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1 Wigner Matrices and the Semicircle Law

For a real symmetric matrix A € R™*™ or a complex Hermitian matrix A € C™**™, we list its eigenvalues
A1(A4) > Aa(A) > -+ > A\, (A) including repetitions according to algebraic multiplicity. We define the empirical
spectral distribution (ESD) as

1 n
pa=-— > 6,
j=1

which is the (discrete) probability measure on the eigenvalues of A weighted by algebraic multiplicity. For a

measurable function f: R — R,
1 n
[ £dua= 130 10y
j=1

In particular, the spectral moments of A is the moments of the ESD:

n

/RxpduA(x) = %ZANA)% p>1.

Jj=1

If A is a random matrix, the resulting ESD p4 is a random measure on R. To study the asymptotic law of

ESD of random matrices, we need to clarify the convergence mode of random measures.

Definition 1.1 (Convergence of random measures). Let (1,,) be a sequence of random probability measures
on a topological space €2 with Borel o-algebra %, and let . be another probability measure.

(i) pn converges weakly (or vaguely) almost surely to u, if with probability 1,

/ fdu, — / fduforall feCy(Q) (orforall feC.()).
Q Q

(i) pn converges weakly (or vaguely) in probability to p, if for every bounded continuous function f € Cp(2)

(or for every compactly supported continuous function f € C.(Q)),
/fdun — / fdp in probability.
Q Q

(iii) pn converges weakly (or vaguely) in expectation to p, if for every bounded continuous function f € Cy(2)

(or for every compactly supported continuous function f € C.(Q)),

dpiy, dp.
E[qu}%/ﬂfﬂ

Remark. (a) By definition, the weak almost sure convergence implies the other two modes of convergence in

(ii) and (iii). In particular, the direction (i) = (iii) holds by dominated convergence theorem.

(b) In fact, if 4 is a (nonnegative) random measure on R, we can define its expectation Eu by

(Eu,f>=/Rfd]Eu=JEURfdu}, f € Cu(R).

In that sense Eu is a positive linear functional on C.(R). By Riesz-Markov-Kakutani theorem, the Borel
measure Ep on R satisfying the above property exists and is unique. According to this notation, the random

measures (1, converges weakly in expectation to u means that Eu,, — u weakly.

(c) Although the weak convergence appears slightly stronger than the vague convergence, they are indeed

equivalent for random measures on R.



To see this, let u, be a sequence of measures converging vaguely to u in probability. (The almost sure and
in expectation cases can be handled similarly and deterministically.) Note that a probability measure p on R
is tight, i.e. for each € > 0 there exists compact interval [—N, N] such that u([—~N,N]) > 1 —e. Then given
any bounded continuous function f : R — R and any € > 0, we take ¢ € C.(R) such that

€
d 1— —-.
A¢“> e

By vague convergence in probability, there exists Ny such that for all n > Ny,

€ €
P<A¢“M<l‘wﬂm><2'

Also, since f¢ € C.(R), there exists N7 such that for all n > Ny,

PQAMWm—AﬂM42§><;

Then for all n > max{Ny, N1}, with probability at least 1 — ¢, we have

’/Rfdun—/Rfdu’S /Rf(1—¢)dun +’/Rf¢dun—/Rf¢du‘+’/Rf(1_¢)du‘

< I flloo (’1—/R¢>dun +’1—/R¢>duD + /qubd,un—/Rf¢du’

2€ €
< Lt <e
<Wlee- grps T3 <

Therefore fR fdu, — fR fdp in probability, and p,, — p weakly in probability. In our later discussion, we

will not distinguish these two modes of convergence.

Theorem 1.2 (Portmanteau lemma, random version). Let Q be a metric space equipped with its Borel o-
algebra AB. Let [y, be a sequence of random probability measures on (2, B). The following are equivalent:

(i) pn — p weakly in probability;

(i) fQ fdu, — fQ fdu in probability for every bounded Lipschitz continuous function f;

(iii) for every lower semi-continuous function f bounded from below,

liminf/ fdunZ/fdu in probability,
Q Q

n—r oo

(iv) for every upper semi-continuous function f bounded from above,

limsup/ fdun, < / fdu in probability.
Q Q

n—oo

Furthermore, if the above conditions hold, then
(v) liminf, o pn(G) > p(G) in probability for every open set G;
(vi) limsup,, , o n(F) < u(F) in probability for every closed set F.

Proof. It is clear that (i) = (ii), (iii) = (iv), and (iii) + (iv) = (i). Also, (iii) = (v) since the indicator 1¢
for open G is lower semi-continuous. Similarly (iv) = (vi).

It remains to prove (ii) = (iii). We assume that f : R — R, is a nonnegative, lower semi-continuous
function. Take

nuwnm{muﬂw+muw»¢} k=12

yeR



which are nonnegative bounded Lipschitz continuous functions such that fi 1 f pointwise. By the monotone
convergence theorem, [p frdp 1 [, fdp as k — oco. Then given any ¢ > 0, we take k € N such that
Jo frdp > [; fdp—€/2, and take Ny large enough that

(o Lo -5) <

for all n > Ny. Then for all n > Ny, with probability at least 1 — e,

/RfdunzAfkdunzAfkdu—ngfdﬂ_e.

Since € > 0 is arbitrary, we have liminf, o [ fdun > [ f dp in probability. O

1.1 The Wigner Random Matrices

Definition 1.3 (Wigner matrices). Let (£;;)1<i<j<co be an upper triangular array of jointly independent
random variables. Suppose that
(i) the diagonal entries (§;;);>1 are real-valued i.i.d. random variables, and
(ii) the off-diagonal entries (&;;)1<i<; are real or complex-valued i.i.d. zero-mean random variables with
variance E|¢1o]? = 1.
We can define the lower-triangular entries (&;;)1<;<; as following:
o If (§ij)1<i<y is real-valued, let §;; = &;; for 1 < j <i. Then (&;;)75= is an infinite real symmetric matrix.
The top-left n x n block W,, = (fij)2j=1 is called a real symmetric Wigner matrix.
o If (&j)1<i<j is complex-valued, let &;; = Eji for1 < j <. Then (§ij);’3:1 is an infinite complex Hermitian

matrix. The top-left n x n block W,, = (§ij)?7j:1 is called a complex Hermitian Wigner matriz.

Example 1.4. Following are some examples of Wigner matrices:
(i) Symmetric Bernoulli Ensemble. All triangular entries (&;;)i1<i<; are i.i.d. Rademacher variables, i.e.
By = 1) = P(6y; = 1) = 1/2.
(ii) Gaussian Orthogonal Ensemble (GOFE). The diagonal entries (£;;)$2, are i.i.d. Ng(0,2) variables, and
the off-diagonal entries (§;;)1<i<; are i.i.d. Ng(0,1) variables.
(i) Gaussian Unitary Ensemble (GUE). The diagonal entries (&;;)52, are i.i.d. Ng(0,1) variables, and the
off-diagonal entries (§;;)1<i<; are i.i.d. Ng(0,1) variables.

1.2 The Moment Method

We are interested in the asymptotic law of the ESD of Wigner matrices.

Theorem 1.5 (Wigner’s semicircle law). Let W,, be an n X n complex Hermitian Wigner matriz, i.e. W, is
the topleft n x n block of the infinite matriz (§;5)75—-,. Then the ESD of W, /\/n satisfies
(i) w wy — se weakly in probability;
(i) iy — e weakly almost surely;
(#ii) ]E,U% — lse weakly in expectation.
where s is the semicircle distribution, whose density function is given by
Lo g(2)

Pse(T) = o 4—x22, xek



Moment. We can reformulate the spectral moments of W,,/y/n with the trace of its power:

M :1276)\1?:1“(%)’6:12”:2”:“_266 Y S
ik nj:1 J n \/ﬁ nlt+k/2 1112 G196 SiRiy -

i1=112=1 ip=1

To simplify our analysis, we additionally impose the following assumption, which will be removed later:
max {E|¢11|", E|¢12/F} < 00, for all k € N. (1.1)

1.2.1 Combinatorics in Spectral Moments

Each ordered tuple (iy,i2, - ,i1) € [n]* is called a cycle of length k. We use the following terms:

e The m consecutive pairs (i1,42)," -, (ix—1,%), (i, 1) are called steps of the cycle.

e The distinct unordered pairs from {iy,is}, -+, {ix—1,%k}, {ix, 91} are called the edges of the cycle.

e The distinct indices among i1,19,- - - , ik are called the vertices of the cycle.

e The mixed moment T'(iy,d2, - ,ik) := E[&,, - &iriy) 1s called the contribution of the cycle to the
spectral moment. In order that the contribution of cycle (41,42, - , i) is nonzero, we require that each
edge {i;,7;41} should be traversed at least twice.

e We say that two cycles (iq,ia,- - i), (i},5, -+ ,i}) € [n]* are equivalent, if there exists a bijection
7 : [n] — [n] such that i} = 7(i;) for every 1 < j < k. In particular, for every cycle (i1,iz,--- i) we
may relabel its each vertice v by the earliest time that v appears in the cycle:

m(v) =min{j:i; =v}, wve{i, -, i}

After relabeling, the cycle (7 (1), 7(i2), -+ ,m(ir)) is equivalent to (i1, 42, - ,ig). We call such a tuple
the shape of (i1,ia, - ,i). For instance, the shape of the cycle (9,5,9,4,9,3) is (1,2,1,3,1,4).
e Let S C [k]* be the set of all shapes of length k, i.e. tuples obeying the above rules. For every shape
s € Sy, we denote by Z? the set of all cycles (i1, o, -+ , i) € [n]¥ that have shape s. Indeed, every shape
s € Sj, can be viewed as a representative of the equivalent classes Z¢ in [n]*.
e The height h(s) of a shape s € Sy is the number of distinct elements it has.

Using the above notations, the expected k-th spectral moment is

1 . .
E [My k] = k2 Z Z T(iv, -+ k).

SESk (i1, ,ik)ELS

Now we discuss the contribution of each shape s € S to the spectral moment M,, j:

e If s is of height h(s) > 1+ k/2, there must exists an edge of s that is traversed only once. Then
T(ir,- - i) =0 forall (i1, -- i) € Z, with h(s) > 1+ k/2. (1.2)

o If s is of height h(s) < 1+ k/2, then

i =D (—h© 4D, _ sy R
W, ZEIS [T (i1, )| < k2 R <n 2Rk§%’
i1, iR €LE

where Ry := max{E|¢11]¥, E|&12|F} < oo for k € N. Since |Sk| < k¥, we have

1 , : k" Ry,
nitk/2 Z Z T (i1, -+ )| < T (1.3)

SESK:h(s)<1+% (i1, ,ik)€ETL]



o If k is even and s is of height h(s) = 1 + k/2, we focus on the cycles of shapes s that have nonzero
weights, which requires that each edge of the cycle is traversed at least twice. Since a cycle with k/2 4 1
vertices has at least k/2 edges (one can easily prove this by induction), we are reduced to the cycles of
shapes s € Sy, for which each of its k/2 edge is traversed exactly twice, once in each direction.

We denote by S the set of all shapes of height k/2 + 1 that traverse each of its k/2 edges twice. Then
for all s € S; and all cycles (i1, --- ,ix) € Z;, we have exactly k/2 pairs of conjugate off-diagonal entries
(§iji;41,8ij414;), and hence T'(iy,--- i) = 1. Then

1 Z T(il,--~Jk):n(n_l).”(n_km)Sl.

ni+k/2 nl+k/2
i1, ik €L
We need to compute the number of elements of Sj.
Bijection to Dyck paths. We take a cycle (i1,--- ,4x) with k/2 + 1 vertices that traverses each of its k/2

edges twice. We imagine traversing a cycle from i; to io, then from is to i3, and so forth until we finally return
to 41 from 4. At each step of this journey, say from ¢; to 9,41, we either use an edge that we have not seen
before, or else we are using an edge for the second time. We say that the step (i;,4;41) is innovative if it is in
the first category, and returning otherwise. Clearly, only the innovative steps can bring us to vertices that we
have not seen before. Since we have to visit k/2 + 1 distinct vertices (including the vertex i; we start at), we
conclude that each innovative leg must take us to a new vertex. We thus recover the shape of the cycle from
a sequence of these steps by starting from 1, and

e if the current step is innovative, create a new edge and add a new vertex not visited before.

e if the current step is returning, it must close an edge that was already opened earlier; hence, return along

the corresponding previously created edge to an already-seen vertex.

Formally, we can associate a shape (s1,...,sx) € S; with a path of the simple random walk on Z by
mapping each step (s;, s;4+1) as follows: if the step is innovative, we assign it an increment +1; if the step is
returning, we assign it a decrement —1. Since an edge cannot be revisited before it is first discovered, every
prefix of the traversal contains at least as many innovative steps as returning steps. Hence the partial sums
of the walk are nonnegative. Moreover, because the number of innovative and returning steps equal (k/2 of
each), the walk starts at 0, ends at 0, and has total length k. Therefore, the traversal of any shape encodes
uniquely a Dyck path of length k, i.e. a simple random walk on Z with steps £1 that begins at 0, never goes

below 0 and returns to 0 at the end. Following are some examples.

(+1,4+1,+1,-1,—-1,-1) (+1,41,-1,-1,+1,-1) (+1,-1,41,+1,-1,-1)

(+1a+17_15+17_15_1) (+1a_17+1a_17+1a_1)

Figure 1: There are 5 Dyck paths with 6 steps



Lemma 1.6. Let k € 2N. Then |S}| = Cy /2, where Cy, is the m-th Catalan number:

1 2
Cp, = <m>, m € N.

m+1\m

Proof. Let k = 2m and encode the traversal of a shape (s1,...,S2,) as a walk (x1,--- ,Za,,) with steps +1
(innovative) and —1 (returning), as described above. This yields a walk of length 2m with exactly m up-steps
and m down-steps and never going below 0.

Let P be the set of all walks from (0,0) to (2m,0), so |P| = (2:;) Then let D C P be the subset that
never goes below 0 (Dyck paths), and B := P \ D the set of “bad” walks that hit —1 at least once. For any
walk © = (21, -+ ,Zom) € B, let 7 be the first time its partial sum equals —1:

¢
T = min t€[2m]:2xj:fl .
j=1

Reflect the path after time 7 across the level —1:
Rz = (xla"' yLry —Lr41y" " 7_x2m)~

A graphical illustration is given below:

This reflection map sends x to a walk Rz of length 2m that still begins at 0 but ends at —2. Conversely,
given any walk y = (y1,- - ,y2m) from (0,0) to (2m, —2), there is a unique inverse operation: reflect the path
after its first visit to —1 to obtain a bad walk. Hence the reflection map is a bijection, and the number of

walks in B is the number of walks beginning at 0 and ending at —2, namely (nfr_”l) Therefore,

2m 2m 1 2m
D= 1Pl =15l = (m) a (m—l) :m—|—1(m> = Cm.

Since the shape-to-walk encoding is a bijection onto Dyck paths, the number of shapes in S5, is the m-th
Catalan number C,,. O]

Recurrence relation and the generating function. We consider the set D,,, of Dyck paths on [0, 2m].
For 1 <k <m, we let Dgf) be the set of Dyck paths x such that 2k is the first time it returns to 0. Then we
have two types of paths:
e Irreducible paths. Every path in € D,(nm) never returns to 0 before step 2m. That is, it never goes below
1 on [1,2m — 1]. Since such a Dyck path always stay at 1 at time 1 and 2m — 1, we can identify it with
a Dyck path from (1,1) to (2m — 1,1). Thus we have |D7(7§n)| = |Dp—1] = Cp_1.
e Reducible paths. For 1 < k < n, each path in D*) can be decomposed into an irreducible path on [0, 2]
and a Dyck path from (2k,0) to (2m,0). Thus we have |D,(,]f)| = |Di-1| - |Dm—k| = Cr—1Crn—k.



Note that D,,, = U}~ D,(ff ). Then we have the following recurrence relation for Catalan numbers:
Co=0C1 =1, Cn = ch—lcm—ka m > 2.
k=1

This is known as Segner’s recurrence relation for Catalan numbers. The generating function for the Catalan

numbers is defined by the power series

C(z) = Z Cpz".

n=0
The recurrence relation given above can then be summarized in generating function form by the relation

C(z) =1+ 2C(2)*.

Note that Cy = lim,_,o C(2) = 1, we select the branch

ol LT S (.

—=n +1\n
In fact, we can also use this procedure as an alternative proof of Lemma [1.6

Now we can compute the expectation of spectral moments of Wigner matrices.

Lemma 1.7 (Estimate for spectral moment). For each k € N,

. 0, k is odd,
iy B W] = ‘
Crs2, Kk is even.

Proof. For k odd, the result follows directly from (1.2)) and (1.3)). For k even, by (L.2)), (1.3) and Lemma

E[Mn,k}:ﬁz > T(z‘l,-.-,ik)+ﬁ > > T, ix)

SESE (i1, ,in)ETY $ES:h(s)<1+E (in,-- in) €Ty
nn—1)---(n—k/2) —1/2
= Ck/2 n1+k/2 +O(n )
Letting n — oo conclude the proof. O

Lemma 1.8. For every k € N, the k-th moment of the Wigner semicircle distribution pse s

0, k odd
R Ci/2, fork even.

Proof. The case for odd k follows easily from symmetry. For even k, we assume k = 2m. Then

22m+2

1 2 /2
/ 22 dpge () = = / 2?4 — 22 dx = / sin®™ @ cos? 6 df
R T Jo ™ 0

22m+1 s s
= { / sin?™ 0 do — / sin?™*2 ¢ de}
™ 0 0




We assume oy, = [ sin?™ 0 df for m =0,1,2,---. Then

Iopmyo = / sin®™ 2 0 d = / sin®™ 0(1 — cos? 0) df = I, — / sin®™ @ cos @ d sin 0
0 0 0
=Dy + / sin @ d(sin®™ 6 cos ) = I, + / sin @(2msin®™ ! § cos? 6 — sin®" 1 9) df
0 0
= Ly + 2m(I2m — Iamt2) — Lomt2 = 2m + 1) (I2m — Tom2)-

Then we have

I _2m+1
2m—+2 — 2m+2 2m-
Since Iy = m, by induction, we have
2m — 1! 2m)!
Ly, = 21 Gm)t 012,

CEm)ll 0T 22m(ml)2

Hhen 2m)! 2 1)(2 2 1 (2m)!
/me dﬂsc(ﬂf) — 22m+1 ( m) 1— ( m + )( m + ) _ ( m) _ Cm.
R 22m(m!)2 4(m + 1)2 m+ 1 (m!)?
Thus we complete the proof. O
Remark. In fact, we proved that
/xk dEuw, () — / ¥ dpge. (1.4)
R v R

Note that this convergence is deterministic because Euw, is a deterministic measure.
NG

Lemma 1.9. Let A\q,--- , A\, be the eigenvalues of W, /v/n. For every k € N, we have
1 ik . .
- Z IN;["Ln, 1551 — O in probability as n — oo.
j=1

Proof. Let € > 0. For every m € N, we have

1 - m —m 1 - m
E EZ'Aj‘ Ty, >51| <57ME EZ\W :
j=1

j=1

By Lemma|l.7]and Markov’s inequality,

5™ (2m)! 1 (;1)’”.

1 1 1
: - § |m < 1 - E 12m _ _c  \=) -
hrrlnﬁsooupIP’ n e Aol 05y > € | < €5™ nlgr;OE Wt Al e(1 +m)(m!)? <

This inequality holds for every m € N. While the right-hand side decreases to 0 as m — oo, the left-hand side

is increasing in m. Therefore

. 1y
limsup P E;|)\j\k]1{|,\j|>5} >e| =0
=

n—oo

for every k € N. O

10



1.2.2 The Variance of Spectral Moments

Lemma 1.10. For every k,n € N,
92k+ip2kp

Var(Mn,k) S TL2

: (1.5)

where Ry, = max {E|£11|2k, E\§12|2k}. Hence for every polynomial P(x) = ¢o + c1x + -+ - + cpx™, we have

/P(m) dipwy, () — / P(x)dusc(x) in probability.
R vn R

Proof. For a cycle i = (i, -- ,ix) € [n]¥, we write & = &, &, -~ &, for simplicity. Then

Var (M) = # > (Bl&é] - B&ES).

i,i’e[n]k

Each pair (i,i’) generates a graph with vertices V(i,i") = {i1,--- ,ix} U {3}, -+ i)} and undirected edges
E(,1) = {irde, - ,ik—19k, iktr} U {¢)dh, - i} _10}, 981} The resulting graph has at most two connected
components. As before, two pairs (i,i’) and (j,j’) are said to be equivalent if there is a bijection on [n]
mapping corresponding indices to each other.
In order the contribution E [£;&y/] — EGEEy of (i,17) to be nonzero, the following conditions are necessary:
(a) Each edge in E(i,i’) is traversed at least twice. As a result, there are at most k edges in the graph.
(b) The two graphs generated by cycles i and i’ have at least one shared edge, otherwise by independence
we have E [§;&] — EGES = 0. As a result, the graph generated by (i,1') is connected.
We discuss the contribution of a pair in three cases:
e If V(i,i’) has cardinality h > k + 2 and (i,i) has nonzero contribution, the resulting graph is connected
and should have at least h — 1 > k edges, which contradicts (a). Therefore (i,i’) has zero contribution.
e If V(i,i’) has cardinality » = k + 1 and (i,i) has nonzero contribution, the resulting graph is connected
and should have k edges. In this case, there are no cycle in the graph, and each edge would be traversed
exactly twice, once in each direction. Since i begins and ends at ¢;, it must traverse each edge an even
number of times. The same is true for i’. Thus, each edge in £(i,1') is traversed by either i or ', but not
both. Then i and i’ generate distinct edges, a contradiction! Therefore (i,i") has zero contribution.
e If V(i,i’) has cardinality h < k, there are n(n—1)---(n—h+1) < n* equivalent pairs. The contribution
of these pairs satisfies
|E [&éir] — EGESy | < 2Ray.

As before, there are no more than (2k)2* distinct equivalent classes of pairs (i,i’). We summarize the above

three cases to obtain

1 (2k)%F . nF 2Ry, = %

VaI‘(Man) = W . n2

By Chebyshev’s inequality, for any € > 0,

22k+1 k2k RQk

€2n?2 ’

1
P (|Mn . = E[My ]| > €) < =5 (BIM;,] = (E[Mnx])?) <
which converges to 0 as n — co. Combining the above result with Lemma [I.6] and Lemma we have
My, = / oF dpw, — / 2 dpg.(z)  in probability.
R vn R

Since k € N is arbitrary, the convergence result holds true for any polynomial. O

Proof of Theorem (i). Let f € C.(R), and take N > 5 such that supp(f) C [—N, N]. We then apply

11



Stone-Weierstrass theorem to approximate f on the compact interval [—N, N| by polynomials: for each € > 0,
there exists a polynomial P, on R such that |P.(x)— f(z)| < €/4 for all z € [N, N]. Note that us. is supported
n [—2,2] C [N, N]. Then

‘/ f s, —/fdusc <
R v R

<

R(f_Pe)du% _/R(f_Pe)d,usc

(f = Po)dpw, | + / (f = Po)dpw,

/R\[N,N] v [-N,N] v

+ /PeduM—/Ped,Usc
R v R

/ P d,u%
R\[-N,N] v

+’ Ped/f"%_/PedUsc
R v R

/ (f — P.) dpse
[7N’N]

+

< +E+
- 2

Ped,u% _/Pedﬂsc
R v R

For the first term, note that

P, d,UfM
/R\[—N,N] Vi

which converges to 0 in probability as n — oo, by Lemma Meanwhile, we can also control the last term
in (1.6) by Lemma Since € > 0 is arbitrary, we have

< | Pe| dypow,, S/ P dpw, == |P.(A)|L(a 25}
/R\[—N,N] vn R\[—5,5] v Z {Ix;1>5}

/ fduw, — / fdusc in probability.

R v R

Hence u wy — usc weakly in probability, and we complete the proof. O
Using the variance bound, we can indeed extend the convergence result to the almost sure case.

Proof of Theorem (7). By Chebyshev’s inequality, for every k& € N and € > 0,

Var(M,, — 1
Z]P’|Mnk nk]|>egzu PR Y <o

By the Borel-Cantelli lemma, we have

P <1imsup | My, 1 — E[M, g]| > e> =0.

n— oo

Since € > 0 is arbitrary, we have M,, ,, — E[M,, x] — 0 almost surely as n — oo. Combining this result with

(1.4), we obtain that
/37 dMWn _>/33 dus. almost surely.
R

Using the estimate Cj, < 4k, we have

. 1 ok Y2k 1 a2k . 1
lim sup o % dse = lim sup ﬂC'k < lim sup P 0 < o0.
R

k—o0 2 k—o0 k—o0

By Carleman’s continuity theorem, we have puw, — usc weakly with probability 1. O
Jn

Remark. (i) Following the same approach as the above proof, it is easy conclude that pw, — ps weakly in
s

expectation, which is Theorem (iii).

12



(ii) For every —oo < a < b < 00, by the Portmanteau lemma,

1 b
—-N n 7b sc d 1 t 1 ,
" %([a ])%/a psc(x) dr  almost surely

where Nw, ([a,b]) is the number of eigenvalues of W,,/y/n lying in [a,b], including repetitions according to

algebraic rﬁultiplicity.

13



1.2.3 Remove the Finiteness Assumption for Higher-Order Moments

Now we will remove the assumption (1.1]) and extend the convergence results to general Wigner matrices. We

will use the Lévy metric between cumulative distribution functions to establish weak convergence.

Lemma 1.11. Assume that A, B € C"*" are Hermitian matrices. Then

(i) For every o > 0,

1 n
Fy, Fp)lte < = Ai(A) = X(B)|” 1.7
pr(Fa, Fp) _";|]( ) i (B[ (1.7)
where py, is the Lévy metric between two cumulative distribution function (c.d.f.s):
pr(F,G)=inf{e>0: F(x —¢) —e < G(x) < F(z +¢€)+ € for all x € R},

and Fa, Fg are c.d.f.s of ESDs pa and upg, respectively.
(i) In particular,
1
pr(Fa, Fp)* < HHA - B|¢.

Remark. Recall that the weak topology on the space of Borel probability measures on R is metrized by the
Lévy metric pr,. That is, F,, — F weakly if and only if pr (F,, F) — 0.

Proof. (i) Fix a > 0. The inequality (L.7) is trivial if Z?Zl |A;(A) — X;(B)|* > 1. Then without probability,
we can take € € (0, 1) such that

1 n
- D IN(A) = N\(B)* < € < 1.
j=1

Since € is arbitrary, it suffices to prove pp(Fa,Fp) < €. For each z € R, let A, = {j € [n] : \;(A) < z} and
By ={j € [n]: \;j(B) <z +¢€}. Then for every j € A,;\B,, we have |[A\;(A) — X;(B)| > ¢, and
D IN(A) =N (B) < e

T ne¢
J

L ANB 1
n —

Fp(xz) = Fp(z +¢) <
Similarly Fp(z —€) — Fa(x) < e. Hence pr(Fa,Fp) <e.
(ii) Let @« = 2 in (i), and apply Hoffman-Wielandt inequality. O
We next show the stability of ESD under low-rank perturbations.

Lemma 1.12 (Low rank perturbation). Assume that A, B € C*"*™ are Hermitian matrices. Then

rank(A — B
pL(Fa,Fg) <||Fa— FBlloc < ¥a (1.8)

where Fa, Fg are cumulative distribution functions of ESDs ua and ug, respectively.
Proof. Let r = rank(A — B). Since both sides ([1.8) are invariant under a common unitary transformation on

0
A and B, we may transform A — B as o ol where 3 € C™*" is full-rank. Hence we may assume

A Bpo
Bi, B

By1 By
Bi, B

A= = .

b

By the Cauchy interlacing theorem,
min {A;(A), A;(B)} = Aj(Ba2) = max{Aj,(A), Aj+r(B)}, j=1,---,n—r

14



Let Ag(A) = 00 and A,_,4+1(B) = —oo. For any = € R and choose j with (A;(Ba2), Aj_1(Baz)]. Then
max{)\jJrr(A),)\jJrr(B)} S )\j(BQQ) S xz and min{)\j,l(A),)\j,l(B)} Z )\jfl(B22) > x.

Hence - 1 1
— % < min{Fa(z), Fp(2)} < max{F4(z), Fp(z)} <12 ; ,

and |Fa(z) — Fp(z)| < r/n for all x € R. Finally, if 0 < € < pr(Fa, F), we can find z € R such that

1

Fa(x —e)—e>Fp(x) or Fa(z+e)+e< Fp(x).

Then Fa(z) — Fp(z) > Fa(x — €) — Fp(x) > € for the first case, or Fp(z) — Fa(z) > Fp(z) — Fa(z +¢€) > €
for the second case. Hence € < |Fu(x) — Fp(x)| <r/n, and pr(Fa, Fg) <r/n. O

Now we show how to remove the diagonal elements in a Wigner matrix.

Lemma 1.13 (Removing the diagonal). Let (W,,) be Wigner matrices given in Theorem , We obtain W,
from W,, by replacing all diagonal entries with 0. Then

lim p(Fvy,Fm) =0.

n—00 n

Proof. We truncate the diagonal entries (§;;) at v/n, and let E,, = diag (gii]l{lﬁuléx/ﬁ});;l' By Lemma

1 — 1
< 5D Gl e s my < o (1.9)
=1

n

— 2
W,—-2, W,

3
1
F n—EnyFA Si
pL( Hasn W") n vn NG -

v

Let N, = [{i € [n] : & > v/n}| =207 Lqje,i> vy By Lemma[1.12

) < rank(=,,) _ &
n

; (1.10)

AL (FL s Fwy,—=,
v v

Let p, = P(|£11] > v/n) — 0. By Bernstein’s inequality, for any € > 0 and sufficiently large n,

P(Nn 2 ne) =P <2n: (]l{\fii|>\/71} _pn) > n(e— pn)) < exp (_ n2(€ - pn)zn/(f_ ) > < e*%(éfpn)Q_
=t npp(1 = pp) + 5P

By the Borel-Cantelli lemma,
b (i N, N _p 0o 00 N, - . 0 s i e_K€2/8 0
mowp =t =) <P [ U (5rzep) < fim D= lim g =0
K=1n=K =
Since € > 0 is arbitrary, N,,/n — 0 almost surely. Combining ([1.9) and (1.10), we conclude the proof. O
Finally we present the main result.

Lemma 1.14. For the Wigner matrices (W) in Them“em one may assume without loss of generality that

the diagonal entries (§:;)i>1 are 0 and that the off-diagonal entries (§;;)1<i<; are bounded.

Remark. If we can prove Theorems for Wigner matrices with vanished diagonal entries and bounded

off-diagonal entries, we may extend the result to a general Wigner matrix W,, using this Lemma.
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Proof. We define (gij)lgig ; by removing diagonal entries and normalizing truncated off-diagonal entries:

0 if § = 7,
&ij = Sislye, i<y — El&ijlye, 1<y
\/Vaf(fia‘]l{\eijlgfv})

if i< j,

where N is to be chosen, and let Wn = (5”)7]:1/\/5 be the corresponding Wigner matrix for every n € N.
Then

1/~ —\2 1 <« ~
Etr (Wn — Wn) = Mz_:l 1§ij — &ij

2 2
<5 >0 lgitgessn — Elsilge, s m]] (1.11)
1<i<j<n
2 1 2
+ = 1) il e 1<nt — E[6i T e, .
n2 1§;§n (Var(fijﬂ{|§ij<N}) | I M€ 1<N} €651 qe J\SN}H

Since (&;;)1<i<; are i.i.d. and have finite second moments, by the strong law of large numbers,

2 2
— > Gilueusny —ElEilge,sml” = Var (el esny)  as.
n(n —1) 1<i<j<n
Hence )
. 2
limsup = Y [€Lqe,15m) — B, sml” SE [l lja.sn] . as.
n—roo 1<i<j<n
Similarly
2 1 2
lim — — 1) €0 e 1<y — ElE T e, = 1 - Var(&1 . as.
T 2 1<;<n (Var(fij]lﬂf,;jgN}) )!fa feust<ny ~ El&iT e, <] ar(€iall{je,o)<ny), s

Now given any € > 0, we fix N € N great enough that

m

max {E [[€12* T (e, 53], 1 = Var(€iol je,n1<ny) } < 5

By Lemma [T.11]

1 e 213
limsup pr, <F‘7m , Fwn) < {lim sup —tr <Wn — Wn> ] <€ as.
Nl n

n—o00 Vn Vn n—o0

Suppose pw, — psc weakly almost surely. By Lemma@,
vt

limsup py, (N%:ﬂsc) < lim sup {pL (Fv\/vE,FVAVn> +pL (FVT,”,FW,”> +pL <F‘7,n ,Fsc)] <€ as.

n— 00 n—00 n n n —_ =

n

Since € > 0 is arbitrary, we can make ¢, = n~! | 0 and take the intersection of the above events to see
limsup pr, (Fh,FSC) =0, a.s.
n

n—oo

Hence pw, — psc almost surely. O
n
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1.3 The Resolvent Method
1.3.1 The Stieltjes Transform

Definition 1.15 (Stieltjes transform). Let u be a Borel measure on the real line R. The Stieltjes transform
of p is the function of the complex variable z defined outside the support of x by the formula

su(e) = [ Zodu(o). = € Chsupp(i).

T—2z
In particular, s, is well-defined on the upper and lower half-planes in the complex plane C.

Remark. (i) By definition, the imaginary parts of s,(z) and z have the same sign. Since s,(Z) = s,(z) for
z € C\R, it suffices to study the property of s, in the upper half-plane C* = {z € C: Im z > 0}.

(ii) Indeed, the Stieltjes transform s, : C* — C* is a holomorphic function. To see this, we fix z € C\R.
Then |z — 2|~ < [Im(2)|™*, and |s,(2)| < [Im(z)|~!. For all h € C with |h| < |Im(z)|/2, we have

1 < 2
(x —2)(x—2z—h) ~ [Im(2)|?’

which is bouded uniformly in z € R. By the dominated convergenece theorem,

. su(z+h) —sulz) im 1 ) = o x
,{IL% h _%ao R(m—z)(m—z—h)d'u( ) /R(x—z)zdﬂ( )

Hence s, is complex differentiable in C*. By holomorphicity, s, is infinitely differentiable in C*, and

d* 1
() —/R()deu(x), 2eCh, keN. (1.12)

r— =z

Theorem 1.16 (Stieltjes inversion). For any two points a < b of continuity of F),, which is the c.d.f. of p,

b in) —s —1
1((a,B]) :lnifg/a ulE+ ’7)2m, wE=) 4 (1.13)

Distinct Borel measures u on R have distinct Stieltjes transform s,,.

Proof. For £ € R and n > 0, we have

tiaGs, (8 i) = [ 1 () ) = [ o duto)

Let f € Cy(R). By Fubini’s theorem and dominated convergence theorem,

lim — /f )Im(s, (E + in)) dg—hm// 1 dE du(z)

nl0 T E)? +n?)

=Agg34f<E>ﬂ((x_g)2+n 4E dy(a /f ) dyu(z

That is, for all bounded continuous function f: R — R,

/ (&) du(z) = lim sulP ”77)2’ wE=) oy ap (1.14)
R n R 3

By Riesz representation theorem, p is uniquely determined by its Stieltjes transform s,. The result (1.13)
follows from the Portmeanteau lemma. O
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One can relate weak convergence of measures to pointwise convergence of their Stieltjes transforms.

Theorem 1.17 (Stieltjes continuity theorem). Let (u,) be a sequence of probability measures on R.

(1) If p, converges weakly to a probability measure p, then s, (z) — s,(z) for every z € C\R.

(i1) If s, (z) converges to a limit s(z) for all z € R\C, then S : C\R — C is the Stieltjes transform of a

sub-probability measure pu, and p, — p weakly.

Furthermore, assume that (u,) are random probability measures and u is a deterministic probability measure.
(111) pn — p weakly almost surely if and only if s, (2) = s,(2) almost surely for every z € C\R.

() pn, — p weakly in probability if and only if s, (2) = s,.(z) in probability for every z € C\R.
Proof. (i) For every z € C\R, the function R — C : x — (z — 2)~! is bounded and continuous. Hence p,, — u
weakly implies s, — s, pointwise on C\R.

(ii) By Helly’s selection theorem, every subsequence of (u,) admits a further subsequence that converges
weakly to a sub-probability measure. We let (115, ) be a subsequence that converges weakly to a sub-probability
measure 4. Then s, — s, by (i), and we have s, = s from the hypothesis. By Theorem all weakly

convergent subsequences converge to the same i, and hence p,, — p.
(iil) is an immediate corollary of (i) and (ii).

(iv) The “only if” part is easy, and we focus on the “if” part. Let f € C.(R), and assume f is supported on
[-B/2,B/2]. We take f, = f * P,, where P,(x) = W is the Poisson kernel. Then f x P, — f uniformly
on R as 7 | 0. Given € > 0, we take n > 0 sufficiently small so that || f — f;,|lcc < €/5. Then

/Rfdun—/Rfdu‘ ‘/Rfdun—/andun " /andun—/andu‘+‘/andu—/Rfdu’
§25€+‘/Rf7,dun—/andu’. (1.15)

SImilar to our proof of Theorem [1.16

_ _ [ su(E+in) — s, (B —in) [ su(E+in) — su(E —in)
/R Fo i /R fydpi = /R _ F(B)dE / , H(E) dE.

27 R 27

IN

By (1.12] -, we have |s (2)] < [Im(z)|72, and s, is Lipschitz. We then divide supp(f) into 2% sub-intervals

[E(k) EJ( +1] j=1,---,2F of equal length, and approximate the above integral by a Riemann sum:
[ o Zsu (B +im) = (B — i) pn| Bl
n T oK 2mi 3= okgp2

The same result remains true with s, replaced by s, for every n € N. We fix k € N great enough such that
B\ fllso/(287n?) < €/5. Since for every z € R\C, s,,(2) — s,(z) in probability, we take N > 1 sufficiently
large so that for every n > N,

k . k . € .
P(‘SMH(EJ(» )er)—su(EJ( )+z77)‘ > ) <k for all j = 1,---, 2%,

€T
5(1.flloo

Hence with probability at least 1 — €,

QB||f||OQ 2em (k) 2¢ € 3¢
dptn, — d f(E; —+-=—
[ [ < 205 QkZ% Sl <5 5T

Combining with (1.15)), we finish the proof. O
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1.3.2 The Marcinkiewicz-Zygmund inequality

We introduce a useful inequality for error control. This is a special case of Burkholder-Davis-Gundy inequality.

Lemma 1.18 (Marcinkiewicz-Zygmund inequality). Let Xi,---,Xn be complex-valued, independent zero-

mean random variables. Then for every p > 2,

N P n p/2
EY X;| <(©@p)PPED X7, (1.16)
j=1 j=1
where C' is an absolute constant. Furthermore, if (ai;); jein]) € CN*N " we have
N N 1/2 2/p
Zaijinj S 4Cp Z|aij|2 <max EXJ|Z7> . (117)
oy — Je[N]
i#£]j e i#£]
Proof. Step I. We first assume that X;,---, Xy are real-valued, and let €1, - ,ex be i.i.d. Rademacher
variables independent of Xi,---, Xy. We show that
N p N p
E|Y X;| <2Ex |E|) €X; 1 p>2. (1.18)
j=1 j=1
Let Y; be an independent copy of X; for j =1,---, N. Then by Jensen’s inequality,
N p N p N D
E|> X;| =E|Y (X;-EY))| =ExEy|) (X;-Y))
j=1 j=1 j=1
Since X; —Y; is symmetric, we have X; —Y; 4 €;(X; —Y;). Then
N P N p N p §4
ExEy |Y (X; - Y))| =ExEyE.|> (X, —V;)| <ExEyEc [2271) 6X;| +2271 ) g,
Jj=1 Jj=1 j=1 j=1
Since (X1, , Xn) < (Y1, ,Yy), we obtain (T.18).
Step II. By the Khintchine inequality for sub-Gaussian random variables, for all a = (a1,--- ,ay) € RY,
N
> ajei| < 24/6plallz. (1.19)
=1 Lr

We use (|1.19)) conditioning on X1, -+, Xy to get

N P

> X,

Jj=1

E

< (2v/6p)" (é X}) W.

N n p/2
> X (Z X )
j=1 i=1

where C' = 96. Then we finish the proof of ([1.16) in the real case.

By (1.18)), we obtain

P
< 2PEx

N

> X,

J=1

E E.

(e
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Step III. If Xy,--- , Xy are complex valued, then both (Re X;)X, and (Im X;)Y¥, are independent real-valued
variables. Then we apply (1.16):

N P N P
E» X, <ov? +E[Y ImX;
j=1 j=1
p/2 n p/2 (2Cp) p/2
< op—1 Cpp/2 +E Z|Iij|2 p
j=1
Then we finish the proof of (|1.16)) in the complex case.
Step IV. For every i,j € [N] with ¢ # j, we have
1
N3 Y luenlgen =1,

IUJ=[N]
where the sum ranges over all partitions of [N] into two sets I and J. Then
N 1 X
Zainin = 72]\[_2 Z Z ]l{iel}]l{jeJ}ainin Z Z ZQWX X
i£] i#j IUJ=[N] I|_|J ]i€l jeJ
By the triangle inequality, for every k € N,
al 1
e XX, <oxm Do | auXiX;

i#] Lo TUJ=[N] ||i€I jeJ e

Let bj =3 cs ai; X ;. We take the following expectation with respect to {X; : j € J}, denoted by E ;:

p/2 p/2
_ b2
E; Zzaijxixj =E,; be < (Cp) ﬂ]E,[(Zb? ) = (Cp)"*BYE, (ZBJQ)@) 1
i€l jeJ jeJ jeJ Jje€J
b2
< (Cp)"PBYEs |} 55 X) | < (Cp)"/* B maxEIX, 7, (1.20)
JjEJ

where we take B2 =Y. jesb 2. Similarly,
p/2
P~ 2 2 2 ,
Er[b;]” < (Cp)P/*Er <EE;%|X| > < (Cp)?/ A?TgIXEXHP» jed
7

where A? => By Minkowski’s inquality,

iel zg
p/2 p/2 p/2
E:[B) = | B2}, = || >0} SoIBle | = (DoCpAT|  maxEIX|P.
je v jed jed !
Plugging into (1.20)), we have

p/2 9

E i-YiX | < (Cp) E|X;[?

S a X < (L6 ) (maEr)

icl jeJ el jeJ
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Note there are in total 2V — 2 nontrivial partitions of [N]. Then

N
— 1 —
Zainin S 2]\77_2 Z ZZainin
i#£j Lp IuJ=[N] || i€l jeJ
1

Lp

2 2 2 2

2N —2 al » N 2
< v COp E a?j (max E|X; p> =4Cp E a?j (max E|X; |p> .
2 vy JEIN] 2 JEIN]

Thus we complete the proof. O

1.3.3 The Stieltjes Transform of the Semicircle Law

For a random Hermitian matrix A € C™*™, the Stieljes transform of the ESD of A is related to the trance of

its resolvent:

1 — 1 1
A 2) = :—57:— A—2zId)7Y].
S( ,Z) SHA (Z) n = )\j(A) — ntI‘ [( z ) ]

We consider the Stieltjes transform of normalized Wigner matrices:

ooy imo (Bes) = (B i) =230 (M) |

Jj=1 Jj

To establish Wigner’s semicircle law, if suffices to show that the Stieltjes transform of the ESD of W,,//n
converges pointwise to the Stieltjes transform of the semicircle distribution us.. To establish this, we first

compute the Siteltjes transform of the semicircle distribution pse.

Lemma 1.19. The Stieltjes transform of the semicircle distribution s is

—z+Vz22 -4

5 z€CT,

Ssc(2) =
where CT = {z € C:Imz > 0}, and the square root of a complex number z in C\R is defined as the branch

with the positive imaginary part.

Proof. We let z € C\R and Im z > 0. The Stieltjes transform of the semicircle distribution ps. is

1 (2 V4—22
Ssc(2) = by ——dz.
Yis _92 xr — Z

We let © = 2cos 6. Then

2 [T sin?0 I 1 R
SSC(Z)_;/O 2c059—zd0_;/0 eie—i—eie—z( 2i ) a0

1 (C—¢ ! 1 (¢2—1)?

= —— d¢ = ——— R S S A
47 [¢|=1 <+<_1—Z C 47 [¢|=1 <2(<2—Z<+1) C

We evaluate the above integral by the residue theorem. The integrand has three poles:

=0, G=——7F", G=—7—""

where the square root of a complex number in C\R is defined as the branch with the positive imaginary part.
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By this convention, we have

— son(m ey [ ReC i\/C'Ref Im ¢ i|Im |
e R i advcce:

This shows that the real part of /¢ has the same sign as the Im (. Applying this to ¢; and (s, the real part
of V22 — 4 has the same sign as Re z. Then both real and imaginary parts of (; are greater than those of (s,
and [¢1] > |C2]. Since (1{2 = 1, we conclude that |(1] > 1 > |(2], and the two poles 0 and ¢, of the integrad
are in the disk |{] < 1. Note that

(O (e-1) > d{ (2 —1)? ]mg
Reb(@(@—zul)’o "Mkl oc-a)) - ag

_ (@@= ) N (SO (SRR (< R VN
Res (C2(C2_ZC+1)’ 2 _C1_><2 CQ(C2_2<+1) - <22(<2_C1) —42 Cl— m

By Cauchy’s residue theorem,

and

—z+ V22 -4
2 )
Then we finish the proof. O

Ssc(z) = z e (C+.

Since the expression of sg.(2) is complicated, directly establish the convergence s, (z) — ss(2) is difficult.

Luckily, we note that ss.(2) is a fixed point of the function

1
C\{-z}—=>C:s— s
Inspired by this result, we can do the following reduction.
Lemma 1.20. If z € CT and
sn(z) + H%n(Z) — 0 almost surely,

then s,(2) = ssc(z) almost surely.

Proof. We let A be an event of probability 1 on which s,(z) + 1/(z + sn(2)) — 0, and fix w € A. To show
sn(2) = ssc(2) a.s., it suffices to establish the convergence in deterministic case. Since the Siteltjes transforms
satisfy |s,(2)| < [Imz|~!, the sequence (s,(2)) is a bounded and has a convergent subsequence (s, (z)) by

Bolzano-Weierstrass theorem. Furthermore, the limit s = limg_, o0 $p, (2) satisfies

1 —z4+ V22 —4 —z—22 -4
s+ =0, and sé€ , .
Z4+ s 2 2

Now we select the correct branch. Since Im s, (z) > 0 for all n, we also have Ims > 0. Then

—z+ V22 —4
2

= See(2).

Essentially, we show that any subsequence of (s,(z)) has a further subsequence converging to ss.(z). Hence
$n(z) = 8sc(z), and we finish the proof. O

Now we prove Wigner’s semicircle law through the Stieltjes transform. By Lemma we may assume
that the diagonal entries (£;;);>1 are zero, and the off-diagonal entries (£;;)1<;<; are bounded by R < oo.
We only prove the almost sure convergence result, which is the strongest and implies the other two modes of

convergence (in probability and in expectation).
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Proof of Theorem[1.5 (ii). Let W, _; denote the (n — 1) x (n — 1) matrix obtained from W,, by removing the
j-th row and the j-th column. Then W, /v/n can be written as

W, —zId wy;
—zIld=| Vn “

wnJ —Zz

SIS

where w,, ; = (£15,+++ 1 &j—1.5, €414, »&nj) | /v/n. By Schur’s complement,

~1
n 1
wzm) ] S
n * Wn.f”
i z—i—wn’j(\/ﬁ’—zld) W,

We let
1 1
sn(2) = n W, -1
j:lz—l—w:‘”( %j—zld) Wn,j
* Wn —J -1
1 1 sn(z)—wmj( NG —zId) W, j 1 5
ffﬁ 2 z+5n(2) R W, 1 772+Sn< ) - 71(2)7
J= (z+sn(2) | 2 +wy, NG —zId) W, j
where .
1o Sn(z) — wy, ; (W:}'ﬁ‘j — zld) Wh
671('2) = E W 1
i=1 (z + $p(2)) (erw;:j ( = - zId) Wn ]>
We write
_! i Un.g where v, ; = s,,(2) — W} (Wn’_j - zld>_1 W, j
n = (24 5n(2))(2 + 5n(2) = Unj)’ e I\ Vn e

Assume max;en) [Un,j| < [Imz|/2. Since the imaginary parts of s,(z) and z have the same sign, we have
Im(z + sp(2)) > Imz7 and

1 Un. i 2
5 < - J < n
n(2) < n Z Im 2|2/2 — |Im 2|2 JG |U al

Therefore, if max;epy) |vn,j| — 0 almost surely as n — 0o, so does 6, (z). Then (1.20) is satisfied, and we can
apply Lemma [1.20] to conclude the proof of the semicircle law. We use the following decomposition:

oo () (o) [ ()]

k=1
_ Z W, j (k)wn, (k') [(% - zId>_1] » =1 A, j(2) + By, j(2) + Cp ;(2). (1.22)

k#k'

kk

Step I. Let A\q,---,\, be the eigenvalues of matrix W,,/y/n, and py,--- ,p,—1 the eigenvalues of matrix
Wp.—j/+v/n. Then for z = E + in with n > 0,

n n—1 n—1 .
1 1 1 1 (Aj—E)+1in (u; — E) +1in 1 1
ot _ ! _ 4 . (1.23
) n ;)\j—z jz_jl,uj—z nz[()\j—E) +n%  (u; — E)?+n? n A, —z (1.23)
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By Cauchy’s interlacing theorem, Ay > p1 > Ao > o > -+ > Ay—1 > fin—1 > Apn. Then the shift of function

A= (}\_’\E’% on disjoint intervals [u1, A\1], -, [ttn—1, An—1] is bounded by its total variation on R:
15| N-F p—E <H A—E 2
A0 =B+ G = B2 | O B+ ey,
Similarly,
n—1
1 U B U < H U _2
n I =B+ (= B2 +? | T A= EP 0P oy, 7
Then from (1.23)), we obtain
5 .
‘A"hj(z)' < Fn? J = 1) e, M. (124)
Step II. Let X,, j = (Wy,—;/v/n— 21d)~!. Then
1 1% 1 1
7||X,||2:7 n - < .
alXoalle = G000 = 30 B v =R <
Note that wy, ; has independent entries and is independent of W,, _;. Then
6 1 ! 9 6 6 R12 n—1 5 3 R12
E|Bo () = o5 D E [(nlwas () = D) E Xy (k. W < T | DU EIXu (kB ) < oo
k=1 k=1

Using the case p = 6 in Lemma there exists an absolute constant C' > 0 such that

6

6 - — s( R\ _CR?

k,k/=1,
k#k!

Hence for every € > 0,

1 n
P(max |Bn,j(2) + Ch,j(z |>€> ZP |Bn,j(2) + Cnj(2)] > €) ST;Z [ Bn,j(2) + Cnj(z )‘

1<j<n

32 32(1+ C)R"

 (BIBuy () + EIC,(2)") < e

j=1

Since ZZOZI n~2 < oo, by the Borel Cantelli lemma, we have

P (hmsup max. |Br,j(2) + Cn ;(2)] > 6> =0,

n—oo 1<J<

and maxi<j<n |Bn,;j(2) + Cpn ;(2)| = 0 almost surely because € > 0 is arbitrary.

Step I1I. Combining decomposition (|1.22)), estimate (1.24]) and Step II, we have maxi<j<p |vy ;| — 0 almost
surely, and the proof is completed. O
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1.4 Extreme Eigenvalues: Bai-Yin Theorem

The former studies only discuss the limiting spectral distribution of Wigner matrices. In practice, we are also

interested in the extreme eigenvalues of random matrices.

Theorem 1.21 (Bai-Yin). Let W,, be an n X n complex Hermitian Wigner matriz, i.e. W,, is the topleft n xn

block of the infinite matriz (£;)75_,. Assume that E|¢f | < oo and E|¢12|* < oco. Then

i 20%0)
n—oo \/ﬁ

Remark. In addition, if E|¢11]? < oo and E|&12|* < oo, we can apply the above result to both W,, and —W,, to

almost surely.

get the asymptotic result of the operator norm ||[W,||, = [A1(W,,)| V |An(Wy,)|, which satisfies

W
LA

n— 00 n

=2, almost surely.

By Wigner’s semicircle law, for any € > 0,

2

1
—Nw, ([2—-¢2]) = psc(r)dz >0, almost surely.
novn 2—e

As a result, with probability 1, the number of eigenvalues of W, /\/n greater than 2 — e goes to oo as n — oo,
and the maximum eigenvalue \; (W,,//n) is greater than 2 — €. Since € > 0 is arbitrary, we have

lim inf M (W)
n— oo \/ﬁ

Therefore, to establish Theorem [T.21] it suffices to show that

> 2, almost surely.

lim sup M (W)
n— oo \/H

Like the trick we used in previous subsections, we can remove the diagonal entries of Wigner matrices

<2, almost surely.

without changing the asymptotics of the largest eigenvalue.
Lemma 1.22. Without loss of generality, one may assume all diagonal entries &; = 0 in Theorem [1.21].
Proof. Use Rayleigh quotient:

/\1( n = sup Z Zzzjgzy— sup ZZZZJ§ZJ+Z§Zl|ZZ|

=1 lul=1 | %

< sup Zzlzjfu + max§+ <M(W2) + m?xfu,
lull=1 45

where W, is obtained from setting diagonal entries of W, to be 0. To generalize the result, it suffices to
show that max;c(, & /v/n — 0 almost surely, which implies Ay (W,,) — A (W) = o(1)\/n. We take a dyadic

sequence n,, = 2", m =1,2,---. By Fubini’s theorem,

+ § Em + E
_O]P) <ZI€I%3’)§ 5 > € nm) < — L ]P 5 > € nm < E Onm]l{e\/m<§11}‘|
2E|¢1[?
=E E N | < 2 < o0

minm <(67, /€)?
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By the Borel-Cantelli theorem, with probability 1, we have max;c,,. §{§ < ey/ng, for large enough m. Now
for nym—1 < n < nyy,

max{m < max £+ < evng < ev2

i1€[n] €[N,
Therefore, with probability 1, one have
+
max;e(p] &
— < V2
N v2e

for large enough n. Since € > 0 is arbitrary, we have max;c, 5” /v/n — 0 almost surely. O

Lemma 1.23 (Improved moment bound). Let W,, = (&j)nxn be a random Hermitian matriz in C™*".
Assume the upper triangular entries (§;;)1<i<j<n Satisfies:

o (&j)i<i<y are jointly independent with mean 0 and variance bounded by 1;

® SUp; jcn] E|&i;]* < oo; and

® sup; ey 1&ij] < O(n %) almost surely, where 0 < § < 1/2.
Let k € 2N be a positive even integer of size O(log2 n). Then

E [tr (WF)] < Ck/2n1+% +0 (2kk22n25+§) . (1.25)
Proof. By our previous discussion in §1.2.1]

E [tr (WF)] = Z E [€irisbinia *** Einrininia]

ik E[n]
= Z n(n—1) ( > [Eivininis *~ Ein_rininin] + Z Z E [€iriobinis - Einrininia]
seS; SESP (i1, ,ix)ETE
< Ck/zn i4 Z [57,17,2£127,3 - ‘gin_lin&nil}a
(i1, ,ig)ELS

An ik

where S} is the set of shapes with k/2 4 1 vertices and k/2 edges, with each edge traversed exactly twice, and
Sy is the set of shapes with at most k/2 vertices, with each edge traversed at least twice.

We order the ¢ distinct edges ey, - - - , g by their first appearance in the cycle (i1, -+ ,ix), and let aq,- -+, ap
be the multiplicity of these edges. Then the a;’s are all at least 2 and add up to k. By the moment hypothesis,

Eléyl* < \/El&;[2@-2Elg | = n@ 2%, [Elg, 1.

Since ay + -+ - + ay = k, we have

E [€i1i2§i2i3 T é‘l‘kil} < O(né)k_Zz'

Let Ng, ... ., be the number of cycles (i1, --- , i) with edge multiplicities (v, -, ). Then

k/2—1

Ank = Z Z Ng, ... )aéO(né)k_%.

ap,ap>2
ay+tap=k

Given a cycle (i1,--- ,ix), one traverses its k steps one at a time. We use several classifications for the steps:
o High-multiplicity steps, which use an edge e; with multiplicity a; > 3.
e Fresh steps, which use an edge e; with multiplicity o; = 2 for the first time. We subdivide them into:

— Innovative steps, which points at a vertex one has not visited before; and

— Non-innovative steps, which points at a vertex one has visited before.
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e Return steps, which use an edge e; with multiplicity o; = 2 that is traversed by a previous fresh step.
We subdivide them into:

— Forced steps, which start from a vertex v such that, at the time one is performing that step, there
is only one available edge from v; and

— Unforced steps, otherwise.

We assume there are h high-multiplicity edges, leading to ¢ — h fresh steps and theor £ — h return step
0;>2 % =k—2{—h)>3h,and h < k — 2¢.
We assume there are m non-innovative steps among the ¢ — h fresh steps, leaving £ — h — m innovative
steps. Then we have either ¢ < k/2 or m > 0.
Furthermore, at any given time point in traversing a cycle (i1, -- ,4x), one define an available edge to be

counterparts. Then the number of high multiplicity steps

an edge e; with a; = 2 such that e; is already traversed by its fresh step but not by its return step. Then at
any given time, there are three cases:

e one travels along a high-multiplicity step;

e one explores a fresh step, thus creating a new available edge;

e one returns along an available edge, thus removing that edge from availability.

We assume there are r unforced return steps among the ¢ — h return steps. Let v be a vertex visited by
the cycle which is not the initial vertex ¢;. Then the very first arrival at v comes from a fresh step, which
immediately becomes available. Each departure from v may create another available edge from v, but each
subsequent arrival at v will delete an available step from v, unless the arrival is along a non-innovative or
high-multiplicity edge. Finally, any return step starting from v will also delete an available edge from v.

This has two consequences. Firstly, if there are no non-innovative or high-multiplicity edges arriving at v,
then whenever one arrives at v, there is at most one available edge from v, and so every return step from v is
forced. (And there will be only one such return leg.) If instead there are non-innovative or high-multiplicity
edges arriving at v, then we see that the number of return steps from v is at most one plus the number of
such edges. In both cases, we conclude that the number of unforced return legs from v is bounded by twice

the number of non-innovative or high-multiplicity edges arriving at v. Summing over v, we obtain that

r<2(m+ Y a; | =2(m+k—20+2h) < 2(m+ 3k — 60). (1.26)
Otj>2
Now we count Nq, ... o,- We first fix m and r and record the corresponding cycles (i1, - - ,ix).

(i) There are n choices for the initial vertex i;
(ii) For each high-multiplicity edge e; (in increasing order of j), allocate «; locations in the cycle. There are
at most k>==1>2 = k=2~ chojces.
(iii) Record the destination of (the first occurence of) e; for each such j, creating n choices.

(iv) For each innovative fresh step, record the destination of that step, leading to an additional list of £—h—m

vertices with at most nf~"=" choices.
(v) For each non-innovative step, allocate a position in {1,--- , k}, creating k™ choices.
(vi) For each unforced return step, allocate a position in {1,--- , k}, creating k" choices.

(vii) Finally, we record a simple random walk of length &, in which we set the difference +1 whenever the step
is innovative, and —1 otherwise. This creates at most 2* choices. Note that the positions of innovative
steps and forced return steps are determined by (v), (vi) and this walk.

Together with h,m,r, one can reconstruct the original cycle (i1,---,ix) from the above data: as one
traverses the cycle, the data already tells us which steps are high-multiplicity, which ones are innovative,

which ones are non-innovative, and which ones are return steps. In all edges in which one could possibly
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visit a new vertex, the location of that vertex has been recorded. For all unforced returns, the data tells us
which fresh step to backtrack upon to return to. Finally, for forced returns, there is only one available leg to
backtrack to, and so one can reconstruct the entire cycle from this data. As a consequence, for fixed h, m and
r, and by 7 there are at most

nkk72(ffh)nhn57h7mkmkr2k _ n1+57mkk+r72(£7h)2k < n1+lfmk2m+9(k72l)2k

contributions to Ny, ... a,. Summing over the possible values of m,r, for n > 2k?, we have

k—2¢ £—h

k2m
N, < ok p g I(k—20) Z Z — Itk I 9(k—20+1
h=0 m=0
For ¢ < k/2, the numbers a; — 1,--- ,ap — 1 are positive integers and add up to k — £. Then there are (k;[)
solutions of (a7, -+, ay) in total, and
k/2—1 k/2—1
Ang = ol+k O(né)k—an1+€k9(k—2€)+1 1 < olth O(né)k—%nl-i-éklo(k—%)-i-l
> Z >
aj+--Fap=k
k/2—1
< oltk 1410k 14kd ) Z n(1—28)¢p—20¢ < 9Ltk 1410k 1+kd (g o 1) Io) (nl—zak_zo)k/2—1
=1
<0 (Qkk22n26+k/2> .
Thus we finish the proof of the improved moment bound (1.25)). O

Proof of Theorem[1.21} By Lemma_ we assume that the diagonal entries (§;;) are identically zero.
Step I. We pick 6 = 0.49 € (0, 1) and split each
§ij = Sijlqjes 1 <noy + SigLje; 1>noy =1 &ig + &g
and split W,, = ﬁ/\n + Wn accordingly. Clearly,
~ ~ _ > |4 _
[Ei;| = |B&;| < n™™E|g;[ < n™E |g;["

Then
2 2
n n

|IEW uH2 < Z Z|E§” lu;| | < O(n*65)z Z | | = O(n2765)’

i=1 \j=1 i=1 \j=1

and consequently |[EW, |2 = O(n!=3%), which is smaller than /3 for large enough n.

Step II. We write Wn =W, + EWn For large enough even number n € 2N and k = flog2 n], by Lemmam
E[tr(W,,)] < Cron' ™5 + 0 (220278 ) < 24l th 4 0 (255220204 ) = 250! *h).

Note that Ay (W,)* < tr(Wk) MW)F + -+ X, (W,)k. By Markov’s inequality,

_ € 9 k
PN > (245) Vi) = (W,) O(n) < O(n1~1o8(1+e/6) 108 m)

Note the series > >~ , nl=clogn converges for each ¢ > 0. By the Borel-Cantelli lemma, with probability, for
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large enough n,

MUSESCE: g) NS

Step III. To control Wn, we use dyadic sparsification. Take n,, = 2", m = 1,2, ---. We first prove that the
entries W, ~ is asymptotically almost surely bounded by O(y/n,,). Note that

1296

<|§w| > f) 2 4E|fzy {\gw|>gﬁ/3}| 1< 7.

By Fubini’s theorem,

2P <z‘ e 161 2 6m> <D mP (‘512| = gvnm) <E lE M L{ers ey /6)
m=0 B Nm 0 =
=E E no, | < ce- (Elér2]*) < oo,

MmN, <36|&12]2 /€2

where the last inequality follows from that for all ¢ > 1 and K > 1,

S ogms Kq
migm <K g1
and c¢. > 0 is a constant depending only on €. By the Borel-Cantelli lemma, with probability 1, for large
enough m, all entries of an are bounded by €/, /3.
Now we exploit the sparseness of Wn to control its operator norm. By Markov’s inequality and the fourth
moment condition, each entry has a probability O(n~%°) of being zero. Consequently, the probability that at

least one column or row of W,, has two nonzero entries is at most

n2 . O(n745)2 _ O(n2785)

286
m=0 "'m

Note the geometric series > < 00. By the Borel-Cantelli lemma, with probability 1, for large enough

m, all columns and rows of the matrix an has at most one nonzero entry, bounded by €,/n,, /6, and

[Warlly = sup [[Wo,ull, < Gv/m.

llull2=1

By Cauchy’s interlacing theorem,

Wl < [[We

€ €
2 S 6\/nm S g\/ﬁ

m

Step IV. By the last three steps and Weyl’s inequality, with probability 1, we have
M (Wa) S M (W) + [EW ], + [Wall, < 2+ ) v
for large enough n. Since € > 0 is arbitrary, we take € | 0 and conclude that

lim sup A1 (W) <2
n—oo \/7’7

Combining this result with Wigner’s semicircle law, we finish the proof. O
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2 Sample Covariance Matrices and the Marcenko-Pastur Law

General setting. Suppose we observe n independent samples of an m-dimensional feature vector z(/) =
(%15, ,@m;j) ", and arrange them as the columns of a data matrix X,, € C™*" ie. X, = [z, ... 2]
with (real or complex) entries (z;;) that are i.i.d., with zero mean, and unit variance. The sample covariance

is the m x m Hermitian matrix
n

* 1 *
Z TjTj = Xn X,
Jj=1

Sy =

1
n

We study the empirical spectral distribution (ESD) of S, denoted ug,, which places mass 1/m at each
eigenvalue of S,,. In the high-dimensional regime, we work on a proportional asymptotics model: both the

feature dimension m = m,, and the sample size n grow, and their ratio
m
— — a€(0,00) asn — .
n

where « is called the aspect ratio. Note that when o > 1, S,, has rank at most n < m, so a proportion 1 — 1/«

of its eigenvalues are exactly zero in the limit.

Theorem 2.1 (Marcenko-Pastur Law). Suppose that (x;;);5_, are i.i.d. complex random variables with mean

zero and variance 1, and X, = (%ij)ic(m.,],jc[n]- Also assume that m,/n — a € (0,00). Then
Bix, xx = pmp, weakly almost surely,

where pnvp,, s the Maréenko-Pastur distribution, which has density function

\/(>‘0z+ —2)(T — Aa—)

2max

pup, () = T, pay)(), z€R,

and has an atom of mass 1 — 1/« at the origin if a > 1, where Ao— = (1 —+/a)? and Aoy = (1+/@)?. Here,

the constant a € (0,00) is the aspect ratio.

Remark. By the Portmanteau lemma, the proportion of eigenvalues of %XnX; in [a,b] is

1 1 bAXa Aot — — Ao 1
— Nap] (XnXZ> %/ * \/( atr — ) (T a-) dxr + (1 - ) Tjoe[ap)y, almost surely.
My AN aVa_ 2rax a) ., ’

2.1 The Resolvent Method
2.1.1 Reduction to the Bounded Case

For covariance matrices, we have a rank perturbation result similar to Lemma, [1.12
Lemma 2.2 (Low rank purterbation). Let A, B € C"™*™. Then

rank(A — B)
m

[Fpp — Faa oo < : (2.1)

where Faa~, Fgp« are cumulative distribution functions of ESDs of the corresponding covariance matrices.

Proof. We let D = A — B, and write rank(D) = k, and by Weyl’s inequality,

Ojtht1(A) < 0j41(B),  0jpr1(B) < 0j41(A), j=0,--- min{m,n} —k—1.
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Then for all z € [0j4+1(B), 0;(B)),

‘ ik k k
Fppe(@)=1-L =1-2754, % cp )+ 2.
m m m m

In fact, this implies

Fpp+(r) — Faa-(x) < —, forall z € R.
Similarly, Faa-(x) — Fpp~(z) < k/m for all 2 € R. This completes the proof of . O

Here is another estimate similar to Lemma [[.11]

Lemma 2.3. Let A,B € C"™*"™. Then

2tr(AA* + BB*
pr(Faa-, Fpp-)' < ( 3 )||A—B||12?

Proof. By Lemma the Cauchy-Schwartz inequality and the Hoffman-Wielandt inequality,

1 m
pr(Faa-, Fpp)® < p— Z |oj(A)* — 0;(B)?|

1/2 1/2
1 m m
< > loj(A) +04(B)[? > loj(A) —oy(B)?
j=1 j=1
1/2 1/2
1 m m m
< - 2 0;(A)°+2) 0i(B)? > loj(A) = ai(B)?
Jj=1 j=1 j=1
<L ou(aa* + BB)Y? A - B
m
Then we finish the proof. O

Lemma 2.4. In Theorem |2.1, one may assume without loss of generality that the i.i.d. variables (xij)ffj:l

are bounded.

Proof. We define

mij

Tij = Tijl{e,; <Ny, Ty =T —E[Ty], @5 = N ih,j=1,2,---.
E[z;;]?

and set X, = (Tij)icim,) jeinls Xn = (Tij)icimaljemn]> ad Xn = (Tij)icimy,] jem]- BY Lemma

4 2 2 ¥ <. |17
L (F%an;;,FAYnY*) S En? (”X"”F + ”X"”%) 1% = Xl
wXn Xy, m2n
) m. n 1 my n
= |22 2 (P o o Phagieny) | |2 D0 D 6P L1 m)
(AL — =1 =1
— 4 J— 1 my N
< DD Tl e ) S 201 e RPN
_m"n i=1j=1 Ml i1 =

— 4E [[211[* 114,y >ny]  almost surely.

By Lemma [2.2]



which converges to 0 deterministically. Finally,

4
oo (Fyssp Fasoxs) < s (1l + 1500R) %0 - 5

— VEEL?)? &
=2 1+]E|x11|2 ZZ|A13|2 ( |3311 ’ZZL’&JF

2
mynE|T1 Pt mynE|Z1| Pt

2
2 (1+ Var(z111 gz, 1<n})) (1 — \/Var(xn]l“xlﬂg]v})) almost surely.

Note that as N T oo, both E [|x11\2]1{|x11|>N}] and 1 — \/Var(xu]l“xmg]v}) converges to 0. Hence given any
€ > 0, we can find NV > 0 large enough such that

limsup pr, (FIX X*,le Fx ) < € almost surely.

n— oo

If Theorem holds for sample covariance matrices of bounded random variables, then F', ¢ . — Fup,, for
all N > 0, and
lim sup py, (F1 X X5 , Fyvp,, ) < € almost surely.

n— oo
Since € > 0 is arbitrary, we conclude that F1 y y. — Fyp, weakly almost surely and complete the proof. [
2.1.2 The Steiltjes transform of the Maréenko-Pastur Law

Now we can derive the limiting distribution of the sample covariance matrix %XnX;'; by using the Stieltjes

transform. To begin with, we compute the Stieltjes transform of the Marcenko-Pastur distribution.

Lemma 2.5. Let a > 0. The Stieltjes transform of the M-P distribution is

l—a—z++/(1—a—-2)?—4az

5 , zeCT.
az

SMPa (Z) =

Proof. Fix z € CT. If a < 1,

rot (@ = o) Dot — 2)

Ao 27ra(:c —2)x

SMP, (2 ( ) dx,

where \o_ = (1 — y/a)? and Aoy = (1 ++/a)?. Welet . = 1+ a + 2y/acosf. Then

( )_g/“ sin” 6 do
SMP, (# = o (I+a+2yacostd —2)(1+ a+2y/acosb)

i0_,—i0 2
:1/% (=) do
mJo (I+a+ale?+e ) —2)(1+a+Ja(e? +e71?))
1 (c-¢h’ =
=t o TreT VAT EY— Sa e T VAT e
(¢-1)°

1
Tin /qzl (T +a- 2+ V@ DA+ a)+ va@ 1) ™
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This integrand has five simple poles at

C():O) Clz_\/aa CQZ_%v
(4 a-2)+ /(0 +a—2)?—4a (4 a—2)—/(I+a—2)?—4a
G = e ;o CG= NG .
The residuals at these poles are
Res(¢o) = (6 —1)° -1
(T+a—=2)¢+Va(@ + D) +a)o+Va(G+1) o
e (¢ -1)° Gha-G) _ 1-a
Res(G1) = aCi(G— )G =) (G —CG)  alG—G)G—CG)  az’
- (-1’ (G~ C) 1-a
Rl = G -G -G -G a6 -GG az
Res(Cs) = (G-1)° _ GlG-¢)  _/U+a-27—4a
U aGG -G -GG -6 alé— )G —G) az ’
_ (42*1)2 Ca(Cs — G3) __\/(1+a—z)2—4a
Res(¢y) = = = .

aCa(Ca — C1)(Ca — C2)(Ca — C3)

a(Cs — C1)(Ca — C2)

az

Recalling (I.21)), we know that Re\/(1 + o — 2)? — 4o and Re(z — 1 — a) has the same sign, and |(3| > |-
Note that (3¢4 = 1, we have |(3] > 1 > |{4]. Hence poles (y, (1 and {4 are inside the contour {¢ € C: || = 1},
and their residues should be counted into the integral. By Cauchy’s residue theorem,

1/(1
2\«
If @ =1, the above contour integral becomes
1 (2 —1)? 1

s 1 (¢ - 1)
Tri i Q@ Cr ) D) ™ T i Je C@ - D)

l—a V0l+a-—2)2%-4a

az

l-—a-z+/(1+a—2)?%—4da
B 20z ’

smp, (2) = o

dc.

SMPQ (Z) =

The integrand only has three simple poles at (y, (3 and (4. Since the poles (o and (4 are inside the contour
{¢ e C: |¢| =1}, we have
; (
1=
2

Finally, if @ > 1, the M-P distribution has a point mass 1 — 1/« at zero, and

(-3)
1-—-— )
@
We can apply the same contour integral trick as in the case @ < 1, except in this case the poles (p, (2 and (4
are inside the contour {¢ € C: [(| = 1}. Then

;(;_1_ _\/(1—1—04—2)2—4@)_

az
Note that /(1 +a — 2)2 —4a = /(1 — @ — 2)2 — 4daz. Then we complete the proof.

P
2z '

SMPa (Z)

z

(2—z)2—4> _ -2+

_ Aot V(@ = Aa)Qat —2) da 1
2ra(z — 2)x

smp,, (2) ;

Aa—

-« a—1 l1—a—z+4/(1+a—2)?—4a

az

SMPQ (Z) = —

oz 200z
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Like the proof of the semicircle law, we note that syp, (2) is a fixed point of the function

(C\{HH}—HC: sy — T (2.2)

az l—a—z—azs’
Then we can establish the convergence result through the following lemma.

Lemma 2.6. Let a > 0 and z € Ct. Then the function [2.2) has two fized points

Cl-a-z+/(1-a—2)>%—4daz
B 20z ’

S4,—

(i) Im(1 —a—z—azs_) > —Im(z/2).
(i) If v is a probability distribution supported on [0,00), then

Im(l-a—z—azs,(z)) < —Imz. (2.3)

(iii) Let wy, be the ESD of the covariance matriz %XnX,*L, and let S, be the Stieltjes transform of p,. If

1
Sn(2) — — 0 almost surely,
n(2) 11—y —2— anzsp(z) ¥

where ay = my/n for n € N, then sp(2) = sy = smp, (2) almost surely.

Proof. (i) Note that the square root always has nonnegative imaginary part. Then

1—a-— l—a—22-4 I
Im(l—a—z—azs)zIm( a—z+l-a-2 az>> me

2 2

(ii) We let z = E + in, where n > 0. Then

xT

Im(zs,(2)) =nResy(z) +{Ims,(z) = n/ooo CEGEET] dv(z).
Then -
Im(l—a—z—azs,(z2)) =—n <1—|—a/0 u_gmmd@) < —n,

which is (2.3). In particulr, if s,(z) is a fixed point of (2.2)), it equals s = smp, (2).
(iii) We fix our discussion on an event of probability 1 on which s, (2)+1/(1 -, —2—apnzs,(z)) = 0. To show
sn(2) — smp, (2) a.s., it suffices to establish the convergence in deterministic case. Since |s,(2)] < [Im 2|71,
the sequence (s,(z)) is a bounded and has a convergent subsequence (s, (z)) by Bolzano-Weierstrass theorem.
Also, as n — oo we have ay, = my,/n — a, hence the limit s = limy_, o, Sn, () satisfies
+ ! 0 d se{ }
s+—————— =0, and s€{s;,s_}.
l-a—2z—azs +
Now we select the correct branch. Since X, X /n is positive-semidefinite, its ESD is supported on [0, 00), and
Im(1 —a—z—azsy(z)) < —Imz by Lemmal[2.6] (ii). Let n = nj, — oo, we have Im(1 —a— z — azs) < —Imz,
and by (i),

l—a—z++/(1-a-2)%—4az
20z

s=s4 = = smp, (2)-

Essentially, we show that every subsequence of (s,(z)) has a further subsequence converging to syp, (2).

Therefore s,(z) — smp, (2), and we finish the proof. O
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2.1.3 Proof of the Marcéenko-Pastur Law

Now we use the Siteltjes transform to prove the Marcéenko-Pastur law. By Lemma we may assume that
|€11] < R for some R € (0, 00),

Proof of Theorem[2.1l Step I. We denote by X,, _; the (m, — 1) x n matrix obtained from X,, by removing
the j-th row, and denote by p,, ; € R" the removed row. Then we write
1 * 1
1 =X Xp _—zId =Xy _ipn
Xan;—zId:[” e e
n

1 x * 1 % L
7PniXn,—j 7PniPng — %

Using Schur’s complement, we have

1 . -1 1
X, XE - z1d = - 1 1 - .
n G PP = 2= P X i (XX ;= 21d) T X jpn

JJ7 n,—j1 \n

* * * * -1
We let 0,, ; = %pn,jpmj —z— #pn,jX (%Xn,_anﬁj — zId) Xn,—jpn,j- Then

n,—j

1 & 1 1 o 1 O0,:—1+a,+2z+a,z8,(%
sn(2) = My = On.j - M ; L —ap — 2 — apzsy(2) - (IJ— o, —i—_ z ——i_an;n(z)) wa')
1
T 1 a, —2- onzsn(z) on(2),
where | m
Unj .

on(2) =~ ; (1= an—2—anzsn(2))(1 —— amzon(2) Tomg)) D DB

and vy, ; =0, — (1 — a,, — 2 — ayzsy(z)) for j =1,2,---. More specifically,

1, 1, . (1 . -
Up,j = ﬁpn,jpnaj —1-— ﬁpn’anﬁj (an’an’j — zId) Xn,—jPn,j + an + anzsp(2).

We use the following decomposition:

1
Un,j = EPn,anJ 1

n -1
1 . 1 x
3 > pny(F) an,j (an,an,j - ZId) Xn,j] P (K)

£k’ kk’
n —1
1 . (1 . 2.4
~ 53 (sl - 1) [Xn,j (%050, - 1) Xn,j] (2.4
k=1 kk
1 § 1 . -1
- tr | X, _; <an7an’j — zId> Xn—j| +on+ anzsy(2)

=1 A, j(2) + By j(2) + Cpn j(2) + Dy (2).

Assume vy, ;| < [Im z]/2. By Lemma [2.6] (i), Im(1 — o, — 2 — 25, (2)) < —[Im 2], and

1 M Un, s 1 & 20,
5n Z)= — n.J < n,J .
(2) Mo, ; (1—an—2—0n25,(2))(1 =y — 2 — 0 28,(2) +Upj) — My ; |Imz|2
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Therefore, if we can prove that max;c[,) v, ; — 0 almost surely, then

1
Cl—ay, —2— 28 (2)

— 0 almost surely,

and we complete the proof by Lemma (iii).

Step II. We first study the term A, ;(z). By (1.16) in Lemma we can find an absolute constant Cy > 0

such that 5

3 1 . C()R6
EAn;(2)]" = —E > (onj(k)* =1)| < e
j=1
Then for any € > 0,
- 1 — P < OOR6
P A, >e)l <Y P(A, >e) < = .
(mastns (=€) <3Pz 0 < 5 3B el
Noticing that Zzozl n~2 < oo, by the Borel-Cantelli lemma,
P (hmsupmax|AnJ( )| > e) =0
n—oo J€[n]
Since € > 0, we have
max |A, ;(z)] = 0 almost surely. (2.5)

J€n]

Step III. Now we deal with the terms B, j(z) and C,, j(z). We first introduce a technical lemma.

Lemma 2.7. Let X € C™*" and z € Ct. Then

2 2
<mn2(1+ |2|
- |Im 2|

1 -1
HX* (XX* zId) X
n
F

Proof. Note that (A — z1d)"'A =1d +2(A — z1d)~! for any Hermitian matrix A € C"*". Then

2

1 1 -1
HX* (XX* - zld) X =n?|Id+z <XX* - zId)
n n

1 -1 ?
— H(XX* _ zld> XX+
n

F F
Since all eigenvalues of %X X* — zId € C"™*™ have imaginary part Im z > 0, we have
2
Id+=2 lXX*—,zId - <i 1+ 12| 2:m 1+ 2 i
n < [Tm 2| Tmz| ) °
F Jj=1
Then we finish the proof of ([2.7). O

Since py, ; has independent entries and is independent of X,, _;, by (1.17)) in Lemma and Lemma

6
3 pl2 6
< Cim: R (1 N 2| )

nb |Im z|
F

01R12
nl2

-1
E|B,.; ()|’ < O

where Cy > 0 is an absolute constant. Note that E [p, ;j(k)? — 1] = 0 for all k € [n]. Then we apply (L.16) in
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Lemma and Lemma [2.7] to obtain,

—1
1 .
l n,—j <an,an7j — ZId) Xn,j]

where C5 > 0 is an absolute constant. Then for any € > 0,

3

3 pl12 6

Sczm,éR <1+ 2] > |
n

|Im z|

2 n
E|Cn ()" < 0 2>
k=

kk

11Bay(2) + Cag()I°
P (1B () + Co2)] > €) < ZMB,J )+ Cuyl2)] > 0 < MBral2) £ Cng

32 32(C) + Cy)m? R RN
< 5 (BIBn;(2)° +E|C0;(2)[°) < Gy <1+ = ) .

n® |Im z|

2

Since m,/n — « € (0,00) as n — oo, the above probability bound decays in the rate of n=*. Noticing the

fact 07, n~2 < oo, we can apply Borel-Cantelli lemma to conclude that

m?}i |Bn,j(2) + Cp j(2)] = 0 almost surely. (2.6)
JEIN

Step IV. Note that (A — 21d) "' A =Id +2(A — 21d)~! for any Hermitian matrix A € C"*". Then
1 % 1 N -1 1 1 . —1 .
S| X (X X0 =2 ) Xy | = e (S XX - 21d) XX
1 . -t my—1 2 f(1 § -t
Id+z< XX J—zld> ]:— — [( XX ]—zld) ]
Then the term D, x(z) in (2.4) satisfies
my, —1  apz 1 . -t z . -t
Oy — + —tr || =X, X, —zId — —tr X X, _;—=z1d
n My, n n
1 - B
(XnX;:—zId) ] — ztr [( Xn,—jXp _j— zId) 1 .
n

Lemma 2.8. Let A € C™*" be an Hermitian matriz, and obtain A_; € C=Ux(=1) from A by removing the
j-th row and j-th column. Let = € C*. Then

1
= ——tr
n

| Dn,j(2)] =

1
=— |14+ ztr (2.7)
n

1

|tr [(A—zId)~"] —tr [(A_,, — 2zId)7']| < Tm 2|’

j:1727"'7n

Proof. Without loss of generality, we may assume j = n and write

We let 3,(2) = ann — 2 — o (A_,, — z1d)"La,. By Schur’s complement,

1 | Ba(a) (A = 2Id) T+ (A, — 21d) anag (A, — 21d)TY — (A, — 21d) 7!
 Ba(z) —af(A_, — z1d) 1

(A—zId)~*
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Then

tr[(A—2Id)" = (A_, — 21d)"}] = 5%@“ o 21(1)_1%0042(&” —zId)™! ﬂ
ﬁnl(z) [1+tr[(Ay — z1d) oo (A, — 21d) 7]
ﬂnl(z) (1 +a (A, zId)_2 an) .

We take the eigendecomposition A_,, = U*AU, where A = diag(\y,--- , A\p—1) € R"*™ and U is unitary. Then

ay (A_, —zId)~

[(Uay,);l ~
Z O\ —2) E X —g
=t U [(A—€1d)2 +7°1d] " Uy = o [(A_p — €1d) + 72 1d] " .

With a similar trick we also have

n

i (on = s10) = 3 (ol L 53 B ORI
j=1 j=1

=1

and
- |(U04n)j‘2 2 27411
Imp,(z) =—n—n ———=—n{l4a (A, —&1d)" +n°1d| ).
=1 G (00 )
Therefore )
T4+af [(A, —€1d)? +n%1d] o, 1
ltr [(A— 21d) ™ — (A_,, — z1d)"]| < — = I §Id)° + 7 1] a1
[Tm 3, ()| n
and we finish the proof. O
Now we let A = %XnX; in Lemma and plug-in the result to (2.7) to conclude
max | D, ;(2)| < ! 1+ 12l (2.8)
x|Dy, < - , .
jelm ™ n |Im z|
which converges to 0 deterministically as n — oco.
Step V. By (2.4), [2.5), (2.6) and (2.8), we have max;c[,) Un,; — 0 a.s., and the proof is completed. O

2.2 Generalizied Marcenko-Pastur Law

See |Silverstein and Bai (1995), Silverstein (1995).
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3 Free Probability

3.1 Non-commutative Probability Spaces

Definition 3.1 (x-algebra). A *-algebra is an associative C-algebra A equipped with a unary operation
x: A — A that is an involution and an antiautomorphism, i.e.

(a) (x+y)* =a*+y* forall z,y € A,

(b) (zy)* = y*a* for all z,y € A,

(¢) (z*)* =z for all z € A, and

(d) (az)* =ax* for all z € A and all « € C.
That is, * preserves addition, reverses multiplication, and is antihomogeneous. In particular,

(i) an element z € A is said to be self-adjoint if it satisfies * = z, and

(ii) an element xz € A is said to be normal if it satisfies zaz* = z*z.

Definition 3.2 (Non-commutative probability space). A non-commutative probability space (A, T) consists of
a (potentially non-commutative) *-algebra A with identity 1 € A and a trace operator 7 : A — C which is
x-linear, maps 1 to 1, and is nonnegative, i.e.
(1) T1(aX +8Y)=ar(X)+ p7(Y) and 7(X*) = 7(X) for all X, Y € A and all o, € C,
(ii) 7(1) =1, and
(iii) 7(XX*) >0 for all X € A.
Furthermore,
e 7 is said to be faithful if 7(XX*) = 0 implies X = 0;
e 7 is said to be tracial if it obeys the trace aziom: 7(XY) = 7(Y X) for every X,Y € A.

Remark. By definition, the formula (X,Y), = 7(XY™) defines a semi-inner product on A. Furthermore, if

the trace 7 is faithful, then (X,Y), is an inner product.

As a simple generailzation of moments of random variables in classical probability theory, the moments of
a random element X € A are defined as 7(X*), where k = 1,2,---.

Lemma 3.3 (Monotonicity of moments). Let (X, .A) be a non-commutative probability space. For every self-
adjoint element X € A and k € N,

‘T(szfl)}ﬁ < |T<sz)|ﬁ < |T(X2’“+2)|ﬁ, (3.1)

As a consequence, we can define the spectral radius p(X) of a self-adjoint element X by the formula

1
p(X) = lim ‘T(X2k)’2k . (3.2)
k—o0
Then for all self-adjoint X € A,
[7(XF)| < p(X)F, k=12, (3.3)

We say that a self-adjoint element X is bounded if its spectral radius p(X) < co.

Proof. The map (X,Y) — 7(XY™*) defines a semi-inner product in A, and the Cauchy-Schwarz inequality
|7(XY™*)| = /7(XX*)T(YY*) holds. We then proceed the proof by induction. Assume X = X*. For k =1,

m(X)] < VF(X2) 7(1) = V(X3 < [r(XHr)Y* = [r(x)
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1 e
By the induction hypothesis, in the k-th step, we have |T(X2k—2)| -2 L ‘T (X%) | 28 Then

|1/2 /2

|7_(X2k71)| < |T(X2k72)T(X2k) < |T(X2k)|% }T(X2k)| |T(X2k)|%

)

and

[rE)] < fr (X22) 7 (X3 < [0 5 | (x84,

Combining the above two results, we have
‘T(sz—l)}ﬁ < !T(X2k)|ﬁ <|r (X21e+2)|ﬁ7
and the proof is completed. O

We are also interested in the moment of normal elements.

Lemma 3.4. Let (X, .A) be a non-commutative probability space, and X € A.
(i) If X is bounded self-adjoint, then for every R > 0,

p(R*1 + X?%) = R? + p(X)2.

(it) If X € A is normal,
1/2

(XM <7 ((XX)F) 77 < p(XX)M2. (3.4)

Proof. (i) Let X be bounded self-adjoint and R > 0. Given any € > 0, by the definition (3.2]) of p(X), we fix
an integer N > 1 such that
I7(X2)|YI > p(X)? —€e forall j > N.

Then for every k > N/2,

2k 2k
’ (R21+X2)2k: _ 2@ R4k72j7_(X2j) > 2@ RAk—2i (X)2 763'
wrer -3 (%) £ () -
N—-1 ]
= (R*+p(X)* - 6)2’“ - Z (2]]“) RY™ 2 (p(X)? —€).

Note that

N—-1
> (2;“) R¥=27 (p(X)? — e)j < (2k)N R* max {1, |p(X)* — ¢V} .
j=0

Then we have

2k |7
lim sup Z ( . >R4k—2j (p(X)2 - e)J < R?,
k—o0 =0 J

Therefore,

|~

2

Eal

pURL 4 X?) = lim [((B1+ X2)%) [ =l [(R2 4 ()% — )™ 4+ 2
—00

n—o0

= max {R* 4+ p(X)*> — ¢, R*}.
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Since € > 0 is arbitrary, we have p(R?1 + X?) > R? + p(X)2. On the other hand, by (3.3), for all £ € N,

-

2 212k [3F _ = 2k 4k —2j 2j = 2k 4k—2j 2j ‘7 2 2
HSEP SIEENY ; R*=2r(X2)| <) ; R¥%=21 p(X) = R? + p(X)

=0 =0

Letting k — oo, it follows that p(R?1 + X?) < R? + p(X)2.
(ii) is simply a consequence of the Cauchy-Schwarz inequality and ({3.3]). O

Theorem 3.5. Let (A, 7) be a non-commutative probability space, and let
Hai={XeA: X=X"p(X) <o}

be the space of bounded self-adjoint elements.
(i) The spectral radius p : Ha — [0,00) is a seminorm on H 4. If T is faithful, then p is a norm on H4.
(i1) p is submultiplicative. If X, Y € H 4 are commutative under multiplication, then p(XY) < p(X)p(Y).

Proof. (i) Tt suffices to check the triangle inequality. Let X,Y € H 4. Then for every k € N,

2k 2k

(X +Y)?)| = 2@ T(XIYH=0)| < Q'k T(X2) 7 (Y 4h—2)
o= () > (5)V
2%k
<3 (3F) 0o = o) + o)
3=0

Raising everything to the 1/(2k) power and letting k — oo, we have p(X +Y) < p(X) + p(Y).
(ii) For any U € A with ||U]|2 = 7(UU*) = 1, we have
(ii) If XY =Y X, then for every k € N,

[T(XY)?)| = [r(XPFY)| < \fr(XH)T(Y4R) < p(X)*Fp(Y)?.

Raising everything to the 1/(2k) power and letting & — oo, we have p(XY) < p(X)p(Y). O
Remark. By this conclusion, if X € A is bounded self-adjoint and P : C — C is a polynomial with real
coefficients, then P(X) is also bounded self-adjoint.

3.1.1 The Spectral Measures

Theorem 3.6. Let X € A be a bounded self-adjoint element in a noncomutative probability space (A, 7). Then
there exists a measure px supported on [—p(X), p(X)], called the spectral measure of X, such that
p(X)
(Pe) = [ PO (Y (35)
—p(X)

for all polynomials P : C — C with complex coefficients.

Proof. We write my, = 7(X*) for k € Ng. Then the Hankel matrix (m;x); ke, is positive semidefinite:

n n n
Z CiCMjy = Z CjCkT(Xj+k) =7(YY*) >0, whereY = chXj.
4.k=0 4,k=0 =
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Therefore, the Hamburger’s moment problem
/ a*du(z) = 7(X*), k=0,1,2,--- (3.6)
R

has a solution. Furthermore, since limg_o0 57 |7(X 2k)|23r = 0, the measure yu = py satisfying the equations
(3.6) is unique. Since [ dux = 7(1) =1, the measure px is a probability measure.
For any € > 0, if pux {t € R : |[t| > p(X) + €} = § > 0, then we have

/RZE% dpx ()

which is a contradiction. Hence px {t € R: |t| > p(X) + €} = 0 for every € > 0, and the spectral measure px
is supported on [—p(X), p(X)]. Then ux is the desired spectral measure satisfying (3.5)). O

|~

2

|

p(X) = lim |r(X%*)|%* = lim

k—o0 k—o0

> hm 57 (p(X) +€) = p(X) + ¢,

k—o0

Remark. By (3.5), we have the bound

[T(PXO) <p(P(X)) < sup  [P(A)], (3.7)
AE[=p(X),p(X)]
By the Stone-Weierstrass theorem, every continuous function f : [—p(X), p(X)] — C can be approximated
uniformly by polynomials. Hence we extend the definition

p(X)

() = [ FN A f e C-plX), pX)).

—p(X)

Definition 3.7 (Stieltjes transform). Let X € A be a bounded self-adjoint element in a noncomutative
probability space (A, 7). The Siteltjes transform of X is a function Sx : C\[—p(X), p(X)] defined by

p(X)
Sx(z) = / L dix (V). = ¢ [p(X). p(X),

—p(X) N TF
where px is the spectral measure of X.

When the spectral measure px is unknown, it is more convenient to write the Stieltjes transform Sx (z) in
terms of the moments of X.

Theorem 3.8 (Laurent series representation of the Stieltjes transform). Let X € A be a bounded self-adjoint
element in a noncomutative probability space (A, 7). Then
(i) For z € C with |z| > p(X),

Zk+1 7
k=0
(ii) For z € Ct,

= T(X 1 X)?2 — (Im z)?
ZT +2Rk )1), whereR>min{O,p()(mZ>}.
= (z +iR)*t

In particular, Sx : C\[—p(X), p(X)] is an analytical function.
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Proof. (1) Fix |z] > p(X). For every X € [—p(X), p(X)], we have = < ©oo. By Fubini’s theorem,

<
IAZ\ Hp

p(X) p(X) Kk
sx()= [ siodexy=-1 [ S A ()

—p(x) A2 2 Jpx) = A
[P0 Nk = T(XF)

. A dux (V) = - .
zfz—;/—pm @ 2

(ii) For any R > 0, by Lemma the element X + ¢R1 satisfies

7 (X +iR1)M)| < p (R21 + X2)"? = (R? + p(x))"2. (3.8)
Fix z € C* and R > min {0, W} Then
|z +iR[* > (Imz + R)* > p(X)? + R%. (3.9)

Then we address (A — 2)~! by shifting iR and plugging-in the Neumann series:

p(X) p(X) > iRk
sx(z)= [ A = - [ S P

—p(X) (/\+ZR)—(Z+’LR) Z+ZR 7P(X)k O(Z"’ZR)
o /p(X) ()\Jrz'R)k 2 7((X 4 iR1)F)
o =0 —p(X) (Z + iR)k+1 =0 Z + ’LR k+1 ’
where the last series is convergent due to and (3.9 . O

Proposition 3.9. Let X € A be a bounded self-adjoint element of a non-commutative probability space (A, ).
Then
[YX|- < p(X)[[Y]l7, forY €A,

where || - ||+ is the seminorm ||Y||2 = (YY), = 7(YY™).

Proof. Given any € > 0, by the Stone-Weierstrass theorem, there exists a polynomial P : C — C such that

sup |22 + P(z)? — p(X)?| < e
[z]<p(X)

We let E = X2 + P(X)? — p(X)2. Then
r(YX?Y*) <7(YX?Y*) + 1(YP(X)?Y™) = p(X)*7(YY™) + 7(YEY™).

By estimate (3.7)), we have p(F) < ¢, and

[T(YEY™)| = [7(BY"Y)| < /7(E)r((Y*Y) E)Vr(Y*Y)?) < VT((Y*Y)?)e
Note that 7((Y*Y)?) < oo. Combining the above two displays and letting € | 0, we have
T(YX2Y*) < p(X)*r(YY™).

This finishes the proof. O
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3.1.2 Convergence in Moments

Definition 3.10 (Convergence). Let (A,,7,) be a sequence of non-commutative probability spaces, and

Xna,-, Xnk € A, random variables in (A, 7,) for each n. Let (A, 7) be an additional non-commutative
probability space, and Xi,---, X, € A. We say that the random vector (X, 1, -, Xpm) convergence in
moments to (X1, -+, X), if

Tn (Xniy Xy - Xnyiy) = 7 (X, Xy -+ X))
for every k € N and i41,49,--- ,i, € {1,---,m}. In other words, all mixed moments of (X, 1,---,X,.m)

converges to those of (X1, -+, Xp).

Theorem 3.11 (Convergence of spectral measures). Let (A, T,) be a sequence of non-commutative probability
spaces, and X, € A, bounded self-adjoint random wvariables with p(X,) uniformly bounded. Let X € A be
another bounded self-adjoint random variable in an additional non-commutative probability space (A, 7). Then

X, converges in moments to X if and only if the spectral measures px, converges weakly to pix.

Proof. We take M > 0 such that sup,,cy p(X,) < M and p(X) < M, so that all ux, and px are supported in
[-M, M]. We choose 9 € C.([-2M,2M]) such that » =1 on [-M, M]. If px, — px weakly, then for every
k € N, the function A — x*1)(x) is bounded continuous on R, and

rn(XK) = / e dp, () = / N () dpaxe, (M) — / Negp(A) djux (M) = / Ne dpx (V) = 7(XF),
R R R R
Conversely, if 7,,(XF) — 7(XF¥) for every k, we have

7(X*) < sup 7, (X)) < sup p(X,)"* < MF,

neN neN
and .
1 2k M
lim sup — </ A\ZF d,uX(/\)> <limsup — =0 < oo.
By Carleman’s continuity theorem, ux, — px weakly, and we finishes the proof. O
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3.2 Free Independence

Definition 3.12 (Free independence). Let (A, 7) be a non-commutative probability space. Let (A;);er be a
family of unital sub-algebras of A over C. Then (A;);cr are said to be free (or freely independent) in (A, ),
if 7(ay - - - ar) = 0 whenever

e ke N;

® iy, ,ip € J, and any two adjacent indices are distinct, i.e. i1 # ia # i3 # -+ # ix, (however e.g.

i1 = 13, and in particular, i; = i) are allowed);

e a;jc A, and 7(a;) =0forall j=1,--- k.
Note here we do not require A; # Ay for i # .

Furthermore, let (X;);e;r C A be a family of random variables in (A, 7). Then (X;);cs are said to be free
in (A, 7), if the unital sub-algebras A; = Alg(C1, X;) they generated are free in (A, 7).

Remark. Since the unital sub-algebra over C generated by X € A is {P(X) : P is a polynomial}, the free
independence of random variables (X;);er is equivalent to the condition that one has

T{(PL(Xi,) = 7(Pu(Xi,)) 1) (Pa(Xi,) = 7(P2(Xiy))1) - - (Pr(Xi, ) = 7(Pe(X3,))1)] = 0

whenever k € N, Py,---, P, are polynomials, and i1,--- ,4; € I are indices with no two adjacent i;’s equal.
Furthermore, the unital sub-algebra generated by a constant variable is the scalar sub-algebra C1, which is

freely independent of any random variable X € A.

The free independence is closely related to classical independence in the following sense: If a family of
random variables is freely independent, then the joint distribution of the family is completely determined by

the knowledge of the individual distributions of the variables. A formal statement is:

Theorem 3.13. Let (A, T) be a non-commutative probability space, and let (A;)icr be freely independent unital
sub-algebras of A. Denote by B the algebra generated by (A;)icr, i.e.

B =Alg (UAZ) .

iel

Then 7|p is uniquely determined by (7|4,)icr- (That is, if T is another trace operator such that (A,7) is a

non-commutative probability space and 7|4, = 7|4, for alli € I, then T|g = 7|5.)

Proof. By definition, each element of B is a linear combination of products of the form a; - - - ay, where k € N,
i1,--+ ik € T and a; € A;; for j = 1,--- k. We may assume iy # iz # -+ # i, otherwise we just multiply
some adjacent factors together to a new element in the same 4;. Then it suffices to prove that 7(a; - - - ag) is
fully determined by (7|4, ):cs for all such products a; - - - ar € B, which is done by induction over k.

The base case k = 1 is clear since a; € A;,. For the general case k > 2, we set a; = a; — T(aj)l S Aij for
j=1,---,k, which satisfies 7(a;) = 0. Then

T(ay---ar) =7 (@1 +71(a1)l)--- (@ + 7(ax)l)) = 7@ - - - ax) + R,

where the remainder
1

k—
R= Z T(py *+ Ap,, ) T(Aq,) -+ - T(ag, ),
m=0 p,q

and the sum Zp o Tuns over all disjoint decomposition

{plv"'7pm}U{q17"'7Qk—m}:{17"'ak}a p1 < < DPm, q < - < gk—m-
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It is seen that all terms in the remainder R consist of factors of length at most k£ — 1, and thus are fully
determined by (7] 4, )ier by the induction hypothesis. On the other hand, by the definition of free independence,

7(@y1 ---ar) = 0. Therefore 7 (ay - - - ag), and the induction step is completed. O

From a combinatorial perspective, free independence is a very special rule for calculating joint moments of
freely independent variables out of the moments of the single variables.

Corollary 3.14. Let (X;);er C A be a family of freely independent random variables in a non-commutative
probability space (A, 7). Then every joint moment of (X;)icr is a polynomial combination of the individual
moments 7(XF) of the X;’s.

Following are some concrete examples.
Example 3.15 (Joint moments). Let X,Y € A be freely independent, and p, q,r, s € N. Then
7(XPY?) = 7(XP)7(Y?), 7(XPYIX")=7(XPT")7(Y),
T(XPYIX"Y®) = 7(XPT) (YT (Y5) + 7(XP)7(X)7(YIT5) — 7(X)P7(YV)Ir(X)"7(Y)*

Proof. (i) By definition of free independence we have
0=7((XP—7(XP)1)(Y?—7(YN1)) = 7(XPY) — 7(XP)7(Y19).
(ii) By definition of free independence we have

=7 (X =7(X"))(Y? = 7(Y)1)(X" = 7(X")1))
T(XP(Y = 7(Y)1) (X" — 7(X")1))
7 (XPYY(XT — 7(X7)1)) — 7(Y9)7 (XP(X" — 7(X")1))

= 7(XPYIX") — 7(XPT)7(Y).

(ii) By definition of free independence we have
0=7((X"=7(X") YT = 7(Y)1)(X" - 7(X")1)(Y* — 7(Y*)1))
=7 (XP(Y?—7(YO)1)(X" —7(X")1)(Y* = 7(Y*)1))
=7 (XPYIUX" —7(X"))(Y* = 7(Y*)1)) = (V) 7 (XP(X" — 7(X")1)(Y* — 7(Y*)1))
=7(XPYIX"Y?) — T(Xqu+s)T(Xr) —7(XPYIX")r(Y*) + 7(XPY )T (X")1 (V)
—7(Y9) [T(X’H'TYS) —7(XPTY (V) — 1(XPY®)7(X") + 7(XP) T (XT)T(YS)}
= 7(XPYIX"Y®) — 7(XP)7(X")7(YIT®) — 7(XPT) 7 (YO)7(YV5) + 7(X)P7(YV)I7(X)"7(Y)".
Then we finish the proof. O]

Proposition 3.16. Let X,Y € A be two freely independent self-adjoint random wvariables in a faithful non-
commutative probability space (A, 7). If X and 'Y commute with each other, i.e. XY =Y X, then at least one
of them is constant.

Proof. By (3.15]), we have
T(XYXY) =7(X*)7(Y)* + 7(X)*7(Y?) — 7(X)*7(Y)*.
Since X and Y commute, we also have

7(XYXY) =7(XXYY) = 7(X?Y?) = 7(X?)1(Y?).
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Comparing the two results, we have [7(X?) —7(X)?] [7(Y?) — 7(Y)?] = 0, and at least one of the factors
vanishes. Without loss of generality we assume 7(X?) — 7(X)? = 0. Since X is self-adjoint, we have

0=7(X?) = 7(X)? =7 ((X - 7(X)1)%) = 7 (X = 7(X)1)(X — 7(X)1)").
Hence X = 7(X)1, and thus the claim holds. O

3.2.1 Non-Crossing Partitions and Joint Moments

Definition 3.17 (Non-crossing partitions). Let S be a finite, totally ordered set, and write II(.S) for the set
of all partitions of S. That is, for every m = {V4,---,V,.} € II(S), its blocks V1,--- ,V, are pairwise disjoint,
nonempty subsets of S such that V3 U---UV,. = 5. We write |r| := r for the cardinality of =.
o If there exist distinct blocks V;, V; € 7, elements p1,q1 € V; and pa, g2 € Vj such that p; < p2 < g1 < ¢o,
then 7 is said to be a crossing partition.
e Otherwise, 7 is said to be a non-crossing partition.
e In addition, if each block of partition 7 contains exactly two elements of S, then 7 is said to be a
pair-partition of S.
Notation. We write IInc(S) for the set of all non-crossing partitions of S, write IIo(S) for the set of all
pair-partitions of S, and Ixc, (S) = Hnc(S) NII2(S) the set of all non-crossing pair-partitions of S. For the
case S = [n] = {1, -+ ,n}, we simply write IIxc(n) = IInc([n]), I2(n) = Iz([n]) and Inc, (n) = Hne, ([7]).
For example, for the set S = {1,2, 3,4, 5,6}, the partitions {{1,3,5},{2},{4,6}} and {{1,6},{2,4},{3,5}}
are crossing, and the partitions {{1,4,5},{2,3},{6}} and {{1,6},{2,5},{3,4}} are non-crossing. A graphical

illustration is given below.

123 456 1 23 456 123 45 1 23 456
RN N N IS SRR ]

It is seen that non-crossing partitions has a “nested” structure.

Lemma 3.18. Let n € N. Both the number of non-crossing partitions of theset {1,--- ,n} and the number of

non-crossing pair-partitions of the set {1,--- ,2n} are given by the Catalan number C,,, i.e.
Mxe(n)| = Mxe, (2n)] = C

Proof. (i) We let Dy = 1, and write D,, = [IInc(n)|. Forn > 1 and 1 < k < n, we write Hl(\%(n) the set
of non-crossing partitions © € Inc(n) for which the block containing 1 contains k as its largest element.
Since every non-crossing partition m € Hl(\;% (n) decomposes canonically into m U 7o, where m; € IInc (k) and
my € One({k+ 1, ,n}). Hence

) (n) ~ 18 (k) x Tne(n — k).

By restricting m to {1,--- ,k — 1} and using the non-crossing condition, we can establish a bijection between
Hl(\fé(k) and IInc(k —1). Then
Hl(\?()J(n) ~ TInc(k — 1) x One(n — k).

Since Hl(\ll();(n), e ,Hl(\?()}(n) is a partition of IIxc(n), we have
HInc(n)| = n*ZDk 1D

This is a recursion characterizes the Catalan numbers (C,,).
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(ii) We can establish a bijection between noncrossing partitions IInc, (2n) and Dyck paths Da,, as follows. Let
7w € lne,(2n) and (21, ,22,) be a Dyck path. For each j € [2n], let ¢ be the other element of the pair
that contains j (an innovative step). Then z; = 1 if and only if ¢ > j, i.e. the block {¢,j} is never visited
before; and xz; = —1 if and only if ¢ < j, i.e. the pair {3, j} is already visited before (a returning step). Hence

Mne, (2n)| = |Day| = Cp, and the proof is complete. O

Definition 3.19 (Kernel). Let I be any nonempty set and i = (i1,--- ,ix) € I*¥ a multi-index. We define a
equivalence relation ~; on [k] by
p~;q if and only if i, =1,.

Then the kernel of i is the partition of [£] into the equivalence classes of ~;:
ker(i) = [k]/ ~; = {Br : 7 € Im(i)}, Bj={pe[k]:ip=r1}

For example, if p = {2,4,2,7,5,4, 2}, then = = ker(p) = {{1,3,7},{2,6}, {4}, {5} }.
For multi-indices with non-crossing kernels, we have a brief formula for computing joint moments.

Theorem 3.20 (Speicher). Let (X;);er C A be a family of freely independent random variables. Let k € N,
and let i = (i1, ,ix) € I* be a multi-index.

(a) If ker(i) is non-crossing. Then

T( Xy - Xyy) = H T (ij/l)) ,  where (V) is the index corresponding to block V.
V eker(z)

(b) If ker(i) is crossing and 7(X;) = 0 for each i € I, then

Proof. We first introducing a lemma which can be seen as a generalization of Example

Lemma 3.21. Let (A, 7) be a non-commutative probability space, and let (A;);cr be freely independent unital
sub-algebras of A. Let s,t € N, and ¢* € I. Assume that i1 # ia # -+ # ik, ip = ° and i; # i* for
j=1--,p=1p+1,--- k. Then fora; € A;,, j=1,---,k, we have

T(arasg - --ag) = 7(ap) T(araz - - - ap_1apy1 - - - ag).

Proof. We write @ = a — 7(a)1 for the centered version of a random variable a € A, i.e. 7(a) = 0. Then it
suffices to show that
T(araz - ap_18papy1 - - ag) = 0. (3.10)

For every j # p, we write a; = @; + 7(a;)1 and expand 7(a1as - - - @p—1Gpap+1 - - - @) multilinearly. Then sum

consists terms of the form
T(aql Qg ApQry - Gy, )T (@) - T(auqus)T(avl) T T(akapft)’ 0<s<p-1,0<t<k-—p

Note:
o Ifqy # - #qs #pF#1r1# - -14, the term is 0 by the definition of free independence. This is always
the case when 0 < s,¢ <1, i.e. the word @g, - - - @q,Gpay, - - Gr, is of length at most 3.
e Otherwise, we merge same-color neighboring factors in @, - - - Gg,@pGr, - - - G, to obtain a word of length
at most s + t. Repeat this centeralization-expansion procedure to the reduced word. This term will

finally vanish after at most k — 1 steps.
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Therefore T(a1az - - - ap—1Gpapt1 - - - ag) = 0, and we finish the proof of (3.10). O

Now we prove Theorem If the partition ker(i) is non-crossing, there exists an “innermost” block
V*={p+1,p+2, - ,q} € ker(i) in the sense that there is no further block located between elements of V*,

ie. dpp1 =ippo=---=1ig=r,and i; #r for j e {1,--- ,p} U{¢g+1,---,k}. By Lemma3.2]]
T (Xi1 . sz) =T (Xip+1 . 'Xiq) T (le . 'XipXiq+1 . 'Xik) =T (X;I—P) T (Xi1 . 'XipXiq+1 . 'Xik) .
Clearly, the kernel of the remaining indices (i1, -+ ,%p,%g+1,- - , %) is still non-crossing. We apply the same

procedure until blocks of ker(i) are extracted, which implies

T(Xiy - Xy,) = H (XZ‘(V[)) where i(V) is the index corresponding to block V.
V €ker(z)

On the other hand, if ker(¢) is crossing, we also multiply out the “innermost” block from 7(Xj, --- X;,)
repeatedly until the remaining blocks are pairwise crossing, i.e. for any two blocks V;, Vs, there exist positions
p,q € V; and p’,q' € Vi such that either p < p’ < g < ¢ or p’ < p < ¢’ < q. Hence the reduced word has
alternating indices and has zero trace by free independence. This finishes the proof. O

Theorem 3.22. Let (X, i)nen,icin) C A be a family of random variables in a nonocommutative probability
space (A, T), and (kp)pen is a sequence. Suppose that
o for every n € N, the random variables X, 1, -, X, » are identically distributed;
o cither for every n € N, the random variables X, 1,--- , X, are classically independent, or for every
n € N, the random variables X, 1, , Xy »n are freely independent; and
e foralln,peN,
lim n-7(X) ;) =kp, i=1,2,---. (3.11)

n—oo

Then for every k € N,

Rivi
lim 7 [(Xn’1 4ot Xn,n)k} _ Zﬁen(k) HVE” v
n—00 ZWGHNc(k) HVGT{‘ Kiv|-

Proof. For a partition m € [k] and n > k, the number of multi-indices i € [n]¥ with ker(i) = 7 is given by
nn—1)-(n—|r| +1). If (X, ;)ic[n) are classically independent,

T[(Xg++ X)) = Y0 r(Xiy X)) = Y D 7Ny Xy,)

i€[n]k rel(k) icnlk
ker(i)=m

> Il (%)

nell(k) ienk Vem

ker(i)=m

nn—1)---(n—|r|+1
=y el D ().

mell(k) Vern

Since |7| < k for all m € IInc(k), and by (3.11)), we have

lim 7 [(Xp1 4+ Xn,n)k} = Z H K-
n—o0 WEH(k) vVern
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If (Xp,i)ie[m) are freely independent, by Theorem

T [Ka b X = D0 7K X) = Y DD (X Xy

i€[n]k w€llnc (k) i€ln]k
ker(i)=

> X TI-(xhw)

n€llnc (k) ienk Verm
ker(i)=n

nn—1)---(n—|r|+1
_ Z ( ) n\(ﬂ 7| + )Hn'T(Xl:,/z‘l(V))'

w€llnc (k) ver

Therefore

lim 7 [(Xn1+-+Xen) = > [ 5w
n—o00 rellne (k) Ven

and we finish the proof.

3.2.2 Free Central Limit Theorem
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3.3 Free Cumulants

Review: the classical cumulants. Let X be a R-valued random variable such that the moment generating
function Mx (t) := E[e!X] exists for ¢ in a neighborhood (-4, §) of the origin. The cumulant generating function
of X is the function Kx : (—=0,d) — R defined as

Kx(t) =logE [e an

and the cumulants (kn)nen are the coefficients in the Taylor expansion of the cumulant generating function
about the origin. Indeed, the n-th cumulant x,, can be obtained by differentiating the above expansion n times

and evaluating the result at zero: &, = K(™(0).

Note that m
oo Ko oo 1 o Ky

n=0 m=0

Matching the coefficients of Taylor series, we have

X” | Kpy Koy * " Ky,
= Z ml Z rlrgl e 1 (3.12)

Tm!

1,72, Tm 21
ritrot At rm=n

We interpret this formula combinatorically. The number of ways to split set {1, - ,n} into an ordered list of

m blocks with sizes (r1,ra, - ,7m) is
n!

rilrol ol
and dividing by m! accounts for neglecting the order of the blocks, turning ordered blocks into set partitions.
We multiply both sides of (3.12) to get

n
1 n!
S D D D | LRI o | (1

1T, Tm >1 m=1gell(n):|r|=m Venr nell(n) Ver
riFrot o +rm=n

Thus we obtain the classical moment-cumulant formula:

Z HK‘V|’ n:1,2,~-.

w€ell(n) VET
Example 3.23. We compute the cumulants of some real-valued random variables.

(i) Let u € R and 02 > 0. For a Gaussian variable X ~ N (u,c?), we have

o?t? o?t?
Mx (t) = exp <,ut+ 2> & Kx(t)=pt+ —

Hence k1 = i, kg = 02, and &, = 0 for all n > 3.

oo
A7 —A
(ii) Let A > 0. For a Poisson random variable X with rate A, i.e. X ~ Z L'én. Then
n!

i et ne—A - oo A\
Mx() =3 % = s Kx(t) =AM —1) =) S
n=0 . n=1

Hence k,, = A for all n € N.

In this subsection, we establish an extension of the cumulant to noncommutative probability spaces.
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3.3.1 The Mobius Inversion

Definition 3.24. Let P be a finite partially ordered set, and P®) = {(n,0) : m,0 € P, 7 < o}.
(i) (Interval). For (m,0) € P®), define [r,0] = {r € P: 7w <71 <0}
(ii) (Convolution). For every two functions F,G : P?) — C, define their convolution F x G : P?) — C as

the function
(FxG)(m,0)= Y  F(r,7)G(r,0), (r,0)€cP?.

TE[m,0]
If f: P— C,define f*G: P? — C as the function

(f*G)(o) = Z f(1)G(r,0), oe€P

TeEP:7<0

(iii) The special functions 6, ¢ : P?) — C are defined as

1, ifr=o,

§(m, o) = and ((m,0)=1, (m,0) € P,

0, ifrw <o,

(iv) (Incidence algebra) The set of all functions F : P®) 5 C equipped with pointwise defined addition and
with the convolution x as multiplication is a unital (associative) algebra over C, called the incidence

algebra of P, with § as its multiplicative identity.

Remark. By definition, it is clear that § is the unit of the convolution operation: 6 * F' = F x 6 = F for all
F : P@) — C. Furthermore, for F,G, H : P — C, note that

(F+xG)xH)(m,o0)=(F*(GxH))(m,0) = Z F(m,p)G(p,7)H(T,0)

p,TeEP:<p<r<0
Hence * is associative: (F'* G)x H = (F x G) * H. Generally, * is not commutative.

Theorem 3.25 (Mobius inversion). Let P be a finite partially ordered set. The zeta function ( is invertible in

the incidence algebra of P, i.e. there exists a function p: P — C, called the Mébius function, such that
pox Q=% p=0.

Proof. Recursively define

wm,m) =1, p(m,o)=— Z M(Wﬂ—)'

TeP:n<r<0o
Then we have p*x ( = 9:
1, H =0,
(pxQ)(mo) = > u(m7)(r0) = > wulm7)=
T€[m,0] T€[m,0] ,u(ﬂ',O') - ZTGP:#§T<U ,u(ﬂ',T) =0, p<o.

We let p(m,0) = ((m,0) =d(m,0) =0 for 7 £ o. Then we have

Z p(m, 7)¢(T,0) = 6(7, 0).

TEP

That is, the matrices M = (u(7,0))r 0ep and Z = ({(7,0))r,0cp satisfies M - Z = Id, and by linear algebra
we have Z - M = Id. Hence p * { = 8, which finishes the proof. O
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Remark. By the above proof, the Mobius function p on P is recursively defined by

wm,m) =1, p(r,o)=— Z w(m, 7)) = — Z wu(r,0), form<oin P.

TeEP:m<r<0 TeP:n<r<0
The value of Mébius function p at (7, o) depends on the interval [r, o].

Corollary 3.26. Let f,g: P — C. Then the following statements are equivalent:

(i) f=g*(, meaning
flo) = Z g(m) for allo € P.

TeP:m<o

(i1) g = f * pu, meaning
g(o) = Z f@u(m, o) forallo € P.

TEP:m<o
Finally, we introduce the invariance of Mobius functions under isomorphisms and Mé&bius functions on

product spaces.

Proposition 3.27. (i) Let P,Q be finite partial ordered sets, and let ® : P — Q be a order embedding, i.e.
O(m) < ®(0) in Q if and only if # < o in P. Also assume that [®(7), ®(c)] C ®(P) for all ™ < o in P.
Then

pp(m, o) = uo(®(n),®(0)), forallm <o in P,

where pp and pg are the Mobius functions on P and Q, respectively.
(i) Let Py, Py,--- , Py be finite partial ordered sets, and consider their direct product

P:P1><P2><"'><Pk, (7T1,"',7Tk)§(0'1,"',0k) -~ Wjéaj fO’f‘alle[k].

Let p; be the Mobius function on P; for j € [k], and p the Mébius function on P. Then for my < o1 in

P, <09 in Py, -, mp < 0 in Py, we have
//f((ﬂ-la e 77Tk)7 (0—17‘ o aak)) = ,ul(ﬂ-lvo-l) o '/an(ﬂ—kvo-k)' (313)

Proof. (i) If ®(¢c) = ®(m), we have both ¢ < 7 and ¢ > 7 on P, which implies that ® : P — @ is injective.
We let v(7,0) = pp(®~1(7),®1(7)) for all # < & in ®(P). Then

wxQma) = Y v@n= Y wup(@ '@, 27(7)

TE[T,T] TE[R,T]

= > pp(@H(T), 7) = 5p(@71(7), 271(3)) = 0o (T, 7).
ref@=1(7),971 ()

Hence v * { = 0q|e(py. Simiarly we can prove ¢ * v = dg|s(p), and thus v is the Mobius function on ®(P).

(ii) We let {1 be the right-hand side of (3.13). For 7 = (my,--- ,m) <o = (01, -+ ,0%),

(ﬁ*C)(ﬂ-vU) = Z /7(77-77—) = Z Z /1’1(7T17T1)"'Mk(77k’7—k)

T€[m,0] T1E€[m1,01] Tk E[Tk,0k]

k k
=11 X wmm) =160 =om0).

J=lri€m;,04]

Simiarly we can prove ( * 1 = §. Hence g is the Mobius function on P. O
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3.3.2 Free Cumulants

In the following discussion, we assume P = IIxc(n), where the partial order < is defined as follows:
m <o < every block of 7 is contained in a block of o.

For example, {{1,7},{2,5},{3,4},{6}} < {{1,6,7},{2,5},{3,4}} < {{1,6,7},{2,3,4,5}}. We denote the
minimal element by 0,, = {{1},{2},---,{n}}, and the maximal element by 1,, = {{1,2,--- ,n}}.
We first show that IInyc(n) is a lattice under the partial order defined above.

Theorem 3.28 (Non-crossing lattice). For each n € N, the partially ordered set lInc(n) is a lattice: for every
m,0 € llnc(n),
e there exists a unique smallest v € IInc(n) with the properties v > m and v > o, which is written TV o
and called the join of m and o; and
o there exists a unique largest A € TInc(n) with the properties A < w and A < o, which is written ™ A o
and called the meet of m and o.

Proof. For 7,0 € IInc(n), we simply define
A=mAho={V,nW,:V;}, U:W\/Jz/\{pEHNC(n):pzw,pZJ}.
Then A = w Ao is a finer parition than 7 and ¢ and is non-crossing, and A is maximal since p ~, g and p ~, ¢
implies p ~ q. Also, v = 7 V o is coarser. By induction, v is also non-crossing, which finishes the proof. [
Now we see how to define a multiplicative family on these lattices.

Definition 3.29 (Multiplicative family). Let A be a unital associative algebra over C, and ¢, : A" — C a

family of multilinear functionals. We extend (¢, )nen to a family (pr)remye of multilinear functionals on
o0
ne = U Inc(n),
n=1

by defining, for each n € N, = € lIxyc¢(n) and aq, -+ ,a, € A,

Pr (aly"' 7an) = H SD\V| (ah"' 7an|V)7
Ven

where for V = {iy, -+ ,is} with 1 < iy < -+ < iy < n, we have @5 (a1, -+ ,a,|V) = @s (@i, - ,a;,). Then
(¢r)remne s called the multiplicative family of functionals on IIxc determined by (¢p)nen-

Definition 3.30 (Free cumulants). Let (A, 7) be a non-commutative probability space. We define, for every

n € N, the multilinear functional
@n(al’...’an):T(al...an)’ a17...,an€A,

and extend (¢, )nen to a multiplicative familt of functionals (¢ )remye by defining

P (ala"' 7a/n) = H @‘Vl (ala”' 7a’TL|V) .
vem

The corresponding free cumulants (Kr)remye are the multilinear functionals defined by k = ¢ * p, i.e.

Hd(alv""an): Z (Pﬁ(al""aan)u(ﬂ—va)v a1,~-7an€¢4.

m€llnc(n):n<o
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Proposition 3.31. Let (A, 7) be a non-commutative probability space with free cumulants (Kx)rerne- Then

(Kr)rellne 18 the multiplicative family on Iinc defined by (kn)nen, where Kk, = K1, for every n € N.

Proof. Let n € N, o = {V4,---,V,.} € lIxc(n) and ay,- -+ ,a, € A. If 7 € lIxyc(n) and © < o, we decompose
m=m UmaU---Um,, where m; € IInc(V;) for every j € [r]. Then the interval [7, o] decomposes accordingly:

[m,0] = [m1, L] x - % [m, L] € One(Va) x -+ x Tne (V).
Since (7, o) depends only on the interval [r, o], and by Proposition [3.27]
plm, o) = (s L) (e L)

and thus

HU(ala"' 7an): Z §07r(a17"' 7an)ﬂ(7rva)

mellnc(n):n<o

YT f[cp,rj(al,m,anl‘/}')u(ﬂjvlwvj\)

w1 E€lNne (V1) mr€llne (Vi) 7=1

:H Z Sa‘frj(aly"' 7an|‘/j) 7Tj71\VJ HK’|V\ a17"'aanlv)'

j=1 TrjEHNc(Vj) Veo

gy (@, ,an Vi)
Then we finish the proof. O
Remark. By the Mdobius inversion, k = ¢ * y implies ¢ = k x (. Hence for any 7 < ¢ in IInc(n),
"Ea(alv"' ,an): Z (Pfr(al,"'aan)ﬂ(ﬂ—va)a ap,---,an € A,
m€llnc(n):n<o

and

@U(ala"'7an): Z Kﬂ'(alv"')an)) ala"'7an€-’4-

w€llnc (n):n<o
These are known as the free moment-cumulant formula.

Example 3.32. Let (A, 7) be a non-commutative probability space. By the free moment-cumulant formula,

1);

7(a1) = ra(a

T(a1a2) = ka(a1az2) + k1(a1)k1(az2),
) = rs(
) = ra(

rila
(a1a2a3 K3 a1a2a3) + /{2(a1a2)m (CLg) + ng(alag)m(ag) + /431(0,1)/{2(0,20,3) + ﬁl(al)m(ag)m(ag)
(a1a2a3a4 = R4 a1a2a3a4) + K2(a1a2)fi2(asa4) + H2(6L1a4)f€2(a2@3) + /ﬂ(al)fﬁ (ag)m(ag)m(cu)

+ k1(a1)ks(azazays) + k3(aragas)ri(az) + k3(arazas)ri(as) + Ka(arazas)ki(as)

+ k1(a1)k1(a2)ka(agaq) + k1(a1)k1(as)ka(azaq) + k1(ar)k1 (ag)k2(azas)

+ ro(ar1aq)k1(az)k1(as) + ka(aras)ki(az)k1(aq) + ra(araz)ki(as)ki(aq),
Therefore

rk1(a1) = 7(a1),
ko(araz) = T(a1az) — 7(a1)7(asz),

r3(arazaz) = T(arazaz) — 7(a1)7(azas) — 7(az)7(ara3) — 7(az)7(a1az2) + 27(a1)7(az)7(as),
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Now we fix positive integers m < n and indices 0 = ip < i1 < 9 < -+ < @yp—1 < Iy = n. We write
U:{{lv ;il}a{i1+1a'.' 7i2}7"' 7{im71+17"' 7n}}:{Vla"' 7Vm}

For each non-crossing partition « € IIxc(m), we let

=< JVi:Uen} ev1,] Clixe(n). (3.14)
JjeEU

It is easy to verify that m +— 7 is an order embedding from IIxc(m) onto [v,1,] C IIyc(n). Furthermore, by
Proposition w(m, o) = p(x,0) for all 7 < o in Hxe(m).
Proposition 3.33. Let (A,7) be a non-commutative probability space with free cumulants (kp)nen. Fiz
positive integers m < n and indices 0 =19 < i1 < iy < -+ < lm_1 < &y =N, and write

v = {{17 7i1}7{i1 +1; ai2}a"' a{im—l +1a 7”}} = {Vh'" an}

Foray,--- ,a, € A, define Aj = a;;_,41---a;, for j € [m]. Then for all o € lInc(m),

K/O'(A17"'7Am): Z Kﬂ(a17"'7an)'

wellnc(n)
vVT=57

In particular,

’im(Ala"' 7Am) = Z K/ﬂ‘(alv.'. 7an)~

sy
Proof. For every o € IInc(m), we have
Ko(Av - Am) = D 9p(Ar,-ee An)p(p, o)
p€llnc(m):p<o
= Z wular, - an)u(w,o) (change the variable w = p)

w€[v,o]

=YY el sl d)

wev,5] TE€[0y,w]

= Z Z Kr(a, - an)pu(w, o)

w€[0p,0) wE[LVT,T]

= Z Kr(ay, -+, an) Z p(w, o) = Z Kx(a, -, an),

w€llnc(n) wevVT,o] mellyc(n)

vVT=0

where the last equality follows from Mobius inversion ¢ % g = 6. This finishes the proof. O

Following is a useful corollary of the above Proposition.

Proposition 3.34. Let (A, T) be a non-commutative probability space with free cumulants (kn)nen. Letn € N

andn > 2, and ay,--- ,a, € A. If there exists at least one i € [n] such that a; = 1, then k,(ay, - ,a,) =0.

Proof. Since 1 commutes with all elemnts in A, we may assume a,, = 1, and proceed by induction. For the
base case n = 2, we have ka(a1,1) = 7(a; - 1) — 7(a1)7(1) = 0. Now we assume k,.(ai, - ,a,—1,1) = 0 for
r=1,---,n Letv={{1},{2}, - ,{n —1},{n,n+ 1}}. Then

fin(aly"' 7an'1): Z Kw(aflv"' 7an11)-

wellyg (n+1)
vVr=1ly41
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If r € linc(n+1) and v V7 = 1,41, either of the following cases holds:
o T=1,, and K/ﬂ'(a/17 T, Qn, 1) = Hn—&-l(ala T 7a'n71); or
e there exists r € Ny with » < n such that 7 = {{1,2,--- ,r,n+1},{r+1,--- ,n}},

k1(D)kp(ar, -+ ,a,), ifr=0,

ﬁw(ah ce Ay, ]-) = Hr+1(a1a o, Qpy l)ﬁnfr(arJrla e aan) = .
0, if r >0,
where the case r > 0 follows by induction hypothesis.
To summarize,
’{n(al» e, Qp 1) = 5n+1(a17 crt,An, ]-) + 51(1)"{77,(041» e 7an)'
Since k1(1) = 7(1) = 1, we have kny1(a1, - ,an,1) =0, which finishes the induction step. O

Now we can establish of the equivalence between free independence and vanishing of mixed cumulants.

Theorem 3.35 (Speicher). Let (A,7) be a non-commutative probability space with free cumulants (Kn)nen,
and let (A;)icr be a family of unital subalgebras of A over C. Then, the following statements are equivalent:
(i) The sub-algebras (A;)icr are freely independent in (A, T);
(i) Mized cumulants in the sub-algebras (A;)ier vanish, i.e. for alln € N withn > 2, all i € I"™ and all

a1 € Ay, -+, an € A;,, we have ky(ai, -+ ,a,) = 0 whenever there exists j,k € [n] such that i; # ij.

Proof. (ii) = (i). Fix n € N, i € I" such that i; # i3 # -+ # ip—1 # in, and ay,--- ,a, € A such that
aj € A;; and 7(a;) = 0 for all j € [n]. It suffices to show that 7(a; ---a,) = 0. By the free moment-cumulant
formula,
T(ay - ap) = Z Kr(ar, - ,an) = Z H Kv|(a, -+ an|V).
TENC(n) rENC(n) Ven

For every 7 € IInc(n), we can take an innermost block V* which contains either only one number j € [n] or
two consecutive numbers {j,j + 1} C [n], with i; # i;,;. In either case we have rjy«|(a1,- - ,a,|V*) = 0.
Hence the product [], . sv|(a1,- -+ ,as|V) vanishes, and 7(ay - - - a,) = 0.

(i) = (ii). Let n € N, n € I" and ay,--- ,a, € A such that a; € A;; for all j € [n]. We first assume that
ai,- - ,a, are centered and alternating, i.e. iy # ig # -+ # ip—1 # ip. Similar to our reasoning in (ii) = (i),

for every 7 € TInc(n), we have @y« ((a1,--- ,a,|V*) = 0 for an innermost block V* € IIxc(n), and

K/n(ah' o 7an) = Z H ¢|V|(a17 T 7an|V) /.L(ﬂ', 1”) =0.

mEllne (n) Vern

By Proposition we can drop the assumption 7(a;) = 0 for all j € [n], since
En(a1, -+ ,an) = kn(ar — 7(a1)1, - ,an, — 7(ay)1).

Then it remains to show vanishing of the cumulant if arguments are only mixed, not necessarily alternating,
i.e. there exists j,k € [n] such that i; # ix, but not necessarily i1 # ia # - -+ # in_1 % in.

We prove this by induction. For the base case n = 2, variables a1, as are mixed means they are free, and
ko(ay,a2) = T(araz) — 7(a1)7(az) = 0. For n > 3, we multiply together neighbors of the same color to get
an alternating representation A;---A,, = ay---a,, where 2 < m < n because aqy,--- ,a, are mixed, and
Aj € Ai;_ with ¢} # b # .- £, _ #4,. We may assume m < n, otherwise the case is already handled in
the alternating case. By the above conclusion and Proposition m (we keep the notation v),

OZKJm(Alu"'7A7n):"</n(al7"'7a’n)+ Z "{71'(0/17"'70171)

mENnc(n)
VU=, <1y
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By induction hypothesis, any 7 € IIxc(n) can yield a potentially nonzero cumulant k. (a1, - ,a,) only if each
block of 7 connects exclusively elements from the same subalgebra, i.e. m < ker(i). Note that v < ker(i) also.
Hence m Vv = 1,, only if ker(i) = 1,, i.e. all (¢;) are from the same sub-algebra. But this would contradict

the fact m > 2. Hence there are no 7 € IIx¢(n) preceding 1,, yielding nonzero cumulants, and
’in(ala T 7(7%) = ’Qm(Alv te aAm) = 0.

Thus we finish the proof. O
We can refine this criterion to a similar characterization of free independence for random variables.

Theorem 3.36 (Speicher). Let (A,7) be a non-commutative probability space with free cumulants (Kn)nen,
and let (X;)ier C A be a family of random variables. Then, the following statements are equivalent:

(i) The random variables (X;);cr are freely independent in (A, T);

(i) Mized cumulants in the random variables (X;);cr vanish, i.e. for alln € N with n > 2 and all i € I™,

we have kn(X;,, -, X;,) = 0 whenever there ezists j, k € [n| such that i; # iy.

Proof. The direction (i) to (ii) is just a special case of To prove the direction (ii) to (i), we can show
that the mixed cumulants of unital sub-algebras A; = Alg(X;, 1) vanish, which is also clear by multilinearity

of cumulants and the condition (ii). O
Following are some immediate corollaries of the vanishing of mixed cumulants.

Corollary 3.37. Let (A;)icr be a freely independent family of unital sub-algebras of a non-commutative
probability space (A, 1), and I,--- ,I,, C I are pairwise disjoint subsets of I. Then the family of sub-algebras

B; = Alg UAZ- , j=12- m
i€l

is also freely independent.

Corollary 3.38. Let X1, Xo, -+, X, be freely independent random variables in (A, 7). Then
(X1 + Xo 4 4+ X)) = 60 (X1) + n(X2) + - + Kn(Xy)

for all n € N, where k,(X) is short for (X, -+, X).
——

n

3.3.3 Free Cumulant-Generating Functions

To end this part, we study the cumulants of a single random variable X in a noncommutative probability
space (A, 7) with cumulants (£, )nen. The moment and cumulant sequences of X, denoted by (my,),en and

(Kn)nen, respectively, are
mn:T(Xn):QOn(XvaX)v K‘n:HTL(Xa"'aX)a n:1527"'~
We can extend (my,) and (k) to multiplicative functions m : IIx¢ — C and & : lIxc — C via

m(m) = mg == H myy|, K(T) = kg = H kv, 7€ lnc. (3.15)
Ver Vern

Then m and & satisfies kK = m * p and m = k x (. These combinatorial relations are nice but not convenient

for concrete calculations. We introduce an analytic reformulation.
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Theorem 3.39. Let (my)nen and (Kn)nen be sequences in C, and let k, 7 : linc — C be the multiplicative
functions defined in (3.15). Consider the corresponding formal power series in C[z]:

M(z)=1+ Zmnz", Clz)=1+ Z k2™
n=1 n=1

Then the following statements are equivalent:
(i) m=k*(, de. Mn =3 crp o Fin for all n € N;
(i) For allm € N,

n
my = E E RpTgy ==y
r=1 1

i1, ,ir 20
i14-tiptr=n

(iii) We have as functional relation in C[z] that
Proof. (i) = (ii). Fix n € N, 7 € IIxc(w), and let V' € 7 be the block containing 1. If |[V| = r, we write
r={VIUmU--Umn, V={li 42,01 +is+3,- i1+ +ir1 +7}

where 7; € IInc(é;) is the sub-partition between the j-th and (j + 1)-th elements of V for j = 1,--- ,r — 1,
and 7, € IIxc(ér) is the sub-partition on the right-side of 4,. Note it could be the case i; = 0 and m; = 0.

Using this decomposition, we have

n
mn — E K‘n_ — E E E ... E K’,‘le PR Kﬂ',
r=1 1

meEllnc(n) s ir 20 g €TIne (41) mr€lNe (ir)
i1+ Fiptr=n

:g‘; S | Y e Y s

i1, 4ip >0 . .
i1+1->-+11Tr+T:n TrlGHNC(“) WTEHNC(ZT)

n
= E E Ry, -y,
r=1 i1

s i >0
14 Fiptr=n

(i) = (iii). We plug in the expression of m,, in (ii) to the expansion of M (z) to obtain

M(z)zl—!—imnz":l—kii Z KMy, -+ - my 2"
n=1

n=1r=1 iy, ,ir>0
i1t tiptr=n

=1+ 3 Y (B2 )(mi 2 (g, 27)
n=1r=1 i1, ,ip >0
i1 tiptr=n
=14 > (k2" (m, ) e (g, 2
r=11i1,,ir=0
=1+ Zmzr (Z milz“) =1+ ZszM(z)T =C(z - M(2)).
r=1 11=0 r=1

(iii) = (i). Since both (i) and (iii) determine a unique relation between sequences (my,)nen and (kp,)nen, the

implication (i) = (iii) also gives (iii) = (i). O
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Proposition 3.40. Assume m = k x (. Then (kp)nen s exponentially bounded if and only if (my)nen s

exponentially bounded.

Proof. Step I. Note that the sequences 6, = (0, 1,,) and p, = ©(0,, 1,,) satisfies 6 = p * (. We consider the
analytic function C' defined by

_leVitd 1 n12n—1)
- SR s 3

¢ 2 270

(42)"

1 . (2n—2) . > et n
:1+§;(_1)n 22n(_1m(n)_1)!(4z) =1+Z(—1) Cn-1(42)".

Then we have C(z + 22) = 1 + 2. Note that M(z) = 1 + z is the generating function for sequences (4,). Since
d=px*(,and C(z- M(z)) =1+ z, by Theorem we have C(z) =14 Y07 | 2", and

ﬂ(onaln) = (*1)’“71071—17 n= 1727"'
Step II. Now For any 0, <7 = {V,---,V,.} < 1,, we already show in Lemma that

05, ] == Onc (Vi) x -+ TInc([Va]) = [0y s Ly ] X -+ X [0y, 15 Ly, -

Then by Proposition [3.27]

p(O0n,m) = [T nOw, 1v) = [T DV Cumt 0n <7< 1
Vern Vern

Step III. We define the Kreweras complement K : lixc(n) — Tne(n) as follows: consider additional numbers
1,--- ,m and interlace them with 1,--- ,n in the alternating way: (1,1,2,2,--- ,n,7). Let 7 be a non-crossing

partition of {1,--- ,n} Then its Kreweras complement K (m) € IIxc(n) is defined as

K(m)= sup p:sup{pe Inc(n) i mUp € Mne(1,1, - - - ,n,ﬁ)},
peC(m)

where p is the same partition as p, but on barred labels {1,--- ,7n}. Then one can verify that
e K is a bijection on Ilyc(7), and
e for any m < g, one have C(w) D C(0), and K(m) > K(0).

To summarize, K is an order anti-homomorphism on IIxc(n), and

w(m, 1,) = (0, K(7)) = H (—1)‘V|_1C’|V|,17 0, <m<1,.
VeK(m)

Step IV. By Steps I and III and the bound C), < 4™, we have
|u(m, 1,)] < 4", 7 € lne(n).

If |mn|1/" < p for all n € N and some p > 0, we have

k< S0 Tl a1 < 32 470" < (169)"

ne€llnc(n) Venr m€llnc(n)

The other direction follows easily from the moment-cumulant formula. O
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3.4 Additive Free Convolution

In this subsection, we discuss the sum of freely independent random variables in non-commutative probabiity
spaces. Let u,v be two compactly supported probability measures on R. Assume X and Y are two freely
independent random variables in a non-commutative probability space (A, 7) with spectral measures p and v,
respectively. The spectral measure of X + Y is called the additive free convolution of p and v, written

X+Y~puBvr.

We should note that the convolution p B v does not depend on the specific choice of probability space (A, ),
because the moments (and hence the law) of X + Y are determined by the moments of {7(X¥)}ren and
{7(Y*)}ren and the free independence, by Theorem

Cauchy transform. For convenience, we often use a variant of the Stieltjes transform in free probability.
Given a probability measure p on R, define the Cauchy transform of p as the function G,, on C\ supp(u):

zZ—T

Gul2) = [ du(o) = =s,(2). = € C\supp(r).

By Theorem for the moment sequence m,, = fR zF du(x), n=0,1,2,--- of u, we have

= m, 1 1
G#(Z) = Z Zk+1 = ZM(Z> .
k=0

Now we derive a formal inverse of the Cauchy transform.

Theorem 3.41 (Voiculescu). For compactly supported probability measures one has the following analytic
properties of the Cauchy transform and the R-transform.

(i) Let p be a probability measure on R with compact support, contained in an interval [—p, p]. Consider its

Cauchy transform G,, as an analytic function in U := {z € C: |z| > 4p}. Then G,, is injective on U,

and

1 1
V.-{ze(C.z|<6p}cG#(U)c{ze<C.|z|<3p}.

Hence G, has an analytic inverse K, = G;l : V. — U, which satisfies

1 1
Gu(Ku(z) =2z for|z| < 7 and K, (G.(2)) =z for|z] < 7

(it) The function K, has on V has the Laurent series expansion
K, (z) = -+ Ru(z), where R,(z)= Z kn2" Tl 2 €V
n=1

The power series function R, is called the R-transform of p.

Proof. (i) For all z € U, define f(z) := G,(1/z). Then f has a power series expansion
. n+1 1
F) =S mazt o] < 2
n=0 P

and

- - \"*" 1 1
< e "(—=) == foral iy
NS D 1 < (5) =5 ma<q

n=0

61



Now we consider z1,zo € C with |z1], |22| < 4—1p. If 21 # 29, by the mean value theorem,

'M > Re <f(22)f(zl)) = /1 Re[f'(z1 + t(z2 — 21))] dt.

22 — 21 22 — 21 0
Note that
oy S n - n n+l 2 1
Re f'(z) = Re (1 +;(n+ 1)mpz ) >1 fn;(nJr Dmy|2z|" > 2 — 2 =g |z| < 1

Combining the last two results, we have

2 1
|f(z2) — f(z1)] = 6\22 —z1|, forall z1,29 € {z eC:lzl < 4p}

1
»dp
we consider the function h(z) = f(z) — w.

1

Therefore f is injective on B(0 6p

), and G, is injective on U = {z € C: |z| > 4p}. Furthermore, if |w| <

) 00 1 n+1 1 1
) = = ) = 1) =31 = | X o —;pn<4p) = oy <l forallls]=

By Rouché’s theorem, the analytic functions h and z — z — w have the same number of zeros inside B(0, 4—1’)).
Therefore h(z) = f(z) —w has a simple zero in B(0, ﬁ), and w € f(B(0, 4—1/))). Consequently, G,(U) D V, and
f has an analytic inverse f=1: V — B(0, 4%). The inverse of G, is given by K, = 1/f~%.

Since f~! has a simple zero at 0 and has no other zeroes, the function K » has simple pole at 0, and has
the representation

K(z) = g +R(2),

where c € C and R : V — U is some analytic function. Furthermore,

1
2=f(f12)=G (
( ( )) H f_1(2)
For z € C with |z| > 7p, it suffices to show that G, (z) € V, i.e. |GL(2)] < é. After that, we have K,(G.(2))
by construction. Note that

o5} '] 1 n+1 1 1
< < "= =— < =
1S Sl < 3 (1) <

) = G (K. (2) = G, (g + R(z)) . zeV.

6p
Hence |G, (z)| < é for |z| > 7p, and we finish the proof.
(ii) By Theorem for some sufficiently small § > 0, we have

C(G(2) = C <1M <1>> — M (1) — 2.G,(2), for z € C such that |G,(2)] < 6.

z z z

Hence z = C(GL(2))/G(z). We define R(z) = > kn2" ! and K(z) = 14 R(z) = C(2)/z. Then

. 1

(G = 55 o)

Gu(z)

+ R(Gu(2) = — 2, for z € C such that |G,(z)| < 6.

Since G, is injective on U, we know that at least K, and K agree on a small neighborhood of 0. By uniqueness

of power series representation, we have R, (2) = > 0" | £,2" " and K, (z) = L + R,(z) on V. O
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According to Theorem for a bounded random variable X, its cumulants satisfy x,(X) < (16p(X))™
for all n € N. As a consequence, its R-transform Ry (z) =Y 2 k,(X)z""! is well-defined in a neighborhood
of 0. The following theorem states that the R-trasform linearizes additive free convolution.

Theorem 3.42 (Voiculescu). The R-transform linearizes additive free convolution, i.e. for compactly sup-
ported probability measures p,v on R,
R,m =R, +R,.

Proof. Let X ~ pand Y ~ v be two random variables in some non-commutative probability space (A, 7) with
cumulants (kp,)nen such that X and YV are freely independent. Then

Fn(X+Y) =k (X) 4+ 60(Y), n=1,2---.

Then X +Y ~ pHB v, and

Rymy(2) = Z Fn(X +Y)2" 71 = Z o (X) 2" 4+ Z kn(Y)2" ! = R,(2) + Ru(2).
n=0 n=0

n=0
Thus we finish the proof. O
It is easy to verify the following properties of additive free convolution.

Proposition 3.43. Let pu,v, A be compactly supported probability measures on R.
(i) (Commutativity). pBv =v B pu.
(ii) (Associativity). (WBv)BA=pB@BN).
(iii) (Neutral element). oo B pu = p.
(iv) (Translation). 6; B p = py for every t € R, where ) (B) = p{x —t : x € B} for all Borel sets B C R.

Now we hanble a special example of additive free convolution.

Example 3.44. We consider the discrete measure

1
p=501+0-1).

The Cauchy transform of p is

1 1 z
S TP TP s e g

and we find the inverse of G, by solving G, (K, (z)) = z, which has two solutions

1+ V11422

K”(Z) 2z

and

1 1+vV1+422 1 -1+ V14422
RH(Z) :KH(Z)* -_= —_—-= .

z 2z z 2z
Note that R, (0) = 0. Then we choose the branch

=1V 422

RM(Z) 9
Then
—14+V1+422 V14422
RMEM(Z) = f’ and KMEHM(Z) = f
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Consequently,

1
G Z) = ——,
uEEl,u( ) 2 _ ]
and by the Stieltjes inversion formula,
d Ti_o0(¢
M:—llimhn;:—lhn 1 _ L 22]().
dt T 00 (t+in)2 —4 T V2 —4 w42

Hence p H o is the arcsine distribution, which is continuous.

Example 3.45. The R-transform of the Marcenko-Pastur distribution is

(0%

R,.(z) = Zaz"71 =1
n=0

Then 1
Q
K = -
u(?) z 1-2’
and
1 1-— + 1-— 24
L0 L L e lmotrEVi-atiods

Gu(z)  1-Gu(z) 2z

Since G, (i) — 0 as ) — oo, we select the branch

Cl-atz—y/(A-a+2)?-42 l1-a+z2—4/(z—1-0a)?—4a

Gul2) 2z 2z
Then for ¢t # 0,
— in — in—1— )2 —
dp(t) :—flimlml a+t+in \/(t—&jm 1—a)?—4da

dt T 10 2(t +1in)

_ _lIml—a—i—t— ViE—1-0a)?—4a

s 2t
\/(t — /\a—)(/\oz-‘r B t)
= o Tinoz as();

and

2nt «

a—

n({0}) =1 - 2 V= Aa )t — 1) dt = (1 - 1) .
+

64



4 Gaussian Ensembles

In this section, we study two special kinds of of Wigner matrices (£;;); jen introduced in Example
e Gaussian Orthogonal Ensemble (GOE). The diagonal entries (;;)$2; are i.i.d. Ng(0,2) variables, and
the off-diagonal entries (§;;)1<i<; are iid. Ag(0,1) variables. In this case, In this case, the density

function of W,, is

2

n
1 f 1 2
pn.con(X) = H e H e Tii/2
i=1 2/ 1<idj<n V2T

_ 1 g o 1 2
= on(nt3)/amntn/a P _ngii_§ Z Lij

1<i<j<n

1 1 _ .
= o t3) Agpn(ntn/i P <—4 tr(X 2)) ;X = (@ij)nxn € R"™ is symmetric.

The GOE distribution is invariant under orthogonal similarity transformation, i.e. W, 4 QW,Q* for
any orthogonal matrix ) € R™*™.
e Gaussian Unitary Ensemble (GUE). The diagonal entries (&;;)52; are i.i.d. Ng(0,1) variables, and the

off-diagonal entries (§;;)1<i<; are i.i.d. Nc(0,1) variables, i.e.
1 e .
P2 € A) = / Ze 1*"dz, A c C is Borel.
AT
In this case, In this case, the density function of W, is

n

—z2 1 s ]?
pn,GUE(X) = H Tﬂ'e ii/2 H —e |25
1

—_

. g ™
i=1 1<i<j<n

1 n ) 1 )
= Snjagnrjz P —52%‘1‘_5 Z |

1<i<j<n
1

1
= onjzpm2j2 KP (—2 tr(X2)> ;X = (ij)nxn € C"*" is Hermitian.

The GUE distribution is invariant under unitary similarity transformation, i.e. W, Ly W, U* for any
unitary matrix U € C"*"™.

To summarize, the density function of GOE/GUE is given by

1 for GOE,
2 for GUE,

1
pnp(X) = 7 eXD (i tr(X2)> , where the Dyson index 3 =
n,B

and Z, g > 0 is a normalizing constant.

The space of n x n Hermitian matrices as R™. An Hermitian matrix H € C"™*" is fully determined
by its upper triangular entries (H;;)1<i<j<n, with the diagonal entries Hy1,- - , Hp, € R and the off diagonal
entries Hyo, Hi3, Haz, -, Hip, -+, Hy1,, € C = R?. Hence the total real dimension is n + 2 x @ =n2
We define a linear isomorphism v from the vector space of Hermitian matrices H,, to R

Y(H) = (Hy1, Hag, - -+ Hypy Re(Hi2), -+ s Re(Hp 1), Im(Hyz2), -, Im(Hp—1,0))-

)

This identifies H,, = R™ as real vector spaces. Similarly S, = R*(n+1)/2,
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4.1 Joint Distribution of Eigenvalues

In this subsection, we derive a closed-form density function for the spectral distribution of GOEs and GUEs.

Theorem 4.1 (Joint spectral density of Gaussian ensembles). Let W,, = (&;;)1<i,j<n be a GOE/GUE, and let
AL > Ao > - > Ay, be the eigenvalues of Wy, including repititions according to algebraic multiplicity. Then
the density of the joint distribution of (A1, A2, -+, An) is given by

1 1 for GOE,
Prg(AL, o An) = “A>2dn} Ap(Ag, - ,)\n)|Be*§()‘?+"'+)‘i)7 where 8 = f
Zn,p 2 for GUE,
where A\,, is the n x n Vandemonde determinant
IR VD VR
I X A3 - A
AnAryh)=des [0 T T = T v -,
: . . . . 1<i<j<n
1 A, A2 An—t
and Z, g > 0 is a normalizing constant.
4.1.1 Analysis of Spectra and Eigenvectors
We first prove that the spectrum of a GOE/GUE is almost surely simple.
Lemma 4.2 (Sylvester resultant). Consider two polynomials
f(z)=ao+arz+ - +ap2", g(z) =bo+brz+ - +byz",
where a, # 0 and b, # 0. Define the Sylvester matrix
An Apn—1 e a O N 0
0 Ap  Qp_1 - ag
0
0 B O [e2% Ap—1 e ag
Sf,g _ c (C(m—i-n)><(m+n)7
by, bm_1 - bo 0 e 0
0 bm bmfl o bO
: . . . . . 0
0 0 by bm_1 - bo
where the upper block has m rows and the lower block has n rows. Let (y,--- ,(, € C be the zeros of f, and
M, ,Nm € C the zeros of g, including the repetition according to multiplicity. Then
det(S;.4) = H H () = arvm, TT TTC¢ —m)-

j=1k=1

In particular, f and g have a common zero in C if and only if det(Sf4) = 0.
Remark. The determinant of the Sylvester matrix Sy 4 is also called the Sylvester resultant.

Proof. Step I. We first assume f - g has no repeated zeros, i.e. (1, - ,Cn, M1, "+ ,Nn are mutually distinct.
Given two polynomials u(z) = ug +u12 + -+ +Upm_12™ "1, v(2) =vo +viz+ -+ v, 12", define the linear
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mapping
O : Clz]<m @ Clz]<n — Clz]<mtn, Plu,v)(z) =u(2) - f(2) + v(2) - g(2).

Then S}':g is the coefficient matrix of ® in the monomial bases, i.e. the coefficients of the polynomial ®(u,v)

(in decreasing order) is given by S;g(um,l, e UL, U, U1, 5 V1, 00) | . Now we write

2=a. [[(=¢) 9() (z —=m5),
j=1

J=1

and evaluate h = ®(f,g) at the zeros of f and g:
e At z=¢(;,j=1,---,n, one have h({;) = v({;) - g(¢;), since f({;) vanishes;
e At z=mn;, j=1,---,m, one have h(n;) = u(n;) - f(n,), since g(n;) vanishes.
Inspired by this, we switch the evaluation coordinates:

e On the domain, use the transformation

E: (C[[Z]]<m S (C[[Zﬂ<n —-C,, @ Cna (u,v) = (U(Th)a T 7u(77m)7v(<1)7 e 7U(Cn)) ;

In the monomial basis, the coefficient matrix of E is a block diagonal matrix, whose upper-left and

lower-right blocks are the Vandermonde matrices (77;-“71) jke[m) and (Cffl)j,ke[n], respectively. Then
det(E) = Am (1, s 0m) - An(Crse e, Cn).
e On the codomain, use the transformation
F:Clz]<man = Copgn, o (R(m), -+ 5 B(1m ), h(C1), -+ A(Gn)) -

Likewise, we have
det(F):Am+n(7717"'7T]m7cla"'7<n):Am(7713"'777m)' Cl,"'7<’n HH(nj_Ckr)
j=1k=1

Clearly, in the evaluation coordinates, the coefficient matrix of ® is given by the diagonal matrix

D= diag(g(CI)a"' 7g(C’ﬂ)’f(771)7"' af(nm))'

By the change of basis formula, we have S;g = F7DE, and

s, ) = T 0) Ty G - det(B) _ T2 701, Ty 0(6)
et(S1.9) = det(F) TSI -G

Note that f(n;) = an [T, (n; — ) and g(Cx) = (=1)"bm [ 7= (n; — Ck)- Then the desired result follows.

Step I1. If f- g has repeated zeros, we use perturbation. Take a small number € > 0 such that € is smaller than

the distance of any two distinct elements of {(1,- -+, Cny M1, ,Om }, and let
n
FE=an [ -G—27") =taf +afz+ - +a5_12" " +agz",

9°(z) = by, H (z—mj —i277€) = b+ b{z+ -+ b5, 12"+ b5, 2"
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Then their zeros are mutually distinct, and
det(Se g) HH Ck—nﬂ (2~ 7@4_7;2*3')6).

As € goes to 0, we have maxye,) |af, — ax| — 0 and max;c(y, [05 — b;| — 0, and hence det(Sy« 4¢) — det(Sy,g).
Taking € | 0 in the last display, we obtain the desired result for the general case. O

Lemma 4.3. We consider the Lebesgue measure.
(i) Let f : RN — C be a nonzero polynomial with complex coefficients. Then the zero set Z; = {f = 0} of
f is of zero Lebesque measure on RN .
(i) The set of symmetric matrices A = (Aij)nxn € C"™™ with repeated eigenvalues is of zero Lebesgue
measure on R*(n+1)/2,
(i1i) The set of Hermitian matrices H = (H;j)nxn € C™*™ with repeated eigenvalues is of zero Lebesgue

2
measure on R™ .

Remark. Since the density of GUE W, is absolutely continuous with respect to the Lebesgue measure, the

spectrum of W, is almost surely simple, i.e. every eigenvalue of W, is of algebraic multiplicity 1.

Proof. (1) We prove the result by induction. For the base case N = 1, by the fundamental theorem of algebra,
any nonzero polynomial f of degree m has no more than m zeros. Therefore Z¢ is a finite set and has zero

Lebesgue measure. For the induction step, we write

m
f(xla e ,.’L'N) = Zpk(xla e 7xN71)'T7]‘</'17
k=1
where py,- - ,pg : C¥7! — C are polynomials. Then if x € Z;, there are two possibilities:
e either p; =---=pp =0, or
e zy is a root of the nontrivial univariate polynomial g(t) = > ;| pr(z1,- -+ ,zn_1) t~.

Let A, B be the subsets of C" where these respective conditions hold, so that Zy = AU B.

e Using the inductive hypothesis, the Lebesgue measure of A is zero.

e Using the fundamental theorem of algebra, for each (x1,--- ,xx_1) € CV~1 there are finitely many ¢

such that (x1,--- ,2n_1,t) € Z;. By Fubini’s theorem, B also has zero Lebesgue measure.

Since (ii) and (iii) are similar, we only prove (iii).
(iii) Consider the characteristic polynomial f(A) = det(H — AId) = ag + a1 A + - - - + a, A", where coefficients
ag,ai,- - ,a, are homogeneous polynomials of the entries of H. Then H has no repeated eigenvalues if and
only if f(A) and f'(\) = by + b A+ -+ b1 A" "1, where by = (k + 1)ag,1, have no common zeros.

We take the Sylvester matriz Sy ¢ . By Lemma Hermitian matrix H has no repeated eigenvalues if
and only if det(Sy /) = 0. Since Sy s is a polynomial of the entries of H, the result follows from (i). O

Next we study the property of eigenvectors.

Lemma 4.4. Fizn € N. We write

e U(n) for the set of n X n unitary matrices,

e UT(n) for the set of n X n unitary matrices U such that every entry u;; is nonzero, and

o U™ (n) for the set of matrices U € Ut (n) such that every diagonal entry u;; is strictly positive real.
We also write RZ = {A e R"*" : A =diag{\,..., \n}, with Ay > Xg > --- > A\, }.

68



(i) Define
H} ={H € H, : there exists U € UT(n) and A € RZ such that H = UAU*}

Then H} is of full Lebesgue measure on R™.
(ii) the map (RZ, Ut (n)) — M\ given by (A, U) — UAU* is a bijection.

Proof. To prove (i), we write H = UAU* for the eigendecomposition of an Hermitian matrix H € H,. By
Lemma (ii), we may assume A € RZ. The column of U consists of eigenvectors of H.

For an eigenvalue A of H, let G = H — AId,. Then GG* = det(G)Id,, = 0, where G* is the adjugate
of G, ie. ng = (—1)"7 det(G_;,—;), where G_j _; is the (n — 1) x (n — 1) matrix obtained from G by
removing j-th row and i-th column. Since the spectrum of H is simple, the null space of G has (complex)
dimension 1, and all columns of G¥ is a multiple of some eigenvector uy € C", which is a column of U. If
Ggi =det(H_; —; — AId,,—1) = 0, then the characteristic polynomials of H and H_; _; have a common zero,
and the corresponding Sylvester resultant, which is a nonzero polynomials about entries of H, vanishes. By
Lemma (i), this happens only for a set of matrices H of zero Lebesgue measure in H,, = R™. Outside this
set, we have G?i # 0, and vy (7) # 0. This is true for all eigenvalues A and all indices ¢ € [n]. Consequently, all
entries of U are nonzero, and H,! is of full Lebesgue measure.

The second part of the lemma is immediate, since the eigenspace corresponding to each eigenvalue is of
dimension 1, the eigenvectors are fixed by the forcing w;; > 0 for every i € [n], and the multiplicity arises from

the possible permutations of the order of the eigenvalues. O

4.1.2 Change-of-Variable Technique
In this part, we use the change-of-variable formula to derive the joint density function of eigenvalues.

Lemma 4.5. (Orthogonal and unitary groups).
(i) Let o(n) be the space of n X n skew-symmetric real matrices, and O(n) the group of n x n orthogonal
matrices. The exponential map exp : o(n) — O(n) is a surjective, locally one-to-one mapping. Thus o(n)
is the Lie algebra of O(n).
(i) Let u(n) be the space of n X n skew-Hermitian matrices, and U(n) the group of n x n unitary matrices.
The exponential map exp : u(n) — U(n) is a surjective, locally one-to-one mapping. Thus u(n) is the
Lie algebra of U(n).
(iii) Let U*(n) be the set of n X n unitary matrices U such that each diagonal entry u; € R, which is a

2

submanifold of U(n). Via the exponential map, U*(n) is locally parameterized by an (n* —n)-dimensional

real vector space
w(n)={Seun):S;=0,i=1,---,n}.

Proof. We first prove (ii). It is trivial to verify that e” unitary is for any skew-Hermitian matrix S = —S*. To
check surjectivity, we fix a unitary matrix U € U(n). Since U is normal, we consider its eigendecomposition
U =VDV* where D = (¢%,-.. %) and V € U(n). Then the matrix

S := Vdiag{iby,-- ,10,}V*

is skew-Hermitian, i.e. S = —S*, and satisfies U = ¢, U* = e~ 5.
To show that the exponential mapping is locally one-to-one, it suffices to show that it is one-to-one on
some neighborhood of the zero matrix in u(n) by group invariance. Since a skew-Hermitian matrix S satisfies

S = —S5*, the space u(n) is parameterized by the upper-triangular entries

(sij)1<i<j<n = ((sii)1<i<n, (Resij, Im sij)1<icj<n)
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which has real dimension n2. Set U = ¢° and consider the above upper-triangular entries (7;;)1<i<j<n as a
function of (s;;)1<i<j<n. Then e =1+ ¢S + O(¢?), and the partial derivatives at S = 0 are
i 0 Rew;; 0 Im w;;

= 51'1" = = 511’6 i’
651'/1'/ ’ JRe Sit gt 0Im Sitjt 73

Hence the Jacobian matriix DU(S) is an identity, which is invertible. By the inverse function theorem, there
exist open neighborhoods V' of zero matrix in u(n) and W of Id in U(n) such that exply : V — W is a
diffeomorphism. By group invariance, exp : u(n) — U(n) is locally one-to-one.

To prove (iii), we let {U(¢),0 < t < T} be a smooth curve in U*(n) with U(0) = Id,,. Then the skew-
Hermitian matrix S = U’(0) satisfies s;; = %Uii\t:o- For each ¢ € [n], note that the diagonal entry s;; of a
skew-Hermitian matrix is purely imaginary, and U;;(t) is real. Hence s;; = 0, and the tangent space of U*(n)
at Id,, consists of skew-Hermitian matrices with all diagonal entries 0.

Finally, for the statement (i), we apply the following decomposition for real normal matrix U:

U= leag{la 71a_17"' 7_17@1a"' 7@7‘}QT7
cosf; sinb; . . .
where ©; = ) , & = 1,--- ,n are blocks of 2 x 2 rotation matrices, and U € O(n). The
—sin#; cosb;
remaining part of the proof for exp : 0(n) — O(n) is similar to the unitary case. O

Lemma 4.6. Consider the bijective map (RZ, Ut (n)) — H} : (A,U) — X = UAU*. Then the Jacobian
determinant of X with respect to (A,U) has the form

det DX (A, U)] = [An(Ar, -+, An) 2 F(U),

where f: UM (n) = R is a function of entries of U.

Proof. We note that Ut (n) is an open subset of U*(n). We view X = UAU* = e5Ae™* as a function of A and
S, where S € u*(n) is skew-Hermitian with all diagonal entries 0, and U = e € U*(n). Note A,, has degree

of freedom n and S has degree of freedom n?

— n, which is compatible with the real dimension of X.
Given 1 <i < j < n, let E;; be the skew matrix whose (4, j)-entry is 1 and (j,%)-entry is —1, with all other

entries 0. Then (E;;)1<i<j<n forms a basis for n x n skew-Hermitian matrices. Furthermore, for ¢ — 0 in C,

eE’ij AeiEij = (]_ + GEij + 0(62)) A (1 — EEij + 0(62)) =A+ E(EijA — AEZJ) + 0(62)
=A+ G(Aj — >\1)E7] + 0(62).

Hence for all indices 1 <i< j<mnand 1<i <j <n,

0xi; 0x;
e = (S“‘/, Y = ()\ — )\2)5”/5/
ONir |59 0sirjr |s—o ! v

This can be summarized as dX|s—g = dA + (dS)A — A(dS). For the general case, the differential form of
X = UAU* = eAe™ 7 is given by the unitary transformation

dX = U [dA + (dS)A — A(dS)|U*, where U = ¢°.
Hence

drij = Z WikUjk AN + Z UikTje(Ae — Ag) dsge.
k=1 P,
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For any 1 < k < ¢ < n, all entries of the two columns in DX (A, S) corresponding to the derivatives with
respect to Re sy and Im sg, have a common factor (A¢ — Ay ), and hence (A, — \x)? is a factor of the Jacobian.
Hence |A, (A1, ,An)|? is a factor of DX (A, S). Note that DX (A, S) should be a homogeneous polynomial
on (A1, -+, A,) of order at most n(n — 1), whose coefficients are functions of entries of S. Then the Jacobian
of X with respect to A, S has the form

ldet DX (A, S)] = [An(Ar, -+, M) 9(9),

where g : u*(n) — R is a function of entries of S. Since S — U = €° is a local diffeomorphism between u*(n)
and U (n), and its Jacobian depends only on U = e, the result (4.6) follows from change-of-variables. [J

Proof of Theorem[].1 We consider the GUE case, where 8 = 2. Step I. We first consider the mapping
O : RY x U(n) = Hn, (A, U) — UAU*, where RZ is the space of real diagonal matrices with non-increasing
entries A; > -+ > \,.. The pullback of the GUE distribution pn,cUE(X) dX under @ is denoted by P(dA,dU) =
v(A, dU)u(dA), where v(A, -) is the regular conditional distribution of U given A. Since the GUE distribution
is invariant under unitary transformation X — VXV*, where V € U(n), the conditional distribution v(A, dU)
is invariant under left-multiplication U — VU. By uniqueness of the Haar measure, v(A, dU) is the normalized
left Haar measure on U(n), which does not depend on A. Hence A and U are independent, and P(dA,dU) =
w(dN)v(dU).

By Lemma v is concentrated on the set Ut (n), and we write 7 : UT(n) — Ut (n) for the projection
onto U (n), i.e. w(U)i; = uiju;j/|ug;| for all i, j € [n], where U = (ui;); jen)- We denote by 7 =von~! the
pushforward of left-Haar measure v on U™ (n) under 7. Then u(dA)7(dU) is the pullback of p, qur(X)dX
under the bijection ¥ : RZ x Ut (n) — H, (A, U) - UAU* in Lemma

Step II. Now we focus on the measure u(dA). For X € H;F, writing X = U(A,U) = UAU*. Then for any

n?

continuous function ¢ : RY — C, we have

J

e = [ [ pan = [ o r ) X)pncus()dx

n HiE

_ / / o(A)pn.con(UAU?) [det DU (A, U)| dU dA
)

:/ / e FEAN AL (A, AP F(U) dU dA
n JUt+t(n)

= cn/ e 3 tr(A?) AL (A, - - ’)\n)|2 dA,
R

n
>

where ¢, is a constant depending only on n. Hence the density function of eigenvalues A = diag{Ay, -+, An}
is given by

pn,GUE()‘h o a)‘n) o8 ]l{)\l>~~~>)\n}67%(>\%+m+)\i) |An(>‘13 o 7)\n)|2 .
The case for GOE distribution is similar. O
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4.2 Determinantal Laws in the GUE

In this subsection, we study how Hermite polynomials and wave functions arise naturally from the spectral
density of GUE:

_1 2, ... 2
pGUE,n(xh o ,l‘n) x e 2(I1+ +an) |An($1, e ,l’n)|2 IL{:01>--->:1:n}'

We let (Pk)Z;é be a (univariate) polynomial family such that for every k € N, Py is a monic polynomial of

degree k, i.e. the leading coefficient of Py is 1. Since determinant is invariant when adding a scalar multiple

of one column to another column, for every z1,--- ,z, € R, we have
1 X1 .’1371171 1 Pl(acl) Pnfl(xl)
1 X9 e Jjg_l 1 P1 (1‘2) e Pn_l(xg)
Ap(xq, , Tp) = det = det
1 In xﬁ_l 1 Pl(l‘n) Pn,]_(a)‘n)
Then
n—1 n n—1 n
A (w1, 2) | =det | > 1‘?%?] = det | Y Pi(a;)Pi(z;)
k=0 ij=1 k=0 ij=1
As a result, the spectral density of n x n GUE satisfies
n—1 , , n
PGUEn (A1, An) o det [Z e~ /APy (2)e "/ Py () DM A >N, (4.1)
k=0 i,j=1

A nice choice of (Py);Z; is the Hermite polynomial family.

4.2.1 Hermite Polynomials

The Hermite polynomials are a family of orthogonal polynomials under the Gaussian measure.

Theorem 4.7 (Hermite polynomials). Consider the family of Hermite polynomials:

o d?
An(z) = (—1)me™ 2= */2 5 =0,1,2,--- . (4.2)
dﬂ?n
(i) 9Hn(x) is a monic polynomial in © of degree n, i.e. the leading coefficient is 1.

(#i) (Rodrigues’ formula).
d n
=" (Z_2) 1, n=012--.
Sjn ( ) (dl’ LL') ) n 07 )4

(#i) (Derivatives).
!
9,7 (x) = G —m) m)!ﬁnfm(x), 0<m<n.
(iv) (Hermite differential equation). $H —x$), +nH, =0, n=1,2,---.
(v) (Orthogonality). The Hermitian polynomials are orthogonal under the Gaussian inner product, i.e. for
n,m e N,
—1;2/2

V2r

dx = n!um-

/_O; 3 (2) D (1)

(vi) (Christoffel-Darboux). For x # vy,

Hk(@)96 1) _ Hn(2)Hn-1(Y) = Hn_1(2)Hn(y)
L) (n—1)z —y) ’

n=1,2--.
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Proof. (i) follows easily from £, = 1 and induction.

(ii) Note that for any differentiable function f: R — C,

20 d 2 d
e’ /Q%e_x 12f(zx) = (d:c —m) f(x).

By definition, we have

2 2 d
Ny = (—1)” e’ /Qdf€71 /2(_1)n71573n—1 = — (LE - 1‘) Np—1 == <_1)n < -

(iii) We first claim that

d [ d n d " d d nt
wl@r) i=(G) @ (@) & nen

This can be proved by induction. For the base case n =1,

d d d d d? d d? d
da:(dx_x>f_ (m‘f”> preie <dx2f_xdacf_f) ‘(Mf‘fdxf) =

By induction hypothesis,

d [ d " d d [ d nl d nl
(i) () w (@) ()

, Ld (d " ld " d d nt
5, =(-1) d:v(dz_x) 1=(-1) [(d:c_m> dx_n<d:v_m> 11
d n—1
= (_1)n_1n <d1' - x) 1= nsjnfl.

The general case ﬁg{m = (nfiin)!ﬁn—m follows from induction.

(iv) We multiply (4.2) by e~"/2 and differentiate with respect to x on both sides:

( —m2/25;) )/( )_ (_1)ndn7+1 —z%/2
e n)(x) = dm”“e .

) s g2
Using the product rule and dividing by e~* /2, we have

(@) = 290 (2) = —Hnpa(2).
Again, we apply differentiation on both sides and use (iii) with m = 1:
(@) = 29, (2) = Hn(2) = =H41 (2) = —(n+ 1)Hn(2).
This is the Hermite differential equation: 9!/ (x) — z$),(x) + nH,(x) = 0.
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(v) We write ¢(z) = \/%6_12/2 for the standard Gaussian density. By definition, $,,(z)é(z) = (—1)"¢™) (z).
Then the inner product

Gatm)o = [ Du@n(@ole) e = (1" [ 9u@0m @ de = [ oM @) d,

where the last equality follows from integration by parts and the fact that ¢ and its derivatives vanish at £oo.
By (iii),
(nfiin)! ffooo Sjn—m(x)¢(x) d.L“, n 2 m,

Snends = [ 9 @)o() do =
—o0 0, n <m.
In particular, (,,1)s =0 for n > 1. Hence ($pn, Hm)s = nldnm.

(vi) is simply the Christoffel-Darboux formula for orthogonal polynomials. O

4.2.2 Determinantal Laws

By (4.1)), the spectral density of GUE can be written as the determinantal form:

n

n
2 2
pauBn(T1, - x) o det | Y e 4G, (2) - e A6, () . T > T > > ap.
k=1 i,j=1

For simplicity, we often use the following oscillator wave functions obtained from Hermite polynomials. These

functions form an orthonormal basis in L?(R) under the Lebesgue measure.

Proposition 4.8. Consider the family of normalized oscillator wave functions

1 2
—x/4 ..
U (x) = 7(2 )1/4m6 Hn(z), n=0,1,2, . (4.3)

(i) (Orthogonality). The normalized oscillator wave functions are orthonormal in L?(R) under the Lebesgue

measure:

<1/)n37/}m>L2(]R) = /lein(x)wn(f) dr = 6pm, n,m=0,1,2,---.

(ii) (Derivative).
w;:\/ﬁwnfl_gd]na n:071727"'

(#ii) (Harmonic oscillator).

x? I 1
4wn—wn:<n+2)wn, n=20,1,2,---. (4.4)

(iv) (Christoffel-Darbouz). For x # y,

n—1
_ VYo (2)Vn-1(y) — Pn-1(2)¥n(y)
kzzolﬂk(x)w(y) =n pr—y ~
If v =y, taking the limit gives

S Ge@)0(2) = VA [t (@) (2) — (@) ().
k=0

Proof. The statements (ii) and (iv) follow easily from definition. For (ii), we differentiate twice on both sides
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of (4.3) and apply Theorem (iii) with m = 1 to obtain

—1:2/4

= G (@) = (@) = o (n901(2) = 590(@)) = Vi1 — S0

2m)1/4y/n!

Finally, we differentiate twice on both sides of (4.3) and apply Theorem [£.7] (iv) to obtain

o) = e (o) = 5400+ ( — 5) 900

_ W/ (—n —5+ 9”4) () = (”ﬁl —n - ;) Un(2).

This is the Haarmonic oscillator equation (iii). O

Since (¢)%2; is an orthonormal basis of L?(R), the kernel for the orthogonal projection operator Iy, onto
the subspace V,, = span{vy, 1, ,¥n_1} is given by

0 = 3 el (y). (45)
k=0

That is,

n—1

(v, f)(z /K (@) f W) dy =D (f ) 2@ve(@), feLX(R).

k=0

Using this notation, one can write the spectral density of GUE as
n
PGUEn(T1, -+, @) o det [Z i (z; wk(xj)] =det [K (2, 2))]; ;. o1 > 32> > 2 (4.6)
k=0 i,j=1
Following are some useful identities of K, which can be easily obtained from orthonormality.

Proposition 4.9. Let n € N and K, : R x R — R the kernel (4.5).

(i) (Trace). [ K, dr = n.
(i1) (Reproducing kernel) S Kn(z, ) K (y, 2) dy = Ky (, 2).

Lemma 4.10 (Determinantal integration). Let n € N, 0 < k < n, and K,, : R x R — R the kernel (4.5).
Then for any x1,--- ,x, € R,

/ det [K, (x;, xj)]f;ril dags1 = (n — k) det [K, (a4, xj)]f,j:l . (4.7)
® :

In particular,

(i) the case k =0 corresponds to the trace identity [, K(x,z)dx =n, and

/ /det xl,x])]” L dxy - dxy =nl.

Proof. We let a;; = K, (x;,x;) and A, , be the upper-left p x ¢ block of (a”)k+1 € REFDX(E+1) - We let A;Efq

(i) for k =n, we have

be the matrix obtained from A,(M)] by removing the r-th column (a1, - - ,ap-). Using the cofactor expansion,
k
det Ak+1,k+1 = Z(—l)k+1+Tak+1’r det A](:L_‘_l + ak+1’k+1 det A]“k. (48)
r=1

7



We can easily find the integral of the second term:

/RakJrLkH det Ag i drgy1 = det A i /R Ky (zpt1, Trt1) drgsr = ndet Ay j. (4.9)
By scaling the last column of A,S:LH by ag+1,r, we have

ag+1,r det A,(ﬁcﬂ = det [AS”L ‘ (Qht1,r%i k+1)i=1 | »
with all dependence on ;1 in the last column. For the i-th entry, using the reproducing kernel property:
/Rak+1,rai,k+1 Az = /RKn(SCkJrhxr)Kn(wi,ka) dzrs1 = K(xg, xp) = agp
Combining the last two identities, we have
/Rakﬂ,r det AX,)CH dzi41 = det [A,(:,)C ’ (am)?:l} = (—1)*"" det Ay . (4.10)
Pluggin-in and to , we obtain
/Rdet A1, k+1 dxgp1 = (n — k) det Ay .

Then we complete the proof of (4.7). The statement (ii) follows by recursion. O

We denote by S(n) the group of permutation of {1,---,n}, i.e.
S(n)={o:{1,--- ,n} = {1,--- ,n} | o is a bijection} .

Since the determinant could only change sign under permutation, we have

det [Kn(wi,mj)]zjzl = det [Kn(xa(i)’xo(j))]zjzl , o€S(n).
By extending RZ = {(z1, -+ ,zn) € R" : 21 > 22 > --- > 2, } to the entire space R", we have

n!:/ det [Ky (i, 25)]; -, d:r:/R-~~/Rdet (K (@i, 25)]; 2y Z L, )5 >z} AT
" c€S(n)

:n!/ .../det K@iy )y Loy do
R R

Hence [, - - [ det [K, (24, :z:j)}?jzl Liz,>...52,} dz =1, and the normalizing constant in ([4.6) is 1. This is also
known as the Gaudin-Mehta formula for GUE spectral density.

Theorem 4.11 (Gaudin-Mehta). Let W,, = (&5)1<i,j<n be ¢ GUE, and K,, the kernel defined in (4.5)). Then
the spectral density of Wy, is given by

PGUE,n($17 e ;xn) = det [Kn(xia xj)}:'ij:l ]l{w1>"'>ﬂin}'

For the marginal densities for GUE eigenvalues, we have the following conclusion.

Proposition 4.12 (Correlation). Let 1 < k < n. Then the k-point correlation function of {\1, -+, A} is
n—k)!
Pk (T) = ( py ) det [Kn(xi,xj)]f,jzl, T1, -,k € R.
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That is, for any measurable function f: R — [0,00),

1
E[() ST (W) A ] [ 1@pste

k) 1<iy<--<ig<n

(n—k)!

_ / F(x) det [K (xs, ;)]
Rk

n!

In particular,

[iz ] %/Rf(x)Kn(x,x) dx.

Proof. By permutation invariance and Lemma

/ / f(xiy, - aq,) det [Kn(xi,xj)}zjzl Lz sesg,} doy - - - day,
R

1<11< <ip<n

/ /]R (I‘i“... ,-Tik)det [Kn(Ii,Ij)]ijl dxl...dxn

1<11< <ip<n

1/n )
= .<k) A...Af(m1,~.~ 71‘k)det [K”(x“xJ)]z,]:1 dxl"'dl‘n

— (n) / / flzr, - ,zx) - (n— k) det [K”(xi’xj)]ijzl dxy - - dxy
/ / f L1, - , L det[ (xi’xj)]’]zj:1 dml"'dl‘k.

The result follows from dividing both sides by (}}).

7

k
i,j=1

dx.

n

1/n

n'(k)/”./f(xl’” [/ /det xl,m])}mzl dzgyr - dx, | dzy -+ - dog,
: R

1



5 Circular Law

5.1 A Brief Journey
The circular distribution is the uniform probability measure on the unit disk Be(0,1) = {A € C: [N\ < 1}:

1
Peire(A) = 7/ T14(z)dxdy, A C C is Borel.
[z]<1

T
For general non-Hermitian matrices, the relationship between eigenvalues and singular values are captured by
a set of inequalities due to Weyl.

Theorem 5.1 (Weyl). Let A € C"*™ be a non-Hermitian matriz. Let A (A), -+, A, (A) be the eigenvalues of A
ordered in decreasing modulus, i.e. |A\1(A)| > -+ > | An(A)|, with growing phases, and let o1(A) > -+ > 0, (A)

be singular values of A. Then
k

k
H|)\J(A)|§HO'](A), ]{7:1,-~-,7’L.
j=1

j=1
Proof. Using Schur’s unitary triangularization theorem, there exists a unitary matrix U € C™*™ and an upper
triangular matrix T € C™*", with diagonal entries given by Tj; = \;(A), j =1,--- ,n, such that A = UTU*.

Since singular values are invariant under unitary transformation, we have

Now let M € C™*™ be a complex matrix with singular values o1(B) > --- > 0,(B). We fix k € [n], and prove
that for any k& x k submatrix B of M,

k
|det(B)| < Hoj(M). (5.1)

j=1
Assume B is obtained by selecting rows i; < --- < i and columns j; < --- < jr of M. Take orthogonal
matrices R = [e;,, - ,e;,]T € R¥™ and C = [ej,, -+ ,ej,] € R™** so that B = RMC. By Courant-Fisher

max-min principle, for every j € [k], we have

0;(MC) = max ”13”16151 |1MCulj; < max nglgg} [Mull, = o;(M),
vllg<1 ullg<1

and
o;(RMC) = max Hr%l‘ril |RMCuv|, < ginax “I,JI‘I‘EI‘ZI | R, |MCvll, = ||R||,0;(MC).
vllz=1 vl[g<1
Hence

0;(B) = 0;(RMC) < ||R||,0;(MC) < |[R],[|Cl|,05(M) = (M),

and the result (5.1) follows. Furthermore, if we let M = T and B be the upper left k& x k minor of T, we have

k k k
H A (A4)] < HUJ‘(T) = HUj(A%

which is exactly Weyl’s inequality. O

Theorem 5.2 (Circular law). Let (X;;)i;>1 be an array of i.i.d. random variables with zero mean and unit
variance. Let X,, = (X;j)1<i j,<n be the upper left n x n block of the infinite array. Then almost surely, as
n — 0o,

Hp-1/2x, — feire  weakly.
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5.2 Main Tools
5.2.1 Logarithmic Potential

Definition 5.3 (Logarithmic potential). Let Poo(C) be the set of probability mesures on C which integrate
log |-| in a neighborhood of infinity, i.e. for p € Py (C), there exists R > 1 such that

/ log® |\ du(X) < 0o,  where log" r = max{logr, 0}.
C
The logarithm potential of 1 € Poo(C) is the function U, : C — (—o0, 00] defined by

Uu(z) = = [ log|z = Al duh) = ~(log + (). =€ C.

Remark. By definition, for every z € C, the function A — —log |z — A| is quasi-integrable with respect to the
measure f € Poso(C). We note that A — —log|z — A| is bounded, and hence integrable on the compact set
{AeC:|A—z|>1,]A\ <]z + 1}. In the neighborhood of z, we have

= [ gl Aldu(y) € f0.0c)
[A—z|<1
and in the neighborhood of infinity, we have

/ log |z — Al du(\) g/ log(2|A) du()) < log2+/ log |A| du()\) < oc.
IA|>]z]+1 [A[>]z]+1 [A|>1

Hence Uy(z) € (—00, 0].
Example 5.4. The logarithmic potential of the circular distribution i, is given by

1-— 1z

?

2 <1,
Upnesne (2) =
—loglz|, |z| > 1.

Proof. Since picirc is the uniform probability measure on the unit disk, U, is a radial function. For |z| > 1,

circ

since A — log |z — A| is harmonic in a neighborhood of the unit disk, by the mean-value property,

1
Unore (@) = =3 [ Tog |z = AdS(Y) = ~loglal
[A[<1

™

For 0 < |z| <1, we let r = |z|. Then

1 1 1 2 )
Uy (2) = Uy (1) = —— / log |r — A dS(A) = — / / log |r — pc™*| pdf dp.
[A[<1 ™ Jo Jo

™

We first compute the inner integral. Note that

2

27
/ 10g}r—pei9|d9:2wlogr+/ log’1—86i9 do.
0 o r

Note that for 0 < 8 < 1, the function z — log|1 — z| is harmonic in a neighborhood of the unit disc. By the
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mean-value property, if 0 < p < r, we have

1 [ , 1
—/ log‘l—geze df =
27T 0 T

_7/ log‘l—Bz‘dS=log|1\=O.
27 Jjz1=1 r

For 0 < r < p, since

Ir — pet®| = \/r2 + p2 — 2rpcosf = |p — re’|,
we exchange the roles of p and r to obtain f027r log ‘r — pei9| df = 2w log p. Hence

2m
/ log |r — pei0| df = 2w log max{p,r}.
0

Now compute the outer integral:

2

T 1 2
1 —
Upeire (2) = =2 (/ plogrdp+/ plogpdp)= —.
0 T

Then we finish the proof.

Proposition 5.5. Let u € Poo(C). Then U, € L, (C).

Proof. Let K C C be a compact set. By Tonelli-Fubini theorem,

Jos@asay = [ ([ togls = Al dey) autr

Since K is compact, we take N > 1 such that K C B(0,N).

FO) = / llog |2 — Al| de dy
K
o If |\ <14 2N, we have

fN) */ log\z—)\|dxdy+/ log |z — Aldz dy.
KNB(A,1) K\B(\,1)

For the first part, change the variable w = z — X to get

—/ log|z—/\\dxdy§—/ log\z—)\|dxdy=—/ log|w|da:dy:z.
KNB(A1) B(A\1) B(0,1)

For the second part, note that |z — A\| <|z| 4+ |A]| <14 3N for z € K. Then

/ 10g|z—)\|dxdy§/ log(1 4 3N) dx dy < 7N?log(1 + 3N).
K\B(X\,1) K

To summarize,

sup  f(A) < T 4 aN? log(1 + 3N).
IA|<142N 2

o If |\| > 2N, we have |A|/2 < |A| = N < |z —=A] < |\ + N < 3|)\|/2 for z € K. This bound implies

A 3|\
[log |A — z|| < max{log|2|,log|2|} <1l+logl|\, z€K.

80



Then
f(/\):/ |log|)\—z\|dmdy§/ (1+1log|\|)dxdy = 7N?(1+1log|A]), X\ >2N.
K K

Combining the two cases, for some constant Cy > 0 depending on N only, we have
FN) < Cn(1+1ogt |A) forall e C.

Then
[ w@lasay < [ ovans oy [ (14108t ) duty) < .
K C C

where the last inequality follows because p € Poo(C). O

Distribution theory review. Since every u € Py (C) is a Radon measure on C, we view it as a Schwartz-

Sobolev distribution, i.e. u € D'(C), which is a linear functional on the space CS°(C) of test function:
G1.0) = [N dun). €O

Also, by Proposition U, € L. .(C) is a distribution.
Next, we define the first-order differential operators in D’(C) as 8 = (9, — i9,) and 9 = (0, + idy),
and define the Laplace operator A = 498 = 400 = 07 + 92. Note that log | is harmonic in C\{0} and ¢ is

compactly supported. By Green’s second identity,

- / log |2] Ag(2) dedy = — lig)l log |z| Ag(2) dz dy
C €.

|z|=e€

€l0 |z|=€

=lim [ (2)Vloglz| - n(z)ds — / log |z| V¢(z) -n(z)ds| .
|z|=€

Note that Vlog |z| = z/|z|?, and the outer unit normal n(z) = —z/|z|. Then the second term

‘/l _ log |2| Vo(2) - n(z) dS

<loge / [Vo(2)|dS < 2meloge - sup |Vo(z)],
|z|=€

[z]<1

which vanishes as € | 0, and the first term

(2)Vlog|z| - n(z)dS = _/||— o(2)dS,

|z|=e

which converges to —2m¢(0) as € | 0. Therefore
(Alog [, ) = (log|-|, A¢) = /CA¢(Z) log |z| dz dy = 27 ¢(0) = (270, ¢).

Hence Alog|-| = 2mdo. In fact, 5= log || is the Green’s function for Poisson’s equation Au = f in R? i.e.

1
u(z) = o /]R2 log |z —y| f(y)dy satisfies Au = f.

Also, by Tonelli-Fubini theorem, for any probability measure p € Poo(C) and test function ¢ € C°(C),

(80, 6) = W, 80) = - [ ( [ ozl = A 80 da dy) ) = =27 [ 0N du() = (2. 0).
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In other words,
AU, = =2mpu  in D'(C). (5.2)

Theorem 5.6 (Unicity). Let p,v € Poo(C). Then U, =U, a.e. if and only if p = v.

Proof. Clearly p = v implies U, = U,. Now if U, = U, a.e., we have AU, = AU, in D'(C), and (p.2]) implies
@ =v in D'(C). Since p and v are both Radon measures on C, we have = v. O

Theorem 5.7 (Convergence in potentials and weak convergence). Let (pn,) be a sequence in Poo(C). Assume
that log(1 + |-|) is uniformly integrable for (pn)nen. Then the following two statements are equivalent:

(i) There exists a function U : C — (—o0,00| such that U, (z) = U(z) for a.e. z € C.

(i1) There exists 1 € Poo(C) such that p, — p weakly.
Furthermore, if function U satisfies (i) and p satisfies (i), then U, = U a.e., and p = —5=AU in D'(C).
Proof. (i) = (ii). For every N > 1, by de la Vallée Poussin criterion for uniform integrability, there exists a

non-decreasing, convex function ¢ : [0,00) — [0, 00), which may depend on N, such that ¢(t)/t — oo as t 1 oo,
o(t) <1+ % for all t > 0, and

sup / o (og(N + [A])) djin(A) < oo.
neNJC

We take a compact set K C C, and fix N > 1 such that B(0, N) D K. By the non-decreasing property of ¢,
Jensen’s inequality and Tonelli-Fubini theorem,

[ elnedrdy < [ [ ioglz = Mo dy dun (.
K cJK
Note that for every z € K,
¢ ([log |z = Al]) < (1 + [log [z — /\HQ) Lya<ny + ¢ (og(N +[A]) Lia>ny-
To control the second term, we split and use local integratability of 1 + (log|-|)? on C:

fyen

1+ |log|z — Al ) dx dy dp, (X)

/ 1+ \log\zf)\||2> dmdydun()\)+/ / <1+|10g|zf)\|\2) dz dy dpn(N)
AN INISN JK\B(A,1)

1 + log 2| ) dz dy dpin (\) + (1 + |log(2N)|2) dz dy dpin (\)
M<N JK\B(A1)

IN

IN

/ (1+|1og|z|\ )dxdy+7rN2 (1+|10g(2N)|2) =Cn,

where Cy € (0,00) is a constant depending on N only. To control the second term, note that

/ / o (10g(N + |\])) d dy djin(3) < 7N? / o (108(N + \)) djin (V).
AN>NJK C

Hence
sup/ o(|Un(2)])dxdy < Cn +7N? sup/ @ (log(N + |A]) dun(N) < oo.
K o

neN neN

Again by de la Vallée Poussin criterion, and since K is arbitrary, (U,, )nen is locally uniformly Lebesgue
integrable on C. Then by assumption (i), U is locally Lebesgue integrable on C, and U,,, — U in L{. (C).
By continuity of Laplace operator A in D’(C), endowed with the weak-* topology, AU, — AU in D'(C).

Note that for sequence of Radon measures, convergence in D’(C) implies weak convergence. By (5.2)), we have
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fn — = —5=AU weakly, and 1 is a probability measure in Po(C), since

[ 1o N ) < [ tog(1-+ D () < lim [ 1og(1 4 \) dien(3) < sup [ Tog(1 -+ [\ dn (3) < .
C C n—oo Jc neN.Jc

Finally it remains to check U, = U a.e., which automatically follow from the following result.

(ii) = (i). Note that for any ¢ € C°(C),

W) == [ [ 10812 = Aldedy) i) = = [ (610w H)N) da (1)
Since ¢ € C(C) and log|-| is locally integrable, if A; — X in C, we take a common compact support K

of (¢(Aj —-))jen and restrict log|-| on K. Then some multiple of |log|||1x is a common L'-majorant for
functions ¢(A; — -)log|-|, and by dominated convergence theorem,

/ d(Nj — z)log|z| dx dy — / oA —2)log|z|dxdy as j — oco.
c o

Hence

qb*log|~|:)\l—>/¢(z)log|)\—z|dacdy:/¢(A—z)log\z|dxdy
c c

is a continuous function. Using the same approach as in Proposition we have |¢  log ||| < Cy(1+1log™ |-|)

for some constant Cy, > 0 depending only on ¢. Hence ¢ x log |-| is also uniformly integrable for (u,)nen, and

(U, 0) = */(C(cb* log |-)(A) dpn(A) — */C(¢*10g|'|)(>\) dp(X) = Uy, 9)-
Therefore U,,, — U, in D'(C). If U, — U also, since both U, and U are in L], (C), they must agree a.e.. [

5.2.2 Hermitization

Spectral logarithm potential. Let A € C"*" be a non-Hermitian matrix, and let P4(z) = det(A — z1d)
be its characteristic polynomial. Then for every z € C\{A\1(A), -+ , A\, (4)},

1< 1 1
Upa(2) = —/Cloglz = Aldu(A) =~ D loglz = A(A)| = — - logdet(A — zI)| = ——log | Pa(2)].
j=1

We also have the determinantal Hermitization form:

1 o0
Upa(z) =—= logdet(\/(A —2I)(A—zI)*) = —/ logtdva_.;(t).
n 0
Therefore, the knowledge of v4_,; for a.e. z € C suffices to determine p4. Furthermore, by (5.2)),

2 /(C Sdia= /C A(2) log |Pa(2)| dx dy.

For our later discussion, we also use uniform integrability. A Borel function f is said to be uniformly integrable

for a sequence of measures (fi,)nen on F, if

lim sup/ |f| dprn, = 0.
NToo neN J{|f|>N}

Lemma 5.8 (Logarithmic majorization and uniform integrability). Let (amn k)1<k<n and (Bnk)i<k<n be two
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triangular arrays in Ry. Define discrete measures

1 1 —
—gZ(San’k, and un:ﬁz%n’k, n=12---
k=1 k=1

Assume the following properties hold:
(Z) Q1 > Qp 2 =2 Qnon and Bn,l > ﬂn,Q > > an fO?” 16”"96 eﬂough n,
(ii) T1h_y @nk = [1i—q Bk for large enough n,
(#ii) H?:I apj < H] 1 Bn.j for every 1 < k <n for large enough n,
(iv) v, — v weakly as n — oo for some probability measure v, and
(v) log is uniformly integrable for (vy)nen-
Then
(a) (ln)nen is a tight sequence of probability measures,
(b) the function log is uniformly integrable for (pn)nen,

(c) as n — oo,
o0

lim logtdun(t):nlgr;o/ logtdun(t):/ logt dv(t), (5.3)
0 0

n—oo 0

and in particular, for every accumulate point i of (fn)nen,

/ logtd,u(t):/ logtdv(t).
0 0

Proof. Using the de la Vallée Poussin theorem, the property (v) implies the existence of some non-decreasing,

convex function ¢ : Ry — Ry such that ¢(t)/t — oo as t T oo, and

o0 1 n
sup/ @(llog ) dva(t) = sup - (Z @(Ilogﬁn,kl)> < o0
ne k=1

neN Jo

We let a; = logay,,; and b; = log B, for j € [n]. By properties (i) and (iii), @ = (an,j);jep is strongly
majorized by b = (by ;) jen) i-e.

n k
a1 > >a,, by >--->by,, Zaj Zb], and Zajgz forall k=1,
j=1 j=1

We then use a proof from Hardy-Littlewood-Pélya to show the existence of a bistochastic matrix S = (si;); je[n]
such that a = Sb, i.e. a; = Y77, s;;b; for all i € [n].

e If ¢y = by, then we leave by as it is and let T = 7.

e If a; < by, there must exist k& > 1 such that ap > by. We pick smallest such k and 0 < # < 1 such that
0by + (1 — 0)by = a;. We let matrix T() € R"*™ satisfies Tl( ) = ,5,16) =0 and Tl(i) = T,gl) 1—#6, with
all other diagonal entries 1 and off-diagonal entries 0. Then b(!) = T(Mp satisfies bgl) = a1, and b§-1 =b;
for all j € [n]\{1,k}. Furthermore, the new vector b(") still strongly majorizes a.

e We inductively repeat the above steps for vectors restricted to coordinates j,j+ 1, - ,n to adjust coor-
dinate j, where j = 2,3,---. This yields a sequence of transforms 72 ... T~ until all coordinates
of @ and b matches. Then a = TV ...7@ATWp and § = 7=V ... 7ATM) ig bistochastic.

Then for any convex function v on R,

Zwanz SZ st n,j <ZZ£@]¢ nj Z(st> ¢(bnu):z¢(bnu)
i=1 — i=1

=1 j=1 j=1
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We choose the function ¢ (z) = ¢(|z|), which is convex. Then

Sup/ ¢(llog t]) dpun(t) = sup — > " ¢ (log an k|) < sup = > ¢ (|log B k]) < oo
neNJo neN b1 neN =1

Again by de la Vallée Poussin theorem, log is uniformly integrable for (i, )nen. This also implies the fact that
(ttn ) nen is tight, since

sup iy, ([N, 00)) < sup/ dpn(N) < sup/ [log Al dpn(A) = 0 ase < N T oc.
neN n€EN J|log A\|>log N neN J|log A\|>log N

Finally, the (5.3) follows from the property (ii), and we finish the proof. O
Following is the main theorem we will make use of in the proof of the circular law.

Theorem 5.9 (Girko Hermitization). Let (Ayp)nen be a sequence of complex random matrices where Ay, is of
size n X n. Suppose there exists a family of (non-random) probability measures (v.).cc on Ry = [0,00) such
that for almost every z € C, almost surely,

(i) va, —.1 — v, weakly as n — oo, and

(i) log is uniformly integrable for (va, —.1)nen-
Then there exists a probability measure p € Poo(C) such that

(a) almost surely, pa, — p weakly as n — oo, and

(b) for almost every z € C,

Uu(z) = — /000 log sdv,(s). (5.4)

Proof. First, we consider the product measure P ® m on 2 x C, where (2,P) is the underlying probability
space and m is the Lebesgue measure on C. By Tonelli-Fubini theorem, the quantifiers “for a.e. z € C” and
“for a.s. w € 7 can be swapped.

Next, we condition on an event E of probability 1 such that properties (i)-(ii) holds for a.e. z € C on F,
and fix a realization w € E. Then we can focus on the determinisitc case. Also we fix N,, C C of Lebesgue
measure zero such that properties (i)-(ii) holds for all z ¢ N,,.

For every z ¢ N, we set v = v, and define triangular arrays (o k)i1<k<n and (Bn.k)i<k<n by
ank = [M(An(w) —2D)|, Bk =0k(Ap(w)—2I), 1<k<n.

By Theorem the properties (i)-(iii) in Lemma are satisfied. Also properties (iv)-(v) in Lemma is
satisfied by assumptions (i)-(ii). Note that p14, (w)—21 = pa,, () * 0—- for all z € C, which is a traslated version
of pa, (w)- Then we apply Lemma implies that

® (1A, (w))nen is tight, and

e for a.e. z € C, the function A > log |z — A| is uniformly integrable for (14, (w))nen, and that

o0

o0
fa, (o (2) = _nh—>Holo ; logsdva, —.1(s) = —/0 log sdv,(s) =: U(z).
By Prokhorov’s theorem, every subsequence of the tight sequence (p4,, (w))nen admits a further subsequence
that converges weakly. Then by the subsequnece criterion, it suffices to show that (i4, (.))nen has only one
accumulate point of weak convergence. Assume that s, and p/, are both accumulate points of (p4,, (w))nen-
By the uniform integrability of log|-|, we have pu,, i, € Poo(C) and Uy, = U, = U a.e.. By Theorem 5.6
P = Hy,, and hence fi4, () = fte- Since the logarithm potential U is deterministic, it follows that w — p, is
deterministic by Theorem again. Therefore a4, — pon E, and Uy (2) = U(z) = — [ log s du(s). O
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Finally, we weaken the uniform integrability condition (ii) in Theorem [5.9]to simplify subsequent analysis.

Lemma 5.10 (Weakening uniform integrability). Let (A,)nen be a sequence of complex random matrices

where Ay, is of size n X n. Assume that for almost every z € C, there exists p > 0 such that almost surely,

limsup/ s Pdva, _,1(s) < oo, and limsup/ sPdva, —.1(s) < oo. (5.5)
0 0

n—oo n—oo
Then for almost every z € C, almost surely, the function log is uniformly integrable for (va, —.1)nen-

Proof. Let (2,P) be the underlying probability space, and m the Lebesgue measure on C. By Tonelli-Fubini,

(P®@m){(w,z2) : z is an eigenvalue of A, (w) for some n € N} = / / Tye | {det(A, (w)—=D)=0} dm(2) dP(w)
eJc 77

S/ lZ/ﬂ{dct(An(w)zI)_O} dm(z)l dP(w) = 0,
a|=Jc

where the last equality follows because A, (w) has at most n eigenvalues in C, and spectrum of A, (w) is of
Lebesgue measure 0. Hence for a.e. z € C, almost surely, z is not an eigenvalue of A, for any n € N. This

implies that for a.e. z € C,
/ [log s|dva, —»1(s) < oo as. for all n € N.
0

Therefore, to show uniform integrability, we may replace the sup in definition by lim sup and prove

lim limsup/ [logs|dva, —.1(s) =0 as.. (5.6)
llog s|> N

Ntoo n—oo

We fix a small § > 0. Then [log s|°/N® > 1 on {|logs| > N}. By Markov’s inequality,

1 oo
/|1 . [log s|dva, —.1(s) < W/o log s|"*° dva, _.1(s)
og s|>

Note that for any g > 0,

s~ 54
llog s| < —Tjo<s<1y + —Tqs>13-
q q
Choose q = 1%;5. Then

1+5 1+6 B
log s|' ™ < <p) (s PLpocscty + 5" 1gez1y)

1 (1+0\"] o
/ [logs|dva, —.1(s) < N° (> [/ s7Pdvga, —.1(s) +/ spduAn_ZI(s)]
llog s|>N p 0 0

By (5.5), as N 1 oo,

and

limsup/ [logs|dva, —.1(s) = 0 a.s.,
llog s| >N

n—roo

which is exactly (5.6). Thus we finish the proof. O
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5.3 Proof of the Circular Law
5.3.1 Convergence of Singular Values Measure

To verify that for each z € C, there exists a probability measure v, on Ry such that v, -1/2x _,; — v, weakly
a.s., we need to study the spectral measure of the Hermitian matrices

(n_l/zXn — zI) (n_1/2Xn — zI) , n=1,2---
Theorem 5.11 (Dozier-Silverstein). Let z € C. Almost surely, the empirical spectral measure of
(n_1/2Xn — ZI) (n_1/2Xn - ZI)* e crxn

converges weakly to a probability measure u, depending on z only. Furthermore, . is uniquely defined by its
Stieltjes transform s : Ct — CT, which satisfies the fized point equation

1
SCZ 2 3 <€C+- 5.7
= o) 7

Lemma 5.12 (Reduction). In Theorem one may assume that for every n € N, the matriz X,, has i.i.d.

entries (i;); jein) bounded by logn.
Proof. We fix a sequence (k,) in R that grows to co, and define

52‘\7;]‘
VE[zi; 2

and set X,, = (Tij)ijem]s X, = (Tij)i jem), and X, = (Tij)ijem). We fix N > 0. By Lemma for large

enough n, we have k,, > N, and

Tij = Tijl{ja,;|<nn)s  Tig = Tij — E[T5], @y = i,y =12,

4
PL (F(nfl/zXn7zI)(n*1/2Xn*zI)*’F(n*1/2Ynle)(n*1/2yn7z1)*)

2 . 2 2
< 2 (s oo ) e, e
n F F F

2 2 < 1y
<5 4||21)3 + - Z (lzi* + 12451 1y 1 <iny) o Z i "L 150} (5-8)
i,j=1 i,j=1
8 1<
< |8l + o) Z |25 2 Z |xij|21{\rijl>N}
i,j=1 1,j=1

= 8(1+[2*) E [Je11 110, j>n}]  almost surely.

Next, by Lemma [2.2

rank(EX,)

1
PL (F(n*1/2yn—zI)(n*l/ZYn—zI)*’F(nfl/Q)A(n7z1)(n*1/2)?n7z1)*) =, T w (5.9)
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which converges to 0 deterministically. Finally, for large enough n, we have k,, > N, and

4
PL (F(n_1/2)?n_ZI)(n_1/2)?n_ZI)* ’ F(n_l/2in—zl)(n_l/2§"—zI)*)

92 N 2 . 2 N ~ 112
<35 (bl s s s
n F F F

1+E|l‘11‘ ~ ( E|l‘11‘2
<4 2 Z 2 i 2
4+ T Z 2] n2E[711 |2 Z 2 (5.10)

i,j=1 i,j=1

C n
<4 |z|2 + Z s | | =5 D el e =m0
n

4,5=1 4,J=1

2
4 (C + |2[?) <1 - \/Var(xllll{m”g]v})) almost surely,

where C' is some constant not depending on n. As N 1 oo, the a.s. bounds and (| converge to 0.
Hence it suffices to show the weak convergence of the ESD of matrices Xn7 Wthh have 1.1.d. entries with mean
0, variance 1 and amplitude O(k,,). Choosing k,, = O(logn) concludes the proof. O

Lemma 5.13. Let A = (aij)i jen) be an n x n complex matriz with ||Cllo <1, and Y = (Y1,---,Y,), where
Y1, -+, Y, are i.i.d. random variables with EY; = 0, E|Y1|?> = 1 and |Y1| <logn a.s.. Then

E|Y*AY —tr A|° < Kn®(logn)'?

Proof. Since \/A1(AA*) = || 4|2 < 1, it follows |a;;| < 1 for each ¢ € [n]. Note that

p
+E

p

n
E|Y*AY — tr AP < 2°7? > aiYiY;

i

n
E|> ai(|Yi]* —
=1

By Lemma [1.18] there exists a constant K, > 0 depending on p only, such that
Yy P

P n p/2
< KB JauP Vi — 17| < Kpn?/?(logn)??
i=1

and

n p n p/2 2

B> aiy| <K (Slag? ) (maxepyip)

i i set

Since szzl laij|? = tr(AA*) < n\;(AA*) < n, the bound is at most K,nP/2(logn)? . In particular, there

exists K > 0 such that a constant K = 64Kg > 0 such that
E|Y*AY — tr A|° < Kn?(logn)'?
The we finishes the proof. O

Proof of Theorem[5.11 We fix z € C with r = |z|, and write

X X R Z;
C === __I on T ZE yr, h e oj=1,-,n.
n <\/ﬁ z ) <\/ﬁ z ) 2 Y5iY; where y; \/ﬁ zej, J n
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Step I. Fix ( = E +in € CT, with > 0, and let

2

/Bn:

Trs. "~ C(1+ sy,), where s, = s¢, (¢) is the Stieltjes transform of ESD of C,,.

Let D, =C, — ¢l and D,, _; = D,, — yjy;. Then s, = n~!tr D,;1. By Sherman-Morrison formula,

1
D’lzD_l»—M j=1,---,n.
n n,—j 1+y*D 1jyj ’ ’ )

Then

B D! ny ; \
I+(D;' =D; YD, +CI) = E D, yjyj E :(Dn}_j_ —39iY; j)yjyj
Jj=1

Taking the trace on both sides and dividing by n, we have

yiD Yy 18
1+ Csn=—> yiD, "y, —* 2 =l1-=) —. (5.11)
Z / 37 1+yJD —jy] nzl+yJD —JyJ

Then

B — Dyt = B (D — Bal) Dyt = Zyj y; — + (sl | DY

=5, En: Yiy; — ! _ L o
n = 399 (1+y*D 1]y]) 1+5n n

(5.12)

For notation simplicity, for each j € [n], we write

'y 1

— 1
n,fjxj7 ﬁ”xj -

1 1
_ * o R * 1
Wn,j = fna;an’,jxj, 9,” = —zejD zxiD

NG Un Y=g

Then y; Dn —jYj =wWnj+0n;+Unj+ T ;. Again, we take the trace on both sides of (5.12) and divide by n
to obtain

_ 1 < tr D1 r?eiD; te;
5n1*5n:72 y]D 1 J * 1 - 1J :
nBn n(1+y;D, L y;) + sp

Tpj =T e*D

n * )—1 e*
_ 1 Z <Dy 1 Sn o eany_jej Dn JnyJD
nﬁn ; T ]‘+y*Dn —JyJ 1+Sn (1+5n)(1+y*D 1 ]yj)
1 z": Dn Liyi— s e;D;}_jej . T2e;D;}_jyjy;D;_Jej (513)
1B 1+y;D, _Jy] 1+s, (1+s,)(1+y;D, 1]y]) '

n

1
:nﬁnz

j=1

Wi +Ong +Ong +Tng =50 Tng | (Ong + 7o) Wng + 7o)
1+y:D, "y, L+s,  (1+s,)(1+y:D, " y;)

n

1
:nﬁnjz

j= 1(
(an 8j) +0nj+Vn; | Tnj(sn — Wna)+9n3197lj>

1+y*Dn —jyj (1+Sn)(1+y*D —]y])

Note that

1 n
Im(¢sy) = Im E; Z ‘)\ |2 > 0.
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Then

1
[T+ sn]  [C+Csnl 7 ImC+1Im(Csn) = 7
and 27
r<Im s, 1
o > Im 8, = | ———= + Im((s,,) +Im > — 5.15
8,1 > [l ] = | +Tm(Cs,) +m(0)] > 1. (5.15)
Since all eigenvalues of D,, and D,, _; have imaginary part n, we have ||D; || < 1/n and ||D;71_j||2 < 1/n.
Consequently

|T"]| < 7"2||Dn —]H S % (516)

Combining (5.13)), (5.14), (5.15) and (5.16]), we have

|B _Sn < ZZ(( C|> |wn] 3n|+‘0n,j

Step II. Now we handle the first term in (5.17). By Lemma

+ [Un 5] + |,’7C||9n,j19n,j > . (5.17)

1 _ _1(6
]E|w7l7j - S”l|6 = E]E ‘x;Dn}*J'j"J —tr Dn 1|

32 . e 3 .
< E (E|ZE D '—tI‘Dn,]‘ +]E|t1‘(Dn,7j _Dn )| )

32 D2y,
<5 | ElagDyt e — e DL+ E yJ*—JyJ

n 1—|—y Dn Ly

32 [ Kn3(logn)'? 1 32 (K(logn)? 1412
=W #JFEE[?E%‘] <= (i) L IE
B ! K n n non

Then for any € > 0, by Markov’s inequality,

Elw, Sn 2 (K(1 121 442
]P’<max lwn ; — 5n|>€> Z}P’ lwn; — Sn| > €) <Z |w] _32( (log ) + +f2>.

1<j<n n no n3n

Since the dominating term Y -, (logn)'?/n? < oo, by the Borel Cantelli lemma,

lim sup max lwnj — sn| <€, as.
n—oo 1<J<

And since € > 0 is arbitrary, we have maxi<;<p |wn,; — $p| — 0 a.s..

Step III. Next we bound the remaining terms in (5.17). By Lemma

12
ze*DL e 12 6
B9, ;"% = B T A ]E|x D; 1 ! eseiD; 1 7]
B \/E ]
32r!? * y—1 -1 1 1 4|6
< y; (E D _j€5€; Dnﬁjxj—tr (D €5€; D )| +E’tr( —;€5 JD )’ )
32r'? [ Kn? (log n)tz 1 32r12 o 1
S 5 ( iz +ﬁ = a2 K(logn) T3
Similarly,

32712 1
12 6 12
00112 Bl 001" < S (Kllogn)? + ).
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Similar to Step II, we can use Borel-Cantellu lemma to deduce that
28X {0n 51 |On 5, [P0 51} = 0 as..

Therefore |3, — s,| — 0 a.s.. More specifically,

1
2
T+sn C(]- + Sn)

—s, =0 as. (5.18)

Step IV. We fix w € Q such that (5.18]) holds. By (5.11)), (s,,) is a bounded sequence:

n

LS

j=1

1
C(L+y;D, Y u;)

1
<=
7

By Bolzano-Weierstrass theorem, it suffices to show that (s,) has only one limit point, which must satisfy the
fixed point equation ((5.7). Once we show this, the convergence result follows from Stieltjes continuity theorem.
Note that s, € CT and Im((s,) > 0. Therefore we finish our proof by the following uniqueness lemma. O

Lemma 5.14 (Uniqueness). Let z € C, and ¢,s,t € CT with Im(¢s) > 0 and Im(¢t) > 0. If both s and t
satisfies the fized point equation (5.7)), then s =t.

Proof. Write r = |z| > 0. By (5.7), we have

1 1 s
—t=— S = —t) = als —t).
LR a0 W00 (2 (1 ec) (2 - (1 1K) ermald
We define .
G(u) = —3 o ueCt.
1+u
Then G(s) = s, G(t) = t, and
_ rG(s) rG(t) ()G,

1+s 1+t
Since s = G(s), we have Res = Re(G(s)) and Im s = Im(G(s)). More specifically,

Res={Taiiiﬁs)—ReC—Re@@}Kxﬁﬁ, and hns:[ﬁifzz+lmC+Jnm%)|G@M? (5.19)
The first part of implies
P—r?$2f+ide@W}ﬂ+Re$—1+hnUmﬂG@W, (5.20)
and the second part implies
Pr?ﬁﬁjfReCKK@F]hnsU%ReﬁImCKXsM? (5.21)

We plug-in (5.21)) to (5.20) and rearrange to obtain

Ims _

- IGO)_ (Re o) (PG| e
l(l ) Re¢PIGEI ~ Im OGO prame = b

145/
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which also writes
_ Im¢|G(s)?

> 0.
Ims

(1 micr

2
LS00) P

By (5.19)), we have (1 - r2‘|1i(ss|)2|2) = (Im ¢ + Im(s(¢))|G(s)|? > 0. Hence

_r?G(s)P

1
1+ s]?

> [ClIG(s)*.

A similar inequality also holds for ¢. Using the inequality v/1 — 21—y < 1 — \/xy for z,y € [0, 1], we have

G(s)||rG(t)

1+s|| 1+t
< V1-[lIG(s)PVI = [CIGMOR + (¢l G(s) 1G(#)]
< 1= [¢G)GD)] +[CG () 1G] = 1.

ol < + |G () IG@)]

Hence |a| < 1, and s = t. O

5.3.2 Count of Small Singular Values

Lemma 5.15 (Tao-Vu). Let 1 < m < n, and let A € C"™ be a matriz of full rank, with columns
Ay, Ay €C?, and Vi, = span{A; : j € [m],j # k} for every k € [m]. Then

D oi(A)7 =) dist(4,,V5) 2,
j=1 j=1
where dist(z, V') := infycv ||z — yll2 is the induced Euclidean distance between a vector and a set.

Proof. Let A_; € R™*(m=1) be the matrix obtained from A by removing the j-th row. Then the orthogonal
projection of A; onto V; = 9R(A_;) is given by A_; (A*_jA,j)_lA*_jAj. By the Pythagorean theorem,

A3 — dist(A;, V)2 = [ A (A A_)) T AT A3 = ASA_ (A" A ;)" A%, A,
On the other hand, by Schur’s complement, for any invertible matrix B € C™*™ and partition [n] =T U I°,
1 -1 -1
(B~ )11 = (BI,I — B[,ICBIC,ICBFJ) .
We let B=A*A and I = {j} for j =1,--- ;m to obtain
* — * * * * — * -1 . — .
(A*A) )5 = (AJA; — (A% A (A AY ) THAYA))) =dist(A;, V)72, j=1,---,m.
The desired result then follows by taking the sum of the above over j =1,--- ,m. O

Lemma 5.16 (Tao-Vu). There exist v > 0 and § > 0 such that for large enough n € N, any 1 < j < n,
any deterministic vector v € C" and any subspace H of C* with 1 < dim H < n — n'~7, we have, denoting
Y = (le, s ,an) —|—’U,

P (dist(Y, H) < %\/n - dim(H)> <e .

Proof. Step I. We denote by H' the subspace of C™ spanned by H and vector v. Then dim H' < dim H + 1,
and dist(Y, H) > dist(Y, H'). Since the original dimension assumption is dim H < n'~7, adding 1 does not
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change the asymptotic ”smallness” of the subspace. We may thus directly suppose without loss of generality
that v = 0. Let U € C"*4m(H) he a matrix whose columns form an orthonormal basis of H. Then

E [dist(Y,H)’] =E [|Y[]3 - |[UU*Y|3] =E[YY* —tr(UU*YY*)] =n—tr(UU*) =n—dim H.  (5.22)

Let 0 < € < 1/3. By Markov’s inequality we have P(|X};| > n¢) < n™2¢. Using Hoeffding’s inequality,

- 203" _, P(1Xy;| < nf) — (n —nl=))?
(3 tinieng <) < oo (2 Ol S0 0200

n
k=1

<exp (—2n'7*(1—n")?) <exp(—n'"*), forn> 1. (5.23)

Step I1. By the above result, there are at least n—n'~¢ entries in (Xkj)3_, bounded by n with high probability.

By premutation invariance, we define event
m
E, = ﬂ {| Xkl <n°}, withm = [n—n'"c].
k=1

Since the bad event (5.23)) has probability less than O(exp(—n'~2¢)), it suffices to condition on E,,. Let %,

be the o-algebra generated by (X415, -, Xnj). We let E,, be the expectation conditional on E,, and .%,,,
ie.
E [ﬂ — E [g]lEng\M]
m Elg, |Fn]
Let W be the subspace spanned by
H7 u = (07 e 707Xm+1,j7' o uX’rLj)a w = (Em[le]7 c aEm[X’m]]aO? c ,0) 5

and let Z = (X1, — A+, X1m — A,0,---,0) =Y —u — w, where A = E[X3;]. Then dimW < dim H + 2,
and dist(Y, H) > dist(Y, W) = dist(Z, W). Similar to our deduction in Step I, it suffices prove the result for
dist(Z, W). We note that

1
2 2
0% =K, [Z}] = ———E || Xy, -
" Ell{x,;|<ne) ( !

E [Xij1qix,1<n)]
Elfix,; 1<ney

2
) Liix1zney | =1 —0(1).

Step III. We define f : x € D — dist((x,0,---,0),W), where D, = {z € C : |z] < n°}. Then f is a
1-Lipschitz function, and by Talagrand’s concentration inequality,

t2
1 — > < - .
P, (|dist(Z, W) — M,,,| > t) < 4dexp ( 32n26> , (5.24)

where M,, is the median of dist(Y, W) under E,,. By Fubini’s theorem,

2

E,, |dist(Z, W) — M,,|* < 4/0 2t exp (W

) dt = 128n°¢.

By the triangle inequality,

\/Em |dist(Z, W)|* < \/Em \dist(Z, W) — My, |” + M, < 8V2n + M,,.
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On the other hand, similar to our calculation in (5.22)),
E,, [dist(Z, W)|* > o0?(m — dim W) > o2(n —n'~¢ — dim H — 2)

Therefore

M, > /o2 (n —nl—¢ — dim H — 2) — 8V/2n°

We select v € (0,¢), with 0 < dim H < n —n'~7. Then n — dim H > n'~¢ as n — oo, and there exists a
constant § < ¢ < 1 such that M, > cv/n —dim H for n > 1. We take t = (¢ — 3)v/n — dim H in (5.24) to
obtain

1
(dlst(Z W) < JVvn dimH) < 4exp <— o

(c—3)*(n— dimH)>
The exponent behaves asymptotically like O(n!=772¢), with 1 —~ — 2¢ > 0 since we choose 0 < v < € < 1/3.
Therefore, there exists § > 0 such that the probability is bounded by exp(n~9%). O

Lemma 5.17 (Count of small singular values). There exist absolute constants co > 0 and 0 < v < 1 such that
for any fized sequence M, € C"*", almost surely, for large enough n and all indices n*~7 < j <n —1,
On—j (n_l/QXn + Mn) > col.
n
Proof. For simplicity we write 0,,—; = 0p—j (nil/QXn + Mn) Up to increasing v, it is enough to prove the
statement for all 2n'~Y < j < n — 1 for some v € (0,1) to be chosen later.

We fix 2n1™7 < j < n — 1, and let Y,, be the matrix formed by the first m := n — [j/2] columns of
X, ++v/nM,. Let 7y > --- > 7, be the singular values of Y;,. By Courant-Fisher max-min principle,

—1/2 ~1/2 max min  |u' Y|l <ox, k=1,---,m.

dim V=kueVNnsSn-1

n T =N

By Lemma [5.15] if Y,, is of full rank, then
Yo Ry = dist(Va, Hot) 72 4 - 4 dist(Ya /21, Honrj/21) 7

where V), ; is the j-th column of Y and H,, ; is the subspace spanned by the remaining columns of ¥,. In

particular,
j n—[3j/2] n—[j/2]
S0 <gr < Y, mP< Z dist(Yok, Hop) "2 (5.25)
n
k=n—j

Since Hy, is independent of Y;, and dim Hy < n — j/2 < n —n'~7, for the choice of 7,5 > 0 given in Lemma
there exists some large enough N € N such that

o0 n—1 n—[j/2]

Z}P’ U U {dlSt Yok, Hy, )<2\\//5§} §nz=;vnzexp(—

n=N j=2nt—7

Consequently, by the Borel-Cantelli lemma, almost surely, for large enough n, all 2n'~7 < j < n —1 and all
1<k <n-[j/2],

Vi

22

Consequently, Y, is a.s. of full column rank, and by (5.25)), we have o7 _; > j/(8n). Putting all together,

we obtain the desired result with ¢y = 2v/2. O]

diSt(Yn,k, Hn,k) Z
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5.3.3 The Smallest Singular Value

Lemma 5.18 (Rudelson-Vershynin). Let A € C"*™ with columns Ay,--- ,A, € C", and define subspaces
Vie =span{4; : j € [n],j # k} for every k € [n]. Then

n 1<j<n 1<j<n

1
— min dist(4,,V;) < 0,(A4) < min dist(4,,V}).
vn
Proof. For every x € C", we have Ax = x1A; + -+ - + x, A, and by the triangle inequality,

|Az||2 > dist(Az, V;) = min ||Az — v||2 = min ||z;A; — v||2 = |z;| dist(A4;, V}).
veV; veV;
If ||z||2 = 1, there exists j € [n] such that |z;| > n~!/2, and

1
on(A) = H?En |Az|2 > 1%12n|mj|dist(Aj,Vj) > — min dist(4;,V;).

1< Vn <5<
On the other hand, for every j € [n], by Gram-Schmidt, there exists y € C™ with y; = 1 such that
dist(A;, V;) = lly1ds + -+ + ynAnll = [[Ayllz > 00 (A) [lyll2 = on(A).

Then we finish the proof. O

Lemma 5.19 (Tao-Vu). For any a,q > 0, there exists a constant b > 0 depending on a and q such that for
all large enough n € N and deterministic M € C"*" with o1(M) < n?,

P (0, (X, + M) <n7?) <n
In particular, there exists b > 0 depending on q only such that a.s. for large enough n,
on(Xy + M) >n".

Proof with bounded density assumption. Let Aq,---, A, be the rows of X,, + M, and V}, = span{A4; : j €
[n],j # k} for k € [n]. Then

1<y

mig dist(4;,V;) < vno, (X, + M).
Using a union bound, we have

P (vVno, (X, + M) < t) <n max P(dist(4;,V;) <t), ¢>0.

1<j<n

Now we fix j € [n], and let Y; be a unit vector orthogonal to V;. We may fix our choice of ¥; by normalizing
the leftmost nonzero column of the projection matrix I — A_jAT_ ; onto the subspace Vj, hence Y; depends

only on the columns A_; and is independent of A;. Furthermore, by Cauchy-Schwarz inequality,

dist(4;,V5) = ||(1 = A-; )4

il 2 143
Let v; be the distribution of V; on the sphere S"~! of C". Then
P(ist(4;, V) <) SP(A;- K <0 = [ P40l £1) dyly).
Sn—1

RNV

We assume X7 has a bounded density ¢ on C. For any y € S"~!, since ||y||2 = 1, there exists k € [n] such
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that |yx| > n~1/2, hence the density of 7, Ay, is bounded by /n||¢[le- Since A; -y =T A1j + - + T, Anj is
a sum of independent random variables containing ¥;Ay;, by a basic property of convolutions of probability
measures, A; -y also has a density bounded by v/n|/¢|/~. Hence

P(A; 3 <0 = [ Lipces(9)ds < Virt?l
Therefore, for every r > 0, we choose t = n~" to obtain
P (on(Xn + M) <07 E) < nE gl

Then we may choose r with % —2r < —a and set b =r + % For the second statement, we take a > 1 and

apply Borel-Cantelli lemma to complete the proof. O

5.4 Prove the Circular Law

Proof of Theorem[5.3 We prove the circular law by verifying the two conditions in Theorem [5.9
Step I. We fix z € C. For p < 2, by Holder’s inequality,

P

<

1
2

oo
/ sP anfl/zX,,,—zI(S)
0

0o
/ 82 dynfl/zXn—zI(S)
0

By Weyl’s inequality and the strong law of large numbers,

0 1 n X 2 n 2
2 n 2
2 d _ § :7‘ [ < 2§ : ) X, 9
/0 P2 X =1(5) n ! (\/ﬁ : ) n % <\/ﬁ> +2/2]

Jj=1 Jj=1

2 . 2 <
= ﬁtr(Xan) + 2022 = — Z €517 + 212> = 2(1+ |2/°), almost surely.
i,j=1

Combining the above two displays, we have

oo
limsup/ sPdv,—1/2x, _,1(s) < oo as., p<2.
0

n— oo

Step II. For notation simplicity we write o; = Uj(n_l/QXn — zI). We take the constant ¢y > 0 and fix
M, = —zI, in Lemma [5.17 choose M = z\/nI, ¢ > 1/2 and take the constant b > 0 in Lemma Then
almost surely, for large enough n, we have

n n— |_n17

1 _ 1
PBAEIEDY
=

n

7] n N — 1

_ _ 1 CoJ P _ _ _

P p - ~Y+bp p ~Y+bp

o, +. E o, Sné (n) +n < Os ds+n .
j=n—|[n'=7]+1 J=1

Note that fol s7Pds converges when 0 < p < 1. Then we choose 0 < p < min{v/b, 1}, which satisfies

o0
limsup/ sPdv,-1/2x, () < oc.
0

n—oo

Step II1. By Theorem Vp-1/2x, _,; — V2 a.s. for all z € C, where v, is the pushforward of p. under the
square root Ry — Ry : s /5.
By Theorem the empirical spectral distribution p,,-1/2x_ _,; converges a.s. to a probability measure
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1 € Poo(C), with logarithm potential

Uu(z)z—/O logsdv,(s), ze€C.

Furthermore, since v, depends only on z, the measure  does not depend on the distribution of Xi;.

Note that

E {/c f(2) dunl/axn(z)} _E if (/\j\(/)%n)>

The 1-point correlation function is given by

1 2w 2|2k
= Y
ena(2) = e i

and

& (nf2A)*

1 e

:l]P’(Sngn—l),
T
k=0

where S, is a Poisson random variable of rate n|z|?. By Poisson’s central limit theorem,

Sp —n|z|?
————— — NMg(0,1) weakly.
Vnlz|

Then
P(Z <o0) =1, lz] <1,

) = (P(Z<0)=1/2, |z]=1,
P(Z <—-00)=0, |z]>1

S, —n|z|? < n(l—1z)%) -1

P(5"<”‘”:P< N E T

Hence ngn,1(v/nz) — 711 ,)<; almost everywhere on C.
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