Id)−1 − (A−n − z Id)−1
]∣∣ ≤ 1 + α∗

n

[
(A−n − ξ Id)2 + η2 Id

]−1
αn

|Imβn(z)|
≤ 1

η
,

and we finish the proof.

Now we let A = 1
nXnX

∗
n in Lemma 2.8 and plug-in the result to (2.7) to conclude

max
j∈[n]

|Dn,j(z)| ≤
1

n

(
1 +

|z|
|Im z|

)
, (2.8)

which converges to 0 deterministically as n→ ∞.

Step V. By (2.4), (2.5), (2.6) and (2.8), we have maxj∈[n] υn,j → 0 a.s., and the proof is completed.

2.2 Generalizied Marčenko-Pastur Law

See Silverstein and Bai (1995), Silverstein (1995).
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3 Free Probability

3.1 Non-commutative Probability Spaces

Definition 3.1 (∗-algebra). A ∗-algebra is an associative C-algebra A equipped with a unary operation

∗ : A → A that is an involution and an antiautomorphism, i.e.

(a) (x+ y)∗ = x∗ + y∗ for all x, y ∈ A,

(b) (xy)∗ = y∗x∗ for all x, y ∈ A,

(c) (x∗)∗ = x for all x ∈ A, and

(d) (αx)∗ = αx∗ for all x ∈ A and all α ∈ C.
That is, ∗ preserves addition, reverses multiplication, and is antihomogeneous. In particular,

(i) an element x ∈ A is said to be self-adjoint if it satisfies x∗ = x, and

(ii) an element x ∈ A is said to be normal if it satisfies xx∗ = x∗x.

Definition 3.2 (Non-commutative probability space). A non-commutative probability space (A, τ) consists of
a (potentially non-commutative) ∗-algebra A with identity 1 ∈ A and a trace operator τ : A → C which is

∗-linear, maps 1 to 1, and is nonnegative, i.e.

(i) τ(αX + βY ) = ατ(X) + βτ(Y ) and τ(X∗) = τ(X) for all X,Y ∈ A and all α, β ∈ C,
(ii) τ(1) = 1, and

(iii) τ(XX∗) ≥ 0 for all X ∈ A.

Furthermore,

• τ is said to be faithful if τ(XX∗) = 0 implies X = 0;

• τ is said to be tracial if it obeys the trace axiom: τ(XY ) = τ(Y X) for every X,Y ∈ A.

Remark. By definition, the formula ⟨X,Y ⟩τ = τ(XY ∗) defines a semi-inner product on A. Furthermore, if

the trace τ is faithful, then ⟨X,Y ⟩τ is an inner product.

As a simple generailzation of moments of random variables in classical probability theory, the moments of

a random element X ∈ A are defined as τ(Xk), where k = 1, 2, · · · .

Lemma 3.3 (Monotonicity of moments). Let (X,A) be a non-commutative probability space. For every self-

adjoint element X ∈ A and k ∈ N,∣∣τ(X2k−1)
∣∣ 1
2k−1 ≤

∣∣τ(X2k)
∣∣ 1
2k ≤

∣∣τ (X2k+2
)∣∣ 1

2k+2 , (3.1)

As a consequence, we can define the spectral radius ρ(X) of a self-adjoint element X by the formula

ρ(X) = lim
k→∞

∣∣τ(X2k)
∣∣ 1
2k . (3.2)

Then for all self-adjoint X ∈ A, ∣∣τ(Xk)
∣∣ ≤ ρ(X)k, k = 1, 2, · · · . (3.3)

We say that a self-adjoint element X is bounded if its spectral radius ρ(X) <∞.

Proof. The map (X,Y ) 7→ τ(XY ∗) defines a semi-inner product in A, and the Cauchy-Schwarz inequality

|τ(XY ∗)| =
√
τ(XX∗)τ(Y Y ∗) holds. We then proceed the proof by induction. Assume X = X∗. For k = 1,

|τ(X)| ≤
√
τ(X2) τ(1) =

√
τ(X2) ≤

∣∣τ(X4)τ(1)
∣∣1/4 =

∣∣τ(X4)
∣∣1/4
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By the induction hypothesis, in the k-th step, we have
∣∣τ(X2k−2)

∣∣ 1
2k−2 ≤

∣∣τ (X2k
)∣∣ 1

2k . Then

∣∣τ(X2k−1)
∣∣ ≤ ∣∣τ(X2k−2) τ(X2k)

∣∣1/2 ≤
∣∣τ(X2k)

∣∣ k−1
2k
∣∣τ(X2k)

∣∣1/2 =
∣∣τ(X2k)

∣∣ 2k−1
2k ,

and ∣∣τ(X2k)
∣∣ ≤ ∣∣τ (X2k−2

)
τ
(
X2k+2

)∣∣1/2 ≤
∣∣τ(X2k)

∣∣ k−1
2k
∣∣τ (X2k+2

)∣∣1/2 .
Combining the above two results, we have∣∣τ(X2k−1)

∣∣ 1
2k−1 ≤

∣∣τ(X2k)
∣∣ 1
2k ≤

∣∣τ (X2k+2
)∣∣ 1

2k+2 ,

and the proof is completed.

We are also interested in the moment of normal elements.

Lemma 3.4. Let (X,A) be a non-commutative probability space, and X ∈ A.

(i) If X is bounded self-adjoint, then for every R > 0,

ρ(R21+X2) = R2 + ρ(X)2.

(ii) If X ∈ A is normal,

|τ(Xk)| ≤ τ
(
(X∗X)k

)1/2 ≤ ρ(X∗X)k/2. (3.4)

Proof. (i) Let X be bounded self-adjoint and R ≥ 0. Given any ϵ > 0, by the definition (3.2) of ρ(X), we fix

an integer N ≥ 1 such that

|τ(X2j)|1/j ≥ ρ(X)2 − ϵ for all j ≥ N.

Then for every k > N/2,

τ
(
(R21+X2)2k

)
=

2k∑
j=0

(
2k

j

)
R4k−2jτ(X2j) ≥

2k∑
j=N

(
2k

j

)
R4k−2j

(
ρ(X)2 − ϵ

)j
=
(
R2 + ρ(X)2 − ϵ

)2k −
N−1∑
j=0

(
2k

j

)
R4k−2j

(
ρ(X)2 − ϵ

)j
.

Note that ∣∣∣∣∣∣
N−1∑
j=0

(
2k

j

)
R4k−2j

(
ρ(X)2 − ϵ

)j∣∣∣∣∣∣ ≤ (2k)NR4k max
{
1, |ρ(X)2 − ϵ|N

}
.

Then we have

lim sup
k→∞

∣∣∣∣∣∣
N−1∑
j=0

(
2k

j

)
R4k−2j

(
ρ(X)2 − ϵ

)j∣∣∣∣∣∣
1
2k

≤ R2.

Therefore,

ρ(R21+X2) = lim
n→∞

∣∣τ((R21+X2)2k
)∣∣ 1

2k ≥ lim
k→∞

∣∣∣(R2 + ρ(X)2 − ϵ
)2k

+R2k
∣∣∣ 1
2k

= max
{
R2 + ρ(X)2 − ϵ, R2

}
.

40



Since ϵ > 0 is arbitrary, we have ρ(R21+X2) ≥ R2 + ρ(X)2. On the other hand, by (3.3), for all k ∈ N,

∣∣τ ((R21+X2)2k
)∣∣ 1

2k =

∣∣∣∣∣∣
2k∑
j=0

(
2k

j

)
R4k−2jτ(X2j)

∣∣∣∣∣∣
1
2k

≤

∣∣∣∣∣∣
2k∑
j=0

(
2k

j

)
R4k−2jρ(X)2j

∣∣∣∣∣∣
1
2k

= R2 + ρ(X)2

Letting k → ∞, it follows that ρ(R21+X2) ≤ R2 + ρ(X)2.

(ii) is simply a consequence of the Cauchy-Schwarz inequality and (3.3).

Theorem 3.5. Let (A, τ) be a non-commutative probability space, and let

HA = {X ∈ A : X = X∗, ρ(X) <∞}

be the space of bounded self-adjoint elements.

(i) The spectral radius ρ : HA → [0,∞) is a seminorm on HA. If τ is faithful, then ρ is a norm on HA.

(ii) ρ is submultiplicative. If X,Y ∈ HA are commutative under multiplication, then ρ(XY ) ≤ ρ(X)ρ(Y ).

Proof. (i) It suffices to check the triangle inequality. Let X,Y ∈ HA. Then for every k ∈ N,

∣∣τ((X + Y )2k)
∣∣ =

∣∣∣∣∣∣
2k∑
j=0

(
2k

j

)
τ(XjY 2k−j)

∣∣∣∣∣∣ ≤
2k∑
j=0

(
2k

j

)√
τ(X2j)τ(Y 4k−2j)

≤
2k∑
j=0

(
2k

j

)
ρ(X)jρ(Y )2k−j = |ρ(X) + ρ(Y )|2k .

Raising everything to the 1/(2k) power and letting k → ∞, we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(ii) For any U ∈ A with ∥U∥2τ = τ(UU∗) = 1, we have

(ii) If XY = Y X, then for every k ∈ N,

∣∣τ((XY )2k)
∣∣ = ∣∣τ(X2kY 2k)

∣∣ ≤√τ(X4k)τ(Y 4k) ≤ ρ(X)2kρ(Y )2k.

Raising everything to the 1/(2k) power and letting k → ∞, we have ρ(XY ) ≤ ρ(X)ρ(Y ).

Remark. By this conclusion, if X ∈ A is bounded self-adjoint and P : C → C is a polynomial with real

coefficients, then P (X) is also bounded self-adjoint.

3.1.1 The Spectral Measures

Theorem 3.6. Let X ∈ A be a bounded self-adjoint element in a noncomutative probability space (A, τ). Then
there exists a measure µX supported on [−ρ(X), ρ(X)], called the spectral measure of X, such that

τ(P (X)) =

∫ ρ(X)

−ρ(X)

P (λ) dµX(λ) (3.5)

for all polynomials P : C → C with complex coefficients.

Proof. We write mk = τ(Xk) for k ∈ N0. Then the Hankel matrix (mj+k)j,k∈N0
is positive semidefinite:

n∑
j,k=0

cjckmj+k =

n∑
j,k=0

cjckτ(X
j+k) = τ (Y Y ∗) ≥ 0, where Y =

n∑
j=0

cjX
j .
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Therefore, the Hamburger’s moment problem∫
R
xk dµ(x) = τ(Xk), k = 0, 1, 2, · · · (3.6)

has a solution. Furthermore, since limk→∞
1
2k |τ(X

2k)| 1
2k = 0, the measure µ = µX satisfying the equations

(3.6) is unique. Since
∫
R dµX = τ(1) = 1, the measure µX is a probability measure.

For any ϵ > 0, if µX {t ∈ R : |t| > ρ(X) + ϵ} = δ > 0, then we have

ρ(X) = lim
k→∞

|τ(X2k)| 1
2k = lim

k→∞

∣∣∣∣∫
R
x2k dµX(x)

∣∣∣∣ 1
2k

≥ lim
k→∞

δ
1
2k (ρ(X) + ϵ) = ρ(X) + ϵ,

which is a contradiction. Hence µX {t ∈ R : |t| > ρ(X) + ϵ} = 0 for every ϵ > 0, and the spectral measure µX

is supported on [−ρ(X), ρ(X)]. Then µX is the desired spectral measure satisfying (3.5).

Remark. By (3.5), we have the bound

|τ(P (X))| ≤ ρ(P (X)) ≤ sup
λ∈[−ρ(X),ρ(X)]

|P (λ)|. (3.7)

By the Stone-Weierstrass theorem, every continuous function f : [−ρ(X), ρ(X)] → C can be approximated

uniformly by polynomials. Hence we extend the definition

τ(f(X)) =

∫ ρ(X)

−ρ(X)

f(λ) dλ, f ∈ C([−ρ(X), ρ(X)]).

Definition 3.7 (Stieltjes transform). Let X ∈ A be a bounded self-adjoint element in a noncomutative

probability space (A, τ). The Siteltjes transform of X is a function SX : C\[−ρ(X), ρ(X)] defined by

SX(z) =

∫ ρ(X)

−ρ(X)

1

λ− z
dµX(λ), z /∈ [−ρ(X), ρ(X)],

where µX is the spectral measure of X.

When the spectral measure µX is unknown, it is more convenient to write the Stieltjes transform SX(z) in

terms of the moments of X.

Theorem 3.8 (Laurent series representation of the Stieltjes transform). Let X ∈ A be a bounded self-adjoint

element in a noncomutative probability space (A, τ). Then

(i) For z ∈ C with |z| > ρ(X),

SX(z) = −
∞∑
k=0

τ(Xk)

zk+1
;

(ii) For z ∈ C+,

SX(z) = −
∞∑
k=0

τ((X + iR1)k)

(z + iR)k+1
, where R > min

{
0,
ρ(X)2 − (Im z)2

2 Im z

}
.

In particular, SX : C\[−ρ(X), ρ(X)] is an analytical function.
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Proof. (i) Fix |z| > ρ(X). For every λ ∈ [−ρ(X), ρ(X)], we have 1
|λ−z| ≤

1
|z|−ρ(X) <∞. By Fubini’s theorem,

SX(z) =

∫ ρ(X)

−ρ(X)

1

λ− z
dµX(λ) = −1

z

∫ ρ(X)

−ρ(X)

∞∑
k=0

λk

zk
dµX(λ)

= −
∞∑
k=0

∫ ρ(X)

−ρ(X)

λk

zk+1
dµX(λ) = −

∞∑
k=0

τ(Xk)

zk+1
.

(ii) For any R > 0, by Lemma 3.4, the element X + iR1 satisfies∣∣τ ((X + iR1)k
)∣∣ ≤ ρ

(
R21+X2

)k/2
=
(
R2 + ρ(X)2

)k/2
. (3.8)

Fix z ∈ C+ and R > min
{
0, ρ(X)2−(Im z)2

2 Im z

}
. Then

|z + iR|2 ≥ (Im z +R)2 > ρ(X)2 +R2. (3.9)

Then we address (λ− z)−1 by shifting iR and plugging-in the Neumann series:

SX(z) =

∫ ρ(X)

−ρ(X)

1

(λ+ iR)− (z + iR)
dµX(λ) = − 1

z + iR

∫ ρ(X)

−ρ(X)

∞∑
k=0

(λ+ iR)k

(z + iR)k
dµX(λ)

= −
∞∑
k=0

∫ ρ(X)

−ρ(X)

(λ+ iR)k

(z + iR)k+1
dµX(λ) = −

∞∑
k=0

τ((X + iR1)k)

(z + iR)k+1
,

where the last series is convergent due to (3.8) and (3.9).

Proposition 3.9. Let X ∈ A be a bounded self-adjoint element of a non-commutative probability space (A, τ).
Then

∥Y X∥τ ≤ ρ(X)∥Y ∥τ , for Y ∈ A,

where ∥ · ∥τ is the seminorm ∥Y ∥2τ = ⟨Y, Y ⟩τ = τ(Y Y ∗).

Proof. Given any ϵ > 0, by the Stone-Weierstrass theorem, there exists a polynomial P : C → C such that

sup
|x|≤ρ(X)

|x2 + P (x)2 − ρ(X)2| < ϵ.

We let E = X2 + P (X)2 − ρ(X)2. Then

τ(Y X2Y ∗) ≤ τ(Y X2Y ∗) + τ(Y P (X)2Y ∗) = ρ(X)2τ(Y Y ∗) + τ(Y EY ∗).

By estimate (3.7), we have ρ(E) ≤ ϵ, and

|τ(Y EY ∗)| = |τ(EY ∗Y )| ≤
√
τ(E2)τ((Y ∗Y )2) ≤ ρ(E)

√
τ((Y ∗Y )2) ≤

√
τ((Y ∗Y )2) ϵ.

Note that τ((Y ∗Y )2) <∞. Combining the above two displays and letting ϵ ↓ 0, we have

τ(Y X2Y ∗) ≤ ρ(X)2τ(Y Y ∗).

This finishes the proof.
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3.1.2 Convergence in Moments

Definition 3.10 (Convergence). Let (An, τn) be a sequence of non-commutative probability spaces, and

Xn,1, · · · , Xn,k ∈ An random variables in (An, τn) for each n. Let (A, τ) be an additional non-commutative

probability space, and X1, · · · , Xm ∈ A. We say that the random vector (Xn,1, · · · , Xn,m) convergence in

moments to (X1, · · · , Xm), if

τn (Xn,i1Xn,i2 · · ·Xn,ik) → τ (Xi1Xi2 · · ·Xik)

for every k ∈ N and i1, i2, · · · , ik ∈ {1, · · · ,m}. In other words, all mixed moments of (Xn,1, · · · , Xn,m)

converges to those of (X1, · · · , Xm).

Theorem 3.11 (Convergence of spectral measures). Let (An, τn) be a sequence of non-commutative probability

spaces, and Xn ∈ An bounded self-adjoint random variables with ρ(Xn) uniformly bounded. Let X ∈ A be

another bounded self-adjoint random variable in an additional non-commutative probability space (A, τ). Then

Xn converges in moments to X if and only if the spectral measures µXn converges weakly to µX .

Proof. We take M > 0 such that supn∈N ρ(Xn) ≤M and ρ(X) ≤M , so that all µXn
and µX are supported in

[−M,M ]. We choose ψ ∈ Cc([−2M, 2M ]) such that ψ ≡ 1 on [−M,M ]. If µXn
→ µX weakly, then for every

k ∈ N, the function λ 7→ xkψ(x) is bounded continuous on R, and

τn(X
k
n) =

∫
R
λk dµXn(λ) =

∫
R
λkψ(λ) dµXn(λ) →

∫
R
λkψ(λ) dµX(λ) =

∫
R
λk dµX(λ) = τ(Xk),

Conversely, if τn(X
k
n) → τ(Xk) for every k, we have

τ(Xk) ≤ sup
n∈N

τn(X
k
n) ≤ sup

n∈N
ρ(Xn)

k ≤Mk,

and

lim sup
k→∞

1

2k

(∫
R
λ2k dµX(λ)

) 1
2k

≤ lim sup
k→∞

M

2k
= 0 <∞.

By Carleman’s continuity theorem, µXn → µX weakly, and we finishes the proof.
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3.2 Free Independence

Definition 3.12 (Free independence). Let (A, τ) be a non-commutative probability space. Let (Ai)i∈I be a

family of unital sub-algebras of A over C. Then (Ai)i∈I are said to be free (or freely independent) in (A, τ),
if τ(a1 · · · ak) = 0 whenever

• k ∈ N;
• i1, · · · , ik ∈ J , and any two adjacent indices are distinct, i.e. i1 ̸= i2 ̸= i3 ̸= · · · ≠ ik, (however e.g.

i1 = i3, and in particular, i1 = ik are allowed);

• aj ∈ Aij and τ(aj) = 0 for all j = 1, · · · , k.
Note here we do not require Ai ̸= Ai′ for i ̸= i′.

Furthermore, let (Xi)i∈I ⊂ A be a family of random variables in (A, τ). Then (Xi)i∈I are said to be free

in (A, τ), if the unital sub-algebras Ai = Alg(C1, Xi) they generated are free in (A, τ).

Remark. Since the unital sub-algebra over C generated by X ∈ A is {P (X) : P is a polynomial}, the free

independence of random variables (Xi)i∈I is equivalent to the condition that one has

τ [(P1(Xi1)− τ(P1(Xi1))1)(P2(Xi2)− τ(P2(Xi2))1) · · · (Pk(Xik)− τ(Pk(Xik))1)] = 0

whenever k ∈ N, P1, · · · , Pk are polynomials, and i1, · · · , ik ∈ I are indices with no two adjacent ij ’s equal.

Furthermore, the unital sub-algebra generated by a constant variable is the scalar sub-algebra C1, which is

freely independent of any random variable X ∈ A.

The free independence is closely related to classical independence in the following sense: If a family of

random variables is freely independent, then the joint distribution of the family is completely determined by

the knowledge of the individual distributions of the variables. A formal statement is:

Theorem 3.13. Let (A, τ) be a non-commutative probability space, and let (Ai)i∈I be freely independent unital

sub-algebras of A. Denote by B the algebra generated by (Ai)i∈I , i.e.

B = Alg

(⋃
i∈I

Ai

)
.

Then τ |B is uniquely determined by (τ |Ai)i∈I . (That is, if τ̃ is another trace operator such that (A, τ̃) is a

non-commutative probability space and τ̃ |Ai = τ |Ai for all i ∈ I, then τ̃ |B = τ |B.)

Proof. By definition, each element of B is a linear combination of products of the form a1 · · · ak, where k ∈ N,
i1, · · · , ik ∈ I and aj ∈ Aij for j = 1, · · · , k. We may assume i1 ̸= i2 ̸= · · · ≠ ik, otherwise we just multiply

some adjacent factors together to a new element in the same Ai. Then it suffices to prove that τ(a1 · · · ak) is
fully determined by (τ |Ai)i∈I for all such products a1 · · · ak ∈ B, which is done by induction over k.

The base case k = 1 is clear since a1 ∈ Ai1 . For the general case k ≥ 2, we set aj = aj − τ(aj)1 ∈ Aij for

j = 1, · · · , k, which satisfies τ(aj) = 0. Then

τ (a1 · · · ak) = τ ((a1 + τ(a1)1) · · · (ak + τ(ak)1)) = τ(a1 · · · ak) +R,

where the remainder

R =

k−1∑
m=0

∑
p,q

τ(ap1
· · · apm

)τ(aq1) · · · τ(aqk−m
),

and the sum
∑

p,q runs over all disjoint decomposition

{p1, · · · , pm} ∪ {q1, · · · , qk−m} = {1, · · · , k}, p1 < · · · < pm, q1 < · · · < qk−m.
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It is seen that all terms in the remainder R consist of factors of length at most k − 1, and thus are fully

determined by (τ |Ai
)i∈I by the induction hypothesis. On the other hand, by the definition of free independence,

τ(a1 · · · ak) = 0. Therefore τ (a1 · · · ak), and the induction step is completed.

From a combinatorial perspective, free independence is a very special rule for calculating joint moments of

freely independent variables out of the moments of the single variables.

Corollary 3.14. Let (Xi)i∈I ⊂ A be a family of freely independent random variables in a non-commutative

probability space (A, τ). Then every joint moment of (Xi)i∈I is a polynomial combination of the individual

moments τ(Xk
i ) of the Xi’s.

Following are some concrete examples.

Example 3.15 (Joint moments). Let X,Y ∈ A be freely independent, and p, q, r, s ∈ N. Then

τ(XpY q) = τ(Xp)τ(Y q), τ(XpY qXr) = τ(Xp+r)τ(Y q),

τ(XpY qXrY s) = τ(Xp+r)τ(Y q)τ(Y s) + τ(Xp)τ(Xr)τ(Y q+s)− τ(X)pτ(Y )qτ(X)rτ(Y )s

Proof. (i) By definition of free independence we have

0 = τ((Xp − τ(Xp)1)(Y q − τ(Y q)1)) = τ(XpY q)− τ(Xp)τ(Y q).

(ii) By definition of free independence we have

0 = τ ((Xp − τ(Xp)1)(Y q − τ(Y q)1)(Xr − τ(Xr)1))

= τ (Xp(Y q − τ(Y q)1)(Xr − τ(Xr)1))

= τ (XpY q(Xr − τ(Xr)1))− τ(Y q)τ (Xp(Xr − τ(Xr)1))

= τ(XpY qXr)− τ(Xp+r)τ(Y q).

(ii) By definition of free independence we have

0 = τ ((Xp − τ(Xp)1)(Y q − τ(Y q)1)(Xr − τ(Xr)1)(Y s − τ(Y s)1))

= τ (Xp(Y q − τ(Y q)1)(Xr − τ(Xr)1)(Y s − τ(Y s)1))

= τ (XpY q(Xr − τ(Xr)1)(Y s − τ(Y s)1))− τ(Y q) τ (Xp(Xr − τ(Xr)1)(Y s − τ(Y s)1))

= τ(XpY qXrY s)− τ(XpY q+s)τ(Xr)− τ(XpY qXr)τ(Y s) + τ(XpY q)τ(Xr)τ(Y s)

− τ(Y q)
[
τ(Xp+rY s)− τ(Xp+r)τ(Y s)− τ(XpY s)τ(Xr) + τ(Xp)τ(Xr)τ(Y s)

]
= τ(XpY qXrY s)− τ(Xp)τ(Xr)τ(Y q+s)− τ(Xp+r)τ(Y q)τ(Y s) + τ(X)pτ(Y )qτ(X)rτ(Y )s.

Then we finish the proof.

Proposition 3.16. Let X,Y ∈ A be two freely independent self-adjoint random variables in a faithful non-

commutative probability space (A, τ). If X and Y commute with each other, i.e. XY = Y X, then at least one

of them is constant.

Proof. By (3.15), we have

τ(XYXY ) = τ(X2)τ(Y )2 + τ(X)2τ(Y 2)− τ(X)2τ(Y )2.

Since X and Y commute, we also have

τ(XYXY ) = τ(XXY Y ) = τ(X2Y 2) = τ(X2)τ(Y 2).
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Comparing the two results, we have
[
τ(X2)− τ(X)2

] [
τ(Y 2)− τ(Y )2

]
= 0, and at least one of the factors

vanishes. Without loss of generality we assume τ(X2)− τ(X)2 = 0. Since X is self-adjoint, we have

0 = τ(X2)− τ(X)2 = τ
(
(X − τ(X)1)2

)
= τ ((X − τ(X)1)(X − τ(X)1)∗) .

Hence X = τ(X)1, and thus the claim holds.

3.2.1 Non-Crossing Partitions and Joint Moments

Definition 3.17 (Non-crossing partitions). Let S be a finite, totally ordered set, and write Π(S) for the set

of all partitions of S. That is, for every π = {V1, · · · , Vr} ∈ Π(S), its blocks V1, · · · , Vr are pairwise disjoint,

nonempty subsets of S such that V1 ∪ · · · ∪ Vr = S. We write |π| := r for the cardinality of π.

• If there exist distinct blocks Vi, Vj ∈ π, elements p1, q1 ∈ Vi and p2, q2 ∈ Vj such that p1 < p2 < q1 < q2,

then π is said to be a crossing partition.

• Otherwise, π is said to be a non-crossing partition.

• In addition, if each block of partition π contains exactly two elements of S, then π is said to be a

pair-partition of S.

Notation. We write ΠNC(S) for the set of all non-crossing partitions of S, write Π2(S) for the set of all

pair-partitions of S, and ΠNC2(S) = ΠNC(S) ∩ Π2(S) the set of all non-crossing pair-partitions of S. For the

case S = [n] = {1, · · · , n}, we simply write ΠNC(n) = ΠNC([n]), Π2(n) = Π2([n]) and ΠNC2
(n) = ΠNC2

([n]).

For example, for the set S = {1, 2, 3, 4, 5, 6}, the partitions {{1, 3, 5}, {2}, {4, 6}} and {{1, 6}, {2, 4}, {3, 5}}
are crossing, and the partitions {{1, 4, 5}, {2, 3}, {6}} and {{1, 6}, {2, 5}, {3, 4}} are non-crossing. A graphical

illustration is given below.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

It is seen that non-crossing partitions has a “nested” structure.

Lemma 3.18. Let n ∈ N. Both the number of non-crossing partitions of theset {1, · · · , n} and the number of

non-crossing pair-partitions of the set {1, · · · , 2n} are given by the Catalan number Cn, i.e.

|ΠNC(n)| = |ΠNC2
(2n)| = Cn

Proof. (i) We let D0 = 1, and write Dn = |ΠNC(n)|. For n ≥ 1 and 1 ≤ k ≤ n, we write Π
(k)
NC(n) the set

of non-crossing partitions π ∈ ΠNC(n) for which the block containing 1 contains k as its largest element.

Since every non-crossing partition π ∈ Π
(k)
NC(n) decomposes canonically into π1 ∪ π2, where π1 ∈ ΠNC(k) and

π2 ∈ ΠNC({k + 1, · · · , n}). Hence

Π
(k)
NC(n) ≃ Π

(k)
NC(k)×ΠNC(n− k).

By restricting π1 to {1, · · · , k − 1} and using the non-crossing condition, we can establish a bijection between

Π
(k)
NC(k) and ΠNC(k − 1). Then

Π
(k)
NC(n) ≃ ΠNC(k − 1)×ΠNC(n− k).

Since Π
(1)
NC(n), · · · ,Π

(n)
NC(n) is a partition of ΠNC(n), we have

|ΠNC(n)| = Dn =

n∑
k=1

Dk−1Dn−k.

This is a recursion characterizes the Catalan numbers (Cn).

47



(ii) We can establish a bijection between noncrossing partitions ΠNC2
(2n) and Dyck paths D2n as follows. Let

π ∈ ΠNC2
(2n) and (x1, · · · , x2n) be a Dyck path. For each j ∈ [2n], let i be the other element of the pair

that contains j (an innovative step). Then xj = 1 if and only if i > j, i.e. the block {i, j} is never visited

before; and xj = −1 if and only if i < j, i.e. the pair {i, j} is already visited before (a returning step). Hence

|ΠNC2(2n)| = |D2n| = Cn, and the proof is complete.

Definition 3.19 (Kernel). Let I be any nonempty set and i = (i1, · · · , ik) ∈ Ik a multi-index. We define a

equivalence relation ∼i on [k] by

p ∼i q if and only if ip = iq.

Then the kernel of i is the partition of [k] into the equivalence classes of ∼i:

ker(i) = [k]/ ∼i = {Br : r ∈ Im(i)}, Bj = {p ∈ [k] : ip = r}.

For example, if p = {2, 4, 2, 7, 5, 4, 2}, then π = ker(p) = {{1, 3, 7}, {2, 6}, {4}, {5}}.

For multi-indices with non-crossing kernels, we have a brief formula for computing joint moments.

Theorem 3.20 (Speicher). Let (Xi)i∈I ⊂ A be a family of freely independent random variables. Let k ∈ N,
and let i = (i1, · · · , ik) ∈ Ik be a multi-index.

(a) If ker(i) is non-crossing. Then

τ (Xi1 · · ·Xik) =
∏

V ∈ker(i)

τ
(
X

|V |
i(V )

)
, where i(V ) is the index corresponding to block V .

(b) If ker(i) is crossing and τ(Xi) = 0 for each i ∈ I, then

τ (Xi1 · · ·Xik) = 0.

Proof. We first introducing a lemma which can be seen as a generalization of Example 3.15.

Lemma 3.21. Let (A, τ) be a non-commutative probability space, and let (Ai)i∈I be freely independent unital

sub-algebras of A. Let s, t ∈ N, and i∗ ∈ I. Assume that i1 ̸= i2 ̸= · · · ≠ ik, ip = i∗ and ij ̸= i∗ for

j = 1, · · · , p− 1, p+ 1, · · · , k. Then for aj ∈ Aij , j = 1, · · · , k, we have

τ (a1a2 · · · ak) = τ(ap) τ(a1a2 · · · ap−1ap+1 · · · ak).

Proof. We write a = a − τ(a)1 for the centered version of a random variable a ∈ A, i.e. τ(a) = 0. Then it

suffices to show that

τ(a1a2 · · · ap−1apap+1 · · · ak) = 0. (3.10)

For every j ̸= p, we write aj = aj + τ(aj)1 and expand τ(a1a2 · · · ap−1apap+1 · · · ak) multilinearly. Then sum

consists terms of the form

τ(aq1 · · · aqsapar1 · · · art)τ(au1
) · · · τ(aup−1−s

)τ(av1) · · · τ(avk−p−t
), 0 ≤ s ≤ p− 1, 0 ≤ t ≤ k − p.

Note:

• If q1 ̸= · · · ≠ qs ̸= p ̸= r1 ̸= · · · rt, the term is 0 by the definition of free independence. This is always

the case when 0 ≤ s, t ≤ 1, i.e. the word aq1 · · · aqsapar1 · · · art is of length at most 3.

• Otherwise, we merge same-color neighboring factors in aq1 · · · aqsapar1 · · · art to obtain a word of length

at most s + t. Repeat this centeralization-expansion procedure to the reduced word. This term will

finally vanish after at most k − 1 steps.
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Therefore τ(a1a2 · · · ap−1apap+1 · · · ak) = 0, and we finish the proof of (3.10).

Now we prove Theorem 3.20. If the partition ker(i) is non-crossing, there exists an “innermost” block

V ∗ = {p+ 1, p+ 2, · · · , q} ∈ ker(i) in the sense that there is no further block located between elements of V ∗,

i.e. ip+1 = ip+2 = · · · = iq = r, and ij ̸= r for j ∈ {1, · · · , p} ∪ {q + 1, · · · , k}. By Lemma 3.21,

τ (Xi1 · · ·Xik) = τ
(
Xip+1

· · ·Xiq

)
τ
(
Xi1 · · ·XipXiq+1

· · ·Xik

)
= τ

(
Xq−p

r

)
τ
(
Xi1 · · ·XipXiq+1

· · ·Xik

)
.

Clearly, the kernel of the remaining indices (i1, · · · , ip, iq+1, · · · , ik) is still non-crossing. We apply the same

procedure until blocks of ker(i) are extracted, which implies

τ (Xi1 · · ·Xik) =
∏

V ∈ker(i)

τ
(
X

|V |
i(V )

)
, where i(V ) is the index corresponding to block V .

On the other hand, if ker(i) is crossing, we also multiply out the “innermost” block from τ(Xi1 · · ·Xik)

repeatedly until the remaining blocks are pairwise crossing, i.e. for any two blocks Vi, Vi′ , there exist positions

p, q ∈ Vi and p′, q′ ∈ Vi′ such that either p < p′ < q < q′ or p′ < p < q′ < q. Hence the reduced word has

alternating indices and has zero trace by free independence. This finishes the proof.

Theorem 3.22. Let (Xn,i)n∈N,i∈[n] ⊂ A be a family of random variables in a nonocommutative probability

space (A, τ), and (κp)p∈N is a sequence. Suppose that

• for every n ∈ N, the random variables Xn,1, · · · , Xn,n are identically distributed;

• either for every n ∈ N, the random variables Xn,1, · · · , Xn,n are classically independent, or for every

n ∈ N, the random variables Xn,1, · · · , Xn,n are freely independent; and

• for all n, p ∈ N,
lim

n→∞
n · τ(Xp

n,i) = κp, i = 1, 2, · · · . (3.11)

Then for every k ∈ N,

lim
n→∞

τ
[
(Xn,1 + · · ·+Xn,n)

k
]
=


∑

π∈Π(k)

∏
V ∈π κ|V |,∑

π∈ΠNC(k)

∏
V ∈π κ|V |.

Proof. For a partition π ∈ [k] and n ≥ k, the number of multi-indices i ∈ [n]k with ker(i) = π is given by

n(n− 1) · · · (n− |π|+ 1). If (Xn,i)i∈[n] are classically independent,

τ
[
(Xn,1 + · · ·+Xn,n)

k
]
=
∑

i∈[n]k

τ(Xi1 · · ·Xik) =
∑

π∈Π(k)

∑
i∈[n]k

ker(i)=π

τ(Xi1 · · ·Xik)

=
∑

π∈Π(k)

∑
i∈[n]k

ker(i)=π

∏
V ∈π

τ
(
X

|V |
n,i(V )

)

=
∑

π∈Π(k)

n(n− 1) · · · (n− |π|+ 1)

n|π|

∏
V ∈π

n · τ
(
X

|V |
n,i(V )

)
.

Since |π| ≤ k for all π ∈ ΠNC(k), and by (3.11), we have

lim
n→∞

τ
[
(Xn,1 + · · ·+Xn,n)

k
]
=

∑
π∈Π(k)

∏
V ∈π

κ|V |.
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If (Xn,i)i∈[n] are freely independent, by Theorem 3.20,

τ
[
(Xn,1 + · · ·+Xn,n)

k
]
=
∑

i∈[n]k

τ(Xi1 · · ·Xik) =
∑

π∈ΠNC(k)

∑
i∈[n]k

ker(i)=π

τ(Xi1 · · ·Xik)

=
∑

π∈ΠNC(k)

∑
i∈[n]k

ker(i)=π

∏
V ∈π

τ
(
X

|V |
n,i(V )

)

=
∑

π∈ΠNC(k)

n(n− 1) · · · (n− |π|+ 1)

n|π|

∏
V ∈π

n · τ
(
X

|V |
n,i(V )

)
.

Therefore

lim
n→∞

τ
[
(Xn,1 + · · ·+Xn,n)

k
]
=

∑
π∈ΠNC(k)

∏
V ∈π

κ|V |,

and we finish the proof.

3.2.2 Free Central Limit Theorem
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3.3 Free Cumulants

Review: the classical cumulants. Let X be a R-valued random variable such that the moment generating

function MX(t) := E[etX ] exists for t in a neighborhood (−δ, δ) of the origin. The cumulant generating function

of X is the function KX : (−δ, δ) → R defined as

KX(t) = logE
[
etX
]
=

∞∑
n=1

κn
n!
tn,

and the cumulants (κn)n∈N are the coefficients in the Taylor expansion of the cumulant generating function

about the origin. Indeed, the n-th cumulant κn can be obtained by differentiating the above expansion n times

and evaluating the result at zero: κn = K(n)(0).

Note that

MX(t) = exp

( ∞∑
n=0

κn
n!
tn

)
=

∞∑
m=0

1

m!

( ∞∑
r=1

κr
r!
tr

)m

, t ∈ (−δ, δ).

Matching the coefficients of Taylor series, we have

E[Xn]

n!
=

n∑
m=1

1

m!

∑
r1,r2,··· ,rm≥1

r1+r2+···+rm=n

κr1κr2 · · ·κrm
r1!r2! · · · rm!

. (3.12)

We interpret this formula combinatorically. The number of ways to split set {1, · · · , n} into an ordered list of

m blocks with sizes (r1, r2, · · · , rm) is
n!

r1!r2! · · · rm!
,

and dividing by m! accounts for neglecting the order of the blocks, turning ordered blocks into set partitions.

We multiply both sides of (3.12) to get

E[Xn] =

n∑
m=1

1

m!

∑
r1,r2,··· ,rm≥1

r1+r2+···+rm=n

n!

r1!r2! · · · rm!
κr1κr2 · · ·κrm =

n∑
m=1

∑
π∈Π(n):|π|=m

∏
V ∈π

κ|V | =
∑

π∈Π(n)

∏
V ∈π

κ|V |.

Thus we obtain the classical moment-cumulant formula:

E[Xn] =
∑

π∈Π(n)

∏
V ∈π

κ|V |, n = 1, 2, · · · .

Example 3.23. We compute the cumulants of some real-valued random variables.

(i) Let µ ∈ R and σ2 > 0. For a Gaussian variable X ∼ N (µ, σ2), we have

MX(t) = exp

(
µt+

σ2t2

2

)
⇔ KX(t) = µt+

σ2t2

2
.

Hence κ1 = µ, κ2 = σ2, and κn = 0 for all n ≥ 3.

(ii) Let λ > 0. For a Poisson random variable X with rate λ, i.e. X ∼
∞∑

n=0

λne−λ

n!
δn. Then

MX(t) =

∞∑
n=0

(λet)ne−λ

n!
= eλ(e

t−1) ⇔ KX(t) = λ(et − 1) =

∞∑
n=1

λ

n!
tn.

Hence κn = λ for all n ∈ N.

In this subsection, we establish an extension of the cumulant to noncommutative probability spaces.
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3.3.1 The Möbius Inversion

Definition 3.24. Let P be a finite partially ordered set, and P (2) = {(π, σ) : π, σ ∈ P, π ≤ σ}.
(i) (Interval). For (π, σ) ∈ P (2), define [π, σ] = {τ ∈ P : π ≤ τ ≤ σ}.
(ii) (Convolution). For every two functions F,G : P (2) → C, define their convolution F ∗ G : P (2) → C as

the function

(F ∗G)(π, σ) =
∑

τ∈[π,σ]

F (π, τ)G(τ, σ), (π, σ) ∈ P (2).

If f : P → C, define f ∗G : P (2) → C as the function

(f ∗G)(σ) =
∑

τ∈P :τ≤σ

f(τ)G(τ, σ), σ ∈ P.

(iii) The special functions δ, ζ : P (2) → C are defined as

δ(π, σ) =

1, if π = σ,

0, if π < σ,
and ζ(π, σ) = 1, (π, σ) ∈ P (2).

(iv) (Incidence algebra) The set of all functions F : P (2) → C equipped with pointwise defined addition and

with the convolution ∗ as multiplication is a unital (associative) algebra over C, called the incidence

algebra of P , with δ as its multiplicative identity.

Remark. By definition, it is clear that δ is the unit of the convolution operation: δ ∗ F = F ∗ δ = F for all

F : P (2) → C. Furthermore, for F,G,H : P (2) → C, note that

((F ∗G) ∗H)(π, σ) = (F ∗ (G ∗H))(π, σ) =
∑

ρ,τ∈P :π≤ρ≤τ≤σ

F (π, ρ)G(ρ, τ)H(τ, σ)

Hence ∗ is associative: (F ∗G) ∗H = (F ∗G) ∗H. Generally, ∗ is not commutative.

Theorem 3.25 (Möbius inversion). Let P be a finite partially ordered set. The zeta function ζ is invertible in

the incidence algebra of P , i.e. there exists a function µ : P (2) → C, called the Möbius function, such that

µ ∗ ζ = ζ ∗ µ = δ.

Proof. Recursively define

µ(π, π) = 1, µ(π, σ) = −
∑

τ∈P :π≤τ<σ

µ(π, τ).

Then we have µ ∗ ζ = δ:

(µ ∗ ζ)(π, σ) =
∑

τ∈[π,σ]

µ(π, τ)ζ(τ, σ) =
∑

τ∈[π,σ]

µ(π, τ) =

1, µ = σ,

µ(π, σ)−
∑

τ∈P :π≤τ<σ µ(π, τ) = 0, µ < σ.

We let µ(π, σ) = ζ(π, σ) = δ(π, σ) = 0 for π ≰ σ. Then we have∑
τ∈P

µ(π, τ)ζ(τ, σ) = δ(τ, σ).

That is, the matrices M = (µ(π, σ))π,σ∈P and Z = (ζ(π, σ))π,σ∈P satisfies M · Z = Id, and by linear algebra

we have Z ·M = Id. Hence µ ∗ ζ = δ, which finishes the proof.
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Remark. By the above proof, the Möbius function µ on P is recursively defined by

µ(π, π) = 1, µ(π, σ) = −
∑

τ∈P :π≤τ<σ

µ(π, τ) = −
∑

τ∈P :π<τ≤σ

µ(τ, σ), for π < σ in P.

The value of Möbius function µ at (π, σ) depends on the interval [π, σ].

Corollary 3.26. Let f, g : P → C. Then the following statements are equivalent:

(i) f = g ∗ ζ, meaning

f(σ) =
∑

τ∈P :π≤σ

g(π) for all σ ∈ P.

(ii) g = f ∗ µ, meaning

g(σ) =
∑

τ∈P :π≤σ

f(π)µ(π, σ) for all σ ∈ P.

Finally, we introduce the invariance of Möbius functions under isomorphisms and Möbius functions on

product spaces.

Proposition 3.27. (i) Let P,Q be finite partial ordered sets, and let Φ : P → Q be a order embedding, i.e.

Φ(π) ≤ Φ(σ) in Q if and only if π ≤ σ in P . Also assume that [Φ(π),Φ(σ)] ⊂ Φ(P ) for all π ≤ σ in P .

Then

µP (π, σ) = µQ(Φ(π),Φ(σ)), for all π ≤ σ in P,

where µP and µQ are the Möbius functions on P and Q, respectively.

(ii) Let P1, P2, · · · , Pk be finite partial ordered sets, and consider their direct product

P = P1 × P2 × · · · × Pk, (π1, · · · , πk) ≤ (σ1, · · · , σk) ⇔ πj ≤ σj for all j ∈ [k].

Let µj be the Möbius function on Pj for j ∈ [k], and µ the Möbius function on P . Then for π1 ≤ σ1 in

P1, π2 ≤ σ2 in P2, · · · , πk ≤ σk in Pk, we have

µ ((π1, · · · , πk), (σ1, · · · , σk)) = µ1(π1, σ1) · · ·µn(πk, σk). (3.13)

Proof. (i) If Φ(σ) = Φ(π), we have both σ ≤ π and σ ≥ π on P , which implies that Φ : P → Q is injective.

We let ν(π̂, σ̂) = µP (Φ
−1(π̂),Φ−1(σ̂)) for all π̂ ≤ σ̂ in Φ(P ). Then

(ν ∗ ζ)(π̂, σ̂) =
∑

τ̂∈[π̂,σ̂]

ν(π̂, τ̂) =
∑

τ̂∈[π̂,σ̂]

µP (Φ
−1(π̂),Φ−1(τ̂))

=
∑

τ∈[Φ−1(π̂),Φ−1(σ̂)]

µP (Φ
−1(π̂), τ) = δP (Φ

−1(π̂),Φ−1(σ̂)) = δQ(π̂, σ̂).

Hence ν ∗ ζ = δQ|Φ(P ). Simiarly we can prove ζ ∗ ν = δQ|Φ(P ), and thus ν is the Möbius function on Φ(P ).

(ii) We let µ̃ be the right-hand side of (3.13). For π = (π1, · · · , πk) ≤ σ = (σ1, · · · , σk),

(µ̃ ∗ ζ)(π, σ) =
∑

τ∈[π,σ]

µ̃(π, τ) =
∑

τ1∈[π1,σ1]

· · ·
∑

τk∈[πk,σk]

µ1(π1, τ1) · · ·µk(πk, τk)

=

k∏
j=1

∑
τj∈[πj ,σj ]

µj(πj , τj) =

k∏
j=1

δj(πj , σj) = δ(π, σ).

Simiarly we can prove ζ ∗ µ̃ = δ. Hence µ̃ is the Möbius function on P .
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3.3.2 Free Cumulants

In the following discussion, we assume P = ΠNC(n), where the partial order ≤ is defined as follows:

π ≤ σ ⇔ every block of π is contained in a block of σ.

For example, {{1, 7}, {2, 5}, {3, 4}, {6}} ≤ {{1, 6, 7}, {2, 5}, {3, 4}} ≤ {{1, 6, 7}, {2, 3, 4, 5}}. We denote the

minimal element by 0n = {{1}, {2}, · · · , {n}}, and the maximal element by 1n = {{1, 2, · · · , n}}.
We first show that ΠNC(n) is a lattice under the partial order defined above.

Theorem 3.28 (Non-crossing lattice). For each n ∈ N, the partially ordered set ΠNC(n) is a lattice: for every

π, σ ∈ ΠNC(n),

• there exists a unique smallest υ ∈ ΠNC(n) with the properties υ ≥ π and υ ≥ σ, which is written π ∨ σ
and called the join of π and σ; and

• there exists a unique largest λ ∈ ΠNC(n) with the properties λ ≤ π and λ ≤ σ, which is written π ∧ σ
and called the meet of π and σ.

Proof. For π, σ ∈ ΠNC(n), we simply define

λ = π ∧ σ = {Vi ∩Wj : Vi}, υ = π ∨ σ =
∧

{ρ ∈ ΠNC(n) : ρ ≥ π, ρ ≥ σ}.

Then λ = π∧σ is a finer parition than π and σ and is non-crossing, and λ is maximal since p ∼π q and p ∼σ q

implies p ∼λ q. Also, υ = π ∨ σ is coarser. By induction, υ is also non-crossing, which finishes the proof.

Now we see how to define a multiplicative family on these lattices.

Definition 3.29 (Multiplicative family). Let A be a unital associative algebra over C, and φn : An → C a

family of multilinear functionals. We extend (φn)n∈N to a family (φπ)π∈ΠNC
of multilinear functionals on

ΠNC =

∞⋃
n=1

ΠNC(n),

by defining, for each n ∈ N, π ∈ ΠNC(n) and a1, · · · , an ∈ A,

φπ (a1, · · · , an) =
∏
V ∈π

φ|V | (a1, · · · , an|V ) ,

where for V = {i1, · · · , is} with 1 ≤ i1 < · · · < is ≤ n, we have φs (a1, · · · , an|V ) = φs (ai1 , · · · , ais). Then

(φπ)π∈ΠNC is called the multiplicative family of functionals on ΠNC determined by (φn)n∈N.

Definition 3.30 (Free cumulants). Let (A, τ) be a non-commutative probability space. We define, for every

n ∈ N, the multilinear functional

φn (a1, · · · , an) = τ(a1 · · · an), a1, · · · , an ∈ A,

and extend (φn)n∈N to a multiplicative familt of functionals (φπ)π∈ΠNC by defining

φπ (a1, · · · , an) =
∏
V ∈π

φ|V | (a1, · · · , an|V ) .

The corresponding free cumulants (κπ)π∈ΠNC are the multilinear functionals defined by κ = φ ∗ µ, i.e.

κσ(a1, · · · , an) =
∑

π∈ΠNC(n):π≤σ

φπ(a1, · · · , an)µ(π, σ), a1, · · · , an ∈ A.
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Proposition 3.31. Let (A, τ) be a non-commutative probability space with free cumulants (κπ)π∈ΠNC
. Then

(κπ)π∈ΠNC
is the multiplicative family on ΠNC defined by (κn)n∈N, where κn = κ1n for every n ∈ N.

Proof. Let n ∈ N, σ = {V1, · · · , Vr} ∈ ΠNC(n) and a1, · · · , an ∈ A. If π ∈ ΠNC(n) and π ≤ σ, we decompose

π = π1 ∪ π2 ∪ · · · ∪ πr, where πj ∈ ΠNC(Vj) for every j ∈ [r]. Then the interval [π, σ] decomposes accordingly:

[π, σ] ≃
[
π1, 1|V1|

]
× · · · ×

[
πr, 1|Vr|

]
⊂ ΠNC(V1)× · · · ×ΠNC(Vr).

Since µ(π, σ) depends only on the interval [π, σ], and by Proposition 3.27,

µ(π, σ) = µ
(
π1, 1|V1|

)
· · ·µ

(
πr, 1|Vr|

)
,

and thus

κσ(a1, · · · , an) =
∑

π∈ΠNC(n):π≤σ

φπ(a1, · · · , an)µ(π, σ)

=
∑

π1∈ΠNC(V1)

· · ·
∑

πr∈ΠNC(Vr)

r∏
j=1

φπj

(
a1, · · · , an|Vj

)
µ
(
πj , 1|Vj |

)
=

r∏
j=1

∑
πj∈ΠNC(Vj)

φπj

(
a1, · · · , an|Vj

)
µ
(
πj , 1|Vj |

)
︸ ︷︷ ︸

κ|Vj |(a1,··· ,an|Vj)

=
∏
V ∈σ

κ|V |(a1, · · · , an|V ).

Then we finish the proof.

Remark. By the Möbius inversion, κ = φ ∗ µ implies φ = κ ∗ ζ. Hence for any π ≤ σ in ΠNC(n),

κσ(a1, · · · , an) =
∑

π∈ΠNC(n):π≤σ

φπ(a1, · · · , an)µ(π, σ), a1, · · · , an ∈ A,

and

φσ(a1, · · · , an) =
∑

π∈ΠNC(n):π≤σ

κπ(a1, · · · , an), a1, · · · , an ∈ A.

These are known as the free moment-cumulant formula.

Example 3.32. Let (A, τ) be a non-commutative probability space. By the free moment-cumulant formula,

τ(a1) = κ1(a1),

τ(a1a2) = κ2(a1a2) + κ1(a1)κ1(a2),

τ(a1a2a3) = κ3(a1a2a3) + κ2(a1a2)κ1(a3) + κ2(a1a3)κ1(a2) + κ1(a1)κ2(a2a3) + κ1(a1)κ1(a2)κ1(a3),

τ(a1a2a3a4) = κ4(a1a2a3a4) + κ2(a1a2)κ2(a3a4) + κ2(a1a4)κ2(a2a3) + κ1(a1)κ1(a2)κ1(a3)κ1(a4)

+ κ1(a1)κ3(a2a3a4) + κ3(a1a3a4)κ1(a2) + κ3(a1a2a4)κ1(a3) + κ3(a1a2a3)κ1(a4)

+ κ1(a1)κ1(a2)κ2(a3a4) + κ1(a1)κ1(a3)κ2(a2a4) + κ1(a1)κ1(a4)κ2(a2a3)

+ κ2(a1a4)κ1(a2)κ1(a3) + κ2(a1a3)κ1(a2)κ1(a4) + κ2(a1a2)κ1(a3)κ1(a4), · · · .

Therefore

κ1(a1) = τ(a1),

κ2(a1a2) = τ(a1a2)− τ(a1)τ(a2),

κ3(a1a2a3) = τ(a1a2a3)− τ(a1)τ(a2a3)− τ(a2)τ(a1a3)− τ(a3)τ(a1a2) + 2τ(a1)τ(a2)τ(a3), · · · .
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Now we fix positive integers m ≤ n and indices 0 = i0 < i1 < i2 < · · · < im−1 < im = n. We write

υ = {{1, · · · , i1}, {i1 + 1, · · · , i2}, · · · , {im−1 + 1, · · · , n}} = {V1, · · · , Vm}

For each non-crossing partition π ∈ ΠNC(m), we let

π̂ =

⋃
j∈U

Vj : U ∈ π

 ∈ [υ, 1n] ⊂ ΠNC(n). (3.14)

It is easy to verify that π 7→ π̂ is an order embedding from ΠNC(m) onto [υ, 1n] ⊂ ΠNC(n). Furthermore, by

Proposition 3.27, µ(π, σ) = µ(π̂, σ̂) for all π ≤ σ in ΠNC(m).

Proposition 3.33. Let (A, τ) be a non-commutative probability space with free cumulants (κn)n∈N. Fix

positive integers m ≤ n and indices 0 = i0 < i1 < i2 < · · · < im−1 < im = n, and write

υ = {{1, · · · , i1}, {i1 + 1, · · · , i2}, · · · , {im−1 + 1, · · · , n}} = {V1, · · · , Vm}.

For a1, · · · , an ∈ A, define Aj = aij−1+1 · · · aij for j ∈ [m]. Then for all σ ∈ ΠNC(m),

κσ(A1, · · · , Am) =
∑

π∈ΠNC(n)

υ∨π=σ̂

κπ(a1, · · · , an).

In particular,

κm(A1, · · · , Am) =
∑

π∈ΠNC(n)
υ∨π=1n

κπ(a1, · · · , an).

Proof. For every σ ∈ ΠNC(m), we have

κσ(A1, · · · , Am) =
∑

ρ∈ΠNC(m):ρ≤σ

φρ(A1, · · · , Am)µ(ρ, σ)

=
∑

ω∈[υ,σ̂]

φω(a1, · · · , an)µ(ω, σ̂) (change the variable ω = ρ̂)

=
∑

ω∈[υ,σ̂]

∑
π∈[0n,ω]

κπ(a1, · · · , an)µ(ω, σ̂)

=
∑

π∈[0n,σ̂]

∑
ω∈[υ∨π,σ̂]

κπ(a1, · · · , an)µ(ω, σ̂)

=
∑

π∈ΠNC(n)

κπ(a1, · · · , an)
∑

ω∈[υ∨π,σ̂]

µ(ω, σ̂) =
∑

π∈ΠNC(n)

υ∨π=σ̂

κπ(a1, · · · , an),

where the last equality follows from Möbius inversion ζ ∗ µ = δ. This finishes the proof.

Following is a useful corollary of the above Proposition.

Proposition 3.34. Let (A, τ) be a non-commutative probability space with free cumulants (κn)n∈N. Let n ∈ N
and n ≥ 2, and a1, · · · , an ∈ A. If there exists at least one i ∈ [n] such that ai = 1, then κn(a1, · · · , an) = 0.

Proof. Since 1 commutes with all elemnts in A, we may assume an = 1, and proceed by induction. For the

base case n = 2, we have κ2(a1,1) = τ(a1 · 1) − τ(a1)τ(1) = 0. Now we assume κr(a1, · · · , ar−1,1) = 0 for

r = 1, · · · , n. Let υ = {{1}, {2}, · · · , {n− 1}, {n, n+ 1}}. Then

κn(a1, · · · , an · 1) =
∑

π∈ΠNC(n+1)
υ∨π=1n+1

κπ(a1, · · · , an, 1).
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If π ∈ ΠNC(n+ 1) and υ ∨ π = 1n+1, either of the following cases holds:

• π = 1n, and κπ(a1, · · · , an, 1) = κn+1(a1, · · · , an, 1); or
• there exists r ∈ N0 with r < n such that π = {{1, 2, · · · , r, n+ 1}, {r + 1, · · · , n}},

κπ(a1, · · · , an, 1) = κr+1(a1, · · · , ar,1)κn−r(ar+1, · · · , an) =

κ1(1)κn(a1, · · · , an), if r = 0,

0, if r > 0,

where the case r > 0 follows by induction hypothesis.

To summarize,

κn(a1, · · · , an · 1) = κn+1(a1, · · · , an, 1) + κ1(1)κn(a1, · · · , an).

Since κ1(1) = τ(1) = 1, we have κn+1(a1, · · · , an, 1) = 0, which finishes the induction step.

Now we can establish of the equivalence between free independence and vanishing of mixed cumulants.

Theorem 3.35 (Speicher). Let (A, τ) be a non-commutative probability space with free cumulants (κn)n∈N,

and let (Ai)i∈I be a family of unital subalgebras of A over C. Then, the following statements are equivalent:

(i) The sub-algebras (Ai)i∈I are freely independent in (A, τ);
(ii) Mixed cumulants in the sub-algebras (Ai)i∈I vanish, i.e. for all n ∈ N with n ≥ 2, all i ∈ In and all

a1 ∈ Ai1 , · · · , an ∈ Ain , we have κn(a1, · · · , an) = 0 whenever there exists j, k ∈ [n] such that ij ̸= ik.

Proof. (ii) ⇒ (i). Fix n ∈ N, i ∈ In such that i1 ̸= i2 ̸= · · · ̸= in−1 ̸= in, and a1, · · · , an ∈ A such that

aj ∈ Aij and τ(aj) = 0 for all j ∈ [n]. It suffices to show that τ(a1 · · · an) = 0. By the free moment-cumulant

formula,

τ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, · · · , an) =
∑

π∈NC(n)

∏
V ∈π

κ|V |(a1, · · · , an|V ).

For every π ∈ ΠNC(n), we can take an innermost block V ∗ which contains either only one number j ∈ [n] or

two consecutive numbers {j, j + 1} ⊂ [n], with ij ̸= ij+1. In either case we have κ|V ∗|(a1, · · · , an|V ∗) = 0.

Hence the product
∏

V ∈π κ|V |(a1, · · · , an|V ) vanishes, and τ(a1 · · · an) = 0.

(i) ⇒ (ii). Let n ∈ N, n ∈ In and a1, · · · , an ∈ A such that aj ∈ Aij for all j ∈ [n]. We first assume that

a1, · · · , an are centered and alternating, i.e. i1 ̸= i2 ̸= · · · ≠ in−1 ̸= in. Similar to our reasoning in (ii) ⇒ (i),

for every π ∈ ΠNC(n), we have φ|V ∗|(a1, · · · , an|V ∗) = 0 for an innermost block V ∗ ∈ ΠNC(n), and

κn(a1, · · · , an) =
∑

π∈ΠNC(n)

∏
V ∈π

φ|V |(a1, · · · , an|V )µ(π, 1n) = 0.

By Proposition 3.34, we can drop the assumption τ(aj) = 0 for all j ∈ [n], since

κn(a1, · · · , an) = κn(a1 − τ(a1)1, · · · , an − τ(an)1).

Then it remains to show vanishing of the cumulant if arguments are only mixed, not necessarily alternating,

i.e. there exists j, k ∈ [n] such that ij ̸= ik, but not necessarily i1 ̸= i2 ̸= · · · ̸= in−1 ̸= in.

We prove this by induction. For the base case n = 2, variables a1, a2 are mixed means they are free, and

κ2(a1, a2) = τ(a1a2) − τ(a1)τ(a2) = 0. For n ≥ 3, we multiply together neighbors of the same color to get

an alternating representation A1 · · ·Am = a1 · · · an, where 2 ≤ m ≤ n because a1, · · · , an are mixed, and

Aj ∈ Ai′j
with i′1 ̸= i′2 ̸= · · · ̸= i′m−1 ̸= i′m. We may assume m < n, otherwise the case is already handled in

the alternating case. By the above conclusion and Proposition 3.33 (we keep the notation υ),

0 = κm(A1, · · · , Am) = κn(a1, · · · , an) +
∑

π∈ΠNC(n)
π∨υ=1n,π<1n

κπ(a1, · · · , an)
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By induction hypothesis, any π ∈ ΠNC(n) can yield a potentially nonzero cumulant κπ(a1, · · · , an) only if each

block of π connects exclusively elements from the same subalgebra, i.e. π ≤ ker(i). Note that υ ≤ ker(i) also.

Hence π ∨ υ = 1n only if ker(i) = 1n, i.e. all (aj) are from the same sub-algebra. But this would contradict

the fact m ≥ 2. Hence there are no π ∈ ΠNC(n) preceding 1n yielding nonzero cumulants, and

κn(a1, · · · , an) = κm(A1, · · · , Am) = 0.

Thus we finish the proof.

We can refine this criterion to a similar characterization of free independence for random variables.

Theorem 3.36 (Speicher). Let (A, τ) be a non-commutative probability space with free cumulants (κn)n∈N,

and let (Xi)i∈I ⊂ A be a family of random variables. Then, the following statements are equivalent:

(i) The random variables (Xi)i∈I are freely independent in (A, τ);
(ii) Mixed cumulants in the random variables (Xi)i∈I vanish, i.e. for all n ∈ N with n ≥ 2 and all i ∈ In,

we have κn(Xi1 , · · · , Xin) = 0 whenever there exists j, k ∈ [n] such that ij ̸= ik.

Proof. The direction (i) to (ii) is just a special case of 3.35. To prove the direction (ii) to (i), we can show

that the mixed cumulants of unital sub-algebras Ai = Alg(Xi,1) vanish, which is also clear by multilinearity

of cumulants and the condition (ii).

Following are some immediate corollaries of the vanishing of mixed cumulants.

Corollary 3.37. Let (Ai)i∈I be a freely independent family of unital sub-algebras of a non-commutative

probability space (A, τ), and I1, · · · , Im ⊂ I are pairwise disjoint subsets of I. Then the family of sub-algebras

Bj = Alg

⋃
i∈Ij

Ai

 , j = 1, 2, · · · ,m

is also freely independent.

Corollary 3.38. Let X1, X2, · · · , Xk be freely independent random variables in (A, τ). Then

κn(X1 +X2 + · · ·+Xk) = κn(X1) + κn(X2) + · · ·+ κn(Xk)

for all n ∈ N, where κn(X) is short for κn(X, · · · , X︸ ︷︷ ︸
n

).

3.3.3 Free Cumulant-Generating Functions

To end this part, we study the cumulants of a single random variable X in a noncommutative probability

space (A, τ) with cumulants (κn)n∈N. The moment and cumulant sequences of X, denoted by (mn)n∈N and

(κn)n∈N, respectively, are

mn = τ(Xn) = φn(X, · · · , X), κn = κn(X, · · · , X), n = 1, 2, · · · .

We can extend (mn) and (κn) to multiplicative functions m : ΠNC → C and κ : ΠNC → C via

m(π) = mπ :=
∏
V ∈π

m|V |, κ(π) = κπ :=
∏
V ∈π

κ|V |, π ∈ ΠNC. (3.15)

Then m and κ satisfies κ = m ∗ µ and m = κ ∗ ζ. These combinatorial relations are nice but not convenient

for concrete calculations. We introduce an analytic reformulation.
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Theorem 3.39. Let (mn)n∈N and (κn)n∈N be sequences in C, and let κ, π : ΠNC → C be the multiplicative

functions defined in (3.15). Consider the corresponding formal power series in C[[z]]:

M(z) = 1 +

∞∑
n=1

mnz
n, C(z) = 1 +

∞∑
n=1

κnz
n.

Then the following statements are equivalent:

(i) m = κ ∗ ζ, i.e. mn =
∑

π∈ΠNC(n) κπ for all n ∈ N;
(ii) For all n ∈ N,

mn =

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

κrmi1 · · ·mir .

(iii) We have as functional relation in C[[z]] that

C(z ·M(z)) =M(z).

Proof. (i) ⇒ (ii). Fix n ∈ N, π ∈ ΠNC(π), and let V ∈ π be the block containing 1. If |V | = r, we write

π = {V } ∪ π1 ∪ · · · ∪ πr, V = {1, i1 + 2, i1 + i2 + 3, · · · , i1 + · · ·+ ir−1 + r},

where πj ∈ ΠNC(ij) is the sub-partition between the j-th and (j + 1)-th elements of V for j = 1, · · · , r − 1,

and πr ∈ ΠNC(ir) is the sub-partition on the right-side of ir. Note it could be the case ij = 0 and πj = ∅.
Using this decomposition, we have

mn =
∑

π∈ΠNC(n)

κπ =

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

∑
π1∈ΠNC(i1)

· · ·
∑

πr∈ΠNC(ir)

κrκπ1
· · ·κπr

=

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

κr

 ∑
π1∈ΠNC(i1)

κπ1

 · · ·

 ∑
πr∈ΠNC(ir)

κπr


=

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

κrmi1 · · ·mir .

(ii) ⇒ (iii). We plug in the expression of mn in (ii) to the expansion of M(z) to obtain

M(z) = 1 +

∞∑
n=1

mnz
n = 1 +

∞∑
n=1

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

κsmi1 · · ·mirz
n

= 1 +

∞∑
n=1

n∑
r=1

∑
i1,··· ,ir≥0

i1+···+ir+r=n

(κrz
r)(mi1z

i1) · · · (mirz
ir )

= 1 +

∞∑
r=1

∞∑
i1,··· ,ir=0

(κrz
r)(mi1z

i1) · · · (mirz
ir )

= 1 +

∞∑
r=1

κrz
r

( ∞∑
i1=0

mi1z
i1

)r

= 1 +

∞∑
r=1

κrz
rM(z)r = C(z ·M(z)).

(iii) ⇒ (i). Since both (i) and (iii) determine a unique relation between sequences (mn)n∈N and (κn)n∈N, the

implication (i) ⇒ (iii) also gives (iii) ⇒ (i).
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Proposition 3.40. Assume m = κ ∗ ζ. Then (κn)n∈N is exponentially bounded if and only if (mn)n∈N is

exponentially bounded.

Proof. Step I. Note that the sequences δn = δ(0n, 1n) and µn = µ(0n, 1n) satisfies δ = µ ∗ ζ. We consider the

analytic function C defined by

C(z) =
1 +

√
1 + 4z

2
= 1 +

1

2

∞∑
n=1

(−1)n−1 (2n− 1)!!

2nn!
(4z)n

= 1 +
1

2

∞∑
n=1

(−1)n−1 (2n− 2)!

22n−1n!(n− 1)!
(4z)n = 1 +

∞∑
n=1

(−1)n−1Cn−1(4z)
n.

Then we have C(z + z2) = 1+ z. Note that M(z) = 1+ z is the generating function for sequences (δn). Since

δ = µ ∗ ζ, and C(z ·M(z)) = 1 + z, by Theorem 3.39, we have C(z) = 1 +
∑∞

n=1 µnz
n, and

µ(0n, 1n) = (−1)n−1Cn−1, n = 1, 2, · · · .

Step II. Now For any 0n ≤ π = {V1, · · · , Vr} < 1n, we already show in Lemma 3.31 that

[0n, π] ≃ ΠNC(|V1|)× · · ·ΠNC(|V1|) = [0|V1|, 1|V1|]× · · · × [0|Vr|, 1|Vr|].

Then by Proposition 3.27,

µ(0n, π) =
∏
V ∈π

µ(0|V |, 1|V |) =
∏
V ∈π

(−1)|V |−1C|V |−1, 0n ≤ π < 1n.

Step III. We define the Kreweras complement K : ΠNC(n) → ΠNC(n) as follows: consider additional numbers

1, · · · , n and interlace them with 1, · · · , n in the alternating way: (1, 1, 2, 2, · · · , n, n). Let π be a non-crossing

partition of {1, · · · , n} Then its Kreweras complement K(π) ∈ ΠNC(n) is defined as

K(π) = sup
ρ∈C(π)

ρ = sup
{
ρ ∈ ΠNC(n) : π ∪ ρ ∈ ΠNC(1, 1, · · · , n, n)

}
,

where ρ is the same partition as ρ, but on barred labels {1, · · · , n}. Then one can verify that

• K is a bijection on ΠNC(π), and

• for any π ≤ σ, one have C(π) ⊃ C(σ), and K(π) ≥ K(σ).

To summarize, K is an order anti-homomorphism on ΠNC(n), and

µ(π, 1n) = µ(0n,K(π)) =
∏

V ∈K(π)

(−1)|V |−1C|V |−1, 0n < π ≤ 1n.

Step IV. By Steps I and III and the bound Cn ≤ 4n, we have

|µ(π, 1n)| ≤ 4n, π ∈ ΠNC(n).

If |mn|1/n ≤ ρ for all n ∈ N and some ρ > 0, we have

|κn| ≤
∑

π∈ΠNC(n)

∏
V ∈π

|m|V || · |µ(π, 1n)| ≤
∑

π∈ΠNC(n)

4nρn ≤ (16ρ)n.

The other direction follows easily from the moment-cumulant formula.
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3.4 Additive Free Convolution

In this subsection, we discuss the sum of freely independent random variables in non-commutative probabiity

spaces. Let µ, ν be two compactly supported probability measures on R. Assume X and Y are two freely

independent random variables in a non-commutative probability space (A, τ) with spectral measures µ and ν,

respectively. The spectral measure of X + Y is called the additive free convolution of µ and ν, written

X + Y ∼ µ⊞ ν.

We should note that the convolution µ⊞ ν does not depend on the specific choice of probability space (A, τ),
because the moments (and hence the law) of X + Y are determined by the moments of {τ(Xk)}k∈N and

{τ(Y k)}k∈N and the free independence, by Theorem 3.13.

Cauchy transform. For convenience, we often use a variant of the Stieltjes transform in free probability.

Given a probability measure µ on R, define the Cauchy transform of µ as the function Gµ on C\ supp(µ):

Gµ(z) =

∫
R

1

z − x
dµ(x) = −sµ(z), z ∈ C\ supp(µ).

By Theorem 3.8, for the moment sequence mn =
∫
R x

k dµ(x), n = 0, 1, 2, · · · of µ, we have

Gµ(z) =

∞∑
k=0

mn

zk+1
=

1

z
M

(
1

z

)
.

Now we derive a formal inverse of the Cauchy transform.

Theorem 3.41 (Voiculescu). For compactly supported probability measures one has the following analytic

properties of the Cauchy transform and the R-transform.

(i) Let µ be a probability measure on R with compact support, contained in an interval [−ρ, ρ]. Consider its

Cauchy transform Gµ as an analytic function in U := {z ∈ C : |z| > 4ρ}. Then Gµ is injective on U ,

and

V :=

{
z ∈ C : |z| < 1

6ρ

}
⊂ Gµ(U) ⊂

{
z ∈ C : |z| < 1

3ρ

}
.

Hence Gµ has an analytic inverse Kµ = G−1
µ : V → U , which satisfies

Gµ(Kµ(z)) = z for |z| < 1

6ρ
, and Kµ(Gµ(z)) = z for |z| < 1

7ρ
.

(ii) The function Kµ has on V has the Laurent series expansion

Kµ(z) =
1

z
+Rµ(z), where Rµ(z) =

∞∑
n=1

κnz
n−1, z ∈ V.

The power series function Rµ is called the R-transform of µ.

Proof. (i) For all z ∈ U , define f(z) := Gµ(1/z). Then f has a power series expansion

f(z) =

∞∑
n=0

mnz
n+1, |z| < 1

ρ
,

and

|f(z)| ≤
∞∑

n=0

|mn| |z|n+1
<

∞∑
n=0

ρn
(

1

4ρ

)n+1

=
1

3ρ
for all |z| < 1

4ρ
.
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Now we consider z1, z2 ∈ C with |z1|, |z2| < 1
4ρ . If z1 ̸= z2, by the mean value theorem,

∣∣∣∣f(z2)− f(z1)

z2 − z1

∣∣∣∣ ≥ Re

(
f(z2)− f(z1)

z2 − z1

)
=

∫ 1

0

Re [f ′(z1 + t(z2 − z1))] dt.

Note that

Re f ′(z) = Re

(
1 +

∞∑
n=1

(n+ 1)mnz
n

)
≥ 1−

∞∑
n=1

(n+ 1)mn|z|n ≥ 2−
∞∑

n=0

n+ 1

4n
=

2

9
, |z| < 1

4ρ
.

Combining the last two results, we have

|f(z2)− f(z1)| ≥
2

9
|z2 − z1|, for all z1, z2 ∈

{
z ∈ C : |z| < 1

4ρ

}
.

Therefore f is injective on B(0, 1
4ρ ), and Gµ is injective on U = {z ∈ C : |z| > 4ρ}. Furthermore, if |w| < 1

6ρ ,

we consider the function h(z) = f(z)− w.

|h(z)− (z − w)| = |f(z)− z| =

∣∣∣∣∣
∞∑

n=1

mnz
n+1

∣∣∣∣∣ =
∞∑

n=1

ρn
(

1

4ρ

)n+1

=
1

12ρ
< |z − w|, for all |z| = 1

4ρ
.

By Rouché’s theorem, the analytic functions h and z 7→ z −w have the same number of zeros inside B(0, 1
4ρ ).

Therefore h(z) = f(z)−w has a simple zero in B(0, 1
4ρ ), and w ∈ f(B(0, 1

4ρ )). Consequently, Gµ(U) ⊃ V , and

f has an analytic inverse f−1 : V → B(0, 1
4ρ ). The inverse of Gµ is given by Kµ = 1/f−1.

Since f−1 has a simple zero at 0 and has no other zeroes, the function Kµ has simple pole at 0, and has

the representation

K(z) =
c

z
+R(z),

where c ∈ C and R : V → U is some analytic function. Furthermore,

z = f(f−1(z)) = Gµ

(
1

f−1(z)

)
= Gµ(Kµ(z)) = Gµ

( c
z
+R(z)

)
, z ∈ V.

For z ∈ C with |z| > 7ρ, it suffices to show that Gµ(z) ∈ V , i.e. |Gµ(z)| < 1
6ρ . After that, we have Kµ(Gµ(z))

by construction. Note that

|f(z)| ≤
∞∑

n=0

mn|z|n+1 <

∞∑
n=0

ρn
(

1

7ρ

)n+1

=
1

6ρ
, |z| < 1

7ρ
.

Hence |Gµ(z)| < 1
6ρ for |z| > 7ρ, and we finish the proof.

(ii) By Theorem 3.39, for some sufficiently small δ > 0, we have

C(Gµ(z)) = C

(
1

z
M

(
1

z

))
=M

(
1

z

)
= z ·Gµ(z), for z ∈ C such that |Gµ(z)| < δ.

Hence z = C(Gµ(z))/Gµ(z). We define R̃(z) =
∑∞

n=1 κnz
n−1 and K̃(z) = 1

z + R̃(z) = C(z)/z. Then

K̃(Gµ(z)) =
1

Gµ(z)
+ R̃(Gµ(z)) =

C(Gµ(z))

Gµ(z)
= z, for z ∈ C such that |Gµ(z)| < δ.

Since Gµ is injective on U , we know that at least Kµ and K̃ agree on a small neighborhood of 0. By uniqueness

of power series representation, we have Rµ(z) =
∑∞

n=1 κnz
n−1 and Kµ(z) =

1
z +Rµ(z) on V .
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According to Theorem 3.40, for a bounded random variable X, its cumulants satisfy κn(X) ≤ (16ρ(X))n

for all n ∈ N. As a consequence, its R-transform RX(z) =
∑∞

n=0 κn(X)zn−1 is well-defined in a neighborhood

of 0. The following theorem states that the R-trasform linearizes additive free convolution.

Theorem 3.42 (Voiculescu). The R-transform linearizes additive free convolution, i.e. for compactly sup-

ported probability measures µ, ν on R,
Rµ⊞ν = Rµ +Rν .

Proof. Let X ∼ µ and Y ∼ ν be two random variables in some non-commutative probability space (A, τ) with
cumulants (κn)n∈N such that X and Y are freely independent. Then

κn(X + Y ) = κn(X) + κn(Y ), n = 1, 2, · · · .

Then X + Y ∼ µ⊞ ν, and

Rµ⊞ν(z) =

∞∑
n=0

κn(X + Y )zn−1 =

∞∑
n=0

κn(X)zn−1 +

∞∑
n=0

κn(Y )zn−1 = Rµ(z) +Rν(z).

Thus we finish the proof.

It is easy to verify the following properties of additive free convolution.

Proposition 3.43. Let µ, ν, λ be compactly supported probability measures on R.
(i) (Commutativity). µ⊞ ν = ν ⊞ µ.

(ii) (Associativity). (µ⊞ ν)⊞ λ = µ⊞ (ν ⊞ λ).

(iii) (Neutral element). δ0 ⊞ µ = µ.

(iv) (Translation). δt ⊞ µ = µ(t) for every t ∈ R, where µ(t)(B) = µ{x− t : x ∈ B} for all Borel sets B ⊂ R.

Now we hanble a special example of additive free convolution.

Example 3.44. We consider the discrete measure

µ =
1

2
(δ1 + δ−1) .

The Cauchy transform of µ is

Gµ(z) =
1

2(z − 1)
+

1

2(z + 1)
=

z

z2 − 1
,

and we find the inverse of Gµ by solving Gµ(Kµ(z)) = z, which has two solutions

Kµ(z) =
1±

√
1 + 4z2

2z
,

and

Rµ(z) = Kµ(z)−
1

z
=

1±
√
1 + 4z2

2z
− 1

z
=

−1±
√
1 + 4z2

2z
.

Note that Rµ(0) = 0. Then we choose the branch

Rµ(z) =
−1 +

√
1 + 4z2

2z
.

Then

Rµ⊞µ(z) =
−1 +

√
1 + 4z2

z
, and Kµ⊞µ(z) =

√
1 + 4z2

z
.
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Consequently,

Gµ⊞µ(z) =
1√

z2 − 4
,

and by the Stieltjes inversion formula,

d(µ⊞ µ)(t)

dt
= − 1

π
lim
η↓0

Im
1√

(t+ iη)2 − 4
= − 1

π
Im

1√
t2 − 4

=
1[−2,2](t)

π
√
4− t2

.

Hence µ⊞ µ is the arcsine distribution, which is continuous.

Example 3.45. The R-transform of the Marčenko-Pastur distribution is

Rµ(z) =

∞∑
n=0

αzn−1 =
α

1− z
.

Then

Kµ(z) =
1

z
+

α

1− z
,

and
1

Gµ(z)
+

α

1−Gµ(z)
= z ⇒ Gµ(z) ∈

1− α+ z ±
√
(1− α+ z)2 − 4z

2z

Since Gµ(iη) → 0 as η → ∞, we select the branch

Gµ(z) =
1− α+ z −

√
(1− α+ z)2 − 4z

2z
=

1− α+ z −
√
(z − 1− α)2 − 4α

2z
.

Then for t ̸= 0,

dµ(t)

dt
= − 1

π
lim
η↓0

Im
1− α+ t+ iη −

√
(t+ iη − 1− α)2 − 4α

2(t+ iη)

= − 1

π
Im

1− α+ t−
√
(t− 1− α)2 − 4α

2t

=

√
(t− λα−)(λα+ − t)

2πt
1[λα−,λα+](t),

and

µ({0}) = 1−
∫ λα+

λα−

√
(t− λα−)(λα+ − t)

2πt
dt =

(
1− 1

α

)
+

.
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4 Gaussian Ensembles

In this section, we study two special kinds of of Wigner matrices (ξij)i,j∈N introduced in Example 1.4:

• Gaussian Orthogonal Ensemble (GOE). The diagonal entries (ξii)
∞
i=1 are i.i.d. NR(0, 2) variables, and

the off-diagonal entries (ξij)1≤i<j are i.i.d. NR(0, 1) variables. In this case, In this case, the density

function of Wn is

ρn,GOE(X) =

n∏
i=1

1

2
√
π
e−

x2
ii
4

∏
1≤i<j≤n

1√
2π
e−x2

ij/2

=
1

2n(n+3)/4πn(n+1)/4
exp

−1

4

n∑
i=1

x2ii −
1

2

∑
1≤i<j≤n

x2ij


=

1

2n(n+3)/4πn(n+1)/4
exp

(
−1

4
tr(X2)

)
, X = (xij)n×n ∈ Rn×n is symmetric.

The GOE distribution is invariant under orthogonal similarity transformation, i.e. Wn
d
= QWnQ

∗ for

any orthogonal matrix Q ∈ Rn×n.

• Gaussian Unitary Ensemble (GUE). The diagonal entries (ξii)
∞
i=1 are i.i.d. NR(0, 1) variables, and the

off-diagonal entries (ξij)1≤i<j are i.i.d. NC(0, 1) variables, i.e.

P(ξ12 ∈ A) =

∫
A

1

π
e−|z|2 dz, A ⊂ C is Borel.

In this case, In this case, the density function of Wn is

ρn,GUE(X) =

n∏
i=1

1√
2π
e−x2

ii/2
∏

1≤i<j≤n

1

π
e−|xij |2

=
1

2n/2πn2/2
exp

−1

2

n∑
i=1

x2ii −
1

2

∑
1≤i<j≤n

|xij |2


=
1

2n/2πn2/2
exp

(
−1

2
tr(X2)

)
, X = (xij)n×n ∈ Cn×n is Hermitian.

The GUE distribution is invariant under unitary similarity transformation, i.e. Wn
d
= UWnU

∗ for any

unitary matrix U ∈ Cn×n.

To summarize, the density function of GOE/GUE is given by

ρn,β(X) =
1

Zn,β
exp

(
−β
4
tr(X2)

)
, where the Dyson index β =

1 for GOE,

2 for GUE,

and Zn,β > 0 is a normalizing constant.

The space of n × n Hermitian matrices as Rn2

. An Hermitian matrix H ∈ Cn×n is fully determined

by its upper triangular entries (Hij)1≤i≤j≤n, with the diagonal entries H11, · · · , Hnn ∈ R and the off diagonal

entries H12, H13, H23, · · · , H1n, · · · , Hn−1,n ∈ C ∼= R2. Hence the total real dimension is n+ 2× n(n−1)
2 = n2.

We define a linear isomorphism ψ from the vector space of Hermitian matrices Hn to Rn2

:

ψ(H) = (H11, H22, · · · , Hnn,Re(H12), · · · ,Re(Hn−1,n), Im(H12), · · · , Im(Hn−1,n)).

This identifies Hn
∼= Rn2

as real vector spaces. Similarly Sn
∼= Rn(n+1)/2.
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4.1 Joint Distribution of Eigenvalues

In this subsection, we derive a closed-form density function for the spectral distribution of GOEs and GUEs.

Theorem 4.1 (Joint spectral density of Gaussian ensembles). Let Wn = (ξij)1≤i,j≤n be a GOE/GUE, and let

λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Wn, including repititions according to algebraic multiplicity. Then

the density of the joint distribution of (λ1, λ2, · · · , λn) is given by

ρn,β(λ1, · · · , λn) =
1{λ1>···>λn}

Zn,β
|∆n(λ1, · · · , λn)|βe−

β
4 (λ2

1+···+λ2
n), where β =

1 for GOE,

2 for GUE,

where ∆n is the n× n Vandemonde determinant

∆n(λ1, · · · , λn) = det


1 λ1 λ21 · · · λn−1

1

1 λ2 λ22 · · · λn−1
2

...
...

...
. . .

...

1 λn λ2n · · · λn−1
n

 =
∏

1≤i<j≤n

(λj − λi),

and Zn,β > 0 is a normalizing constant.

4.1.1 Analysis of Spectra and Eigenvectors

We first prove that the spectrum of a GOE/GUE is almost surely simple.

Lemma 4.2 (Sylvester resultant). Consider two polynomials

f(z) = a0 + a1z + · · ·+ anz
n, g(z) = b0 + b1z + · · ·+ bmz

m,

where an ̸= 0 and bm ̸= 0. Define the Sylvester matrix

Sf,g =



an an−1 · · · a0 0 · · · 0

0 an an−1 · · · a0
. . .

...
...

. . .
. . .

. . .
...

. . . 0

0 · · · 0 an an−1 · · · a0

bm bm−1 · · · b0 0 · · · 0

0 bm bm−1 · · · b0
. . .

...
...

. . .
. . .

. . .
...

. . . 0

0 · · · 0 bm bm−1 · · · b0



∈ C(m+n)×(m+n),

where the upper block has m rows and the lower block has n rows. Let ζ1, · · · , ζn ∈ C be the zeros of f , and

η1, · · · , ηm ∈ C the zeros of g, including the repetition according to multiplicity. Then

det(Sf,g) = (−1)mbnm

m∏
j=1

f(ηj) = amn

n∏
k=1

g(ζk) = amn b
n
m

m∏
j=1

n∏
k=1

(ζk − ηj).

In particular, f and g have a common zero in C if and only if det(Sf,g) = 0.

Remark. The determinant of the Sylvester matrix Sf,g is also called the Sylvester resultant.

Proof. Step I. We first assume f · g has no repeated zeros, i.e. ζ1, · · · , ζn, η1, · · · , ηn are mutually distinct.

Given two polynomials u(z) = u0 + u1z+ · · ·+ um−1z
m−1, v(z) = v0 + v1z+ · · ·+ vn−1z

n−1, define the linear
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mapping

Φ : C[[z]]<m ⊕ C[[z]]<n → C[[z]]<m+n, Φ(u, v)(z) = u(z) · f(z) + v(z) · g(z).

Then S⊤
f,g is the coefficient matrix of Φ in the monomial bases, i.e. the coefficients of the polynomial Φ(u, v)

(in decreasing order) is given by S⊤
f,g(um−1, · · · , u1, u0, vn−1, · · · , v1, v0)⊤. Now we write

f(z) = an

n∏
j=1

(z − ζj), g(z) = bm

m∏
j=1

(z − ηj),

and evaluate h = Φ(f, g) at the zeros of f and g:

• At z = ζj , j = 1, · · · , n, one have h(ζj) = v(ζj) · g(ζj), since f(ζj) vanishes;
• At z = ηj , j = 1, · · · ,m, one have h(ηj) = u(ηj) · f(ηj), since g(ηj) vanishes.

Inspired by this, we switch the evaluation coordinates:

• On the domain, use the transformation

E : C[[z]]<m ⊕ C[[z]]<n → Cm ⊕ Cn, (u, v) 7→ (u(η1), · · · , u(ηm), v(ζ1), · · · , v(ζn)) ;

In the monomial basis, the coefficient matrix of E is a block diagonal matrix, whose upper-left and

lower-right blocks are the Vandermonde matrices (ηk−1
j )j,k∈[m] and (ζk−1

j )j,k∈[n], respectively. Then

det(E) = ∆m(η1, · · · , ηm) ·∆n(ζ1, · · · , ζn).

• On the codomain, use the transformation

F : C[[z]]<m+n → Cm+n, h 7→ (h(η1), · · · , h(ηm), h(ζ1), · · · , h(ζn)) .

Likewise, we have

det(F ) = ∆m+n(η1, · · · , ηm, ζ1, · · · , ζn) = ∆m(η1, · · · , ηm) ·∆n(ζ1, · · · , ζn) ·
m∏
j=1

n∏
k=1

(ηj − ζk).

Clearly, in the evaluation coordinates, the coefficient matrix of Φ is given by the diagonal matrix

D = diag(g(ζ1), · · · , g(ζn), f(η1), · · · , f(ηm)).

By the change of basis formula, we have S⊤
f,g = F−1DE, and

det(Sf,g) =

∏m
j=1 f(ηj) ·

∏n
k=1 g(ζk) · det(E)

det(F )
=

∏m
j=1 f(ηj) ·

∏n
k=1 g(ζk)∏m

j=1

∏n
k=1(ηj − ζk)

.

Note that f(ηj) = an
∏n

k=1(ηj − ζk) and g(ζk) = (−1)mbm
∏m

j=1(ηj − ζk). Then the desired result follows.

Step II. If f · g has repeated zeros, we use perturbation. Take a small number ϵ > 0 such that ϵ is smaller than

the distance of any two distinct elements of {ζ1, · · · , ζn, η1, · · · , ηm}, and let

f ϵ(z) = an

n∏
k=1

(
z − ζk − 2−kϵ

)
=: aϵ0 + aϵ1z + · · ·+ aϵn−1z

n−1 + aϵnz
n,

gϵ(z) = bm

m∏
j=1

(
z − ηj − i2−jϵ

)
=: bϵ0 + bϵ1z + · · ·+ bϵm−1z

n−1 + bϵmz
m.

67



Then their zeros are mutually distinct, and

det(Sfϵ,gϵ) =

m∏
j=1

n∏
k=1

(
ζk − ηj − (2−k + i2−j)ϵ

)
.

As ϵ goes to 0, we have maxk∈[n] |aϵk − ak| → 0 and maxj∈[m] |bϵj − bj | → 0, and hence det(Sfϵ,gϵ) → det(Sf,g).

Taking ϵ ↓ 0 in the last display, we obtain the desired result for the general case.

Lemma 4.3. We consider the Lebesgue measure.

(i) Let f : RN → C be a nonzero polynomial with complex coefficients. Then the zero set Zf = {f = 0} of

f is of zero Lebesgue measure on RN .

(ii) The set of symmetric matrices A = (Aij)n×n ∈ Cn×n with repeated eigenvalues is of zero Lebesgue

measure on Rn(n+1)/2.

(iii) The set of Hermitian matrices H = (Hij)n×n ∈ Cn×n with repeated eigenvalues is of zero Lebesgue

measure on Rn2

.

Remark. Since the density of GUE Wn is absolutely continuous with respect to the Lebesgue measure, the

spectrum of Wn is almost surely simple, i.e. every eigenvalue of Wn is of algebraic multiplicity 1.

Proof. (i) We prove the result by induction. For the base case N = 1, by the fundamental theorem of algebra,

any nonzero polynomial f of degree m has no more than m zeros. Therefore Zf is a finite set and has zero

Lebesgue measure. For the induction step, we write

f(x1, · · · , xN ) =

m∑
k=1

pk(x1, · · · , xN−1)x
m
N ,

where p1, · · · , pk : CN−1 → C are polynomials. Then if x ∈ Zf , there are two possibilities:

• either p1 = · · · = pk = 0, or

• xN is a root of the nontrivial univariate polynomial g(t) =
∑m

k=1 pk(x1, · · · , xN−1) t
k.

Let A,B be the subsets of Cn where these respective conditions hold, so that Zf = A ∪B.

• Using the inductive hypothesis, the Lebesgue measure of A is zero.

• Using the fundamental theorem of algebra, for each (x1, · · · , xN−1) ∈ CN−1, there are finitely many t

such that (x1, · · · , xN−1, t) ∈ Zf . By Fubini’s theorem, B also has zero Lebesgue measure.

Since (ii) and (iii) are similar, we only prove (iii).

(iii) Consider the characteristic polynomial f(λ) = det(H − λ Id) = a0 + a1λ+ · · ·+ anλ
n, where coefficients

a0, a1, · · · , an are homogeneous polynomials of the entries of H. Then H has no repeated eigenvalues if and

only if f(λ) and f ′(λ) = b0 + b1λ+ · · ·+ bn−1λ
n−1, where bk = (k + 1)ak+1, have no common zeros.

We take the Sylvester matrix Sf,f ′ . By Lemma 4.2, Hermitian matrix H has no repeated eigenvalues if

and only if det(Sf,f ′) = 0. Since Sf,f ′ is a polynomial of the entries of H, the result follows from (i).

Next we study the property of eigenvectors.

Lemma 4.4. Fix n ∈ N. We write

• U(n) for the set of n× n unitary matrices,

• U+(n) for the set of n× n unitary matrices U such that every entry uij is nonzero, and

• U++(n) for the set of matrices U ∈ U+(n) such that every diagonal entry uii is strictly positive real.

We also write Rn
> = {Λ ∈ Rn×n : Λ = diag{λ1, . . . , λn}, with λ1 > λ2 > · · · > λn}.
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(i) Define

H+
n = {H ∈ Hn : there exists U ∈ U+(n) and Λ ∈ Rn

> such that H = UΛU∗}

Then H+
n is of full Lebesgue measure on Rn2

.

(ii) the map (Rn
>,U

++(n)) → H+
n given by (Λ, U) 7→ UΛU∗ is a bijection.

Proof. To prove (i), we write H = UΛU∗ for the eigendecomposition of an Hermitian matrix H ∈ Hn. By

Lemma 4.3 (ii), we may assume Λ ∈ Rn
>. The column of U consists of eigenvectors of H.

For an eigenvalue λ of H, let G = H − λ Idn. Then GG♯ = det(G) Idn = 0, where G♯ is the adjugate

of G, i.e. G♯
ij = (−1)i+j det(G−j,−i), where G−j,−i is the (n − 1) × (n − 1) matrix obtained from G by

removing j-th row and i-th column. Since the spectrum of H is simple, the null space of G has (complex)

dimension 1, and all columns of G♯ is a multiple of some eigenvector uλ ∈ Cn, which is a column of U . If

G♯
ii = det(H−i,−i − λ Idn−1) = 0, then the characteristic polynomials of H and H−i,−i have a common zero,

and the corresponding Sylvester resultant, which is a nonzero polynomials about entries of H, vanishes. By

Lemma 4.3 (i), this happens only for a set of matrices H of zero Lebesgue measure in Hn
∼= Rn2

. Outside this

set, we have G♯
ii ̸= 0, and vλ(i) ̸= 0. This is true for all eigenvalues λ and all indices i ∈ [n]. Consequently, all

entries of U are nonzero, and H+
n is of full Lebesgue measure.

The second part of the lemma is immediate, since the eigenspace corresponding to each eigenvalue is of

dimension 1, the eigenvectors are fixed by the forcing uii > 0 for every i ∈ [n], and the multiplicity arises from

the possible permutations of the order of the eigenvalues.

4.1.2 Change-of-Variable Technique

In this part, we use the change-of-variable formula to derive the joint density function of eigenvalues.

Lemma 4.5. (Orthogonal and unitary groups).

(i) Let o(n) be the space of n × n skew-symmetric real matrices, and O(n) the group of n × n orthogonal

matrices. The exponential map exp : o(n) → O(n) is a surjective, locally one-to-one mapping. Thus o(n)

is the Lie algebra of O(n).

(ii) Let u(n) be the space of n× n skew-Hermitian matrices, and U(n) the group of n× n unitary matrices.

The exponential map exp : u(n) → U(n) is a surjective, locally one-to-one mapping. Thus u(n) is the

Lie algebra of U(n).

(iii) Let U⋆(n) be the set of n × n unitary matrices U such that each diagonal entry uii ∈ R, which is a

submanifold of U(n). Via the exponential map, U⋆(n) is locally parameterized by an (n2−n)-dimensional

real vector space

u⋆(n) = {S ∈ u(n) : Sii = 0, i = 1, · · · , n} .

Proof. We first prove (ii). It is trivial to verify that eS unitary is for any skew-Hermitian matrix S = −S∗. To

check surjectivity, we fix a unitary matrix U ∈ U(n). Since U is normal, we consider its eigendecomposition

U = V DV ∗, where D = (eiθ1 , · · · , eiθn) and V ∈ U(n). Then the matrix

S := V diag{iθ1, · · · , iθn}V ∗

is skew-Hermitian, i.e. S = −S∗, and satisfies U = eS , U∗ = e−S .

To show that the exponential mapping is locally one-to-one, it suffices to show that it is one-to-one on

some neighborhood of the zero matrix in u(n) by group invariance. Since a skew-Hermitian matrix S satisfies

S = −S∗, the space u(n) is parameterized by the upper-triangular entries

(sij)1≤i≤j≤n = ((sii)1≤i≤n, (Re sij , Im sij)1≤i<j≤n) ,
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which has real dimension n2. Set U = eS and consider the above upper-triangular entries (xij)1≤i≤j≤n as a

function of (sij)1≤i≤j≤n. Then e
tS = 1 + tS +O(t2), and the partial derivatives at S = 0 are

∂uii
∂si′i′

= δii′ ,
∂ Reuij
∂ Re si′j′

=
∂ Imuij
∂ Im si′j′

= δii′δjj′ .

Hence the Jacobian matriix DU(S) is an identity, which is invertible. By the inverse function theorem, there

exist open neighborhoods V of zero matrix in u(n) and W of Id in U(n) such that exp |V : V → W is a

diffeomorphism. By group invariance, exp : u(n) → U(n) is locally one-to-one.

To prove (iii), we let {U(t), 0 ≤ t ≤ T} be a smooth curve in U⋆(n) with U(0) = Idn. Then the skew-

Hermitian matrix S = U ′(0) satisfies sii =
d
dtUii|t=0. For each i ∈ [n], note that the diagonal entry sii of a

skew-Hermitian matrix is purely imaginary, and Uii(t) is real. Hence sii = 0, and the tangent space of U⋆(n)

at Idn consists of skew-Hermitian matrices with all diagonal entries 0.

Finally, for the statement (i), we apply the following decomposition for real normal matrix U :

U = Qdiag{1, · · · , 1,−1, · · · ,−1,Θ1, · · · ,Θr}Q⊤,

where Θi =

(
cos θi sin θi

− sin θi cos θi

)
, i = 1, · · · , n are blocks of 2 × 2 rotation matrices, and U ∈ O(n). The

remaining part of the proof for exp : o(n) → O(n) is similar to the unitary case.

Lemma 4.6. Consider the bijective map (Rn
>,U

++(n)) → H+
n : (Λ, U) 7→ X = UΛU∗. Then the Jacobian

determinant of X with respect to (Λ, U) has the form

|detDX(Λ, U)| = |∆n(λ1, · · · , λn)|2 f(U),

where f : U++(n) → R is a function of entries of U .

Proof. We note that U+(n) is an open subset of U⋆(n). We view X = UΛU∗ = eSΛe−S as a function of Λ and

S, where S ∈ u⋆(n) is skew-Hermitian with all diagonal entries 0, and U = eS ∈ U+(n). Note Λn has degree

of freedom n and S has degree of freedom n2 − n, which is compatible with the real dimension of X.

Given 1 ≤ i < j ≤ n, let Eij be the skew matrix whose (i, j)-entry is 1 and (j, i)-entry is −1, with all other

entries 0. Then (Eij)1≤i<j≤n forms a basis for n× n skew-Hermitian matrices. Furthermore, for ϵ→ 0 in C,

eEijΛe−Eij = (1 + ϵEij +O(ϵ2)) Λ (1− ϵEij +O(ϵ2)) = Λ + ϵ(EijΛ− ΛEij) +O(ϵ2)

= Λ + ϵ(λj − λi)Eij +O(ϵ2).

Hence for all indices 1 ≤ i < j ≤ n and 1 ≤ i′ < j′ ≤ n,

∂xii
∂λi′

∣∣∣∣
S=0

= δii′ ,
∂xij
∂si′j′

∣∣∣∣
S=0

= (λj − λi)δii′δjj′ .

This can be summarized as dX|S=0 = dΛ + (dS)Λ − Λ(dS). For the general case, the differential form of

X = UΛU∗ = eSΛe−S is given by the unitary transformation

dX = U [dΛ + (dS)Λ− Λ(dS)]U∗, where U = eS .

Hence

dxij =

n∑
k=1

uikujk dλk +

n∑
k ̸=ℓ

uikujℓ(λℓ − λk) dskℓ.
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For any 1 ≤ k < ℓ ≤ n, all entries of the two columns in DX(Λ, S) corresponding to the derivatives with

respect to Re skℓ and Im skℓ have a common factor (λℓ −λk), and hence (λℓ −λk)
2 is a factor of the Jacobian.

Hence |∆n(λ1, · · · , λn)|2 is a factor of DX(Λ, S). Note that DX(Λ, S) should be a homogeneous polynomial

on (λ1, · · · , λn) of order at most n(n− 1), whose coefficients are functions of entries of S. Then the Jacobian

of X with respect to Λ, S has the form

|detDX(Λ, S)| = |∆n(λ1, · · · , λn)|2 g(S),

where g : u⋆(n) → R is a function of entries of S. Since S 7→ U = eS is a local diffeomorphism between u⋆(n)

and U++(n), and its Jacobian depends only on U = eS , the result (4.6) follows from change-of-variables.

Proof of Theorem 4.1. We consider the GUE case, where β = 2. Step I. We first consider the mapping

Φ : Rn
≥ × U(n) → Hn, (Λ, U) → UΛU∗, where Rn

≥ is the space of real diagonal matrices with non-increasing

entries λ1 ≥ · · · ≥ λn. The pullback of the GUE distribution ρn,GUE(X) dX under Φ is denoted by P (dΛ, dU) =

ν(Λ, dU)µ(dΛ), where ν(Λ, ·) is the regular conditional distribution of U given Λ. Since the GUE distribution

is invariant under unitary transformation X 7→ V XV ∗, where V ∈ U(n), the conditional distribution ν(Λ, dU)

is invariant under left-multiplication U 7→ V U . By uniqueness of the Haar measure, ν(Λ, dU) is the normalized

left Haar measure on U(n), which does not depend on Λ. Hence Λ and U are independent, and P (dΛ, dU) =

µ(dΛ)ν(dU).

By Lemma 4.4, ν is concentrated on the set U+(n), and we write π : U+(n) → U++(n) for the projection

onto U++(n), i.e. π(U)ij = uijujj/|ujj | for all i, j ∈ [n], where U = (uij)i,j∈[n]. We denote by ν̃ = ν ◦ π−1 the

pushforward of left-Haar measure ν on U+(n) under π. Then µ(dΛ) ν̃(dU) is the pullback of ρn,GUE(X) dX

under the bijection Ψ : Rn
> × U++(n) → H+

n , (Λ, U) → UΛU∗ in Lemma 4.4.

Step II. Now we focus on the measure µ(dΛ). For X ∈ H+
n , writing X = Ψ(Λ, U) = UΛU∗. Then for any

continuous function φ : Rn
> → C, we have∫

Rn
>

φ(Λ)µ(dΛ) =

∫
Rn

>

∫
U++(n)

φ(Λ) ν̃(dU)µ(dΛ) =

∫
H+

n

(φ ◦Ψ−1)(X)ρn,GUE(X) dX

=

∫
Rn

>

∫
U++(n)

φ(Λ)ρn,GUE(UΛU∗) |detDΨ(Λ, U)| dU dΛ

=

∫
Rn

>

∫
U++(n)

e−
1
2 tr(Λ2) |∆n(λ1, · · · , λn)|2 f(U) dU dΛ

= cn

∫
Rn

>

e−
1
2 tr(Λ2) |∆n(λ1, · · · , λn)|2 dΛ,

where cn is a constant depending only on n. Hence the density function of eigenvalues Λ = diag{λ1, · · · , λn}
is given by

ρn,GUE(λ1, · · · , λn) ∝ 1{λ1>···>λn}e
− 1

2 (λ
2
1+···+λ2

n) |∆n(λ1, · · · , λn)|2 .

The case for GOE distribution is similar.
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4.2 Determinantal Laws in the GUE

In this subsection, we study how Hermite polynomials and wave functions arise naturally from the spectral

density of GUE:

ρGUE,n(x1, · · · , xn) ∝ e−
1
2 (x

2
1+···+x2

n) |∆n(x1, · · · , xn)|2 1{x1>···>xn}.

We let (Pk)
n−1
k=0 be a (univariate) polynomial family such that for every k ∈ N, Pk is a monic polynomial of

degree k, i.e. the leading coefficient of Pk is 1. Since determinant is invariant when adding a scalar multiple

of one column to another column, for every x1, · · · , xn ∈ R, we have

∆n(x1, · · · , xn) = det


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n

 = det


1 P1(x1) · · · Pn−1(x1)

1 P1(x2) · · · Pn−1(x2)
...

...
. . .

...

1 P1(xn) · · · Pn−1(xn)


Then

|∆n(x1, · · · , xn)|2 = det

[
n−1∑
k=0

xki x
k
j

]n
i,j=1

= det

[
n−1∑
k=0

Pk(xi)Pk(xj)

]n
i,j=1

.

As a result, the spectral density of n× n GUE satisfies

ρGUE,n(λ1, · · · , λn) ∝ det

[
n−1∑
k=0

e−x2
i /4Pk(xi)e

−x2
j/4Pk(xj)

]n
i,j=1

, λ1 ≥ λ2 ≥ · · · ≥ λn. (4.1)

A nice choice of (Pk)
n−1
k=0 is the Hermite polynomial family.

4.2.1 Hermite Polynomials

The Hermite polynomials are a family of orthogonal polynomials under the Gaussian measure.

Theorem 4.7 (Hermite polynomials). Consider the family of Hermite polynomials:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2, n = 0, 1, 2, · · · . (4.2)

(i) Hn(x) is a monic polynomial in x of degree n, i.e. the leading coefficient is 1.

(ii) (Rodrigues’ formula).

Hn = (−1)n
(
d

dx
− x

)n

1, n = 0, 1, 2, · · · .

(iii) (Derivatives).

H(m)
n (x) =

n!

(n−m)!
Hn−m(x), 0 ≤ m ≤ n.

(iv) (Hermite differential equation). H′′
n − xH′

n + nHn = 0, n = 1, 2, · · · .
(v) (Orthogonality). The Hermitian polynomials are orthogonal under the Gaussian inner product, i.e. for

n,m ∈ N, ∫ ∞

−∞
Hn(x)Hm(x)

e−x2/2

√
2π

dx = n! δnm.

(vi) (Christoffel-Darboux). For x ̸= y,

n−1∑
k=0

Hk(x)Hk(y)

k!
=

Hn(x)Hn−1(y)− Hn−1(x)Hn(y)

(n− 1)!(x− y)
, n = 1, 2, · · · .
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Proof. (i) follows easily from H0 = 1 and induction.

(ii) Note that for any differentiable function f : R → C,

ex
2/2 d

dx
e−x2/2f(x) =

(
d

dx
− x

)
f(x).

By definition, we have

Hn = (−1)n · ex
2/2 d

dx
e−x2/2(−1)n−1Hn−1 = −

(
d

dx
− x

)
Hn−1 = · · · = (−1)n

(
d

dx
− x

)n

1.

(iii) We first claim that

d

dx

(
d

dx
− x

)n

f =

(
d

dx
− x

)n
d

dx
f − n

(
d

dx
− x

)n−1

f, n ∈ N.

This can be proved by induction. For the base case n = 1,

d

dx

(
d

dx
− x

)
f −

(
d

dx
− x

)
d

dx
f =

(
d2

dx2
f − x

d

dx
f − f

)
−
(
d2

dx2
f − x

d

dx
f

)
= −f.

By induction hypothesis,

d

dx

(
d

dx
− x

)n

f =

(
d

dx
− x

)
d

dx

(
d

dx
− x

)n−1

f −
(
d

dx
− x

)n−1

f

=

(
d

dx
− x

)[(
d

dx
− x

)n−1
d

dx
− (n− 1)

(
d

dx
− 1

)n−2
]
f −

(
d

dx
− x

)n−1

f

=
d

dx

(
d

dx
− x

)n

f − n

(
d

dx
− x

)n−1

f.

Using this conclusion, we have

H′
n = (−1)n

d

dx

(
d

dx
− x

)n

1 = (−1)n

[(
d

dx
− x

)n
d

dx
− n

(
d

dx
− x

)n−1
]
1

= (−1)n−1n

(
d

dx
− x

)n−1

1 = nHn−1.

The general case H
(m)
n = n!

(n−m)!Hn−m follows from induction.

(iv) We multiply (4.2) by e−x2/2 and differentiate with respect to x on both sides:

(e−x2/2Hn)
′(x) = (−1)n

dn+1

dxn+1
e−x2/2.

Using the product rule and dividing by e−x2/2, we have

H′
n(x)− xHn(x) = −Hn+1(x).

Again, we apply differentiation on both sides and use (iii) with m = 1:

H′′
n(x)− xH′

n(x)− Hn(x) = −H′
n+1(x) = −(n+ 1)Hn(x).

This is the Hermite differential equation: H′′
n(x)− xH′

n(x) + nHn(x) = 0.
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(v) We write ϕ(x) = 1√
2π
e−x2/2 for the standard Gaussian density. By definition, Hn(x)ϕ(x) = (−1)nϕ(n)(x).

Then the inner product

⟨Hn,Hm⟩ϕ =

∫ ∞

−∞
Hn(x)Hm(x)ϕ(x) dx = (−1)n

∫ ∞

−∞
Hn(x)ϕ

(m)(x) dx =

∫ ∞

−∞
H(m)

n (x)ϕ(x) dx,

where the last equality follows from integration by parts and the fact that ϕ and its derivatives vanish at ±∞.

By (iii),

⟨Hn,Hm⟩ϕ =

∫ ∞

−∞
H(n)

m (x)ϕ(x) dx =

 n!
(n−m)!

∫∞
−∞ Hn−m(x)ϕ(x) dx, n ≥ m,

0, n < m.

In particular, ⟨Hn, 1⟩ϕ = 0 for n ≥ 1. Hence ⟨Hn,Hm⟩ϕ = n!δnm.

(vi) is simply the Christoffel-Darboux formula for orthogonal polynomials.

4.2.2 Determinantal Laws

By (4.1), the spectral density of GUE can be written as the determinantal form:

ρGUE,n(x1, · · · , xn) ∝ det

[
n∑

k=1

e−x2
i /4Hn(xi) · e−x2

j/4Hn(xj)

]n
i,j=1

, x1 > x2 > · · · > xn.

For simplicity, we often use the following oscillator wave functions obtained from Hermite polynomials. These

functions form an orthonormal basis in L2(R) under the Lebesgue measure.

Proposition 4.8. Consider the family of normalized oscillator wave functions

ψn(x) =
1

(2π)1/4
√
n!
e−x2/4Hn(x), n = 0, 1, 2, · · · . (4.3)

(i) (Orthogonality). The normalized oscillator wave functions are orthonormal in L2(R) under the Lebesgue

measure:

⟨ψn, ψm⟩L2(R) =

∫
R
ψn(x)ψn(x) dx = δnm, n,m = 0, 1, 2, · · · .

(ii) (Derivative).

ψ′
n =

√
nψn−1 −

x

2
ψn, n = 0, 1, 2, · · · .

(iii) (Harmonic oscillator).
x2

4
ψn − ψ′′

n =

(
n+

1

2

)
ψn, n = 0, 1, 2, · · · . (4.4)

(iv) (Christoffel-Darboux). For x ̸= y,

n−1∑
k=0

ψk(x)ψk(y) =
√
n
ψn(x)ψn−1(y)− ψn−1(x)ψn(y)

x− y
.

If x = y, taking the limit gives

n−1∑
k=0

ψk(x)ψk(x) =
√
n
[
ψn−1(x)ψ

′
n(x)− ψn(x)ψ

′
n−1(x)

]
.

Proof. The statements (ii) and (iv) follow easily from definition. For (ii), we differentiate twice on both sides
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of (4.3) and apply Theorem 4.7 (iii) with m = 1 to obtain

ψ′
n(x) =

e−x2/4

(2π)1/4
√
n!

(
H′

n(x)−
x

2
Hn(x)

)
=

e−x2/4

(2π)1/4
√
n!

(
nHn−1(x)−

x

2
Hn(x)

)
=

√
nψn−1 −

x

2
ψn.

Finally, we differentiate twice on both sides of (4.3) and apply Theorem 4.7 (iv) to obtain

ψ′′
n(x) =

1

(2π)1/4
√
n!
e−x2/4

(
H′′

n(x)− xH′
n(x) +

(
x2

4
− 1

2

)
Hn(x)

)
=

1

(2π)1/4
√
n!
e−x2/4

(
−n− 1

2
+
x2

4

)
Hn(x) =

(
x2

4
− n− 1

2

)
ψn(x).

This is the Haarmonic oscillator equation (iii).

Since (ψk)
∞
k=1 is an orthonormal basis of L2(R), the kernel for the orthogonal projection operator ΠVn

onto

the subspace Vn = span{ψ0, ψ1, · · · , ψn−1} is given by

Kn(x, y) =

n−1∑
k=0

ψk(x)ψk(y). (4.5)

That is,

(ΠVn
f)(x) =

∫
R
Kn(x, y)f(y) dy =

n−1∑
k=0

⟨f, ψk⟩L2(R)ψk(x), f ∈ L2(R).

Using this notation, one can write the spectral density of GUE as

ρGUE,n(x1, · · · , xn) ∝ det

[
n−1∑
k=0

ψk(xj)ψk(xj)

]n
i,j=1

= det [K(xi, xj)]
n
i,j=1 , x1 > x2 > · · · > xn. (4.6)

Following are some useful identities of Kn which can be easily obtained from orthonormality.

Proposition 4.9. Let n ∈ N and Kn : R× R → R the kernel (4.5).

(i) (Trace).
∫
RKn(x, x) dx = n.

(ii) (Reproducing kernel).
∫
RKn(x, y)Kn(y, z) dy = Kn(x, z).

Lemma 4.10 (Determinantal integration). Let n ∈ N, 0 ≤ k ≤ n, and Kn : R × R → R the kernel (4.5).

Then for any x1, · · · , xk ∈ R,∫
R
det [Kn(xi, xj)]

k+1
i,j=1 dxk+1 = (n− k) det [Kn(xi, xj)]

k
i,j=1 . (4.7)

In particular,

(i) the case k = 0 corresponds to the trace identity
∫
RKn(x, x) dx = n, and

(ii) for k = n, we have ∫
R
· · ·
∫
R
det [Kn(xi, xj)]

n
i,j=1 dx1 · · · dxn = n!.

Proof. We let aij = Kn(xi, xj) and Ap,q be the upper-left p× q block of (aij)
k+1
i,j=1 ∈ R(k+1)×(k+1). We let A

(ℓ)
p,q

be the matrix obtained from A
(r)
p,q by removing the r-th column (a1r, · · · , apr). Using the cofactor expansion,

detAk+1,k+1 =

k∑
r=1

(−1)k+1+rak+1,r detA
(r)
k,k+1 + ak+1,k+1 detAk,k. (4.8)
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We can easily find the integral of the second term:∫
R
ak+1,k+1 detAk,k dxk+1 = detAk,k

∫
R
Kn(xk+1, xk+1) dxk+1 = n detAk,k. (4.9)

By scaling the last column of A
(r)
k,k+1 by ak+1,r, we have

ak+1,r detA
(r)
k,k+1 = det

[
A

(r)
k,k

∣∣ (ak+1,rai,k+1)
n
i=1

]
,

with all dependence on xk+1 in the last column. For the i-th entry, using the reproducing kernel property:∫
R
ak+1,rai,k+1 dxk+1 =

∫
R
Kn(xk+1, xr)Kn(xi, xk+1) dxk+1 = K(xi, xr) = air.

Combining the last two identities, we have∫
R
ak+1,r detA

(r)
k,k+1 dxk+1 = det

[
A

(r)
k,k

∣∣ (ai,r)ni=1

]
= (−1)k−r detAk,k. (4.10)

Pluggin-in (4.9) and (4.10) to (4.8), we obtain∫
R
detAk+1,k+1 dxk+1 = (n− k) detAk,k.

Then we complete the proof of (4.7). The statement (ii) follows by recursion.

We denote by S(n) the group of permutation of {1, · · · , n}, i.e.

S(n) = {σ : {1, · · · , n} → {1, · · · , n} | σ is a bijection} .

Since the determinant could only change sign under permutation, we have

det [Kn(xi, xj)]
n
i,j=1 = det

[
Kn(xσ(i), xσ(j))

]n
i,j=1

, σ ∈ S(n).

By extending Rn
> = {(x1, · · · , xn) ∈ Rn : x1 > x2 > · · · > xn} to the entire space Rn, we have

n! =

∫
Rn

det [Kn(xi, xj)]
n
i,j=1 dx =

∫
R
· · ·
∫
R
det [Kn(xi, xj)]

n
i,j=1

∑
σ∈S(n)

1{xσ(1)>···>xσ(n)} dx

= n!

∫
R
· · ·
∫
R
det [Kn(xi, xj)]

n
i,j=1 1{x1>···>xn} dx.

Hence
∫
R · · ·

∫
R det [Kn(xi, xj)]

n
i,j=1 1{x1>···>xn} dx = 1, and the normalizing constant in (4.6) is 1. This is also

known as the Gaudin-Mehta formula for GUE spectral density.

Theorem 4.11 (Gaudin-Mehta). Let Wn = (ξij)1≤i,j≤n be a GUE, and Kn the kernel defined in (4.5). Then

the spectral density of Wn is given by

ρGUE,n(x1, · · · , xn) = det [Kn(xi, xj)]
n
i,j=1 1{x1>···>xn}.

For the marginal densities for GUE eigenvalues, we have the following conclusion.

Proposition 4.12 (Correlation). Let 1 ≤ k ≤ n. Then the k-point correlation function of {λ1, · · · , λn} is

ρn,k(x) =
(n− k)!

n!
det [Kn(xi, xj)]

k
i,j=1 , x1, · · · , xk ∈ R.
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That is, for any measurable function f : R → [0,∞),

E

 1(
n
k

) ∑
1≤i1<···<ik≤n

f(λi1(Wn), · · · , λik(Wn))

 =

∫
Rk

f(x)ρn,k(x) dx

=
(n− k)!

n!

∫
Rk

f(x) det [Kn(xi, xj)]
k
i,j=1 dx.

In particular,

E

 1

n

n∑
j=1

f(λj(Wn))

 =
1

n

∫
R
f(x)Kn(x, x) dx.

Proof. By permutation invariance and Lemma 4.10,∫
R
· · ·
∫
R

∑
1≤i1<···<ik≤n

f(xi1 , · · · , xik) det [Kn(xi, xj)]
n
i,j=1 1{x1>···>xn} dx1 · · · dxn

=
1

n!

∫
R
· · ·
∫
R

∑
1≤i1<···<ik≤n

f(xi1 , · · · , xik) det [Kn(xi, xj)]
n
i,j=1 dx1 · · · dxn

=
1

n!

(
n

k

)∫
R
· · ·
∫
R
f(x1, · · · , xk) det [Kn(xi, xj)]

n
i,j=1 dx1 · · · dxn

=
1

n!

(
n

k

)∫
R
· · ·
∫
R
f(x1, · · · , xk)

[∫
R
· · ·
∫
R
det [Kn(xi, xj)]

n
i,j=1 dxk+1 · · · dxn

]
dx1 · · · dxk

=
1

n!

(
n

k

)∫
R
· · ·
∫
R
f(x1, · · · , xk) · (n− k)! det [Kn(xi, xj)]

k
i,j=1 dx1 · · · dxk

=
1

k!

∫
R
· · ·
∫
R
f(x1, · · · , xk) det [Kn(xi, xj)]

k
i,j=1 dx1 · · · dxk.

The result follows from dividing both sides by
(
n
k

)
.
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5 Circular Law

5.1 A Brief Journey

The circular distribution is the uniform probability measure on the unit disk BC(0, 1) = {λ ∈ C : |λ| ≤ 1}:

µcirc(A) =
1

π

∫
|z|≤1

1A(z) dx dy, A ⊂ C is Borel.

For general non-Hermitian matrices, the relationship between eigenvalues and singular values are captured by

a set of inequalities due to Weyl.

Theorem 5.1 (Weyl). Let A ∈ Cn×n be a non-Hermitian matrix. Let λ1(A), · · · , λn(A) be the eigenvalues of A
ordered in decreasing modulus, i.e. |λ1(A)| ≥ · · · ≥ |λn(A)|, with growing phases, and let σ1(A) ≥ · · · ≥ σn(A)

be singular values of A. Then
k∏

j=1

|λj(A)| ≤
k∏

j=1

σj(A), k = 1, · · · , n.

Proof. Using Schur’s unitary triangularization theorem, there exists a unitary matrix U ∈ Cn×n and an upper

triangular matrix T ∈ Cn×n, with diagonal entries given by Tjj = λj(A), j = 1, · · · , n, such that A = UTU∗.

Since singular values are invariant under unitary transformation, we have

σj(A) = σj(T ), j = 1, · · · , n.

Now let M ∈ Cn×n be a complex matrix with singular values σ1(B) ≥ · · · ≥ σn(B). We fix k ∈ [n], and prove

that for any k × k submatrix B of M ,

|det(B)| ≤
k∏

j=1

σj(M). (5.1)

Assume B is obtained by selecting rows i1 < · · · < ik and columns j1 < · · · < jk of M . Take orthogonal

matrices R = [ei1 , · · · , eik ]⊤ ∈ Rk×n and C = [ej1 , · · · , ejk ] ∈ Rn×k, so that B = RMC. By Courant-Fisher

max-min principle, for every j ∈ [k], we have

σj(MC) = max
dimV=j

min
v∈V

∥v∥2≤1

∥MCv∥2 ≤ max
dimU=j

min
u∈U

∥u∥2≤1

∥Mu∥2 = σj(M),

and

σj(RMC) = max
dimV=j

min
v∈V

∥v∥2≤1

∥RMCv∥2 ≤ max
dimV=j

min
v∈V

∥v∥2≤1

∥R∥2 ∥MCv∥2 = ∥R∥2 σj(MC).

Hence

σj(B) = σj(RMC) ≤ ∥R∥2 σj(MC) ≤ ∥R∥2 ∥C∥2 σj(M) = σj(M),

and the result (5.1) follows. Furthermore, if we let M = T and B be the upper left k× k minor of T , we have

k∏
j=1

|λj(A)| ≤
k∏

j=1

σj(T ) =

k∏
j=1

σj(A),

which is exactly Weyl’s inequality.

Theorem 5.2 (Circular law). Let (Xij)i,j≥1 be an array of i.i.d. random variables with zero mean and unit

variance. Let Xn = (Xij)1≤i,j,≤n be the upper left n × n block of the infinite array. Then almost surely, as

n→ ∞,

µn−1/2Xn
→ µcirc weakly.
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5.2 Main Tools

5.2.1 Logarithmic Potential

Definition 5.3 (Logarithmic potential). Let P∞(C) be the set of probability mesures on C which integrate

log |·| in a neighborhood of infinity, i.e. for µ ∈ P∞(C), there exists R > 1 such that∫
C
log+ |λ| dµ(λ) <∞, where log+ r = max{log r, 0}.

The logarithm potential of µ ∈ P∞(C) is the function Uµ : C → (−∞,∞] defined by

Uµ(z) = −
∫
C
log |z − λ| dµ(λ) = −(log |·| ∗ µ)(z), z ∈ C.

Remark. By definition, for every z ∈ C, the function λ 7→ − log |z − λ| is quasi-integrable with respect to the

measure µ ∈ P∞(C). We note that λ 7→ − log |z − λ| is bounded, and hence integrable on the compact set

{λ ∈ C : |λ− z| ≥ 1, |λ| ≤ |z|+ 1}. In the neighborhood of z, we have

−
∫
|λ−z|<1

log |z − λ| dµ(λ) ∈ [0,∞],

and in the neighborhood of infinity, we have∫
|λ|>|z|+1

log |z − λ| dµ(λ) ≤
∫
|λ|>|z|+1

log(2|λ|) dµ(λ) ≤ log 2 +

∫
|λ|>1

log |λ| dµ(λ) <∞.

Hence Uλ(z) ∈ (−∞,∞].

Example 5.4. The logarithmic potential of the circular distribution µcirc is given by

Uµcirc
(z) =


1− |z|2

2
, |z| ≤ 1,

− log |z|, |z| > 1.

Proof. Since µcirc is the uniform probability measure on the unit disk, Uµcirc is a radial function. For |z| > 1,

since λ 7→ log |z − λ| is harmonic in a neighborhood of the unit disk, by the mean-value property,

Uµcirc
(z) = − 1

π

∫
|λ|≤1

log |z − λ| dS(λ) = − log |z|.

For 0 ≤ |z| ≤ 1, we let r = |z|. Then

Uµcirc
(z) = Uµcirc

(r) = − 1

π

∫
|λ|≤1

log |r − λ| dS(λ) = − 1

π

∫ 1

0

∫ 2π

0

log
∣∣r − ρeiθ

∣∣ ρ dθ dρ.
We first compute the inner integral. Note that∫ 2π

0

log
∣∣r − ρeiθ

∣∣ dθ = 2π log r +

∫ 2π

0

log
∣∣∣1− ρ

r
eiθ
∣∣∣ dθ.

Note that for 0 < β < 1, the function z 7→ log |1− βz| is harmonic in a neighborhood of the unit disc. By the
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mean-value property, if 0 < ρ < r, we have

1

2π

∫ 2π

0

log
∣∣∣1− ρ

r
eiθ
∣∣∣ dθ = 1

2π

∫
|z|=1

log
∣∣∣1− ρ

r
z
∣∣∣ dS = log |1| = 0.

For 0 < r < ρ, since

|r − ρeiθ| =
√
r2 + ρ2 − 2rρ cos θ = |ρ− reiθ|,

we exchange the roles of ρ and r to obtain
∫ 2π

0
log
∣∣r − ρeiθ

∣∣ dθ = 2π log ρ. Hence∫ 2π

0

log
∣∣r − ρeiθ

∣∣ dθ = 2π logmax{ρ, r}.

Now compute the outer integral:

Uµcirc
(z) = −2

(∫ r

0

ρ log r dρ+

∫ 1

r

ρ log ρ dρ

)
=

1− r2

2
.

Then we finish the proof.

Proposition 5.5. Let µ ∈ P∞(C). Then Uµ ∈ L1
loc(C).

Proof. Let K ⊂ C be a compact set. By Tonelli-Fubini theorem,∫
K

|Uµ(z)| dx dy =

∫
C

(∫
K

|log |z − λ|| dx dy
)
dµ(λ)

Since K is compact, we take N > 1 such that K ⊂ B(0, N).

f(λ) =

∫
K

|log |z − λ|| dx dy

• If |λ| ≤ 1 + 2N , we have

f(λ) = −
∫
K∩B(λ,1)

log |z − λ|dx dy +
∫
K\B(λ,1)

log |z − λ|dx dy.

For the first part, change the variable w = z − λ to get

−
∫
K∩B(λ,1)

log |z − λ|dx dy ≤ −
∫
B(λ,1)

log |z − λ|dx dy = −
∫
B(0,1)

log |w| dx dy =
π

2
.

For the second part, note that |z − λ| ≤ |z|+ |λ| ≤ 1 + 3N for z ∈ K. Then∫
K\B(λ,1)

log |z − λ| dx dy ≤
∫
K

log(1 + 3N) dx dy ≤ πN2 log(1 + 3N).

To summarize,

sup
|λ|≤1+2N

f(λ) ≤ π

2
+ πN2 log(1 + 3N).

• If |λ| ≥ 2N , we have |λ|/2 ≤ |λ| −N ≤ |z − λ| ≤ |λ|+N ≤ 3|λ|/2 for z ∈ K. This bound implies

|log |λ− z|| ≤ max

{
log

|λ|
2
, log

3|λ|
2

}
≤ 1 + log |λ|, z ∈ K.
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Then

f(λ) =

∫
K

|log |λ− z|| dx dy ≤
∫
K

(1 + log |λ|) dx dy = πN2 (1 + log |λ|) , λ > 2N.

Combining the two cases, for some constant CN > 0 depending on N only, we have

f(λ) ≤ CN (1 + log+ |λ|) for all λ ∈ C.

Then ∫
K

|Uµ(z)| dx dy ≤
∫
C
f(λ) dλ ≤ CN

∫
C

(
1 + log+ |λ|

)
dµ(λ) <∞,

where the last inequality follows because µ ∈ P∞(C).

Distribution theory review. Since every µ ∈ P∞(C) is a Radon measure on C, we view it as a Schwartz-

Sobolev distribution, i.e. µ ∈ D′(C), which is a linear functional on the space C∞
c (C) of test function:

⟨µ, ϕ⟩ =
∫
C
ϕ(λ) dµ(λ), ϕ ∈ C∞

c (C).

Also, by Proposition 5.5, Uµ ∈ L1
loc(C) is a distribution.

Next, we define the first-order differential operators in D′(C) as ∂ = 1
2 (∂x − i∂y) and ∂ = 1

2 (∂x + i∂y),

and define the Laplace operator ∆ = 4∂∂ = 4∂∂ = ∂2x + ∂2y . Note that log |·| is harmonic in C\{0} and ϕ is

compactly supported. By Green’s second identity,

−
∫
C
log |z|∆ϕ(z) dx dy = − lim

ϵ↓0

∫
|z|≥ϵ

log |z|∆ϕ(z) dx dy

= lim
ϵ↓0

[∫
|z|=ϵ

ϕ(z)∇ log |z| · n(z) ds−
∫
|z|=ϵ

log |z| ∇ϕ(z) · n(z) ds

]
.

Note that ∇ log |z| = z/|z|2, and the outer unit normal n(z) = −z/|z|. Then the second term∣∣∣∣∣
∫
|z|=ϵ

log |z| ∇ϕ(z) · n(z) dS

∣∣∣∣∣ ≤ log ϵ ·
∫
|z|=ϵ

|∇ϕ(z)| dS ≤ 2πϵ log ϵ · sup
|z|≤1

|∇ϕ(z)|,

which vanishes as ϵ ↓ 0, and the first term∫
|z|=ϵ

ϕ(z)∇ log |z| · n(z) dS = −1

ϵ

∫
|z|=ϵ

ϕ(z) dS,

which converges to −2πϕ(0) as ϵ ↓ 0. Therefore

⟨∆ log |·| , ϕ⟩ = ⟨log |·| ,∆ϕ⟩ =
∫
C
∆ϕ(z) log |z| dx dy = 2πϕ(0) = ⟨2πδ0, ϕ⟩.

Hence ∆ log |·| = 2πδ0. In fact, 1
2π log |·| is the Green’s function for Poisson’s equation ∆u = f in R2, i.e.

u(x) =
1

2π

∫
R2

log |x− y| f(y) dy satisfies ∆u = f.

Also, by Tonelli-Fubini theorem, for any probability measure µ ∈ P∞(C) and test function ϕ ∈ C∞
c (C),

⟨∆Uµ, ϕ⟩ = ⟨Uµ,∆ϕ⟩ = −
∫
C

(∫
C
log |z − λ|∆ϕ(z) dx dy

)
dµ(λ) = −2π

∫
C
ϕ(λ) dµ(λ) = −⟨2πµ, ϕ⟩.
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In other words,

∆Uµ = −2πµ in D′(C). (5.2)

Theorem 5.6 (Unicity). Let µ, ν ∈ P∞(C). Then Uµ = Uν a.e. if and only if µ = ν.

Proof. Clearly µ = ν implies Uµ = Uν . Now if Uµ = Uν a.e., we have ∆Uµ = ∆Uν in D′(C), and (5.2) implies

µ = ν in D′(C). Since µ and ν are both Radon measures on C, we have µ = ν.

Theorem 5.7 (Convergence in potentials and weak convergence). Let (µn) be a sequence in P∞(C). Assume

that log(1 + |·|) is uniformly integrable for (µn)n∈N. Then the following two statements are equivalent:

(i) There exists a function U : C → (−∞,∞] such that Uµn
(z) → U(z) for a.e. z ∈ C.

(ii) There exists µ ∈ P∞(C) such that µn → µ weakly.

Furthermore, if function U satisfies (i) and µ satisfies (ii), then Uµ = U a.e., and µ = − 1
2π∆U in D′(C).

Proof. (i) ⇒ (ii). For every N > 1, by de la Vallée Poussin criterion for uniform integrability, there exists a

non-decreasing, convex function φ : [0,∞) → [0,∞), which may depend on N , such that φ(t)/t→ ∞ as t ↑ ∞,

φ(t) ≤ 1 + t2 for all t ≥ 0, and

sup
n∈N

∫
C
φ (log(N + |λ|)) dµn(λ) <∞.

We take a compact set K ⊂ C, and fix N > 1 such that B(0, N) ⊃ K. By the non-decreasing property of φ,

Jensen’s inequality and Tonelli-Fubini theorem,∫
K

φ(|Un(z)|) dx dy ≤
∫
C

∫
K

φ (|log |z − λ||) dx dy dµn(λ).

Note that for every z ∈ K,

φ (|log |z − λ||) ≤
(
1 + |log |z − λ||2

)
1{|λ|≤N} + φ (log(N + |λ|))1{|λ|>N}.

To control the second term, we split and use local integratability of 1 + (log |·|)2 on C:∫
|λ|≤N

∫
K

(
1 + |log |z − λ||2

)
dx dy dµn(λ)

≤
∫
|λ|≤N

∫
K∩B(λ,1)

(
1 + |log |z − λ||2

)
dx dy dµn(λ) +

∫
|λ|≤N

∫
K\B(λ,1)

(
1 + |log |z − λ||2

)
dx dy dµn(λ)

≤
∫
|λ|≤N

∫
B(0,1)

(
1 + |log |z||2

)
dx dy dµn(λ) +

∫
|λ|≤N

∫
K\B(λ,1)

(
1 + |log(2N)|2

)
dx dy dµn(λ)

≤
∫
B(0,1)

(
1 + |log |z||2

)
dx dy + πN2

(
1 + |log(2N)|2

)
:= CN ,

where CN ∈ (0,∞) is a constant depending on N only. To control the second term, note that∫
|λ|>N

∫
K

φ (log(N + |λ|)) dx dy dµn(λ) ≤ πN2

∫
C
φ (log(N + |λ|)) dµn(λ).

Hence

sup
n∈N

∫
K

φ(|Un(z)|) dx dy ≤ CN + πN2 sup
n∈N

∫
C
φ (log(N + |λ|)) dµn(λ) <∞.

Again by de la Vallée Poussin criterion, and since K is arbitrary, (Uµn)n∈N is locally uniformly Lebesgue

integrable on C. Then by assumption (i), U is locally Lebesgue integrable on C, and Uµn → U in L1
loc(C).

By continuity of Laplace operator ∆ in D′(C), endowed with the weak-* topology, ∆Uµn
→ ∆U in D′(C).

Note that for sequence of Radon measures, convergence in D′(C) implies weak convergence. By (5.2), we have
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µn → µ = − 1
2π∆U weakly, and µ is a probability measure in P∞(C), since∫

C
log+ |λ| dµ(λ) ≤

∫
C
log(1 + |λ|) dµ(λ) ≤ lim

n→∞

∫
C
log(1 + |λ|) dµn(λ) ≤ sup

n∈N

∫
C
log(1 + |λ|) dµn(λ) <∞.

Finally it remains to check Uµ = U a.e., which automatically follow from the following result.

(ii) ⇒ (i). Note that for any ϕ ∈ C∞
c (C),

⟨Uµn
, ϕ⟩ = −

∫
C

(∫
C
ϕ(z) log |z − λ| dx dy

)
dµn(λ) = −

∫
C
(ϕ ∗ log |·|)(λ) dµn(λ).

Since ϕ ∈ C∞
c (C) and log |·| is locally integrable, if λj → λ in C, we take a common compact support K

of (ϕ(λj − ·))j∈N and restrict log |·| on K. Then some multiple of | log |·| |1K is a common L1-majorant for

functions ϕ(λj − ·) log |·|, and by dominated convergence theorem,∫
C
ϕ(λj − z) log |z| dx dy →

∫
C
ϕ(λ− z) log |z| dx dy as j → ∞.

Hence

ϕ ∗ log |·| : λ 7→
∫
C
ϕ(z) log |λ− z| dx dy =

∫
C
ϕ(λ− z) log |z| dx dy

is a continuous function. Using the same approach as in Proposition 5.5, we have |ϕ ∗ log |·|| ≤ Cϕ(1+ log+ |·|)
for some constant Cϕ > 0 depending only on ϕ. Hence ϕ ∗ log |·| is also uniformly integrable for (µn)n∈N, and

⟨Uµn
, ϕ⟩ = −

∫
C
(ϕ ∗ log |·|)(λ) dµn(λ) → −

∫
C
(ϕ ∗ log |·|)(λ) dµ(λ) = ⟨Uµ, ϕ⟩.

Therefore Uµn
→ Uµ in D′(C). If Uµn

→ U also, since both Uµ and U are in L1
loc(C), they must agree a.e..

5.2.2 Hermitization

Spectral logarithm potential. Let A ∈ Cn×n be a non-Hermitian matrix, and let PA(z) = det(A− z Id)

be its characteristic polynomial. Then for every z ∈ C\{λ1(A), · · · , λn(A)},

UµA
(z) = −

∫
C
log |z − λ| dµ(λ) = − 1

n

n∑
j=1

log |z − λj(A)| = − 1

n
log |det(A− zI)| = − 1

n
log |PA(z)| .

We also have the determinantal Hermitization form:

UµA
(z) = − 1

n
log det

(√
(A− zI)(A− zI)∗

)
= −

∫ ∞

0

log t dνA−zI(t).

Therefore, the knowledge of νA−zI for a.e. z ∈ C suffices to determine µA. Furthermore, by (5.2),

2π

∫
C
ϕdµA =

1

n

∫
C
∆ϕ(z) log |PA(z)| dx dy.

For our later discussion, we also use uniform integrability. A Borel function f is said to be uniformly integrable

for a sequence of measures (µn)n∈N on E, if

lim
N↑∞

sup
n∈N

∫
{|f |>N}

|f | dµn = 0.

Lemma 5.8 (Logarithmic majorization and uniform integrability). Let (αn,k)1≤k≤n and (βn,k)1≤k≤n be two
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triangular arrays in R+. Define discrete measures

µn =
1

n

∞∑
k=1

δαn,k
, and νn =

1

n

∞∑
k=1

δβn,k
, n = 1, 2, · · · .

Assume the following properties hold:

(i) αn,1 ≥ αn,2 ≥ · · · ≥ αn,n and βn,1 ≥ βn,2 ≥ · · · ≥ βn,n for large enough n,

(ii)
∏n

k=1 αn,k =
∏n

k=1 βn,k for large enough n,

(iii)
∏k

j=1 αn,j ≤
∏k

j=1 βn,j for every 1 ≤ k ≤ n for large enough n,

(iv) νn → ν weakly as n→ ∞ for some probability measure ν, and

(v) log is uniformly integrable for (νn)n∈N.

Then

(a) (µn)n∈N is a tight sequence of probability measures,

(b) the function log is uniformly integrable for (µn)n∈N,

(c) as n→ ∞,

lim
n→∞

∫ ∞

0

log t dµn(t) = lim
n→∞

∫ ∞

0

log t dνn(t) =

∫ ∞

0

log t dν(t), (5.3)

and in particular, for every accumulate point µ of (µn)n∈N,∫ ∞

0

log t dµ(t) =

∫ ∞

0

log t dν(t).

Proof. Using the de la Vallée Poussin theorem, the property (v) implies the existence of some non-decreasing,

convex function φ : R+ → R+ such that φ(t)/t→ ∞ as t ↑ ∞, and

sup
n∈N

∫ ∞

0

φ(|log t|) dνn(t) = sup
n∈N

1

n

(
n∑

k=1

φ(|log βn,k|)

)
<∞.

We let aj = logαn,j and bj = log βn,j for j ∈ [n]. By properties (i) and (iii), a = (an,j)j∈[n] is strongly

majorized by b = (bn,j)j∈[n], i.e.

a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn,

n∑
j=1

aj =

n∑
j=1

bj , and

k∑
j=1

aj ≤
k∑

j=1

bj , for all k = 1, · · · , n.

We then use a proof from Hardy-Littlewood-Pólya to show the existence of a bistochastic matrix S = (sij)i,j∈[n]

such that a = Sb, i.e. ai =
∑n

j=1 sijbj for all i ∈ [n].

• If a1 = b1, then we leave b1 as it is and let T (1) = I.

• If a1 < b1, there must exist k > 1 such that ak > bk. We pick smallest such k and 0 < θ < 1 such that

θb1 + (1− θ)bk = a1. We let matrix T (1) ∈ Rn×n satisfies T
(1)
11 = T

(1)
kk = θ and T

(1)
1k = T

(1)
k1 = 1− θ, with

all other diagonal entries 1 and off-diagonal entries 0. Then b(1) = T (1)b satisfies b
(1)
1 = a1, and b

(1)
j = bj

for all j ∈ [n]\{1, k}. Furthermore, the new vector b(1) still strongly majorizes a.

• We inductively repeat the above steps for vectors restricted to coordinates j, j+1, · · · , n to adjust coor-

dinate j, where j = 2, 3, · · · . This yields a sequence of transforms T (2), · · · , T (n−1) until all coordinates

of a and b matches. Then a = T (n−1) · · ·T (2)T (1)b, and S = T (n−1) · · ·T (2)T (1) is bistochastic.

Then for any convex function ψ on R,

n∑
i=1

ψ(an,i) ≤
n∑

i=1

ψ

 n∑
j=1

sijbn,j

 ≤
n∑

i=1

n∑
j=1

sijψ(bn,j) =

n∑
j=1

(
n∑

i=1

sij

)
ψ(bn,j) =

n∑
j=1

ψ(bn,j).
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We choose the function ψ(x) = φ(|x|), which is convex. Then

sup
n∈N

∫ ∞

0

φ(|log t|) dµn(t) = sup
n∈N

1

n

n∑
k=1

φ (|logαn,k|) ≤ sup
n∈N

1

n

n∑
k=1

φ (|log βn,k|) <∞.

Again by de la Vallée Poussin theorem, log is uniformly integrable for (µn)n∈N. This also implies the fact that

(µn)n∈N is tight, since

sup
n∈N

µn([N,∞)) ≤ sup
n∈N

∫
|log λ|>logN

dµn(λ) ≤ sup
n∈N

∫
|log λ|>logN

|log λ| dµn(λ) → 0 as e < N ↑ ∞.

Finally, the (5.3) follows from the property (ii), and we finish the proof.

Following is the main theorem we will make use of in the proof of the circular law.

Theorem 5.9 (Girko Hermitization). Let (An)n∈N be a sequence of complex random matrices where An is of

size n × n. Suppose there exists a family of (non-random) probability measures (νz)z∈C on R+ = [0,∞) such

that for almost every z ∈ C, almost surely,

(i) νAn−zI → νz weakly as n→ ∞, and

(ii) log is uniformly integrable for (νAn−zI)n∈N.

Then there exists a probability measure µ ∈ P∞(C) such that

(a) almost surely, µAn
→ µ weakly as n→ ∞, and

(b) for almost every z ∈ C,

Uµ(z) = −
∫ ∞

0

log s dνz(s). (5.4)

Proof. First, we consider the product measure P ⊗ m on Ω × C, where (Ω,P) is the underlying probability

space and m is the Lebesgue measure on C. By Tonelli-Fubini theorem, the quantifiers “for a.e. z ∈ C” and

“for a.s. ω ∈ Ω” can be swapped.

Next, we condition on an event E of probability 1 such that properties (i)-(ii) holds for a.e. z ∈ C on E,

and fix a realization ω ∈ E. Then we can focus on the determinisitc case. Also we fix Nω ⊂ C of Lebesgue

measure zero such that properties (i)-(ii) holds for all z /∈ Nω.

For every z /∈ Nω, we set ν = νz and define triangular arrays (αn,k)1≤k≤n and (βn,k)1≤k≤n by

αn,k = |λk(An(ω)− zI)| , βn,k = σk(An(ω)− zI), 1 ≤ k ≤ n.

By Theorem 5.1, the properties (i)-(iii) in Lemma 5.8 are satisfied. Also properties (iv)-(v) in Lemma 5.8 is

satisfied by assumptions (i)-(ii). Note that µAn(ω)−zI = µAn(ω) ∗ δ−z for all z ∈ C, which is a traslated version

of µAn(ω). Then we apply Lemma 5.8 implies that

• (µAn(ω))n∈N is tight, and

• for a.e. z ∈ C, the function λ 7→ log |z − λ| is uniformly integrable for (µAn(ω))n∈N, and that

lim
n→∞

UµAn(ω)
(z) = − lim

n→∞

∫ ∞

0

log s dνAn−zI(s) = −
∫ ∞

0

log s dνz(s) =: U(z).

By Prokhorov’s theorem, every subsequence of the tight sequence (µAn(ω))n∈N admits a further subsequence

that converges weakly. Then by the subsequnece criterion, it suffices to show that (µAn(ω))n∈N has only one

accumulate point of weak convergence. Assume that µω and µ′
ω are both accumulate points of (µAn(ω))n∈N.

By the uniform integrability of log |·|, we have µω, µ
′
ω ∈ P∞(C) and Uµω

= Uµ′
ω
= U a.e.. By Theorem 5.6,

µω = µ′
ω, and hence µAn(ω) → µω. Since the logarithm potential U is deterministic, it follows that ω → µω is

deterministic by Theorem 5.6 again. Therefore µAn → µ on E, and Uµ(z) = U(z) = −
∫∞
0

log s dµz(s).
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Finally, we weaken the uniform integrability condition (ii) in Theorem 5.9 to simplify subsequent analysis.

Lemma 5.10 (Weakening uniform integrability). Let (An)n∈N be a sequence of complex random matrices

where An is of size n× n. Assume that for almost every z ∈ C, there exists p > 0 such that almost surely,

lim sup
n→∞

∫ ∞

0

s−pdνAn−zI(s) <∞, and lim sup
n→∞

∫ ∞

0

spdνAn−zI(s) <∞. (5.5)

Then for almost every z ∈ C, almost surely, the function log is uniformly integrable for (νAn−zI)n∈N.

Proof. Let (Ω,P) be the underlying probability space, and m the Lebesgue measure on C. By Tonelli-Fubini,

(P⊗m) {(ω, z) : z is an eigenvalue of An(ω) for some n ∈ N} =

∫
Ω

∫
C
1⋃∞

n=1{det(An(ω)−zI)=0} dm(z) dP(ω)

≤
∫
Ω

[ ∞∑
n=1

∫
C
1{det(An(ω)−zI)=0} dm(z)

]
dP(ω) = 0,

where the last equality follows because An(ω) has at most n eigenvalues in C, and spectrum of An(ω) is of

Lebesgue measure 0. Hence for a.e. z ∈ C, almost surely, z is not an eigenvalue of An for any n ∈ N. This

implies that for a.e. z ∈ C, ∫ ∞

0

|log s| dνAn−zI(s) <∞ a.s. for all n ∈ N.

Therefore, to show uniform integrability, we may replace the sup in definition by lim sup and prove

lim
N↑∞

lim sup
n→∞

∫
|log s|≥N

|log s| dνAn−zI(s) = 0 a.s.. (5.6)

We fix a small δ > 0. Then |log s|δ/N δ ≥ 1 on {|log s| ≥ N}. By Markov’s inequality,∫
|log s|≥N

|log s| dνAn−zI(s) ≤
1

Nδ

∫ ∞

0

|log s|1+δ
dνAn−zI(s)

Note that for any q > 0,

|log s| ≤ s−q

q
1{0≤s≤1} +

sq

q
1{s≥1}.

Choose q = p
1+δ . Then

|log s|1+δ ≤
(
1 + δ

p

)1+δ (
s−p1{0≤s≤1} + sp1{s≥1}

)
,

and ∫
|log s|≥N

|log s| dνAn−zI(s) ≤
1

Nδ

(
1 + δ

p

)1+δ [∫ ∞

0

s−pdνAn−zI(s) +

∫ ∞

0

spdνAn−zI(s)

]
By (5.5), as N ↑ ∞,

lim sup
n→∞

∫
|log s|≥N

|log s| dνAn−zI(s) → 0 a.s.,

which is exactly (5.6). Thus we finish the proof.
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5.3 Proof of the Circular Law

5.3.1 Convergence of Singular Values Measure

To verify that for each z ∈ C, there exists a probability measure νz on R+ such that νn−1/2Xn−zI → νz weakly

a.s., we need to study the spectral measure of the Hermitian matrices(
n−1/2Xn − zI

)(
n−1/2Xn − zI

)∗
, n = 1, 2, · · · .

Theorem 5.11 (Dozier-Silverstein). Let z ∈ C. Almost surely, the empirical spectral measure of(
n−1/2Xn − zI

)(
n−1/2Xn − zI

)∗
∈ Cn×n

converges weakly to a probability measure µz depending on z only. Furthermore, µz is uniquely defined by its

Stieltjes transform s : C+ → C+, which satisfies the fixed point equation

s(ζ) =
1

|z|2
1+s(ζ) − ζ(1 + s(ζ))

, ζ ∈ C+. (5.7)

Lemma 5.12 (Reduction). In Theorem 5.11, one may assume that for every n ∈ N, the matrix Xn has i.i.d.

entries (xij)i,j∈[n] bounded by log n.

Proof. We fix a sequence (κn) in R+ that grows to ∞, and define

xij = xij1{|xij |≤κn}, x̂ij = xij − E [xij ] , x̃ij =
x̂ij√
E|x̂ij |2

, i, j = 1, 2, · · · .

and set Xn = (xij)i,j∈[n], X̂n = (x̂ij)i,j∈[n], and X̃n = (x̃ij)i,j∈[n]. We fix N > 0. By Lemma 2.3, for large

enough n, we have κn > N , and

ρL

(
F(n−1/2Xn−zI)(n−1/2Xn−zI)∗ , F(n−1/2Xn−zI)(n−1/2Xn−zI)∗

)4
≤ 2

n2

(∥∥∥n−1/2Xn − zI
∥∥∥2
F
+
∥∥∥n−1/2Xn − zI

∥∥∥2
F

)∥∥∥n−1/2Xn − n−1/2Xn

∥∥∥2
F

≤ 2

n2

4∥zI∥2F +
2

n

n∑
i,j=1

(
|xij |2 + |xij |21{|xij |≤κn}

) 1

n

n∑
i,j=1

|xij |21{|xij |>κn}


≤

8|z|2 + 8

n2

n∑
i,j=1

|xij |2
 1

n2

n∑
i,j=1

|xij |21{|xij |>N}


→ 8(1 + |z|2)E

[
|x11|21{|x11|>N}

]
almost surely.

(5.8)

Next, by Lemma 2.2,

ρL

(
F(n−1/2Xn−zI)(n−1/2Xn−zI)∗ , F(n−1/2X̂n−zI)(n−1/2X̂n−zI)∗

)
≤ rank(EXn)

n
=

1

n
, (5.9)
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which converges to 0 deterministically. Finally, for large enough n, we have κn > N , and

ρL

(
F(n−1/2X̂n−zI)(n−1/2X̂n−zI)∗ , F(n−1/2X̃n−zI)(n−1/2X̃n−zI)∗

)4
≤ 2

n2

(∥∥∥n−1/2X̂n − zI
∥∥∥2
F
+
∥∥∥n−1/2X̃n − zI

∥∥∥2
F

)∥∥∥n−1/2X̂n − n−1/2X̃n

∥∥∥2
F

≤ 4

|z|2 + 1 + E|x̂11|2

n2 E|x̂11|2
n∑

i,j=1

|x̂ij |2
(1−√E|x̂11|2

)2
n2E|x̂11|2

n∑
i,j=1

|x̂ij |2


≤ 4

|z|2 + C

n2

n∑
i,j=1

|xij |2
 C

n2

n∑
i,j=1

|xij |21{|xij |≥N}


→ 4

(
C + |z|2

) (
1−

√
Var(x111{|x11|≤N})

)2
almost surely,

(5.10)

where C is some constant not depending on n. As N ↑ ∞, the a.s. bounds (5.8) and (5.10) converge to 0.

Hence it suffices to show the weak convergence of the ESD of matrices X̃n, which have i.i.d. entries with mean

0, variance 1 and amplitude O(κn). Choosing κn = O(log n) concludes the proof.

Lemma 5.13. Let A = (aij)i,j∈[n] be an n× n complex matrix with ∥C∥2 ≤ 1, and Y = (Y1, · · · , Yn), where
Y1, · · · , Yn are i.i.d. random variables with EY1 = 0, E|Y1|2 = 1 and |Y1| ≤ log n a.s.. Then

E |Y ∗AY − trA|6 ≤ Kn3(log n)12.

Proof. Since
√
λ1(AA∗) = ∥A∥2 ≤ 1, it follows |aii| ≤ 1 for each i ∈ [n]. Note that

E |Y ∗AY − trA|p ≤ 2p−1

E∣∣∣∣∣
n∑

i=1

aii(|Yi|2 − 1)

∣∣∣∣∣
p

+ E

∣∣∣∣∣
n∑

i ̸=j

aijYiYj

∣∣∣∣∣
p
 .

By Lemma 1.18, there exists a constant Kp > 0 depending on p only, such that

E

∣∣∣∣∣
n∑

i=1

aii(|Yi|2 − 1)

∣∣∣∣∣
p

≤ Kp E

∣∣∣∣∣
n∑

i=1

|aii|2
∣∣|Yi|2 − 1

∣∣2∣∣∣∣∣
p/2

≤ Kpn
p/2(log n)2p,

and

E

∣∣∣∣∣
n∑

i ̸=j

aijYiYj

∣∣∣∣∣
p

≤ Kp

 n∑
i ̸=j

|aij |2
p/2(

max
j∈[n]

E |Yj |p
)2

Since
∑n

i,j=1 |aij |2 = tr(AA∗) ≤ nλ1(AA
∗) ≤ n, the bound is at most Kpn

p/2(log n)2p. In particular, there

exists K > 0 such that a constant K = 64K6 > 0 such that

E |Y ∗AY − trA|6 ≤ Kn3(log n)12.

The we finishes the proof.

Proof of Theorem 5.11. We fix z ∈ C with r = |z|, and write

Cn =

(
Xn√
n
− zI

)(
Xn√
n
− zI

)∗

=

n∑
j=1

yjy
∗
j , where yj =

xj√
n
− zej , j = 1, · · · , n.
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Step I. Fix ζ = E + iη ∈ C+, with η > 0, and let

βn =
r2

1 + sn
− ζ(1 + sn), where sn = sCn

(ζ) is the Stieltjes transform of ESD of Cn.

Let Dn = Cn − ζI and Dn,−j = Dn − yjy
∗
j . Then sn = n−1 trD−1

n . By Sherman-Morrison formula,

D−1
n = D−1

n,−j −
D−1

n,−jyjy
∗
jD

−1
n,−j

1 + y∗jD
−1
n,−jyj

, j = 1, · · · , n.

Then

I + ζD−1
n = D−1

n (Dn + ζI) =

n∑
j=1

D−1
n yjy

∗
j =

n∑
j=1

(
D−1

n,−j −
D−1

n,−jyjy
∗
jD

−1
n,−j

1 + y∗jD
−1
n,−jyj

)
yjy

∗
j

Taking the trace on both sides and dividing by n, we have

1 + ζsn =
1

n

n∑
j=1

y∗jD
−1
n,−jyj

(
1−

y∗jD
−1
n,−jyj

1 + y∗jD
−1
n,−jyj

)
= 1− 1

n

n∑
j=1

1

1 + y∗jD
−1
n,−jyj

. (5.11)

Then

β−1
n I −D−1

n = βn (Dn − βnI)D
−1
n = β−1

n

 n∑
j=1

yjy
∗
j − r2I

1 + sn
+ ζsnI

D−1
n

= β−1
n

 n∑
j=1

(
yjy

∗
j − 1

n
(
1 + y∗jD

−1
n,−jyj

))− r2I

1 + sn

D−1
n .

(5.12)

For notation simplicity, for each j ∈ [n], we write

ωn,j =
1

n
x∗jDn,−jxj , θn,j =

1√
n
ze∗jD

−1
n,−jxj , ϑn,j =

1√
n
zx∗jD

−1
n,−jej , τn,j = r2e∗jD

−1
n,−jej .

Then y∗jD
−1
n,−jyj = ωn,j + θn,j + ϑn,j + τn,j . Again, we take the trace on both sides of (5.12) and divide by n

to obtain

β−1
n − sn =

1

nβn

n∑
j=1

(
y∗jD

−1
n yj −

trD−1
n

n
(
1 + y∗jD

−1
n,−jyj

) − r2e∗jD
−1
n ej

1 + sn

)

=
1

nβn

n∑
j=1

(
y∗jD

−1
n yj −

sn

1 + y∗jD
−1
n,−jyj

−
r2e∗jD

−1
n,−jej

1 + sn
+

r2e∗jD
−1
n,−jyjy

∗
jD

−1
n,−jej

(1 + sn)(1 + y∗jD
−1
n,−jyj)

)

=
1

nβn

n∑
j=1

(
y∗jD

−1
n,−jyj − sn

1 + y∗jD
−1
n,−jyj

−
r2e∗jD

−1
n,−jej

1 + sn
+

r2e∗jD
−1
n,−jyjy

∗
jD

−1
n,−jej

(1 + sn)(1 + y∗jD
−1
n,−jyj)

)

=
1

nβn

n∑
j=1

(
ωn,j + θn,j + ϑn,j + τn,j − sn

1 + y∗jD
−1
n,−jyj

− τn,j
1 + sn

+
(θn,j + τn,j)(ϑn,j + τn,j)

(1 + sn)(1 + y∗jD
−1
n,−jyj)

)

=
1

nβn

n∑
j=1

(
(ωn,j − sj) + θn,j + ϑn,j

1 + y∗jD
−1
n,−jyj

+
τn,j(sn − ωn,j) + θn,jϑn,j

(1 + sn)(1 + y∗jD
−1
n,−jyj)

)
.

(5.13)

Note that

Im(ζsn) = Im

 1

n

n∑
j=1

ζ

λj(Cn)− ζ

 =
1

n

n∑
j=1

λj(Cn) η

|λj(Cn)− ζ|2
≥ 0.
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Then
1

|1 + sn|
=

|ζ|
|ζ + ζsn|

≤ |ζ|
Im ζ + Im(ζsn)

≤ |ζ|
η
, (5.14)

and

|βn| ≥ |Imβn| =
∣∣∣∣ r2 Im sn
|1 + sn|2

+ Im(ζsn) + Im(ζ)

∣∣∣∣ ≥ 1

η
. (5.15)

Since all eigenvalues of Dn and Dn,−j have imaginary part η, we have ∥D−1
n ∥2 ≤ 1/η and ∥D−1

n,−j∥2 ≤ 1/η.

Consequently

|τn,j | ≤ r2∥D−1
n,−j∥ ≤ 1

η
. (5.16)

Combining (5.13), (5.14), (5.15) and (5.16), we have

|β−1
n − sn| ≤

η

n

n∑
j=1

((
1 +

|ζ|
η2

)
|ωn,j − sn|+ |θn,j |+ |ϑn,j |+

|ζ|
η
|θn,jϑn,j |

)
. (5.17)

Step II. Now we handle the first term in (5.17). By Lemma 5.13,

E|ωn,j − sn|6 =
1

n6
E
∣∣x∗jD−1

n,−jxj − trD−1
n

∣∣6
≤ 32

n6

(
E
∣∣x∗jD−1

n,−jxj − trD−1
n−j

∣∣6 + E
∣∣tr(D−1

n,−j −D−1
n )
∣∣6)

≤ 32

n6

E
∣∣x∗jD−1

n,−jxj − trD−1
n−j

∣∣6 + E

∣∣∣∣∣ y∗jD
−2
n,−jyj

1 + y∗jD
−1
n,−jyj

∣∣∣∣∣
6


≤ 32

n6

(
Kn3(log n)12

η6
+

1

η12
E[y∗j yj ]

)
≤ 32

n3

(
K(log n)12

η6
+

1 + r2

n3η12

)
.

Then for any ϵ > 0, by Markov’s inequality,

P
(

max
1≤j≤n

|ωn,j − sn| > ϵ

)
≤

n∑
j=1

P (|ωn,j − sn| > ϵ) ≤
n∑

j=1

E|ωn,j − sn|6

ϵ6
≤ 32

n2

(
K(log n)12

η6
+

1 + r2

n3η12

)
.

Since the dominating term
∑∞

n=1(log n)
12/n2 <∞, by the Borel Cantelli lemma,

lim sup
n→∞

max
1≤j≤n

|ωn,j − sn| < ϵ, a.s..

And since ϵ > 0 is arbitrary, we have max1≤j≤n |ωn,j − sn| → 0 a.s..

Step III. Next we bound the remaining terms in (5.17). By Lemma 5.13,

E|ϑn,j |12 = E

∣∣∣∣∣zx∗jD
−1
n,−jej√
n

∣∣∣∣∣
12

≤ r12

n6
E
∣∣x∗jD−1

n,−jeje
∗
jD

−1
n,−jxj

∣∣6
≤ 32r12

n6

(
E
∣∣x∗jD−1

n,−jeje
∗
jD

−1
n,−jxj − tr

(
D−1

n,−jeje
∗
jD

−1
n,−j

)∣∣6 + E
∣∣tr (D−1

n,−jeje
∗
jD

−1
n,−j

)∣∣6)
≤ 32r12

n6

(
Kn3(log n)12

η12
+

1

η12

)
=

32r12

n3η12

(
K(log n)12 +

1

n3

)
.

Similarly,

E|θn,j |12,E|θn,jϑn,j |6 ≤ 32r12

n3η12

(
K(log n)12 +

1

n3

)
.
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Similar to Step II, we can use Borel-Cantellu lemma to deduce that

max
1≤j≤n

{|θn,j |, |θn,j |, |ϑn,jϑn,j |} → 0 a.s..

Therefore |β−1
n − sn| → 0 a.s.. More specifically,

1
r2

1+sn
− ζ(1 + sn)

− sn → 0 a.s.. (5.18)

Step IV. We fix ω ∈ Ω such that (5.18) holds. By (5.11), (sn) is a bounded sequence:

|sn| ≤
1

n

n∑
j=1

∣∣∣∣∣ 1

ζ(1 + y∗jD
−1
n,−jyj)

∣∣∣∣∣ ≤ 1

η
.

By Bolzano-Weierstrass theorem, it suffices to show that (sn) has only one limit point, which must satisfy the

fixed point equation (5.7). Once we show this, the convergence result follows from Stieltjes continuity theorem.

Note that sn ∈ C+ and Im(ζsn) ≥ 0. Therefore we finish our proof by the following uniqueness lemma.

Lemma 5.14 (Uniqueness). Let z ∈ C, and ζ, s, t ∈ C+ with Im(ζs) ≥ 0 and Im(ζt) ≥ 0. If both s and t

satisfies the fixed point equation (5.7), then s = t.

Proof. Write r = |z| ≥ 0. By (5.7), we have

s− t =
1

r2

1+s − (1 + s)ζ
− 1

r2

1+t − (1 + t)ζ
=

r2

(1+s)(1+t) + ζ(
r2

1+s − (1 + s)ζ
)(

r2

1+t − (1 + t)ζ
) (s− t) := α(s− t).

We define

G(u) =
1

r2

1+u − (1 + u)ζ
, u ∈ C+.

Then G(s) = s, G(t) = t, and

α =
rG(s)

1 + s
· rG(t)
1 + t

+ ζG(s)G(t).

Since s = G(s), we have Re s = Re(G(s)) and Im s = Im(G(s)). More specifically,

Re s =

[
r2(1 + Re s)

|1 + s|2
− Re ζ − Re(ζs)

]
|G(s)|2, and Im s =

[
r2 Im s

|1 + s|2
+ Im ζ + Im(sζ)

]
|G(s)|2. (5.19)

The first part of (5.19) implies[
1− r2|G(s)|2

|1 + s|2
+Re ζ|G(s)|2

]
(1 + Re s) = 1 + Im ζ Im s|G(s)|2, (5.20)

and the second part implies[
1− r2|G(s)|2

|1 + s|2
− Re ζ|G(s)|2

]
Im s = (1 + Re s) Im ζ|G(s)|2. (5.21)

We plug-in (5.21) to (5.20) and rearrange to obtain[(
1− r2|G(s)|2

|1 + s|2

)2

− (Re ζ)2|G(s)|4 − (Im ζ)2|G(s)|4
]

Im s

Im ζ|G(s)|2
= 1,
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which also writes (
1− r2|G(s)|2

|1 + s|2

)2

− |ζ|2|G(s)|4 =
Im ζ|G(s)|2

Im s
> 0.

By (5.19), we have
(
1− r2|G(s)|2

|1+s|2

)
= (Im ζ + Im(sζ))|G(s)|2 > 0. Hence

1− r2|G(s)|2

|1 + s|2
> |ζ||G(s)|2.

A similar inequality also holds for t. Using the inequality
√
1− x

√
1− y ≤ 1−√

xy for x, y ∈ [0, 1], we have

|α| ≤
∣∣∣∣rG(s)1 + s

∣∣∣∣ ∣∣∣∣rG(t)1 + t

∣∣∣∣+ ζ |G(s)| |G(t)|

<
√
1− |ζ||G(s)|2

√
1− |ζ||G(t)|2 + |ζ| |G(s)| |G(t)|

≤ 1− |ζ| |G(s)| |G(t)|+ |ζ| |G(s)| |G(t)| = 1.

Hence |α| < 1, and s = t.

5.3.2 Count of Small Singular Values

Lemma 5.15 (Tao-Vu). Let 1 ≤ m ≤ n, and let A ∈ Cn×m be a matrix of full rank, with columns

A1, · · · , Am ∈ Cn, and Vk = span{Aj : j ∈ [m], j ̸= k} for every k ∈ [m]. Then

m∑
j=1

σj(A)
−2 =

m∑
j=1

dist(Aj , Vj)
−2,

where dist(x, V ) := infy∈V ∥x− y∥2 is the induced Euclidean distance between a vector and a set.

Proof. Let A−j ∈ Rn×(m−1) be the matrix obtained from A by removing the j-th row. Then the orthogonal

projection of Aj onto Vj = R(A−j) is given by A−j(A
∗
−jA−j)

−1A∗
−jAj . By the Pythagorean theorem,

∥Aj∥22 − dist(Aj , V−j)
2 = ∥A−j(A

∗
−jA−j)

−1A∗
−jAj∥22 = A∗

jA−j(A
∗
−jA−j)

−1A∗
−jAj .

On the other hand, by Schur’s complement, for any invertible matrix B ∈ Cm×m and partition [n] = I ∪ Ic,

(B−1)I,I =
(
BI,I −BI,IcB−1

Ic,IcBIc,I

)−1

.

We let B = A∗A and I = {j} for j = 1, · · · ,m to obtain

((A∗A)−1)jj =
(
A∗

jAj − (A∗
−jAj)

∗(A−jA
∗
−j)

−1(A∗
−jAj)

)−1
= dist(Aj , V−j)

−2, j = 1, · · · ,m.

The desired result then follows by taking the sum of the above over j = 1, · · · ,m.

Lemma 5.16 (Tao-Vu). There exist γ > 0 and δ > 0 such that for large enough n ∈ N, any 1 ≤ j ≤ n,

any deterministic vector v ∈ Cn and any subspace H of Cn with 1 ≤ dimH ≤ n − n1−γ , we have, denoting

Y := (X1j , · · · , Xnj) + v,

P
(
dist(Y,H) ≤ 1

2

√
n− dim(H)

)
≤ e−nδ

.

Proof. Step I. We denote by H ′ the subspace of Cn spanned by H and vector v. Then dimH ′ ≤ dimH + 1,

and dist(Y,H) ≥ dist(Y,H ′). Since the original dimension assumption is dimH ≤ n1−γ , adding 1 does not
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change the asymptotic ”smallness” of the subspace. We may thus directly suppose without loss of generality

that v = 0. Let U ∈ Cn×dim(H) be a matrix whose columns form an orthonormal basis of H. Then

E
[
dist(Y,H)2

]
= E

[
∥Y ∥22 − ∥UU∗Y ∥22

]
= E [Y Y ∗ − tr(UU∗Y Y ∗)] = n− tr(UU∗) = n− dimH. (5.22)

Let 0 < ϵ < 1/3. By Markov’s inequality we have P(|Xkj | ≥ nϵ) ≤ n−2ϵ. Using Hoeffding’s inequality,

P

(
n∑

k=1

1{|Xkj |≤nϵ} < n− n1−ϵ

)
≤ exp

(
−
2(
∑n

k=1 P(|Xkj | ≤ nϵ)− (n− n1−ϵ))2

n

)
≤ exp

(
−2n1−2ϵ(1− n−ϵ)2

)
≤ exp(−n1−2ϵ), for n≫ 1. (5.23)

Step II. By the above result, there are at least n−n1−ϵ entries in (Xkj)
n
k=1 bounded by nϵ with high probability.

By premutation invariance, we define event

Em :=

m⋂
k=1

{|Xkj | ≤ nϵ} , with m = ⌈n− n1−ϵ⌉.

Since the bad event (5.23) has probability less than O(exp(−n1−2ϵ)), it suffices to condition on Em. Let Fm

be the σ-algebra generated by (Xm+1,j , · · · , Xnj). We let Em be the expectation conditional on Em and Fm,

i.e.

Em[ξ] =
E [ξ1Em

|Fm]

E[1Em |Fm]
.

Let W be the subspace spanned by

H, u = (0, · · · , 0, Xm+1,j , · · · , Xnj), w = (Em[X1j ], · · · ,Em[Xmj ], 0, · · · , 0) ,

and let Z = (X1j − λ, · · · , X1m − λ, 0, · · · , 0) = Y − u − w, where λ = E[X1j ]. Then dimW ≤ dimH + 2,

and dist(Y,H) ≥ dist(Y,W ) = dist(Z,W ). Similar to our deduction in Step I, it suffices prove the result for

dist(Z,W ). We note that

σ2 := Em

[
Z2
1

]
=

1

E1{|Xij |≤nϵ}
E

(X1j −
E
[
Xij1{|Xij |≤nϵ}

]
E1{|Xij |≤nϵ}

)2

1{|Xij |≤nϵ}

 = 1− o(1).

Step III. We define f : x ∈ Dm
ϵ 7→ dist((x, 0, · · · , 0),W ), where Dϵ = {z ∈ C : |z| ≤ nϵ}. Then f is a

1-Lipschitz function, and by Talagrand’s concentration inequality,

Pm (|dist(Z,W )−Mm| ≥ t) ≤ 4 exp

(
− t2

32n2ϵ

)
, (5.24)

where Mm is the median of dist(Y,W ) under Em. By Fubini’s theorem,

Em |dist(Z,W )−Mm|2 ≤ 4

∫ ∞

0

2t exp

(
− t2

32n2ϵ

)
dt = 128n2ϵ.

By the triangle inequality,√
Em |dist(Z,W )|2 ≤

√
Em |dist(Z,W )−Mm|2 +Mm ≤ 8

√
2nϵ +Mm.
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On the other hand, similar to our calculation in (5.22),

Em |dist(Z,W )|2 ≥ σ2(m− dimW ) ≥ σ2(n− n1−ϵ − dimH − 2)

Therefore

Mm ≥
√
σ2 (n− n1−ϵ − dimH − 2)− 8

√
2nϵ

We select γ ∈ (0, ϵ), with 0 ≤ dimH ≤ n − n1−γ . Then n − dimH ≫ n1−ϵ as n → ∞, and there exists a

constant 1
2 < c < 1 such that Mm ≥ c

√
n− dimH for n ≫ 1. We take t = (c − 1

2 )
√
n− dimH in (5.24) to

obtain

Pm

(
dist(Z,W ) ≤ 1

2

√
n− dimH

)
≤ 4 exp

(
−
(c− 1

2 )
2(n− dimH)

32n2ϵ

)
.

The exponent behaves asymptotically like O(n1−γ−2ϵ), with 1− γ − 2ϵ > 0 since we choose 0 < γ < ϵ < 1/3.

Therefore, there exists δ > 0 such that the probability is bounded by exp(n−δ).

Lemma 5.17 (Count of small singular values). There exist absolute constants c0 > 0 and 0 < γ < 1 such that

for any fixed sequence Mn ∈ Cn×n, almost surely, for large enough n and all indices n1−γ ≤ j ≤ n− 1,

σn−j

(
n−1/2Xn +Mn

)
≥ c0

j

n
.

Proof. For simplicity we write σn−j = σn−j

(
n−1/2Xn +Mn

)
. Up to increasing γ, it is enough to prove the

statement for all 2n1−γ ≤ j ≤ n− 1 for some γ ∈ (0, 1) to be chosen later.

We fix 2n1−γ ≤ j ≤ n − 1, and let Yn be the matrix formed by the first m := n − ⌈j/2⌉ columns of

Xn +
√
nMn. Let τ1 ≥ · · · ≥ τm be the singular values of Yn. By Courant-Fisher max-min principle,

n−1/2τk = n−1/2 max
dimV=k

min
u∈V ∩Sn−1

∥u⊤Yn∥2 ≤ σk, k = 1, · · · ,m.

By Lemma 5.15, if Yn is of full rank, then

∞∑
n=N

τ−2
1 + · · ·+ τ−2

n−⌈j/2⌉ = dist(Yn,1, Hn,1)
−2 + · · ·+ dist(Yn,n−⌈j/2⌉, Hn,n−⌈j/2⌉)

−2,

where Yn,j is the j-th column of Y and Hn,j is the subspace spanned by the remaining columns of Yn. In

particular,

j

n
σ−2
n−j ≤ jτ−2

n−j ≤
n−⌈j/2⌉∑
k=n−j

τ−2
k ≤

n−⌈j/2⌉∑
k=1

dist(Yn,k, Hn,k)
−2. (5.25)

Since Hk is independent of Yk and dimHk ≤ n − j/2 ≤ n − n1−γ , for the choice of γ, δ > 0 given in Lemma

5.16, there exists some large enough N ∈ N such that

∞∑
n=N

P

 n−1⋃
j=2n1−γ

n−⌈j/2⌉⋃
k=1

{
dist(Yn,k, Hn,k) ≤

√
j

2
√
2

} ≤
∞∑

n=N

n2 exp(−nδ) <∞.

Consequently, by the Borel-Cantelli lemma, almost surely, for large enough n, all 2n1−γ ≤ j ≤ n − 1 and all

1 ≤ k ≤ n− ⌈j/2⌉,

dist(Yn,k, Hn,k) ≥
√
j

2
√
2
.

Consequently, Yn is a.s. of full column rank, and by (5.25), we have σ2
n−j ≥ j2/(8n2). Putting all together,

we obtain the desired result with c0 = 2
√
2.
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5.3.3 The Smallest Singular Value

Lemma 5.18 (Rudelson-Vershynin). Let A ∈ Cn×n with columns A1, · · · , An ∈ Cn, and define subspaces

Vk = span{Aj : j ∈ [n], j ̸= k} for every k ∈ [n]. Then

1√
n

min
1≤j≤n

dist(Aj , Vj) ≤ σn(A) ≤ min
1≤j≤n

dist(Aj , Vj).

Proof. For every x ∈ Cn, we have Ax = x1A1 + · · ·+ xnAn, and by the triangle inequality,

∥Ax∥2 ≥ dist(Ax, Vj) = min
v∈Vj

∥Ax− v∥2 = min
v∈Vj

∥xjAj − v∥2 = |xj |dist(Aj , Vj).

If ∥x∥2 = 1, there exists j ∈ [n] such that |xj | ≥ n−1/2, and

σn(A) = min
1≤j≤n

∥Ax∥2 ≥ min
1≤j≤n

|xj |dist(Aj , Vj) ≥
1√
n

min
1≤j≤n

dist(Aj , Vj).

On the other hand, for every j ∈ [n], by Gram-Schmidt, there exists y ∈ Cn with yj = 1 such that

dist(Aj , Vj) = ∥y1A1 + · · ·+ ynAn∥ = ∥Ay∥2 ≥ σn(A) ∥y∥2 ≥ σn(A).

Then we finish the proof.

Lemma 5.19 (Tao-Vu). For any a, q > 0, there exists a constant b > 0 depending on a and q such that for

all large enough n ∈ N and deterministic M ∈ Cn×n with σ1(M) ≤ nq,

P
(
σn(Xn +M) ≤ n−b

)
≤ n−a.

In particular, there exists b > 0 depending on q only such that a.s. for large enough n,

σn(Xn +M) ≥ n−b.

Proof with bounded density assumption. Let A1, · · · , An be the rows of Xn + M , and Vk = span{Aj : j ∈
[n], j ̸= k} for k ∈ [n]. Then

min
1≤j≤n

dist(Aj , Vj) ≤
√
nσn(Xn +M).

Using a union bound, we have

P
(√
nσn(Xn +M) ≤ t

)
≤ n max

1≤j≤n
P (dist(Aj , Vj) ≤ t) , t ≥ 0.

Now we fix j ∈ [n], and let Yj be a unit vector orthogonal to Vj . We may fix our choice of Yj by normalizing

the leftmost nonzero column of the projection matrix I − A−jA
†
−j onto the subspace Vj , hence Yj depends

only on the columns A−j and is independent of Aj . Furthermore, by Cauchy-Schwarz inequality,

dist(Aj , Vj) =
∥∥∥(I −A−jA

†
−j)Aj

∥∥∥
2
· ∥Yi∥2 ≥ |Aj · Yj | .

Let νj be the distribution of Vj on the sphere Sn−1 of Cn. Then

P (dist(Aj , Vj) ≤ t) ≤ P (|Aj · Yj | ≤ t) =

∫
Sn−1

P (|Aj · y| ≤ t) dνj(y).

We assume X11 has a bounded density φ on C. For any y ∈ Sn−1, since ∥y∥2 = 1, there exists k ∈ [n] such
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that |yk| ≥ n−1/2, hence the density of ykAkj is bounded by
√
n∥φ∥∞. Since Aj · y = y1A1j + · · ·+ ynAnj is

a sum of independent random variables containing yjAkj , by a basic property of convolutions of probability

measures, Aj · y also has a density bounded by
√
n∥φ∥∞. Hence

P (|Aj · y| ≤ t) =

∫
C
1{|s|≤t}φj(s) ds ≤

√
nπt2∥φ∥∞.

Therefore, for every r > 0, we choose t = n−r to obtain

P
(
σn(Xn +M) ≤ n−r− 1

2

)
≤ n

3
2−2rπ∥φ∥∞.

Then we may choose r with 3
2 − 2r < −a and set b = r + 1

2 . For the second statement, we take a > 1 and

apply Borel-Cantelli lemma to complete the proof.

5.4 Prove the Circular Law

Proof of Theorem 5.2. We prove the circular law by verifying the two conditions in Theorem 5.9.

Step I. We fix z ∈ C. For p < 2, by Hölder’s inequality,∣∣∣∣∫ ∞

0

sp dνn−1/2Xn−zI(s)

∣∣∣∣ 1p ≤
∣∣∣∣∫ ∞

0

s2 dνn−1/2Xn−zI(s)

∣∣∣∣ 12 .
By Weyl’s inequality and the strong law of large numbers,∫ ∞

0

s2 dνn−1/2Xn−zI(s) =
1

n

n∑
j=1

σj

(
Xn√
n
− zI

)2

≤ 2

n

n∑
j=1

σj

(
Xn√
n

)2

+ 2|z|2

=
2

n2
tr(XnX

∗
n) + 2|z|2 =

2

n2

n∑
i,j=1

|ξij |2 + 2|z|2 → 2
(
1 + |z|2

)
, almost surely.

Combining the above two displays, we have

lim sup
n→∞

∫ ∞

0

sp dνn−1/2Xn−zI(s) <∞ a.s., p < 2.

Step II. For notation simplicity we write σj = σj(n
−1/2Xn − zI). We take the constant c0 > 0 and fix

Mn = −zIn in Lemma 5.17, choose M = z
√
nI, q > 1/2 and take the constant b > 0 in Lemma 5.19. Then

almost surely, for large enough n, we have

1

n

n∑
j=1

σ−p
j ≤ 1

n

n−⌊n1−γ⌋∑
j=1

σ−p
j +

n∑
j=n−⌊n1−γ⌋+1

σ−p
n ≤ 1

n

n∑
j=1

(
c0j

n

)−p

+ n−γ+bp ≤
∫ 1

0

s−p ds+ n−γ+bp.

Note that
∫ 1

0
s−p ds converges when 0 < p < 1. Then we choose 0 < p < min{γ/b, 1}, which satisfies

lim sup
n→∞

∫ ∞

0

s−p dνn−1/2Xn−zI(s) <∞.

Step III. By Theorem 5.11, νn−1/2Xn−zI → νz a.s. for all z ∈ C, where νz is the pushforward of µz under the

square root R+ → R+ : s 7→
√
s.

By Theorem 5.9, the empirical spectral distribution µn−1/2Xn−zI converges a.s. to a probability measure
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µ ∈ P∞(C), with logarithm potential

Uµ(z) = −
∫ ∞

0

log s dνz(s), z ∈ C.

Furthermore, since νz depends only on z, the measure µ does not depend on the distribution of X11.

Note that

E
[∫

C
f(z) dµn−1/2Xn

(z)

]
= E

 n∑
j=1

f

(
λj(Xn)√

n

)
The 1-point correlation function is given by

φn,1(z) =
1

nπ
e−|z|2

n−1∑
k=0

|z|2k

k!
,

and

nφn,1(
√
nz) =

1

π
e−n|z|2

n−1∑
k=0

(n|z|2)k

k!
=

1

π
P (Sn ≤ n− 1) ,

where Sn is a Poisson random variable of rate n|z|2. By Poisson’s central limit theorem,

Sn − n|z|2√
n|z|

→ NR(0, 1) weakly.

Then

P (Sn ≤ n− 1) = P
(
Sn − n|z|2√

n|z|
≤ n(1− |z|2)− 1√

n|z|

)
→


P(Z ≤ ∞) = 1, |z| < 1,

P(Z ≤ 0) = 1/2, |z| = 1,

P(Z ≤ −∞) = 0, |z| > 1.

Hence nφn,1(
√
nz) → π−11|z|≤1 almost everywhere on C.
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