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0 Notations

Throughout this book, we assume that U is an open subset of Rn. Given a function u : U → R, we write

u(x) = u(x1, · · · , xn) for x ∈ U . For i ∈ [n], we write

∂xi
u(x) =

∂u

∂xi
(x) = uxi

(x) = lim
h→0

u(x+ hei)− u(x)

h
, x ∈ U

for the partial derivative with respect to variable xi, provided the limit exists. Partial derivatives of higher

orders are similarly defined. If u : U → R is twice differentiable, we write ∇u : Rn → Rn and∇2u : Rn → Rn×n

for its gradient and Hessian matrix, respectively:

∇u(x) =
(
∂u

∂x1
(x), · · · , ∂u

∂xn
(x)

)
, ∇2u(x) =


ux1x1

(x) ux1x2
(x) · · · ux1xn

(x)

ux2x1
(x) ux2x2

(x) · · · ux2xn
(x)

...
...

. . .
...

uxnx1(x) uxnx2(x) · · · uxnxn(x)

 .

The Laplacian ∆u of u is defined as the trace of Hessian matrix:

∆u(x) = tr(∇2u(x)) =
∂2u

∂x21
(x) + · · ·+ ∂2u

∂x2n
(x).

Now we introduce the multi-index notation. A vector α = (α1, · · · , αn) consists of nonnegative integers is

called a multi-index of order |α| = α1 + · · ·+ αn, Given this multi-index α, we define

∂αu(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n

= ∂α1
x1

· · · ∂α
n

xn
u(x).

If K is a nonnegative integer, we write

∂ku(x) := {∂αu(x) : |α| = k}

for the set of all partial derivatives of order k, and define

∥∂ku∥Lp(U) =

 ∑
α:|α|=k

∥∂αu∥pLp(U)

1/p

, |∂ku| = ∥∂ku∥L2(U) =

 ∑
α:|α|=k

|∂αu|2
1/2

.

Furthermore, we replace the symbol ∂ by D when we refer to weak derivatives:∫
U

u∂αϕdm = (−1)|α|
∫
U

(Dαu)ϕdm, ∀ϕ ∈ C∞
c (U),

Dku(x) := {Dαu(x) : |α| = k} , ∥Dku∥Lp(U) =

 ∑
α:|α|=k

∥Dαu∥pLp(U)

1/p

, |Dku| =

 ∑
α:|α|=k

|Dαu|2
1/2

.

We use D and D2 to denote the gradient and Hessian matrix in weak sense:

Du(x) = (Dx1
(x), · · · , Dxn

(x)) , D2u(x) =


ux1x1

(x) ux1x2
(x) · · · ux1xn

(x)

ux2x1
(x) ux2x2

(x) · · · ux2xn
(x)

...
...

. . .
...

uxnx1(x) uxnx2(x) · · · uxnxn(x)

 .
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1 Convolution and Smoothing

1.1 Convolution

In this section we first deal with functions on Rn. If a function f is defined on U ⊂ Rn, we can replace it by

its natural zero extension f : Rn → R which assigns f(x) = 0 for x /∈ U .

Definition 1.1 (Convolution). Let f, g : Rn → R be Lebesgue measurable functions. Define the bad set as

E(f, g) :=

{
x ∈ Rn :

∫
Rn

|f(x− y)g(y)| dy = ∞
}
.

The convolution of f and g is the function f ∗ g : Rn → R defined by

(f ∗ g)(x) =


∫
Rn f(x− y)g(y) dy, x /∈ E(f, g),

0, x ∈ E(f, g).

Remark. Define F : R2n → R, (x, y) 7→ f(x) and G : R2n → R, (x, y) 7→ g(y). Then both F and G are

measurable functions on R2n, as well as their product F ·G : (x, y) 7→ f(x)g(y). Given linear transformation

T (x, y) = (x − y, y), the composition H = (F · G) ◦ T : (x, y) 7→ f(x − y)g(y) is measurable. By Tonelli’s

theorem, the function x 7→
∫
Rn |H(x, y)| dy is measurable, and E(f, g) is a Lebesgue measurable set.

Clearly, the convolution operation is both commutative and associative, i.e. f ∗ g = g ∗ f , and (f ∗ g) ∗ h =

f ∗ (g ∗ h). Furthermore, the distributivity of convolution with respect to functional addition immediately

follows, i.e. f ∗ (g + h) = f ∗ g + f ∗ h.

Proposition 1.2 (Properties of convolution). Let f, g : Rn → R be Lebesgue measurable functions.

(i) If f, g ∈ L1(Rn), then the bad set E(f, g) is of measure zero. Moreover, f ∗ g ∈ L1(Rn), and∫
Rm

(f ∗ g) dm =

∫
Rn

f dm

∫
Rn

g dm. (1.1)

(ii) If f ∈ C0(Rn) and g ∈ L1(Rn), then f ∗ g ∈ C0(Rn).

(iii) If f ∈ Lp(Rn) and g ∈ L1(Rn), then f ∗ g ∈ Lp(Rn), and

∥f ∗ g∥p ≤ ∥f∥p∥g∥1.

Proof. (i) Define the measurable function H(x, y) 7→ f(x− y)g(y) on R2n. By Tonelli’s theorem,∫
R2n

|H| dm =

∫
Rn

(∫
Rn

|f(x− y)| |g(y)| dx
)
dy = ∥f∥1∥g∥1.

Hence H : R2n → R is integrable. By Fubini’s theorem, for a.e. x ∈ Rn, y 7→ H(x, y) is integrable, hence

m(E(f, g)) = 0. Furthermore, the function f ∗g : x 7→
∫
Rn H(x, y) dy is also integrable, that is, f ∗g ∈ L1(Rn).

The equation (1.1) follows from Fubini’s theorem.

(ii) Given ϵ > 0. By uniform continuity of f , there exists η > 0 such that |f(x) − f(x′)| < ϵ/∥g∥1 for all

|x− x′| < η, . As a result, for all x, x′ ∈ Rn such that |x− x′| < η, we have

|(f ∗ g)(x)− (f ∗ g)(x′)| ≤
∫
Rn

|f(x− y)− f(x′ − y)| |g(y)| dy < ϵ.

(iii) is a special case of the following proposition.
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Proposition 1.3 (Young’s convolution inequality). Given r ∈ [1,∞] and Hölder r-conjugates p, q ∈ [1,∞],

i.e. 1
p + 1

q = 1 + 1
r . If f ∈ Lp(Rn) and g ∈ Lq(Rn), then the bad set E(f, g) is of measure zero, and we have

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Remark. Note that

r =
pq

p+ q − pq
≥ 1 ⇔ pq

p+ q
≥ 1

2
⇔ p ≥ q

2q − 1
⇔ q ≥ p

2p− 1
,

and

r <∞ ⇔ p+ q > pq ⇔ p <
q

q − 1
⇔ q <

p

p− 1
.

Proof. We first bound f ∗ g. By applying generalized Hölder’s inequality on 1
r + r−p

pr + r−q
qr = 1, we have

|(f ∗ g)(x)| ≤
∫
Rn

|f(x− y)| |g(y)| dy =

∫
Rn

(|f(x− y)|p|g(y)|q)1/r |f(x− y)|
r−p
r |g(y)|

r−q
r dy

≤
(∫

Rn

|f(x− y)|p|g(y)|q dy
)1/r (∫

Rn

|f(x− y)|p dy
) r−p

pr
(∫

Rn

|g(y)|q dy
) r−q

qr

=

(∫
Rn

|f(x− y)|p|g(y)|q dy
)1/r

∥f∥
r−p
r

p ∥g∥
r−q
r

q .

Consequently, we have∫
Rn

(∫
Rn

|f(x− y)| |g(y)| dy
)r

dx ≤
(∫

Rn

∫
Rn

|f(x− y)|p|g(y)|q dy dx
)
∥f∥r−p

p ∥g∥r−q
q

≤ ∥f∥r−p
p ∥g∥r−q

q

∫
Rn

(∫
Rn

|f(x− y)|p dx
)
|g(y)|q dy = ∥f∥rp ∥g∥

r
q ,

where we use Fubini’s theorem in the last inequality. Hence m(E(f, g)) = 0, and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Remark. If f ∈ Lp
loc(Rn), and g ∈ Lq(Rn) is compactly supported, then f ∗ g ∈ Lr

loc(Rn).

Review: Compact supported functions. Let X be a topological space. The support of function f : X →
R is defined as the closure of the set of all points in X not mapped to zero by f :

supp f = {x ∈ X : f(x) ̸= 0} = {f ̸= 0}.

If the support of f is compact in X, f is said to be compactly supported. Following this definition, any function

defined on a closed interval [a, b] can be extended to a compactly supported function on R.
The set of all continuous compactly supported functions on X is denoted by Cc(X). If f ∈ Cc(X), then f

is uniformly continuous on supp f . Note that f = 0 outside supp f , we have that f is uniformly continuous on

X, which implies Cc(X) ⊂ C0(X). Furthermore, by extreme value theorem, f has maximum and minimum

on supp f , which implies that f is uniformly bounded on X, i.e. maxx∈X |f(x)| <∞.

Let (X,A , µ) be a measure space where X is a topological space. Following the discussion above, we have

C∞
c (X) ⊂ L∞(X,A , µ) since every f ∈ C∞

c (X) satisfies ∥f∥∞ = maxx∈X |f(x)| ≤ ∞. Furthermore, if every

compact set in X has finite measure, i.e. µ(K) < ∞ for all compact K ⊂ X, then the compactly supported

function are always p-integrable:

∥f∥p =

(∫
X

|f |pdµ
)1/p

=

(∫
supp f

|f |pdm
)1/p

≤ µ(supp f)1/p∥f∥∞ <∞.
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Proposition 1.4 (Convolution of compactly supported functions). Let f, g : Rn → R.
(i) If f, g ∈ L1(Rn), then supp(f ∗ g) ⊂ supp f + supp g := {x+ y : x ∈ supp f, y ∈ supp g}. Furthermore,

if both f and g are compactly supported on R, then f ∗ g is also compactly supported. In this case,

supp(f ∗ g) ⊂ supp f + supp g.

(ii) Let 1 ≤ p ≤ ∞, and let k ∈ N0. If f ∈ Ck
c (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ Ck

0 (Rn). Furthermore,

differentiation commutes with convolution, i.e.,

∂α(f ∗ g) = ∂αf ∗ g, ∀|α| ≤ k,

(iii) Let 1 ≤ p ≤ ∞. If f ∈ C∞
c (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ C∞

0 (Rn). Similarly, differentiation

commutes with convolution, i.e., ∂α(f ∗ g) = ∂αf ∗ g for multi-indices α.

Remark. Combining (i) and (ii)/(iii), we obtain a useful conclusion. Let k ∈ N0 ∪ {∞}. If f ∈ Ck
c (Rn) and

g ∈ L1(Rn) is compactly supported, then f ∗ g ∈ Ck
c (Rn).

Proof. (i) Let f, g ∈ L1(Rn), and take any x ∈ Rn. Then

(f ∗ g)(x) =
∫
Rn

f(x− y)g(y) dy =

∫
(x−supp f)∩supp g

f(x− y)g(y) dy.

For x /∈ supp f + supp g, we have (x− supp f) ∩ supp g = ∅, which implies (f ∗ g)(x) = 0. Hence

(f ∗ g)(x) ̸= 0 ⇒ x ∈ supp f + supp g ⇒ supp(f ∗ g) ⊂ supp f + supp g.

If f, g ∈ Cc(Rn), then supp f and supp g are compact in Rn. Define ϕ(x, y) = x + y, which is a continuous

map on R2n. Then supp f + supp g = ϕ(supp f × supp g) is also compact. Consequently, supp f + supp g is

closed, and its closed subset supp(f ∗ g) is also compact. which implies f ∗ g ∈ Cc(Rn).

(ii) Step I: We first show the case k = 0. Let q = p/(p−1). Note that f is continuous and compact supported,

then m(supp f) <∞, f is uniformly continuous, and ∥f∥∞ = maxx∈supp f |f(x)| <∞. By Hölder’s inequality,

for all x ∈ Rn, we have∫
Rn

|f(x− y)| |g(y)| dy ≤ ∥f∥q∥g∥p ≤ m
(
supp f

)1/q∥f∥∞∥g∥p <∞.

Then f ∗ g is well-defined on Rn. To show uniform continuity of f ∗ g, we fix ϵ > 0 and let η be such that

|x− x′| < η implies |f(x)− f(x′)| < ϵ. Then

|(f ∗ g)(x)− (f ∗ g)(x′)| =
∣∣∣∣∫

Rn

[f(x− y)− f(x′ − y)] g(y) dy

∣∣∣∣
≤ 2m

(
supp f

)1/q ∥g∥p ϵ.
Step II: We prove the case k = 1. It suffices to show the interchangeability of derivative and integral.

Given any quantity h > 0, we have

(f ∗ g)(x+ hei)− (f ∗ g)(x)
h

=

∫
Rn

f(x+ hei − y)− f(x− y)

h
g(y) dy. (1.2)

Since f ∈ C1
c (Rn), by Lagrange’s mean value theorem, there exists ξ ∈ [0, 1] such that∣∣∣∣f(x+ hei − y)− f(x− y)

h

∣∣∣∣ = |∂xif(x+ ξhei − y)| , (1.3)

6



Note that ∂xi
f is also continuous and compactly supported on Rn, the RHS of (1.3) is bounded by ∥∂xi

f∥∞,

and the integrand in (1.2) is dominated by an integrable function ∥∂xi
f∥∞g. Using Lebesgue’s dominate

convergence theorem, we have

lim
h→0

∫
Rn

f(x+ hei − y)− f(x− y)

h
g(y) dy =

∫
Rn

∂f

∂xi
(x− y)g(y) dy.

Therefore ∂xi
(f ∗ g) = ∂xi

f ∗ g. Since ∂xi
f ∈ Cc(Rn), we have ∂xi

(f ∗ g) ∈ C0(Rn), and f ∗ g ∈ C1
0 (Rn).

Step III: Use induction. Suppose our conclusion holds for Ck−1
c (Rn). For each f ∈ Ck

c (Rn) ⊂ Ck−1
c (Rn),

∂k−1f ⊂ C1
c (Rn). By Step II, for any |α| = k − 1,

∂α+ei(f ∗ g) = ∂xi(∂
α(f ∗ g)) = ∂xi(∂

αf ∗ g) = (∂α+eif) ∗ g,

which is uniformly continuous on Rn. Hence f ∗ g ∈ Ck
0 (Rn).

(iii) Note that C∞
c (Rn) =

⋂∞
k=0 C

k
c (Rn), we have ∂α(f ∗ g) = ∂αf ∗ g for all α ∈ Nn

0 . Following Step II,

∂αf ∈ Cc(Rn) implies ∂α(f ∗ g) ∈ C0(Rn) for all α ∈ Nn
0 . Hence f ∗ g ∈

⋂∞
k=0 C

k
0 (Rn) = C∞

0 (Rn).

Review: Translation operators. Let X be a vector space, let Y X be the set of functions f : X → Y , and

let s be a vector in X. The translation operator τs : Y
X → Y X is defined as

(τsf)(x) = f(x− s), ∀f ∈ Y X .

Proposition 1.5. Let 1 ≤ p <∞. For any f ∈ Cc(Rn),

lim
s→0

∥τsf − f∥p = 0. (1.4)

Proof. Let f ∈ Cc(Rn), and let B1 be the closed unit ball in Rn. The collection of functions {τsf : |s| ≤ 1}
has a common support

K =
⋃

|s|≤1

supp(τsf) = supp f +B1 = {x+ y : x ∈ supp f, y ∈ B1} = ϕ(supp f ×B1),

which is compact as the image of a compact set under a continuous map ϕ : R2n → Rn, (x, y) 7→ x+ y.

By uniform continuity of f , given ϵ > 0, there exists δ > 0 such that |f(x)− f(y)| < ϵ for all |x− y| < δ.

Then for any s with |s| < |min(δ, 1)|, we have

∥τsf − f∥pp =

∫
K

|f(x− s)− f(x)|pdx ≤ µ(K) ϵp.

Since µ(K) <∞, and ϵ is arbitrary, we conclude that ∥τsf − f∥p → 0 as s→ 0.

Review: Mollifier. A mollifier on Rn is a symmetric function η ∈ C∞
c (Rn) supported on the closed unit

ball B1 = {x ∈ Rn : |x| ≤ 1} with
∫
Rn η dm = 1. For example, the standard mollifier is defined as

η(x) =
1

Z
exp

(
1

|x|2 − 1

)
χB1

(x), where Z =

∫
|t|≤1

exp

(
1

|t|2 − 1

)
dt.

For each ϵ > 0, we set

ηϵ(x) =
1

ϵn
η
(x
ϵ

)
⇒

∫
Rn

ηϵ(x) dx = 1, supp(ηϵ) ⊂ B(0, ϵ).
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Now we provide an important approximation result using compactly supported smooth functions.

Proposition 1.6. For 1 ≤ p <∞, C∞
c (Rn) is dense in Lp(Rn).

Proof. Let f ∈ Cc(Rn). We choose a mollifier η ∈ C∞
c (Rn), and define ηϵ(x) = 1

ϵn η
(
x
ϵ

)
for ϵ > 0. By

Proposition 1.4, f ∗ ηϵ ∈ C∞
c (Rn), and

∫
Rn

|(f ∗ ηϵ)(x)− f(x)|p dx =

∫
Rn

∣∣∣∣∣
∫
|y|≤ϵ

(f(x− y)− f(x))ηϵ(y) dy

∣∣∣∣∣
p

dx

≤
∫
Rn

∫
|y|≤ϵ

|f(x− y)− f(x)|p ηϵ(y) dydx (By Jensen’s inequality)

=

∫
|y|≤ϵ

ηϵ(y)∥τyf − f∥pp dy

≤ sup
y:|y|≤ϵ

∥τyf − f∥pp.

which converges to 0 as ϵ→ 0 by Proposition 1.5. Since Cc(Rn) is dense in Lp(Rn), the result follows.

Application I: continuity of translation operators in Lp-spaces. The limit (1.4) in Proposition 1.5

remains zero for all f ∈ Lp(R). We fix ϵ > 0, so there exists g ∈ C∞
c (R) such that ∥f − g∥∞ < ϵ/3 by

Proposition 1.6. Choose δ such that ∥τsg − g∥p < ϵ/3 for all |s| < δ. Then for all |s| < δ,

∥τsf − f∥p ≤ ∥τsf − τsg∥p + ∥τsg − g∥p + ∥g − f∥p = 2∥f − g∥+ ∥τsg − g∥p < ϵ.

Application II: uniform continuity of convolution. Let 1
p +

1
q = 1 be Hölder conjugates. If f ∈ Lp(Rn)

and g ∈ Lq(Rn), then f ∗ g ∈ C0(Rn). Given ϵ > 0, we choose δ > 0 such that ∥τsf − f∥p < ϵ/∥g∥q for all

|s| ≤ δ. Then one have

|(f ∗ g)(x− s)− (f ∗ g)(x)| ≤
∫
Rn

|f(x− s− y)− f(x− y)| |g(y)| dy ≤ ∥τsf − f∥p∥g∥q < ϵ

for all x ∈ Rn and all |s| < δ. Clearly, f ∗ g is uniformly continuous on Rn.

Application III: uniform continuity of convolution on bounded sets. If f ∈ Lp(Rn) is compactly

supported, and g ∈ Lq
loc(Rn), we have f ∗ g ∈ C(Rn). We fix ϵ > 0 and R > 0, choose r > 0 such that

supp f ⊂ B(0, r), and choose δ > 0 such that ∥τsf − f∥p < ϵ/∥gχB(0,R+r)∥q for all |s| < δ. Then

|(f ∗ g)(x)− (f ∗ g)(x′)| ≤
∫
B(0,R+r)

|f(x− y)− f(x′ − y)| |g(y)| dy ≤ ∥τx−x′f − f∥p∥gχB(0,R+r)∥q < ϵ

for all |x|, |x′| < R with |x− x′| < δ. Hence f ∗ g is uniformly continuous on the open ball O(0, R).

In addition, if f ∈ C∞
c (Rn) and g ∈ L1

loc(Rn), we have f ∗ g ∈ C∞(Rn). This result can be shown by

adapting the proof of Proposition 1.4.
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1.2 Local Mollification

In this section we study the approximation of locally integrable functions. Our discussion is based on a bounded

open region U ⊂ Rn. Given any ϵ > 0, we define

U ϵ = {x ∈ U : d(x, ∂U) > ϵ} .

Since U is open, U ϵ is nonempty for sufficiently small ϵ > 0. In addition, the continuity of d(·, ∂U) implies

that U ϵ is also an open region. Furthermore, given any precompact open set V ⋐ U , since d(V , ∂U) > 0, we

can find ϵ > 0 such that V ⋐ U ϵ ⋐ U .

Definition 1.7 (Mollification). Given u ∈ L1
loc(U), define its mollification by

uϵ := ηϵ ∗ u,

where we abuse the notation u in this expression to denote the zero extension of u : U → R on Rn. The value

of this mollification in U ϵ is given by

uϵ(x) =

∫
B(x,ϵ)

ηϵ(x− y)u(y) dy =

∫
B(0,1)

η(z)u(x+ ϵz) dz. (1.5)

Remark. The mollification uϵ is smooth in U ϵ. For any x ∈ U ϵ, we take δ > 0 such that B(x, δ) ⋐ U ϵ.

Then uϵ = ηϵ ∗ χB(x,ϵ+δ)u in B(x, δ). Since u ∈ L1
loc(U), by Proposition 1.4 (iii), uϵ is infinitely continuously

differentiable at x. Note that differentiability is a local property, we conclude that uϵ ∈ C∞(U ϵ).

Proposition 1.8 (Properties of mollification). Let u ∈ L1
loc(U).

(i) uϵ → u a.e. on U as ϵ ↓ 0.

(ii) If u ∈ C(U), then uϵ → u uniformly on compact subsets of U .

(iii) If 1 ≤ p <∞ and u ∈ Lp
loc(U), then uϵ → u in Lp

loc(U).

Proof. (i) According to Lebesgue’s differentiation theorem, we have

lim
r↓0

1

rn

∫
B(x,r)

|u(y)− u(x)| dy = 0

for a.e. x ∈ U . Since x ∈ U ϵ for sufficiently small ϵ > 0, we have

lim
ϵ↓0

|uϵ(x)− u(x)| ≤ lim
ϵ↓0

∫
B(x,ϵ)

ηϵ(x− y)|u(y)− u(x)| dy

≤ lim
ϵ↓0

1

ϵn

∫
B(x,ϵ)

∥η∥∞|u(y)− u(x)| dy = 0, for a.e. x ∈ U.

Consequently, we have uϵ → u a.e. on U as ϵ ↓ 0.

(ii) Given a compact K ⊂ U , we choose δ > 0 sufficiently small such that K ⊂ Uδ. Since u is a continuous

function, the bad set E(ηϵ, u) is empty. Then for all ϵ ∈ (0, δ], one have

sup
x∈K

|uϵ(x)− u(x)| = sup
x∈K

∣∣∣∣∣
∫
B(0,1)

η(z) (u(x+ ϵz)− u(x)) dz

∣∣∣∣∣
≤ sup

x∈K
sup

z∈B(0,1)

|u(x+ ϵz)− u(x)|

Since x, x+ ϵz ∈ Uδ, we have |u(x+ ϵz)− u(x)| ⇒ 0 by uniform continuity of u on U
δ
.
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(iii) Given any pre-compact set V ⋐ U , we first choose a pre-compact subset W of U such that V ⋐ W ⋐ U .

We claim that, for sufficiently small ϵ > 0, we have ∥uϵ∥Lp(V ) ≤ ∥u∥Lp(W ). To this end, we note that

|uϵ(x)| =

∣∣∣∣∣
∫
B(x,ϵ)

ηϵ(x− y)u(y) dy

∣∣∣∣∣ ≤
∫
B(x,ϵ)

ηϵ(x− y)1−1/pηϵ(x− y)1/p|u(y)| dy

≤
(∫

B(x,ϵ)

ηϵ(x− y) dy︸ ︷︷ ︸
=1

)1−1/p
(∫

B(x,ϵ)

ηϵ(x− y)|u(y)|p dy

)1/p

.

We choose ϵ > 0 such that V ⋐W ϵ. Then

∥uϵ∥pLp(V ) ≤
∫
V

(∫
B(x,ϵ)

ηϵ(x− y)|u(y)|p dy

)
dx ≤

∫
W

(∫
B(y,ϵ)

ηϵ(x− y) dx

)
|u(y)|p dy = ∥u∥pLp(W ).

Now we fix δ > 0, and choose g ∈ C(W ) such that ∥f − g∥Lp(W ) < δ/2. Then

∥f ϵ − f∥Lp(V ) ≤ ∥f ϵ − gϵ∥Lp(V ) + ∥gϵ − g∥Lp(V ) + ∥g − f∥Lp(V )

≤ ∥gϵ − g∥Lp(V ) + 2∥g − f∥Lp(W ) ≤ ∥gϵ − g∥Lp(V ) + δ.

By (ii), gϵ ⇒ g on V as ϵ ↓ 0, hence lim supϵ↓0 ∥f ϵ − f∥Lp(V ) ≤ δ.

Remark. If U is bounded and u ∈ Lp(U), we can extend u to Rn to conclude that uϵ → u in Lp
loc(Rn). Since

U ⋐ Rn, we have u′ → u in Lp(U).

Now we provide an application of mollification.

Lemma 1.9. If v ∈ L1
loc(U), and ∫

U

vϕ dm = 0 ∀ϕ ∈ C∞
c (U), (1.6)

then v = 0 a.e..

Proof. Let K be a compact subset of U , and choose φ ∈ C∞
c (U) such that 0 ≤ φ ≤ 1, and φ ≡ 1 on K. [We

will show the existence of such function in Lemma 1.10.] By assumption (1.5), we have

(ηϵ ∗ vφ)(x) =
∫
Rn

ηϵ(x− y)φ(y)v(y) dy =

∫
U

ηϵ(x− y)φ(y)︸ ︷︷ ︸
ϕϵ,x(y)

v(y) dy = 0,

since ϕϵ,x(·) = ηϵ(x − ·)φ(·) ∈ C∞
c (U). By letting ϵ → 0, we obtain the limit ηϵ ∗ vφ

L1→ φv = 0 a.e..

Consequently, we have v = 0 a.e. on all compact subsets K of U .

Define Kr = {x ∈ Rn : d(x, U c) ≥ 2/r and |x| ≤ r}. Then Kr ⊂ U is compact, and U =
⋃∞

r=1Kr. Since

v = 0 a.e. on all Kr, we have

m({v = 0}) = m

( ∞⋃
r=1

Kr ∩ {v = 0}

)
= lim

r→∞
m(Kr ∩ {v = 0}) = 0.

Hence v = 0 a.e. on U .

Remark. Due to the property (1.5), the functions in the class C∞
c (U) of compactly supported smooth functions

are also called test functions.

10



1.3 Application: Smooth Partition of Unity

In this, section we employ the mollification approach to construct partitions of unity. These technical results

are later used to obtain global properties from local ones.

Lemma 1.10 (C∞-Urysohn lemma). Let U be an open subset of Rn, and let K be a compact subset of U .

Then there exists a function φ ∈ C∞
c (Rn) such that 0 ≤ φ ≤ 1, φ ≡ 1 on K, and suppφ ⊂ U .

Proof. Given ϵ > 0, we define

Kϵ := {x ∈ Rn : d(x,K) ≤ ϵ}.

Choose ϵ > 0 so small that K2ϵ ⊂ U , and let φ = ηϵ ∗ χKϵ
. By properties of convolution, φ ∈ C∞

c (Rn),

0 ≤ φ ≤ 1, and φ ≡ 1 on K. Moreover, suppφ ⊂ supp ηϵ +Kϵ ⊂ K2ϵ ⊂ U ,

Next we introduce a technical lemma in topology, which asserts that we are able to “shrink” a finite open

cover of a closed subset of Rn.

Lemma 1.11. Let U ⊂ Rn, and let {Ui}Ni=1 be a collection of open subsets of Rn such that U ⊂
⋃N

i=1 Ui.

Then there exists a collection {Vi}Ni=1 of open subsets of Rn such that Vi ⊂ Ui, i = 1, · · · , N and U ⊂
⋃N

i=1 Vi.

Proof. We proceed by substituting the elements of the cover of U one by one. Let A1 = U\(U2 ∪ · · · ∪ UN ).

Then A1 is a closed set contained in U1. By normality of Rn, we can choose an open set V1 containing A1

such that V 1 ⊂ U1. Then we obtain a cover {V1, U2, · · · , UN} of U .

At the kth step, we are given open sets V1, · · · , Vk−1 such that {V1, · · · , Vk−1, Uk, · · · , UN} covers U . We

let Ak = U\(V1 ∪ · · · ∪ Vk−1 ∪ Uk+1 ∪ · · · ∪ UN ), and choose an open set Vk such that Ak ⊂ Vk ⊂ V k ⊂ Uk.

Then {V1, · · · , Vk, Uk+1, · · · , UN} is also an open cover of U . At the nth step, our result is proved.

Remark. In addition, if U is bounded, we may assume that each Ui is bounded. As a result, we can obtain a

shrunk open cover {Vi}Ni=1 of U such that Vi ⋐ Ui. In other words, each V i is a compact set.

Theorem 1.12 (Partition of unity). Let U be a bounded, open subset of Rn, and let (Vi)
N
i=1 be a collection of

open sets in Rn such that U ⋐
⋃N

i=1 Vi. Then there exists a family of smooth functions (ψi)
N
i=1 : Rn → [0, 1]

such that ψi ∈ C∞
c (Vi) for all i = 1, · · · , N , and

∑N
i=1 ψi ≡ 1 on U .

Remark. The family (ψi)
N
i=1 is called a smooth partition of unity subordinate to the open sets (Vi)

N
i=1.

Proof. By Lemma 1.11, we take a collection (Ki)
N
i=1 of compact subsets of Rn such that Ki ⊂ Vi, i = 1, · · · , N

and U ⊂
⋃N

i=1Ki. By Lemma 1.10, for each i = 1, · · · , N , there exists a smooth function φi : Rn → [0, 1] such

that φ ≡ 1 on Ki, and suppφi ⊂ Vi. We then define

ψ1 = φ1, ψ2 = (1− φ1)φ2, · · · , ψN = (1− φ1) · · · (1− φN−1)φN .

Then 0 ≤ ψi ≤ 1, and ψi ∈ C∞
c (Vi) for all i = 1, · · · , N . Furthermore,

1−
N∑
i=1

ψi = (1− φ1)(1− φ2) · · · (1− φN ).

For each point x ∈ U ⊂
⋃N

i=1Ki, at least one factor (1− φi) vanishes, and we have
∑N

i=1 ψi ≡ 1 on U .
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2 Sobolev Spaces

2.1 Hölder Spaces

Assume that U ⊂ Rn is open and γ ∈ (0, 1]. A function u : U → R is said to be Hölder continuous with

exponent γ, if there exists some constant C > 0 such that

|u(x)− u(y)| ≤ C|x− y|γ , ∀x, y ∈ U.

In this section, we first discuss the Hölder spaces, which contain functions with some nice properties.

Definition 2.1 (Hölder spaces). Let U ⊂ Rn be open, and 0 < γ ≤ 1. If u : U → R is a bounded and Hölder

continuous function, we define

∥u∥C(U) := sup
x∈U

|u(x)|, [u]C0,γ(U) = sup
x,y∈U :x̸=y

|u(x)− u(y)|
|x− y|γ

,

where [·]C0,γ(U) is the γ
th-Hölder seminorm. The γth-Hölder norm is defined as

∥u∥C0,γ(U) = ∥u∥C(U) + [u]C0,γ(U).

Let k ∈ N0. The Hölder space Ck,γ(U) consists of all functions u ∈ Ck(U) for which the norm

∥u∥Ck,γ(U) :=
∑

α:|α|≤k

∥∂αu∥C(U) +
∑

α:|α|=k

[∂αu]C0,γ(U)

is finite. In other words, Ck,γ(U) contains all k-times continuously differentiable functions whose kth-partial

derivatives are bounded and Hölder continuous with exponent γ.

Remark. One can easily check that Ck,γ(U) is a vector space, and ∥ · ∥Ck,γ(U) is a norm on Ck,γ(U).

Theorem 2.2. The Hölder space Ck,γ(U) is a Banach space.

Proof. It suffices to show completeness of Ck,γ(U) under the norm ∥ · ∥ = ∥ · ∥Ck,γ(U). Let (ul) be a Cauchy

sequence in Ck,γ(U), i.e. ∥ul − um∥ → 0 as i, j → ∞. By completeness of C(U), (ul) converges uniformly to

some u ∈ C(U), and for each |α| ≤ k, the sequence (∂αul) converges uniformly to some function u(α) ∈ C(U).

Consequently, we have ∂αul → ∂αu = u(α) for all |α| ≤ k, and u ∈ Ck(U).

Now it remains to discuss Hölder continuity. Since (ul) is a Cauchy sequence, there exists M > 0 such that

supl∈N ∥ul∥ ≤M . For all |α| = k,

|∂αu(x)− ∂αu(y)|
|x− y|γ

≤ |∂αu(x)− ∂αul(x)|
|x− y|γ

+
|∂αul(x)− ∂αul(y)|

|x− y|γ︸ ︷︷ ︸
≤M

+
|∂αul(y)− ∂αu(y)|

|x− y|γ
.

Since ∂αul ⇒ ∂αu, the first and third terms in the last display converges to zero for all x, y ∈ U . Hence ∂αu

is Hölder continuous with exponent γ. Furthermore,

|∂α(ul − u)(x)− ∂α(ul − u)(y)|
|x− y|γ

= lim
m→∞

|∂α(ul − um)(x)− ∂α(ul − um)(y)|
|x− y|γ

≤ lim
m→∞

[∂α(ul − um)]C0,γ(U)

Since the last bound does not depend on x, y ∈ U , we can obtain [∂α(ul − u)]C0,γ(U) → 0 by letting l → ∞.

Hence ∥ul − u∥ → 0 as l → ∞.
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2.2 Weak Derivatives

Review: Integration by Parts. Let U ⊂ Rn be a open and bounded region with C1 boundary. According

to the divergence theorem, for each vector field u ∈ C1(U,Rn), we have∫
U

(∇ · u) dx =

∫
∂U

u · ν dS,

where ν : ∂Ω → Rn is the outward pointing normal vector field. For u ∈ C1(U), we set u = uei. Then∫
U

∂u

∂xi
dx =

∫
∂U

uνi dS, i = 1, · · · , n.

Now assume we are given a function u ∈ C1(U). If ϕ ∈ C∞(U), we apply the above formula to uϕ:∫
U

u
∂ϕ

∂xi
dx = −

∫
U

∂u

∂xi
ϕdx, i = 1, · · · , n.

More generally, if k ∈ N, u ∈ Ck(U), and α is a multi-index with |α| = k, then∫
U

u(∂αϕ) dx = (−1)|α|
∫
U

(∂αu)ϕdx.

This formula gives rise to the definition of weak derivatives.

Definition 2.3 (Weak derivatives). Assume that u, v ∈ L1
loc(U) and α is a multi-index. Then v is said to be

the αth-weak partial derivative of u, written ∂αu = v, if∫
U

u∂αϕdx = (−1)|α|
∫
U

vϕ dx.

for all test functions ϕ ∈ C∞
c (U).

Remark. Suppose both v and ṽ are αth-weak partial derivatives of u. By applying Lemma 1.9 on v − ṽ, one

can show that the αth-weak partial derivative of u is uniquely defined up to a set of measure zero. Note that

the weak derivatives are only a.e. determined.

Example 2.4. Consider the function u(x) = |x|, which is in L1
loc(R). Then the weak derivative of u on R is

v(x) =

1, x ≥ 0,

−1, x < 0.

Now we verify this claim. Given any test functions ϕ ∈ C∞
c (R), let suppϕ ⊂ [−M,M ]. Then we have∫

R
u(x)ϕ′(x) dx =

∫ M

0

x dϕ(x)−
∫ 0

−M

x dϕ(x)

= −
∫ M

0

ϕ(x) dx+

∫ 0

−M

ϕ(x) dx = −
∫
R
v(x)ϕ(x) dx.

However, the function v ∈ L1
loc(R) has no weak derivative. We argue by contradiction, and assume that there

exists w ∈ L1
loc(R) such that∫

R
v(x)ϕ′(x) dx = −

∫
R
w(x)ϕ(x) dx, ∀ϕ ∈ C∞

c (R).
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Then we have ∫
R
w(x)ϕ(x) dx = −

∫
R
v(x)ϕ′(x) dx = −

∫ ∞

0

ϕ′(x) dx+

∫ 0

−∞
ϕ′(x) dx = 2ϕ(0).

Now we choose a sequence ϕm(x) = exp
(

1
|mx|2−1

)
χ(− 1

m , 1
m ) in C ′

c(R), which satisfies ϕm → e−1χ{0}. If

we replace ϕ by ϕm in the last display and let m → ∞, the LHS and RHS converges to different values, a

contradiction! Hence v is not weakly differentiable.

Now we discuss the equivalence of weak and partial derivatives of differentiable functions.

Lemma 2.5. Suppose a continuous function u : U → R is weakly differentiable, and the weak derivatives

De1u, · · · , Denu are also continuous (thus unique). Then u ∈ C1(U), and the weak derivatives coincide with

the partial ones, in symbols (∂e1u, · · · , ∂enu) = (De1u, · · · , Denu).

Proof. Since differentiation is a local problem, we fix any pre-compact set V ⋐ U and choose ϵ > 0 such that

V ⊂ U ϵ. Then the value of the mollification uϵ inside U ϵ is given by (1.6). For each x ∈ U ϵ, we have

(∂eiuϵ)(x) = (∂eiηϵ ∗ u)(x) =
∫
B(x,ϵ)

(∂eix ηϵ)(x− y)u(y) dy

= −
∫
B(x,ϵ)

(∂eiy ηϵ)(x− y)u(y) dy

=

∫
B(x,ϵ)

ηϵ(x− y)(Deiu)(y) dy = (ηϵ ∗Deiu) (x).

By Proposition 1.8, ϵ ↓ 0 gives uniform convergences uϵ ⇒ u and ∂eiuδ = ηϵ ∗Deiu ⇒ Deiu on the compact

set V . Moreover, for any x ∈ V and any |h| > 0 such that x+ hei ∈ V ,

u(x+ hei)− u(x) = lim
ϵ↓0

(uϵ(x+ hei)− uϵ(x))

= lim
ϵ↓0

∫ h

0

(∂eiuϵ)(x+ tei) dt =

∫ h

0

(Deiu)(x+ tei) dt.

By continuity of Deiu, we have ∂eiu(x) = Deiu(x) for all x ∈ V . Hence u ∈ C1(V ). Since the pre-compact

set V is arbitrary, we have u ∈ C1(U).

Remark. In fact, this proof also provide an approximation approach of weak derivatives. If a function u : U → R
has weak derivative Dαu, we choose any V ⋐W ⋐ U ϵ. Then

(∂αuϵ)(x) = (∂αηϵ ∗ u)(x) =
∫
B(x,ϵ)

(∂αx ηϵ)(x− y)u(y) dy

= (−1)|α|
∫
B(x,ϵ)

(∂αy ηϵ)(x− y)u(y) dy

=

∫
B(x,ϵ)

ηϵ(x− y)(Dαu)(y) dy = (ηϵ ∗Dαu) (x).

Hence ∂αuϵ = ηϵ ∗ Dαu = (Dαu)ϵ on W ⊂ U ϵ. Since Dαu ∈ L1
loc(U) ⊂ L1

loc(W ), by Proposition 1.8,

∂αuϵ → Dαu in L1(V ) as ϵ→ 0. Furthermore, since V ⋐ U is arbitrary, we have

∂αuϵ → Dαu in L1
loc(U) as ϵ→ 0.

This result also gives rise to the following approximation theorem.
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Theorem 2.6 (Characterization of weak derivatives). A function u ∈ L1
loc(U) is weakly differentiable in U if

and only if there is a sequence of functions um ∈ C∞(U) such that um → u and ∂αum → v in L1
loc(U). In

that case the weak derivative of u is given by v = Dαu ∈ L1
loc(U).

Proof. If u is weakly differentiable in U , we can construct a desired sequence by mollification, as is discussed

in the preceding Remark. Conversely, given such a sequence (um), we have∣∣∣∣∫
U

umϕdm−
∫
U

uϕ dm

∣∣∣∣ = ∣∣∣∣∫
suppϕ

(um − u)ϕdm

∣∣∣∣ ≤ ∥ϕ∥∞
∫
suppϕ

|um − u| dm→ 0, ∀ϕ ∈ C∞
c (U).

Consequently, the L1
loc-convergence of um and ∂αum implies∫

U

u∂αϕdm = lim
n→∞

∫
U

um∂
αϕdm = lim

n→∞
(−1)|α|

∫
U

(∂αum)ϕdm = (−1)|α|
∫
U

vϕ dm.

Therefore, u is weakly differentiable, and v = Dαu.

Next we introduce some properties of weak derivatives. Many results from the classical differential calculus

may be extended to weak derivatives.

Proposition 2.7 (Calculus of weak differentiation). Let U be an open subset of Rn.

(i) (Higher-order derivatives). Assume that u ∈ L1
loc(U), and the weak derivatives Dαu and Dβu exist for

multi-indices α, β ∈ Nn
0 . Then if any one of the weak derivatives Dα(Dβu), Dβ(Dαu), Dα+βu exists, all

three weak derivatives exist and are equal.

(ii) (Leibniz product rule). Assume that ψ ∈ C∞(U). If u ∈ L1
loc(U) is weakly differentiable, so is the product

uψ, and the weak gradient is

D(uψ) = u∇ψ + ψDu. (2.1)

More generally, if the weak derivative Dαu exists for α ∈ Nn
0 , then

Dα(uψ) =
∑
β≤α

(
α

β

)
Dβu ∂α−βψ. (2.2)

(iii) (Chain rule). Assume that F ∈ C1(R), and its derivative F ′ ∈ L∞(R) is bounded. If u ∈ L1
loc(U) is

weakly differentiable, so is the composite function F ◦ u, and

D(F ◦ u) = F ′(u) ·Du.

Proof. (i) Using the existence of Dαu and the fact that ∂βϕ ∈ C∞
c (U) for all ϕ ∈ C∞

c (U), one have∫
U

Dαu ∂βϕdm = (−1)|α|
∫
U

u∂α+βϕdm.

Hence Dα+βu exists if and only if Dβ(Dαu) exists, and Dβ(Dαu) = Dα+βu in the weak sense. A symmetric

argument holds with α and β exchanged.

(ii) For any ϕ ∈ C∞
c (U), the function ψϕ ∈ C∞

c (U), and∫
U

(Dxi
u)ψϕdm = −

∫
U

u∂xi
(ψϕ) dm = −

∫
U

u(∂xi
ψ)ϕdm−

∫
U

uψ∂xi
ϕdm.

By definition, we have Dxi(uψ) = (Dxiu)ψ + u∂xiψ, which is the case α = ei of (2.2). Now we prove the

general case by induction. Suppose formula (2.2) is valid for all multi-indices β < α. We choose α = β + ei
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for some |β| = |α| − 1 and i ∈ [n]. Then for any ϕ ∈ C∞
c (U), by the assumption of induction, we have∫

U

uψ∂αϕdm =

∫
U

uψ∂β(∂eiϕ) dm = (−1)|β|
∫
U

∑
γ≤β

(
β

γ

)
Dγu ∂β−γψ ∂xiϕdm.

Using the product rule, we have∫
U

uψ∂αϕdm = (−1)|β|+1
∑
γ≤β

(
β

γ

)∫
U

Dei(Dγu ∂β−γψ)ϕdm

= (−1)|α|
∑
γ≤β

(
β

γ

)∫
U

(
Dγ+eiu ∂α−γ−eiψ +Dγu ∂α−γψ

)
ϕdm

= (−1)|α|
∑

γ≤β+ei

∫
U

((
β

γ − ei

)
Dγu ∂α−γψ +

(
β

γ

)
Dγu ∂α−γψ

)
ϕdm

= (−1)|α|
∫
U

∑
γ≤α

(
α

γ

)
Dγu ∂α−γψ

ϕdm.

(iii) Since F ′ ∈ L∞(R), the function F is globally Lipschitz, and we suppose |F (t) − F (s)| ≤ L|t − s|. By

Theorem 2.6, we choose a sequence um ∈ C∞(U) such that um → u and ∂xi
um → ∂xi

u in L1
loc(U). Let

v = F ◦ u, and vm = F ◦ um ∈ C1(U), with ∂xi
vm = F ′(um)∂xi

um ∈ C(U). If V ⋐ U , then∫
V

|vm − v| dm =

∫
V

|F (um)− F (u)| dm ≤ L

∫
V

|um − u| dm→ 0 as n→ ∞.

Furthermore, for the partial derivatives, we have∫
V

|∂xivm − F ′(u)Dxiu| dm =

∫
V

|F ′(um)∂xium − F ′(u)Dxiu| dm

≤
∫
V

|F ′(um)| |∂eium −Dxi
u| dm+

∫
V

|F ′(um)− F ′(u)| |Dxi
u| dm

≤ L

∫
V

|∂xi
um −Dxi

u| dm+

∫
V

|F ′(um)− F ′(u)| |Dxi
u|︸ ︷︷ ︸

≤2L|Dxi
u| ∈L1(V )

dm.

Using the fact that ∂xium → Dxiu in L1
loc(U) and the Dominated Convergence Theorem, the last display

converges to zero. Since V ⋐ U is arbitrary, we have vm → v and ∂xivm → F ′(u)Dxiu in L1
loc(U). Again by

Theorem 2.6, we have Dxi(F ◦ u) = Dxiv = F ′(u)Dxiu.

Remark. Using a similar approximation argument applied in the proof of (iii), we can show that the product

rule (2.1) holds for all ψ ∈ C1(U) and all weakly differentiable u ∈ L1
loc(U).

Proposition 2.8. Let U be an open subset of Rn, and u ∈ L1
loc(U). If u is weakly differentiable, then both

u+ = max{u, 0} and u− = {−u, 0} are weakly differentiable, and

Du+ =

Du a.e. on {u > 0},
0 a.e. on {u ≤ 0},

Du− =

0 a.e. on {u > 0},
−Du a.e. on {u ≤ 0}.

Proof. For each ϵ > 0, we define Fϵ ∈ C1(R) as follows:

Fϵ(z) =


√
z2 + ϵ2 − ϵ, z > 0,

0, z ≤ 0.
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Then u+ = limϵ↓0 Fϵ(u) in U . Also, the derivative

F ′
ϵ(z) =

 z√
z2+ϵ2

χ(0,∞](z), z > 0,

0, z ≤ 0.

is bounded, and χ{u>0} = limϵ↓0 F
′
ϵ(u). By Proposition 2.7 (iv), for each φ ∈ C∞

c (U),∫
U

F ′
ϵ(u(x))Du(x)φ(x) dx =

∫
U

Fϵ(u(x))Dφ(x) dx.

By domanited convergence theorem, we let ϵ ↓ 0 to obtain∫
U

φχ{u>0}Dudx =

∫
U

u+Dφdx.

Hence χ{u>0}Du is the weak gradient of u+. A similar result for u− is obtained by considering −u.

Remark. According to our result, if u is weakly differentiable in U , then Du = 0 a.e. on {u = 0}. More

generally, Du = 0 a.e. on any set where u is constant. Furthermore, since |u| = u+ + u−, we know that |u| is
also weakly differentiable, and

D|u| =


Du a.e. on {u > 0},
0 a.e. on {u = 0},
−Du a.e. on {u < 0}.

Proposition 2.9 (Generalized product rule). Let U be an open subset of Rn. If u, v ∈ L1
loc(U) are weakly

differentiable, uv ∈ L1
loc(U) and uDv, vDu ∈ L1

loc(U ;Rn), then uv is weakly differentiable, and

D(uv) = uDv + vDu. (2.3)

Proof. We first assume that u, v are bounded in U . By Theorem 2.6, take a sequence of functions um ∈ C∞(U)

with um → u and ∇um → Du in L1
loc(U). By the product rule (2.1), we see that∫

U

umv ∂xi
ϕdx = −

∫
U

(v∂xi
um + umDxi

v)ϕdx.

Since u, v are bounded, we let m→ ∞ to obtain (2.3). For the general case, we take uk = max{min{u, k},−k}
and vk = max{min{v, k},−k}, where k ∈ N. Then ukvk → uv with |ukvk| ≤ |uv|, and by Proposition 2.8,

ukDvk + vkDuk → uDv + vDu with |ukDvk + vkDuk| ≤ |uDv| + |vDu|. The result follows by applying

dominated convergence theorem when k → ∞.

Proposition 2.10 (Generalilzed chain rule). Let F be a continuous function on R with piecewise continuous

first derivative F ′ ∈ L∞(R). If u ∈ L1
loc(U) is weakly differentiable, so is the composite function F ◦ u.

Furthermore, if K ⊂ R is the set of knots of F , then

D(F ◦ u) =

F ′(u) ·Du on u /∈ K,

0 on u ∈ K.

Proof. By an induction argument, the proof is reduced to the case of one knot which we may take without

loss of generality at the origin, i.e. K = {0}. Let F1, F2 ∈ C1(R) satisfy F ′
1, F

′
2 ∈ L∞(R), with F1(u) = F (u)

for u ≥ 0, and F2(u) = F (u) for u ≤ 0. Then we have F (u) = F1(u
+) + F2(−u−), and the result follows from

Proposition 2.7 (iv) and the Remark (i) under Proposition 2.8.
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2.3 Sobolev Spaces and Approximation

Sobolev spaces consist of functions whose weak derivatives belong to Lp. These spaces provide one of the most

useful settings for the analysis of PDEs.

Definition 2.11 (Sobolev spaces). Let U be an open subset of Rn, k ∈ N, and 1 ≤ p ≤ ∞. The Sobolev space

W k,p(U) consists of all locally integrable functions u : U → R such that for each multi-index α with |α| ≤ k,

the weak derivative Dαu exists and belongs to Lp(U). We identify functions in W k,p(U) which agree a.e., and

define the norm of u ∈W k,p(U) to be

∥u∥Wk,p(U) :=


(∑

|α|≤k

∫
U
|Dαu|p dm

)1/p
, 1 ≤ p ≤ ∞,

max|α|≤k ess supU |Dαu|, p = ∞.

We write Hk(U) =W k,2(U), where we define the inner product ⟨u, v⟩Hk(U) :=
∑
|α|≤k

∫
U

DαuDαv dm.

Remark. (I) We need to check that ∥ · ∥Wk,p(U) is a norm on W k,p(U). Nonnegativeness and homogeneity of

∥ · ∥Wk,p(U) are clear, and the triangle inequality is also clear when p = ∞. Hence we only verify the triangle

inequality in the case 1 ≤ p ≤ ∞. By Minkowski’s inequality,

∥u+ v∥Wk,p(U) =

∑
|α|≤k

∥Dαu+Dαv∥pLp(U)

1/p

≤

∑
|α|≤k

(
∥Dαu∥Lp(U) + ∥Dαv∥Lp(U)

)p1/p

≤

∑
|α|≤k

∥Dαu∥pLp(U)

1/p

+

∑
|α|≤k

∥Dαv∥pLp(U)

1/p

= ∥u∥Wk,p(U) + ∥v∥Wk,p(U).

(II) Corresponding to Propositiona 2.7 and 2.8, the following properties of Sobolev spaces holds:

(i) If k ≤ l, then W k,p(U) ⊂W l,p(U). If u ∈W k,p(U), then Dαu ∈W k−|α|,p(U) for all |α| ≤ k.

(ii) If u ∈W k,p(U) and ψ ∈ C∞(U), then uψ ∈W k,p(U);

(iii) If u ∈W 1,p(U) and F ∈ C1(R), then F ◦ u, u+, u−, |u| ∈W 1,p(U).

The Sobolev spaces have a nice structure.

Theorem 2.12. For each k ∈ N and 1 ≤ p ≤ ∞, the Sobolev space W k,p(U) is a Banach space.

Proof. We need to show that W k,p(U) is complete. Let (um)∞m=1 be a Cauchy sequence in W k,p(U). Then for

each |α| ≤ k, (Dαum)∞m=1 is a Cauchy sequence in Lp(U). By completeness of Lp(U), there exists u(α) ∈ Lp(U)

such that Dαum → u(α) in Lp(U) for each |α| ≤ k, and in particular um → u in Lp(U) when α = 0.

Clearly, if we can show that u ∈ W k,p(U) and Dαu = u(α) for all |α| ≤ k, the result follows. To this end,

we let q = p
p−1 be the Hölder conjugate, and fix any ϕ ∈ C∞

c (U). By Hölder’s inequality,∣∣∣∣∫
U

(um − u)∂αϕdx

∣∣∣∣ ≤ ∥um − u∥Lp(U)∥∂ϕ∥Lq(U) → 0, and (2.4)∣∣∣∣∫
U

(Dαum − u(α))ϕdx

∣∣∣∣ ≤ ∥Dαum − u(α)∥Lp(U)∥ϕ∥Lq(U) → 0. (2.5)

These two limits imply the interchangeability of the limit and the integral:∫
U

u∂αϕdx = lim
m→∞

∫
U

um∂
αϕdx = (−1)|α| lim

m→∞

∫
U

Dαumϕdx = (−1)|α|
∫
U

u(α)ϕdx.

Hence our assertion is valid. Since Dαum → Dαu in Lp(U) for all |α| ≤ k, we have um → u in W k,p(U).
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Definition 2.13 (Local Sobolev spaces). Let U be an open subset of Rn, k ∈ N, and 1 ≤ p ≤ ∞. The

local Sobolev space W k,p
loc (U) consists of all locally integrable functions u : U → R whose restriction to any

pre-compact V ⋐ U lies in W k,p(V ), i.e.

W k,p
loc (U) =

{
u ∈ L1

loc(U) : ∀V ⋐ U, u|V ∈W k,p(V )
}
.

We say a sequence of functions um ∈W k,p
loc (U) converges to u in W k,p

loc (U) if ∥um − u∥Wk,p(V ) → 0 as m→ ∞
for all pre-compact V ⋐ U .

Remark. To summarize, for k ∈ N and 1 ≤ p ≤ ∞, there are the, in general strict, inclusions

Lp(U) ⊂ Lp
loc(U) ⊂ L1

loc(U)

∪ ∪ ∪
W k,p(U) ⊂ W k,p

loc (U) ⊂ W k,1
loc (U)

Next we are going to discuss approximation of Sobolev functions.

Theorem 2.14 (Local approximation by smooth functions). Assume 1 ≤ p <∞. For each u ∈W k,p(U), the

function uϵ = ηϵ ∗ u(ϵ) ∈ C∞(U) for each ϵ > 0, and uϵ → u in W k,p
loc (U) as ϵ→ 0.

Proof. According to Proposition 1.8 and the Remark under Lemma 2.5, uϵ → u and Dαuϵ → Dαu in Lp(V )

as ϵ→ 0 for all |α| ≤ k and all pre-compact V ⋐ U . Then

∥uϵ − u∥p
Wk,p(V )

=
∑
|α|≤k

∥Dαuϵ −Dαu∥pLp(V ) → 0 as ϵ→ 0. (2.6)

Hence uϵ → u in W k,p
loc (U) as ϵ→ 0.

Remark. If U = Rn, the convergence (2.6) remains valid by Proposition 1.5 when we replace V by Rn.

Consequently, C∞(Rn) ∩ W k,p(Rn) is dense in W k,p(Rn) for k ∈ N and 1 ≤ p < ∞. Now we assume

u ∈ C∞(Rn) ∩W k,p(Rn), and choose ϕ ∈ C∞
c (Rn) such that ϕ(x) = 1 for |x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 2.

Let ϕR = ϕ(x/R). Then uR := ϕRu ∈ C∞
c (Rn), and by Leibniz rule, we have

DαuR = ϕRD
αu+

1

R
hR → Dαu, as R→ ∞,

where hR is bounded in Lp uniformly in R. Hence uR → u in W k,p(Rn) as R → ∞. Therefore, the space

C∞
c (Rn) is dense in W k,p(Rn) for k ∈ N and 1 ≤ p <∞.

We denote by W k,p
0 (U) the closure of C∞

c (U) in W k,p(U):

W k,p
0 (U) := C∞

c (U)
∥·∥

Wk,p(U)

For the case U = Rn, we have the result W k,p
0 (Rn) = W k,p(Rn). However, we do not have a similar global

approximation conclusion for general U ⊂ Rn.

Theorem 2.15 (Global approximation by smooth functions on bounded domains). Assume that U ⊂ Rn

is open and bounded, and 1 ≤ p < ∞. Then for each u ∈ W k,p(U), there exists a sequence of functions

um ∈ C∞(U) ∩W k,p(Rn) such that um → u in W k,p(U) as m→ ∞.

Proof. We write Ur = {x ∈ U : d(x, ∂U) > 1/r}, and Vr := Ur+3\Ur+1, where r = 1, 2, · · · . Take any open

V0 ⋐ U4 such that U =
⋃∞

r=0 Vr, and choose a smooth partition of unity ϕr : U → [0, 1] subordinate to (Vr)
∞
r=0:

ϕr ∈ C∞
c (Vr),

∞∑
r=0

ϕr = 1 on U.
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Then for any u ∈W k,p(U), we have ϕru ∈W k,p(U) and supp(ϕru) ∈ Vr. Now fix δ > 0, and choose ϵr > 0 so

small that ur = η ∗ (ϕru) satisfies

∥ur − ϕru∥Wk,p(U) ≤
δ

2r+1
, r = 0, 1, 2, · · · ; suppur ⊂ Ur+4\Ur, r = 1, 2, · · · .

Let v =
∑∞

r=0 u
r. Then v ∈ C∞(U), since for each open set V ⋐ U there are at most finitely many nonzero

terms in the sum. Furthermore,

∥v − u∥Wk,p(V ) ≤
∞∑
r=0

∥ur − ϕru∥Wk,p(U) ≤ δ

∞∑
r=1

1

2r+1
= δ.

Taking the supremum over open sets V ⋐ U , we conclude that ∥v − u∥Wk,p(U) ≤ δ.

Now we discuss the approximation of Sobolev functions even up to the boundary of domain U . To prepare,

we introduce some regularity conditions on boundaries.

Definition 2.16 (Regularity of boundaries). For a pre-compact U ⋐ Rn, its boundary ∂U is said to be

Lipschitz, if for each x0 ∈ ∂U , there exists a radius r > 0 and a Lipschitz continuous map γ : Ω → R, defined
on an open set Ω ⊂ Rn−1 with Lipschitz constant, say Lγ , such that, after possibly relabeling and reorienting

some coordinate axes, (i) the part of the boundary ∂U inside the closed ball B(x0, r) is the graph of γ, and

(ii) the part of U inside the closed ball B(x0, r) is of the simple form

U ∩B(x0, r) =
{
x ∈ B(x0, r) : xn > γ(x1, · · · , xn)

}
.

In addition, for any k ∈ N ∪ {∞}, ∂U is said to be Ck if γ ∈ Ck(Ω).

Remark. By compactness of ∂U , we can choose finitely many tuples (x01, r1, γ1), · · · , (x0N , rN , γN ) such that the

open balls B0(x01, r1), · · · .B0(x0N , rN ) cover ∂U . Consequently, the Lipschitz maps γ we choose are uniformly

Lipschitz. In other words, for all x0 ∈ ∂U , the map γ we choose to describe the local geometry of ∂U has

Lipschitz constant smaller than γ := max1≤j≤N γj .

In a domain U whose boundary ∂U is Lipschitz, we can approximate a Sobolev function using functions

smooth up to the boundary, i.e. the functions in C∞(U).

Theorem 2.17 (Global approximation by functions smooth up to the boundary of Lipschitz domains). Assume

that U ⊂ Rn is open and bounded, ∂U is Lipschitz, and 1 ≤ p < ∞. Then for each u ∈ W k,p(U), there exists

a sequence of functions um ∈ C∞(U) such that um → u in W k,p(U) as m→ ∞.

Proof. Step I. In this step, we construct a space for mollification within U . Given x0 ∈ ∂U , we pick a radius

r > 0 and a Lipschitz map γ whose graph is part of ∂U inside B(x0, r). Define the closed horizontal double

cone C̃0 and open upward cone C0:

C̃0 = {(x′, xn) ∈ Rn : |xn| ≤ L|x′|}, C0 = {(x′, xn) ∈ Rn : xn > L|x′|}.

Then for any y ∈ ∂U , the translated horizontal double cone C̃y = y + C̃0 contains ∂U ∩ B(y, r(y)), and the

translated open upward cone Cy = y + C0 lies in U within some radius r(y) from y.

Let V = U ∩B0(x0, r/2). For any x ∈ V , define the upward shifted point

xϵ := x+ ϵλen, x ∈ V, ϵ > 0,

where λ >
√
1 + L2 is so large that the ball B(xϵ, ϵ) lies in the upward cone Cx̃ for all 0 < ϵ < 1, where

x̃ ∈ ∂U ∩B(x0, r/2) shares the same horizontal coordinates with x. Moreover, for all ϵ > 0 sufficiently small,

the family B(xϵ, ϵ) is located near x, hence in the open neighborhood W := U ∩B0(x0, r) for all x ∈ V .
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Now we define uϵ(x) = u(xϵ) for all x ∈ V , which is the function u translated a distance λϵ in the en

direction. Write vϵ = ηϵ ∗ uϵ. Then vϵ is not only defined on V , because for any x̃ ∈ ∂U ∩B(x0, r/2),

vϵ(x̃) =

∫
B(x̃,ϵ)

ηϵ(x̃− y)uϵ(y) dy =

∫
B(x̃,ϵ)

ηϵ(x̃− y)u( y + ϵλen︸ ︷︷ ︸
∈B(x̃+ϵλen,ϵ)

) dy.

Since B(x̃ + ϵλen, ϵ) ⊂ Cx̃, v
ϵ(x̃) is well-defined. Consequently, vϵ is also defined on a sufficiently small

neighborhood of x̃ ∈ ∂V ∩ ∂U , and vϵ ∈ C∞(V ).

Step II. We prove that vϵ → u in W k,p(V ). To this end, we take any multi-index |α| ≤ k. Then

∥∂αvϵ −Dαu∥Lp(V ) ≤ ∥∂αvϵ −Dαuϵ∥Lp(V ) + ∥Dαuϵ −Dαu∥Lp(V )

= ∥ηϵ ∗ (Dαuϵ)−Dαuϵ∥Lp(V ) + ∥Dαuϵ −Dαu∥Lp(V )

≤ ∥ηϵ ∗ (Dαu)−Dαu∥Lp(Rn) + ∥Dαuϵ −Dαu∥Lp(Rn)

The first term vanishes as ϵ → 0 by Proposition 1.6, and the second term also vanishes by continuity of

translation operator in Lp-norm.

Step III. We finally prove the global result via partition of unity. Pick δ > 0. By compactness of ∂U , there exist

finitely many points x0i ∈ ∂U , radii ri > 0, corresponding sets Vi = U ∩B0(x0i ,
ri
2 ) and functions vi ∈ C∞(Vi),

where i = 1, · · · , N such that the open balls B0(x0i ,
ri
2 ) form a cover of ∂U , and (by Step II)

∥vi − u∥Wk,p(Vi) < δ.

Choose V0 ⋐ U such that (Vi)
N
i=0 is an open cover U , and v0 ∈ C∞(V 0) such that ∥v0 − u∥Wk,p(V0) < δ by

Theorem 2.14. By taking a smooth partition of unity (ϕi)
N
i=0 subordinate to the open cover, we construct a

smooth function v =
∑N

i=0 ϕivi ∈ C∞(U). Furthermore, for each |α| ≤ k, one have

∥Dαv −Dαu∥Lp(U) ≤
N∑
i=1

∥Dα(ϕivi)−Dα(ϕiu)∥Lp(Vi)

≤
N∑
i=1

∥∥∥∥∥∥
∑
β≤α

(
α

β

)
Dβϕi(D

α−βvi −Dα−βu)

∥∥∥∥∥∥
Lp(Vi)

≤ C

N∑
i=1

∥vi − u∥Wk,p(U) ≤ C(N + 1)δ

for some constant C = C(k, p) > 0. Since δ > 0 can be arbitrarily small, the proof is completed.
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2.4 Absolute Continuity on Lines

In this section, we discuss the relation between the weak partial derivatives and the classical partial derivatives.

Throughout this discussion, the absolute continuity of functions restricted to line segments plays an important

role. Keep in mind that we identify functions that agree a.e..

Theorem 2.18 (ACL characterization). Let 1 ≤ p ≤ ∞ and u ∈ Lp(U). Then u ∈ W 1,p(U) if and only if u

has a representative u that has the ACL property, i.e. u is absolutely continuous on almost all line segments

in U parallel to the coordinate axes and whose (classical) partial derivatives exist a.e. and belong to Lp(U).

Moreover, the (classical) partial derivatives of u agree a.e. with the weak derivatives of u.

Proof. Step I. We first suppose that u ∈W 1,p(U), and find its representative u having the desired property.

Case I: 1 ≤ p <∞. Write x ∈ I as x = (x−i, xi), where

x−i ∈ Ui :=
{
t−iRn−1 : {(t−i, ti) : ti ∈ R} ∩ U ̸= ∅

}
, and xi ∈ Ux−i

:= {ti ∈ R : (x−i, ti) ∈ U}

By Theorem 2.14, the mollifiers uϵ converges to u in W k,p(V ) for any V ⋐ U . By Fubini’s theorem,

lim
ϵ→0

∫
Ui

∫
Vx−i

∑
|α|≤1

|Dαuϵ(x−i, xi)−Dαu(x−i, xi)|pdxi dx−i = 0.

Consequently, we can find a subsequence ϵl → 0 such that

lim
l→∞

∫
Vx−i

∑
|α|≤1

|Dαuϵl(x−i, xi)−Dαu(x−i, xi)|pdxi = 0 for a.e. x−i ∈ Ui. (2.7)

Denote ul = uϵl , and let u = liml→∞ ul. By Proposition 1.8, u agrees with u except on a Lebesgue null set

E ⊂ U . Again by Fubini’s theorem,∫
Ui

∫
Ux−i

∑
|α|=1

|Dαu(x−i, xi)|p dxi dx−i <∞,

∫
Ui

L1({xi ∈ Ux−i : (x−i, xi) ∈ E}) dx−i = 0.

Correspondingly, we may find a set Ni ⊂ Ui with Ln−1(Ni) = 0 such that for all x−i ∈ Ui\Ni,∫
Ux−i

∑
|α|=1

|Dαu(x−i, xi)|p dxi <∞, L1({xi ∈ Ux−i : (x−i, xi) ∈ E}) = 0.

Fix any such x−i, and let I ⊂ Ux−i be a maximal open interval. Fix t0 ∈ I with (x−i, t0) ∈ U\E, and let

t ∈ I. Then there exists an open set V ⋐ U containing both (x−i, t0) and (x−i, t). Since ul ∈ C∞(V ), by

fundamental theorem of calculus, one have

ul(x−i, t) = ul(x−i, t0) +

∫ t

t0

∂xi
ul(x−i, s) ds.

Since (x−i, t0) ∈ U\E, we have ul(x−i, t0) → u(x−i, t0). Moreover, by (2.7),

lim
l→∞

∫ t

t0

|∂xi
ul(x−i, s)−Dxi

u(x−i, s)| ds = 0.

Therefore, once (x−i, t0) ∈ U\E, which holds for a.e. t ∈ I, we have

u(x−i, t) = u(x−i, t0) +

∫ t

t0

∂xi
u(x−i, s) ds.
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It is seen that the function u(x−i, ·) is absolutely continuous in I, and ∂xi
u = Dxi

u for a.e. t ∈ I.

Case II: p = ∞. We first consider an open ball B ⋐ U , and prove that u is Lipschitz in B. Since

u ∈W 1,∞(U), there exists M > 0 such that ess supU |Du| ≤M . Then for all ϵ > 0 small enough,

uϵ(x) = (ηϵ ∗ u)(x) and ∂xi
uϵ(x) = (ηϵ ∗Dxi

u)(x), i = 1, · · · , n, ∀x ∈ B.

Hence ∥uϵ∥L∞(B) ≤ ∥u∥L∞(B), and supB |∇uϵ| ≤ ess supB ∥Du∥∞ ≤ M . This implies that the family (uϵ) is

uniformly bounded and equicontinuous:

|uϵ(x)− uϵ(y)| ≤M |x− y|.

By Arzelà-Ascoli theorem, we may find a subsequence ϵl → 0 such that ul := uϵl converges uniformly to a

function u : B → R as l → ∞, and |u(x)− u(y)| ≤M |x− y|. Note u = u a.e. in B.

By covering U with countably many balls and applying the standard diagonal trick, we can extend u to a

continuous function u : U → R such that u = u a.e..

Now we prove that u is Lipschitz on all segments I in U . If I falls in a ball, the result is clear. Otherwise,

by compactness of I, we can find finitely many balls Bi covering I and points x0, x1, · · · , xN ∈ U such that the

segment I = {tx0 + (1− t)xN : t ∈ [0, 1]} consists of N subsegments Ii = {txi−1 + (1− t)xi : t ∈ [0, 1]} ⊂ Bi,

where i = 1, · · · , N . For any x, y ∈ I, with xj+1, xj+2, · · · , xk ∈ {tx+ (1− t)y : t ∈ [0, 1]}, we have

|u(x)− u(y)| ≤ |u(x)− u(xj)|+ |u(xj+1)− u(xj)|+ · · ·+ |u(xk)− u(xk−1)|+ |u(y)− u(xk)|

≤M |x− xj |+M |xj − xj−1|+ · · ·+M |xk − xk−1|+M |y − xk| =M |x− y|.

Hence u is Lipschitz on I. If I is parallel to any coordinate axis, the partial derivative of u with respect to the

corresponding variable is bounded by M . Hence ∂xi
u ∈ L∞(U).

Step II. Conversely, let u be the representative of u having the desired property. Fix i = 1, · · · , n and let

x−i ∈ Ui be such that u(x−i, ·) is absolutely continuous on every connected component of the open set Ux−i
.

Then for every ϕ ∈ C∞
c (U), u(x−i, ·)ϕ(x−i, ·) is absolutely continuous. By the integration by parts formula,∫

Ux−i

u(x−i, t)∂xi
ϕ(x−i, t) dt = −

∫
Ux−i

∂xi
u(x−i, t)ϕ(x−i, t) dt,

which holds for a.e. x−i ∈ Ui. Integrating over Ui and using Fubini’s theorem yields∫
U

u(x)∂xi
ϕ(x) dx =

∫
U

∂xi
u(x)ϕ(x) dx.

Therefore, Deiu = ∂eiu ∈ Lp(U) for all i = 1, · · · , n, and u ∈W 1,p(U).

Remark. In the caseW 1,∞(U), we did not require I to be coordinate-aligned, and the Lipschitz property holds

on all line segments. We next introduce a very useful characterization of space W 1,∞(U).

Theorem 2.19. Let U ⊂ Rn be a convex set. Then C0,1(U) =W 1,∞(U).

Proof. Step I. Let u ∈ C0,1(U). Then u is Lipschitz on every segment parallel to coordinates axis, with partial

derivatives bounded by [u]C0,1(U). This implies u ∈W 1,∞(U).

Step II. Conversely, let u ∈ W 1,∞(U). According to our construction of u in the Step I in the proof of

Theorem 2.18, u admits a representative u that is Lipschitz on all line segments in U with Lipschitz constant

M ≥ ess supU |Du|. Since U is convex, the line segment connecting any two points x, y ∈ U lies in U , and the

global Lipschitzness follows. Noticing that u ∈ L∞(U), we have u ∈ C0,1(U).
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3 Extensions and Traces

3.1 Extensions

In this section, we discuss the extension of functions in the Sobolev space. Whereas in the realm of Lp spaces

extending an Lp function on a domain U ⊂ Rn to all Rn within Lp is trivial, just extend naturally by zero.

This does not work for Sobolev spaces, already not for those of first order W 1,p. A key point is to jump

singularities across ∂ that obstruct existence of weak derivatives. We let 1 ≤ p ≤ ∞ throughout this section.

Theorem 3.1 (Extension). Assume that U ⋐ Rn is bounded and ∂U is Lipschitz. Then for any bounded open

set V that contains the closure of U , in symbols U ⋐ V ⋐ Rn, there is a bounded linear operator

E :W 1,p(U) →W 1,p(V ) ↪→W 1,p(Rn), u 7→ Eu = u,

such that (i) u|U = u a.e.; (ii) u is compactly supported in V ; and (iii)

∥u∥W 1,p(Rn) = ∥u∥W 1,p(V ) ≤ c∥u∥W 1,p(U), (3.1)

where c > 0 is a constant depending on n, p, U and V .

Remark. The function Eu = u is called an extension of u on Rn.

Proof. Step I. In this step, we derive the extension operator in the half ball model. Let B ⊂ Rn be the open

ball with center x0 lying in the hyperplane {xn = 0} and of radius r. Define

B+ := B ∩ {xn > 0}, B− := B ∩ {xn < 0}.

We prove that there exists a linear map

E0 :W 1,p(B+) →W 1,p(B), u 7→ E0u = u

such that u|B+ = u, and

∥u∥W 1,p(B) ≤ 16∥u∥W 1,p(B+). (3.2)

Case I: 1 ≤ p <∞. Without loss of generality, we suppose u ∈ C1(B+). By Theorem 2.17, the first two spaces

in the inclusion C∞(B+) ⊂ C1(B+) ⊂W 1,p(B+) are both dense in W 1,p(B+). Therefore, if we can construct

a linear operator E0 : C1(B+) → C1(B) satisfying (3.2), then we can extend it to E0 :W 1,p(B+) →W 1,p(B)

by a density argument and completeness of W 1,p(B). To this end, we define

u(x) =

u(x), x ∈ B+,

−3u(x′,−xn) + 4u(x′,−xn

2 ), x = (x′, xn) ∈ B−.

We claim that u ∈ C1(B). To check this, we write u+ = u|B+
and u− = u|B−

. Clearly, we have u+ = u− on

B ∩ {xn = 0}. Furthermore,

∂xi
u−(x′, xn) = −3∂xi

u(x′,−xn) + 4∂xi
u
(
x′,−xn

2

)
, i = 1, · · · , n− 1,

∂xn
u−(x′, xn) = 3∂xn

u(x′,−xn)− 2∂xn
u
(
x′,−xn

2

)
.

Hence we have ∂αu+ = ∂αu− along B ∩ {xn = 0} for all |α| ≤ 1, and u ∈ C1(B).
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Now we derive the estimate (3.2). By Jensen’s inequality,

|u−(x′, xn)|p ≤ 2p−1
(
|3u(x′,−xn)|p +

∣∣∣4u(x′,−xn
2

)∣∣∣p) ≤ 23p−1
(
|u(x′,−xn)|p +

∣∣∣u(x′,−xn
2

)∣∣∣p)
Integrate on both sides of the last display, and change the variable xn:

∥u−∥pLp(B−) ≤ 23p−1∥u∥pLp(B+) + 23p∥u∥pLp(B+) ≤ 23p+1∥u∥pLp(B+).

Similarly, we have ∥∂xi
u−∥pLp(B−) ≤ 23p+1∥∂xi

u∥pLp(B+) for all i = 1, · · · , n. Henceforth,

∥u∥pW 1,p(B) =
∑
|α|≤1

∥∂αu∥pLp(B) =
∑
|α|≤1

(
∥∂αu+∥pLp(B+) + ∥∂αu−∥pLp(B−)

)
≤ 24p∥u∥pW 1,p(B+).

Case II: p = ∞. By Theorem 2.19, we have C0,1 =W 1,∞ for both B+ and B. We then consider the map E0

given by simple horizontal reflection:

E0 : C0,1(B+) → C0,1(B), u 7→ u : B ∋ (x′, xn) 7→ u(x′, |xn|).

Then u is indeed Lipschitz with the same Lipschitz constant as u, and

∥u∥W 1,∞(B) = max
|α|≤k

ess supB |Dαu| = max
|α|≤k

ess supB+
|Dαu| = ∥u∥W 1,∞(B+),

Step II. In this step we extend u near x0 ∈ ∂U . If ∂U is not flat near x0, we can find a Lipschitz map

γ : Rn−1 ⊃ Ω → R with Lipschitz constant M whose graph coincides the part of ∂U within a small ball

B(x0, r). Consider the neighborhoods X = Ω× R of x0 = (x0−n, x
0
n) and Y = Ω× R of y0 = (x0−n, 0). Define

Φ : X → Y, x 7→ Φ(x) := (x1, · · · , xn−1, xn − γ(x1, · · · , xn−1)),

Ψ : Y → X, y 7→ Ψ(y) := (y1, · · · , yn−1, yn + γ(y1, · · · , yn−1)).

Then Φ = Ψ−1 is a bi-Lipschitz map, since

|Φ(x)− Φ(z)| ≤
√
2(1 +M2)|x− z| and |Ψ(y)−Ψ(z)| ≤

√
2(1 +M2)|y − z|.

By definition, Φ flattens ∂U near x0. By Rademacher’s Theorem, the graph map γ is differentiable for a.e.

x−n ∈ Ω. Hence the linearizations of Φ and Ψ exist pointwise a.e. and, furthermore, the Jacobian is triangular

with diagonal elements 1. Thus detDΦ = 1 = detDΨ pointwise a.e..

Now we derive the local extension of u ∈W k,p(U) near x0 ∈ ∂D. Pick a small ball B centered at y0 = Φ(x0)

and contained in the open neighborhood Φ(B0(x0, r)) of y0. Let B+ be the upper open half ball of B, and

consider the restriction of u to the open set V = Ψ(B+). Then u ∈W 1,p(V ).

Next pull back u : V → R to the y coordinates to obtain the function v := u ◦ ψ : B+ → R which lies in

W 1,p(B+) by Proposition, and ∥v∥W 1,p(B+) = ∥u∥W 1,p(V ). Then we employ the extension operator constructed

in Step I to pick an extension v = E0v of v = u ◦ ψ from the upper half ball B+ to the whole ball B. The

extension of u from V = Ψ(B+) to A = Ψ(B) is defined by

u = v ◦ Φ ∈W 1,p(A), ∥u∥W 1,p(A) = ∥v∥W 1,p(B).

According to estimate (3.2), we have

∥u∥W 1,p(A) = ∥v∥W 1,p(B) ≤ 16∥v∥W 1,p(B+) = 16∥u∥W 1,p(V ). (3.3)
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Step III. In this step, we extend u globally via a finite partition of unity. By Step II and compactness of ∂U ,

there exist finitely many x0i ∈ ∂U and local extensions ui = vi ◦Φ : Ai → R covering ∂U , where i = 1, · · · , N .

Now we pick A0 ⋐ U such that U ⋐ A :=
⋃N

i=0Ai ⋐ Rn, and pick a smooth partition of unity (ϕi)
N
i=0

subordinate to the open cover (Ai)
N
i=0 of U . Extend U to A by u =

∑N
i=0 ϕiui ∈ W 1,p(A). We then have the

following estimate of ∥u∥W 1,p(A):

∥u∥Wk,p(A) ≤
N∑
i=0

∥ϕiui∥W 1,p(Ai) ≤
N∑
i=0

2n1/p∥ϕi∥W 1,∞(Ai)∥ui∥Wk,p(Ai) (By product rule)

≤ 2n1/p max
1≤i≤N

∥ϕi∥W 1,∞(Ai)

N∑
i=0

∥ui∥W 1,p(Ai)

≤ 32n1/p(1 +N) max
1≤i≤N

∥ϕi∥W 1,∞(Ai)︸ ︷︷ ︸
=:c

∥u∥W 1,p(U), (By estimate (3.3))

where we use 1/p = 0 when p = ∞. Then c is a constant depending only on n, p and U . Furthermore, the

linearity of the mapping u 7→ u follows from E0 in Step I.

Step IV. Given u ∈W 1,p(U) and U ⋐ V ⋐ Rn, we have U ⋐ (V ∩A) ⋐ Rn. We then pick up a cutoff function

χ ∈ C∞
c (V ∩ A) with 0 ≤ χ ≤ 1 and χ ≡ 1 on U . Then χu ∈ W 1,p(V ), where u constructed in Step III is

restricted to V . Furthermore, we have the following estimate for ∥χu∥W 1,p(V ):

∥χu∥W 1,p(V ) = ∥χu∥W 1,p(V ∩A) ≤ ∥χu∥W 1,p(A) ≤ 2n1/p∥χ∥W 1,∞(A)∥u∥Wk,p(A) ≤ 2cn1/p∥u∥W 1,p(U).

This completes the proof.

Remark. (i) If 1 ≤ p < ∞, by Theorem 2.15, we can approximate u ∈ W 1,p(V ) by a sequence of functions

vl ∈ C∞(V ), and C∞
c (V ) ∋ χvl → χu in W 1,p(V ). Consequently, the extension u ∈W 1,p

0 (V ):

E :W 1,p(U) →W 1,p
0 (V ) ↪→W 1,p(Rn), u 7→ Eu := u.

(ii) If p = ∞, the constant c in (3.1) is actually independent of n.

(iii) If we further assume that ∂U is C2, then the extension operator E : u 7→ u above is also a bounded linear

operator from W 2,p(U) to W 2,p(V ), with

∥Eu∥W 2,p(Rn) = ∥Eu∥W 2,p(V ) ≤ c∥u∥W 2,p(U). (3.4)

Theorem 3.2. Let U be a bounded, open subset of Rn, and let ∂U be Lipschitz. Then C0,1(U) =W 1,∞(U).

Proof. If u ∈ C0,1(U), we can apply Step I in the proof of Theorem 2.19 to argue that u ∈ W 1,∞(U).

Conversely, if u ∈W 1,∞(U), we can simply apply Step I in the proof of Theorem 2.19 to the extension Eu of

u on Rn, which is a convex set.
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3.2 Traces

In this section we discuss the possibility of assigning ”boundary values” along aU to a function W 1,p(U),

Theorem 3.3 (Trace theorem). Let U ⊂ Rn be a open and bounded set with C1 boundary. Then there exists

a bounded linear operator T :W 1,p(U) → Lp(∂U) such that

(i) Tu = u|∂U if u ∈W 1,p(U) ∩ C(U), and

(ii) there exists a constant C depending only on U and p such that ∥Tu∥Lp(∂U) ≤ C∥u∥W 1,p(U) for all

u ∈W 1,p(U).

Here T is called the trace operator, and Tu is called the trace of u on ∂U .

Proof.

Theorem 3.4 (Treace-zero functions). Let U ⊂ Rn be a open and bounded set with C1 boundary, and u ∈
W 1,p(U). Then u ∈W 1,p

0 (U) if and only if Tu = 0 on ∂U .

Proof.
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4 Sobolev Inequalities

4.1 Sub-dimensional Case p < n: Gagliardo-Nirenberg-Sobolev Inequality

In this section, we suppose 1 ≤ p < n, and we consider the following basic question: Can we estimate the

Lq(Rn)-norm of a smooth, compactly supported function in terms of the Lp(Rn)-norm of its derivative. In

other words, we are looking for an estimate of the form

∥u∥Lq(Rn) ≤ c∥Du∥Lp(Rn), u ∈ C∞
c (Rn). (4.1)

A scaling argument. We wonder if the estimate (4.1) holds for any q ∈ [1,∞]. Take u ∈ C∞
c (Rn) with

u ̸≡ 0, and define for λ > 0 the rescaled function uλ(x) = u(λx). Then

Duλ = λ(Du)λ.

We then obtain

∥uλ∥Lq(Rn) =

(∫
Rn

|uλ|q dx
)1/q

=

(
λ−n

∫
|u|q dx

)1/q

= λ−n/q∥u∥Lq(Rn),

∥Duλ∥Lp(Rn) =

∑
|α|=1

∫
Rn

|Dαu|p
1/p

=

λp−n
∑
|α|=1

∫
Rn

|Dαu|p
1/p

= λ1−n/p∥Du∥Lp(Rn).

These norms must scale according to the same exponent, otherwise (4.1) is falsified by letting λ→ 0 or λ→ ∞.

Hence we have n/p− n/q = 1, and q = np
n−p .

Definition 4.1 (Sobolev conjugate). If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ =
np

n− p
.

Note that 1
p∗ = 1

p − 1
n , and p

∗ > p.

We have the following estimate for Lp∗
-norm f a Sobolev function.

Theorem 4.2 (Gagliardo-Nirenberg-Sobolev inequality). Assume that 1 ≤ p < n. There exists a constant C,

depending on p and n only, such that

∥u∥Lp∗ (Rn) ≤ C∥Du∥Lp(Rn), ∀u ∈ C1
c (Rn). (4.2)

Proof. Step I: We first prove the case p = 1. Since u has compact support, we have

u(x) =

∫ xi

−∞
∂xi

u(x1, · · · , xi−1, yi, xi+1, · · · , xn) dyi,

We denote by |Du|1 = |∂x1u|+ · · ·+ |∂xnu|. Then

|u(x)| ≤
∫ xi

−∞
|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi ≤

∫ ∞

−∞
|Du|1 dxi.

Consequently,

|u(x)|
n

n−1 ≤
n∏

i=1

(∫ ∞

−∞
|Du|1 dxi

) 1
n−1

.
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We integrate both sides of the last display with respect to the variable x1. By generalized Hölder’s inequality,

∫ ∞

−∞
|u(x)|

n
n−1 dx1 ≤

∫ ∞

−∞

n∏
i=1

(∫ ∞

−∞
|Du|1 dxi

) 1
n−1

dx1

=

(∫ ∞

−∞
|Du|1 dx1

) 1
n−1

∫ ∞

−∞

n∏
i=2

(∫ ∞

−∞
|Du|1 dxi

) 1
n−1

dx1

≤
(∫ ∞

−∞
|Du|1 dx1

) 1
n−1

(
n∏

i=2

∫ ∞

−∞

∫ ∞

−∞
|Du|1 dx1 dxi

) 1
n−1

.

Again, we integrate both sides with respect to x2. By generalized Hölder’s inequality,∫ ∞

−∞

∫ ∞

−∞
|u(x)|

n
n−1 dx1 dx2

≤
(∫ ∞

−∞

∫ ∞

−∞
|Du|1 dx1 dx2

) 1
n−1

∫ ∞

−∞

(∫ ∞

−∞
|Du|1 dx1

) 1
n−1

(
n∏

i=3

∫ ∞

−∞

∫ ∞

−∞
|Du|1 dx1 dxi

) 1
n−1

dx2

≤
(∫ ∞

−∞

∫ ∞

−∞
|Du|1 dx1 dx2

) 2
n−1

(
n∏

i=3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|Du|1 dx1 dx2 dxi

) 1
n−1

.

We continue to integrate with respect to x3, · · · , xn, and obtain that∫
Rn

|u|
n

n−1 dx ≤
(∫

Rn

|Du|1 dx
) n

n−1

. (4.3)

This is indeed the case p∗ = n
n−1 and C = 1 of estimate (4.2).

Step II: Now we consider the case 1 < p < n. Applying the estimate (4.3) to v = |u|γ , where γ > 1 is to

be selected, we have

(∫
Rn

|u|
γn
n−1 dx

)n−1
n

≤
∫
Rn

γ|u|γ−1|Du|1 dx

≤ γ

(∫
Rn

|u|
(γ−1)p
p−1 dx

) p−1
p
(∫

Rn

|Du|p1 dx
)1/p

≤ γ

(∫
Rn

|u|
(γ−1)p
p−1 dx

) p−1
p

n
p−1
p ∥Du∥Lp(Rn).

(4.4)

Now we choose γ > 1 such that γn
n−1 = (γ−1)p

p−1 . That is, γ = (n−1)p
n−p = (n−1)p∗

n . Then (4.4) becomes

(∫
Rn

|u|p
∗
dx

)1/p∗

≤ n
p−1
p (n− 1)p

n− p
∥Du∥Lp(Rn),

which completes the proof of (4.2).

Theorem 4.3 (Estimate for W 1,p on Rn, 1 ≤ p < n). Assume that 1 ≤ p ≤ n and p ≤ q ≤ p∗, and

u ∈W 1,p(U). Then u ∈ Lq(U), with the estimate

∥u∥Lq(Rn) ≤ C∥u∥W 1,p(Rn) (4.5)

for some constant C depending only on p, q and n.
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Proof. By the Remark under Theorem 2.14, we can find a sequence um ∈ C∞
c (Rn) that converges to u in

W 1,p(Rn). According to Theorem 4.2, we have

∥um − ul∥Lp∗ (Rn) ≤ np∗∥Dum −Dul∥Lp(Rn), ∀l,m ≥ 1.

Hence (um) is a Cauchy sequence in Lp∗
(Rn), and um → ũ for some ũ ∈ Lp∗

(Rn). Furthermore, ũ and u are

identified, since we can find a subsequence of (um) that converges a.e. to ũ from Lp∗
convergence, and to u,

from Lp convergence. Hence u ∈ Lp∗
(Rn), and

∥u∥Lp∗ (Rn) ≤ np∗∥Du∥Lp(Rn).

For the estimate (4.5), the case q = p and q = p∗ are clear. If p < q < p∗, we choose 0 < θ < 1 such that
1
q = θ

p + 1−θ
p∗ . By Hölder’s inequality,

∫
Rn

|u|q dx =

∫
Rn

|u|θq|u|(1−θ)q dx ≤
(∫

Rn

|u|p dx
) θq

p
(∫

Rn

|u|p
∗
dx

) (1−θ)q
p

.

Therefore

∥u∥Lq(Rn) ≤ ∥u∥θLp(Rn)∥u∥
1−θ
Lp∗ (Rn)

≤ (np∗)1−θ∥u∥θLp(Rn)∥Du∥
1−θ
Lp(Rn).

To derive (4.5), we use Jensen’s inequality:

θ log
ap

θ
+ (1− θ) log

bp

1− θ
≤ log(ap + bp) ⇒ aθb1−θ ≤ θ

θ
p (1− θ)

1−θ
p (ap + bp)1/p, ∀a, b > 0.

Then we obtain

∥u∥Lq(Rn) ≤ (np∗)1−θθ
θ
p (1− θ)

1−θ
p

(
∥u∥pLp(Rn) + ∥Du∥pLp(Rn)

)1/p
=: C∥u∥W 1,p(Rn).

This completes the proof of (4.5).

Now we give a similar estimate of the W 1,p-norm of a weakly differentiable function on a Lipschitz domain.

Theorem 4.4 (Estimate for W 1,p on Lipschitz domains, 1 ≤ p < n). Let U be a bounded, open subset of Rn

and suppose ∂U is Lipschitz. Assume that 1 ≤ p < n, and u ∈W 1,p(U). Then u ∈ Lp∗
(U), with the estimate

∥u∥Lp∗ (U) ≤ C∥u∥W 1,p(U)

for some constant C depending only on p, n and U .

Proof. Since ∂U is Lipschitz, by Theorem 3.1, there exists an extension u ∈ W 1,p(Rn) such that u = u in U ,

u has compact support in Rn, and

∥u∥W 1,p(Rn) ≤ C1∥u∥W 1,p(U), (4.6)

where C1 is a constant depending only on p, n and U . Since u has compact support, by the Remark under

Theorem 2.14, there exists a sequence of functions um ∈ C∞
c (Rn) such that um → u inW 1,p(Rn). By Theorem

4.2, um → u in Lp∗
(Rn) as well, and ∥um∥Lp∗ (Rn) ≤ np∗∥Dum∥Lp(Rn). Then we have the limiting bound

∥u∥Lp∗ (U) ≤ ∥u∥Lp∗ (Rn) ≤ np∗∥Du∥Lp(Rn)︸ ︷︷ ︸
m→∞

≤ np∗∥u∥W 1,p(Rn)

(4.6)

≤ C1np
∗∥u∥W 1,p(U).

The desired result then follows by letting C = C1np
∗.
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Remark. If U is a bounded, open subset of Rn and ∂U is Lipschitz, we have

W 1,p(U) ⊂ Lp∗
(U) ⊂ Lq(U), q ∈ [1, p∗].

by Hölder’s inequality ∥u∥Lq(U) ≤ |U |
p∗−q
p∗q ∥u∥Lp∗ (U), we have

∥u∥Lq(U) ≤ C∥u∥W 1,p(U), q ∈ [1, p∗],

where C is a constant depending only on p, q, n and U .

Theorem 4.5 (Estimate for W 1,p
0 on bounded domains, 1 ≤ p < n). Let U be a bounded, open subset of Rn.

Assume that 1 ≤ p < n, and u ∈W 1,p
0 (U). Then we have the estimate

∥u∥Lq(U) ≤ C∥Du∥Lp(U) (4.7)

for each q ∈ [1, p∗], with the constant C depending only on p, q, n and U .

Proof. Since u ∈ W 1,p
0 (U), there exists a sequence of functions um ∈ C∞

c (U) such that um → u in W 1,p(U).

We the extend each um to Rn by assigning um = 0 on Rn\U . By letting m→ ∞ in the Gagliardo-Nirenberg-

Sobolev inequality for um, we obtain

∥u∥Lp∗ (U) ≤ C∥Du∥Lp(U).

Since U is bounded, we have |U | <∞, and the desired result follows from Hölder’s inequality.

Corollary 4.6 (Classical Poincaré’s inequality). Let U be a bounded, open subset of Rn, and 1 ≤ p ≤ ∞. For

any u ∈W 1,p
0 (U), we have the estimate

∥u∥Lp(U) ≤ C∥Du∥Lp(U), (4.8)

where the constant C depending only on p, n and U .

Proof. For 1 ≤ p < n, the estimate (4.8) is a special case of (4.7), since p < p∗. For n ≤ p < ∞, we choose

1 ≤ q < n such that q < n ≤ p < q∗ := nq
n−q . Since W

1,p
0 (U) ⊂W 1,q(U), by (4.7), we have

∥u∥Lp(U) ≤ C∥Du∥Lq(U) ≤ |U |
pq

p−qC∥Du∥Lp(U).

Finally, for p = ∞, we take a sequence um ∈ C∞
c (U) that converges to u in W 1,∞(U). Using the

fundamental theorem of calculus, we have

|um(x1, · · · , xn)| =
∣∣∣∣∫ xi

−∞
∂xi

um(x1, · · · , xi−1, yi, xi+1, · · · , xn) dyi
∣∣∣∣

≤
∫ ∞

−∞
∥Dum∥L∞(U) dxi ≤ diam(U) ∥Dum∥L∞(U)

By taking the supremum of the left hand side and letting m → ∞ in the last display, we can obtain that

∥u∥L∞(U) ≤ diam(U) ∥Du∥L∞(U). This complete the proof.

The borderline case: p = n. Owing to Theorem 4.5 and the fact that p∗ = np
n−p → ∞ as p↗ n, we might

expect u ∈ L∞(U), provided u ∈W 1,n(U). This is however false if n > 1.

As a counterexample, let U = B0(0, 1) be the unit open ball in Rn, where n > 1. Then the function

u(x) = log log
(
1 + 1

|x|
)
belongs to W 1,n(U), but not to L∞(U).
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4.2 Super-dimensional Case p > n: Morrey’s Inequality

In this section, we assume that n < p ≤ ∞. We show that u has a Hölder continuous representative, provided

that u ∈W 1,p(U).

Theorem 4.7 (Morrey’s inequality). Assume that n < p ≤ ∞. There exists a constant C, depending on p

and n only, such that

∥u∥C0,γ(Rn) ≤ C∥u∥W 1,p(Rn), ∀u ∈ C1(Rn) ∩ Lp(Rn), (4.9)

where γ = 1− n
p .

Proof. Step I: We claim that there exists a constant C1, depending only on n, such that

1

Ln(B(x, r))

∫
B(x,r)

|u(y)− u(x)| dy ≤ C1

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy, (4.10)

for each ball B(x, r), where Ln is the Lebesgue measure on Rn. To this end, take any |w| = 1. If 0 < s < r,

|u(x+ sw)− u(x)| =
∣∣∣∣∫ s

0

d

dt
u(x+ tw) dt

∣∣∣∣ = ∣∣∣∣∫ s

0

Du(x+ tw) · w dt
∣∣∣∣ ≤ ∫ s

0

|Du(x+ tw)| dt.

Integrate with respect to w on ∂B(0, 1):∫
∂B(0,1)

|u(x+ sw)− u(x)| dS(w) ≤
∫ s

0

∫
∂B(0,1)

|Du(x+ tw)| dS(w) dt

y=x+tw
=

∫ s

0

∫
∂B(x,t)

|Du(y)|
tn−1

dS(y) dt

t=|x−y|
=

∫
B(x,s)

|Du(y)|
|y − x|n−1

dy =

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

By changing the variable z = x+ sw in the left hand side of the last display, we have∫
∂B(x,s)

|u(z)− u(x)|dS(z) ≤ sn−1

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

Next integrate with respect to s from 0 to r:∫
B(x,r)

|u(y)− u(x)| dy ≤ rn

n

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

This completes the proof of (4.10).

Step II: Fix any x ∈ Rn. By (4.10) and Hölder’s inequality,

|u(x)| ≤ 1

Ln(B(x, 1))

(∫
B(x,1)

|u(x)− u(y)| dy +
∫
B(x,1)

|u(y)| dy

)

≤ C1

∫
B(x,1)

|Du(y)|
|y − x|n−1

dy + Ln(B(x, 1))−1/p∥u∥Lp(B(x,1))

≤ C1

(∫
Rn

|Du|p dy
)1/p

(∫
B(x,1)

|y − x|−
(n−1)p
p−1 dy

) p−1
p

+ Ln(B(x, 1))−1/p∥u∥Lp(Rn)

≤ C∥u∥W 1,p(Rn),
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where C = C(n, p) is a constant. The last estimate holds since p > n implies (n− 1) p
p−1 < n, and∫

B(x,1)

|y − x|−
(n−1)p
p−1 dy <∞.

Step III: Choose any two points x, y ∈ Rn, and write r := |x− y|. Let W = B(x, r) ∩B(y, r). Then

|u(y)− u(x)| ≤ 1

Ln(W )

(∫
W

|u(x)− u(z)| dz +
∫
W

|u(y)− u(z)| dz
)
.

By estimate (4.10), we have

1

Ln(W )

∫
W

|u(x)− u(z)| dz ≤ Ln(B(x, r))

Ln(W )

1

Ln(B(x, r))

∫
B(x,r)

|u(x)− u(z)| dz

≤ C1Ln(B(x, r))

Ln(W )

∫
B(x,r)

|Du(z)|
|z − x|n−1

dz

≤ C1Ln(B(x, r))

Ln(W )

(∫
B(x,r)

|Du|p dz

)1/p(∫
B(x,r)

dz

|z − x|
(n−1)p
p−1

) p−1
p

≤ C2

(
rn−

(n−1)p
p−1

) p−1
p

∥Du∥Lp(B(x,r)) ≤ C2r
1−n

p ∥Du∥Lp(Rn),

where C2 is a constant depending on n and p only. Similarly, we have

1

Ln(W )

∫
W

|u(x)− u(z)| dz ≤ C2r
1−n

p ∥Du∥Lp(Rn).

Consequently,

[u]
C

0,1−n
p (Rn)

= sup
x ̸=y

|u(y)− u(x)|
|y − x|1−

n
p

≤ C∥Du∥Lp(Rn).

This inequality together with (4.2) completes the proof of (4.9).

Remark. We provide a slight variant of the estimate of |u(x) − u(y)|, where |x − y| ≤ r. Since both B(x, r)

and B(y, r) are include in the ball B(x, 2r), we have

|u(y)− u(x)| ≤ Cr1−
n
p ∥Du∥Lp(B(x,2r))

for all u ∈ C1(B(x, 2r)), y ∈ B(x, r) and n < p <∞.

Theorem 4.8 (Estimate for W 1,p on Lipschitz domains, n < p ≤ ∞). Let U be a bounded, open subset of

Rn, and suppose that ∂U is Lipschitz. Assume n < p ≤ ∞ and u ∈ W 1,p(U). Then u has a representative

u∗ ∈ C0,γ(U) for γ = 1− n
p , with the estimate

∥u∗∥C0,γ(U) ≤ C∥u∥W 1,p(U), (4.11)

where the constant C depends on p, n and U only.

Proof. The case p = ∞ can be easily adapted from Theorem 3.2. Hence we assume that n < p <∞.

Since ∂U is Lipschitz, by Theorem 3.1, there exists an extension u ∈W 1,p(Rn) such that u = u a.e. in U ,

u has compact support in Rn, and

∥u∥W 1,p(Rn) ≤ C1∥u∥W 1,p(U), (4.12)
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where C1 is a constant depending only on p, n and U . According to the Remark under Theorem 2.14, we

can find a sequence of functions um ∈ C∞
c (Rn) converging to u in W 1,p(Rn). By Theorem 4.7, (um) is also

a Cauchy sequence in C1−n
p (Rn), which converges to some u∗ ∈ C1−n

p (Rn). Clearly, u∗ = u a.e. on U .

Furthermore, letting m → ∞ in Morrey’s inequality for um yields ∥u∗∥C0,γ(U) ≤ C∥u∥W 1,p(Rn). Combining

this with estimate (4.12) concludes the proof.

Remark. The preceding proof remains valid if we replace U by Rn and omit the extension step. We therefore

restate our conclusion as follows: Assume n < p ≤ ∞ and u ∈ W 1,p(Rn). Then u has a representative

u∗ ∈ C0,γ(Rn) for γ = 1− n
p , with the estimate

∥u∗∥C0,γ(Rn) ≤ C∥u∥W 1,p(Rn),

where the constant C depends on p and n only.

Now we use the tool of Morrey’s inequality to investigate more closely the connections between weak partial

derivatives and partial derivatives.

Theorem 4.9 (Super-dimensional differentiability almost everywhere). Assume that u ∈ W 1,p
loc (U) for some

n < p ≤ ∞. Then u is differentiable a.e. in U , and its gradient equals its weak gradient a.e..

Proof. We first assume that n < p < ∞. We identify u to its continuous version by applying Morrey’s

inequality on a countable set of balls covering U . For a.e. x ∈ U , by Lebesgue’s differentiation theorem,

1

Ln(B(x, r))

∫
B(x,r)

|Du(x)−Du(z)|p dz → 0 as r → 0.

We then fix such a point x, and set v(y) := u(y)− u(x)−Du(x) · (y − x). Since the differentiation is a local

problem, we choose B(x, δ) ⊂ U . Then v ∈W 1,p(B(x, δ)).

By Proposition 1.8 and Theorem 2.14, the mollifications vϵ ∈ C∞(U) converges to v uniformly on B(x, δ)

and in W 1,p(B(x, δ)) as ϵ→ 0. According to the remark under Theorem 4.7 and by approximation ϵ→ 0, for

each y ∈ U with r := |x− y| < δ/2, we have Morrey’s estimate

|v(y)− v(x)| ≤ Cr1−
n
p

(∫
B(x,2r)

|Dv(z)|p dz

)1/p

.

Consequently,

|u(y)− u(x)−Du(x) · (y − x)| ≤ Cr1−
n
p

(∫
B(x,2r)

|Du(x)−Du(z)|p dz

)1/p

≤ C ′r

(
1

Ln(B(x, 2r))

∫
B(x,2r)

|Du(x)−Du(z)|p dz

)1/p

= o(r) = o(|x− y|).

Hence u is differentiable at x, and its gradient coincides its weak gradient at x. Finally, for the case p = ∞,

just note that W 1,∞
loc (U) ⊂W 1,p

loc (U) for all 1 ≤ p <∞.

The following theorem is a direct consequence of Theorem 4.9.

Theorem 4.10 (Rademacher’s theorem). Let u be locally Lipschitz continuous in U . Then u is differentiable

almost everywhere in U .
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4.3 General Sobolev Inequalities

4.3.1 Sub-dimensional Case: kp < n

Theorem 4.11 (General Sobolev inequality, kp < n). Let U be a bounded, open subset of Rn, with a Lipschitz

boundary. Assume u ∈W k,p(U), and kp < n. Then u ∈ Lq(U), where

1

q
=

1

p
− k

n
, q =

np

n− kp
.

Furthermore, we have the estimate

∥u∥Lq(U) ≤ C∥u∥Wk,p(U),

where C is a constant depending only on k, p, n and U .

Proof. Step I: For every multi-index |α| ≤ k − 1, we have Dαu ∈ W 1,p(U). By Gagliardo-Nirenberg-Sobolev

inequality [Theorem 4.4], there exists a constant C = C(n, p, U) > 0 depending only on n, p and U , such that

∥Dαu∥Lp∗ (U) ≤ C∥Dαu∥W 1,p(U) ≤ C∥u∥Wk,p(U).

Hence u ∈ W k−1,p∗
(U), where p < p∗ = np

n−p < n. If k = 2, we are done by applying Gagliardo-Nirenberg-

Sobolev inequality once again, where q = p∗∗ = np∗

n−p∗ = np
n−2p :

∥u∥Lp∗∗ (U) ≤ C(n, p∗, U)∥u∥W 1,p∗ (U) ≤ C(n, p∗, U)(1 + n)C(n, p, U)∥u∥W 2,p(U).

Step II: We denote p2 = p∗∗, p3 = p∗∗∗, and so on. If k ≥ 3, we can prove by induction such that

∥Dαu∥Lp∗∗ (U) ≤ C2∥Dαu∥W 1,p∗ (U) ≤ C2∥u∥Wk−1,p∗ (U), ∀|α| ≤ k − 2, and u ∈W k−2,p∗∗
(U);

∥Dαu∥Lp∗∗∗ (U) ≤ C3∥Dαu∥W 1,p∗∗ (U) ≤ C3∥u∥Wk−2,p∗∗ (U), ∀|α| ≤ k − 3, and u ∈W k−3,p∗∗∗
(U);

· · · ;

∥Dαu∥Lpk−1 (U) ≤ Ck−1∥Dαu∥W 1,pk−2 (U) ≤ Ck−1∥u∥W 2,pk−2 (U), ∀|α| ≤ 1, and u ∈W 1,pk−1(U).

Hence u ∈W 1,pk−1(U). Since p < pk−1 < n, again by Gagliardo-Nirenberg-Sobolev inequality, we have

∥u∥Lpk (U) ≤ Ck∥u∥W 1,pk−1 (U) ≤ (1 + n)CkCk−1∥u∥W 2,pk−2 (U)

≤ (1 + n)
(
1 + n+ n2

)
CkCk−1Ck−2∥u∥W 3,pk−3 (U) ≤ · · ·

≤ (1 + n)
(
1 + n+ n2

)
· · ·
(
1 + n+ n2 + · · ·+ nk−1

)
CkCk−1 · · ·C1∥u∥Wk,p(U).

where C1, · · · , Ck are constants depending only on k, n, p and U . This completes the proof.

Remark. In fact, we have the inclusions

W k,p(U) ⊂W k−1,p∗
(U) ⊂W k−2,p∗∗

(U) ⊂ · · · ⊂W k−l,q(U),

where l ∈ {0, 1, · · · , k} and 1
q = 1

p − l
n . Moreover, there exists a constant C depending only on n, p, q, l and U

such that

∥u∥Wk−l,q(U) ≤ C∥u∥Wk,p(U), ∀u ∈W k,p(U).

This means that W k,p(U) ↪→W k−l,q(U) is a continuous embedding, where q = np
n−lp > p.
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4.3.2 Super-dimensional Case: kp > n

Theorem 4.12 (General Sobolev inequality, kp > n). Let U be a bounded, open subset of Rn, with a Lipschitz

boundary. Assume u ∈W k,p(U), and kp > n. Then u has a representative u∗ ∈ Ck−⌊n
p ⌋−1,γ(U), where

γ =

1 +
⌊
n
p

⌋
− n

p ,
n
p /∈ N,

any µ ∈ (0, 1), n
p ∈ N.

Furthermore, we have the estimate

∥u∗∥
C

k−⌊n
p ⌋−1,γ

(U)
≤ C∥u∥Wk,p(U),

where C is a constant depending only on k, p, n, γ and U .

Proof. Case I: n/p /∈ N. The key idea is to apply general Sobolev inequality [Theorem 4.11] to the largest

sub-dimensional case lp < n. Given lp < n, we have u ∈ W k−l,r(U), where 1
r = 1

p − l
n . Choose l ∈ N

such that l < n
p < l + 1, that is, l = ⌊n/p⌋. Then r = np

n−pl > n is super-dimensional, k − l ≥ 1, and

Dαu ∈ W 1,r(U) admits a representative (Dαu)∗ ∈ C0,γ(U) by Morrey’s inequality for each |α| ≤ k − l − 1,

where γ = 1− n/r = 1 + ⌊n/p⌋ − n/p. Furthermore, we have the estimate

∥Dαu∥C0,γ(U) ≤ C∥Dαu∥W 1,r(U) ≤ C∥u∥Wk−l,r(U),

where the constant C only depends on n, p and U . Consequently, u∗ ∈ Ck−⌈n
p ⌉,γ(U), and

∥u∥Ck−l−1,γ(U) =
∑

|α|≤k−l−1

∥Dαu∥C(U) +
∑

|α|=k−l−1

[Dαu]C0,γ(U) ≤ C ′∥u∥Wk−l,r(U),

where the constant C ′ only depends on n, p, k and U .

Case II: n/p ∈ N. To apply general Sobolev inequality [Theorem 4.11] to the sub-dimensional case, we choose

l = n
p − 1 ∈ {0, 1, · · · , k − 2}. Then u ∈ W k−l,q(U) for q = np

n−lp = n. By Gagliardo-Nirenberg-Sobolev

inequality, for all r ∈ (n,∞), we have

∥Dαu∥Lr(U) ≤ C∥Dαu∥
W

1, nr
n+r (U)

, ∀|α| ≤ k − l − 1 = k − n

p
,

where C is a constant depending only on n, r and U , and Dαu ∈ Lr(U). By Morrey’s inequality, we have

Dαu ∈ C0,1−n
r (U) for all |α| ≤ k− n

p −1 and all r ∈ (n,∞). Consequently, u ∈ Ck−n
p −1,γ(U) for all 0 < γ < 1,

and we have the estimate

∥u∥
C

k−n
p

−1,γ
(U)

≤ C ′∥u∥Wk−l,n(U) ≤ C ′′∥u∥Wk,p(U),

where C ′ is a constant depending only on k, n, p, γ and U .

Remark. For the case p = ∞, we have the limit conclusion W 1,∞(U) = C0,1(U) Theorem 3.2 for k = 1.
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4.3.3 The Borderline Case: kp = n

Lemma 4.13. Let U be a bounded, open subset of Rn with a Lipschitz boundary. Letp = ∞, n = 1,

1 ≤ p <∞, n ≥ 2.

Then W 1,n(U) ⊂ Lp(U), and there exists a constant C, depending on n, p and U only, such that

∥u∥Lp(U) ≤ C∥u∥W 1,n(U), ∀u ∈W 1,n(U).

Proof. Case I: n = 1. If v ∈ C∞
c (R), we have

|v(x)| ≤
∫ ∞

−∞
|Du(y)|dy.

Hence ∥v∥L∞(R) ≤ ∥Dv∥L1(R) ≤ ∥v∥W 1,1(R). Then for each u ∈W 1,1(U), extend u to u ∈W 1,1(R) with

∥u∥W 1,1(R) ≤ c∥u∥W 1,1(U),

where c is a constant depending on U only. By approximation u with C∞
c (R), we have

∥u∥L∞(U) ≤ ∥u∥L∞(R) ≤ ∥u∥W 1,1(R) ≤ c∥u∥W 1,1(U).

Case II: n ≥ 2. Take n ≤ q <∞, and set 1
s = 1

n + 1
q . Then 1 ≤ s < n, and q = ns

n−s . Since U is bounded,

by Hölder’s inequality, we have

∥u∥W 1,s(U) ≤ (1 + n)
1
n− 1

s |U |
n−s
ns ∥u∥W 1,n(U).

Since q = s∗ = ns
n−s , by Theorem 4.4, we can find a constant C(n, q, U) such that

∥u∥Lq(U) ≤ C(n, q, U)∥u∥W 1,s(U) ≤ C ′(n, q, U)∥u∥W 1,n(U).

Since |U | <∞, we have

∥u∥Lp(U) ≤ C ′′(n, q, U)∥u∥W 1,n(U)

for all 1 ≤ q ≤ p. Since q can be chosen arbitrarily large, the result follows.

Remark. The conclusion still holds if n = 1 and we replace U by R, where constant C is 1.

Theorem 4.14. Let U be a bounded, open subset of Rn with a Lipschitz boundary. Assume u ∈ W k,p(U),

and kp = n. Then u ∈ Lq(U) for all 1 ≤ q <∞, and we have the estimate

∥u∥Lq(U) ≤ C∥u∥Wk,p(U),

where C is a constant depending only on k, p, q, n and U .

Proof. Similar to our proof of Theorem 4.12, we have the inclusions

W k,p(U) ⊂W k−1,p∗
(U) ⊂W k−2,p∗∗

(U) ⊂ · · · ⊂W 1,n(U).

The last inclusion holds since 1
n = 1

p − k−1
n . The result then immediately follows from Lemma 4.13.
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4.4 Compact Embeddings: Rellich-Kondrachov Compactness Theorem

The Gagliardo-Nirenberg-Sobolev inequality shows that W 1,p(U) is continuously embedded into Lp∗
(U) in

the sub-dimensional case 1 ≤ p < n. Next, we are going to demonstrate that W 1,p(U) is in fact compactly

embedded into the space Lq(U) when 1 ≤ q < p∗.

Definition 4.15 (Compact Embedding). Let X and Y be Banach spaces, and X ⊂ Y . We say X is compactly

embedded in Y , written X ⋐ Y , if the identity operator

Id : X → Y, x 7→ x

is continuous and compact, i.e.

(i) there exist some constant c such that ∥x∥Y ≤ c∥x∥X for all x ∈ X, and

(ii) each bounded subset of X is precompact in Y .

Remark. Since compactness coincides sequential compactness in metrizable spaces, (ii) equals that every

bounded sequence of points of X has a subsequence converging in Y .

Theorem 4.16 (Rellich-Kondrachov Compactness Theorem). Let U be a bounded, open subset of Rn with a

Lipschitz boundary. Assume 1 ≤ p < n. Then

W 1,p(U) ⋐ Lq(U)

for all 1 ≤ q < p∗.

Proof. Step I: Assume that 1 ≤ q < p∗. Using Gagliardo-Nirenberg-Sobolev inequality [Theorem 4.4], we

obtain the continuous embedding W 1,p(U) ↪→ Lq(U), with

∥u∥Lq(U) ≤ C∥u∥W 1,p(U)

for all u ∈W 1,p(U), where the constant C depending only on n, p, q and U . Then it remains to show that any

bounded sequence (um) in W 1,p(U) has a subsequence (uml
) converging in Lq(U).

Step II: By extension theorem [3.1], we may assume that every um is in W 1,p(Rn) and supported on a

precompact set V ⋐ U , and supm∈N ∥um∥W 1,p(Rn) <∞.

Then we study the mollifiers uϵm = ηϵ ∗ um, and we may assume that the support of uϵm is in V for all

m ∈ N. We first prove that

lim
ϵ→0

sup
m∈N

∥uϵm − um∥Lq(V ) = 0. (4.13)

If um is smooth, we have

uϵm(x)− um(x) =
1

ϵn

∫
B(x,ϵ)

η

(
x− z

ϵ

)
(um(z)− um(x)) dz

=

∫
B(0,1)

η(y) (um(x− ϵy)− um(x)) dy

=

∫
B(0,1)

η(y)

∫ 1

0

d

dt
(um(x− ϵty)) dt dy

= −ϵ
∫
B(0,1)

η(y)

∫ 1

0

Dum(x− ϵty) · y dt dy.
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Consequently,

∥uϵm − um∥L1(V ) =

∫
V

|uϵm(x)− um(x)| dx

≤ ϵ

∫
B(0,1)

η(y)

∫ 1

0

∫
V

|Dum(x− ϵty)| dx dt dy

≤ ϵ

∫
V

|Dum(z)| dz = ϵ∥Dum∥L1(V ).

By approximation, this estimate also holds for um ∈W 1,p(U). Since V is bounded, we have

∥uϵm − um∥L1(V ) ≤ ϵ∥Dum∥L1(V ) ≤ ϵC∥Dum∥Lp(V )

Note that um is bounded inW 1,p(Rn). Then the estimate (4.13) holds when q = 1. If 1 < q < p∗, let 0 < θ < 1

be such that
θ

1
+

1− θ

p∗
=

1

q
.

Akin to the interpolation statement employed in the proof of Theorem 4.3, we have

∥uϵm − um∥Lq(V ) ≤ ∥uϵm − um∥θL1(V )∥u
ϵ
m − um∥1−θ

Lp∗ (V )
.

While the first term converges to 0, the estimate (4.13) follows from the boundedness of the second term, by

Gagliardo-Nirenberg-Sobolev inequality.

Step III: Fix any ϵ > 0. We verify that (uϵm)∞m=1 satisfies Arzelà-Ascoli criterion: We claim that the sequence

(uϵm)∞m=1 is uniformly bounded and uniformly equicontinuous, i.e.

(i) supm∈N ∥uϵm∥∞ <∞, and

(ii) for all η > 0, there exists δ > 0 such that for all m ∈ N and all |x− y| < δ, |uϵm(x)− uϵm(y)| < η.

To prove the first assertion, note that

|uϵm(x)| ≤
∫
B(x,ϵ)

ηϵ(x− y)|um(y)| dy ≤ ∥ηϵ∥L∞(Rn)∥um∥L1(V )

≤ 1

ϵn
∥um∥L1(V ) ≤

|V |1/p

ϵn
∥um∥Lp(V ).

Since (um)∞m=1 is bounded in W 1,p(U), the first assertion holds. For the second assertion,

|Duϵm(x)| ≤
∫
B(x,ϵ)

|Dηϵ(x− y)| |um(y)| dy

≤ ∥Dηϵ∥L∞(Rn)∥um∥L1(V ) ≤
|V |1/p

ϵ1+n
∥Dum∥Lp(V ).

Consequently, we have supm∈N ∥Duϵm∥L∞(V ) <
C

ϵ1+n for some constant C depending only on n, p and V , and

the second assertion holds. By Arzelà-Ascoli theorem, the sequence (uϵm)∞m=1 has a subsequence (ujm)∞j=1 that

converges uniformly on V , and

lim sup
j,k→∞

∥∥uϵmj
− uϵmk

∥∥
Lq(V )

= 0. (4.14)

Step IV: Fix any δ > 0. By estimate (4.13), we choose ϵ > 0 to so small that

sup
m∈N

∥uϵm − um∥Lq(V ) <
δ

2
.
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Combining this bound with (4.14), we obtain

lim sup
j,k→∞

∥∥umj − umk

∥∥
Lq(V )

≤ lim sup
j,k→∞

(∥∥umj − uϵmj

∥∥
Lq(V )

+
∥∥uϵmj

− uϵmk

∥∥
Lq(V )

+
∥∥uϵmk

− umk

∥∥
Lq(V )

)
< δ,

where (mj)
∞
j=1 is the subsequence chosen in Step III, which depends on ϵ. Next, we employ our conclusion on

δ = 1, 12 ,
1
3 , · · · and use Cantor’s standard diagonal statement to extract a subsequence (ml)

∞
l=1 satisfying

lim sup
l,k→∞

∥uml
− umk

∥Lq(V ) = 0.

By completeness of the space Lq(V ), the result follows.

For n < p ≤ ∞, we have a similar conclusion following from Morrey’s inequality and Arzelà-Ascoli theorem.

Theorem 4.17. Let U be a bounded, open subset of Rn with a Lipschitz boundary. Assume n < p ≤ ∞. Then

W 1,p(U) ⋐ Lq(U)

for all 1 ≤ q ≤ ∞.

Proof. By Arzelà-Ascoli theorem, we know that C0,γ(U) ⋐ C(U) for all 0 < γ ≤ 1. Let (um)∞m=1 be a bounded

sequence inW 1,p(U). By Morrey’s inequality, (um), identified to its Hölder continuous version, is also bounded

in C0,1−n
p (U). Hence there is a subsequence (umk

)∞k=1 that converges uniformly on U . Since U is bounded,

(umk
)∞k=1 converges in Lq(U) for all 1 ≤ q ≤ ∞, and the result follows.

For the borderline case p = n, we have the following limiting conclusion.

Theorem 4.18. Let U be a bounded, open subset of Rn with a Lipschitz boundary. Then

W 1,n(U) ⋐ Lq(U)

for all 1 ≤ q <∞.

Proof. According to Lemma 4.13, the embedding W 1,n(U) ↪→ Lq(U) is continuous for all 1 ≤ q < ∞. Now

take any bounded sequence (um)∞m=1 in W 1,n(U). Then for every 1 ≤ p < n, since U is bounded, (um)∞m=1

is also bounded in W 1,p(U). By Rellich-Kondrachov compactness theorem, for any 1 ≤ q < p∗, there exists a

subsequence (umk
)∞k=1 that converges in Lq(U). Since p∗ = np

n−p → ∞ as p→ n, the result follows.

Remark. Summarizing Theorems 4.16, 4.17 and 4.18, we have

W 1,p(U) ⋐ Lp(U)

for all 1 ≤ p ≤ ∞. Moreover, we have

W 1,p
0 (U) ⋐ Lp(U)

for all 1 ≤ p ≤ ∞, even if ∂U is not Lipschitz.
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4.5 Poincaré’s Inequality

Notation. Given a bounded set U ⊂ Rn and a function u ∈ L1(U), define the mean value of u in U as

(u)U =
1

|U |

∫
U

u(x) dx.

Similarly, define the mean value of u ∈ L1(B(x, r)) over the ball B(x, r) as

(u)x,r =
1

|B(x, r)|

∫
B(x,r)

u(y) dy.

Theorem 4.19 (Poincaré’s inequality). Let U be a bounded, open and connected subset of Rn, with a Lipschitz

boundary. Assume 1 ≤ p ≤ ∞. Then there exists a constant C, depending only on n, p and U , such that

∥u− (u)U∥Lp(U) ≤ C∥Du∥Lp(U)

for each u ∈W 1,p(U).

Proof. Argue by contradiction. Were the estimate false, there would exist for each m ∈ N a Sobolev function

um ∈W 1,p(U) satisfying

∥um − (um)U∥Lp(U) > m∥Dum∥Lp(U).

We then renormalize by defining

vm =
um − (um)U

∥um − (um)U∥Lp(U)
, m = 1, 2, · · · .

Thus (vm)U = 0, ∥vm∥Lp(U) = 1, and ∥Dvm∥Lp(U) ≤ 1
m . In particular, the sequence (vm)∞m=1 is bounded in

W 1,p(U). By Rellich-Kondrachov compactness theorem, there is a subsequence (vmk
)∞k=1 that converges in

Lp(U), with the limit written by v ∈ Lp(U). Clearly, we have (v)U = 0, and ∥v∥Lp(U) = 1. On the other hand,

for each ϕ ∈ C∞
c (U), one have∫

U

v∂xi
ϕdx = lim

k→∞

∫
U

vmk
∂xi

ϕdx = lim
k→∞

∫
U

(Dxi
vmk

)ϕdx = 0, i = 1, · · · , n.

Therefore, v ∈W 1,p(U), and Dv = 0 a.e. on U .

Now we prove that v is constant a.e. on U . Given ϵ > 0, we take the mollification vϵ = ηϵ ∗ v. Clearly,

Dxi
vϵ = ηϵ ∗ Dxi

v = 0 on U ϵ for all i = 1, · · · , n. Consequently, vϵ remains constant on each connected

component of U ϵ. Next, given any x, y ∈ U , since U is connected, we can connect them with a polygonal path

Γ ⊂ U . Let δ = infz∈Γ d(z, ∂U), and take ϵ < δ/2. Then Γ ⊂ U ϵ, and x, y lies in the same component of U ϵ.

Hence vϵ(x) = vϵ(y) for all ϵ < δ/2. By Proposition 1.8, since vϵ → v a.e. on U , we obtain that v is constant

a.e. on U . Finally, since (v)U = 0, we have v ≡ 0. However, this implies ∥v∥Lp(U) = 0, a contradiction!

We immediately obtain the following result.

Theorem 4.20 (Poincaré’s inequality for a ball). Assume 1 ≤ p ≤ ∞. Then there exists a constant C,

depending only on n and p, such that

∥u− (u)x,r∥Lp(B(x,r)) ≤ Cr∥Du∥Lp(B(x,r))

for each ball B(x, r) ⊂ Rn and each function u ∈W 1,p(B0(x, r)).
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Proof. The estimate of u ∈ W 1,p(B0(0, 1)) is a special case of Theorem 4.19, where U = B0(0, 1). Generally,

if u ∈W 1,p(B0(x, r)), let v(z) = u(x+ rz). Then v ∈W 1,p(B0(0, 1)), and

∥v − (v)0,1∥Lp(B(0,1)) ≤ C∥Dv∥Lp(B(0,1)).

The desired result follows from changing variables.

Space of bounded mean oscillation. A function u ∈ L1
loc(Rn) is said to be of bounded mean oscillation if

sup
B(x,r)⊂Rn

1

|B(x, r)|

∫
B(x,r)

|u(y)− (u)x,r| dy <∞. (4.15)

The space of all such functions is called the space of functions of bounded mean oscillation, after dividing out

constant functions:

BMO(Rn) ⊂ L1
loc(Rn)/{constant functions},

and the left-hand side of (4.15) defines a norm ∥ · ∥BMO(Rn) on this subspace.

Remark. Let u ∈W 1,n(Rn), and B(x, r) ∈ Rn. By Hölder’s and Poincaré’s inequalities,

1

|B(x, r)|

∫
B(x,r)

|u(y)− (u)x,r| dy ≤

(
1

|B(x, r)|

∫
B(x,r)

|u(y)− (u)x,r|n dy

)1/n

≤ Cr

|B(x, r)|
∥Du∥Ln(B(x,r)) =

C

|B(0, 1)|
∥Du∥Ln(B(x,r)).

Therefore, W 1,n(Rn) is continuously embedded into BMO(Rn), and

∥u∥BMO(Rn) ≤ C∥Du∥Ln(Rn) ≤ C∥u∥W 1,n(Rn).
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5 Second-order Elliptic Equations

In this chapter, we study the second-order elliptic equations. The problem we are mostly interested in is the

following boundary value problem, which consists of a partial differential equation (PDE) and a homogeneous

Dirichlet boundary condition (BC): Lu = f in U,

u = 0 on ∂U,
(5.1)

where U is a bounded, open subset of Rn, f : U → R is a known function, and u : U → R is the unknown.

The partial differential operator L is of second order. Given coefficient functions aij , bi, c, (i, j = 1, · · · , n),
the operator L is given by the either of the following forms:

• Divergence form.

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+

n∑
i=1

bi(x)uxi
+ c(x)u. (5.2)

• Non-divergence form.

Lu = −
n∑

i,j=1

aij(x)uxixj
+

n∑
i=1

bi(x)uxi
+ c(x)u. (5.3)

When the quadratic coefficients aij ∈ C1(U), any of the two forms of L can be rewritten in the other using

product rule. For example, the divergence form (5.2) can be written in the non-divergence form:

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
i=1

bi(x)− n∑
j=1

aijxj

uxi + c(x)u.

Both the two forms are discussed in our study, based on the situation.

5.1 The Dual Space of H1
0

Let U be an open subset of Rn. The Sobolev space H1(U) =W 1,2(U) is a Hilbert space with inner product

⟨u, v⟩H1(U) =

∫
U

(uv +Du ·Dv) dx, u, v ∈ H1(U).

The space H1
0 (U) is the closure of C∞

c (U) in H1(U). Since H1
0 (U) is a closed subspace of H1(U), it is also a

Hilbert space with the inner product inherited from H1(U). We write H−1(U) for the dual space to H0(U):

H−1(U) =
{
f | f : H1

0 (U) → R is a bounded linear functional
}
.

We write ⟨f, u⟩ for the pairing f(u) between H−1(U) and H1
0 (U). If f ∈ H−1(U), we define it norm

∥f∥H−1(U) = sup
{
⟨f, u⟩ : u ∈ H1

0 (U), ∥u∥H0,1(U) ≤ 1
}

By Riesz representation theorem, we have the isomorphism H−1(U) ∼= H1
0 (U). However, in this section, we

prefer not to identify the space H1
0 (U) with its dual. We point out that, despite the isomorphism, H−1(U)

and H1
0 (U) are not equal sets. For further discussion, we study an identification of H−1(U) under the usual

L2 inner product. This characterization of H−1(U) will be useful in the study of second-order linear PDEs.
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Theorem 5.1. Assume f ∈ H−1(U). Then there exist functions f0, f1, · · · , fn ∈ L2(U) such that

⟨f, v⟩ =
∫
U

(
f0v +

n∑
i=1

f ivxi

)
dx, ∀v ∈ H1

0 (U). (5.4)

Furthermore,

∥f∥H−1(U) = inf


(∫

U

n∑
i=0

|f i|2 dx

)1/2

: f0, f1, · · · , fn ∈ L2(U) satisfies (5.4)

 (5.5)

Proof. By Riesz representation theorem, for each f ∈ H−1(U), there exists u ∈ H1
0 (U) such that

⟨f, v⟩ = ⟨u, v⟩H1
0 (U) =

∫
U

(uv +Du ·Dv) dx, ∀v ∈ H1
0 (U). (5.6)

We choose f0 = u, and f i = uxi
for i = 1, · · · , n. Then we establish (5.4). To show (5.5), assume

⟨f, v⟩ =
∫
U

(
g0v +

n∑
i=1

givxi

)
dx, ∀v ∈ H1

0 (U)

for some g0, g1, · · · , gn ∈ L2(U). Setting v = u in (5.6), we get, by Cauchy’s inequality,

∫
U

(|u|2 + |Du|2) dx =

∫
U

(
g0u+

n∑
i=1

giuxi

)
dx ≤

(∫
U

n∑
i=0

|gi|2 dx

)1/2(∫
U

(|u|2 + |Du|2) dx
)1/2

.

Hence ∫
U

(|u|2 + |Du|2) dx =

∫
U

n∑
i=0

|f i|2 dx ≤
∫
U

n∑
i=0

|gi|2 dx. (5.7)

Finally, note that when ∥v∥H1
0 (U) ≤ 1,

⟨f, v⟩ ≤

(∫
U

n∑
i=0

|f i|2 dx

)1/2

,

and the equality holds when we choose v = u
∥u∥

H1
0(U)

. Hence

∥f∥H−1(U) = sup
{
⟨f | v⟩ : v ∈ H1

0 (U), ∥v∥H0,1(U) ≤ 1
}
=

∫
U

n∑
i=0

|f i|2 dx. (5.8)

Then (5.5) follows from (5.7) and (5.8).

Remark. (i) Using integration by parts, we can write (5.4) to

⟨f, v⟩ =
∫
U

(
f0 −

n∑
i=1

f ixi

)
v dx.

Hence we write f = f0 −
∑n

i=1 f
i
xi

whenever (5.4) holds.

Also, we obtain a characterization of H−1(U): if f ∈ H−1(U), then f is the sum of a L2 function f0 and

the divergence of a vector (f1, · · · , fn) of L2 functions (in weak/distributional sense).
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(ii) If f ∈ L2(U), we let f0 = f and f1, · · · , fn = 0. Then f = f0 −
∑n

i=1 f
i
xi

∈ H−1(U), with

⟨f, v⟩ = ⟨f, v⟩L2(U).

By (5.5), we have ∥f∥H−1(U) ≤
(∫

U
|f0|2 dx

)1/2 ≤ ∥f∥L2(U). Hence we get the inclusion

H1
0 (U) ⊂ L2(U) ↪→ H−1(U).

We have the following density argument.

Theorem 5.2. The space L2(U) is dense in H−1(U).

Proof. Fix f ∈ H−1(U). By Riesz representation theorem, we can find u ∈ H1
0 (U) with ⟨f, v⟩ = ⟨u, v⟩H1

0 (U)

for all v ∈ H1
0 (U). We then find an approximation C∞

c (U) ∋ un → u in H1(U). Then

⟨un, v⟩H1
0 (U) =

∫
U

(unv +Dun ·Dv) dx =

∫
U

(un −∆un)v dx. (integration by parts)

Since un ∈ C∞
c (U), we have un −∆un ∈ L2(U). Let fn : H1

0 (U) → R be the functional

⟨fn, v⟩ = ⟨un, v⟩H1
0 (U) = ⟨un −∆un, v⟩L2(U).

Then fn is a bounded linear functional on L2(U), and

|⟨f − fn, v⟩| = |⟨u− un, v⟩H1
0 (U)| ≤ ∥u− un∥H1

0 (U)∥v∥H1
0 (U)

By taking a supremum on both sides over ∥v∥H1
0 (U) ≤ 1, we obtain ∥f − fn∥H−1(U) ≤ ∥u − un∥H1

0 (U), which

converges to 0 as n goes to infinity. Then we complete the proof.

Remark. In the preceding proof, we identify the space L2(U) with its dual. In fact, we prove that (L2(U))∗ is

dense in the space H−1(U).

5.2 The Lax-Milgram Theorem

In this section, we introduce a general result in Hilbert spaces. We will make use of this result when we

establish the weak formulation of PDEs.

Let H be a real Hilbert space with inner product ⟨·, ·⟩H and norm ∥ · ∥H =
√

⟨·, ·⟩H . We continue to write

⟨·, ·⟩ for the action of an element of H∗ on an element of H.

Theorem 5.3 (Lax-Milgram Theorem). Suppose that B : H × H → R is a bilinear form, for which there

exists constants α, β > 0 such that

(i) (Boundedness) |B(u, v)| ≤ α∥u∥H∥v∥H for all u, v ∈ H; and

(ii) (Coercivity) B(u, u) ≥ β∥u∥2H for all u ∈ H.

Then for each f ∈ H∗, there exists a unique u ∈ H such that

B(u, v) = ⟨f, v⟩

for all v ∈ H.

Remark. If B is symmetric, i.e. B(u, v) = B(v, u) for all u, v ∈ H, then B becomes a inner product on H, and

our result is the Riesz representation theorem.
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Proof of Theorem 5.3. We fix u ∈ U , so B(u, ·) is a bounded linear functional on H. By Riesz representation

theorem, there exists a unique wu ∈ H such that B(u, v) = ⟨wu, v⟩H for all v ∈ H. We then let A : H → H

be the operator that maps each u ∈ H to this unique wu, i.e. B(u, v) = ⟨Au, v⟩H for all v ∈ H.

• Claim I. A ∈ H∗.

Let α, β ∈ R and u1, u2 ∈ H. Then

⟨A(αu1 + βu2), v⟩H = B(αu1 + βu2, v) = αB(u1, v) + βB(u2, v)

= α⟨Au1, v⟩H + β⟨Au2, v⟩H = ⟨αAu1 + βAu2, v⟩H , ∀v ∈ H.

Hence A(αu1 + βu2) = αAu1 + βAu2, and the linearity follows. To show that A is bounded, note that

∥Au∥2H = B(u,Au) ≤ α∥u∥H∥Au∥H ⇒ ∥Au∥H ≤ α∥u∥H , ∀u ∈ H.

• Claim II. A is injective, and the range R(A) of A is closed in H.

We first show that A is injective. By coercivity,

Au = 0 ⇒ ∥u∥2H ≤ 1

β
B(u, u) = ⟨Au, u⟩H = 0 ⇒ u = 0 ⇒ kerA = 0.

Next we show that R(A) is closed in H. Let w ∈ R(A). Then we can find a sequence wn ∈ R(A) such

that ∥wn − w∥H → 0. Let un = A−1wn. By coercivity,

∥un − um∥H ≤ B(un − um, un − um)

β∥un − um∥H
=

⟨Aun −Aum, un − um⟩H
β∥un − um∥H

=
⟨wn − wm, un − um⟩H

β∥un − um∥H
≤ 1

β
∥wn − wm∥H .

Hence (un) is a Cauchy sequence in H. By completeness, we can find u ∈ H with ∥un − u∥ → 0. Then

∥Au− w∥H ≤ ∥Au−Aun∥H + ∥Aun − w∥H ≤ α∥u− un∥H + ∥wn − w∥H → 0.

Hence w = Au ∈ R(A). Therefore R(A) is closed in H.

• Claim III. R(A) = H.

Since R(A) is closed, every u ∈ H can be uniquely decomposed to u = u0 + u1 with u0 ∈ R(A) and

u1 ∈ R(A)⊥. If R(A) ̸= H, we choose v ∈ H\R(A) with orthogonal decomposition v = v0 + v1. Then

for all u ∈ H, we have ⟨Au, v1⟩H = 0. Setting u = v1, we get B(v1, v1) = ⟨Av1, v1⟩H = 0, and v1 = 0 by

coercivity. This implies v = v0 ∈ R(H), a contradiction! Therefore R(A) = H.

Now, combining our Claims I, II and III, we conclude that A : H → H is a bounded linear bijection. By Banach

bounded inverse theorem, there exists a bounded linear operator A−1 : H → H such that AA−1 = A−1A = Id.

Then for each f ∈ H∗, by Riesz representation theorem, there exists w ∈ H such that ⟨f, v⟩ = ⟨w, v⟩H for all

v ∈ H. Let u = A−1w, then

B(u, v) = ⟨Au, v⟩ = ⟨AA−1w, v⟩ = ⟨w, v⟩ = ⟨f, v⟩.

Finally, to prove uniqueness, assume B(u, v) = B(u′, v) = ⟨f, v⟩ for all v ∈ H. By coercivity,

∥u− u′∥2H ≤ 1

β
B(u− u′, u− u′) =

⟨f, u− u′⟩ − ⟨f, u− u′⟩
β

= 0.

Then we complete the proof.
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5.3 Weak Formulation and Poisson’s Equation

In this section, we study the weak formulation of the boundary value problem (5.1). Through our discussion,

we assume the differential operator is given by the divergence form (5.2):

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+

n∑
i=1

bi(x)uxi
+ c(x)u.

In fact, the exact solution of a second-order PDE can be intractable. To simplify our problem, we may concern

if our PDE holds in the sense of integration, which gives rise to the weak formulation of PDE.

Motivation. We assume that u is a smooth solution of the BVP (5.1). We the multiply the PDE Lu = f

by a test function v ∈ C∞
c (U) and integrate over U :

∫
U

 n∑
i,j=1

aij(x)uxivxj +

n∑
i=1

biuxiv + cuv

 dx =

∫
U

fv dx.

Here we use integration by parts in the first term on the left side, where the boundary term vanishes since

v = 0 on ∂U . By approximation, we can obtain the same identity when the smooth function v is replaced by

v ∈ H1
0 (U), and the resulting identity make sense if and only if u ∈ H1

0 (U). Here we incorporate the Dirichlet

BCs u = 0 on ∂U by choosing u ∈ H1
0 (U). We require the above identity holds for a weak solution u.

Definition 5.4. The bilinear form B : H1
0 (U)×H1

0 (U) → R associated with the divergence form operator L

defined by (5.2) is given by

B(u, v) =

∫
U

 n∑
i,j=1

aijuxi
vxj

+

n∑
i=1

biuxi
v + cuv

 dx, u, v ∈ H1
0 (U).

When f ∈ L2(U), our goal becomes finding a function u ∈ H1
0 (U) such that B(u, v) = ⟨f, v⟩L2(U) holds for

all v ∈ H1
0 (U). More generally, we consider the following problem:Lu = f0 −

∑n
i=1 f

i
xi

in U,

u = 0 on ∂U,
(5.9)

where f = f0 −
∑n

i=1 f
i
xi

∈ H−1(U), and f0, f1, · · · , fn ∈ L2(U).

Definition 5.5 (Weak solutions). Let L be a divergence form operator defined by (5.2), and let B be the

associated bilinear form.

(i) Let f ∈ L2(U). A function u ∈ H1
0 (U) is said to be a weak solution to problem (5.1), if

B(u, v) = ⟨f, v⟩L2(U)

for all v ∈ H1
0 (U).

(ii) Let f = f0 −
∑n

i=1 f
i
xi

∈ H−1(U), and f0, f1, · · · , fn ∈ L2(U). A function u ∈ H1
0 (U) is said to be a

weak solution to problem (5.9), if

B(u, v) = ⟨f, v⟩

for all v ∈ H1
0 (U), where ⟨f, v⟩ =

∫
U
(f0v +

∑n
i=1 f

ivxi) dx is the pairing of H−1(U) and H1
0 (U).
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Example 5.6 (Poisson’s equation). Let f ∈ H−1(U). We consider the following boundary value problem:−∆u = f in U,

u = 0 on ∂U.

For a divergence form operator L, this is the case aij(x) = δij , b
i(x) = 0 and c(x) = 0. The bilinear form

associated with the negative Laplacian operator L = −∆ is given by

B(u, v) =

∫
U

δijuxi
vxj

dx =

∫
U

Du ·Dv dx,

and the weak formulation of this problem is

B(u, v) = ⟨f, v⟩, ∀v ∈ H1
0 (U).

Now we study the property of bilinear form B. For any u, v ∈ H1
0 (U), one can show boundedness:

|B(u, v)| =
∣∣∣∣∫

U

Du ·Dv dx
∣∣∣∣ ≤ ∥Du∥L2(U)∥Dv∥L2(U) ≤ ∥u∥H1

0 (U)∥v∥H1
0 (U).

Furthermore, by classical Poincaré’s inequality [Corollary 4.6], there exists a constant C > 0 such that

|B(u, u)| =
∫
U

|Du|2 dx = ∥Du∥2L2(U) ≥
1

C2
∥u∥2L2(U), ∀u ∈ H1

0 (U).

Then one can show coercivity:

|B(u, u)| = C2

1 + C2
∥Du∥2L2(U) +

1

1 + C2
∥Du∥2L2(U) ≥

1

1 + C2

(
∥u∥2L2(U) + ∥Du∥2L2(U)

)
≥ 1

1 + C2
∥u∥2H1

0 (U).

Therefore, by Lax-Milgram theorem [Theorem 5.3], there exists a unique weak solution u ∈ H1
0 (U) to the

Poisson’s equation under homogeneous Dirichlet boundary conditions.

Finally, we introduce the definition of elliptic PDEs, which is a generalization of Poisson’s equation.

Definition 5.7 (Uniformly elliptic operators). Let L be a partial differential operator of either divergence form

(5.2) or non-divergence form (5.3). Assume the coefficient functions aij , bi, c ∈ L∞(U) for all i, j = 1, · · · , n,
and also assume the symmetry condition

aij = aji, i, j = 1, · · · , n.

The operator L is said to be (uniformly) elliptic, if there exists a constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for a.e. x ∈ U and all ξ ∈ Rn.

Remark. For each x ∈ U , we write A(x) = (aij(x))ni,j=1 to be the symmetric n× n matrix associated with the

quadratic coefficients. Ellipticity essentially requires that for a.e. x ∈ U , the matrix A(x) is positive definite,

and the smallest eigenvalue is lower bounded by some θ > 0.
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5.4 Existence of Weak Solutions

In this section, we discuss the existence of weak solutions for the uniformly elliptic PDE (5.1). Through our

discussion, we assume the differential operator is given by the divergence form (5.2):

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+

n∑
i=1

bi(x)uxi
+ c(x)u.

Recall that a weak solution satisfies the PDE in the sense of integration.

5.4.1 Energy Estimate

The energy estimate focuses on verifying the hypotheses of Lax-Milgram theorem.

Theorem 5.8 (Energy estimates). Let L be an elliptic partial differential operator, and let B be the associated

bilinear form. Then there exist constants α, β > 0 and γ ≥ 0 such that

|B(u, v)| ≤ α∥u∥H1
0 (U)∥v∥H1

0 (U), (5.10)

and

β∥u∥2H1
0 (U) ≤ B(u, u) + γ∥u∥2L2(U) (5.11)

for all u, v ∈ H1
0 (U).

Proof. For all u, v ∈ H1
0 (U), we can check

|B(u, v)| =

∣∣∣∣∣∣
∫
U

 n∑
i,j=1

aij(x)uxivxj +

n∑
i=1

biuxiv + cuv

 dx

∣∣∣∣∣∣
≤

n∑
i,j=1

∥aij∥L∞(U)

∫
U

|Du| |Dv| dx+

n∑
i=1

∥bi∥L∞(U)

∫
U

|Du| |v| dx+ ∥c∥L∞(U)

∫
U

|u| |v| dx

≤ max


n∑

i,j=1

∥aij∥L∞(U) +

n∑
i=1

∥bi∥L∞(U),

n∑
i=1

∥bi∥L∞(U) + ∥c∥L∞(U)

 ∥u∥H1
0 (U)∥v∥H1

0 (U).

We let

α = max


n∑

i,j=1

∥aij∥L∞(U) +

n∑
i=1

∥bi∥L∞(U),

n∑
i=1

∥bi∥L∞(U) + ∥c∥L∞(U)

 .

Next, by ellipticity, there exists θ > 0 such that

θ

∫
U

|Du|2 dx ≤
∫
U

n∑
i,j=1

aijuxiuxj dx = B(u, u)−
∫
U

n∑
i=1

(
biuxiu+ cu2

)
dx

≤ B(u, u) +

n∑
i=1

∥bi∥L∞(U)

∫
U

|Du| |u| dx+ ∥c∥L∞(U)

∫
U

|u|2 dx

≤ B(u, u) + ϵ

n∑
i=1

∥bi∥L∞(U)

∫
U

|Du|2 dx+

(
∥c∥L∞(U) +

1

4ϵ

n∑
i=1

∥bi∥L∞(U)

)∫
U

|u|2 dx,
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where ϵ > 0 is to be chosen. We take ϵ > 0 to be so small that

ϵ

n∑
i=1

∥bi∥L∞(U) ≤
θ

2
.

Then for some appropriate constant γ, we have

θ

2

∫
U

|Du|2 dx ≤ B(u, u) + γ

∫
U

|u|2 dx.

By classical Poincaré’s inequality [Corollary 4.6], there exists a constant C > 0 such that∫
U

|Du|2 dx ≥ 1

C2

∫
U

|u|2 dx, ∀u ∈ H1
0 (U).

Combining the last two display, we have∫
U

|Du|2 dx ≥ 1

1 + C2

(∫
U

|u|2 dx+

∫
U

|Du|2 dx
)

≥ 1

1 + C2
∥u∥2H1

0 (U).

By setting β = θ
2(1+C2) , we have

β∥u∥2H1
0 (U) ≤ B(u, u) + γ∥u∥L2(U).

Thus we complete the proof.

When γ > 0 in the energy estimate, the coercivity condition of the Lax-Milgram theorem is not satisfied.

The following existence theorem must confront this possibility.

Theorem 5.9 (First existence theorem for weak solutions). Let L be an elliptic partial differential operator.

There is a constant γ ≥ 0 such that for all λ ≥ γ and each function f = f0 −
∑n

i=1 f
i
xi

∈ H−1(U), where

f0, f1, · · · , fn ∈ L2(U), there exists a unique weak solution u ∈ H1
0 (U) to the boundary value problemLu+ λu = f0 −

∑n
i=1 f

i
xi

in U

u = 0 on ∂U.
(5.12)

Proof. We consider the operator Lλ = L+ λ Id, which has the associated bilinear form

Bλ(u, v) = B(u, v) + λ⟨u, v⟩L2(U), u, v ∈ H1
0 (U).

Take γ ≥ 0 from Theorem 5.8, then Bλ satisfies the hypotheses of Lax-Milgram theorem for all λ ≥ µ. We

then fix f = f0 −
∑n

i=1 f
i
xi

∈ L2(U). By Lax-Milgram theorem, there exists a unique u ∈ H1
0 (U) such that

Bλ(u, v) = ⟨f, v⟩ =
∫
U

(
f0u+

n∑
i=1

f iuxi

)
dx.

for all v ∈ H1
0 (U). In fact, u is the unique weak solution of (5.12).

Remark. In fact, we show that Lλ = L+ λ Id : H1
0 (U) → H−1(U) is an isomorphism for all λ ≥ γ.
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5.4.2 The Fredholm Alternative

To study the solvability of elliptic PDEs, we need the tool of Fredholm alternative, which incorporates existence

and uniqueness of solutions. To start with, we consider a bounded linear operator T on a Hilbert space H.

We have some standard results in functional analysis, about the kernel and range of T and its adjoint:

ker(T ) = R(T ∗)⊥, ker(T ∗) = R(T )⊥, R(T ) = ker(T ∗)⊥, R(T ∗) = ker(T )⊥.

Next, we consider a compact operator K : H → H, i.e. K maps each bounded subset of H to a precompact

subset of H. The compactness implies a lot of good properties. Here are some helpful facts:

(i) The adjoint K∗ of K is also a compact operator.

(ii) Every nonzero point of σ(K) (the spectrum of K) is an eigenvalue of K. In other words, if λ ̸= 0 and

λI −K is not invertible, then there exists x ∈ H such that Kx = λx. This implies

ker(λ Id−K) = {0} λ̸=0⇔ R(λ Id−K) = H.

In other words, when λ ̸= 0, λ Id−K is injective if and only if it is surjective.

(iii) If λ ̸= 0, then R(λ Id−K) is a closed subspace of H.

(iv) If λ ∈ σ(K)\{0}, the eigenspace of K associated with λ is finite dimensional, and

dimker(λ Id−K) = dimker(λ Id−K∗).

Therefore, if K : H → H is a compact operator and λ ̸= 0, the following statements are equivalent:

(a) ker(λ Id−K) = {0}; (b) R(λ Id−K) = H; (c) ker(λ Id−K∗) = {0}; (d) R(λ Id−K∗) = H.

We formally summarize our result below.

Theorem 5.10 (Fredholm alternative). Let K be a compact operator on a Hilbert space H, and fix λ ̸= 0.

Then exactly one of the following statements holds:

(a) For every v ∈ H, the equation λu−Ku = v has a unique solution u ∈ H;

(b) The eigenvalue problem Ku = λu has nonzero solution u ̸= 0 in H.

Furthermore, if (a) holds for K, it also holds for the adjoint operator K∗; otherwise, (b) holds for both the

operator K and its adjoint operator K∗, and their eigenspaces associated with λ has the same dimension.

Remark. We can interpret the basic results as follows: In an appropriately formulated problem, either

(a) The inhomogeneous equation can be solved uniquely for each choice of data, or

(b) The homogeneous equation has a nontrivial solution.

Adjoint operators. We assume that bi ∈ C1(U). If u, v ∈ H1
0 (U), we use integration by parts to obtain

∫
U

(Lu)v dx =

∫
U

−
n∑

i,j=1

(
aijuxi

)
xj

+

n∑
i=1

biuxi + cu

 v dx =

∫
U

 n∑
i,j=1

aijuxivxj −
n∑

i=1

(biv)xiu+ cuv

 dx

=

∫
U

n∑
i,j=1

(
aijuxivxj −

n∑
i=1

biuvxi +

(
c−

n∑
i=1

bxi

)
uv

)
dx

=

∫
U

u

−
n∑

i,j=1

(aijvxj
)xi

−
n∑

i=1

bivxi
+

(
c−

n∑
i=1

bxi

)
v

 dx.

This identity has a form similar to the definition of adjoint: ⟨Lu, v⟩L2(U) = ⟨u, L∗v⟩L2(U).

51



Definition 5.11 (Adjoint). Let L be an divergence form elliptic operator with bi ∈ C1(U) for all i = 1, · · · , n.
The operator L∗, called the formal adjoint of L, is defined as

L∗v = −
n∑

i,j=1

(aijvxj
)xi

−
n∑

i=1

bivxi
+

(
c−

n∑
i=1

bxi

)
v.

The adjoint bilinear form B∗ : H1
0 (U)×H1

0 (U) → R, associated with L∗, is defined by

B∗(v, u) = B(u, v), u, v ∈ H1
0 (U).

Fix f ∈ H−1(U). We say that v ∈ H1
0 (U) is a weak solution of the adjoint problemL∗v = f in U,

v = 0 on ∂U,

if B∗(v, u) = ⟨f, u⟩ for all u ∈ H1
0 (U), where ⟨·, ·⟩ is the pairing between H−1(U) and H1

0 (U).

We derive an existence theorem for weak solutions of elliptic PDEs using Fredholm alternative.

Theorem 5.12 (Second existence theorem for weak solutions). Let L be a elliptic operator.

(i) Exactly one of the following statements holds: either

(a) for each f ∈ L2(U), there exists a unique weak solution u ∈ H1
0 (U) of the boundary value problemLu = f in U,

u = 0 on ∂U,
(5.13)

or else

(b) there exists a nonzero weak solution u ̸= 0 in H1
0 (U) of the homogeneous problemLu = 0 in U,

u = 0 on ∂U.
(5.14)

The dichotomy (a) & (b) is the Fredholm alternative.

(ii) Furthermore, should (b) hold, the dimension of the subspace N ⊂ H1
0 (U) of weak solutions of (5.14) is

finite and equals the dimension of the subspace N∗ ∈ H1
0 (U) of weak solutions of the adjoint problemL∗v = 0 in U,

v = 0 on ∂U.
(5.15)

(iii) Finally, the boundary value problem (5.13) has a weak solution if and only if

⟨f, v⟩L2(U) = 0, ∀v ∈ N∗.

Proof. Step I. We choose λ = γ in Theorem 5.9, and assume without loss of generality γ > 0. Let

Bγ(u, v) = B(u, v) + γ⟨u, v⟩L2(U), u, v ∈ H1
0 (U),

which is the bilinear form associated with the operator Lγ = L + γ Id. Then for each g ∈ L2(U) there exists

a unique u ∈ H1
0 (U) solving Bγ(u, v) = ⟨g, v⟩L2(U) for all v ∈ H1

0 (U). We define the inverse L−1
γ : L2(U) →
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H1
0 (U) by writing u = L−1

γ g. For f ∈ L2(U), we observe that u is a weak solution of (5.13) if and only if

u = L−1
γ (γu+ f).

We let K = γL−1
γ and h = L−1

γ f . Then we rewrite this problem to (Id−K)u = h. To employ Fredholm

alternative, we claim that K : L2(U) → L2(U) is a compact bounded linear operator. To this end, we note

that, by energy estimate [Theorem 5.8] (5.11), for g ∈ L2(U) and u = L−1
γ g,

β∥u∥2H1
0 (U) ≤ Bγ(u, u) = ⟨g, u⟩L2(U) ≤ ∥g∥L2(U)∥u∥L2(U) ≤ ∥g∥L2(U)∥u∥H1

0 (U).

Then

∥Kg∥H1
0 (U) ≤

γ

β
∥g∥L2(U).

By Rellich-Kondrachov compactness theorem, we have H1(U) ⋐ L2(U), hence every bounded subset of H1(U)

is precompact in L2(U), and K : L2(U) → L2(U) is a compact operator.

Step II. According to the Fredholm alternative, exactly one of the following statements holds: either

(a) For each h ∈ L2(U), the equation (Id−K)u = h has a unique solution u ∈ L2(U); or else,

(b) The equation (Id−K)u = 0 has a nonzero solution u ̸= 0 in L2(U).

Should the statement (a) holds, we fix any f ∈ L2(U), and set h = L−1
γ f ∈ H1

0 (U) ⊂ L2(U). Then we find

a unique u ∈ L2(U) with (Id−K)u = h, and in fact u = Ku+h ∈ H1
0 (U). This is the weak solution to (5.13).

Should the statement (b) holds, the nonzero solution u = Ku ∈ H1
0 (U). Furthermore, the space N of

solutions of (5.14) is ker(Id−K). According to Theorem 5.10, N is of finite dimension. A similar procedure

shows that the space N∗ of solutions of (5.15) is ker(Id−K∗), which has the same dimension as N .

Finally, when the statement (b) holds, the problem (5.13) is has a weak solution if and only if the equation

(Id−K)u = h has a solution, if and only if h ∈ R(Id−K) = ker(Id−K∗)⊥ = (N∗)⊥. Note that for all v ∈ N∗,

⟨f, v⟩L2(U) = ⟨f,K∗v⟩L2(U) = ⟨Kf, v⟩L2(U) = γ⟨h, v⟩L2(U).

Therefore, the boundary problem (5.13) has a weak solution if and only if f ∈ (N∗)⊥.

We also have the following result concerning the solvaibility of problems in the form of (5.12).

Theorem 5.13 (Third existence theorem for weak solutions). Let L be a elliptic operator.

(i) There exists an at most countable set Σ ⊂ R such that the boundary value problemLu = λu+ f in U,

u = 0 on ∂U,
(5.16)

has a unique weak solution for each f ∈ L2(U) if and only if λ /∈ Σ.

(ii) If Σ is infinite, then Σ = {λk}∞k=0, the values of a nondecreasing sequence with λk → ∞.

Proof. We take the constant γ from Theorem 5.9, and assume without loss of generality γ > 0. Let λ > −γ.
According to Fredholm alternative [Theorem 5.10], the boundary value problem (5.16) has a unique solution

for each f ∈ L2(U) if and only if 0 is not an eigenvalue of L; that is, u = 0 is the only weak solution of the

following homogeneous problem: Lγu = (γ + λ)u in U,

u = 0 on ∂U,
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where Lγ = L+ γ Id. The PDE holds when

u = (λ+ γ)L−1
γ u =

γ + λ

γ
Ku,

where K = γL−1
γ is a compact bounded linear operator on L2(U). Therefore, the boundary value problem

(5.16) has a unique solution for each f ∈ L2(U) if and only if γ
γ+λ is not an eigenvalue of K.

Since K is a compact operator on L2(U), its spectrum σ(K) is either a finite set or the values of a sequence

converging to 0. Then the set Σ has at most countably many values, and λk → ∞ if Σ is infinite.

Remark. The set Σ is called the (real) spectrum of the operator L. When λ ∈ Σ, by the Fredholm alternative,

the following eigenvalue problem has nonzero solution u ̸= 0 in H1
0 (U):Lu = λu in U,

u = 0 on ∂U.

Theorem 5.14 (Boundedness of the inverse). If λ /∈ Σ, there exists a constant C such that for all f ∈ L2(U),

∥u∥L2(U) ≤ C∥f∥L2(U),

where u is the unique weak solution of problem (5.16). The constant C depends only on λ, U and L.

Proof. Argue by contradiction. Assume that there exists sequences fk ∈ L2(U) and uk ∈ H1
0 (U) such that uk

is a weak solution of (5.16) when f = fk:Luk = λuk + fk in U,

uk = 0 on ∂U,

but ∥uk∥L2(U) > k∥fk∥L2(U), k = 1, 2, · · · . We may also assume with no loss that ∥uk∥L2(U) = 1, so fk → 0 in

L2(U). According to the energy estimate, the sequence (uk) is also bounded in H1
0 (U):

β∥uk∥H1
0 (U) ≤ B(uk, uk) + γ∥uk∥L2(U)

= ⟨λuk + fk, uk⟩L2(U) + γ∥uk∥2L2(U) <
1

k
+ λ+ γ ≤ 1 + λ+ γ.

By Banach-Alaoglu theorem and Rellich-Kondrachov theorem, there exists a subsequence (ukj
) such that

ukj
→ u weakly in H1

0 (U), and ukj
→ u in L2(U).

Since B(·, v) is a bounded linear functional on H1
0 (U) for all v ∈ H1

0 (U), we have

B(u, v) = lim
j→∞

B(ukj
, v) = lim

j→∞
⟨λukj

+ fkj
, v⟩L2(U) = ⟨λu, v⟩L2(U).

Therefore u is a weak solution of the homogeneous problemLu = λu in U,

u = 0 on ∂U.

Since λ /∈ Σ, we have u ≡ 0 by the Fredholm alternative. However ∥u∥L2(U) = 1, because ukj → u in L2(U),

leading to a contradiction!
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5.5 Regularity Theory

In this section, we study the smoothness of the weak solution to the second-order elliptic PDE

Lu = f in U.

5.5.1 Difference Quotients

We first study difference quotient approximations to weak derivatives.

Definition 5.15 (Difference quotient). Let u ∈ L1
loc(U) and V ⋐ U . The ith difference quotient of size h is

Dh
i u(x) =

u(x+ hei)− u(x)

h
, i = 1, 2, · · · , n,

where x ∈ V and 0 < |h| < d(V, ∂U). The difference quotient of size h is Dhu = (Dh
1u,D

h
2u, · · · , Dh

nu).

Remark. If supp v ⊂ V and 0 < |h| < 1
2d(V, ∂U), we have the integration-by-parts formula∫

U

v(x)Dh
i u(x) dx = −

∫
U

u(x)D−h
i v(x) dx.

Also,

Dh
i (uv) = uhiD

h
i v + vDh

i u,

where uhi (x) = u(x+ hei).

Theorem 5.16 (Difference quotients and weak derivatives). Let V ⋐ U ⊂ Rn, and u ∈ L1
loc(U).

(i) Let 1 ≤ p < ∞ and u ∈ W 1,p(U). Then there exists a constant C > 0 depending only on p and n such

that for all 0 < |h| < 1
2d(V, ∂U),

∥Dhu∥Lp(V ) ≤ C∥Du∥Lp(U).

(ii) Let 1 < p < ∞ and u ∈ Lp(V ). If there exist constants C, ϵ > 0 such that ∥Dhu∥Lp(V ) ≤ C for all

0 < |h| < ϵ, then u ∈W 1,p(V ), and ∥Du∥Lp(V ) ≤ C.

Proof. (i) Assume 1 ≤ p <∞ and u is smooth. If x ∈ V and 0 < h < 1
2d(V, ∂U),

Dh
i u(x) =

u(x+ hei)− u(x)

h
=

1

h

∫ h

0

uxi
(x+ tei) dt.

We may assume h > 0, and the case h < 0 is similar. By Holder’s inequality,

∣∣Dh
i u(x)

∣∣ ≤ 1

h

∫ h

0

|uxi(x+ tei)| dt ≤ h−1/p

(∫ h

0

|uxi(x+ tei)|p dt

)1/p

,

Then ∫
V

|Dhu|p dx ≤ C

n∑
i=1

∫
V

1

h

∫ h

0

|uxi
(x+ tei)|p dt dx =

C

h

n∑
i=1

∫ h

0

∫
V

|uxi
(x+ tei)|p dx dt

≤ C

h

n∑
i=1

∫ h

0

∫
U

|uxi
(x)|p dx dt = C∥Du∥pLp(U).

The general statement u ∈W 1,p(U) follows from the density of smooth functions in W 1,p(U).
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(ii) Assume that ∥Dh
i u∥Lp(V ) for all 0 < |h| < ϵ, and ϕ ∈ C∞

c (V ). Then∫
V

u(x)Dh
i ϕ(x) dx = −

∫
V

D−h
i u(x)ϕ(x) dx.

Since (∥Dhu∥Lp(V ))0<|h|<ϵ is bounded, there exists a subsequence hk ↓ 0 such that Dhk
i u converges weakly in

Lp(V ) for each i ∈ {1, 2, · · · , n}. Let vi ∈ Lp(V ) be the weak limit. Then∫
V

u(x)ϕxi
(x) = lim

k→∞

∫
V

u(x)Dhk
i ϕ(x) = − lim

k→∞

∫
V

D−hk
i u(x)ϕ(x) dx

= −
∫
V

vi(x)ϕ(x) dx = −
∫
U

vi(x)ϕ(x) dx.

Hence uxi
= vi in the weak sense, and Du ∈ Lp(V,Rn), with ∥Du∥Lp(V ) ≤ C.

Remark. Variants of this Theorem can hold even if it is not true that V ⋐ U . For example, if U is the open

half ball B(0, 1)∩{xn > 0} and V = B(0, 12 )∩{xn > 0}, we have ∥Dh
i u∥Lp(V ) ≤ ∥uxi

∥Lp(U) for all 0 < |h| < 1
4

and all i = 1, 2, · · · , n− 1.

5.5.2 Interior Regularity

We first study the regularity of the weak solution in the interior of the domain U ⊂ Rn, and we do not require

the boundary condition u = 0 on ∂U . Recall that L is the differetial operator of the divergence form

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+

n∑
i=1

bi(x)uxi
+ c(x)u.

Theorem 5.17 (Interior H2-regularity). Assume that aij ∈ C1(U) ∩ L∞(U) and bi, c ∈ L∞(U) for all

i, j = 1, 2, · · · , n, and f ∈ L2(U). If u ∈ H1(U) is a weak solution of the elliptic PDE

Lu = f in U, (5.17)

then u ∈ H2
loc(U). Furthermore, for each open set V ⋐ U , there exists a constant C depending on U, V and

the coefficients of L such that

∥u∥H2(V ) ≤ C(∥u∥L2(U) + ∥f∥L2(U)).

Proof. We fix an open set V ⋐ U , and take an open set W with V ⋐ W ⋐ U . By C∞-Urysohn lemma, we

take a smooth function ζ : Rn → [0, 1] such that ζ = 1 on V , and ζ = 0 on Rn\W .

Step I. Since u is a weak solution of (5.17), we have B(u, v) = ⟨f, v⟩ for all v ∈ H1
0 (U). Then

n∑
i,j=1

∫
U

aijuxi
vxj

dx =

∫
U

(
f −

n∑
i=1

biuxi
− cu

)
v dx. (5.18)

We take |h| > 0 sufficiently small and k ∈ {1, 2, · · · , n}, and substitute v = −D−h
k (ζ2Dh

ku) into (5.18). We

write the resulting equation as A = B, where

A = −
n∑

i,j=1

∫
U

aijuxi

[
D−h

k (ζ2Dh
ku)
]
xj
dx, and B = −

∫ (
f −

n∑
i=1

biuxi
− cu

)
D−h

k

(
ζ2Dh

ku
)
dx.

We then estimate the terms A and B.
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Step II. For the term A, we have

A =

n∑
i,j=1

∫
U

Dh
k (a

ijuxi)
(
ζ2Dh

ku
)
xj
dx

=

n∑
i,j=1

(∫
U

aij,hk

(
Dh

kuxi

) (
ζ2Dh

ku
)
xj
dx+

∫
U

uxi

(
Dh

ka
ij
) (
ζ2Dh

ku
)
xj
dx

)

=

n∑
i,j=1

∫
U

aij,hk Dh
kuxi

Dh
kuxj

ζ2 dx

+

n∑
i,j=1

∫
U

[
2aij,hk Dh

kuxi
Dh

kuζζxj
+ uxi

(
Dh

ka
ij
)
Dh

kuxj
ζ2 + 2uxi

(
Dh

ka
ij
)
Dh

kuζζxj

]
dx

=: A1 +A2.

The uniform ellipcity condition implies

A1 ≥ θ

∫
U

ζ2|Dh
kDu|2 dx.

Since aij ∈ C1(U) ∩ L∞(U), there exists an appropriate constant C1 depending on (aij) and ζ such that

|A2| ≤ C1

∫
U

(
|Dh

kDu|
∣∣Dh

ku
∣∣+ |Dh

kDu| |Du|+ |Dh
ku| |Du|

)
ζ dx

≤ θ

2

∫
U

ζ2|Dh
kDu|2 dx+

(
C2

1

θ
+ C1

)∫
W

(
|Dh

ku|2 + |Du|2
)
dx.

By Theorem 5.16 (i), we have ∥Dhu∥L2(W ) ≤ C2∥Du∥L2(U) for some constant C2. Combining the last three

displays gives

A ≥ θ

2

∫
U

ζ2|Dh
kDu|2 dx−

(
C2

1

θ
+ C1

)
(1 + C2)

∫
U

|Du|2 dx. (5.19)

Step III. For the term B, we can find a constant C3 depending on coefficients bi and c such that

|B| ≤ C3

∫
U

(|f |+ |Du|+ |u|) |v| dx. (5.20)

By Theorem 5.16 (i), we can find constants C4 and C5 such that∫
U

|v|2 dx ≤ C4

∫
U

|D(ζ2Dh
ku)|2 dx ≤ 8C4

∫
W

|Dh
ku|2 dx+ 2C4

∫
W

ζ2|Dh
kDu|2 dx

≤ C5

(∫
U

|Du|2 dx+

∫
U

ζ2|Dh
kDu|2 dx

)
.

Combining (5.20) and the last display gives

|B| ≤ θ

4

∫
U

ζ2|Dh
kDu|2 dx+

(
4C3

θ
+ C5

)∫
U

(
|f |2 + |Du|2 + |u|2

)
dx. (5.21)

Step IV. Since A = B, we combine the estimates (5.19) and (5.21) to obtain for all k = 1, 2, · · · , n and all

sufficiently small |h| > 0 that∫
V

|Dh
kDu|2 dx ≤

∫
U

ζ2|Dh
kDu|2 dx ≤ C6

∫
U

(
|f |2 + |Du|2 + |u|2

)
dx
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where C6 is an appropriate constant. By Theorem 5.16 (ii), |Du| ∈ H1
loc(U ;Rn), and

∥u∥H2(V ) ≤ C7

(
∥f∥L2(U) + ∥u∥H1(U)

)
. (5.22)

Step V. Since V ⋐ W , we can take V ⋐ Ṽ ⋐ W . Proceeding exactly as in Steps I-IV with V, Ṽ ,W replacing

the roles of V,W,U , respectively. Then the estimate (5.22) is refined to

∥u∥H2(V ) ≤ C8

(
∥f∥L2(W ) + ∥u∥H1(W )

)
, (5.23)

where C8 is an appropriate constant depending on V , W , etc. We take a new smooth function η : Rn → [0, 1]

such that η = 1 on W , and η = 0 on Rn\W̃ for some W ⋐ W̃ ⋐ U . Then we set v = η2u in (5.18) to obtain

n∑
i,j=1

∫
U

aijη2uxi
uxj

dx+ 2

n∑
i,j=1

∫
U

aijuuxi
ηηxj

dx =

∫
U

(
f −

n∑
i=1

biuxi
− cu

)
η2u dx. (5.24)

By uniform ellipcity abd Cauchy-Schwarz iequality, the following estimate holds for the left-hand side of (5.24):

n∑
i,j=1

∫
U

aijη2uxi
uxj

dx+ 2

n∑
i,j=1

∫
U

aijuuxi
ηηxj

dx ≥ θ

∫
U

η2|Du|2 dx− 2

n∑
i,j=1

∫
U

|aijuuxi
| · ηηxj

dx

≥ θ∥ηDu∥2L2(U) − C9∥ηDu∥L2(U)∥u∥L2(U). (5.25)

Also the right-hand side satisfies∫
U

(
f −

n∑
i=1

biuxi
− cu

)
η2u dx ≤ C10∥u∥L2(U)

(
∥f∥L2(U) + ∥ηDu∥L2(U) + ∥u∥L2(U)

)
. (5.26)

Combining (5.24), (5.25) and (5.26), we have

θ∥ηDu∥2L2(U) − (C9 + C10)∥Du∥L2(W )∥u∥L2(W ) − C10∥u∥L2(W )

(
∥f∥L2(W ) + ∥u∥L2(W )

)
≤ 0,

which implies

∥ηDu∥L2(U) ≤
C9 + C10

2θ
∥u∥L2(U) +

√
(C9 + C10)2

4θ2
∥u∥2L2(U) +

C10

θ
∥u∥L2(U)

(
∥f∥L2(U) + ∥u∥L2(U)

)
.

Then ∫
W

|Du|2 dx ≤
∫
U

η2|Du|2 dx = ∥ηDu∥L2(U) ≤ C11

(
∥f∥L2(U) + ∥u∥L2(U)

)
We plug-in this estimate to (5.23) to obtain

∥u∥H2(V ) ≤ C12

(
∥f∥L2(U) + ∥u∥L2(U)

)
.

Then we finish the proof.

Remark. The function u ∈ H2
loc(U) is called a strong solution of (5.17), because u actually solves the PDE.

Since u ∈ H2
loc(U), the integration-by-parts formula implies

⟨Lu, ϕ⟩L2(U) = B(u, ϕ) = ⟨f, ϕ⟩L2(U), ϕ ∈ C∞
c (U).

Hence ⟨Lu− f, ϕ⟩L2(U) = 0 for all ϕ ∈ C∞
c (U), and Lu = f a.e..
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Theorem 5.18 (Higer-order regularity). Let m ∈ N0, and assume that aij , bi, c ∈ Cm+1(U) ∩ L∞(U) for all

i, j = 1, 2, · · · , n and f ∈ Hm(U). If u ∈ H1(U) is a weak solution of the elliptic equation

Lu = f in U, (5.27)

then u ∈ Hm+2
loc (U). Futhermore, for each open set V ⋐ U , there exists a constant C depending on U, V,m

and the coefficients of L such that

∥u∥Hm+2(V ) ≤ C
(
∥f∥Hm(U) + ∥u∥L2(U)

)
.

Proof. We establish the desired results by induction on m. The result m = 0 follows from Theorem 5.17,

Step I. We assume that our statements are valid for some m ∈ N. If aij , bi, c ∈ Cm+2(U) ∩ L∞(U) for all

i, j = 1, 2, · · · , n and f ∈ Hm+1(U), by the induction hypotheses, if u ∈ H1(U) is a weak solution of (5.27),

then u ∈ Hm+2
loc (U), and for each W ⋐ U , there exists a constant C1 > 0 depending on U,W and L such that

∥u∥Hm+2(W ) ≤ C1

(
∥f∥Hm(U) + ∥u∥L2(U)

)
. (5.28)

Step II. We fix V ⋐W ⋐ U and a multi-index α with |α| = m+ 1. For each ϕ ∈ C∞
c (W ),

B(u,Dαϕ) =

∫
U

 n∑
i,j=1

aijuxi(D
αϕ)xj +

n∑
i=1

biuxiD
αϕ+ cuDαϕ

 dx

= (−1)m
∫
U

 n∑
i,j=1

ϕxjD
α(aijuxi) +

n∑
i=1

ϕDα(biuxi) + ϕDα(cu)

 dx

= (−1)m+1

∫
U

∑
β≤α

(
α

β

) n∑
i,j=1

(Dα−βaijDβuxi)ϕxj +

n∑
i=1

(Dα−βbiDβuxi)ϕ+ (Dα−βcDβu)ϕ

 dx

= (−1)m+1

∫
U

∑
β<α

(
α

β

)−
n∑

i,j=1

(Dα−βaijDβuxi
)xj

+

n∑
i=1

(Dα−βbiDβuxi
) + (Dα−βcDβu)

ϕdx

+ (−1)m+1

∫
U

 n∑
i,j=1

aij(Dαu)xi
ϕxj

+

n∑
i=1

bi(Dαu)xi
ϕ+ c(Dαu)ϕ

 dx.

Since u is a weak solution of (5.27), we have B(u,Dαϕ) = ⟨f,Dαϕ⟩L2(U) = (−1)m+1⟨Dαf, ϕ⟩L2(U). Let

f̃ = Dαf −
∑
β<α

(
α

β

)−
n∑

i,j=1

(Dα−βaijDβuxi
)xj

+

n∑
i=1

(Dα−βbiDβuxi
) + (Dα−βcDβu)

 . (5.29)

Then the last two displays imply

B(Dαu, ϕ) = ⟨f̃ , ϕ⟩L2(U),

which holds for all ϕ ∈ C∞
c (W ), and by density for all ϕ ∈ H1

0 (W ). Hence ũ = Dαu is a weak solution of

Lũ = f̃ in W.

By (5.28) and (5.29),

∥f̃∥L2(W ) ≤ C2

(
∥f∥Hm+1(U) + ∥u∥Hm+2(U)

)
≤ C3

(
∥f∥Hm+1(U) + ∥u∥L2(U)

)
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Step III. By Theorem 5.17 and estimates (5.28)-(5.29), we see that Dαu ∈ H2(V ), and

∥Dαu∥H2(V ) ≤ C4

(
∥f̃∥L2(W ) + ∥Dαu∥L2(W )

)
≤ C5

(
∥f∥Hm+1(U) + ∥u∥L2(U)

)
.

This result is valid for all multi-indices |α| = m+ 1. Hence u ∈ Hm+3(V ), and

∥u∥Hm+3(V ) ≤ C6

∥u∥Hm+2(V ) +
∑

|α|=m+1

∥Dαu∥H2(V )

 ≤ C7

(
∥f∥Hm+1(U) + ∥u∥L2(U)

)
.

Then we conclude the proof.

Remark. By Theorem 4.12, if 2(m+ 2) > n, we can conclude that the weak solution u ∈ Cm+1−⌊n
2 ⌋(U).

Theorem 5.19 (Infinite differentiability in the interior). Assume that aij , bi, c ∈ C∞(U) ∩ L∞(U) for all

i, j = 1, 2, · · · , n and f ∈ C∞(U). If u ∈ H1(U) is a weak solution of the elliptic equation

Lu = f in U, (5.30)

then u ∈ C∞(U).

Proof. By Theorem 5.18, u ∈ Hm
loc(U) for all integers m ∈ N. We fix V ⋐ U . According to Theorem 4.12,

u ∈ Ck(V ) for each k > n
2 by modifying u on a Lebesgue null set if necessary, and hence u ∈ C∞(V ). Since

V ⋐ U is arbitrary, u ∈ C∞(U).
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5.5.3 Boundary Regularity

Now we study the regularity of the weak solution up to the boundary of the domain U ⊂ Rn. The function u

we study is a weak solution of the BVP Lu = f in U,

u = 0 on ∂U,

Theorem 5.20 (Boundary H2-regularity). Assume that aij ∈ C1(U) and bi, c ∈ L∞(U) for all i, j =

1, 2, · · · , n, and f ∈ L2(U). Assume further that ∂U is C2. If u ∈ H1
0 (U) is a weak solution of the BVPLu = f in U,

u = 0 on ∂U,
(5.31)

then u ∈ H2(U), and there exists a constant C depending on U and the coefficients of L such that

∥u∥H2(U) ≤ C(∥u∥L2(U) + ∥f∥L2(U)). (5.32)

Proof. See Evans [1] Theorem 4 of §6.3.2.

Remark. If u ∈ H1
0 (U) is a unique weak solution of the BVP (5.31), by Theorem 5.14, we can simplify the

estimate (5.32) to

∥u∥H2(U) ≤ C∥f∥L2(U).

Theorem 5.21 (Higher boundary regularity). Let m ∈ N0. Assume that aij , bi, c ∈ Cm+1(U) for all i, j =

1, 2, · · · , n, and f ∈ Hm(U). Assume further that ∂U is Cm+2. If u ∈ H1
0 (U) is a weak solution ofLu = f in U,

u = 0 on ∂U,
(5.33)

then u ∈ Hm+2(U), and there exists a constant C depending on U,m and the coefficients of L such that

∥u∥Hm+2(U) ≤ C(∥u∥Hm(U) + ∥f∥L2(U)).

Proof. See Evans [1] Theorem 5 of §6.3.2.

Theorem 5.22 (Infinite differentiability up to the boundary). Assume that aij , bi, c ∈ C∞(U) ∩ L∞(U) for

all i, j = 1, 2, · · · , n and f ∈ C∞(U). If u ∈ H1
0 (U) is a weak solution of the BVPLu = f in U,

u = 0 on ∂U,
(5.34)

then u ∈ C∞(U).

Proof. By Theorem 5.21, u ∈ Hm(U) for all integers m ∈ N. According to Theorem 4.12, u ∈ Ck(U) for each

k > n
2 by modifying u on a Lebesgue null set if necessary, and hence u ∈ C∞(U).
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5.6 Maximum Principles

In this section, we work with the elliptic operator of non-divergence form

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
i=1

bi(x)uxi + c(x)u,

and derive the maximum principles. As before, we assume the uniform ellipticity and symmetry condition in

Definition 5.7 holds. The maximum principles are based upon the observations that a C2 function u attains

a local maximum at a point x0 in an open set U if and only if Du(x0) = 0 and D2u(x0) ⪯ 0.

Throughout this section, we require that our solutions u are at least C2 so that it makes sense to consider

the pointwise values of Du and D2u. This assumption is satisfied under some regularity conditions on the

coefficients of L and the domain U .

5.6.1 Weak Maximum Principles

The weak maximum principles identify the functions that attain their maximum on the boundary.

Theorem 5.23 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient

of L be c ≡ 0 in U . Assume that u ∈ C2(U) ∩ C(U) and Lu ≤ 0 in U . Then

max
U

u = max
∂U

u.

Proof. Step I. We first assume the strict inequality Lu < 0 in U . By uniform ellipticity of L, the matrix

A(x0) = (aij(x0))
n
i,j=1 is positive definite, and we take the spectral decomposition

A(x0) =

n∑
i=1

λiqiq
⊤
i ,

where q1, · · · , qn ∈ Rn form an orthonormal basis of Rn, and the eigenvalues λ1, · · · , λn ≥ θ > 0. If there

exists a point x0 ∈ U with u(x0) = maxU u, we have Du(x0) = 0, and D2u(x0) ⪯ 0. Then

Lu(x0) = −
n∑

i,j=1

aij(x0)uxixj
(x0) +

n∑
i=1

bi(x)uxi

= −
n∑

i,j=1

aij(x0)uxixj
(x0) = −tr

(
A(x0)D

2u(x0)
)
= −

n∑
i=1

λiq
⊤
i D

2u(x0)qi ≥ 0,

contradicting our assumption Lu < 0 on U . Hence a strict subsolution u attains its maximum over U on ∂U .

Step II. For the general case, we let λ > ∥b∥L∞(U)/θ, and define uϵ(x) = u(x) + ϵeλx1 for x ∈ U . Then

Luϵ(x) = Lu(x)− ϵλ2a11(x)eλx1 + ϵλb1(x)eλx1 ≤ −ϵλeλx1(λθ − b1(x)) < 0

for each ϵ > 0 and our choice of λ. By Step I, we have maxU uϵ = max∂U uϵ, which implies and

max
U

u+ ϵe−λ diam(U) ≤ max
∂U

u+ ϵeλ diam(U).

Passing ϵ ↓ 0 implies that

max
U

u ≤ max
∂U

u.

Since ∂U ⊂ U , we also have maxU u ≥ max∂U u, which concludes the proof.
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Remark. (i) A function satisfying Lu ≤ 0 in U is called a subsolution. We are thus asserting that a subsolution

attains its maximum on ∂U . Similarly, a function satisfying Lu ≥ 0 in U is called a supersolution. If the

supersolution u ∈ C2(U) ∩ C(U), we may apply this result to −u to obtain

min
U

u = min
∂U

u.

(ii) If Lu = 0 in U , we have

max
U

|u| = max
∂U

|u|.

(iii) According to our proof, a strict subsolution Lu < 0 in U has no local minimum in U .

We can modify the weak maximum principle to allow for a nonnegative zeroth-order coefficient.

Theorem 5.24 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient

of L be c ≥ 0 in U . Assume that u ∈ C2(U) ∩ C(U) and Lu ≤ 0 in U . Then

max
U

u ≤ max
∂U

u+. (5.35)

Furthermore, the equality holds if supU u > 0.

Proof. Let u be a subsolution, and define Ku = Lu − cu on the bounded open set V = {x ∈ U : u(x) > 0}.
Then K has no zeroth-order term, and Ku ≤ 0 on V . By Theorem 5.23, maxV u = max∂V u.

If V is empty, we have u ≤ 0 on U , and the inequality (5.35) is trivial. If V is nonempty, we have

max∂V u > 0. We claim that {x ∈ ∂U : u(x) > 0} = {x ∈ ∂V : u(x) > 0}:
• If x ∈ ∂U and u(x) > 0, by continuity of u, there exists ϵ > 0 such that u > 0 on U ∩ B(x, ϵ), and

U ∩B(x, ϵ) ⊂ V . Then x ∈ V . Since x /∈ V , it must be the case x ∈ ∂V .

• If x ∈ ∂V and u(x) > 0, it is clear that x ∈ U . If x ∈ U , there exists ϵ > 0 such that u > 0 on

B(x, ϵ) ⊂ U , and B(x, ϵ) ⊂ V , contradicting the fact x ∈ ∂V . Hence x ∈ ∂U .

Therefore maxU u = maxV u = max∂V u = max∂U u, which concludes the proof.

Remark. Similarly, if u ∈ C2(U) ∩ C(U) and Lu ≥ 0 in U , we have

min
U

u ≥ −max
∂U

u−.

In particular, if Lu = 0 in U , we combining the last two results to obtain

max
U

|u| = max
∂U

|u|.

Following is an immediate consequence of the weak maximum principle.

Corollary 5.25 (Uniqueness of solutions to the Dirichlet problem). Let the zeroth-order coefficient of L be

c ≥ 0 in U . Let g ∈ C(∂U). The Dirichlet problemLu = f in U,

u = g on ∂U
(5.36)

has at most one solution in C2(U) ∩ C(U), i.e. there may be no solution or a unique solution but cannot be

two or more solutions.

Proof. Let u1, u2 ∈ C2(U) ∩ C(U) be two solutions to (5.36). Then L(u1 − u2) = 0 and u1 − u2 ≡ 0 on ∂U .

By the weak maximum principle, maxU |u| = max∂U |u| = 0 on U . Hence u ≡ 0 on U .
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5.6.2 Strong Maximum Principles

We next substantially strengthen the foregoing assertions, by demonstrating that a subsolution u cannot attain

its maximum at an interior point of a connected region at all, unless u is constant. Before we proceed, we

introduce a technical lemma.

Lemma 5.26 (Hopf’s lemma). Let U be a bounded open set, and let the zeroth-order coefficient of L be c ≡ 0

in U . Assume that

(i) u ∈ C2(U) ∩ C(U);

(ii) Lu ≤ 0 in U , and there exists a point x0 ∈ ∂U such that u(x0) > u(x) for all x0 ∈ U ; and

(iii) U satisfies the interior ball condition at x0, that is, there exists an open ball B ⊂ U with x0 ∈ ∂B.

Then
∂u

∂ν
(x0) > 0,

where ν ∈ Rn is the outer unit normal to B at x0. Furthermore, if we relax our assumption by only requiring

that the zeroth-order coefficient c ≥ 0 in U , then the same conclusion holds provided that u(x0) ≥ 0.

Proof. Step I. Let B(y, r) be an open ball such that x0 ∈ ∂B(y, r) and B(y, r) ⊂ U . Define

v(x) = e−λ|x−y|2 − e−λr2 , x ∈ B(y, r),

where λ > 0 is to be selected below. We also assume c ≥ 0 in U . By uniform ellipticity,

Lv(x) = −4λ2e−λ|x−y|2(x− y)⊤A(x)(x− y) + 2λe−λ|x−y|2 trA(x)− 2λe−λ|x−y|2b(x)⊤(x− y) + c(x)v(x)

≤ e−λ|x−y|2 (−4θλ2|x− y|2 + 2λ trA(x)− 2λ|b(x)| |x− y|+ c(x)
)
.

In the open annular region D = B(x, r)\B(x, r2 ),

Lv(x) ≤ e−λ|x−y|2 (−θλ2r2 + 2λ trA(x)− 2λ|b(x)| r + c(x)
)
.

By choosing 0 large enough, we have Lv < 0 in D.

Step II. Since u(x0) > u(x), there exists ϵ > 0 so small that u(x0) ≥ u(x) + ϵv(x) for x ∈ ∂B(x, r2 ). Also note

that u(x0) ≥ u(x) + ϵv(x), since v ≡ 0 on ∂B(x, r). Then

u(x) + ϵv(x)− u(x0) ≤ 0 on ∂D.

Meanwhile, by Step I, if u(x0) ≥ 0 or c ≡ 0 on U , we have

L(u+ ϵv − u(x0)) = Lu+ ϵLv − cu(x0) ≤ −cu(x0) ≤ 0 in D.

We apply the weak maximum principle [Theorem 5.24] to obtain that u + ϵv − u(x0) ≤ 0 in D. Note that

u(x0) + ϵv(x0)− u(x0) = 0. Hence

∂u

∂ν
(x0) + ϵ

∂v

∂ν
(x0) ≥ 0

Consequently,

∂u

∂ν
(x0) ≥ −ϵ∂v

∂ν
(x0) = ϵν · 2λ(x0 − y)e−λ|x0−y|2 = 2ϵλre−λr2 > 0,

as desired.
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The Hopf’s lemma is an important tool in the proof of the strong maximum principle.

Theorem 5.27 (Strong maximum principle). Let U be an open, connected set. Assume u ∈ C2(U) ∩ C(U),

Lu ≤ 0 in U , and there exists x∗ ∈ U such that

u(x∗) = max
U

u.

(i) If the zeroth-order coefficient c ≡ 0 in U , then u is a constant within U .

(ii) If the zeroth-order coefficient c ≥ 0 in U , and u(x∗) ≥ 0, then u is a constant within U .

Proof. We write M = maxU u. If u ̸≡ M on U , we take z ∈ E with u(z) < M , and let E be the connected

component of {x ∈ U : u(x) < M} that contains z. Then E ⊂ U is an open set, and E ̸= U since x∗ /∈ E. We

also note that ∂E\∂U is nonempty, since both E and U is connected. We fix x1 ∈ ∂E\∂U and ϵ > 0 with

B(x1, ϵ) ⊂ U . Then y ∈ B(x1,
ϵ
2 ) ∩ E satisfies d(y, ∂E) < ϵ

2 < d(y, ∂U).

Next, we let B(y, r) be the largest open ball lying in E, and take x0 ∈ ∂B(y, r) ∩ ∂E. By definition,

u(x0) = M > u(x) for all x ∈ B(y, r). We then apply Hopf’s lemma to obtain that ∂u
∂ν (x

0) = ν ·Du(x0) > 0.

On the other hand, since u attains its maximum at x0 ∈ U\E, and Du(x0) = 0, which is a contradiction.

Remark. (i) Let the zeroth-order coefficient of L be c ≡ 0 (resp. c ≥ 0) in U . Assume that u ∈ C2(U)∩C(U)

and Lu ≥ 0 in U . If there exists x∗ ∈ U such that

u(x∗) = min
U

u

(add condition u(x∗) ≤ 0 for c ≥ 0), then u is a constant within U .

(ii) In this theorem, we do not require U to be bounded. Therefore, the weak maximum principle for unbounded

sets, for example, the half space U = {x ∈ Rn : x1 > 0}, where ∂U = {x ∈ Rn : x1 = 0}.

5.6.3 Harnack’s inequality

Harnack’s inequality asserts that the values of a nonnegative solution of a linear elliptic PDE are comparable,

at least in any subregion away from the boundary. For simplicity, we work with elliptic operators of the form

Lu = −
n∑

i,j=1

aijuxixj
,

where the coefficients aij (i, j = 1, · · · , n) are smooth.

Theorem 5.28 (Harnack’s inequality). Let V ⋐ U be connected. Then for each u ∈ C2(U) with u ≥ 0 in U

and Lu = 0 in U ,

sup
V
u ≤ C inf

V
u,

where C is a constant depending only on V and the coefficients of L.

Proof. We may assume u > 0 in U , for otherwise we could apply the result to u+ ϵ and then let ϵ ↓ 0.
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5.7 Eigenvalues and Eigenfunctions

In this section, we consider the eigenvalue problemLw = λw in U,

w = 0 on ∂U,
(5.37)

where U is an open bounded region, and λ is an eigenvalue of differential operator L provided there is a

nontrivial solution of (5.37). For simplicity, we work with symmetric elliptic operators of the form

Lu =

n∑
i,j=1

(
aij(x)uxi

)
xj
. (5.38)

The associated bilinear form is

B(u, v) =

∫
U

n∑
i,j=1

aij(x)uxi
vxj

dx.

Theorem 5.29 (Eigenvalues of symmetric elliptic operators). Let L be a uniformly elliptic operator of the

form (5.38), where aij ∈ C1(U) for all i, j = 1, 2, · · · , and ∂U is C2.

(i) All eigenvalues of L are real with finite multiplicity;

(ii) If we repeat each eigenvalue according to its finite multiplicity, we have Σ = {λk}∞k=1 with

0 < λ1 ≤ λ2 ≤ · · · ,

and λk ↑ ∞ as k → ∞;

(iii) Finally, there exists an orthonormal basis {wk}∞k=1 of L2(U), where wk ∈ H1
0 (U) is an eigenfunction

corresponding to λk: Lwk = λkwk in U,

wk = 0 on ∂U,
k = 1, 2, · · · .

According to the regularity theory discussed before, wk ∈ H2(U) for k = 1, 2, · · · .

Proof. Step I. Recalling the proof of Theorem 5.8, we have γ = 0 in the energy estimate for symmetric elliptic

operator L. By Theorem 5.9, for every f ∈ L2(U), there is a unique u ∈ H1
0 (U) solving B(u, v) = ⟨f, v⟩L2(U)

for all v ∈ H1
0 (U). Furthermore, following the proof of Theorem 5.12, the inverse K defined by Kf = u is a

compact bounded linear operator mapping L2(U) into itself.

Step II.We claim thatK is self-adjoint. Let f, g ∈ L2(U). Then u = Kf is a weak solution of the corresponding

elliptic BVP, and B(u, v) = ⟨f, v⟩L2(U) for all v ∈ H1
0 (U). We choose v = Kg, so B(v, u) = ⟨g, u⟩L2(U). Hence

⟨f,Kg⟩L2(U) = ⟨f, v⟩L2(U) = B(u, v) = B(v, u) = ⟨g, u⟩L2(U) = ⟨g,Kf⟩L2(U).

Step III. According to the spectral theory for compact self-adjoint operators, K has at most countably many

non-zero eigenvalues, each with a finite-dimensional eigenspace. Also note that

⟨f,Kf⟩L2(U) = B(u, u) ≥ 0,

and 0 is not an eigenvalue of K. Hence all eigenvalues of K are positive. We write η1 ≥ η2 ≥ · · · > 0 for the

eigenvalues of K, and write wk for the corresponding normalized eigenfunctions, which form an orthonormal

basis of L2(U). Since L2(U) is infinite-dimensional, L has infinitely many eigenvalues, and ηk ↓ 0 as k → ∞.
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Step IV. Let η ̸= 0. Then

Kw = ηw ⇔ B(ηw, v) = ⟨w, v⟩L2(U), ∀v ∈ H1
0 (U) ⇔ Lw =

w

η
.

Hence the eigenvalues of L are λk = 1/ηk, k = 1, 2, · · · , with λk ↑ ∞ as k → ∞, and Lwk = λkwk.

Remark. The eigenfunctions
(

wk√
λk

)∞
k=1

form an orthonormal basis of H1
0 (U) under the inner product B(·, ·).

Since Lwk = λkwk, we have

B(wk, wk) = ⟨Lwk, wk⟩L2(U) = λk∥wk∥2L2(U) = λk,

B(wk, wl) = ⟨Lwk, wl⟩L2(U) = λk⟨wk, wl⟩L2(U) = 0, k ̸= l.

By classical Poincare’s inequality and uniform ellipticiy, H1
0 (U) is a Hilbert space under B(·, ·). If u ∈ H1

0 (U)

and B(wk, u) = 0 for all k ∈ N, we have

⟨wk, u⟩L2(U) =
B(wk, u)

λk
= 0, k = 1, 2, · · · .

Noticing that (wk)
∞
k=1 is an orthonormal basis of L2(U), we have u = 0. Therefore (wk)

∞
k=1 is an orthogonal

basis of H1
0 (U) under B(·, ·), and

u =

∞∑
k=1

B

(
u,

wk√
λk

)
wk√
λk
,

where the series converges in H1
0 (U).

In particular, the eigenfunctions
(

wk√
1+λk

)∞
k=1

of L = −∆ form an orthonormal basis of H1
0 (U). Using

integration by parts, we have∫
U

|∇wk|2 dx = −
∫
U

wk∆wk dx = λ

∫
U

w2
k dx = λk,∫

U

∇wk · ∇wl dx = −
∫
U

wk∆wl dx = λl

∫
U

wkwl dx = 0, k ̸= l.

Following the same procedure as above, we see that (wk)
∞
k=1 is an orthogonal basis of H1

0 (U).

We call the smallest eigenvalue λ1 > 0 the principal eigenvalue of L.

Theorem 5.30 (Variational principle for the principal eigenvalue). Let λ1 be the principal eigenvalue of L.

(i) (Rayleigh’s formula)

λ1 = min
{
B(u, u) : u ∈ H1

0 (U), ∥u∥L2(U) = 1
}
. (5.39)

(ii) Furthermore, the above minimum is attained for a function w1, positive within U , which solvesLw1 = λ1w1 in U,

w1 = 0 on U.

(iii) Finally, if u ∈ H1
0 (U) is any weak solution ofLu = λ1u in U,

u = 0 on U,
(5.40)

then u is a multiple of w1.
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Proof. Step I. We let (wk)
∞
k=1 be the normalized eigenfunctions of L, which form an orthonormal basis of

L2(U) and an orthonormal basis of H1
0 (U) under B(·, ·). If u ∈ H1

0 (U) and ∥u∥L2(U) = 1, we write

u =

∞∑
k=1

⟨u,wk⟩L2(U)wk =

∞∑
k=1

B

(
u,

wk√
λk

)
wk√
λk
.

Since ∥u∥L2(U) = 1, we have

1 =

∞∑
k=1

⟨u,wk⟩2L2(U) =

∞∑
k=1

⟨u,wk⟩L2(U)√
λk

B

(
u,

wk√
λk

)
≤

∞∑
k=1

1

λ1
⟨u,wk⟩L2(U)B (u,wk) =

B(u, u)

λ1
.

Therefore B(u, u) ≥ λ1, and the inequality holds if u = w1. This proves (i).

Step II. Let u ∈ H1
0 (U) and ∥u∥L2(U) = 1. We claim that u is a weak solution of (5.40) if and only if

B(u, u) = λ1. Clearly, (5.40) implies B(u, u) = ⟨λ1u, u⟩L2(U) = λ1∥u∥2L2(U) = λ1. Conversely, if B(u, u) = λ1,

∞∑
k=1

λ1⟨u,wk⟩2L2(U) = λ1 = B(u, u) =

∞∑
k=1

⟨u,wk⟩L2(U)B(u,wk) =

∞∑
k=1

λk⟨u,wk⟩2L2(U).

Consequently, ⟨u,wk⟩L2(U) = 0 for all λk > λ1. Since λ1 has finite multiplicity, it follows that

u =

m∑
k=1

⟨u,wk⟩L2(U)wk

for some m, and Lu =
∑m

k=1⟨u,wk⟩L2(U)Lwk =
∑m

k=1⟨u,wk⟩L2(U)λ1wk = λ1u, with u = 0 on ∂U .

Step III. We prove that if u ∈ H1
0 (U) is a nontrivial weak solution of (5.40), then either u > 0 in U or u < 0

in U . We may assume ∥u∥L2(U) = 1, and take

α =

∫
U

(u+)2 dx, β =

∫
U

(u−)2 dx.

Then α+ β = 1. Furthermore, by Proposition 2.8, u± ∈ H1
0 (U), with

Du+ =

Du a.e. on {u ≥ 0},
0 a.e. on {u ≤ 0},

and Du− =

0 a.e. on {u ≥ 0},
−Du a.e. on {u ≤ 0}.

Then B(u+, u−) = B(u−, u+) = 0, and

λ1 = B(u, u) = B(u+, u+) +B(u−, u−) ≥ λ1∥u+∥2L2(U) + λ1∥u−∥2L2(U) = λ1(α+ β) = λ1.

The above inequality is in fact an equality, and

B(u+, u+) = λ1∥u+∥2L2(U), B(u−, u−) = λ1∥u−∥2L2(U)

Hence both u+ and u− solves (5.40) in the weak sense. Since the coefficients of L are in C∞(U), we have

u+, u− ∈ C∞(U). Note that Lu+ = λ1u
+ ≥ 0 on U , by the strong maximum principle, we have either u > 0

in U or u ≡ 0 in U . The same conclusion holds for u−. This proves (ii).

Step IV. Let u and ũ be two nontrivial weak solution of (5.40). By Step III,∫
U

ũ dx ̸= 0.
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Then there exists a constant c such that ∫
U

(u− cũ) dx = 0.

Note that u− cũ is also a weak solution of (5.40). By Step III, u ≡ cũ in U . This proves (iii).

Remark. The assertion (iii) says the eigenspace of λ1 is one-dimensional, and 0 < λ1 < λ2 ≤ λ3 ≤ · · · .

Theorem 5.31 (Courant’s minimax principle). Let 0 < λ1 ≤ λ2 ≤ λ3 < · · · be the eigenvalues of elliptic

operator L with zero Dirichlet boundary condition. Then

λk = min
S∈Σk−1

max
u∈S⊥

∥u∥L2(U)=1

B(u, u), k = 1, 2, · · · ,

where Σk−1 is the collection of all (k − 1)-dimensional subspaces of H1
0 (U).

Proof. Let S ∈ Σk−1, and Wk = span{w1, · · · , wk}. Since S is (k − 1)-dimensioanl, S⊥ ∩Wk is a subspace

with positive dimension. We take u ∈ S⊥ ∩Wk with ∥u∥L2(U) = 1. Then u =
∑k

l=1⟨u,wl⟩L2(U)wl, and

B(u, u) =

k∑
l=1

⟨u,wl⟩L2(U)B(u,wl) =

k∑
l=1

λl⟨u,wl⟩2L2(U) ≥ λk.

Hence for all S ∈ Σk−1,

max
u∈S⊥

∥u∥L2(U)=1

B(u, u) ≥ λk. (5.41)

On the other hand, if we take S = span{w1, · · · , wk−1} and u = wk ∈ S⊥, we have

B(wk, wk) = λk⟨wk, wk⟩2L2(U) = λk.

Therefore the lower bound in (5.41) can be reached, and

λk = min
S∈Σk−1

max
u∈S⊥

∥u∥L2(U)=1

B(u, u).

Thus we finish the proof.
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6 Second-order Parabolic Equations

Setting. In this chapter, we study the second-order parabolic equations, which are natural generalizations

of the heat equation. We assume U is an open and bounded set, and set UT = U × (0, T ] for some fixed time

T > 0. We study the initial/boundary-value problem
ut + Lu = f in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0},

(6.1)

where f : UT → R and g : U → R are given, and u : UT → R is the unknown, written u = u(x, t). The variable

x taking value in U is called the spatial variable, and the variable t taking value in [0, T ] is called the time

variable. Given coefficient functions aij , bi, c, (i, j = 1, · · · , n), the second-order partial differential operator L

is given by the either the divergence form

Lu = −
n∑

i,j=1

(
aij(x, t)uxi

)
xj

+

n∑
i=1

bi(x, t)uxi + c(x, t)u (6.2)

or the non-divergence form

Lu = −
n∑

i,j=1

aij(x, t)uxixj +

n∑
i=1

bi(x, t)uxi + c(x, t)u. (6.3)

We give the definition of parabolic operators below.

Definition 6.1 (Uniformly parabolic operators). Let L be a partial differential operator of either divergence

form (6.2) or non-divergence form (6.3). Assume the coefficient functions aij , bi, c ∈ L∞(UT ) for all i, j =

1, · · · , n, and also assume the symmetry condition

aij = aji, i, j = 1, · · · , n.

The differential operator ∂
∂t + L is said to be (uniformly) parabolic, if there exists a constant θ > 0 such that

n∑
i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2

for all (x, t) ∈ UT and all ξ ∈ Rn.

Remark. In particular, for each fixed time 0 ≤ t ≤ T , the operator L is a uniformly elliptic operator in the

spatial variable x.

General second-order parabolic equations describe in physical applications the time-evolution of the density

of some quantity u, e.g. a chemical concentration, within the region U . The second-order term
∑n

i,j=1 a
ijuxixj

describes diffusion, the first-order term
∑n

i=1 b
iuxi

, describes transport, and the zeroth-order term cu describes

creation or depletion. A simplest example of second-order parabolic equation is the heat equation
ut −∆u = 0 in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0},

(6.4)

where ∆ =
∑n

i=1
∂2

∂x2
i
is the Laplacian operator. In this example, aij = δij , bi = 0, c = 0 for all i, j = 1, · · · , n.
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6.1 Banach Space-Valued Functions

In this section, we study a special kind of Sobolev spaces, which consist of functions mapping time into Banach

spaces. For the completeness of our discussion, we first study the property of functions taking values in Banach

spaces. We work with a Banach space X equipped with a norm ∥ · ∥. We will specify later the what are the

elements of the space X.

6.1.1 Definition and Properties

Definition 6.2. Let (Ω,F , µ) be a measure space, and (X, ∥ · ∥) a Banach space.

(i) A function s : Ω → X is said to be simple if it is of the form

s(t) =

n∑
i=1

χEi(t)ui,

where each Ei is a measurable subset of Ω with m(Ei) <∞ and ui ∈ X.

(ii) A function u : Ω → X is said to be strongly measuable if there exist simple functions sk : Ω → X such

that ∥u(t)− sk(t)∥ → 0 for a.e. t ∈ Ω.

(iii) A function u : Ω → X is said to be weakly measuable if for every f ∈ X∗, the mapping t 7→ ⟨f,u(t)⟩ is
a measurable function.

(iv) A function u : Ω → X is said to be almost separably valued if there exists a subset E ⊂ Ω with m(E) = 0

such that the set {u(t) : t ∈ Ω\E} is separable.

Remark. A strongly measurable function u : Ω → X must be weakly measurable. To see this, we take a

sequence of simple functions sk : Ω → X such that ∥u(t) − sk(t)∥ → 0. For each f ∈ X∗, the mapping t 7→
⟨f, sk(t)⟩ is of the form

∑n
i=1 χEi

(t)⟨f, ui⟩, which is a simple function on Ω. Then the mapping t 7→ ⟨f,u(t)⟩
is a.e. the pointwise limit of a sequence of simple functions, which is measurable.

Also, a strongly measurable function u : Ω → X must be almost separably valued. To see this, we take

Sk to be the range of sk, which is a finite set, and let E be the set of points t ∈ Ω such that sk(t) does not

converge to u(t). Then m(E) = 0, and {u(t) : t ∈ Ω\E} =
⋃∞

k=1 Sk.

We have the following criterion for strong measurability.

Theorem 6.3 (Pettis). A function u : Ω → X is strongly measurable if and only if it is weakly measurable

and almost separably valued.

Proof. We only need to show the “if” part. We may assume without loss of generality that {u(t) : t ∈ Ω} is

separable. We may also assume X is separable, else we can replace X by the closure of the range of u.

Since X is separable, the closed unit ball in X∗ is weak* separable. We take a sequence (fk) ⊂ X∗ with

∥fk∥ ≤ 1 such that for each f ∈ X∗ with ∥f∥ ≤ 1, there exists a subsequence (fkj ) such that ⟨fkj , u⟩ → ⟨f, u⟩
for all u ∈ X. For any α ∈ R and f ∈ X∗, we define

A = {t ∈ Ω : ∥u(t)∥ ≤ α} , and Af = {t ∈ Ω : |⟨f,u(t)⟩| ≤ α} .

It is clear that A ⊂
⋂

∥f∥≤1Af . On the other hand, by Hahn-Banach theorem, for each t ∈ Ω, there exists

∥f0∥ = 1 such that ⟨f0,u(t)⟩ = ∥u(t)∥. Hence A ⊃
⋂

∥f∥≤1Af . Applying our density assertion, we have

A =
⋂

∥f∥≤1

Af =

∞⋂
k=1

Afk .

Since u is weakly measurable, every Afk is measurable, and the intersection A is also measurable. Hence the

function t 7→ ∥u(t)∥ is measurable.
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Since the range of u is separable, for each k ∈ N, we cover u(Ω) by a sequence of open balls B(uk,j ,
1
k ). As

before, the mapping t 7→ ∥u(t) − uk,j∥ is also measurable. Then the sets Bk,j =
{
t ∈ Ω : ∥u(t)− uk,j∥ ≤ 1

k

}
are measurable, with Ω =

⋃∞
j=1Bk,j . We set

uk(t) = uk,j , if t ∈ B′
k,j := Bk,j\(Bk,1 ∪ · · · ∪Bk,j−1).

By definition, we have ∥uk(t) − u(t)∥ ≤ 1
k for every t ∈ Ω. Therefore (uk) is a sequence of simple functions

with strong limit u, and u is strongly measurable.

Next we define the integration of Banach space-valued functions.

Definition 6.4 (Bochner Integral). For a simple function s(t) =
∑n

i=1 χEi
(t)ui, define∫

Ω

s(t)µ(dt) =

n∑
i=1

µ(Ei)ui.

A strongly measurable function u : Ω → X is said to be Bochner integrable, if there exists a sequence of simple

functions sk → u a.e. in such a way that

lim
n→∞

∫
Ω

∥u(t)− sk(t)∥µ(dt) = 0. (6.5)

In that case, we define the Bochner integral∫
Ω

u(t)µ(dt) = lim
n→∞

∫
Ω

sk(t)µ(dt). (6.6)

Remark. To justify this definition, we need to verify the limit on the right-hand side of (6.6) exists and is

independent of the choice of approximation sequence (sk). Note that∥∥∥∥∫
Ω

sk(t)µ(dt)−
∫
Ω

sm(t)µ(dt)

∥∥∥∥ ≤
∫
Ω

∥sk(t)− sm(t)∥µ(dt) ≤
∫
Ω

(∥sk(t)− u(t)∥+ ∥sm(t)− u(t)∥)µ(dt),

which converges to 0 as k,m → ∞, and the limit exists by completeness of X. Also, the limit is independent

of the choice of (sk), since any two such sequences can be combined into a single approximating sequence.

Theorem 6.5 (Absolute integrability). A strongly measurable function u : Ω → X is Bochner integrable if

and only if the function ∥u∥ is integrable. In that case,∥∥∥∥∫
Ω

u(t)µ(dt)

∥∥∥∥ ≤
∫
Ω

∥u(t)∥µ(dt). (6.7)

Proof. The “only if” part. Since u is strongly measurable, t 7→ ∥u(t)∥ is measurable. By condition (6.5), we

have
∫
Ω
∥sk(t)− u(t)∥µ(dt) < 1 for large enough k, and∫

Ω

∥u(t)∥µ(dt) ≤
∫
Ω

∥sk(t)∥µ(dt) +
∫
Ω

∥sk(t)− u(t)∥µ(dt) <∞.

The “if” part. Let u be a strongly measurable function such that ∥u∥ is integrable, and let (uk) be a

simple approximating sequence. Then sk = χ{∥uk∥≤2∥u∥}uk is also a simple approximating sequence such that

sk ≤ 2∥u∥. By dominated convergence theorem,

lim
k→∞

∫
Ω

∥u(t)− sk(t)∥µ(dt) = 0.

The final inequality is trivial for simple functions, and the general case follows by approximation.
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Corollary 6.6 (Dominated convergence theorem for the Bochner integral). Let uk be a sequence of Bochner

integrable functions such that uk → u a.e.. If there exists an integrable function g : Ω → R+ such that

∥uk∥ ≤ g a.e. for all k, then u is Bochner integrable and∫
Ω

u(t)µ(dt) = lim
k→∞

∫
Ω

uk(t)µ(dt).

Proof. Since ∥u∥ ≤ g a.e., u is Bochner integrable. Note that ∥u − uk∥ ≤ 2g. We then apply Theorem 6.5

and dominated convergence theorem to obtain

lim
k→∞

∥∥∥∥∫
Ω

u(t)µ(dt)−
∫
Ω

uk(t)µ(dt)

∥∥∥∥ ≤ lim
k→∞

∫
Ω

∥u(t)− uk(t)∥µ(dt) = 0.

Then we conclude the proof.

Theorem 6.7. Let X and Y be Banach spaces, and let T : X → Y be a bounded linear operator, and

u : Ω → X a Bochner integrable function. Then Tu : Ω → Y is Bochner integrable, and

T

∫
Ω

u(t)µ(dt) =

∫
Ω

(Tu)(t)µ(dt). (6.8)

Proof. Take simple functions sk → u a.e.. Then Tsk is a simple approximating sequence of Tu, and Tu is

strongly measurable. Also note (6.8) is valid for simple functions, and the general case follows by definition.

Remark. In particular, if f ∈ X∗, we have〈
f,

∫
Ω

u(t)µ(dt)

〉
=

∫
Ω

⟨f,u(t)⟩µ(dt).

6.1.2 Spaces Involving Time

In this section, we consider the time interval Ω = [0, T ] with the Lebesgue measure. Generally, X is a real

Banach space comprising functions on some measure space.

Definition 6.8 (Lp and C spaces involving time). Let T > 0, and (X, ∥ · ∥) a Banach space.

(i) Let 1 ≤ p <∞. The space Lp(0, T ;X) consists of all strongly measurable functions u : [0, T ] → X with

∥u∥Lp(0,T ;X) :=

(∫ T

0

∥u(t)∥p dt

)1/p

<∞.

The space L∞(0, T ;X) consists of all strongly measurable functions u : [0, T ] → X with

∥u∥L∞(0,T ;X) := ess sup
0≤t≤T

∥u(t)∥ <∞.

(ii) The space C([0, T ];X) consists of all continuous functions u : [0, T ] → X with

∥u∥C([0,T ];X) := sup
0≤t≤T

∥u(t)∥ <∞.

Definition 6.9 (Weak derivative). Let u ∈ L1(0, T ;X). We say a function v : [0, T ] → X is the weak

derivative of u, written u′ = v, if for all scalar test functions ϕ ∈ C∞
c ([0, T ]),∫ T

0

ϕ′(t)u(t) dt = −
∫ T

0

ϕ(t)v(t) dt
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Definition 6.10 (Sobolev spaces involving time). Let 1 ≤ p ≤ ∞. The Sobolev space W 1,p(0, T ;X) consists

of all functions u ∈ Lp(0, T ;X) such that u′ exists in weak sense and belong to Lp(0, T ;X). We define

∥u∥W 1,p(0,T ;X) =


(∫ T

0

(∥u(t)∥p + ∥u′(t)∥p) dt

)1/p

, 1 ≤ p <∞,

ess sup
0≤t≤T

(∥u(t)∥+ ∥u′(t)∥) , p = ∞.

We also write H1(0, T ;X) =W 1,2(0, T ;X).

The space W 1,p(0, T ;X) can be continuously embedded into the space C([0, T ];X).

Proposition 6.11 (Calculus in an abstract space). Let 1 ≤ p ≤ ∞, and u ∈W 1,p(0, T ;X). Then

(i) u ∈ C([0, T ];X) after possibly being redefined on a subset of [0, T ] of measure zero.

(ii) For all 0 ≤ s ≤ t ≤ T ,

u(t) = u(s) +

∫ t

s

u′(τ) dτ.

(iii) There exists a constant C depending only on T such that

sup
0≤t≤T

∥u(t)∥ ≤ C∥u∥W 1,p(0,T ;X).

Proof. We consider the mollification uϵ = ηϵ ∗u, where ηϵ is a mollifier on R. Analogous to the Remark under

Lemma 2.5, we can check that (uϵ)′ = ηϵ ∗ u′. By Proposition 1.8 and the appending Remark, as ϵ ↓ 0, we

have uϵ → u a.e. on [0, T ], and (uϵ)′ → u′ in L1(0, T ;X). Given 0 < s < t < T , we have

uϵ(t) = uϵ(s) +

∫ t

s

(uϵ)′(τ) dτ.

Letting ϵ ↓ 0, we have for a.e. 0 < s < t < T that

u(t) = u(s) +

∫ t

s

u′(τ) dτ.

Since u′ ∈ Lp(0, T ;X) ⊂ L1(0, T ;X), the integral is continuous in both s and t. Hence u is in fact continuous

on [0, T ], which gives both (i) and (ii). For the estimate (iii), the case p = ∞ is clear. If 1 ≤ p <∞, we write

∥u(t)∥ ≤
∥∥∥∥u(s) + ∫ t

s

u′(τ) dτ

∥∥∥∥ ≤ ∥u(s)∥+
∫ t

s

∥u′(τ)∥ dτ.

We integrate this relation with respect to s to obtain

T∥u(t)∥ ≤
∫ T

0

∥u(s)∥ ds+
∫ T

0

∫ t

s

∥u′(τ)∥ dτ ds

≤
∫ T

0

∥u(s)∥ ds+ T

∫ T

0

∥u′(τ)∥ dτ

≤ T 1− 1
p ∥u∥Lp(0,T ;X) + T 2− 1

p ∥u′∥Lp(0,T ;X).

Since this estimate holds for all t ∈ [0, T ], the proof is completed.

In the study of second order parabolic PDEs, we often work with the functions u ∈ L2(0, T ;H1
0 (U)) for

which u′ ∈ L2(0, T ;H−1(U)). We have the following more specific results for these functions.
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Theorem 6.12 (More calculus). Suppose u ∈ L2(0, T ;H1
0 (U)) and u′ ∈ L2(0, T ;H−1(U)). Then

(i) u ∈ C([0, T ];L2(U)) after possibly being redefined on a subset of [0, T ] of measure zero.

(ii) The mapping t 7→ ∥u(t)∥L2(U) is absolutely continuous, and

d

dt
∥u(t)∥L2(U) = 2⟨u′(t),u(t)⟩

for a.e. 0 ≤ t ≤ T , where ⟨·, ·⟩ is the pairing between H1
0 (U) and H−1(U).

(iii) There exists a constant C depending only on T such that

sup
0≤t≤T

∥u(t)∥L2(U) ≤ C
(
∥u∥L2(0,T ;H1

0 (U)) + ∥u′∥L2(0,T ;H−1(U))

)
.

Proof. We take the mollification uϵ = ηϵ ∗ u, where ηϵ is a mollifier on R. By the Remark under Lemma 2.5,

Proposition 1.8 and the appending Remark, as ϵ ↓ 0, we have uϵ → u a.e. on [0, T ] and in L2(0, T ;H1
0 (U)),

and (uϵ)′ = ηϵ ∗ u′ → u′ in L2(0, T ;H−1(U)). For any 0 ≤ t ≤ T , we have

d

dt

∥∥uϵ(t)− uδ(t)
∥∥
L2(U)

=
d

dt

∫
U

(
uϵ(t)− uδ(t)

)2
dx =

∫
U

2
[
(uϵ)′(t)− (uδ)′(t)

]
·
[
uϵ(t)− uδ(t)

]
dx

= 2
〈
(uϵ)′(t)− (uδ)′(t),uϵ(t)− uδ(t)

〉
,

where we apply the dominated convergence theorem to interchange the differentiation and integration. Next,

we fix s ∈ [0, T ] such that uϵ(s) → u(s) in L2(U). Then

∥∥uϵ(t)− uδ(t)
∥∥
L2(U)

≤
∥∥uϵ(s)− uδ(s)

∥∥
L2(U)

+ 2

∫ T

0

∣∣〈(uϵ)′(τ)− (uδ)′(τ),uϵ(τ)− uδ(τ)
〉∣∣ dτ

≤
∥∥uϵ(s)− uδ(s)

∥∥
L2(U)

+ 2

∫ T

0

∥∥(uϵ)′(τ)− (uδ)′(τ)
∥∥
H−1(U)

∥∥uϵ(τ)− uδ(τ)
∥∥
H1

0 (U)
dτ

≤
∥∥uϵ(s)− uδ(s)

∥∥
L2(U)

+
∥∥(uϵ)′ − (uδ)′

∥∥
L2(0,T ;H−1(U))

+
∥∥uϵ − uδ

∥∥
L2(0,T ;H1

0 (U))
,

which holds for all 0 ≤ t ≤ T . Therefore the mollifcation (uϵ) is a Cauchy net in C([0, T ];L2(U)), which

converges to some v ∈ C([0, T ];L2(U)). Note that for a.e. t ∈ [0, T ], we have uϵ(t) → u(t) in H1
0 (U), and also

in L2(U). Then we conclude that u = v a.e., which gives (i). To show (ii), note that

∥uϵ(t)∥2L2(U) = ∥uϵ(s)∥2L2(U) + 2

∫ t

s

|⟨(uϵ)′(τ),uϵ(τ)⟩| dτ.

Identifying u with v above and letting ϵ ↓ 0, we have for all 0 ≤ s ≤ t ≤ T that

∥u(t)∥2L2(U) ≤ ∥u(s)∥2L2(U) + 2

∫ t

s

|⟨u′(τ),u(τ)⟩| dτ.

Finally, to show (iii), we integrate the above relation with respect to s to get

T ∥u(t)∥2L2(U) ≤
∫ T

0

∥u(s)∥2L2(U) ds+ 2

∫ T

0

∫ t

s

|⟨u′(τ),u(τ)⟩| dτ ds

≤
∫ T

0

∥u(s)∥2L2(U) ds+ 2T

∫ T

0

∥u′(τ)∥H−1(U) ∥u(τ)∥H1
0 (U) dτ ds

≤ ∥u∥2L2(0,T ;L2(U)) + T
(
∥u∥2L2(0,T ;H1

0 (U)) + ∥u′∥2L2(0,T ;H−1(U))

)
.

Since this estimate holds for all t ∈ [0, T ], and ∥u∥L2(0,T ;L2(U)) ≤ ∥u∥L2(0,T ;H1
0 (U)), we conclude the proof.
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Theorem 6.13 (Mapping into better spaces). Let U be a bounded open set such that ∂U is smooth, and

m ∈ N0. Suppose u ∈ L2(0, T ;Hm+2(U)) and u′ ∈ L2(0, T ;Hm(U)). Then

(i) u ∈ C([0, T ];Hm+1(U)) after possibly being redefined on a subset of [0, T ] of measure zero.

(ii) There exists a constant C depending only on T,U and m such that

sup
0≤t≤T

∥u(t)∥Hm+1(U) ≤ C
(
∥u∥L2(0,T ;Hm+2(U)) + ∥u′∥L2(0,T ;Hm(U))

)
.

Proof. Step I. We first assume that m = 0. We take a bounded open set V ⋑ U , and apply Theorem 3.1 to

construct an extension Eu = u on Rn, which compactly supported on V . In view of the estimate (3.4), we

have u ∈ L2(0, T ;H2(V )), and

∥u∥L2(0,T ;H2(V )) ≤ C1∥u∥L2(0,T ;H2(U)). (6.9)

In addition, since E is a bounded linear operator from L2(U) into L2(V ), we consider the difference quotients

in variable t and apply methods similar to Theorem 5.16. We fix ϵ > 0. Then for all 0 < |h| < ϵ
2 ,

∥Dhu∥L2(ϵ,T−ϵ;L2(U)) ≤ ∥u′∥L2(0,T ;L2(U)),

and

∥Dhu∥L2(ϵ,T−ϵ;L2(V )) ≤ ∥E∥L2 ∥Dhu∥L2(ϵ,T−ϵ;L2(U)).

We apply Theorem 5.16 (ii) and let ϵ ↓ 0 to get

∥u′∥L2(0,T ;L2(V )) ≤ C2∥u′∥L2(0,T ;L2(U)). (6.10)

Step II. If u is smooth, we apply integration by parts to obtain∣∣∣∣ ddt
∫
V

|Du(t)|2 dx
∣∣∣∣ = 2

∣∣∣∣∫
V

Du′(t) ·Du(t) dx

∣∣∣∣ = 2

∣∣∣∣∫
V

u′(t)∆u(t) dx

∣∣∣∣ ≤ C3

(
∥u′(t)∥L2(V ) + ∥u(t)∥H2(V )

)
.

We then integrate on both sides with respect to t to get

∥Du(t)∥L2(V ) ≤ C4

(
∥u′∥L2(0,T ;L2(V )) + ∥u∥L2(0,T ;H2(V ))

)
.

Similarly,

∥u(t)∥L2(V ) ≤ C5

(
∥u′∥L2(0,T ;L2(V )) + ∥u∥L2(0,T ;L2(V ))

)
.

Recalling the estimates (6.9) and (6.10), we have

sup
0≤t≤T

∥u(t)∥H1(U) ≤ C6

(
∥u′∥L2(0,T ;L2(U)) + ∥u∥L2(0,T ;H2(U))

)
.

The same estimate holds even if u is not smooth, by approximating ηϵ ∗u, as before. As in the previous proofs,

it also follows that u ∈ C([0, T ];H1(U)).

Step III. For the general case m ≥ 1, we finish the proof by induction. Let α be a multiindex of order |α| ≤ m,

and set v = Dαu. Then v ∈ L2(0, T ;H2(U)) and v′ ∈ L2(0, T ;L2(U)). Then v ∈ C([0, T ], H1(U)), and

sup
0≤t≤T

∥v(t)∥H1(U) ≤ C
(
∥v′∥L2(0,T ;L2(U)) + ∥v∥L2(0,T ;H2(U))

)
.

We take summation over all multi-indices |α| ≤ m to conclude the proof.
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6.2 Weak Formulation of Second-order Parabolic Equations

In this section, we study the initial/boundary-value problem
ut + Lu = f in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0},

(6.11)

where L is a uniformly parabolic operator of the divergence form

Lu = −
n∑

i,j=1

(
aij(x, t)uxi

)
xj

+

n∑
i=1

bi(x, t)uxi
+ c(x, t)u. (6.12)

To find an appropriate weak formulation for the initial/boundary-value problem 6.11, we assume for now that

aij , bi, c ∈ L∞(UT ), f ∈ L2(UT ), and g ∈ L2(U).

Definition 6.14. The time-dependent bilinear form B : H1
0 (U)×H1

0 (U) → R associated with the divergence

form operator L defined by (5.2) is given by

B(u, v; t) =

∫
U

 n∑
i,j=1

aij(·, t)uxi
vxj

+

n∑
i=1

bi(·, t)uxi
v + c(·, t)uv

 dx

for u, v ∈ H1
0 (U) and a.e. t ∈ [0, T ].

Motivation. We assume that u is a smooth solution of the PDE (6.11). We switch our viewpoint by associate

u with a mapping u : [0, T ] → H1
0 (U) defined by

[u(t)](x) = u(x, t), x ∈ U, 0 ≤ t ≤ T.

Also, we define f : [0, T ] → L2(U) by

[f(t)](x) = f(x, t), x ∈ U, 0 ≤ t ≤ T.

If v ∈ H1
0 (U), we multiply the PDE ut + Lu = f by v and integrate by parts to obtain

⟨u′(t), v⟩L2(U) +B(u, v; t) = ⟨f(t), v⟩L2(U), 0 ≤ t ≤ T. (6.13)

Meanwhile, recalling Theorem 5.1, we have

ut = g0 +

n∑
j=1

gjxj
:=

(
f −

n∑
i=1

biuxi
− cu

)
−

n∑
j=1

(
n∑

i=1

aijuxi

)
xj

∈ H−1(U),

with the estimate

∥ut∥H−1(U) ≤

∫
U

n∑
j=0

|gj |2
1/2

≤ C
(
∥u∥H1

0 (U) + ∥f∥L2(U)

)
.

This estimate suggests that it may be reasonable to find a weak solution with u′ ∈ H−1(U) for a.e. 0 < t ≤ T ,

in which case the first term in (6.13) can be rewritten as ⟨u′(t), v⟩, which is the pairing of H−1(U) and H1
0 (U).
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Definition 6.15 (Weak solutions). Let L be a divergence form operator defined by (5.2), and let B(·, ·; t) be
the associated time-dependent bilinear form. A function u ∈ L2(0, T ;H1

0 (U)) with u′ ∈ L2(0, T ;H−1(U)) is

said to be a weak solution to the parabolic initial/boundary-value problem (6.11), if u(0) = g, and

⟨u′(t), v⟩+B(u, v; t) = ⟨f(t), v⟩ (6.14)

for each v ∈ H1
0 (U) and a.e. 0 ≤ t ≤ T .

Remark. According to Theorem 6.12, we identify u with the continuous version u ∈ C([0, T ];L2(U)), and thus

the requirement u(0) = g makes sense.

Next, we study the existence and uniqueness of weak solutions of second-order parabolic PDEs.

6.2.1 Galerkin’s Method

In this part, we build a weak solution of the parabolic initial/boundary-value problem (6.11) by constructing

finite-dimensional approximations and passing to limits. This is called the Galerkin’s method.

Approximation on finite basis. We take a collection of smooth functions wk = wk(x) such that

(i) (wk)
∞
k=1 is an orthogonal basis of H1

0 (U), and

(ii) (wk)
∞
k=1 is an orthonormal basis of L2(U).

For example, we can take (wk)
∞
k=1 to be the completed set of appropriately normalized eigenfunctions of the

negative Laplacian operator −∆ in H1
0 .

We fix m ∈ N, and seek a function um : [0, T ] → H1
0 (U) that can be seen as a projection of a solution of

(6.11) onto the finite-dimensional subspace spanned by functions (wk)
m
k=1. This projection is of the form

um(t) =

m∑
k=1

dkm(t)wk. (6.15)

By definition of the weak solution, we select the coefficients dkm according todkm(0) = ⟨g, wk⟩L2(U),

⟨u′
m(t), wk⟩L2(U) +B(um, wk; t) = ⟨f(t), wk⟩L2(U).

(6.16)

Theorem 6.16 (Construction of approximate solutions). For each m ∈ N, there exists a function um of the

form (6.15) that satisfies (6.16).

Proof. If um is of the form (6.15), by orthonormality of (wk)
∞
k=1,

(dkm)′(t) = ⟨u′
m(t), wk⟩L2(U), and B(um, wk; t) =

m∑
l=1

ekl(t)dlm(t),

where ekl(t) = B(wl, wk; t) for k, l = 1, 2, · · · . We further write fk(t) = ⟨f(t), wk⟩L2(U) and g
k = ⟨g, wk⟩L2(U).

Then (6.16) becomes a linear system of ODE(dkm)′(t) +
∑m

l=1 e
kl(t)dlm(t) = fk(t),

dkm(0) = gk,
k = 1, 2, · · · ,m. (6.17)

According to standard existence theory for ordinary differential equations, there exists a unique absolutely

continuous function dm(t) = (d1m(t), · · · , dmm(t)) satisfying (6.17) for a.e. t ∈ [0, T ]. Hence the um defined by

(6.15) solves (6.16) for a.e. t ∈ [0, T ].
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6.2.2 Energy Estimates

To establish an appropriate convergence result for the approximating sequence (um)∞m=1 constructed by

Galerkin’s method, we need some uniform estimates.

Theorem 6.17 (Energy estimates for the parabolic PDE). Let (um)∞m=1 be the approximating sequence (6.15)

obtained by solving (6.16). Then there exists a constant C > 0, depending only on U , T and coefficients of L,

such that for m = 1, 2, · · · ,

sup
0≤t≤T

∥um(t)∥L2(U) + ∥um∥L2(0,T ;H1
0 (U)) + ∥u′

m∥L2(0,T ;H−1(U)) ≤ C
(
∥f∥L2(0,T ;L2(U)) + ∥g∥L2(U)

)
. (6.18)

Proof. Step I. Combining (6.15) and (6.16), we have

⟨u′
m(t),um⟩L2(U) +B(um,um; t) = ⟨f(t),um⟩L2(U) (6.19)

for a.e. t ∈ [0, T ]. By Theorem 5.8, there exist constants β > 0 and γ ≥ 0 such that

β∥um(t)∥2H1
0 (U) ≤ B(um,um; t) + γ∥um(t)∥2L2(U)

for all t ∈ [0, T ] and m ∈ N. Since d
dt∥um(t)∥2L2(U) = 2⟨u′

m(t),um⟩L2(U), the estimate (6.19) implies

d

dt
∥um(t)∥2L2(U) + 2β∥um(t)∥2H1

0 (U) ≤ C1

(
∥um(t)∥2L2(U) + ∥f(t)∥2L2(U)

)
(6.20)

for all t ∈ [0, T ], where C1 is a constant depends only on U and coefficients of L.

Step II. We relax estimate (6.20) to obtain

∥um(t)∥2L2(U) ≤ ∥um(0)∥2L2(U) +

∫ T

0

∥f(s)∥2L2(U) ds+ C1

∫ t

0

∥um(s)∥2L2(U) ds.

By Grönwall’s lemma, for all 0 ≤ t ≤ T ,

∥um(t)∥2L2(U) ≤ eC1t

(
∥um(0)∥2L2(U) +

∫ T

0

∥f(s)∥2L2(U) ds

)
.

Note that ∥um(0)∥L2(U) ≤ ∥g∥L2(U), we have

sup
0≤t≤T

∥um(t)∥2L2(U) ≤ eC1T
(
∥f∥2L2(0,T ;L2(U)) + ∥g∥L2(U)

)
. (6.21)

Step III. We integrate both sides of (6.20), and apply (6.21) to get

∥um∥2L2(0,T ;H1
0 (U)) =

∫ T

0

∥um(t)∥2H1
0 (U) dt ≤

C1(1 + eC1T )

2β

(
∥f∥2L2(0,T ;L2(U)) + ∥g∥L2(U)

)
. (6.22)

Step IV. We take any v ∈ H1
0 (U), with ∥v∥H1

0 (U) ≤ 1, and write v = v0 + v1, where v0 =
∑m

k=1⟨v, wk⟩L2(U)wk

is the projection of v onto span{w1, · · · , wm}, and ⟨v1, wk⟩L2(U) = 0 for all k = 1, 2, · · · ,m. By (6.16),

⟨u′
m(t), v0⟩L2(U) +B(um, v0; t) = ⟨f(t), v0⟩L2(U)

for a.e. t ∈ [0, T ]. Since ∥v0∥H1
0 (U) ≤ ∥v∥H1

0 (U) ≤ 1, we have

|⟨u′
m(t), v⟩| =

∣∣⟨u′
m(t), v0⟩L2(U)

∣∣ = ∣∣⟨f(t), v0⟩L2(U) −B(um, v0; t)
∣∣ ≤ C2

(
∥f(t)∥L2(U) + ∥um(t)∥H1

0 (U)

)
.
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The above estimate holds for all v ∈ H1
0 (U) with ∥v∥H1

0 (U) ≤ 1. Hence

∥u′
m(t)∥H−1(U) ≤ C2

(
∥f(t)∥L2(U) + ∥um(t)∥H1

0 (U)

)
.

We integrate this relation on [0, T ] and apply the estimate (6.22) to obtain

∥u′
m∥L2(0,T ;H−1(U)) ≤ C3

(
∥f∥2L2(0,T ;L2(U)) + ∥g∥L2(U)

)
. (6.23)

Combining (6.21), (6.22) and (6.23), we conclude the proof.

6.2.3 Existence and Uniqueness

In this part, we pass m to infinity and show that a subsequence of the solutions (um)∞m=1 of the projected

problem (6.16) converges to a weak solution of (6.11).

Theorem 6.18 (Existence theorem for weak solutions). There exists a weak solution of the parabolic initial/boundary-

value problem (6.11).

Proof. We take the approximating sequence (um)∞m=1 constructed by Galerkin’s method.

Step I. By Theorem (6.18), the sequence (um)∞m=1 is bounded in L2(0, T ;H1
0 (U)), and the sequence (u′

m)∞m=1

is bounded in L2(0, T ;H−1(U)). By Banach-Alaoglu theorem, there exists a subsequence (uml
)∞l=1 such that

• (uml
)∞l=1 converges weakly to some function u in L2(0, T ;H1

0 (U)), and

• (u′
ml

)∞l=1 converges weakly to some function v in L2(0, T ;H−1(U)).

We claim that u′ = v. Using integration by parts, for any ϕ ∈ C∞
c (0, T ) and h ∈ H1

0 (U),∫ T

0

ϕ(t)⟨u′
ml

(t), h⟩ dt = −
∫ T

0

ϕ′(t)⟨uml
(t), h⟩ dt.

Letting l → ∞, the weak convergence implies∫ T

0

ϕ(t)⟨v(t), h⟩ dt = −
∫ T

0

ϕ′(t)⟨u(t), h⟩ dt,

which holds for all h ∈ H1
0 (U). Hence∫ T

0

ϕ(t)v(t) dt = −
∫ T

0

ϕ′(t)u(t) dt

in H−1(U). Note that ϕ ∈ C∞
c (0, T ), the result follows.

Step II. We fix an integer N , and take a function v ∈ C1([0, T ];H1
0 (U)) of the form

v =

N∑
k=1

dk(t)wk, , (6.24)

where (dk)Nk=1 are given smooth functions. Recalling (6.16), for any m ≥M , we have∫ T

0

(
⟨u′

m(t),v(t)⟩L2(U) +B(um,v; t)
)
dt =

∫ T

0

⟨f(t),v(t)⟩L2(U) dt. (6.25)

We let m = ml and pass l → ∞. The weak convergence result implies∫ T

0

(⟨u′(t),v(t)⟩+B(u,v; t)) dt =

∫ T

0

⟨f(t),v(t)⟩ dt. (6.26)
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The above equality also holds for all v ∈ L2(0, T ;H1
0 (U)) by applying the dominated convergence theorem,

since the functions of the form (6.24) is dense in this space. In particular, for each v ∈ H1
0 (U), plugging in

v(t) = ϕ(t)v to the last display for all ϕ ∈ C∞
c (0, T ) gives

⟨u′(t), v⟩+B(u, v; t) = ⟨f(t), v⟩ for a.e. 0 ≤ t ≤ T.

By Theorem 6.12, we can identify u ∈ C([0, T ];L2(U)).

Step III. It remains to verify that u(0) = g. We take any v ∈ C1([0, T ];H1
0 (U)) with v(T ) = 0. Applying

integration by parts, (6.26) becomes∫ T

0

(−⟨v′(t),u(t)⟩+B(u,v; t)) dt =

∫ T

0

⟨f(t),v(t)⟩ dt+ ⟨u(0),v(0)⟩, (6.27)

Also, (6.25) becomes∫ T

0

(−⟨v′(t),um(t)⟩+B(um,v; t)) dt =

∫ T

0

⟨f(t),v(t)⟩L2(U) dt+ ⟨um(0),v(0)⟩.

Letting m = ml → ∞, we get∫ T

0

(−⟨v′(t),u(t)⟩+B(u,v; t)) dt =

∫ T

0

⟨f(t),v(t)⟩L2(U) dt+ ⟨g,v(0)⟩. (6.28)

Comparing (6.27) and (6.28), and noticing that v(0) is arbitrary, we conclude that u(0) = g.

In addition, the weak solution of a parabolic PDE is unique.

Theorem 6.19 (Uniqueness of weak solutions). The weak solution of the parabolic PDE (6.11) is unique.

Proof. It suffices to check that u ≡ 0 is the only weak solution of the problem
ut + Lu = 0 in UT ,

u = 0 on ∂U × [0, T ],

u = 0 on U × {t = 0},

(6.29)

which is satisfied by the difference of any two weak solutions of (6.11). We set v = u(t) in (6.14). Then

1

2

d

dt
∥u(t)∥L2(U) +B(u,u; t) = ⟨u′(t),u(t)⟩+B(u,u; t) = 0

for a.e. 0 ≤ t ≤ T . Since

B(u,u; t) ≥ β∥u(t)∥H1
0 (U) − γ∥u∥2L2(U) ≥ −γ∥u∥2L2(U),

and u(0) = 0, we have

∥u(t)∥2L2(U) ≤ 2γ

∫ t

0

∥u(s)∥2L2(U) ds,

for all 0 ≤ t ≤ T . By Gronwall’s lemma, we immediately conclude u ≡ 0.
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6.3 Regularity Theory

In this section, we study the smoothness of the weak solutions of parabolic PDEs. We work with the parabolic

operator of divergence form:

∂

∂t
+ L, where Lu = −

n∑
i,j=1

(aijuxi)xj +

n∑
i=1

biuxi + cu.

We further suppose that

• U is an open, bounded set with ∂U smooth, and

• the coefficients aij , bi, c (i, j = 1, · · · , n) are smooth on U and not dependent on the time variable t.

For simplicity, we take (um)∞m=1 to be the eigenfunctions of −∆ on U , which form an orthonormal basis of

L2(U) and an orthogonal basis of H1
0 (U). Our analysis will be based on the weak solution constructed by

Galerkin’s method.

Theorem 6.20 (Improved regularity). Suppose that u ∈ L2(0, T ;H1
0 (U)) with u′ ∈ L2(0, T ;H−1(U)) is the

weak solution of the initial/boundary-value problem
ut + Lu = f in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0}.

(i) Assume that g ∈ H1
0 (U) and f ∈ L2(0, T ;L2(U)). Then

u ∈ L2(0, T ;H2(U)) ∩ L∞(0, T ;H1
0 (U)) and u′ ∈ L2(0, T ;L2(U)).

Furthermore, we have the estimate

ess sup
0≤t≤T

∥u(t)∥H1
0 (U) + ∥u∥L2(0,T ;H2(U)) + ∥u′∥L2(0,T ;L2(U)) ≤ C

(
∥f∥L2(0,T ;L2(U)) + ∥g∥H1

0 (U)

)
,

where the constant C depends only on U , T and the coefficients of L.

(ii) In addition, assume that g ∈ H2(U) and f ′ ∈ L2(0, T ;L2(U)). Then

u ∈ L∞(0, T ;H2(U)), u′ ∈ L∞(0, T ;L2(U)) ∩ L2(0, T ;H1
0 (U)), and u′′ ∈ L2(0, T ;H−1(U)).

Furthermore, we have the estimate

ess sup
0≤t≤T

(
∥u(t)∥H2(U) + ∥u′(t)∥L2(U)

)
+ ∥u′∥L2(0,T ;H1

0 (U)) + ∥u′′∥L2(0,T ;H−1(U))

≤ C
(
∥f∥H1(0,T ;L2(U)) + ∥g∥H2(U)

)
,

where the constant C depends only on U , T and the coefficients of L.

Proof. See Evans [1] Theorem 5 of §7.1.3.

Theorem 6.21 (Higher-order regularity). Suppose that u ∈ L2(0, T ;H1
0 (U)) with u′ ∈ L2(0, T ;H−1(U)) is
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the weak solution of the initial/boundary-value problem
ut + Lu = f in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0}.

Let m ∈ N0, and assume that g ∈ H2m+1(U) and dkf
dtk

∈ L2(0, T ;H2m−2k(U)) for all k = 0, 1, · · · ,m. Suppose

also the following mth-order compatibility condition holds:

g0 := g ∈ H1
0 (U), g1 := f(0)− Lg0 ∈ H1

0 (U), · · · , gm :=
dm−1f

dtm−1
(0)− Lgm−1 ∈ H1

0 (U),

Then
dku

dtk
∈ L2(0, T ;H2m+2−2k(U)), k = 0, 1, · · · ,m+ 1.

Furthermore, we have the estimate

m+1∑
k=0

∥∥∥∥dkudtk
∥∥∥∥
L2(0,T ;H2m+2−2k(U))

≤ C

(
m∑

k=0

∥∥∥∥dkfdtk
∥∥∥∥
L2(0,T ;H2m−2k(U))

+ ∥g∥H2m+1(U)

)
,

where the constant C depends only on m, U , T and the coefficients of L.

Proof. See Evans [1] Theorem 6 of §7.1.3.

Theorem 6.22 (Infinite differentiability). Suppose that u ∈ L2(0, T ;H1
0 (U)) with u′ ∈ L2(0, T ;H−1(U)) is

the weak solution of the initial/boundary-value problem
ut + Lu = f in UT ,

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0}.

Assume that g ∈ C∞(U) and f ∈ C∞(UT ), and the following mth-order compatibility condition holds for all

m ∈ N. Then u ∈ C∞(UT ).

Proof. Apply induction and Theorem 6.21.
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6.4 Maximum Principles

In this section, we work with the uniformly parabolic operator of non-divergence form:

∂

∂t
+ L, where Lu = −

n∑
i,j=1

aijuxi,xj +

n∑
i=1

biuxi + cu.

We assume that the coefficients aij , bj , c (i, j = 1, · · · , n) are smooth, and we write ΓT = UT − UT for the

parabolic boundary of UT .

6.4.1 Weak Maximum Principles

Theorem 6.23 (Weak maximum principle). Let U be a bounded open set. Assume that u ∈ C2,1(UT )∩C(UT )

satisfies

ut + Lu ≤ 0 in UT . (6.30)

If either (i) the zeroth-order coefficient of L is c ≡ 0 in UT , or (ii) maxUT
u = 0, then

max
UT

u = max
ΓT

u.

Proof. We first assume the strict inequality ut +Lu < 0 in UT , and there exists a point (x0, t0) ∈ UT where u

attains its maximum over UT . Similar to the proof of Theorem 5.23, Lu ≥ 0 at (x0, t0). If 0 < t0 < T , then

ut = 0 at (x0, t0). If t0 = T , we have ut ≥ 0 at (x0, t0). In either case, ut +Lu ≥ 0 at (x0, t0), a contradiction.

In the general case that (6.30) holds, we define uϵ(x, t) = u(x, t)− ϵt where ϵ > 0. Then

uϵt + Luϵ = ut − ϵ+ Lu < 0 in UT .

By the previous result,

max
UT

u− ϵT ≤ max
UT

uϵ = max
ΓT

uϵ ≤ max
ΓT

u.

Letting ϵ ↓ 0 concludes the proof.

Theorem 6.24 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient

of L satisfy c ≥ 0 in UT . Assume that u ∈ C2,1(UT ) ∩ C(UT ) satisfies

ut + Lu ≤ 0 in UT .

Then

max
UT

u ≤ max
ΓT

u+.

Proof. We first assume the strict inequality ut +Lu < 0 in UT , and there exists a point (x0, t0) ∈ UT where u

attains a positive maximum over UT . Then ut + (Lu− cu) ≥ 0 at (x0, t0). Since c ≥ 0 and u(x0, t0) > 0, we

can derive the same contradiction ut + Lu ≥ 0 at (x0, t0) as before.

In the general case, we define uϵ(x, t) = u(x, t)− ϵt where ϵ > 0. Then uϵt + Luϵ < 0 in UT , and

max
UT

u− ϵT ≤ max
UT

uϵ = max
ΓT

uϵ ≤ max
ΓT

u.

Letting ϵ ↓ 0 concludes the proof.
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Remark. (i) Likewise, if c ≡ 0 in UT and

ut + Lu ≥ 0 in UT ,

we have

min
UT

u = min
ΓT

u.

If we only require c ≥ 0 in UT , then

min
UT

u ≥ −max
ΓT

u−.

(ii) In particular, if c ≥ 0 and ut + Lu = 0 in UT , we have

max
UT

|u| = max
ΓT

|u|.

(iii) In fact, our conclusion also holds for time-varying domains. To be specific, let Ω ⊂ Rn+1 be a region

in Rn × [0, T ], where {x ∈ Rn : (x, t) ∈ Ω} is a nonempty open set in Rn for each t ∈ (0, T ]. Then all our

conclusions apply to the domain Ω and the parabolic boundary PΩ = Ω\Ω.

Corollary 6.25 (Uniqueness for Cauchy-Dirchlet problem). Let U be a bounded open set, and let the zeroth-

order coefficient of L be c ≥ 0 in UT . Let h ∈ C(∂U). The Cauchy-Dirichlet problem
ut + Lu = f in UT ,

u = h on ∂U,

u = g on U × {t = 0}

(6.31)

has at most one solution in C1,2(UT ) ∩ C(UT ), i.e. there may be no solution or a unique solution but cannot

be two or more solutions.

Proof. Let u, ũ ∈ C2,1(UT ) ∩ C(UT ) be two solutions of the Cauchy-Dirichlet problem (6.31). Thenvt + Lv = 0 in UT ,

v = 0 on ∂U,

where v = u− ũ. By the weak maximum principle, |v| ≡ 0 in UT .

6.4.2 Strong Maximum Principles

For uniformly parabolic operator, we also have a strong maximum principle. If a subsolution u attains its

maximum at some interior point, then u is contant at all earlier times.

Lemma 6.26. Let U be a connected, bounded and open set. Assume that u ∈ C2,1(UT ) ∩ C(UT ) satisfies

ut + Lu ≤ 0 in UT , (6.32)

and u ≤ 0 on ΓT . If there exists (x∗, t∗) ∈ UT such that u(x∗, t∗) = 0, then u ≡ 0 on Ut0 .

Proof. Step I. Let λ > 0 and R > 0. We define a function ψ ∈ C2,1(Rn × R) by

ψ(x, t) = e−λt
(
R2 − |x|2

)3
+
.
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In the cylinder B(0, R)× [0, T ], we have

ψt + Lψ = −λe−λt
(
R2 − |x|2

)3
+ e−λt

(
R2 − |x|2

)−24

n∑
i,j=1

aijxixj + 6

n∑
i=1

(bixi − aii)
(
R2 − |x|2

)
+ c

(
R2 − |x|2

)2
≤ e−λt

(
R2 − |x|2

)(
−24θR2 +

(
6

n∑
i=1

(bixi − aii) + 24θ

)(
R2 − |x|2

)
+ (c− λ)

(
R2 − |x|2

)2)
.

By taking

λ = ∥c∥∞ +
3

8θR2

(
n max

1≤i≤n
∥aii∥∞ + n max

1≤i≤n
∥bi∥∞R+ 4θ

)2

,

we have ψt + Lψ ≤ 0 in B(0, R) × [0, T ]. Clearly, ψt + Lψ = 0 when |x| > R. Since ψ ∈ C2,1(Rn × R), we
conclude that ψt + Lψ ≤ 0 in Rn × [0, T ].

Step II. Let ϕ(x, t) = ψ(x− tξ, t), where ξ ∈ Rn. Then

ϕt + Lϕ = ψt − ξ⊤Dxψ + Lψ.

We can replace the coefficient b of L with b − ξ and take an appropriate λ > 0 to obtain ϕt + Lϕ = 0 in

Rn × [0, T ]. Also, we have ϕ > 0 in the infinite oblique cylinder {(x, t) : 0 ≤ t ≤ T, |x− tξ| < R}.

Step III. Assume that u(x0, t0) < 0, where (x0, t0) ∈ Ut∗ . We take R > 0 so small that B(x0, R) ⊂ U and

u(x, t0) > 0 for all x ∈ B(x0, R). Then there exists ϵ > 0 such that ϵψ(x − x0, t0) + u(x, t0) ≤ 0 in B(x0, R).

Note that u ≤ 0 and ut + Lu ≤ 0 in UT , and ψ = 0 on ∂B(x0, R) × R. We then apply the weak maximum

principle on ϵψ + u to obtain that ϵψ + u ≤ 0, and u < 0 in B(x0, R)× (t0, T ].

Similarly, for any ξ ∈ Rn, if the oblique cylinder {(x, t) : t0 ≤ t ≤ T0, |x− x0 − tξ| < R} lies in UT , where

t0 < T0 ≤ T , we apply a similar statement to obtain u < 0 in this cylinder. In particular, u(x, T0) < 0 for all

x ∈ B(x0 + T0ξ,R). Therefore, if B(x0, ρ) ⊂ U , we have u < 0 in B(x0, ρ)× (t0, T ].

Step IV. Finally, we use a chain of balls B(xi, ρi) ⊂ U, i = 1, 2, · · · , k with x1 = x0, xi+1 ∈ B(xi, ρi) and

xk = x∗ and apply the above result in each ball. Then u < 0 in B(xi, ρi)× (t0, T ] for each i, and in particular

u(x∗, t∗) < 0, a contradiction! Hence u ≡ 0 on Ut∗ .

Theorem 6.27 (Strong maximum principle). Let U be a connected, bounded and open set. Assume that

u ∈ C2,1(UT ) ∩ C(UT ) satisfies

ut + Lu ≤ 0 in UT ,

and u attains its maximum over UT at a point (x∗, t∗) ∈ UT .

(i) If the zeroth-order coefficient c ≡ 0 in U , then u is a constant on Ut0 .

(ii) If the zeroth-order coefficient c ≥ 0 in U , and u(x∗, t∗) ≥ 0, then u is a constant on Ut0 .

Proof. Let M = u(x∗, t∗) = maxUT
u. We apply Lemma 6.26 on u−M .

Remark. We also have the strong minimum principle:

Let U be a connected, bounded and open set. Assume that u ∈ C2,1(UT )∩C(UT ) satisfies ut+Lu ≥ 0 in UT ,

and u attains its minimum over UT at a point (x∗, t∗) ∈ UT .

(i) If the zeroth-order coefficient c ≡ 0 in U , then u is a constant on Ut0 .

(ii) If the zeroth-order coefficient c ≤ 0 in U , and u(x∗, t∗) ≥ 0, then u is a constant on Ut0 .
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6.5 Second-order Parabolic PDE Semigroup

In this section, we use the tool of semigroup theory to study the parabolic equation
∂u

∂t
+ Lu = 0 in UT ,

u = 0 on ∂U × [0, T ],

u = g on ∂U × {t = 0},

(6.33)

where L is a uniformly elliptic operator of the divergence form:

Lu = −
n∑

i,j=1

(aijuxi)xj +

n∑
i=1

biuxi + cu.

We further suppose that

• U is an open, bounded set with ∂U smooth, and

• the coefficients aij , bi, c (i, j = 1, · · · , n) are smooth on U and not dependent on the time variable t.

We can reinterpret (6.33) as the flow determined by a semigroup on the Hilbert space L2(U). We set

D(A) := H1
0 (U) ∩H2(U),

and define Au = −Lu for u ∈ D(A). Then A : D(A) → L2(U) is an unbounded linear operator. Before we

proceed, we recall the Hille-Yosida-Phillips theorem, which discusses the generation of a semigroup from an

infinitesimal generator.

Theorem 6.28 (Hille-Yosida-Phillips). Let A : D(A) → X be a linear operator with a dense domain D(A) ⊂ X

on a real Banach space X. Assume that A has a closed graph. Fix ω ∈ R and M ≥ 1. Then the following are

equivalent:

(i) A is the infinitesimal generator of a strong continuous semigroup (St)t≥0 that satisfies

∥St∥ ≤Meωt for all t ≥ 0. (6.34)

(ii) For every real number λ > ω, the operator λ Id−A : D(A) → X is bijective, and

∥(λ Id−A)−k∥ ≤ M

(λ− ω)k
, for all λ > ω and k ∈ N. (6.35)

In that case, the strongly continuous semigroup (St)t≥0 generated by A is uniquely determined by the strong

operator limit

Stu = lim
λ↑∞

e−tλ
∞∑
k=0

tkλ2k

k!
(λ Id−A)−ku, u ∈ X, t ≥ 0.

Semigroup theory provides an elegant method for constructing a solution to the initial/boundary-value

problem (6.33). We recall the energy estimate in (5.11):

β∥u∥2H1
0 (U) ≤ B(u, u) + γ∥u∥2L2(U), (6.36)

where B is the associated bilinear form

B(u, v) =

∫
U

 n∑
i,j=1

aijuxivxj +

n∑
i=1

biuxiv + cuv

 dx, u, v ∈ H1
0 (U).
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Theorem 6.29 (Second-order parabolic PDE as semigroups). The operator A generates a strongly continuous

semigroup (St)t≥0 on L2(U) such that

∥St∥ ≤ eγt for all t ≥ 0.

Proof. We prove the theorem by verify the hypotheses of the Hille-Yosida-Phillips Theorem in the case ω = γ

and M = 1. It is clear that the domain D(A) = H1
0 (U) ∩H2(U) is dense in L2(U).

Step I. We prove that A : D(A) → L2(U) has a closed graph in L2(U)× L2(U). Let (uk)
∞
k=1 ⊂ D(A) satisfy

uk → u and Auk → f in L2(U).

According to the regularity Theorem 5.20, there exists a constant C such that

∥uk − ul∥H2(U) ≤ C
(
∥Auk −Aul∥L2(U) + ∥uk − ul∥L2(U)

)
.

Then (uk)
∞
k=1 is a Cauchy sequence in H2(U), which converges to some u ∈ H2(U). Hence u ∈ D(A), and

Auk → Au in L2(U). Hence f = Au and A has a closed graph.

Step II. Now we check that λ Id−A : D(A) → L2(U) is bijective for each λ > γ. By Theorem 5.9 (existence

theory) and Theorem 5.20 (regularity theory), for each λ ≥ γ, the boundary-value problemλu−Au = f in U,

u = 0 on ∂U
(6.37)

has a unique weak solution u ∈ H1
0 (U)∩H2(U), which satisfies (λ Id−A)u = f . Hence the operator λ Id−A :

D(A) → L2(U) is bijective, and [γ,∞) ⊂ ρ(A).

Step III. Finally we check the resolvent condition (6.35) with ω = γ and M = 1. Consider the weak

formulation of the boundary-value problem (6.37):

B(u, v) + λ⟨u, v⟩L2(U) = ⟨f, v⟩L2(U), for each v ∈ L2(U).

Setting λ > γ, v = u and applying the energy estimate (6.36), we have

(λ− γ)∥u∥2L2(U) ≤ B(u, u) + λ∥u∥2L2(U) = ⟨f, u⟩L2(U) ≤ ∥f∥L2(U)∥u∥L2(U).

Note that u = (λ Id−A)−1f . Then

∥(λ Id−A)−1f∥L2(U) ≤
∥f∥L2(U)

λ− γ
, for all f ∈ L2(U).

Therefore for each λ > γ, we have ∥(λ Id−A)−1∥ ≤ 1
λ−γ , and ∥(λ Id−A)−k∥ ≤ 1

(λ−γ)k
for all k ∈ N. Then we

conclude the proof.

Remark. We fix g ∈ L2(U), and let (St)t≥0 be the strongly continuous semigroup generated by A = −L. Then
the function u(t, ·) = Stg satisfies the following:

• for each t > 0, the function u(t, ·) ∈ D(A) = H1
0 (U) ∩H2(U);

• u : UT → R solves the linear Cauchy equation

∂u

∂t
= Au, u(0, ·) = g.

Hence u is a weak solution of the boundary/initial-value problem (6.33).
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7 Calculus of Variations

7.1 Introduction

In this section, we introduce a new method of solving partial differential equations

A[u] = 0,

where A[·] is a possibly non-linear partial differential operator and u is the unknown. The calculus of variations

identifies an important class of PDEs and transform the problem to an optimization problem. To be specific,

we aim to find an appropriate energy functional J [·] whose “derivative” is A[·].

7.1.1 The Dirichlet Principle

We consider Poisson’s equation −∆u = f in U,

u = g on ∂U,
(7.1)

where U is a bounded, open subset of Rn, f ∈ C(U) and g ∈ H1(U). According to Corollary 5.25, the

boundary-value problem (7.1) has at most one solution in C2(U) ∩ C(U). We demonstrate that the solution

can be characterized as the minimizer of an appropriate functional. Define the energe functional

J [w] =

∫
U

(
1

2
|Dw|2 − wf

)
dx,

where w belongs to the admissible set

A =
{
w ∈ C2(U) ∩ C(U) : w = g on ∂U

}
.

Theorem 7.1 (Dirichlet’s principle). Assume u ∈ C2(U) ∩ C(U) solves Poisson’s equation (7.1). Then

J [u] = min
w∈A

J [w]. (7.2)

Conversely, if u ∈ A satisfies (7.2), then u solves (7.1).

Proof. Step I. Given any w ∈ C2(U) ∩ C(U), we multiply both sides of Possion’s equation by w − u and use

integration by parts. Since w − u = 0 on ∂U , the boundary term is eliminated, and

0 =

∫
U

(w − u)(−∆u− f) dx

=

∫
U

(Du ·Dw − wf) dx−
∫
U

(
|Du|2 − uf

)
dx.

We then apply the estimate Du ·Dw ≤ 1
2 |Du|

2 + 1
2 |Dw|

2 to obtain∫
U

(
1

2
|Du|2 − uf

)
dx ≤

∫
U

(
1

2
|Dw|2 − wf

)
dx.

Since u ∈ A, we conclude (7.2).

Step II. Conversely, if (7.2) holds, we fix φ ∈ C∞
c (U) and define

j(τ) = J(u+ τφ), τ ∈ R.
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Since u+τφ ∈ A for each τ ∈ R, and j(τ) is minimized by 0, we should have j′(0) = 0, provided the derivative

exists. On the other hand, note that

j(τ) =

∫
U

(
|Du+ τDφ|2 − (u+ τφ)f

)
dx =

∫
U

(
1

2
|Du|2 + τDu ·Dφ+

τ2

2
|Dv|2 − (u+ τφ)f

)
dx.

Hence

0 = j′(0) =

∫
U

(Du ·Dφ− φf) dx =

∫
U

(−∆u− f)φdx,

which holds for all φ ∈ C∞
c (U). Hence −∆u = f , and u solves (7.1).

Example 7.2 (Generalized Dirichlet’s principle). Consider the linear elliptic equation

−
n∑

i,j=1

(
aijuxi

)
xj

= f in U. (7.3)

The associated energy function is given by

J [w] =

∫
U

1

2

n∑
i,j=1

aijwxiwxj − wf

 dx.

Similar to Theorem 7.1, we can use integration by parts to show that a solution to (7.3) must be a minimizer

of the energy function J . As we will discuss later, the uniform ellipticity ensures the existence of a minimizer.

Theorem 7.3 (Abstract Dirichlet’s principle). Let H be a Hilbert space and f ∈ H∗. Define

J [w] =
1

2
∥w∥2H − f(w), w ∈ H.

Then functional J has a unique minimizer u in H, and every minimizing sequence sequence converges to it,

i.e., J [uk] → infw∈H J [w] implies uk → u in H. Finally, the minimizer u is characterized by

0 =
∂

∂t
J [u+ tw]

∣∣∣∣
t=0

= ⟨u,w⟩H − f(w) = 0 for all w ∈ H.

Proof. First note that infw∈H J [w] > −∞, since

J [w] =
1

2
∥w∥2H − f(w) ≥ 1

2
∥w∥2H − ∥f∥H∗∥w∥H ≥ −1

2
∥f∥H∗ > −∞.

Next, we apply the parallelogram identity to obtain

1

4
∥u− v∥2H =

1

2
∥u∥2H +

1

2
∥v∥2H − 1

4
∥u+ v∥2H = J [u] + J [v]− 2J

[
u+ v

2

]
, u, v ∈ H.

If both u, v ∈ H are minimizers of J , we have 1
4∥u− v∥2H = 2 infH J − 2J

[
u+v
2

]
≤ 0, and u = v. This proves

the uniqueness of minimizer. For the existence, we plug-in u = uk and v = um to get

1

4
∥uk − um∥2H ≤ J [uk] + J [um]− 2 inf

H
J.

Hence any minimizing sequence is a Cauchy sequence, and the minimum exists by completeness of H. Finally,

the characterization of minimizer u is obtained by forcing the derivative of j(t) = J [u+ tw] to vanish at t = 0,

analogous to the proof of Theorem 7.1.
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7.1.2 The Euler-Lagrange System

We consider the integral energy functional

J [w] =

∫
U

L(Dw,w, x) dx, (7.4)

where U is a bounded, open set with smooth boundary ∂U , and L : Rm×n×Rm×U → R is a smooth function

called Lagrangian. For clarity of our notation, we write

L = L(P, z, x) = L(p11, · · · , pmn , z1, · · · , zm, x1, · · · , xn)

for P ∈ Rm×n, z ∈ Rm and x ∈ Rn, where

P =


p11 · · · p1n
...

. . .
...

pm1 · · · pmn

 .

We write Lpk
i
, Lzk , Lxi

for the partial derivatives of L with respect to certain variables. For a differentiable

function w = (w1, · · · , wm) : Rn → Rm, its gradient/Jacobian matrix is given by

Dw =


w1

x1
· · · w1

xn

...
. . .

...

wm
x1

· · · wm
xn

 .

Connection to PDEs. Now we show that, to each minimization problem of the energy functional as above,

one can associate a PDE. Let u ∈ C∞(U ;Rm) be a smooth minimizer of J [·], taken among functions equal to

a function g : Rn → Rm on ∂U , and fix any φ ∈ C∞
c (U ;Rm). We define the first variation

j(τ) = J [u+ τφ] =

∫
U

L(Du+ τDφ, u+ τφ, x) dx, τ ∈ R.

Then

j′(τ) =

∫
U

m∑
k=1

n∑
i=1

φk
xi
Lpk

i
(Du+ τDφ, u+ τφ, x) +

m∑
k=1

φkLzk(Du+ τDφ, u+ τφ, x) dx.

Since u is a minimizer of J and u+ τφ is in the domain of J for all τ ∈ R,

0 = j′(0) =

m∑
k=1

∫
U

n∑
i=1

φk
xi
Lpk

i
(Du, u, x) + φkLzk(Du, u, x) dx.

As this identity holds for all φ = (φ1, · · · , φm) ∈ C∞
c (U ;Rm), we apply integration by parts to conclude that

−
n∑

i=1

(
Lpk

i
(Du, u, x)

)
xi

+ Lzk(Du, u, x) = 0 in U, k = 1, 2, · · · ,m.

This is known as the Euler–Lagrange system associated with the energy functional J [·] defined by (7.4), which

is a coupled system of m quasilinear second-order PDEs. In particular, when m = 1, we write the Lagrangian

L = L(p, z) = L(p1, · · · , pn, z, x) and obtain the Euler-Lagrange equation

−
n∑

i=1

(Lpi
(Du, u, x))xi

+ Lz(Du, u, x) = 0.
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Example 7.4. Following are some example of nonlinear PDEs associated with certain energy functionals.

(i) (Nonlinear Poisson equation). Let f : R → R be a smooth function, and define its antilinear derivative

F (z) =
∫ z

0
f(t) dt. Then the Euler-Lagrange equation associated with the energy functional

J [w] =

∫
U

(
1

2
|Dw|2 − F (w)

)
dx

is the nonlinear Poisson equation

−∆u = f(u) in U.

(ii) (Minimal surface equation). Define the Lagrangian

L(p, z, x) =
√
1 + |p|2.

Then the energy functional is

J [w] =

∫
U

√
1 + |Dw|2 dx,

and the associated Euler-Lagrange equation is the minimal surface equation

−
n∑

i=1

(
uxi√

1 + |Du|2

)
xi

= 0 in U.

The left hand side div

(
Du√

1+|Du|2

)
is n times the mean curvature of the graph of u.

Now we study certain systems of nonlinear PDEs for which every smooth function is a solution.

Definition 7.5 (Null Lagrangians). The function L is called a null Lagrangian if every smooth function

u ∈ C∞(U ;Rm) solves the associated Euler-Lagrange system

−
n∑

i=1

(
Lpk

i
(Du, u, x)

)
xi

+ Lzk(Du, u, x) = 0 in U, k = 1, 2, · · · ,m. (7.5)

Remark. For the case m = 1, a trivial example of null Lagrangians is the linear function in p:

L(p, z, x) = β1p1 + β2p2 + · · ·+ βnpn.

The energy functional corresponding to a null Lagrangian only depends on the boundary condition.

Theorem 7.6 (Null Lagrangians and boundary conditions). Let L be a null Lagrangian, and

J [w] =

∫
U

L(Dw,w, x) dx.

the corresponding energy functional. For any two functions u, v ∈ C∞(U ;Rm) with u ≡ v on ∂U ,

J [u] = J [v].

Proof. We define

j(τ) = J [τu+ (1− τ)v], 0 ≤ τ ≤ 1.
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For notation simplicity we write wτ = τu+ (1− τ)v. Then

j′(τ) =

∫
U

m∑
k=1

n∑
i=1

(ukxi
− vkxi

)Lpk
i
(Dwτ , wτ , x) +

m∑
k=1

(uk − vk)Lzk(Dwτ , wτ , x) dx.

Since L is a null Lagrangian, wτ solves (7.5), and

j′(τ) =

m∑
k=1

∫
U

(uk − vk)

(
−

n∑
i=1

(
Lpk

i
(Dwτ , wτ , x)

)
xi

+ Lzk(Dwτ , wτ , x)

)
dx = 0, 0 ≤ τ ≤ 1.

Hence j(0) = j(1), and we finish the proof.

Now we introduce a nontrivial null Lagrangian.

Lemma 7.7 (Divergence-free rows). Given a matrix P ∈ Rn×n, denote by P ♯ the cofactor matrix of P , whose

(k, i)th entry is the cofactor

(P ♯)ki = (−1)k+i det(A−k
−i ),

where P−k
−i is the (n − 1) × (n − 1) matrix obtained by removing the kth row and ith column of P . Let

u ∈ C∞(Rn;Rn) be a smooth mapping. Then

n∑
i=1

(Du♯)ki,xi
= 0, k = 1, 2, · · · , n.

Proof. According to the identity (detP ) Id = PTP ♯, we have

(detP )δki =

n∑
j=1

pjk(P
♯)ji , k, i = 1, · · · , n, (7.6)

and in particular,

∂ detP

∂pmj
= (P ♯)mj , m, j = 1, · · · , n. (7.7)

We set P = Du in (7.6) and differentiate with respect to xi to obtain

δki

n∑
j,m=1

(Du♯)mj (Du)mj,xi
=

n∑
j=1

(
(Du)jk,xi

(Du♯)ji + (Du)jk(Du
♯)ji,xi

)
.

We then sum over all i = 1, · · · , n to obtain

n∑
j,m=1

(Du♯)mj u
m
xjxk

=

n∑
i,j=1

(
ujxkxi

(Du♯)ji + (Du)jk(Du
♯)ji,xi

)
, k = 1, · · · , n,

which also reads

n∑
j=1

ujxk

(
n∑

i=1

(Du♯)ji,xi

)
= 0, k = 1, · · · , n.

If detDu(x) ̸= 0, we have
∑n

i=1(Du
♯)ji,xi

= 0 at x for all j = 1, · · · , n. Otherwise, if detDu(x) = 0, we take

ũ(y) = u(y) + ϵy for ϵ > 0, apply the previous steps to ũ and send ϵ ↓ 0.
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Theorem 7.8 (Determinants as null Lagrangians). The deterministic function

L(P, z, x) = detP

is a null Lagrangian.

Proof. Fix u ∈ C∞(U ;Rm). By (7.7) and Lemma 7.7, we have

n∑
i=1

(
Lpk

i
(Du, u, x)

)
xi

=

n∑
i=1

(Du♯)ki,xi
= 0, k = 1, · · · , n.

Hence u solves the associated Euler-Lagrangian system, and we finish the proof.

7.1.3 Application: Fixed Point Theorems

We can apply the null Lagrangians to provide an analytic proof for a fundamental result in algebraic topology.

Theorem 7.9 (Brouwer’s fixed point theorem). Let u : B → B be a continuous mapping, where B = B(0, 1)

is the closed unit ball in Rn. Then u has a fixed point, i.e. there exists x ∈ B such that u(x) = x.

Proof. Step I. We first claim that there does not exist a smooth mapping w : B → ∂B such that w(x) = x

for all x ∈ ∂B. Indeed, if w were such a mapping, then w = IdB on ∂B. Since the determinant is a null

Lagrangian, by Theorem 7.6, we have∫
B

detDwdx =

∫
B

detD IdB dx = m(B) > 0. (7.8)

On the other hand, since w takes values in ∂B, we have |w|2 = 1, and the gradient (Dw)⊤w = 0. Note |w| = 1.

Then 0 is an eigenvalue of Dw for each x ∈ B, and detDw ≡ 0 in B, contadicting (7.8).

Step II. We then claim that there does not exist a continuous mapping w : B → ∂B such that w(x) = x for

all x ∈ ∂B. If w were such a mapping, we continuously extend to Rn by assigning w(x) = x for all x ∈ Rn\B.

We take wϵ = ηϵ ∗ w, where 0 < ϵ < 1 and ηϵ ∈ C∞
c (Rn) is a standard mollifier. By Proposition 1.8 (ii),

wϵ → w uniformly on B(0, 2) as ϵ ↓ 0. On the other hand, since ηϵ is radial, w
ϵ(x) = x for all x ∈ Rn\B(0, 2).

Consequently, we fix ϵ ∈ (0, 1) so small that infx∈Rn |wϵ(x)| > 0. Then

w2(x) =
wϵ(2x)

|wϵ(2x)|
, x ∈ B

is a smooth mapping from B to ∂B such that w2(x) = x for all x ∈ ∂B, contradicting our claim in Step I.

Step III. Finally, assume that u : B → B is a continuous mapping. If u has no fixed point, we define the

mapping w : B → ∂B by setting w(x) to be the point on ∂B hit by the ray emanating from u(x) and passing

through x. Since u(x) ̸= x for each x ∈ B, this mapping is well-defined. To be explicit,

w(x) = x+ τ(x)(u(x)− x), x ∈ B,

where

τ(x) =
x⊤(x− u(x))−

√
(1− |x|2) |u(x)− x|2 + |x⊤(x− u(x))|2

|u(x)− x|2
.

Therfore, w : B → ∂B is a continuous mapping and satisfies w(x) = x for all x ∈ ∂B, which contradicts our

claim in Step II. Then we complete the proof.
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The Brouwer’s fixed point theorem can be easily generalize to homeomorphic spaces of the closed unit ball

in Euclidean spaces.

Corollary 7.10 (Brouwer’s fixed point theorem). Let A be a topological space that is homeomorphic to the

closed unit ball B in Rn, i.e. there exists a bijection f : A → B such that both f and f−1 are continuous.

Then every continuous mapping u : A→ A also has a fixed point.

Proof. We note that the mapping f ◦ u ◦ f−1 : B → B is also a continuous mapping, which has a fixed point

x ∈ B by Theorem 7.9. Clearly, f−1(x) ∈ A is a fixed point of u.

We can further generalize Brouwer’s fixed point theorem to Banach spaces.

Theorem 7.11 (Schauder’s fixed point theorem). Let X be a Banach space. If K ⊂ X is a compact and

convex subset, and T : X → X is a continuous mapping, then T has a fixed point in K.

Proof. Step I. By compactness of K, we fix ϵ > 0 and cover K by finitely open balls B(x1, ϵ), · · · , B(xNϵ , ϵ),

where x1, · · · , xNϵ ∈ K. We take Kϵ to be the convex hull of these centers. Since K is convex, Kϵ ⊂ K.

Step II. We claim that Kϵ is homeomorphic to the closed unit ball in RMϵ for some Mϵ ≤ Nϵ − 1. Without

loss of generality, we assume that 0 ∈ Kϵ, and take Mϵ to be the dimension of the subspace spanned by

{x1, · · · , xNϵ}. Then Kϵ lies in a Mϵ-dimensional real vector space, which is homeomorphic to RMϵ .

• If Mϵ = 0, then Kϵ is a singleton, and the result is clear;

• If Mϵ ≥ 1, then Kϵ is a compact and convex set with nonempty interior in a Mϵ-dimensional real vector

space, which is homeomorhic to the closed unit ball in RMϵ .

Step III. We define a mapping Sϵ : K → Kϵ by

Sϵx =

∑Nϵ

j=1 d(x,K\B(xj , ϵ))xj∑Nϵ

j=1 d(x,K\B(xj , ϵ))
, x ∈ K,

where the denominator is never zero because B(x1, ϵ), · · · , B(xNϵ
, ϵ) cover K. Clearly, Sϵ is a continuous

mapping. Furthermore, since d(x,K\B(xj , ϵ)) > 0 if and only if x ∈ B(xj , ϵ), we have the estimate

∥Sϵx− x∥ ≤
∑Nϵ

j=1 d(x,K\B(xj , ϵ))∥x− xj∥∑Nϵ

j=1 d(x,K\B(xj , ϵ))
≤ ϵ, x ∈ K. (7.9)

Step IV. We further define a mapping Tϵ : Kϵ → Kϵ by

Tϵx = Sϵ(Tx), x ∈ Kϵ,

which is also continuous. Since Kϵ is homeomorphic to the closed unit ball in RMϵ , by Brouwer’s fixed point

theorem, there exists xϵ ∈ Kϵ such that Tϵxϵ = xϵ. Since K is compact, there exists a subsequence ϵj such

that xϵj converges to a limit x ∈ X. By estimate (7.9),

∥xϵj − Txϵj∥ ≤ ∥Tϵjxϵj − Txϵj∥ ≤ ∥SϵjTxϵj − Txϵj∥ ≤ ϵj .

Since T is continuous, ∥xϵj − Txϵj∥ → ∥x− Tx∥ = 0. Hence we conclude Tx = x.
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7.2 Existence Theory for Variational Problems

In this section, we discuss some conditions on the Lagrangian L : Rm×n ×Rm ×U → R which ensure that the

energy functional J [·] defined by

J [w] =

∫
U

L(Dw,w, x) dx

indeed has a minimizer, where w : U → Rm is taken over an appropriate Sobolev space, possibly under some

boundary conditions.

7.2.1 Existence and Uniqueness of Minimizers

Some functions have an infimum but do not have a minimizer, for instance, the functions that vanish at

infinity, like e−|x|2 . Heurestically, we may require hypothesis that controls the value of the objective functional

for points near infinity. Also, to ensure that the functional attains its infimum, we need some continuity

conditions. In fact, there is a systematic approach for constructing minimizers, which is based on the so-called

Direct method of the calculus of variations.

Theorem 7.12 (Direct method). Let X be a reflexive Banach space, and let A ⊂ X be a weakly closed subset.

Let J : A→ R be a (possibly nonlinear) functional satisfying the following conditions:

(i) (Coercivity). J [u] → ∞ as ∥u∥ → ∞, and

(ii) (Sequential weak lower semicontinuity). If (uk) ⊂ A and uk → u weakly in u, then

J [u] ≤ lim inf
k→∞

J [uk].

Then J is bounded from below on A and attains its infimum on A.

Proof. Let (uk) be a minimizing sequence in A, i.e.

lim
k→∞

J [uk] = inf
v∈A

J [v].

By the coercivity condition, (uk) is a bounded sequence, which has a weakly convergent subsequence (ukj
)

because X is reflexive. Since A is weakly closed, the weak limit u is in A. By weak lower semicontinuity,

J [u] ≤ lim inf
k→∞

J [uk] = inf
v∈A

J [v].

Therefore J attains its infimum on A at u. Since J [u] > −∞, the conclusion follows.

Coercivity. In accordance with the coercivity condition in the direct method, we hope the energy functional

J [w] to grow rapidly as w tends to infinity. To this end, we assume that for some 1 < q < ∞, there exist

constants α > 0, β ≥ 0 such that

L(P, z, x) ≥ α|P |q − β for all (P, z, x) ∈ Rm×n × Rm × U.

Therefore

J [w] ≥ δ∥Dw∥qLq(U) − γ

for γ = βm(U) and some δ > 0, and J [w] → ∞ as ∥Dw∥Lq(U) → ∞.

Weak convergence in W 1,q(U). Since we assume 1 < q < ∞, the space Lq(U) is a reflexive space. For a

bounded sequence (uk) in W 1,q(U), there exists a subsequence (ukj ) and a function u ∈ W 1,q(U) such that

ukj → u weakly in Lq(U) and Dukj → Du weakly in Lq(U ;Rn). For brevity, we say ukj → u in W 1,q(U).
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Now we discuss the relation between convexity and weak lower semicontinuity.

Definition 7.13 (Tonelli). Assume that L : Rm×n × Rm × U → R is smooth and bounded from below, and

the mapping P 7→ L(P, z, x) is convex for every (z, x) ∈ Rm × U . Then J [·] is sequentially weakly lower

semicontinuous on W 1,q(U ;Rm) for each q ∈ (1,∞).

Proof. We may assume L ≥ 0, otherwise we add a large constant to L since it is bounded from below. Let

(uk) be a weakly convergent sequence in W 1,q(U ;Rm) with weak limit u. We aim to show that

J [u] ≤ lim inf
k→∞

J [uk].

By passing to an appropriate subsequence, we may replace the lim inf with an actual limit. Since (uk) is weakly

convergent in W 1,q(U ;Rm), it is bounded. By Rellich-Kondrachov compactness theorem [Theorem 4.16], we

have uk → u in Lq(U ;Rn) up to a subsequence, and uk → u a.e. up to a further subsequence. Now we fix

ϵ > 0 and apply Egoroff’s therorem to conclude that there exists a set Eϵ ⊂ U such that m(U\Eϵ) < ϵ and

uk → u uniformly on Eϵ. We may assume Eϵ ⊂ Eϵ′ for 0 < ϵ′ < ϵ. We take the good set

Gϵ =

{
x ∈ Eϵ : |u(x)|+ |Du(x)| < 1

ϵ

}
,

so m(U\Gϵ) ↓ 0 as ϵ ↓ 0.

By convexity of L(P, z, x) in P and the fact L ≥ 0, we have

J [uk] ≥
∫
Gϵ

L(Duk, uk, x) dx ≥
∫
Gϵ

L(Du, uk, x) dx+

∫
Gϵ

LP (Du, uk, x) · (Duk −Du) dx. (7.10)

By definition of Gϵ and the dominated convergence theorem,

lim
k→∞

∫
Gϵ

L(Du, uk, x) dx =

∫
Gϵ

L(Du, u, x) dx.

Also, since LP (Du, uk, x) → LP (Du, u, x) uniformly on Gϵ, and Duk → Du weakly in Lq(U ;Rm), we have

lim
k→∞

∫
Gϵ

LP (Du, uk, x) · (Duk −Du) dx = 0.

Hence for each ϵ > 0, we let n→ ∞ in (7.10) to see

lim
k→∞

J [uk] ≥
∫
Gϵ

L(Du, u, x) dx.

We let ϵ ↓ 0 and apply the monotone convergence theorem to conclude the proof.

Minimizers for the variational problem. We discuss the variational problem under Dirichlet boundary

conditions, where the energy functional

J [w] =

∫
U

L(Dw,w, x) dx

is defined on the admissible set

A =
{
w ∈W 1,q(U ;Rm) : w = g on ∂U in the trace sense

}
.

We say u ∈W 1,q(U ;Rm) is a minimizer of J , if J [u] ≤ J [u+φ] for all φ ∈W 1,q
0 (U ;Rm). In other words, the

Sobolev function u minimizes J in its own Dirichlet class W 1,q
u (U ;Rm) := u+W 1,q

0 (U ;Rm).
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Theorem 7.14 (Existence of Minimizers). Let 1 < q <∞. Assume that L : Rm×n ×Rm × U → R is smooth

and bounded from below, the mapping P 7→ L(P, z, x) is convex for every (z, x) ∈ Rm × U , and there exist

constants α > 0, β ≥ 0 such that

L(P, z, x) ≥ α|P |q − β for all (P, z, x) ∈ Rm×n × Rm × U.

Then for each φ ∈ C∞(U ;Rm), the enregy functional J has a minimizer in A = φ+W 1,q
0 (U ;Rm).

Proof. We first check the coercivity of J . We have shown that

J [w] ≥ ∥Dw∥qLq(U) − βm(U)

for some δ > 0. Since w − φ ∈W 1,q
0 (U) for all w ∈ A, by Poincaré’s inequality [Corollary 4.6],

∥w∥Lq(U) ≤ ∥w − φ∥Lq(U) + ∥φ∥Lq(U) ≤ C1∥Dw −Dφ∥Lq(U) + ∥φ∥Lq(U) ≤ C2

(
∥Dw∥Lq(U) + ∥φ∥W 1,q(U)

)
.

Hence ∥w∥W 1,q(U) ≤ C3(∥Dw∥Lq(U) + 1). As ∥w∥W 1,q(U) → ∞, we have |Du∥Lq(U) → ∞ and J [w] → ∞.

Next, since 1 < q <∞, we know that W 1,q(U) is a refelxive Banach space. Also, by Mazur’s theorem, the

admissible set A = v +W 1,q
0 (U) is a weakly closed space. By Theorem 7.12, J attains its infimum on A.

Now we discuss the uniqueness of the minimizer.

Theorem 7.15 (Uniqueness). Assume that the Lagrangian L = L(P, x) does not depend on z, and L is

uniformly convex in P , i.e. there exists θ > 0 such that

n∑
i,j=1

m∑
k,l=1

Lpk
i p

l
j
(P, x)ξki ξ

l
j ≥ θ|ξ|2

for all P, ξ ∈ Rm×n and x ∈ Rn. Then the minimizer u ∈ A of J [·] in Theorem 7.14 is unique.

Proof. Assume both u, v ∈ A minimizes J [·] over A. By uniform convexity,

L(P, x) ≥ L(Q, x) +DPL(Q, x) · (P −Q) +
θ

2
|P −Q|2, x ∈ Rn, P,Q ∈ Rm×n.

We set P = Du, Q = Du+Dv
2 and integrate over U :

J(u) ≥ J

(
u+ v

2

)
+

∫
U

DPL

(
Du+Dv

2
, x

)
· Du−Dv

2
dx+

θ

8

∫
U

|Du−Dv|2 dx.

Symmetrically,

J(v) ≥ J

(
u+ v

2

)
+

∫
U

DPL

(
Du+Dv

2
, x

)
· Dv −Du

2
dx+

θ

8

∫
U

|Dv −Du|2 dx.

Combining the last two displays, we have

J

(
u+ v

2

)
+
θ

8

∫
U

|Dv −Du|2 dx ≤ J(u) + J(v)

2
.

Since both u and v are minimizers of J [·] over A, and u+v
2 ∈ A, the above inequality is indeed an equality,

and Du = Dv a.e.. Since u = v = φ on ∂U in the trace sense, it follows that u = v a.e..
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7.2.2 Weak Solutions of Euler-Lagrange System

In this section, we show that the minimizer of the energy functional J [·] on the admissible set A solves the

associated Euler-Lagrange system in some suitable sense. Suppose there exists some constant C such that
|L(P, z, x)| ≤ C (|P |q + |z|q + 1) ,

|LP (P, z, x)| ≤ C
(
|P |q−1 + |z|q−1 + 1

)
,

|Lz(P, z, x)| ≤ C
(
|P |q−1 + |z|q−1 + 1

)
.

(7.11)

for all P ∈ Rm×n, z ∈ Rm and x ∈ U . Then for each w ∈W 1,q(U ;Rm), we have

C
(
|Dw|q−1 + |w|q−1 + 1

)
∈ Lq′(U)

where q′ is the conjugate q′ = q
q−1 . Consequently, both |LP (Dw,w, x)| and |Lz(Dw,w, x)| are in Lq′(U).

Weak formulation. Recall the Euler-Lagrange system associated with J [w] =
∫
U
L(Dw,w, x) dx:−

∑n
i=1

(
Lpk

i
(Du, u, x)

)
xi

+ Lzk(Du, u, x) = 0 in U, k = 1, · · · ,m,

u = g on ∂U.
(7.12)

We multiply this system by a test function v = (v1, · · · , vm) ∈ C∞
c (U ;Rm) and integrate by parts to obtain

∫
U

(
m∑

k=1

Lpk
i
(Du, u, x)vkxi

dx+ Lzk(Du, u, x)vk

)
dx = 0, k = 1, · · · ,m.

Consequently, we see using a standard approximation argument that the above equality remains valid for all

v ∈W 1,q(U ;Rm). This motivates the following weak formulation.

Definition 7.16 (Weak solutions). Let u ∈ W 1,q
g (U ;Rm). Then u is said to be a weak solution of the

Euler-Lagrange system (7.12) provided

m∑
k=1

∫
U

(
n∑

i=1

Lpk
i
(Du, u, x)vkxi

dx+ Lzk(Du, u, x)vk

)
dx = 0 (7.13)

for all v = (v1, · · · , vm) ∈W 1,q
0 (U ;Rm).

Accordingly, the minimizer of the energy functional solves the Euler-Lagrange system in the weak sense.

Theorem 7.17. Suppose that the Lagrangian L : Rm×n × Rm × U → R satisfy the growth condition (7.11),

and u ∈W 1,q
g (U ;Rm) satisfies

J [u] = min
w∈A

J [w].

Then u is a weak solution of the Euler-Lagrange system (7.12).

Proof. Without loss of generality, we proceed with m = 1. We fix v ∈W 1,q
0 (U), and define

j(τ) = J [u+ τv], τ ∈ R.

By (7.11), |j(τ)| <∞ for all τ ∈ R. We write the difference quotient

j(τ)− j(0)

τ
=

∫
U

Lτ (x) dx,
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where

Lτ (x) =
1

τ
[L(Du(x) + τDv(x), u(x) + τ(x)v, x)− L(Du(x), u(x), x)] for a.e. x ∈ U.

Note that

Lτ (x) =
1

τ

∫ τ

0

d

ds
L(Du+ sDv, u+ sv, x) ds

=
1

τ

∫ τ

0

Dv · LP (Du+ sDv, u+ sv, x) ds+
1

τ

∫ τ

0

v · Lz(Du+ sDv, u+ sv, x) ds.

Since u, v ∈W 1,q(U ;Rm), by Young’s inequality ab ≤ aq

q + bq
′

q′ and the growth condition (7.11), we have

Lτ (x) ≤ 1

τ

∫ τ

0

(
|Dv|q

q
+

|LP (Du+ sDv, u+ sv, x)|q′

q′
+

|v|q

q
+

|Lz(Du+ sDv, u+ sv, x)|q′

q′

)
ds

≤ 1

τ

∫ τ

0

(
|Dv|q

q
+

|v|q

q
+
C1 (|Du+ sDv|q + |u+ sv|q + 1)

q′

)
ds

≤ C2 (|Dv|q + |v|q + |Du|q + |u|q + 1)

for some constant C1, C2 > 0 and all 0 < |τ | ≤ 1. Also, we let τ → 0 to get

lim
τ→0

Lτ (x) = Dv · LP (Du, u, x) + v · Lz(Du, u, x) for a.e. x ∈ U.

By the dominated convergence theorem, j is differentiable and

j′(0) = lim
τ→0

∫
U

Lτ (x) dx =

∫
U

[Dv · LP (Du, u, x) + v · Lz(Du, u, x)] dx,

Since j attains its minimum at τ = 0, we have j′(0) = 0. Hence

0 =

∫
U

[Dv · LP (Du, u, x) + v · Lz(Du, u, x)] dx =

m∑
k=1

∫
U

(
n∑

i=1

Lpk
i
(Du, u, x)vkxi

+ Lzk(Du, u, x)vk

)
dx,

and u is a weak solution of (7.12).

In general, the minimizers of the energy functional do not capture all weak solutions of the Euler-Langrange

system. Nevertheless, in the special case that the joint mapping (P, z) → L(P, z, x) is convex for each x ∈ U ,

then each weak solution is in fact a minimizer.

Proposition 7.18. Assume that (P, z) 7→ L(P, z, x) is convex for each x ∈ U . Then each weak solution

u ∈W 1,q
g (U ;Rm) of (7.12) is a minimizer of J over W 1,p

g (U ;Rm).

Proof. Suppose u ∈ W 1,q
g (U ;Rm) solves (7.5) in the weak sense. For each w ∈ W 1,q

g (U ;Rm), by convexity of

the mapping (P, z) → L(P, z, x),

L(P, z, x) + LP (P, z, x) · (Q− P ) + Lz(P, z, x) · (y − z) ≤ L(Q, y, x).

We let P = Du,Q = Dw, z = u and y = w, and integrate on U . Then

J [u] +

∫
U

[LP (Du, u, x) · (Dw −Du) + Lz(Du, u, x) · (w − u)] dx ≤ J [w].

Since v = w − u ∈W 1,q
0 (U ;Rm), the second term on the left side is zero. Hence J [u] ≤ J [w].
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7.2.3 Local Minimizers

A cirtical point u of the energy functional

I[w] =

∫
U

L(Dw,w, x) dx

among functions w satisfying the boundary condition w = g on ∂U satisfies the Euler-Lagrange system−
∑n

i=1

(
Lpk

i
(Du, u, x)

)
xi

+ Lzk(Du, u, x) = 0 in U, k = 1, · · · ,m,

u = g on ∂U.

We assume u is a smooth solution of the Euler-Lagrangian PDE. In this section, we identify the case that u is a

local minizer of the energy functional. For simplicity, we as usual let P 7→ L(P, z, x) be a convex mapping, and

assume the graph of x 7→ u(x) lies within a region R generated by a parameteric family of graphs x 7→ u(x, λ)

corresponding to other critical points. To be specific, we suppose D ⊂ Rm is an open set containing 0 and

{u(·, λ) : λ ∈ D} is a smooth family of solutions of the Euler-Lagrange PDE

−
n∑

i=1

(
Lpk

i
(Du(x, λ), u(x, λ), x)

)
xi

+ Lzk(Du(x, λ), u(x, λ), x) = 0 in U, k = 1, · · · ,m, (7.14)

with u(x) = u(x, 0) in U . For notation simplicty, we write

Aki(x, λ) = Lpk
i
(Dxu(x, λ), u(x, λ), x) ,

so (7.14) becomes

−
n∑

i=1

Aki
xi
(x, λ) + Lzk(Du(x, λ), u(x, λ), x) = 0 in U, k = 1, · · · ,m. (7.15)

Next, we construct a subregion of admissible set by taking smooth functions θ : U → D with θ ≡ 0 on ∂U ,

and defining

w(x) = u(x, θ(x)), x ∈ R.

This function satisfies w ≡ u = g on ∂U . We let R ⊂ A be the set of all functions w constructed as above.

Theorem 7.19. The function u = u(·, 0) is a local minimizer within the region R, in the sense that

I[u] ≤ I[w]

for all functions w constructed as above.

Proof. Step I. Using the chain rule, the derivatives of w(x) = u(x, θ(x)) is given by

wxi
(x) = uxi

(x, θ(x)) + uλ(x, θ(x))θxi
.

Then we use convexity of P 7→ L(P, z, x) to conclude

I[w] =

∫
U

L(Dw,w, x) dx =

∫
U

L(Dxu(x, θ) + uλ(x, θ)Dθ,w, x) dx

≥
∫
U

[L(Dxu(x, θ), w, x) + LP (Dxu(x, θ), w, x) · uλ(x, θ)Dθ] dx. (7.16)
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Step II. We define a vector field b = (b1, · · · , bn) : Rn → Rn by

bi =

m∑
k=1

∫ 1

0

Aki(x, θ)ukλ(x, tθ) · θ dt, x ∈ U.

Now we compute the divergence of b. By definition,

div b(x) =

m∑
k=1

n∑
i=1

∫ 1

0

Aki(x, tθ)
(
ukλ(x, tθ) · θxi

+ ukλxi
(x, tθ) · θ + tukλλ(x, tθ) θxi

· θ
)
dt

+

m∑
k=1

n∑
i=1

∫ 1

0

(
Aki

xi
(x, tθ) +Aki

λ (x, tθ) · tθxi

)
ukλ(x, tθ) · θ dt

=

m∑
k=1

n∑
i=1

∫ 1

0

(
Aki(x, tθ)ukλ(x, tθ) + tAki(x, tθ)ukλλ(x, tθ) θ +

(
ukλ(x, tθ) · tθ

)
Aki

λ (x, tθ)
)
· θxi

dt

+

m∑
k=1

n∑
i=1

∫ 1

0

(
Aki(x, tθ)ukλxi

(x, tθ) · θ +Aki
xi
(x, tθ)ukλ(x, tθ) · θ

)
dt

=

m∑
k=1

n∑
i=1

∫ 1

0

(
Aki(x, tθ)ukλ(x, tθ) · tθxi

)
t
dt

+

m∑
k=1

n∑
i=1

∫ 1

0

Aki(x, tθ)ukλxi
(x, tθ) · θ dt+

m∑
k=1

∫ 1

0

Lzk(Dxu(x, tθ), u(x, tθ), x)uλ(x, tθ) · θ dt︸ ︷︷ ︸
By (7.15)

.

Note that

(L(Dxu(x, tθ), u(x, tθ), x))t =

m∑
k=1

n∑
i=1

Lpk
i
(Dxu(x, tθ), u(x, tθ), x)uλxi

(x, tθ) · θ

+

m∑
k=1

Lzk(Dxu(x, tθ), u(x, tθ), x)uλ(x, tθ) · θ.

Combining the last two displays, we have

div b(x) =

m∑
k=1

n∑
i=1

Aki(x, θ)ukλ(x, θ) · θxi
+ L(Dx(u, θ), u(x, θ), x)− L(Dxu(x, 0), u(x, 0), x)

= LP (Dx(u, θ), w, x) · uλ(x, θ)Dθ + L(Dx(u, θ), w, x)− L(Du, u, x). (7.17)

Step III. We combine (7.16) and (7.17), and apply Gauss-Green Theorem to obtain

I[w] ≥
∫
U

(div b(x) + L(Du, u, x)) dx

=

∫
∂U

b(x) · ν dS + I[u] = I[u],

since b ≡ 0 on the boundary ∂U . Thus we complete the proof.

Remark. By the implicit function theorem, if

uλ(x, 0) ̸= 0

for all x ∈ U , then we can write any w that is sufficiently close to u pointwise in this form.
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