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0 Notations

Throughout this book, we assume that U is an open subset of R™. Given a function v : U — R, we write

u(z) = w(z1, -+ ,xp) for € U. For i € [n], we write
_Ou, o u(x A hey) — u(x)
Op,u(x) = oz, (x) = Uy, (x) = }lzlg%) . , zelU

for the partial derivative with respect to variable z;, provided the limit exists. Partial derivatives of higher
orders are similarly defined. If u : U — R is twice differentiable, we write Vu : R® — R™ and V?u : R* — R™X"

for its gradient and Hessian matriz, respectively:

Ugyay (T)  Ugyz, (T) 00 Ugya, (T)
U u Ugyzy (T)  Uspzo (T) -0 Ugya, (T)

Vulo) = (@) @) ) V(o) =
Ugzy (T) Uiz (T) - Ugya, (T)

The Laplacian Au of u is defined as the trace of Hessian matrix:

0%u 0%u
A = tr(V? =— st ().
u(z) = tr(Viu(z)) 927 (@) 4+ o2 (z)
Now we introduce the multi-index notation. A vector @ = (aq,---, ) consists of nonnegative integers is

called a multi-index of order |a| = oy + - -+ + a,, Given this multi-index «, we define

| n
9u(z) = _0%u(x) 001+ 02" ().

- a am™ x
0x] 0zl "

If K is a nonnegative integer, we write
OFu(z) := {0%u(z) : |a| = k}

for the set of all partial derivatives of order k, and define
1/p 1/2

N0 ullrwy = D 10%ulfowy | 10*ul= 10 ul2wy=| > 10%ul

a:lal=k a:lal=k

Furthermore, we replace the symbol 9 by D when we refer to weak derivatives:

/u@aq’)dm: (—1)‘a|/(Dau)¢dm, Vo € C2(U),
U U
1/p 1/2

DFu(z) = {Du(z) : |a| = k}, [[D*ull oy = | D 1Dl 1y DFul= | Y [Duf?

a:lal=k a:lal=k

We use D and D? to denote the gradient and Hessian matrix in weak sense:

Ugpyay (T) Uiy (T) o0 Ugya, (T)

Ugyzy (T)  Uapzo (T) <00 Ugya, (T)
Du(x) = (D:h (CL‘), Dy, (:L‘)), Dzu(x) =

Ugpzy (T) Uz, (T) 0 Ugya, (T)



1 Convolution and Smoothing

1.1 Convolution

In this section we first deal with functions on R™. If a function f is defined on U C R"™, we can replace it by

its natural zero extension f : R™ — R which assigns f(z) =0 for = ¢ U.

Definition 1.1 (Convolution). Let f,g: R™ — R be Lebesgue measurable functions. Define the bad set as

B(r.9) = {2 e [ 1@ = naldy =}
The convolution of f and g is the function f % g : R™ — R defined by

Jen F(@—y)g(y) dy, = & E(f,9),

(f *g)(x) = 0. e B(f.q)

Remark. Define F : R — R, (z,y) — f(z) and G : R*® — R,(z,y) — g(y). Then both F and G are
measurable functions on R*", as well as their product F - G : (x,y) ~ f(x)g(y). Given linear transformation
T(xz,y) = (x — y,y), the composition H = (F -G)oT : (z,y) — f(z — y)g(y) is measurable. By Tonelli’s
theorem, the function  — [, |H(x,y)|dy is measurable, and E(f, g) is a Lebesgue measurable set.

Clearly, the convolution operation is both commutative and associative, i.e. fxg=gx* f, and (fxg)xh =
f % (g = h). Furthermore, the distributivity of convolution with respect to functional addition immediately
follows, i.e. fx(g4+h)=f*g+ fxh.

Proposition 1.2 (Properties of convolution). Let f,g: R™ — R be Lebesque measurable functions.
(i) If f,g € L*(R™), then the bad set E(f,g) is of measure zero. Moreover, f x g € L*(R™), and

/m(f*g) dm = /R fdm Rngdm- (1.1)

(ii) If f € Co(R™) and g € LY(R™), then f * g € Co(R™).
(i) If f € LP(R™) and g € L*(R™), then f x g € LP(R™), and

I1F* gllp < 17 1lollgll-

Proof. (i) Define the measurable function H(x,y) — f(x —y)g(y) on R?". By Tonelli’s theorem,

[ tan=[ ([ 1= llawla ) ar =1l

Hence H : R?™ — R is integrable. By Fubini’s theorem, for a.e. z € R", y + H(x,y) is integrable, hence
m(E(f,g)) = 0. Furthermore, the function fx*g: x — fRn H(x,y)dy is also integrable, that is, f*g € L'(R").
The equation (L.1)) follows from Fubini’s theorem.

(ii) Given € > 0. By uniform continuity of f, there exists n > 0 such that |f(z) — f(z')] < €/]/g||1 for all
|z — 2’| <n,. As aresult, for all z, 2" € R"™ such that |z — 2’| <1, we have

(f 9)(x) — (f *g)(&)] s/ @ —y)— £ — )| lg(w)] dy < c.

n

(iii) is a special case of the following proposition. O



Proposition 1.3 (Young’s convolution inequality). Given r € [1,00] and Hélder r-conjugates p,q € [1, 0],
i.e. 1% + % =1+ % If f € LP(R™) and g € LY(R™), then the bad set E(f,g) is of measure zero, and we have

1S * gllr < £ lIpllgllg-

Remark. Note that

Pq Pq 1 q P
r=——2>21 & —2>- & p2 & g2 )
P+q—pgq ptq 2 2g -1 2p—1
and
r<oo < ptqg>pg < p<L = q<L.
q—1 p—1
Proof. We first bound f * g. By applying generalized Holder’s inequality on % + r];p + T(;Tq =1, we have
1/r r—p r=g
[(f * 9)()] S/R |f(z=y)llg(y)| dy:/ (£ = Pla@IDY" [ F @ =) 7 @) = dy

Rn

—P

) (/ flemrr dy) ) (/ 7o~ yﬂ”dy) N (/ 9" dy> -

r—

1/r . .
= ([ = wPlatirar) 1517 ol

Consequently, we have

L[ el ar) a< ([ [ 1= wPlawirasas ) 151 ol

<ol [ (] 1= e de) it as = 1 ol

where we use Fubini’s theorem in the last inequality. Hence m(E(f,g)) =0, and [|f * gll» < || fll,/lgllq- 0

Remark. If f € L? (R™), and g € LY(R™) is compactly supported, then f*g € LI (R™).

loc loc

Review: Compact supported functions. Let X be a topological space. The support of function f : X —
R is defined as the closure of the set of all points in X not mapped to zero by f:

supp [ = {z € X : f(z) # 0} ={f # 0}.

If the support of f is compact in X, f is said to be compactly supported. Following this definition, any function
defined on a closed interval [a, b] can be extended to a compactly supported function on R.

The set of all continuous compactly supported functions on X is denoted by C.(X). If f € C.(X), then f
is uniformly continuous on supp f. Note that f = 0 outside supp f, we have that f is uniformly continuous on
X, which implies C.(X) C Co(X). Furthermore, by extreme value theorem, f has maximum and minimum
on supp f, which implies that f is uniformly bounded on X, i.e. max,cx |f(z)| < co.

Let (X, o7, 1) be a measure space where X is a topological space. Following the discussion above, we have
C*(X) C L™(X, o, u) since every f € C°(X) satisfies || f|lco = maxzex |f(x)] < co. Furthermore, if every
compact set in X has finite measure, i.e. p(K) < oo for all compact K C X, then the compactly supported
function are always p-integrable:

1/p 1/p
Ity = (f 1) "= ([ 1ram) < s 11 <
supp



Proposition 1.4 (Convolution of compactly supported functions). Let f,g: R™ — R.

(i) If f,g € LY(R™), then supp(f * g) C supp f +suppg := {x +y : x € supp f,y € suppg}. Furthermore,
if both f and g are compactly supported on R, then f x g is also compactly supported. In this case,

supp(f * g) C supp f +suppg.
(i5) Let 1 < p < oo, and let k € No. If f € C*(R™) and g € LP(R"), then f + g € CE(R™). Furthermore,
differentiation commutes with convolution, i.e.,

O%(fxg)=0"fxg, Vel <k,

(iii) Let 1 < p < oco. If f € CX(R™) and g € LP(R™), then fxg € CF(R™). Similarly, differentiation
commutes with convolution, i.e., 9%(f x g) = 0% f = g for multi-indices «.

Remark. Combining (i) and (ii)/(iii), we obtain a useful conclusion. Let k € Ng U {oo}. If f € C*(R") and
g € L'(R™) is compactly supported, then f * g € C*(R™).

Proof. (i) Let f,g € L'(R™), and take any x € R™. Then

(fxg)(z) = - flx—y)gly)dy = flx —y)g(y) dy.

/(w—supp f)Nsupp g

For x ¢ supp f + supp g, we have (x — supp f) Nsupp g = @, which implies (f * g)(x) = 0. Hence

(f*g)(x) #0 = x €supp f +suppg = supp(f *g) C supp f + suppg.

If f,g € C.(R™), then supp f and supp g are compact in R™. Define ¢(z,y) = x + y, which is a continuous
map on R?". Then supp f + suppg = ¢(supp f X suppg) is also compact. Consequently, supp f + supp g is
closed, and its closed subset supp(f * g) is also compact. which implies f * g € C.(R™).

(ii) Step I: We first show the case k = 0. Let ¢ = p/(p—1). Note that f is continuous and compact supported,
then m(supp f) < oo, f is uniformly continuous, and || f||cc = maxgesupp 7 |f(x)] < co. By Hélder’s inequality,
for all x € R™, we have

[ 1@ =l dy < 11lgll < m(supp )1 A clal, < .

Then f * g is well-defined on R™. To show uniform continuity of f % g, we fix ¢ > 0 and let n be such that
|z — 2’| < n implies |f(z) — f(z')] < e. Then
(0@~ ()@ = | [ U=~ 1 = )lotw) do
R’Vl
1
< 2m(supp /)" gl e

Step II: We prove the case k = 1. It suffices to show the interchangeability of derivative and integral.
Given any quantity h > 0, we have
(f * g)(x + hei) = (f * g)(x) flx+hei—y) — f(z —y)

- = L. h 9(y) dy. (1.2)

Since f € C}(R™), by Lagrange’s mean value theorem, there exists ¢ € [0, 1] such that

flz+hei —y) = flx—y)
h

’ = [0z, f(x + Ehe; — y)l, (1.3)



Note that d,, f is also continuous and compactly supported on R™, the RHS of (1.3) is bounded by |0y, f|lcos
and the integrand in (1.2)) is dominated by an integrable function |0, f|lccg. Using Lebesgue’s dominate
convergence theorem, we have

i [ f@thei—y) = flw—y
h—0 Jgn h

9(y)dy = | —(x—y)g(y)dy.

Therefore 9, (f * g) = Oy, f * g. Since 9,, f € C.(R™), we have 9,,(f x g) € Co(R™), and f x g € CZ(R™).

Step III: Use induction. Suppose our conclusion holds for C*~1(R"). For each f € C*¥(R") c CF~1(R"),
ok=1f c CL(R™). By Step II, for any |a| =k — 1,

anrei(f xg) = ax,;(aa(f xg)) = 6x1(8af xg) = (8a+eif) *3,

which is uniformly continuous on R™. Hence f * g € CE(R™).
(iii) Note that C°(R") = Ny, C*(R"), we have 9*(f * g) = 0*f x g for all o € Nj. Following Step II,
9°f € C.(R") implies 9*(f * g) € Co(R") for all a« € Nj. Hence f * g € ey CH(R™) = C§°(R™). O

Review: Translation operators. Let X be a vector space, let Y be the set of functions f : X — Y, and
let s be a vector in X. The translation operator 75 : YX — YX is defined as

(rsf) (@) = flz —s), Vfe Y™
Proposition 1.5. Let 1 < p < co. For any f € C.(R"™),
tim |17 = fll, = 0. (1.4

Proof. Let f € C.(R™), and let B; be the closed unit ball in R™. The collection of functions {7sf : |s| < 1}

has a common support

K = | supp(ref) =supp f + By ={z +y: 2 € supp f,y € B1} = ¢(supp f x By),

ls|<1

which is compact as the image of a compact set under a continuous map ¢ : R?* — R" (z,y) — o + y.
By uniform continuity of f, given € > 0, there exists § > 0 such that |f(z) — f(y)| < € for all |z — y| < 4.
Then for any s with |s| < |min(d,1)|, we have

I =1 = [ 1@ =) = fa)lde < () e
Since p(K) < 00, and € is arbitrary, we conclude that ||75f — f||, — 0 as s — 0. O

Review: Mollifier. A mollifier on R™ is a symmetric function n € C°(R™) supported on the closed unit
ball By = {z € R™ : |z| < 1} with [;, ndm = 1. For example, the standard mollifier is defined as

1 1 1
= = _ h Z = — | dt.
n(z) 7 XP <|$|2 _ 1> X, (), where /t|<1 exp <|t|2 _ 1>

For each € > 0, we set

1 T
@) ==n(2) = [ n@)de=1, swp(n;) € B(O,e).
€ € R™



Now we provide an important approximation result using compactly supported smooth functions.
Proposition 1.6. For 1 <p < oo, C°(R") is dense in LP(R™).

Proof. Let f € C.(R"). We choose a mollifier n € C°(R"), and define n.(z) = Xn (%) for e > 0. By
f e € C(R"), and

[ 0@ - f@rde= |

< / / lf(z —y) — f(@)” n(y) dydx (By Jensen’s inequality)
™ Jlyl<e

p

/I I< (f(x —y) = f(@))ne(y) dy| dx

[ nlns - flpdy
lyl<e

< sup | f — fIIp
y:lyl|<e

which converges to 0 as € — 0 by [Proposition 1.5| Since C.(R™) is dense in L?(R™), the result follows. O

Application I: continuity of translation operators in LP-spaces. The limit (L.4)) in [Proposition 1.5
remains zero for all f € LP(R). We fix € > 0, so there exists ¢ € C°(R) such that ||f — g/l < €/3 by

Choose § such that ||7,9 — g||, < ¢/3 for all |s| < §. Then for all |s| < 4,
I7sf = Fllp < MImsf = 7sgllp + 1759 = gllp +1lg = Fllp = 2017 = gll + 759 = gl < e

Application II: uniform continuity of convolution. Let %Jr% = 1 be Holder conjugates. If f € LP(R")
and g € LY(R™), then f x g € Co(R™). Given € > 0, we choose § > 0 such that ||7,f — f|l, < €/||g|lq for all
|s| < §. Then one have

I(f xg)(x —s) = (fxg)(z)| < / |f(x—s—y) = flx—y)llgW)]dy < |7 f — fllpllglly < €

n

for all z € R™ and all |s| < §. Clearly, f * g is uniformly continuous on R™.

Application III: uniform continuity of convolution on bounded sets. If f € LP(R") is compactly
supported, and g € L{ _(R"), we have f x g € C(R"). We fix ¢ > 0 and R > 0, choose r > 0 such that

loc

supp f C B(0,7), and choose § > 0 such that ||7sf — fll, < €/llgxB0,r+r)llq for all |s| < d. Then

[(f *g)(x) = (f xg)(2")] < / |flx—y) = f@" =) lgW)ldy < ||Te—or [ = fllpllgxBo,remllg <€

B(0,R+7)

for all |z|,|2'| < R with |z — 2| < §. Hence f * g is uniformly continuous on the open ball O(0, R).
In addition, if f € C2°(R") and g € L .(R™), we have f * g € C°°(R"). This result can be shown by
adapting the proof of



1.2 Local Mollification

In this section we study the approximation of locally integrable functions. Our discussion is based on a bounded
open region U C R™. Given any € > 0, we define

Us={xeU:d(z,0U) > ¢}.

Since U is open, U€ is nonempty for sufficiently small ¢ > 0. In addition, the continuity of d(-,0U) implies
that U€ is also an open region. Furthermore, given any precompact open set V & U, since d(V,0U) > 0, we
can find € > 0 such that V e U¢ € U.

Definition 1.7 (Mollification). Given u € L{, (U), define its mollification by

ut 1= e x u,

where we abuse the notation « in this expression to denote the zero extension of v : U — R on R™. The value
of this mollification in U€ is given by

ww = [ Lyt dy = / o NG ) (1.5)

Remark. The mollification u¢ is smooth in U¢. For any x € U€, we take 6 > 0 such that B(z,d) € U°“.
Then u = 7 * Xp(z,e+6)t in B(x,0). Since u € L (U), by Proposition (iii), u€ is infinitely continuously

loc

differentiable at . Note that differentiability is a local property, we conclude that u¢ € C°(U*).

Proposition 1.8 (Properties of mollification). Let u € Li (U).
(i) u¢ > wua.e onU asel0.
(ii) If u € C(U), then u¢ — u uniformly on compact subsets of U.
(iii) If 1 <p < oo and u € LY _(U), then u® — u in LY (U).

loc loc

Proof. (i) According to Lebesgue’s differentiation theorem, we have

i [ fuly) - ule) dy = 0
B(z,r)

for a.e. x € U. Since x € U€ for sufficiently small € > 0, we have

lim |uf () — u(z)| < lim ne(@ — y)luly) — u(z)| dy
el0 el0 B(z,¢)

1
< leiﬁ)l o /B » Illoo|u(y) — u(x)|dy =0, for a.e. z € U.

Consequently, we have u¢ — u a.e. on U as € | 0.

(ii) Given a compact K C U, we choose § > 0 sufficiently small such that K C U?. Since u is a continuous
function, the bad set E (7., u) is empty. Then for all € € (0, d], one have

sup [u(z) — u(x)| = sup
zeK zeK

/ n(z) (u(x + €z) —u(x)) dz
B(0,1)

< sup sup |u(z+ez)—u(z)]
z€K zeB(0,1)

. . A =0
Since z,x + ez € U, we have |u(z + €z) — u(z)| = 0 by uniform continuity of u on U .



(iii) Given any pre-compact set V' € U, we first choose a pre-compact subset W of U such that Ve W € U.
We claim that, for sufficiently small € > 0, we have ||u||L»(v) < ||u||Lr(w). To this end, we note that

juf ()| =

/ ne(x — y)u(y) dy
B(xz,e)

< / ne(z — 9) Pz — o) VP lu(y)| dy
B(x,€)

5 </B(:c,6) e =) dy) - </B(z’6) ne( = y)lu)l” dy) " ,

=1

We choose € > 0 such that V€ W¢€. Then

4l < | (/ ne(x—y)|u(y)|pdy> do< | ( / ne(x—y)d$> ()P dy = [l 1.
1% B(z,e€) w B(y,e)

Now we fix § > 0, and choose g € C(W) such that ||f — g||z»(w) < 0/2. Then
If€ = fllzevy < NFC = 9%llzevy + 1195 = gllzevy + lg = fllze vy
< g = gllze vy +2llg = fllzeowy < ll9° = glle vy +0.
By (ii), g = g on V as € | 0, hence limsup, o || f — flzr(v) < 6. O

Remark. If U is bounded and u € LP(U), we can extend u to R™ to conclude that u¢ — w in LY (R™). Since
U € R", we have v/ — u in LP(U).

Now we provide an application of mollification.

Lemma 1.9. Ifv e L _(U), and

loc

/ vopdm =0 V¢ e CX(U), (1.6)
U

then v =0 a.e..

Proof. Let K be a compact subset of U, and choose ¢ € C2°(U) such that 0 < ¢ <1, and ¢ =1 on K. [We
will show the existence of such function in Lemma [1.10}] By assumption (L.5), we have

(e 0.)(@) = [ o= ow)o) dy = [ nee ~ y)etw)viwydy =0,

U
be.x(y)

since ¢eo(-) = ne(z — )p(-) € CX(U). By letting ¢ — 0, we obtain the limit 7 * v, 4 v = 0 a.e..
Consequently, we have v = 0 a.e. on all compact subsets K of U.

Define K, = {z € R" : d(z,U¢) > 2/r and |z| <r}. Then K, C U is compact, and U = [J;-, K. Since
v =0 a.e. on all K,., we have

m({v=0})=m <U Krﬂ{U:0}> zrli}rgom(Krﬁ{vzo}) =0.
Hence v =0 a.e. on U. O]

Remark. Due to the property (|L1.5), the functions in the class C°(U) of compactly supported smooth functions
are also called test functions.

10



1.3 Application: Smooth Partition of Unity

In this, section we employ the mollification approach to construct partitions of unity. These technical results

are later used to obtain global properties from local ones.

Lemma 1.10 (C*°-Urysohn lemma). Let U be an open subset of R™, and let K be a compact subset of U.
Then there exists a function ¢ € C°(R™) such that 0 < p <1, p =1 on K, and suppp C U.

Proof. Given € > 0, we define
K.:={zx eR":d(z,K) <¢€}.

Choose € > 0 so small that Ko C U, and let ¢ = 7. * xk.. By properties of convolution, ¢ € C°(R"),
0<p<1,and ¢ =1 on K. Moreover, suppy C suppn. + K. C Ko C U, O

Next we introduce a technical lemma in topology, which asserts that we are able to “shrink” a finite open

cover of a closed subset of R™.

Lemma 1.11. Let U C R”, and let {U;}Y.; be a collection of open subsets of R"™ such that U C Ufil U;.
Then there exzists a collection {V;}N | of open subsets of R™ such that V; CU;, i=1,--- ,N and U C Uf\il Vi.

Proof. We proceed by substituting the elements of the cover of U one by one. Let Ay = U\(Uy U ---UUy).
Then A; is a closed set contained in U;. By normality of R", we can choose an open set V; containing A;
such that V; C U;. Then we obtain a cover {V;,Us,--- ,Ux} of U.

At the k' step, we are given open sets Vi,---, Vi1 such that {Vi,--- ,V4_1,Ux, -~ ,Un} covers U. We
let Ay = U\(Vi U---UVi_1 UUy1 U---UUy), and choose an open set Vj, such that Ay C Vi, C V}, C Ug.
Then {V1,--+, Vi, Ugs1,- -+ ,Un} is also an open cover of U. At the nt™ step, our result is proved. O]

Remark. In addition, if U is bounded, we may assume that each U; is bounded. As a result, we can obtain a
shrunk open cover {V;}¥| of U such that V; € U;. In other words, each V; is a compact set.

Theorem 1.12 (Partition of unity). Let U be a bounded, open subset of R, and let (V;)X_, be a collection of
open sets in R™ such that U € Uf\il V;. Then there exists a family of smooth functions (1;)N; : R® — [0,1]
such that ip; € C*(V;) for alli=1,--- /N, and Zij\;wi =1onU.

Remark. The family (¢;)Y; is called a smooth partition of unity subordinate to the open sets (V).

Proof. By Lemma, we take a collection (K;) ; of compact subsets of R" such that K; C V;, i =1,--- , N
and U C Ufil K;. By Lemma for each i = 1,--- | N, there exists a smooth function ¢; : R™ — [0, 1] such
that ¢ =1 on Kj;, and supp ¢; C V;. We then define

Y1 = 1, ¢2:(1—§01)<ﬂ2, Tt 1/)N:(1—<P1)"'(1—90N—1)80N-

Then 0 < ; <1, and ¢; € C(V;) for all i = 1,--- , N. Furthermore,
N
1=Y i=(1—p1)(1—p2)- (1 —¢n).
i=1

For each point x € U C Uil K;, at least one factor (1 — ¢;) vanishes, and we have Zf\il Y; =1onU. O
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2 Sobolev Spaces

2.1 Holder Spaces
Assume that U C R™ is open and v € (0,1]. A function v : U — R is said to be Hélder continuous with
exponent ~y, if there exists some constant C' > 0 such that

lu(z) —u(y)| < Clz —y|", Vo,yeU.

In this section, we first discuss the Holder spaces, which contain functions with some nice properties.

Definition 2.1 (Hélder spaces). Let U C R™ be open, and 0 <y < 1. If u : U — R is a bounded and Hdlder
continuous function, we define
u(z) — u(y)|

Ullo@ny = sup |u(@)|, |[Ulgor@ = Sup @ —————
lulle@) weU| @), [oon@) eyeUasy |T—y[r

where [] oo @) 18 the yth-Hélder seminorm. The v -Hélder norm is defined as

||UHco,w(U) = ||“HC(U) + [u]co,w(U)

Let k € Ng. The Hélder space C*7(U) consists of all functions u € C*(U) for which the norm

lull i@y = Z 10%ul| o7y + Z [0%u] o @7y

a:la|<k a:lal=k

is finite. In other words, C*7(U) contains all k-times continuously differentiable functions whose k*'-partial

derivatives are bounded and Holder continuous with exponent ~.
Remark. One can easily check that C*7(U) is a vector space, and | - | ok @) 18 @ norm on Cck(U).
Theorem 2.2. The Hélder space C*(U) is a Banach space.

Proof. 1t suffices to show completeness of C*7(U) under the norm || - || = || - [|cx~ @)~ Let () be a Cauchy
sequence in C*7(U), i.e. ||u; — up,| — 0 as 4,5 — co. By completeness of C(U), (u;) converges uniformly to
some u € C(U), and for each |a| < k, the sequence (0%u;) converges uniformly to some function u(® € C(T).
Consequently, we have 0%u; — 0%u = u(®) for all |a| < k, and u € C*(T).

Now it remains to discuss Holder continuity. Since (u;) is a Cauchy sequence, there exists M > 0 such that
sup;ey [lw|| < M. For all |a] = E,

[0%u(z) — 0%uly)| _ |0%u(z) = 0%w(z)] | |0%ui(x) — O%w(y)l | |0%wi(y) — O%uly)|

lz —y|7 - lz —y| lz —y| lz —y|

<M

Since 0%u; = 9“u, the first and third terms in the last display converges to zero for all z,y € U. Hence 0%u
is Holder continuous with exponent . Furthermore,

0% (u; — u)(z) — 0%(u; — u _ 0% (ug — ) () — 0% (ug — Uy, ' N
|0 (wy “;mfz XW|:A§&| (w m;yh(l xwl£%§;W(W—ummwmm

Since the last bound does not depend on z,y € U, we can obtain [0%(u; — u)]ooﬁ(v) — 0 by letting | — oco.
Hence |Ju; — ul| — 0 as I — oc. O
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2.2 Weak Derivatives

Review: Integration by Parts. Let U C R” be a open and bounded region with C'! boundary. According
to the divergence theorem, for each vector field u € C*(U,R"), we have

/(V~u)dm=/ u-vds,
U oU

where v : 9§ — R” is the outward pointing normal vector field. For u € C*(U), we set u = ue;. Then

ou
v O0z;

dx:/ w'dS, i=1,---,n.
ou

Now assume we are given a function u € C*(U). If ¢ € C°°(U), we apply the above formula to u¢:

0 B ou

d
Uuaxi x

- _ d =1 .n.
Uaxlas x? 1 ) 7n

More generally, if k € N, u € C¥(U), and « is a multi-index with |a| = k, then

/Uu(aagb)dx:(—l)la‘/(aau)gbdz.

U

This formula gives rise to the definition of weak derivatives.

Definition 2.3 (Weak derivatives). Assume that u,v € Ll _(U) and « is a multi-index. Then v is said to be

loc
the at"-weak partial derivative of u, written 0%u = v, if

/Uua%dx:(—1)‘al/Uv¢dx.

for all test functions ¢ € C°(U).

h_weak partial derivatives of u. By applying Lemma on v — U, one

Remark. Suppose both v and v are at
can show that the a'"-weak partial derivative of u is uniquely defined up to a set of measure zero. Note that

the weak derivatives are only a.e. determined.

Example 2.4. Consider the function u(z) = ||, which is in L{,

(R). Then the weak derivative of u on R is

1, z >0,
v(z) =
-1, x<0.

Now we verify this claim. Given any test functions ¢ € C°(R), let supp ¢ C [—M, M]. Then we have

Awwwmw:Ame@—/oxwm

M MU
—— [ o@do+ [ o@rde = [ v(@role) da.
0 —M R

1

1e(R) has no weak derivative. We argue by contradiction, and assume that there

However, the function v € L
exists w € L (R) such that

loc

/]Rv(ac)qﬁ’(x) dr = —/Rw(x)qb(a?) dr, V¢ e CF(R).
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Then we have

[ w@o@ =~ [ @@=~ [ Tdwa+ [ OOO ¢ (x) dz = 26(0).

mom

Now we choose a sequence ¢,,(x) = exp (W) X(-1,1) in C!(R), which satisfies ¢,, — e_lx{o}. If
we replace ¢ by ¢, in the last display and let m — oo, the LHS and RHS converges to different values, a
contradiction! Hence v is not weakly differentiable.

Now we discuss the equivalence of weak and partial derivatives of differentiable functions.

Lemma 2.5. Suppose a continuous function u : U — R is weakly differentiable, and the weak derivatives
Dy, -+, D are also continuous (thus unique). Then u € C1(U), and the weak derivatives coincide with

the partial ones, in symbols (0% u,--- ,0°u) = (D% u,--- , D®u).

Proof. Since differentiation is a local problem, we fix any pre-compact set V € U and choose € > 0 such that
V' C U¢. Then the value of the mollification u* inside U*€ is given by (|1.6]). For each x € U¢, we have

o)) = @ ns ) = [ @ vy

- / (@%0) (@ — y)uly) dy
B(x,e)

- / ne(a — y)(D“u)(y) dy = (1 * D*u) (z).
B(z,€)

By Proposition € | 0 gives uniform convergences u¢ = u and 9%u’ = 1, * D%u = D%u on the compact
set V. Moreover, for any x € V and any |h| > 0 such that = + he; € V,

u(z + he;) — u(z) = lim (uf(z + he;) — u(x))

el0
h h
=lim [ (8%u)(x + te;) dt = / (D%u)(x + te;) dt.
elo Jo 0

By continuity of D¢ wu, we have d,u(xr) = D%u(x) for all z € V. Hence u € C1(V). Since the pre-compact
set V is arbitrary, we have u € C1(U). O

Remark. In fact, this proof also provide an approximation approach of weak derivatives. If a function v : U — R
has weak derivative D®u, we choose any V € W & U€. Then

o)) = @) = [ @)yt dy
= (=1)l 0one)(x — y)u(y) d
(-1) /B(m< ez — y)uly) dy
- / ne(a — y)(Du)(y) dy = (1 = D°u) ().
B(z,e€)

Hence 0“u® = n. * D®u = (D%u)® on W C U€. Since D*u € L{ (U) C L (W), by Proposition

loc loc
9%u¢ — D% in L'(V) as € — 0. Furthermore, since V & U is arbitrary, we have

0°u® — D% in Li (U) as €— 0.

This result also gives rise to the following approximation theorem.
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Theorem 2.6 (Characterization of weak derivatives). A function u € LL (U) is weakly differentiable in U if

loc

and only if there is a sequence of functions u,, € C>®(U) such that u, — u and O%u,, — v in L (U). In

that case the weak derivative of u is given by v = D%u € L (U).

loc

Proof. If u is weakly differentiable in U, we can construct a desired sequence by mollification, as is discussed
in the preceding Remark. Conversely, given such a sequence (u,), we have

/um(bdm—/uqbdm’:
U U

Consequently, the L

loc

/ (um—u)tbdm’ < ||¢\|OO/ i — uldm — 0, Y € CX(U).
supp ¢ supp ¢
-convergence of u,, and 0%u,, implies

/u@agbdm: lim [ 4,0%dm = lim (fl)lo“/(ﬁaum)qﬁdm:(71)‘04/ vp dm.
U U

Therefore, u is weakly differentiable, and v = D%u. O

Next we introduce some properties of weak derivatives. Many results from the classical differential calculus
may be extended to weak derivatives.

Proposition 2.7 (Calculus of weak differentiation). Let U be an open subset of R™.
(i) (Higher-order derivatives). Assume that u € Li (U), and the weak derivatives D®u and DPu ezist for

loc

multi-indices a, 3 € NF. Then if any one of the weak derivatives D*(DPu), D?(D%u), D Py exists, all
three weak derivatives exist and are equal.
(ii) (Leibniz product rule). Assume thatp € C*°(U). Ifu € L (U) is weakly differentiable, so is the product

loc
up, and the weak gradient is

D(u) = uV + ¢ Du. (2.1)

More generally, if the weak derivative D“u exists for o € N}, then

D¥up) =Y <a> DPu =B, (2.2)

Ba 8

(ii) (Chain rule). Assume that F € CY(R), and its derivative F' € L*®(R) is bounded. If u € L (U) is

loc
weakly differentiable, so is the composite function F ou, and

D(Fou) = F'(u) - Du.
Proof. (i) Using the existence of D%u and the fact that 9°¢ € C>°(U) for all ¢ € C2°(U), one have
/ DudPpdm = (—1)l / ud* TP pdm.
U U

Hence D8y exists if and only if D?(D%u) exists, and D?(D%u) = D**Ay in the weak sense. A symmetric
argument holds with « and S exchanged.

(ii) For any ¢ € C°(U), the function ¢¢ € C°(U), and

[ eypidm == [ v, woyam =~ [ wo.v)odm— [ wooam

By definition, we have Dy, (ut)) = (Dy,u)t) + u0y,1), which is the case o = e; of (2.2). Now we prove the
general case by induction. Suppose formula (2.2)) is valid for all multi-indices 5 < a. We choose oo = 5+ ¢;
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for some |8 = |a| — 1 and i € [n]. Then for any ¢ € C°(U), by the assumption of induction, we have

/U wpd® ¢ dm = /U wpd? (0% ¢) dm = (—1)/7! /U

Using the product rule, we have

whpd*pdm = (—1)IPIH+1 s ¢ wdP~ m
/Uwa¢d (1) Z()/UD(D”GW)M

v<B v

( )D”u P~V B, ¢ dm.
Y<B

C“'Z( )/ (DY u V=% + DYud* V) pdm

Y<B
‘al (< >D7u O M + (5> D7y 8“%/}) odm
’yg;re / — € 0
— (_1)\04/ 3 (O‘)Dmaa—w ddm.
U Y

<o

(iii) Since F' € L*°(R), the function F is globally Lipschitz, and we suppose |F(t) — F(s)| < L|t — s|. B
Theorem we choose a sequence u,, € C*(U) such that u,, — w and Oy, u, — Oy,u in LL _(U). Let
v=Fou, and v, = F ou,, € CY(U), with d;,v,m, = F'(umn)0s,uy € C(U). If V € U, then

/|vm—v|dm /|Fum - )|dm<L/ [ty —uldm — 0 as n— .
Furthermore, for the partial derivatives, we have
/ 10,0 — ' (u) Dy, ] dim = / | (1)t — F' () D] dim
v v
g/ |F ()| 0%t — Doyl dm+/ |F () — F'(w)| | D] dm
v v

< L/ |Op; tm, — Dy, ul dm—|—/ |F'(um) — F'(u)||Dy,ul dm.
v v

<2L|D,,ul€ L' (V)

Using the fact that d,,um — Dg,u in Li (U) and the Dominated Convergence Theorem, the last display
converges to zero. Since V' € U is arbitrary, we have v,,, — v and 95,0y, — F'(u)Dy,u in Ll (U). Again by
Theorem we have D,,(F ou) = Dy,v = F'(u)D,,u. O

Remark. Using a similar approximation argument applied in the proof of (iii), we can show that the product
rule (2.1) holds for all ¢» € C1(U) and all weakly differentiable u € L] (U).

Proposition 2.8. Let U be an open subset of R", and u € L, (U). If u is weakly differentiable, then both
ut = max{u,0} and u~ = {—u,0} are weakly differentiable, and

Du a.e. on {u> 0}, Du- 0 a.e. on {u>0},
u =
0 a.e. on {u <0}, —Du  a.e. on {u <0}.

Dut =

Proof. For each € > 0, we define F. € C'(R) as follows:

VzZ+e2—e, 2>0,

Fe(z) =
0, z <0.
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Then ut = lim o F(u) in U. Also, the derivative

Fl(z) = \/T?X(o,oo](z)v z >0,

0, z <0.

is bounded, and X {0} = limjo F/(u). By Proposition (iv), for each p € C(U),

/ F!(u(a)) Du(x)p(x) di = / F.(u(z)) De(x) do.
U U

By domanited convergence theorem, we let € | 0 to obtain

/gox{u>0}Dudx:/u+Dcpdx.
U U

Hence x{u>0)Du is the weak gradient of uT. A similar result for u~ is obtained by considering —u. O

Remark. According to our result, if u is weakly differentiable in U, then Du = 0 a.e. on {u = 0}. More
generally, Du = 0 a.e. on any set where u is constant. Furthermore, since |u| = u™ + u~, we know that |u] is
also weakly differentiable, and

Du  a.e. on {u> 0},
Dlul =<0 a.e. on {u = 0},

—Du a.e. on {u < 0}.
Proposition 2.9 (Generalized product rule). Let U be an open subset of R™. If u,v € Li .
differentiable, uv € LL (U) and uDv,vDu € L (U;R"™), then uv is weakly differentiable, and

loc loc

(U) are weakly

D(uv) = uDv + vDu. (2.3)

Proof. We first assume that u, v are bounded in U. By Theorem take a sequence of functions u,, € C*(U)

with u,, — u and Vu,, — Du in L\ _(U). By the product rule (2.1]), we see that

loc

/ Um0 O, dx = — / (V0 U + U Dy, v) P dx.
U U

Since u, v are bounded, we let m — oo to obtain . For the general case, we take u;, = max{min{u, k}, —k}
and v, = max{min{v, k}, —k}, where k € N. Then uzv, — uv with |uzvy| < |uv|, and by Proposition [2.8]
ugDvg + vpDup, — uDv + vDu with |ugDvg + v Dug| < |uDv| + |[vDu|. The result follows by applying
dominated convergence theorem when k& — oo. O

Proposition 2.10 (Generalilzed chain rule). Let F' be a continuous function on R with piecewise continuous
first derivative F' € L>®(R). If u € LL _(U) is weakly differentiable, so is the composite function F o u.

loc

Furthermore, if K C R is the set of knots of F, then

D(Fou) = F'(u)-Du onu¢K,

0 onu € K.
Proof. By an induction argument, the proof is reduced to the case of one knot which we may take without
loss of generality at the origin, i.e. K = {0}. Let Fy, Fy, € C}(R) satisfy F|, Fy € L>°(R), with Fy(u) = F(u)
for u > 0, and Fy(u) = F(u) for u < 0. Then we have F(u) = Fy(u™) + Fo(—u~), and the result follows from
Proposition (iv) and the Remark (i) under Proposition O
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2.3 Sobolev Spaces and Approximation

Sobolev spaces consist of functions whose weak derivatives belong to LP. These spaces provide one of the most

useful settings for the analysis of PDEs.

Definition 2.11 (Sobolev spaces). Let U be an open subset of R™, k € N, and 1 < p < oo. The Sobolev space
WP (U) consists of all locally integrable functions u : U — R such that for each multi-index a with |a| < k,
the weak derivative D%u exists and belongs to LP(U). We identify functions in W*P(U) which agree a.e., and
define the norm of u € W*P?(U) to be

1/p
(Z\algk Ju 1Dl dm) , 1<p<oo,

lullwres @) =
max|q| < ess supy [D%ul, p = 0.

We write H*(U) = W"2(U), where we define the inner product (u, v) g () = Z D%u D%v dm.

laj<k Y
Remark. (I) We need to check that || - |[ys.(rry is @ norm on W*P(U). Nonnegativeness and homogeneity of
| - llwr.»(uy are clear, and the triangle inequality is also clear when p = co. Hence we only verify the triangle

inequality in the case 1 < p < co. By Minkowski’s inequality,

1/p 1/p
lu+vllwrs@y = Y IDu+ D70 < > (UID*ullprw) + 1Dl Lo (1))”
la|<k la|<k
1/p 1/p
< |Z ||D°‘u||1£p(U) + |Z ||D0‘v\|1£p(U) = ||U||W’wo(U) + ||UHWkw(U)-
o<k o<k

(IT) Corresponding to Propositiona and the following properties of Sobolev spaces holds:
(i) If k <1, then WFP(U) c WhP(U). If u € W*P(U), then D € Wk=1olP(U) for all |a| < k.
(ii) If u € WEP(U) and ¢ € C°(U), then uyp € WEP(U);

(iii) If w € WHP(U) and F € CY(R), then Fowu,u™,u™, |u| € WHP(U).

The Sobolev spaces have a nice structure.
Theorem 2.12. For each k € N and 1 < p < oo, the Sobolev space W*P(U) is a Banach space.

Proof. We need to show that W*»?(U) is complete. Let (u,,)3°_; be a Cauchy sequence in W*?(U). Then for
each |a| <k, (D%u,,)SS_, is a Cauchy sequence in LP(U). By completeness of LP(U), there exists u(®) € LP(U)
such that D%u,, — u(®) in LP(U) for each |a| < k, and in particular u,, — u in LP(U) when a = 0.

Clearly, if we can show that v € W*P(U) and D%u = u(® for all |a| < k, the result follows. To this end,
we let ¢ = 1% be the Holder conjugate, and fix any ¢ € C2°(U). By Holder’s inequality,

/ (tt — 0P| < [t — ull o) |00 Loy — 0, and (2.4)
U

< |1D%um — U(a)||Lp(U)||¢||Lq(U) — 0. (2.5)

/ (D% — u') g da
U

These two limits imply the interchangeability of the limit and the integral:
/ wdpdr = lim [ u,d*pde = (1)1 lim [ D%u,¢de = (—1)° / u ¢ da.
U U

Hence our assertion is valid. Since D%u,, — D% in LP(U) for all |a| < k, we have u,, — u in WFP(U). O
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Definition 2.13 (Local Sobolev spaces). Let U be an open subset of R", k € N, and 1 < p < oo. The
local Sobolev space Wllf)’f(U ) consists of all locally integrable functions w : U — R whose restriction to any
pre-compact V € U lies in W*P(V), i.e.

WEP(U) = {u € L (U) : YV € U, uly € WHP(V)}.

loc

We say a sequence of functions u,, € I/VIIZCP(U) converges to u in Wlﬁ’cp(U) if |wm — ullwery — 0 as m — oo

for all pre-compact V € U.

Remark. To summarize, for k € N and 1 < p < oo, there are the, in general strict, inclusions

LP(U)y < LP (U) < LL (U)

loc loc

U U U
wke(U) c WEPWU) < wrhLD)

loc loc
Next we are going to discuss approximation of Sobolev functions.

Theorem 2.14 (Local approximation by smooth functions). Assume 1 < p < co. For each u € WkP(U), the
function u¢ = n. %' € C°(U) for each € > 0, and u¢ — u in WIIZ’CP(U) as € — 0.

Proof. According to Proposition and the Remark under Lemma u® = u and D% — D%y in LP(V)
as € — 0 for all |a| < k and all pre-compact V' € U. Then

[ =l = Y IDu = D],y =0 as e—0. (2.6)
o<k
Hence u¢ — u in W,2P(U) as € — 0. O

Remark. If U = R", the convergence remains valid by Proposition when we replace V by R”.
Consequently, C>®(R") N W¥*P?(R") is dense in W*P(R™) for k € Nand 1 < p < co. Now we assume
u € C®(R") N WkP(R"), and choose ¢ € C>°(R™) such that ¢(z) = 1 for |z| < 1 and ¢(x) = 0 for |z| > 2.
Let ¢r = ¢(z/R). Then ul? := ¢pru € C°(R"™), and by Leibniz rule, we have

1
D = ¢prD% + EhR — D%, as R — oo,

where hp is bounded in LP uniformly in R. Hence u* — wu in W*P(R") as R — oo. Therefore, the space
C2°(R™) is dense in W*P(R") for k € Nand 1 < p < oco.
We denote by WP (U) the closure of C2°(U) in WP (U):

Wyt (U) = CE)
For the case U = R", we have the result W(f P(R") = WkP(R™). However, we do not have a similar global

approximation conclusion for general U C R".

Theorem 2.15 (Global approximation by smooth functions on bounded domains). Assume that U C R™
is open and bounded, and 1 < p < co. Then for each u € W*P(U), there exists a sequence of functions

U, € C®(U) NWHEP(R™) such that uy, — u in WFP(U) as m — oo.
Proof. We write U, = {x € U : d(x,0U) > 1/r}, and V,. := U, 13\U, 41, where r = 1,2,---. Take any open
Vo € Uy such that U = [J;2, Vi, and choose a smooth partition of unity ¢, : U — [0, 1] subordinate to (V;.)22:

¢r € CZ(V,), Z(br =1onU.
r=0
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Then for any u € WP (U), we have ¢,u € W*P(U) and supp(¢,u) € V,.. Now fix 6 > 0, and choose ¢, > 0 so
small that u” = 7 * (¢,u) satisfies

) . —
[u" — drullwrp ) < o1 T 0,1,2,---; suppu” CUpyg\Up, r=1,2,---.

Let v =Y 2 u". Then v € C*°(U), since for each open set V' € U there are at most finitely many nonzero

terms in the sum. Furthermore,

o0 o0
1
v —ullwrry < Z [u" = ¢rullwrrwy < 52 o = d.
r=0 r=1
Taking the supremum over open sets V & U, we conclude that |[v — ul[ys.rry) < 0. O

Now we discuss the approximation of Sobolev functions even up to the boundary of domain U. To prepare,
we introduce some regularity conditions on boundaries.

Definition 2.16 (Regularity of boundaries). For a pre-compact U & R", its boundary OU is said to be
Lipschitz, if for each 2° € AU, there exists a radius r > 0 and a Lipschitz continuous map 7 :  — R, defined
on an open set Q C R"~! with Lipschitz constant, say L., such that, after possibly relabeling and reorienting
some coordinate axes, (i) the part of the boundary AU inside the closed ball B(x?,r) is the graph of v, and
(i) the part of U inside the closed ball B(z?,r) is of the simple form

UNnB(r)={zeB@a®r)z, >y(21, - ,2,)}.

In addition, for any k € NU {oc}, OU is said to be C* if v € C*(Q).

Remark. By compactness of OU, we can choose finitely many tuples (z9,71,71), -, (%, 7n,vn) such that the
open balls B%(29,r1),--- .B%(a%,ry) cover U. Consequently, the Lipschitz maps v we choose are uniformly
Lipschitz. In other words, for all 0 € OU, the map v we choose to describe the local geometry of OU has
Lipschitz constant smaller than v := max;<;<n ;.

In a domain U whose boundary QU is Lipschitz, we can approximate a Sobolev function using functions
smooth up to the boundary, i.e. the functions in C>(U).

Theorem 2.17 (Global approximation by functions smooth up to the boundary of Lipschitz domains). Assume
that U C R™ is open and bounded, OU is Lipschitz, and 1 < p < oo. Then for each u € WP (U), there exists
a sequence of functions u,, € C*(U) such that um, — u in W*P(U) as m — oo.

Proof. Step I. In this step, we construct a space for mollification within U. Given z° € U, we pick a radius
r > 0 and a Lipschitz map v whose graph is part of U inside B(z",r). Define the closed horizontal double

cone (~70 and open upward cone Cjy:
Co={(a,x,) €R" : |z,| < L|2'|}, Co={(a',2n) €R": 2, > L|2'|}.

Then for any y € AU, the translated horizontal double cone C, = y + Cyy contains U N B(y, r(y)), and the
translated open upward cone Cy =y + Cj lies in U within some radius r(y) from y.
Let V =U N B%x°7/2). For any x € V, define the upward shifted point

¢ :=x+eXe,, x€V,e>0,

where A > +/1+ L? is so large that the ball B(x¢€) lies in the upward cone Cj; for all 0 < € < 1, where
Z € OU N B(xg,7/2) shares the same horizontal coordinates with z. Moreover, for all € > 0 sufficiently small,
the family B(z¢, ¢) is located near z, hence in the open neighborhood W := U N B%(2% r) for all z € V.
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Now we define u.(x) = u(z®) for all z € V, which is the function u translated a distance Ae in the e,
direction. Write v¢ = 1, * u.. Then v is not only defined on V', because for any & € oU N B(xp,r/2),

ve(2) = / e(T = y)ue(y) dy = / Ne(T —y)u( y +eren )dy.
B(%,¢) —
€B(&+eXey, ,€)
Since B(Z + elep,€) C Cz, v¢(%) is well-defined. Consequently, v¢ is also defined on a sufficiently small
neighborhood of € 9V N AU, and v¢ € C*(V).
Step II. We prove that v¢ — u in W*P(V). To this end, we take any multi-index |a| < k. Then

|00 — D%ul| Lo vy < |0%0° — D%ue|| Lo vy + | D%ue — D%ul| o (v
= [[ne * (D%ue) — D%uc| Lo vy + [ D%ue — Dul| (v
< |[ne x (D%u) — Dau”Lp(Rn) + [[D%ue — D%u|| pr mn)

The first term vanishes as e — 0 by Proposition [[.6] and the second term also vanishes by continuity of

translation operator in LP-norm.

Step II1. We finally prove the global result via partition of unity. Pick § > 0. By compactness of OU, there exist
finitely many points 2 € 9U, radii r; > 0, corresponding sets V; = U N B°(z?, %) and functions vt e C®(V;),
where i = 1,---, N such that the open balls B°(z?, %) form a cover of U, and (by Step II)

||’Ui — uHWk,p(‘/i) < 0.

Choose Vy € U such that (V)X is an open cover U, and v° € C*(Vy) such that [[v° — ulyr.ney) < 6 by
Theorem By taking a smooth partition of unity (¢i)£\;0 subordinate to the open cover, we construct a
smooth function v = 25\;0 piv; € C*(U). Furthermore, for each |a| < k, one have

N

D0 — Dul| oy < > [ID*(¢iv:) — D* ()| Lo vs)
=1

< f: 3 (g) DP (D Pv; — D Pu)

i=1||8<a Lo(v)
N
<O i — ullwre@y < C(N +1)8
i=1
for some constant C' = C(k,p) > 0. Since § > 0 can be arbitrarily small, the proof is completed. O
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2.4 Absolute Continuity on Lines

In this section, we discuss the relation between the weak partial derivatives and the classical partial derivatives.
Throughout this discussion, the absolute continuity of functions restricted to line segments plays an important
role. Keep in mind that we identify functions that agree a.e..

Theorem 2.18 (ACL characterization). Let 1 < p < co and u € LP(U). Then u € WYP(U) if and only if u
has a representative T that has the ACL property, i.e. T is absolutely continuous on almost all line segments
in U parallel to the coordinate axes and whose (classical) partial derivatives ezist a.e. and belong to LP(U).
Moreover, the (classical) partial derivatives of T agree a.e. with the weak derivatives of u.

Proof. Step I. We first suppose that u € W1P(U), and find its representative u having the desired property.
Case I: 1 <p < oco. Write x € I as « = (z_;,z;), where

rz_; eU; = {tiiRn_l : {(t,i,ﬁi) 1t € R} NU # (Z)} , and x; € Uwﬂ. = {ti eR: (.T,i,ti) S U}

By Theorem the mollifiers u¢ converges to v in W*P?(V) for any V € U. By Fubini’s theorem,

lim/ / Z |DYu(x—i, ;) — Du(x 4, x;)|Pda; dx—; = 0.
U; JV,

e—0
~i lal<1

Consequently, we can find a subsequence ¢; — 0 such that

lim / Z |Du (2, ;) — Du(x_y,2;)[Pdx; =0 for a.e. x_; € Uj;. (2.7
Ve

l—o0
“—i |a|<1

Denote u; = u®, and let w = lim;_, , u;. By Proposition |1.8] u agrees with u except on a Lebesgue null set
E C U. Again by Fubini’s theorem,

/ / Z |DYu(z—;, 2)|P da; de—; < o0, / LY{x; €Uy, (x_,2;) € E})do_; = 0.
U7; Um Uq‘,

—i |a|=1

Correspondingly, we may find a set N; C U; with £*1(N;) = 0 such that for all x_; € U;\N;,

/ S (D, m)Pdas < 00, L ({wi €Uy, (5_s,m5) € B}) =0.
U.

T—i |a|=1

Fix any such z_;, and let I C U,_, be a maximal open interval. Fix ¢ty € I with (z_;,t9) € U\FE, and let
t € I. Then there exists an open set V € U containing both (x_;,t) and (z_;,t). Since u; € C=(V), by

fundamental theorem of calculus, one have

t
w(z—i, t) = u(z_s, to) +/ Oz, ui (x4, 8)ds.
to

Since (x_;,tg) € U\E, we have w;(z_;,t0) = u(x_;,to). Moreover, by (2.7),

t
lim |0, ur(x—s,8) — Dy,u(x_y, 8)| ds = 0.

l—o0 to

Therefore, once (z_;,to) € U\E, which holds for a.e. t € I, we have

t
w(x_,t) =u(x_4,t0) + / Oz, u(x_4, ) ds.
to
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It is seen that the function w(x_;,-) is absolutely continuous in I, and 9,,u = D,,u for a.e. t € I.

CAse II: p = co. We first consider an open ball B € U, and prove that u is Lipschitz in B. Since
u € WH°(U), there exists M > 0 such that esssup;; |Du| < M. Then for all € > 0 small enough,

u(z) = e xu)(z) and Oy,u(x) = (Ne * Dy,u)(x), i=1,---,n, VYo B.

Hence ||uf||po(B) < [|u|/z (B, and supp |[Vu| < esssupp ||[Dul|oec < M. This implies that the family (u€) is
uniformly bounded and equicontinuous:

() —u(y)] < M|z —yl.

By Arzela-Ascoli theorem, we may find a subsequence ¢; — 0 such that u; := u® converges uniformly to a
function @w: B — R as | — oo, and |u(z) — u(y)| < M|z — y|. Note u =7 a.e. in B.

By covering U with countably many balls and applying the standard diagonal trick, we can extend u to a
continuous function @ : U — R such that v =w a.e..

Now we prove that @ is Lipschitz on all segments I in U. If I falls in a ball, the result is clear. Otherwise,

by compactness of I, we can find finitely many balls B; covering I and points xg, z1,- - ,xx € U such that the
segment I = {txg + (1 —t)axy : t € [0,1]} consists of N subsegments I; = {tx;_1 + (1 —t)z; : t € [0,1]} C By,
where i =1,--- ,N. For any z,y € I, with z; 41,2492, - ,2, € {tx + (1 —t)y : t € [0,1]}, we have

u(z) —u(y)] < Ju(@) —u(z;)] + [ulzja) —wlz;)] + -+ [uler) = u@r-1)] + [uly) — ulzr)]
<Mz —a;| + Mz — x|+ + Mg —xp_1| + M|y — ax| = M|z —yl|.
Hence w is Lipschitz on I. If I is parallel to any coordinate axis, the partial derivative of uw with respect to the
corresponding variable is bounded by M. Hence 0,,u € L*>(U).

Step II. Conversely, let u be the representative of u having the desired property. Fix i = 1,--- ,n and let
x_; € U; be such that u(x_;,-) is absolutely continuous on every connected component of the open set U, _,.
Then for every ¢ € C(U), u(x_;,-)p(x_;,-) is absolutely continuous. By the integration by parts formula,

/ Wiy )0, (i, t) dt = — / Do, (—i )i, 1) dt,
Us_, Us_,
which holds for a.e. z_; € U;. Integrating over U; and using Fubini’s theorem yields
/ T(x)0y, () dx = / Oz, u(x)d(x) d.
U U

Therefore, D% = §%u € LP(U) for all i = 1,--- ,n, and u € W1P(U). O

Remark. In the case W1 (U), we did not require I to be coordinate-aligned, and the Lipschitz property holds
on all line segments. We next introduce a very useful characterization of space W (U).

Theorem 2.19. Let U C R™ be a convex set. Then COL(U) = WL (U).
Proof. Step I. Let u € C%'(U). Then u is Lipschitz on every segment parallel to coordinates axis, with partial
derivatives bounded by [u]co.1 ). This implies u € Wwhee(U).

Step II. Conversely, let v € WH(U). According to our construction of % in the Step I in the proof of
Theorem [2.18] v admits a representative u that is Lipschitz on all line segments in U with Lipschitz constant
M > esssupy |Dul. Since U is convex, the line segment connecting any two points x,y € U lies in U, and the
global Lipschitzness follows. Noticing that u € L>(U), we have u € C%1(U). O
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3 Extensions and Traces

3.1 Extensions

In this section, we discuss the extension of functions in the Sobolev space. Whereas in the realm of LP spaces
extending an LP function on a domain U C R”™ to all R™ within LP is trivial, just extend naturally by zero.
This does not work for Sobolev spaces, already not for those of first order WP, A key point is to jump
singularities across d that obstruct existence of weak derivatives. We let 1 < p < oo throughout this section.

Theorem 3.1 (Extension). Assume that U @ R"™ is bounded and QU is Lipschitz. Then for any bounded open
set V' that contains the closure of U, in symbols U € V. € R™, there is a bounded linear operator

E: WY (U) - WhP(V) = WHP(R™),  w— Bu =7,
such that (i) @ly = u a.e.; (i1) T is compactly supported in V' ; and (iii)
@l sagan) = sy < cllullwaw), (3.1)
where ¢ > 0 is a constant depending on n, p, U and V.

Remark. The function Fu = w is called an extension of u on R™.

Proof. Step I. In this step, we derive the extension operator in the half ball model. Let B C R™ be the open
ball with center z° lying in the hyperplane {z,, = 0} and of radius 7. Define

By :=Bn{z, >0}, B_:=Bn{z, <0}
We prove that there exists a linear map

Eo: WYP(By) - W'P(B), uw Eou=7
such that @|g+ = u, and

[lweacs) < 16ulwsngs,). (3:2)

Case I: 1 < p < oo. Without loss of generality, we suppose u € C*(B ). By Theorem the first two spaces
in the inclusion C*°(B,) C C1(B;) Cc WLP(B,) are both dense in W1P(B,.). Therefore, if we can construct
a linear operator Ey : C1(By) — C'(B) satisfying , then we can extend it to Ey : WYP(B,) — W1P(B)
by a density argument and completeness of W1?(B). To this end, we define

ﬁ(%) _ u(x), xr e §+,

—3u(a’, —z,) + 4du(’, —%), z=(a/,2,) € B_.

We claim that @ € C1(B). To check this, we write u®™ = ulg, and u” =7lg . Clearly, we have u™ = u~ on
B n{x, = 0}. Furthermore,

Op,u” (2, 2) = =30z, u(z’, —x) + 402, u (x’, —%) , i=1, n—1,

893"u_(x/7 (I}n) = 36:1/‘7Lu('r/7 _xn) - 28xnu (37,7 _%) .

Hence we have 0%u® = 9%u~ along B N {z,, = 0} for all |a| < 1, and uw € C*(B).
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Now we derive the estimate (3.2)). By Jensen’s inequality,

P P
lu™ (2, x,)|P < 2P71 (|3u($/,_mn)|p+ ’4u (x _%)‘ ) < 9301 (|u(x/’_xn)|p+‘ (x _%)‘ )

Integrate on both sides of the last display, and change the variable x,,:

™ ”Lp(B y < < 2% 1”““ Le(By) +23p||u||Lp(B+) = 23p+1||uHLP(B+)

Similarly, we have ||0,,u~ HLP(B )< 23p+1||611u||Lp(B+) for all i =1,--- ,n. Henceforth,
[y = Do 10Ty = D (1070 1B,y + 10°0 ) < 27 il
|| <1 || <1

CASE II: p = co. By Theorem [2.19] we have C%! = W for both B, and B. We then consider the map Ej
given by simple horizontal reflection:

Ey:C%(By) = C"(B), uw~:B>3 @, x,) — u(@, |z.]).
Then @ is indeed Lipschitz with the same Lipschitz constant as u, and
[@l[w1. (p) = max esssupp [DU| = max esssupp, |Du| = [[ul|w1.<(5,),

|| <k || <k

Step II. In this step we extend u near zq € OU. If U is not flat near 20,

v : R 5 Q — R with Lipschitz constant M whose graph coincides the part of OU within a small ball
B(2° r). Consider the neighborhoods X = Q x R of 2% = (z%,,2%) and Y = Q x R of 4 = (2% ,,,0). Define

—n? 71

we can find a Lipschitz map

—7L7

XY, xz— @)= (21, ,Tp-1,Zn —¥(T1, * ,Tn-1)),
v:Y — X7 Y = \Il(y) = (yla sy Yn—15Yn +’Y(y17 o 7yn—1))-

Then ® = U1 is a bi-Lipschitz map, since

|®(z) = @(2)]| < V2(1 + M?)[x — 2| and |¥(y) = V(z)] < V2(1+ M?)]y — 2|.

By definition, ® flattens OU near z°. By Rademacher’s Theorem, the graph map + is differentiable for a.e.
T_p € ). Hence the linearizations of ® and ¥ exist pointwise a.e. and, furthermore, the Jacobian is triangular
with diagonal elements 1. Thus det D® = 1 = det DV pointwise a.e..

Now we derive the local extension of u € WP (U) near 2° € dD. Pick a small ball B centered at y° = ®(2°)
and contained in the open neighborhood ®(B°(2°,r)) of y°. Let By be the upper open half ball of B, and
consider the restriction of u to the open set V = ¥(B;). Then u € WhP(V).

Next pull back v : V' — R to the y coordinates to obtain the function v := wo : By — R which lies in
WP(B,) by Proposition, and |[v|lw1.»(5,) = ||ullw1.»(v). Then we employ the extension operator constructed
in Step I to pick an extension v = Eygv of v = w ot from the upper half ball B, to the whole ball B. The
extension of u from V = ¥(B,) to A = ¥(B) is defined by

u=100e W (A), [allwirca) = 0lwiris).
According to estimate (3.2]), we have

[@llwrray = [ollwirzy < 16[0llwrrsry = 16]ullwirw). (3-3)
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Step III. In this step, we extend u globally via a finite partition of unity. By Step II and compactness of U,
there exist finitely many #? € U and local extensions u; = 7' o ® : A; — R covering U, where i = 1,--- | N.
Now we pick Ag € U such that U € A := Uivzo A; @ R", and pick a smooth partition of unity (¢;)Y,
subordinate to the open cover (A4;)N, of U. Extend U to A by @ = Zf\;o ¢iu; € WHP(A). We then have the
following estimate of |[%||yy1,»(4):

N N
@l cay < Z |psti || wp(a,) < Z 202 ||yl wrr.oe ) [Tl ) (By product rule)
=0 1=0
N
1 _
< 2nl/P lgzﬁﬂ@\\vvlm(m) ; @il we(a,)

< 32n!/7(1 + N) max, lPillwroeay) llullwie @y, (By estimate (3.3)))

=:c

where we use 1/p = 0 when p = co. Then ¢ is a constant depending only on n,p and U. Furthermore, the
linearity of the mapping u — @ follows from Ej in Step 1.

Step IV. Given u € WHP(U) and U € V € R", we have U € (VN A) € R®. We then pick up a cutoff function
X € C®(VNA) with0 <y <1land y =1on U. Then xyu € WHP(V), where u constructed in Step III is
restricted to V. Furthermore, we have the following estimate for ||x@||yw1.»(v):

Ix@llwrevy = X wrevna) < x@llwiey < 202Xl o [@llwesay < 2en®|ullwie .-
This completes the proof. O]

Remark. (i) If 1 < p < oo, by Theorem [2.15) we can approximate u € WHP(V) by a sequence of functions
v € C(V), and C2(V) 3 xv; — x@ in WP(V). Consequently, the extension @ € Wy (V):

E WY (U) —» W, P(V) = WYP(R"), uws Fu:=T.

(ii) If p = oo, the constant ¢ in (3.1) is actually independent of n.

(iii) If we further assume that OU is C?, then the extension operator E : u — U above is also a bounded linear
operator from W2P(U) to W2P(V), with

[Eullwzr@ny = [|[Eullwze vy < cllullwze ). (3.4)
Theorem 3.2. Let U be a bounded, open subset of R™, and let OU be Lipschitz. Then COY(U) = W1>°(U).

Proof. If w € C%Y(U), we can apply Step I in the proof of Theorem to argue that u € WhH°(U).
Conversely, if u € W1 (U), we can simply apply Step I in the proof of Theorem to the extension Eu of
u on R™, which is a convex set. O
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3.2 Traces

In this section we discuss the possibility of assigning "boundary values” along aU to a function W (U),

Theorem 3.3 (Trace theorem). Let U C R™ be a open and bounded set with C* boundary. Then there exists
a bounded linear operator T : WYP(U) — LP(0U) such that
(i) Tu = ulpy if u € WHP(U)NCU), and
(ii) there exists a constant C depending only on U and p such that ||Tu|provy < Cllullwie@y for all
u € WHP(U).

Here T is called the trace operator, and Tu is called the trace of uw on OU.
Proof. O

Theorem 3.4 (Treace-zero functions). Let U C R™ be a open and bounded set with C* boundary, and u €
WLP(U). Then u € Wy (U) if and only if Tu = 0 on OU.

Proof. O
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4 Sobolev Inequalities

4.1 Sub-dimensional Case p < n: Gagliardo-Nirenberg-Sobolev Inequality

In this section, we suppose 1 < p < n, and we consider the following basic question: Can we estimate the
L(R™)-norm of a smooth, compactly supported function in terms of the LP(R™)-norm of its derivative. In
other words, we are looking for an estimate of the form

llullLany < el Dullpr@ny, w € CZ(R™). (4.1)

A scaling argument. We wonder if the estimate (4.1]) holds for any ¢ € [1,00]. Take u € C°(R™) with
u # 0, and define for A > 0 the rescaled function uy(z) = u(Az). Then

Duy = /\(Du),\

We then obtain

1/q 1/q
s oy = ( / uAde) - (A” / de) A e,
R"l

1/p 1/p
e DO R I PUe Sl IR I S L e
la|=1"&" laj=1"E&"
These norms must scale according to the same exponent, otherwise (4.1]) is falsified by letting A — 0 or A — oc.
Hence we have n/p —n/q =1, and q = n”—_’;.

Definition 4.1 (Sobolev conjugate). If 1 < p < n, the Sobolev conjugate of p is

* np

Note that 1% == — %, and p* > p.

1
P
We have the following estimate for LP -norm f a Sobolev function.

Theorem 4.2 (Gagliardo-Nirenberg-Sobolev inequality). Assume that 1 < p < n. There exists a constant C,
depending on p and n only, such that

[ull o= @y < CllDullLogny,  Vu € Co(R™). (4.2)

Proof. Step I: We first prove the case p = 1. Since u has compact support, we have
Zq
U(l’) :/ amiu(xh'” sy Li—1,Yiy Tit1," " ,{En) dym
— o0

We denote by |Du|y = |0y, ul + -+ + |04, u|. Then
|’LL(.’L')| S / |aa:iu(-r17' Ly Ti—1,Yis Ti1y axn)ldyz S / |D’LL|1 d-rz

— 00 — 00

Consequently,

1

< H (/ |Du|1 dlﬁ) " .
i=1 -
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We integrate both sides of the last display with respect to the variable ;. By generalized Holder’s inequality,

n _1
| @i an < [T (/w |Du|1dxi> "
—o0 —00 —o0 ) N
= (/OO |Du|1 dJC1> " /Oo H </oo |DU|1 dl‘,) " dxl
—o0 B 7:0 =9 —o0 1
< (/w |Du|1dx1) (H || ipuias, dmi>
-0 j—o/—00J—00

n—1
Again, we integrate both sides with respect to xo. By generalized Holder’s inequality,

[ @
oo oo "ET poo oo =T n oo poo n—1
—00 J —c0 —00 —00 j—3/—o00J—o0
1

< (/ / |Duly dxy d:@) . <H/ / / |Dul|y dxy dao dxi>
—00 J =00 j=3/ —00 J—o0 J—0c0

n—1
We continue to integrate with respect to x3,--- ,x,, and obtain that

T
/ |u| 7T dx < (/ |Du|; da:) . (4.3)
n RTL

This is indeed the case p* = "7 and C' =1 of estimate (4.2).
Step II: Now we consider the case 1 < p < n. Applying the estimate (4.3)) to v = |u|”, where v > 1 is to

be selected, we have

n
n—1 dxq drg

1

n—1

( / |u|n”"1dx) " [ Al Dl de
n Rn
_ 1/p
<7( / |u|‘1—lf"dx> ’ ( / |Du1;dx) (4.4)
R™ R™

(v—1) P _
<y (/ Jul ”p—ﬁ”dm> 05 || Dull Lo gan-

Now we choose v > 1 such that 1= = G=Up  That is, y = 2=U2 = W. Then 1) becomes

p—1 n—p
1/p” =1
. nr (n—1
([ wpae) " <O Dy,
which completes the proof of (4.2)). O

Theorem 4.3 (Estimate for WP on R", 1 < p < n). Assume that 1 < p < n and p < q < p*, and
u € WYP(U). Then u € LA(U), with the estimate

llull Larry < Cllullwre@n (4.5)

for some constant C depending only on p,q and n.
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Proof. By the Remark under Theorem [2.14] we can find a sequence u,, € C°(R™) that converges to u in
WLP(R™). According to Theorem we have

[um = wll Lo @ny < np*[| D — Dug||po(rny,  VI,m > 1.

Hence (u,,) is a Cauchy sequence in L?" (R"), and u,, — @ for some @& € LP" (R"). Furthermore, @ and u are
identified, since we can find a subsequence of (u,,) that converges a.e. to @ from LP  convergence, and to u,
from LP convergence. Hence u € LP (R™), and

lull Lo+ mry < np* || Dull Lo gn)-

For the estimate (4.5)), the case ¢ = p and ¢ = p* are clear. If p < ¢ < p*, we choose 0 < # < 1 such that
% = % + 1p;*9. By Hoélder’s inequality,

(1—-0)q

9q
/ |u|? dx :/ |u|%|u| =0 d < (/ |u|P da:) ’ (/ ulP” daz)
R" R~ R" R™

9
el paemy < el Gy Null 1 gy < (™)'=l T ey I Dll 5 -

Therefore

To derive (4.5)), we use Jensen’s inequality:

<log(a® +7) = a0 <05(1—6) 7 (a? +")VP,  Va,b> 0.

bP
Qlogg (1 —9)10g1_9

Then we obtain
1—0n8 =0 1/p
lullzae) < (0" 005 (1= 0)'F (ull}y gy + 1D ) = Cllullwrnany.
This completes the proof of (4.5]). O

Now we give a similar estimate of the W!P-norm of a weakly differentiable function on a Lipschitz domain.

Theorem 4.4 (Estimate for W' on Lipschitz domains, 1 < p < n). Let U be a bounded, open subset of R"
and suppose OU is Lipschitz. Assume that 1 <p <n, and w € W"P(U). Then u € LP" (U), with the estimate

lull Lo 0y < Cllullwrewy

for some constant C' depending only on p,n and U.

Proof. Since QU is Lipschitz, by Theorem there exists an extension @ € WP(R") such that @ = u in U,
u has compact support in R™, and

[@llwre@ny < Cillullwew), (4.6)

where C is a constant depending only on p,n and U. Since u has compact support, by the Remark under
Theorem there exists a sequence of functions u,, € C°(R") such that u,, — @ in WHP(R"). By Theorem
Uy, — T in L (R™) as well, and ||, || 7+ ®&n) < np*|| D[ Legny. Then we have the limiting bound

Null Lo 0y < [0l po* (mny < mp* (| D[ Lo ey < np*[[Tllwrpwny < Cinp*|lullwiew)-

m—r 00

The desired result then follows by letting C' = Cinp*. O
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Remark. If U is a bounded, open subset of R™ and QU is Lipschitz, we have
W (U) € ¥ (U) € LU(U), q€[1,p']
by Hélder’s inequality ||ul| oy < |U]7 ||ul| o= (1), we have

lullLaqwy < Cllullwre@), a€ 1,97,
where C' is a constant depending only on p,¢q,n and U.

Theorem 4.5 (Estimate for Wol’p on bounded domains, 1 < p < n). Let U be a bounded, open subset of R™.
Assume that 1 < p < n, and u € Wy (U). Then we have the estimate

[ullze(w) < CllDullLe o) (4.7)

for each q € [1,p*], with the constant C' depending only on p,q,n and U.

Proof. Since u € W,"*(U), there exists a sequence of functions u,, € C2°(U) such that u,, — u in WhP(U).
We the extend each u,, to R™ by assigning u,, = 0 on R"\U. By letting m — oo in the Gagliardo-Nirenberg-
Sobolev inequality for wu,,, we obtain

[l o 0y < ClIDul| e -
Since U is bounded, we have |U| < oo, and the desired result follows from Holder’s inequality. O

Corollary 4.6 (Classical Poincaré’s inequality). Let U be a bounded, open subset of R, and 1 < p < co. For
any u € Wy (U), we have the estimate

[ulle @y < CllDull Loy, (4.8)

where the constant C' depending only on p,n and U.

Proof. For 1 < p < n, the estimate (4.8)) is a special case of , since p < p*. For n < p < oo, we choose
X . 1,
1<g<nsuchthat g <n<p<qg*:= n”—f’q. Since Wy'P(U) c WhH4(U), by 1) we have

_pq
lull vy < CllDul|paqry < |U|7=2C||Dul| 1o ).

Finally, for p = oo, we take a sequence u,, € C°(U) that converges to u in W (U). Using the
fundamental theorem of calculus, we have

T4
‘um(xlf" ,l’n)‘ = '/ axium(xh'" sy Li—1yYiy Li41y" " 7xn)dyz
—00

< / | Dt | e (0 s < iamn(U) [ Doty < 0
By taking the supremum of the left hand side and letting m — oo in the last display, we can obtain that
[ull o< (o) < diam(U) || Dul| pec ¢y This complete the proof. O

The borderline case: p =n. Owing to Theorem and the fact that p* = n"—_’;} — 00 as p ' n, we might
expect u € L>(U), provided v € W1 ™(U). This is however false if n > 1.

As a counterexample, let U = B°(0,1) be the unit open ball in R", where n > 1. Then the function
u(x) = loglog(1 + L) belongs to W'"(U), but not to L>=(U).

||
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4.2 Super-dimensional Case p > n: Morrey’s Inequality

In this section, we assume that n < p < co. We show that u has a Holder continuous representative, provided
that uw € WHP(U).

Theorem 4.7 (Morrey’s inequality). Assume that n < p < co. There exists a constant C, depending on p
and n only, such that

ulloon ) < Cllullwro@n,  Yu € C'(R™) N LP(RY), (49)

—1_n
where vy =1 >
Proof. Step I: We claim that there exists a constant C, depending only on n, such that

1 |Du(y)|
_— u —u(z)|dy < C / ———dy,
£7(B(x,7)) /BW)' W —u@ldy <O | T

for each ball B(z,r), where L™ is the Lebesgue measure on R™. To this end, take any |w| =1. If 0 < s <7,

/0 %u(m + tw) dt’

Integrate with respect to w on 9B(0,1):

/ lulz + sw) — ulz)] dS(w / / Du(z + tw)| dS(w) dt
8B(0,1) 8B(0,1)

T w D
y=att // | ”1 dS(y) dt
oB(x,t) "

t=|z—y| Du(y Du(y
o [ Dl [ D),
B(z,s) |y - $| B(z,r) |y - .’E|

By changing the variable z = x + sw in the left hand side of the last display, we have

(4.10)

u(z + sw) — u(z)| =

/Du x + tw) - wdt‘ /|Du x + tw)| dt.

D
[ e -u@ise < [ 2L,
0B (x,s) B(z,r) |y - ‘T|

Next integrate with respect to s from 0 to 7:

r [ Du(y)|
u(y) — uw(z)[dy < — — dy
/B(:xz,r) " JB(z,r) ‘y - x|n !

This completes the proof of (4.10)).
Step II: Fix any = € R™. By (4.10) and Hélder’s inequality,

1
)| < T ( [ e = [ |u<y>|dy>

[Du(y)| n -
< Cl/ Wdy—‘rﬁ (B(l',l)) 1/1’||U||LP(B(1,1))
B(z,1) Y — X

p—1

1/p 5
_(n=Dp n -~
<O (/ lDulpdy) (/( )|y—x| 1 dy> + L"(B(z, 1) " YP | 1o )
n B(z,1

< CHU||W1,p(R"L)7
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where C'= C(n,p) is a constant. The last estimate holds since p > n implies (n — 1) ;55 <n, and

/ ly — x|_ “ dy < 0.
B(z,1)

Step III: Choose any two points z,y € R™, and write r := |z — y|. Let W = B(x,r) N B(y,r). Then

o)~ ) < s (o) —utallas+ [ Jut) - o dz).

By estimate (4.10)), we have

o u(z) — u(2)|dz L"(B(z,1)) 1 u(z) — u(2)|dz
Ty J, )~ < S gy L, ) AN

G L (B(z,7)) / [ Du(z)|
< — ——dz
- ﬁn(W) B(z,r) |Z - "E|n71

p—1

1/P .
- C1L™(B(x,7)) (/ | Duf? dz) (/ dz >
N En(W) B(z,r) B(z,r) |z — x| (Zill)p

RN s
< Co ("5 ) T DUl e < Cor'F [ Dull e,

where Cs is a constant depending on n and p only. Similarly, we have

/ lu(z) — u(z)| dz < Cor'™ | Dull o am-
Consequently,
|u(y) — u(z)|
[u] oa-n o =sup ——=—= < C|Dulprgrn)
C P (R™) oty ‘y _ ‘1 (
This inequality together with (4.2]) completes the proof of (4.9). O

Remark. We provide a slight variant of the estimate of |u(z) — u(y)|, where |z — y| < r. Since both B(x,r)
and B(y,r) are include in the ball B(z,2r), we have

fu(y) — u(x)] < Or'

Du| v (B(z,2r))

for all u € C*(B(x,2r)), y € B(z,r) and n < p < oo.

Theorem 4.8 (Estimate for W'? on Lipschitz domains, n < p < c0). Let U be a bounded, open subset of
R", and suppose that OU is Lipschitz. Assumen < p < oo and u € WP(U). Then u has a representative
u* € COV(U) fory=1- %, with the estimate

l* llgon @y < Cllullwrowy, (4.11)

where the constant C' depends on p,n and U only.

Proof. The case p = co can be easily adapted from Theorem [3.2] Hence we assume that n < p < oc.
Since OU is Lipschitz, by Theorem there exists an extension 7 € W?(R") such that @ = u a.e. in U,

u has compact support in R™, and

[@llwre@ny < Cillullwew), (4.12)
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where C is a constant depending only on p,n and U. According to the Remark under Theorem we
can find a sequence of functions u,, € C2°(R™) converging to @ in W1P(R"). By Theorem [4.7, (u,,) is also
a Cauchy sequence in Cl_%(R”), which converges to some u* € C’l_%(R”). Clearly, u* = u a.e. on U.
Furthermore, letting m — oo in Morrey’s inequality for w,, yields |[u*|co~ @) < Cl[@llwi.p@n). Combining
this with estimate (4.12)) concludes the proof. O

Remark. The preceding proof remains valid if we replace U by R™ and omit the extension step. We therefore
restate our conclusion as follows: Assume n < p < co and u € W'P(R"). Then u has a representative
u* € CO7(R") for y=1— 7, with the estimate

[w*[lcommn) < Cllullwewny,
where the constant C' depends on p and n only.

Now we use the tool of Morrey’s inequality to investigate more closely the connections between weak partial
derivatives and partial derivatives.

Theorem 4.9 (Super-dimensional differentiability almost everywhere). Assume that u € Wﬁ)’f(U) for some

n <p<oo. Then u is differentiable a.e. in U, and its gradient equals its weak gradient a.e..

Proof. We first assume that n < p < oco. We identify u to its continuous version by applying Morrey’s
inequality on a countable set of balls covering U. For a.e. x € U, by Lebesgue’s differentiation theorem,

1

—_— Du(z) — Du(2)Pdz — 0 as r — 0.
Lr(B(z,7)) /B(z,r)| (=) =)l

We then fix such a point x, and set v(y) := u(y) — u(x) — Du(z) - (y — x). Since the differentiation is a local
problem, we choose B(z,8) C U. Then v € W'P(B(z,d)).

By Proposition and Theorem the mollifications v¢ € C*°(U) converges to v uniformly on B(z,d)
and in WP (B(xz,)) as € — 0. According to the remark under Theorem [4.7| and by approximation € — 0, for
each y € U with r := |z — y| < §/2, we have Morrey’s estimate

1/p
lo(y) —v(x)| < Cr'™v (/B( - Dv(z)pdz> )

Consequently,

1/p
u(y) — u(z) — Du(z) - (y — z)| < Cr'~% </B |Du(z) — Du(z)[? dz)

(z,2r)

<C'r

1/p
! Pdz =o(r) = oz —
< (E(B(m L 1Pue) = Dute) d) (1) = ollz 3.

Hence u is differentiable at x, and its gradient coincides its weak gradient at x. Finally, for the case p = oo,
just note that W,">°(U) ¢ WLP(U) for all 1 < p < co. O

loc loc

The following theorem is a direct consequence of Theorem

Theorem 4.10 (Rademacher’s theorem). Let u be locally Lipschitz continuous in U. Then u is differentiable
almost everywhere in U.
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4.3 General Sobolev Inequalities
4.3.1 Sub-dimensional Case: kp < n

Theorem 4.11 (General Sobolev inequality, kp < n). Let U be a bounded, open subset of R™, with a Lipschitz
boundary. Assume u € W*P(U), and kp < n. Then u € LY(U), where

k np
) q=
n

1
q n—kp

Furthermore, we have the estimate
ullLsy < Cllullwre @,
where C' is a constant depending only on k,p,n and U.

Proof. Step I: For every multi-index |a| < k — 1, we have D% € W1P(U). By Gagliardo-Nirenberg-Sobolev
inequality [Theorem , there exists a constant C = C(n,p,U) > 0 depending only on n,p and U, such that

[D%ull o (ry < CIDullwrr @y < Cllullwrs@)-

Hence u € W’“*L”*(U), where p < p* = n"—_’;) < n. If kK =2, we are done by applying Gagliardo-Nirenberg-

Sobolev inequality once again, where ¢ = p™* = 22 = _"2_,

ull Loy < C(n,p™, U)[Jullwies oy < Cn,p™, U)(L +n)C(n, p,U)|ullwerw)-
Step II: We denote ps = p**, p3s = p™**, and so on. If k > 3, we can prove by induction such that

1Dull o= 1y < Col D¥ullwrro ) < Collullwi—ror @y, V]l <k =2, and uwe WP (U);

|D%ull oo 11y < Cs Dl 1y < Csllullwi-2me iy Vlal < k=3, and we WFr"" (U);

HDau”LPk—l(U) < Ck_luDauHWl,pk,g(U) < Ck_1||u||W2,pk,2(U), Vie| <1, andu € Wl’pk’l(U).
Hence u € W1Px-1(U). Since p < prp_1 < n, again by Gagliardo-Nirenberg-Sobolev inequality, we have
lellzre @y < Cullullyron sy < (1) CeCi s o
< (]- + n) (]. +n+ n2) Ckck‘flck}72||u||W31Pk¢—3(U) <.
<(14+n)(I+n+n®) - (1+n+n’+-+ nk_l) CrCr1 -+~ Ci|lullwrr )
where C1, - -, C} are constants depending only on k,n,p and U. This completes the proof. O

Remark. In fact, we have the inclusions

Wk’p(U) C kal,p* (U) C kaz,p**(U) C...C kal,q(U)’

where [ € {0,1,--- ,k} and % =
such that

% % Moreover, there exists a constant C' depending only on n,p, q,l and U

ullwr-ra@y < Cllullweswy, Yue WEP(U).

This means that WP (U) — W*b4(U) is a continuous embedding, where ¢ = ;25 > p.
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4.3.2 Super-dimensional Case: kp > n

Theorem 4.12 (General Sobolev inequality, kp > n). Let U be a bounded, open subset of R™, with a Lipschitz
boundary. Assume u € W5P(U), and kp > n. Then u has a representative u* € C*~ Lﬂ*l’”(ﬁ), where

v |2] -2,
N = p p
any p € (0,1),

¢ N,
e N.

IS SIS

Furthermore, we have the estimate
HU*”CFL%JA,V(U) < C||U||kap(U),

where C' is a constant depending only on k,p,n,v and U.

Proof. CASE I: n/p ¢ N. The key idea is to apply general Sobolev inequality [Theorem [4.11] to the largest

sub-dimensional case Ip < n. Given Ip < n, we have u € Wk=Lr(U), where % = % — % Choose [ € N
such that | < % < 141, that is, I = |n/p|. Then r = n”f’;l > n is super-dimensional, ¥ — 1 > 1, and

Dy € WHT(U) admits a representative (D%u)* € C%7(U) by Morrey’s inequality for each || < k —1 — 1,
where y =1—n/r =1+ |n/p] — n/p. Furthermore, we have the estimate

1D%ullco @y < ClID*ullwrr @y < Cllullwe-tr @y,

where the constant C' only depends on n,p and U. Consequently, u* € C*~ (5] 7(U), and

Wl ngy = 3 ID%e@+ 3 [Duleon < Clullwirrw),
|| <k—1-1 la|=k—1-1

where the constant C” only depends on n,p, k and U.
CasE II: n/p € N. To apply general Sobolev inequality [Theorem 4.11] to the sub-dimensional case, we choose
l = % —1€{0,1,--- ,k—2}. Then u € WF19(U) for ¢ = -*2- = n. By Gagliardo-Nirenberg-Sobolev

n—Ilp

inequality, for all r € (n,00), we have

« « n
1Dy < CID s e Vol Sk =1=1=k =2,

where C is a constant depending only on n,r and U, and D*u € L"(U). By Morrey’s inequality, we have
D%y € CO1=%(U) for all |a| < k— Z—1landall 7 € (n,00). Consequently, u € O () for all 0 < y < 1,
and we have the estimate

lull -1 7y < Cllllwi-sn oy < Cllullwrr @),

where C’ is a constant depending only on k,n,p,v and U. O

Remark. For the case p = oo, we have the limit conclusion W (U) = C%1(U) Theorem for k= 1.
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4.3.3 The Borderline Case: kp=n

Lemma 4.13. Let U be a bounded, open subset of R™ with a Lipschitz boundary. Let

Then WHn(U) € LP(U), and there exists a constant C, depending on n,p and U only, such that
[ull oy < Cllullwinw), YueWH(U).

Proof. CASE I: n=1. If v € C°(R), we have

jo(@)] < / " |Du(y)ldy.

Hence |[v]| Lo ®) < ||Dv|[L2®) < [[v]lwr1®). Then for each u € WH(U), extend u to w € W (R) with
[a@llwrawy < cllullwa @,
where c is a constant depending on U only. By approximation @ with C$°(R), we have
[l Lo 0y < Ml Lo vy < llwrrw) < cllullwrw).

CASE II: n > 2. Taken < g < 0o, andset%:%—i—
by Holder’s inequality, we have

. Then 1 < s <n, and g = 2. Since U is bounded,

n—s’

1
q

1_1 n—s
[ullwrs@wy < (1 +n)="=|U[ =

uHWl,n(U).

Since g = s* = 2& | by Theorem we can find a constant C(n, g, U) such that

n—s’

lull Loy < C(n,q, U)l|ullwrs@y < C'(n, q, U)|Jullwrn ).

Since |U| < o0, we have

l[ull oy < C” (0, g, U)|ullwrn o
for all 1 < g < p. Since ¢ can be chosen arbitrarily large, the result follows. 0

Remark. The conclusion still holds if n = 1 and we replace U by R, where constant C' is 1.

Theorem 4.14. Let U be a bounded, open subset of R™ with a Lipschitz boundary. Assume u € WhP(U),
and kp =n. Thenu € LI(U) for all 1 < g < 0o, and we have the estimate

ullza@y < Cllullwrr @y,
where C' is a constant depending only on k,p,q,n and U.
Proof. Similar to our proof of Theorem we have the inclusions
WhEP(U) c WP (U) c WERPT(U) € - WEU).

The last inclusion holds since £ = 1 — 221 The result then immediately follows from Lemma O

1_1
n_ p n
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4.4 Compact Embeddings: Rellich-Kondrachov Compactness Theorem

The Gagliardo-Nirenberg-Sobolev inequality shows that WP (U) is continuously embedded into LP" (U) in
the sub-dimensional case 1 < p < n. Next, we are going to demonstrate that W1P(U) is in fact compactly
embedded into the space LY(U) when 1 < ¢ < p*.

Definition 4.15 (Compact Embedding). Let X and Y be Banach spaces, and X C Y. We say X is compactly
embedded in Y, written X € Y, if the identity operator

d: X—=>Y, zxz—=x

is continuous and compact, i.e.
(i) there exist some constant ¢ such that ||z|y < ¢||z|x for all z € X, and

(ii) each bounded subset of X is precompact in Y.

Remark. Since compactness coincides sequential compactness in metrizable spaces, (ii) equals that every
bounded sequence of points of X has a subsequence converging in Y .

Theorem 4.16 (Rellich-Kondrachov Compactness Theorem). Let U be a bounded, open subset of R™ with a
Lipschitz boundary. Assume 1 < p <mn. Then

whtP(U) e LY(U)

forall1 < q < p*.

Proof. Step I: Assume that 1 < ¢ < p*. Using Gagliardo-Nirenberg-Sobolev inequality [Theorem , we
obtain the continuous embedding WP (U) < L4(U), with

lullary < Cllullwre@)
for all u € W1P(U), where the constant C' depending only on n,p,q and U. Then it remains to show that any

bounded sequence (u,,) in W1P(U) has a subsequence (u,,,) converging in L(U).

Step II: By extension theorem , we may assume that every u, is in W1HP(R") and supported on a
precompact set V' € U, and sup,, e [|tml[wir@n) < 00.

Then we study the mollifiers uS, = n¢ * u,,, and we may assume that the support of u, is in V for all
m € N. We first prove that

li € = 0. 4.1
Eg%ilé%ﬂum Unml|La(v) =0 (4.13)

If w,, is smooth, we have

€

i) (@) = 5 [0 () Gnle) = o)

N / 1(y) (um (@ = €y) — um(z)) dy
B(0,1)

b d
= [ 10 [ ot =t ey

1
——c [ i) [ Dunla—ety)-yardy
B(0,1) 0
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Consequently,

Sy — |1 vy = /V i (2) — ()| dt

1
SE/ n(y)/ / | Dty (2 — ety)| da dt dy
B(0,1) 0 \%

< e/ | Dt (2)| dz = €|| Dy || 1 (vy-
v
By approximation, this estimate also holds for u,, € WP(U). Since V is bounded, we have
[t = umllLr(vy < €llDuml[rr vy < €Cl|[Dum|| o (v)

Note that u,, is bounded in W1P(R"). Then the estimate (4.13)) holds when ¢ =1. If 1 < g < p*,let 0 < 6 < 1
be such that

0 L+ 1-60 1
1 p
Akin to the interpolation statement employed in the proof of Theorem [4-3] we have
6 -0
sy = vy < s =l Sy = w1552 -
While the first term converges to 0, the estimate (4.13)) follows from the boundedness of the second term, by
Gagliardo-Nirenberg-Sobolev inequality.

Step III: Fix any € > 0. We verify that (uf,)5°_; satisfies Arzela-Ascoli criterion: We claim that the sequence

m)m=1
) m=1
(i) suppen [[uglloo < o0, and

(ii) for all n > 0, there exists ¢ > 0 such that for all m € N and all |z — y| < 6, |uS,(x) — us,(y)| < 7.

To prove the first assertion, note that

(u is uniformly bounded and uniformly equicontinuous, i.e.

|up, ()] < /B( )Ue(ff = Yum(Y)] dy < |nell oo ) [l L1 vy
1 | |1/p
< 67||7~tm||L1(v) S wmll e (vy-

Since (u,,)%°_; is bounded in W1P(U), the first assertion holds. For the second assertion,

|Dus, ()] < /B 1D ) )] dy
Vi
< ||D776||L°°(R")||um||L1(V) < Tl ||Dum||LP(V)-

Consequently, we have sup,,cy || Dus, || o vy < 61% for some constant C' depending only on n,p and V, and

the second assertion holds. By Arzela-Ascoli theorem, the sequence (us,)7o_; has a subsequence (u},)32, that

converges uniformly on V', and

lim sup Hufn] - 0. (4.14)

i Eoo u:nk- HL‘I(V) =

Step IV: Fix any ¢ > 0. By estimate (4.13]), we choose € > 0 to so small that

sup ||ug, — um”Lq(V) <
meN

N>
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Combining this bound with (4.14)), we obtain

lim sup Humg‘ - umkHLq(V) < lim sup (H“mj - “inj ||L'1(V) + Hu;nj — U, ||L‘1(V) + ||ufmc - umrc”pz(\/)) <9,
J,k—00 J,k—o00

where (mj)é?il is the subsequence chosen in Step III, which depends on €. Next, we employ our conclusion on

0=1, %, %, --- and use Cantor’s standard diagonal statement to extract a subsequence (m;);2, satisfying

lim sup ||tm, — “mkHLq(v) =0.
l,k—o0

By completeness of the space LI(V), the result follows. O
For n < p < oo, we have a similar conclusion following from Morrey’s inequality and Arzela-Ascoli theorem.

Theorem 4.17. Let U be a bounded, open subset of R™ with a Lipschitz boundary. Assumen < p < oco. Then
whP(U) e LY(U)

foralll < g < .

Proof. By Arzela-Ascoli theorem, we know that C%7(U) € C(U) for all 0 < v < 1. Let (u,,)S_; be a bounded
sequence in WP(U). By Morrey’s inequality, (u,,), identified to its Holder continuous version, is also bounded
in %% (U). Hence there is a subsequence (u,, )3, that converges uniformly on U. Since U is bounded,
(U, )72, converges in LI(U) for all 1 < ¢ < oo, and the result follows. O

For the borderline case p = n, we have the following limiting conclusion.

Theorem 4.18. Let U be a bounded, open subset of R™ with a Lipschitz boundary. Then
wht™U) e LYU)

foralll < g < .

Proof. According to Lemma the embedding W"(U) < L4(U) is continuous for all 1 < ¢ < co. Now
take any bounded sequence (u,,)S_; in WH(U). Then for every 1 < p < n, since U is bounded, (u,,)_;
is also bounded in W1?(U). By Rellich-Kondrachov compactness theorem, for any 1 < ¢ < p*, there exists a
subsequence (um, )72, that converges in L?(U). Since p* = n"—f; — 00 as p — n, the result follows. O

Remark. Summarizing Theorems [£.16], [£.17] and [£.18] we have

Wtr(U) e LP(U)
for all 1 < p < co. Moreover, we have
Wy P(U) € LP(U)

for all 1 < p < o0, even if QU is not Lipschitz.
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4.5 Poincaré’s Inequality

Notation. Given a bounded set U C R" and a function u € L'(U), define the mean value of u in U as

1
(u)y = U|/Uu(x) dx.

Similarly, define the mean value of u € L*(B(z,r)) over the ball B(z,r) as

1
e = B ey O

Theorem 4.19 (Poincaré’s inequality). Let U be a bounded, open and connected subset of R™, with a Lipschitz
boundary. Assume 1 < p < oco. Then there exists a constant C, depending only on n,p and U, such that

lu = (wullr @y < CllDul| Ly )

for each uw € WHP(U).

Proof. Argue by contradiction. Were the estimate false, there would exist for each m € N a Sobolev function
um € WHP(U) satisfying

lum — (um)vllLe @y > M| Dum || e @)-

We then renormalize by defining

Um — (um)U

a [ (“m)UHLP(U)

Um, , m=1,2.--.

Thus (vm)v = 0, |vm|lzey = 1, and || Dvy||pey < 5. In particular, the sequence (v,)35_; is bounded in
WhP(U). By Rellich-Kondrachov compactness theorem, there is a subsequence (v, )52, that converges in
LP(U), with the limit written by v € LP(U). Clearly, we have (v)y = 0, and ||v|| zr(y = 1. On the other hand,
for each ¢ € C°(U), one have

/ V0, pdr = lim | vy, 0, ¢dr = lim [ (Dy,vm,)pder =0, i=1---,n.
U k—oo Jir k—oo Jir

Therefore, v € W1P(U), and Dv =0 a.e. on U.

Now we prove that v is constant a.e. on U. Given € > 0, we take the mollification v¢ = 7. * v. Clearly,
Dy, v¢ = ne ¥ Dy;v = 0 on U€ for all ¢ = 1,--- ,n. Consequently, v remains constant on each connected
component of U¢. Next, given any z,y € U, since U is connected, we can connect them with a polygonal path
I CcU. Let § = inf,erd(z,0U), and take € < §/2. Then I' C U€, and z,y lies in the same component of U*€.
Hence v¢(z) = v¢(y) for all € < §/2. By Proposition [L.8] since v — v a.e. on U, we obtain that v is constant
a.e. on U. Finally, since (v)y = 0, we have v = 0. However, this implies ||v||z»@) = 0, a contradiction! O

We immediately obtain the following result.

Theorem 4.20 (Poincaré’s inequality for a ball). Assume 1 < p < oco. Then there exists a constant C,
depending only on n and p, such that

v = (W)arllLrB@r) < CT\|DU||LP(B(z,r))

for each ball B(x,7) C R™ and each function u € WHP(BO(z,r)).
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Proof. The estimate of u € W1P(B%(0,1)) is a special case of Theorem where U = B°(0,1). Generally,
if u e WhP(BO(x,7)), let v(z) = u(z + rz). Then v € WHP(B°(0,1)), and

lv = (v)o.1llLr(B(0,1)) < CllDV||Le(B(0,1))-
The desired result follows from changing variables. O

1

1o (R™) is said to be of bounded mean oscillation if

Space of bounded mean oscillation. A function u € L

1
sup

B [u(y) — (w)zr| dy < o0. (4.15)
B(e.rycrn | B@m)| )

The space of all such functions is called the space of functions of bounded mean oscillation, after dividing out

constant functions:
BMO(R™) C L{,.(R"™)/{constant functions},

and the left-hand side of (4.15) defines a norm || - |[gmo(rn) on this subspace.

Remark. Let u € W (R"), and B(z,r) € R". By Holder’s and Poincaré’s inequalities,

1

1/n
1
T/ N uy—uw,rdyg T N uy_uw,rndy
|B(£L’,T)| B(m,r)| ( ) ( ) | <|B(£B,7’) B(z,r)| ( ) ( ) I >

Cr C
< || DU (B = T 1 Dull L (B o))
|B(x,r)| (B = 1B(0,1)] (B

Therefore, W1 (R™) is continuously embedded into BMO(R"), and

llullBmo@®n) < Cl|[Dul|lpn®ny < Cllullwingn)-
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5 Second-order Elliptic Equations

In this chapter, we study the second-order elliptic equations. The problem we are mostly interested in is the
following boundary value problem, which consists of a partial differential equation (PDE) and a homogeneous
Dirichlet boundary condition (BC):

Lu=f inU,

(5.1)
u=0 onJdU,

where U is a bounded, open subset of R”, f : U — R is a known function, and v : U — R is the unknown.
The partial differential operator L is of second order. Given coefficient functions a®,b%, ¢, (i,5 = 1,--- ,n),
the operator L is given by the either of the following forms:

e Divergence form.

Lu=-Y" (a(2)u,,), —szbZ T) Uy, + c(z)u. (5.2)
i,j=1
e Non-divergence form.

Lu=— z”: T) Uy, + Zbl )y, + c(x)u. (5.3)

4,j=1

When the quadratic coefficients a® € C'(U), any of the two forms of L can be rewritten in the other using

product rule. For example, the divergence form (/5.2]) can be written in the non-divergence form:
n n
Lu=— Z a? (x) g, o) + Z b'(x) — Za?j Uy, + c(x)u.
i,j=1 i=1 j=1
Both the two forms are discussed in our study, based on the situation.

5.1 The Dual Space of H]

Let U be an open subset of R™. The Sobolev space H'(U) = W2(U) is a Hilbert space with inner product
(u, v) g1y = / (wv + Du - Dv)dx, wu,v € H(U).
U

The space Hg(U) is the closure of C°(U) in HY(U). Since H}(U) is a closed subspace of H(U), it is also a
Hilbert space with the inner product inherited from H*(U). We write H~1(U) for the dual space to Ho(U):

HYU) = {rlf: H}(U) — R is a bounded linear functional } .
We write (f,u) for the pairing f(u) between H=1(U) and Hg(U). If f € H-Y(U), we define it norm
1fll-1 @y = sup {(f,u) : u € Hy(U), |ullgor ) <1}

By Riesz representation theorem, we have the isomorphism H~}(U) = HJ(U). However, in this section, we
prefer not to identify the space H}(U) with its dual. We point out that, despite the isomorphism, H~1(U)
and Hg(U) are not equal sets. For further discussion, we study an identification of H~1(U) under the usual
L? inner product. This characterization of H~*(U) will be useful in the study of second-order linear PDEs.
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Theorem 5.1. Assume f € H-Y(U). Then there exist functions f°, f*,---, f* € L?(U) such that

(f,v) :/U<f0v+2fivmi> dx, Yve Hy(U). (5.4)

Furthermore,
n 1/2
£l -1y = inf (/ SOIFP dx) SO M e L2(U) satisfies (5.4) (5.5)
Ui=o
Proof. By Riesz representation theorem, for each f € H=1(U), there exists u € H}(U) such that

(f,0) ={w,v)m) = /U(uv + Du - Dv)dz, Yve€ Hy(U). (5.6)

We choose fO =u, and f? = u,, for i =1,--- ,n. Then we establish (5.4). To show (5.5), assume

(f,v>:/U (gov+zn:giv$i> dz, Yve H)(U)

i=1

for some g%, gt, -+, g™ € L?>(U). Setting v = u in (5.6)), we get, by Cauchy’s inequality,

[ ut? + pupyaz = [ <g°u+ ggu> dr < ( / Z |gi|2dx> B ( ] (ul?+ |Du|2>dx)

Hence

1/2

/U (luf? + | Duf?) d = /U > 11 < /U > Io (5.7)

Finally, note that when ||v||H3(U) <1,

n 1/2
(fo0) < (/Ui;w dx> 7

and the equality holds when we choose v = . Hence

HUHH(}(U)
£ llz=10y = sup {{f |v) s v € Hy(U), vl oy <1} = /UZ [f'[? da. (5.8)
=0

Then (5.5)) follows from ([5.7) and (5.8)). O

Remark. (i) Using integration by parts, we can write (5.4 to

<f,v>=/U<f0—Zfii>vdw-
=1

Hence we write f = f0— 3" | f;b whenever l) holds.
Also, we obtain a characterization of H=1(U): if f € H=1(U), then f is the sum of a L? function f° and
the divergence of a vector (f1,---, f™) of L? functions (in weak/distributional sense).
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(ii) If f € L2(U), we let fO = fand f',--- f* =0. Then f = f°— Y7 fi. € H-}(U), with
<f,U> - <f7U>L2(U)'

By 1) we have || f|| -1y < (Ji 1O dx)1/2 < |Ifll2(vy- Hence we get the inclusion
Hy(U) Cc L2(U) — H (V).

We have the following density argument.
Theorem 5.2. The space L?(U) is dense in H=Y(U).
Proof. Fix f € H~'(U). By Riesz representation theorem, we can find u € Hg(U) with (f,v) = (u,v) g1 (v)

for all v € H}(U). We then find an approximation C2°(U) 3 u,, — u in H'(U). Then

(Un, V) g1y = / (unv + Duy, - Dv) dx = / (up, — Auy)v dx. (integration by parts)
U U

Since u,, € C°(U), we have u,, — Au,, € L?(U). Let f,, : H}(U) — R be the functional

<fmU> = <Un,U>H3(U) = <U'n - Aun7U>L2(U)-

Then f,, is a bounded linear functional on L?(U), and

I(f = fry o) = [{u = wn, 0) g3 | < Ml — wnll gz ) V] 22 0)

By taking a supremum on both sides over [[v[|g1 ) < 1, we obtain ||f — fullg-1) < [|u — un| gy w), Which
converges to 0 as n goes to infinity. Then we complete the proof. O

Remark. In the preceding proof, we identify the space L?(U) with its dual. In fact, we prove that (L?(U))* is
dense in the space H=1(U).

5.2 The Lax-Milgram Theorem

In this section, we introduce a general result in Hilbert spaces. We will make use of this result when we
establish the weak formulation of PDEs.

Let H be a real Hilbert space with inner product (-,-)y and norm | - || = /{-, ). We continue to write
(-,+) for the action of an element of H* on an element of H.

Theorem 5.3 (Lax-Milgram Theorem). Suppose that B : H x H — R is a bilinear form, for which there
exists constants a,, 8 > 0 such that

(i) (Boundedness) |B(u,v)| < a|ullgl|v]|g for all u,v € H; and

(ii) (Coercivity) B(u,u) > B|lu||% for allu € H.
Then for each f € H*, there exists a unique uw € H such that

B(u,v) = (f,v)
forallv e H.

Remark. If B is symmetric, i.e. B(u,v) = B(v,u) for all u,v € H, then B becomes a inner product on H, and
our result is the Riesz representation theorem.

45



Proof of Theorem[5.3 We fix u € U, so B(u,-) is a bounded linear functional on H. By Riesz representation
theorem, there exists a unique w, € H such that B(u,v) = (w,,v)y for all v € H. We then let A: H - H
be the operator that maps each uw € H to this unique w,, i.e. B(u,v) = (Au,v)y for allv € H.

e Claim I. A € H*.
Let a, 8 € R and uy,us € H. Then

(A(auq + Busg),v)g = Blauy + Bug,v) = aB(u1,v) + fB(usz,v)
= a{Auy,v) g + f{Aug,v) g = (0Auy + BAus,v)y, Yv € H.

Hence A(auy + Bus) = aAuq + SAus, and the linearity follows. To show that A is bounded, note that
[Aul} = B(u, Au) < allulla|Aullz = [[Au|lg < allull, Yue H.

e Claim II. A is injective, and the range R(A) of A is closed in H.
We first show that A is injective. By coercivity,

Au=0 = |ull} < =B(uu)=(Au,u)g =0 = u=0 = kerAd=0.

R

Next we show that J3(A) is closed in H. Let w € $3(A). Then we can find a sequence w,, € R(A) such
that ||w, —w||g — 0. Let u,, = A" w,. By coercivity,

i — |1 < B(tp — U, Uy — Up)  (Atly — Ay, U — Ui 1
n m =~ =

Bllun — wm | Bllun — vwm | o
<wn_wmaun_um>H 1
= < —l|lw, —w .
e P e

Hence (uy,) is a Cauchy sequence in H. By completeness, we can find v € H with ||u,, — u|| — 0. Then
[Au — wl|g < |Au = Aun || g + [[Aup — wl[g < allu —unlla + [, —wllz — 0.

Hence w = Au € RR(A). Therefore RR(A) is closed in H.
o Claim III. R(A) = H.

Since R(A) is closed, every u € H can be uniquely decomposed to u = ug + u; with ug € R(A4) and

u; € R(A)L. If R(A) # H, we choose v € H\R(A) with orthogonal decomposition v = vy + v1. Then

for all u € H, we have (Au,v1)y = 0. Setting u = vy, we get B(vy,v1) = (Avy,v1)g = 0, and v; = 0 by

coercivity. This implies v = vy € R(H), a contradiction! Therefore R(A) = H.
Now, combining our Claims I, II and III, we conclude that A : H — H is a bounded linear bijection. By Banach
bounded inverse theorem, there exists a bounded linear operator A~! : H — H such that AA~' = A71A4 =1d.
Then for each f € H*, by Riesz representation theorem, there exists w € H such that (f,v) = (w,v)y for all
v € H. Let u = A~ 'w, then

B(u,v) = (Au,v) = (AA™ w,v) = (w,v) = (f,v).

Finally, to prove uniqueness, assume B(u,v) = B(u/,v) = (f,v) for all v € H. By coercivity,

<f7u_u/>_<fau_u/>

1
lu—u'||3 < =B(u—u',u—u) = =0.

B B

Then we complete the proof. O

46



5.3 Weak Formulation and Poisson’s Equation

In this section, we study the weak formulation of the boundary value problem (5.1). Through our discussion,
we assume the differential operator is given by the divergence form ([5.2]):

n

Lu=— Z (aij(x)uzi)mj + sz(x)ux + c(z)u.
i=1

4,j=1

In fact, the exact solution of a second-order PDE can be intractable. To simplify our problem, we may concern
if our PDE holds in the sense of integration, which gives rise to the weak formulation of PDE.

Motivation. We assume that u is a smooth solution of the BVP (5.1). We the multiply the PDE Lu = f
by a test function v € C°(U) and integrate over U:

n

/ Z ' (&) g, vy, + Zbiumv +cuwv | dr = / fvdz.
U U

i,j=1 i=1

Here we use integration by parts in the first term on the left side, where the boundary term vanishes since
v =0 on JU. By approximation, we can obtain the same identity when the smooth function v is replaced by
v € HE(U), and the resulting identity make sense if and only if u € H}(U). Here we incorporate the Dirichlet
BCs u = 0 on U by choosing u € Hg(U). We require the above identity holds for a weak solution w.

Definition 5.4. The bilinear form B : H}(U) x H}(U) — R associated with the divergence form operator L
defined by (5.2) is given by

B(u,v) = /U Z a7 ug, vy, + Zbiuwiv +cw | dz, u,ve HY(U).
ij=1 i=1

When f € L*(U), our goal becomes finding a function v € H§(U) such that B(u,v) = (f,v) 2 holds for
all v € H}(U). More generally, we consider the following problem:

Lu=f0=3" fi inU,

5.9
u=0 on OU, (59)

where f = f0—%" | fi € H-Y(U), and fo, f1,---, fn € L*(U).

Definition 5.5 (Weak solutions). Let L be a divergence form operator defined by (5.2)), and let B be the
associated bilinear form.
(i) Let f € L?(U). A function u € H}(U) is said to be a weak solution to problem (5.1)), if

B(u,v) = <va>L2(U)

for all v € H}(U).
(i) Let f = f=>0", fi € HYU), and fo, f1,---, fn € L*(U). A function u € H}(U) is said to be a
weak solution to problem (5.9)), if

B(u,v) = (f,v)

for all v € Hj(U), where (f,v) = [,,(fov+ > 7, f'va,) dx is the pairing of H=*(U) and Hj(U).
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Example 5.6 (Poisson’s equation). Let f € H~(U). We consider the following boundary value problem:

—Au=f inU,
u=20 on OU.

For a divergence form operator L, this is the case a/(z) = §;;,b'(z) = 0 and c(z) = 0. The bilinear form

associated with the negative Laplacian operator L = —A is given by

B(u,v) = / 0ijUa, Vs, dx = / Du - Dv dx,
U U
and the weak formulation of this problem is
B(u,v) = (f,v), Yve HiU).

Now we study the property of bilinear form B. For any u,v € Hg(U), one can show boundedness:

|B(u,v)| = ‘/ Du - Dvdx
U

< IDullz2@n 1Dvll 2wy < Nullgz oy 1ol 2y o)
Furthermore, by classical Poincaré’s inequality [Corollary , there exists a constant C' > 0 such that
2 2 1 2 1
|B(u,u)| = ., |Dul” dz = ||Dullz20y 2 Fllullzew), Ve e Ho(U).

Then one can show coercivity:

C? 1 1 1
|B(u,u)| = WHDUH%Z(U) + WHDUH%%U) Z17c02 (HUH%z(U) + ||Du||2L2(U)) 2 WHUH?LI(}(U)‘

Therefore, by Lax-Milgram theorem [Theorem [5.3], there exists a unique weak solution u € H}(U) to the
Poisson’s equation under homogeneous Dirichlet boundary conditions.
Finally, we introduce the definition of elliptic PDEs, which is a generalization of Poisson’s equation.

Definition 5.7 (Uniformly elliptic operators). Let L be a partial differential operator of either divergence form
(5.2) or non-divergence form (5.3). Assume the coefficient functions a*,b*,c € L=°(U) for all 4, = 1,--- ,n,
and also assume the symmetry condition

a’ =da", i,j=1,---,n.

The operator L is said to be (uniformly) elliptic, if there exists a constant § > 0 such that

> al(x)gg; > 0|6

ij=1
for a.e. x € U and all £ € R™.

Remark. For each x € U, we write A(z) = (a"(x))};—; to be the symmetric n x n matrix associated with the
quadratic coefficients. Ellipticity essentially requires that for a.e. € U, the matrix A(z) is positive definite,

and the smallest eigenvalue is lower bounded by some 6 > 0.
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5.4 Existence of Weak Solutions

In this section, we discuss the existence of weak solutions for the uniformly elliptic PDE (j5.1). Through our
discussion, we assume the differential operator is given by the divergence form ([5.2)):

Lu:—i(a”xuz T —|—sz (z)u.

4,j=1

Recall that a weak solution satisfies the PDE in the sense of integration.

5.4.1 Energy Estimate

The energy estimate focuses on verifying the hypotheses of Lax-Milgram theorem.

Theorem 5.8 (Energy estimates). Let L be an elliptic partial differential operator, and let B be the associated
bilinear form. Then there exist constants a, B > 0 and v > 0 such that

|B(u,v)| < allull gz o) lvll g2 0y (5.10)
and

BllullF @y < Blusw) +7llullZe @ (5.11)
for all u,v € H}(U).

Proof. For all u,v € H}(U), we can check

1=1

uv—|/ ullvlj—&—g biug,v + cuv | dr
1,j=1

<3 o= / |Du\|Dv\dm+Zubl||Lm(U> / |Dul ol dz + el =0y / o] dee
i,j=1

n

< max Z la™ | oo 0y + Z 16°]] Los 0y, Z 16°] Lo () + llell Lo v lull 22 @y 1ol 222 ) -

1,7=1 =1

We let

Q= max Z lla™ || s () + Z ”bi”L‘X’(U)vZ 6] Lo () + llell Lo v
i,j=1 =1 1=1

Next, by ellipticity, there exists # > 0 such that

/|Du|2dac</ Za Uz, Uz, dx = B(u,u) /Z (V'ug,u+ cu?) d
i,j=1

Blu,u) + Z 15 0 /U \Dul Jul dz + [l z=0) /U Jul? dx

< B(u,u +€Z||bl||L°° o / |Duf? dz + <||C||L°° o+ an = U>> / ul? d,
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where € > 0 is to be chosen. We take ¢ > 0 to be so small that

N D

€Y Iy <
=1

Then for some appropriate constant -y, we have

0
f/ |Du|2dx§B(u,u)+'y/ lu|? da.
2 Ju U

By classical Poincaré’s inequality [Corollary , there exists a constant C' > 0 such that

1
[ I0upde = g [ P de, vue mi).
U U

Combining the last two display, we have

1 1
2 2 2 2
/ |Dul* dz > ez (/ | der/ | Dl da:) > T CQHUHH(}(U)'

By setting g = %, we have

Bllul%s ) < Blu,u) +lull ).
Thus we complete the proof. O

When v > 0 in the energy estimate, the coercivity condition of the Lax-Milgram theorem is not satisfied.
The following existence theorem must confront this possibility.

Theorem 5.9 (First existence theorem for weak solutions). Let L be an elliptic partial differential operator.
There is a constant v > 0 such that for all X > ~ and each function f = fO =" fi € H Y (U), where
O fL - fm e L2(U), there exists a unique weak solution u € H(U) to the boundary value problem

Lu+ X u=f0—3%" fi inU
ut =2 b i (5.12)
u=20 on OU.
Proof. We consider the operator Ly = L + A1d, which has the associated bilinear form
By(u,v) = B(u,v) + Au, v)r2@ny,  u,v € Hy(U).

Take v > 0 from Theorem then B, satisfies the hypotheses of Lax-Milgram theorem for all A > u. We
then fix f = fO— 3", fi € L?(U). By Lax-Milgram theorem, there exists a unique u € Hg(U) such that

By (u,v) = (f,v) = /U (fou—&—Zfium) dx.

for all v € H}(U). In fact, u is the unique weak solution of (5.12)). O

Remark. In fact, we show that Ly = L+ A1d : H}(U) — H~1(U) is an isomorphism for all A > ~.
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5.4.2 The Fredholm Alternative

To study the solvability of elliptic PDEs, we need the tool of Fredholm alternative, which incorporates existence
and uniqueness of solutions. To start with, we consider a bounded linear operator 7" on a Hilbert space H.
We have some standard results in functional analysis, about the kernel and range of T and its adjoint:

ker(T) = R(T*)*, ker(T*) =R(T):, R(T) =ker(T*)*, R(T*) = ker(T)*

Next, we consider a compact operator K : H — H, i.e. K maps each bounded subset of H to a precompact
subset of H. The compactness implies a lot of good properties. Here are some helpful facts:
(i) The adjoint K* of K is also a compact operator.
(ii) Every nonzero point of o(K) (the spectrum of K) is an eigenvalue of K. In other words, if A # 0 and
Al — K is not invertible, then there exists x € H such that Kx = Az. This implies

ker(A\d—K) = {0} &’ ROId-K)=H.

In other words, when A # 0, A\Id — K is injective if and only if it is surjective.
(iii) If A #£ 0, then R(A\Id —K) is a closed subspace of H.
(iv) If XA € o(K)\{0}, the eigenspace of K associated with A is finite dimensional, and

dimker(AId —K) = dimker(AId — K™).
Therefore, if K : H — H is a compact operator and A # 0, the following statements are equivalent:
(a) ker(A\Id—K) ={0}; (b) R(AId—K)=H; (c) ker(AId—K*)={0}; (d) R(AId—K")=H.

We formally summarize our result below.

Theorem 5.10 (Fredholm alternative). Let K be a compact operator on a Hilbert space H, and fit X # 0.
Then exactly one of the following statements holds:

(a) For every v € H, the equation A\u — Ku = v has a unique solution u € H;

(b) The eigenvalue problem Ku = Au has nonzero solution u # 0 in H.
Furthermore, if (a) holds for K, it also holds for the adjoint operator K*; otherwise, (b) holds for both the
operator K and its adjoint operator K*, and their eigenspaces associated with A has the same dimension.

Remark. We can interpret the basic results as follows: In an appropriately formulated problem, either
(a) The inhomogeneous equation can be solved uniquely for each choice of data, or

(b) The homogeneous equation has a nontrivial solution.

Adjoint operators. We assume that b* € C*(U). If u,v € H}(U), we use integration by parts to obtain

n n

/(Lu)vdx :/ — Z (aYug,), +Zbiuxi +ecu | vdr :/ Z a7 g, vy, — Z(biv)mu—&-cuv dx
U U R

i,j=1 i,j=1 i=1
/ Z (a Uy, Va; — Zbluvml (chm) )
5,j=1

:/u — z": (a’ v,; 2 Zb’vm (c—zn:bm>v dx.
U i=1

i,7=1

This identity has a form similar to the definition of adjoint: (Lu,v)r2w) = (u, L*v)2(v)-
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Definition 5.11 (Adjoint). Let L be an divergence form elliptic operator with b; € C*(U) for alli = 1,--- ,n.
The operator L*, called the formal adjoint of L, is defined as

Lo=—Y (a05,)0, — Y bivg, + <c - me> v.
ij=1 i=1 i=1
The adjoint bilinear form B* : H}(U) x H}(U) — R, associated with L*, is defined by
B*(v,u) = B(u,v), wu,ve Hy(U).

Fix f € H-Y(U). We say that v € H(U) is a weak solution of the adjoint problem

L'v=f inU,
v=0 on OU,
if B*(v,u) = (f,u) for all u € H}(U), where (-, -) is the pairing between H~1(U) and H{(U).
We derive an existence theorem for weak solutions of elliptic PDEs using Fredholm alternative.

Theorem 5.12 (Second existence theorem for weak solutions). Let L be a elliptic operator.

(i) Ezxactly one of the following statements holds: either

(a) for each f € L?(U), there exists a unique weak solution u € HE(U) of the boundary value problem

Lu= in U,
f (5.13)
u=20 on U,
or else
(b) there exists a nonzero weak solution u # 0 in H}(U) of the homogeneous problem
Lu=0 1inU,
(5.14)
u=0 on U

The dichotomy (a) & (b) is the Fredholm alternative.
(ii) Furthermore, should (b) hold, the dimension of the subspace N C HE(U) of weak solutions of is
finite and equals the dimension of the subspace N* € H}(U) of weak solutions of the adjoint problem

L*v=0 mU,
v=20 on OU.

(5.15)

(i4i) Finally, the boundary value problem has a weak solution if and only if
(f,v)r2y =0, Yve N
Proof. Step I. We choose A = in Theorem [5.9] and assume without loss of generality v > 0. Let
By (u,v) = B(u,v) +v(u,v) 2y, u,v € Hy(U),

which is the bilinear form associated with the operator L, = L + yId. Then for each g € L?(U) there exists
a unique u € Hj(U) solving B, (u,v) = (g,v) 2(v) for all v € Hj(U). We define the inverse L' : L*(U) —
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Hg(U) by writing u = L *g. For f € L*(U), we observe that u is a weak solution of (5.13) if and only if
u = L;l(’yu +f).

We let K = 'yL;1 and h = L;lf. Then we rewrite this problem to (Id —K)u = h. To employ Fredholm
alternative, we claim that K : L?(U) — L2?(U) is a compact bounded linear operator. To this end, we note

that, by energy estimate [Theorem (5.11), for g € L*(U) and u = L'y,
BllullF wy < By(w,u) = (g, w) 2wy < gl lullzz @y < l9llzz@o) el mw)-

Then
Y
1K gl g2y < Bllgllmw).

By Rellich-Kondrachov compactness theorem, we have H'(U) € L?(U), hence every bounded subset of H!(U)
is precompact in L?(U), and K : L?(U) — L?(U) is a compact operator.
Step II. According to the Fredholm alternative, exactly one of the following statements holds: either
(a) For each h € L?(U), the equation (Id —K)u = h has a unique solution u € L?(U); or else,
(b) The equation (Id —K)u = 0 has a nonzero solution u # 0 in L?(U).
Should the statement (a) holds, we fix any f € L*(U), and set h = L' f € Hy(U) C L*(U). Then we find
a unique u € L*(U) with (Id —K)u = h, and in fact u = Ku+h € H}(U). This is the weak solution to (5.13).
Should the statement (b) holds, the nonzero solution u = Ku € HJ(U). Furthermore, the space N of
solutions of is ker(Id —K). According to Theorem N is of finite dimension. A similar procedure
shows that the space N* of solutions of is ker(Id —K*), which has the same dimension as N.
Finally, when the statement (b) holds, the problem is has a weak solution if and only if the equation
(Id —K)u = h has a solution, if and only if h € R(Id —K) = ker(Id —K*)* = (N*)*. Note that for all v € N*,

(frv)2wy = (f, K*'v) 2y = (K f,0) L2y = v(h, v) L2 (1) -
Therefore, the boundary problem (5.13) has a weak solution if and only if f € (N*)*. O

We also have the following result concerning the solvaibility of problems in the form of (5.12).

Theorem 5.13 (Third existence theorem for weak solutions). Let L be a elliptic operator.

(i) There exists an at most countable set ¥ C R such that the boundary value problem

Lu=Xu+f inU,

(5.16)
u=~0 on 0U,

has a unique weak solution for each f € L*(U) if and only if A ¢ ¥.
(i1) If ¥ is infinite, then ¥ = {A\;}72,, the values of a nondecreasing sequence with A\, — 0.

Proof. We take the constant v from Theorem and assume without loss of generality v > 0. Let A > —~.
According to Fredholm alternative [Theorem 7 the boundary value problem has a unique solution
for each f € L?(U) if and only if 0 is not an eigenvalue of L; that is, u = 0 is the only weak solution of the
following homogeneous problem:

Lu=(+MNu inU,
u=20 on OU,

53



where L, = L 4+ vyId. The PDE holds when

A
_ It A R

u:()\—kv)L,;lu 5

u,

where K = L 1'is a compact bounded linear operator on L?(U). Therefore, the boundary value problem
has a unique solution for each f € L?(U) if and only if 71—)\ is not an eigenvalue of K.

Since K is a compact operator on L?(U), its spectrum o(K) is either a finite set or the values of a sequence
converging to 0. Then the set ¥ has at most countably many values, and Ay — oo if ¥ is infinite. O

Remark. The set ¥ is called the (real) spectrum of the operator L. When A\ € ¥, by the Fredholm alternative,
the following eigenvalue problem has nonzero solution u # 0 in Hg(U):

Lu=>M iU,
u=20 on OU.

Theorem 5.14 (Boundedness of the inverse). If A ¢ 3, there exists a constant C' such that for all f € L*(U),

lullz>wy < Cllfllz2 ),
where u is the unique weak solution of problem . The constant C' depends only on A\, U and L.

Proof. Argue by contradiction. Assume that there exists sequences fi € L2(U) and uy € H}(U) such that uy
is a weak solution of (5.16)) when f = fj:

Lug = Mg + fr. in U,
ur =0 on OU,

but ||ug| 2@y > Kl fellL2@y, k= 1,2,---. We may also assume with no loss that ||u||z2@y =1, so fr — 0 in
L?(U). According to the energy estimate, the sequence (uy) is also bounded in H}(U):

Bllullgrwy < Buk, ur) + vllukllL2w)

= g + froun) 2y + Yulliz @y < % FA+y <1+ A+
By Banach-Alaoglu theorem and Rellich-Kondrachov theorem, there exists a subsequence (uy,) such that
uy, = uw weakly in Hy(U), and wuy, — uin L*(U).
Since B(-,v) is a bounded linear functional on H}(U) for all v € HZ(U), we have

B(u,v) m B(ug;,v) = jli}nolob\ukj + fr V) 2y = (A, v) L2y

=1l
j—oo
Therefore u is a weak solution of the homogeneous problem

Lu=Mu inU,
u=~0 on OU.

Since A ¢ X, we have u = 0 by the Fredholm alternative. However [|lu||z2() = 1, because uj, — u in L?(U),
leading to a contradiction! O
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5.5 Regularity Theory

In this section, we study the smoothness of the weak solution to the second-order elliptic PDE
Lu=f inU.

5.5.1 Difference Quotients
We first study difference quotient approximations to weak derivatives.

Definition 5.15 (Difference quotient). Let u € Ll (U) and V € U. The i'* difference quotient of size h is

u(x + he;) — u(x)
h )

Dlu(z) = i=1,2,-- n,

where z € V and 0 < |h| < d(V,0U). The difference quotient of size h is D"u = (D4, Dbu, -, Dhu).
Remark. If suppv C V and 0 < |h| < %d(V, 0U), we have the integration-by-parts formula

/Uv(ac)Dlhu(x) dx = —/ u(x)D; () da.

U

Also,
Dzh (uv) = ufov + szhu,

where u'(z) = u(x + he;).

Theorem 5.16 (Difference quotients and weak derivatives). Let V€ U C R", and u € L, (U).
(i) Let 1 < p < oo and u € WHP(U). Then there exists a constant C > 0 depending only on p and n such
that for all 0 < |h| < $d(V,0U),

I D"u| o (vy < C||Dull o).

(ii) Let 1 < p < oo and u € LP(V). If there exist constants C,e > 0 such that |D"ul|rs(vy < C for all
0 <|h| <e, thenu e WHP(V), and || Dul|e(vy < C.

Proof. (i) Assume 1 < p < 0o and u is smooth. If z € V and 0 < h < 3d(V, 0U),

hux,“(“ijhei)*u(x)fl hu I
Di'u(z) = = /0 o, (@ + te;) dt.

h h

We may assume h > 0, and the case h < 0 is similar. By Holder’s inequality,

1
h 1" —1y " ”
|D,i u(x)| < 7 |z, (z + te;)| dt < 7P |z, (z + te;)|P dt ,
0 0

Then
|D"u|P dz < C / 7/ lug, (x + te;)|P dt dx = — / / |z, (z + te;)|P da dt
/V ; v hJo h ; o Jv

O ("
< ﬁZ/O /U|uzi(z)|pda¢dt:C||Du||’£p(U).
=1

The general statement u € W1P(U) follows from the density of smooth functions in WP (U).
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(ii) Assume that ||D!'u||1s(v) for all 0 < |[h| < €, and ¢ € C°(V). Then

/V()D% /D ) dz.

Since (HDhuHLP(V))O<‘h‘<6 is bounded, there exists a subsequence hj | 0 such that D?’“u converges weakly in
LP(V) for each i € {1,2,--- ,n}. Let v; € LP(V') be the weak limit. Then

[ @)@ = tim [ w@plow) =~ tim [ DM u@)ot) dr

_ /V vi(2)6(x) dz = — /U vi(2)6(x) da.

Hence u,, = v; in the weak sense, and Du € LP(V,R"), with || Dul|z»vy < C. O

Remark. Variants of this Theorem can hold even if it is not true that V € U. For example, if U is the open
half ball B(0,1) N {z, >0} and V = B(0, 3) N {z, > 0}, we have ||D!u||r(v) < |Jtg, || o7y for all 0 < || < %
andallt=1,2,--- ,n—1.

5.5.2 Interior Regularity

We first study the regularity of the weak solution in the interior of the domain U C R™, and we do not require
the boundary condition v = 0 on QU. Recall that L is the differetial operator of the divergence form

n

Luz—Z(a”xum . —|—Zbl (z)u.

i,j=1

Theorem 5.17 (Interior HZ2-regularity). Assume that a¥ € CY(U) N L>®(U) and b',c € L>®(U) for all
i,j=1,2,---,n, and f € L*(U). Ifu € H*(U) is a weak solution of the elliptic PDE

Lu=f inU, (5.17)

then uw € HE (U). Furthermore, for each open set V. € U, there exists a constant C depending on U,V and

the coefficients of L such that

ullzrz(vy < Clllulle2w) + 11|22 @))-

Proof. We fix an open set V € U, and take an open set W with V€ W € U. By C*-Urysohn lemma, we
take a smooth function ¢ : R™ — [0,1] such that ( =1 on V, and ¢ = 0 on R™\W.

Step 1. Since u is a weak solution of (5.17), we have B(u,v) = (f,v) for all v € H}(U). Then

Z / a’ uvaJ d:zf/U (f;blun cu) vdz. (5.18)

7,7=1

We take |h| > 0 sufficiently small and k € {1,2,---,n}, and substitute v = —D,"(¢?D}u) into (5.15). We
write the resulting equation as A = B, where

Z / au,, (¢ Dku)] . dx, and B = —/ (f - ibzum - cu) D" (¢*Dpu) dz.
i=1

We then estimate the terms A and B.
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Step II. For the term A, we have

A= Z/Dh auy,) CQDZU)QJ dx

z]l

_ Z (/ i, h Dkuz ) (CzDZU)IJ_ dx + /qut (Dl’zaij) (CQDZU)%' dx)

Jl

= Z / a" D, Dju,,¢? dx

i,j=1
+ Z / 2a§5 " Dy, DRuCCs, + ug, (Dffa') Ditug, ¢ + 2u,, (Da™) D,Zu((x]} da
,j=1
=: A1 + AQ.
The uniform ellipcity condition implies
Ay > 0/ C?| D} Dul? de.
U
Since a € C*(U) N L>®(U), there exists an appropriate constant C; depending on (a*) and ¢ such that
| 4g] < cl/ (D} Dul | D}ru| + | Dl Du| |Du| + | Djtu| |Dul) ¢ dx
U

2
< Q/ C?|D}Dul? dx + (Cl +C’1> / (IDjul? + |Dul?) dx
2 Ju 0 w

By Theorem (i), we have ||[D"u|| 2wy < Cal|[Dul|p2(1) for some constant Co. Combining the last three
displays gives

A> Q/ C?|DIFDu? dx — (012 +Cl> (1+ 02)/ | Du|? dz. (5.19)
2 Ju 0 U
Step III. For the term B, we can find a constant C3 depending on coefficients b’ and ¢ such that
|B gcs/U(\f|+|Du|+|u\)|v|dx. (5.20)
By Theorem (i), we can find constants Cy and Cs such that
/U lv|? dx < 04/U |D(¢2Du)|? dz < 8Cy /W |Dhul? dx + 2C, /W C?|DhDu)? dx

< (/ |Du|2dx+/ CZDZDuFdx).
U U

Combining (5.20) and the last display gives

0 4C:
|B| < 1/ C?|D} Dul? dz + <93 + 05) / (If1? + |Dul?® + [u]?) da. (5.21)
U U

Step IV. Since A = B, we combine the estimates ((5.19)) and (5.21)) to obtain for all k = 1,2,--- ,n and all
sufficiently small |h| > 0 that

/V |D} Du|? dx < /UC2|DZDU|2dx < CG/U (If” + |Dul® + |uf?) d
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where Cg is an appropriate constant. By Theorem (i), |Du| € HL (U;R™), and

lullz2(vy < Cr (1 F 22wy + lullarwy) - (5.22)

Step V. Since V€ W, we can take V & Vew. Proceeding exactly as in Steps I-IV with V| ‘N/, W replacing
the roles of V, W, U, respectively. Then the estimate (5.22) is refined to

lull 2y < Cs (1 Flzewy + ullgr o) (5.23)

where Cy is an appropriate constant depending on V', W etc. We take a new smooth function n : R™ — [0, 1]
such that 7 =1 on W, and 7 = 0 on R"\W for some W € W &€ U. Then we set v = n*u in (5.18) to obtain

3 / I, da +2 / g, mn,, de = / (f = by, — cu> n*udz. (5.24)
U U U i=1

i,j=1 i,5=1

By uniform ellipcity abd Cauchy-Schwarz iequality, the following estimate holds for the left-hand side of (5.24]):

n n n
Z / aijn2uxiuxj dr + 2 Z / aijuuxinnxj dx > 0/ n?|Dul? do — 2 Z / la" uuy, | - M, d
U U U U

ij=1 ij=1 ij=1
2 9||77DU||%2(U) — Col[nDul| 2y llull 2 vy - (5.25)
Also the right-hand side satisfies
n .
/U (f > Vg, — CU) n*udz < Crollull 2wy (1f12wy + InDull 2wy + lull2w)) - (5.26)
i=1

Combining (5.24)), (5.25) and (5.26)), we have
OllnDul|22(1ry — (Co + Cro)lIDull 2w lull 2wy = Crollullzzwy (1F 12wy + lullzzgny) <0,

which implies

Co+C (Cy + Chp)? C
||77DU||L2(U) < %HU”L?(U) + \/9492101‘”%2((]) + %”UHLQ(U) (||fHL2(U) + ||U||L2(U))-

Then
/W |Dul? dx < /U772|DU|2 dx = |[nDull 2wy < Cur (1fllz2w) + llullz2w))
We plug-in this estimate to to obtain
lull g2y < Crz (I flle2wy + llullcz@)) -
Then we finish the proof. O

Remark. The function u € H?2

loc

(U) is called a strong solution of (5.17)), because u actually solves the PDE.
Since u € HZ (U), the integration-by-parts formula implies

(Lu, @) 2y = B(u, ¢) = {f, o) r2v), ¢ € CZ(U).

Hence (Lu — f,¢) 2wy = 0 for all ¢ € CF(U), and Lu = f a.e..
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Theorem 5.18 (Higer-order regularity). Let m € Ng, and assume that a*,b',c € C"™ H(U) N L (U) for all
i,j=1,2,---,n and f € H™(U). Ifu € H'(U) is a weak solution of the elliptic equation

Lu=f iU, (5.27)

then u € Hm+2(U). Futhermore, for each open set V€ U, there exists a constant C depending on U,V,m

loc

and the coefficients of L such that

ull rmszry < C (1 f e @) + ullL2y) -

Proof. We establish the desired results by induction on m. The result m = 0 follows from Theorem [5.17]

Step I. We assume that our statements are valid for some m € N. If a¥,b',c € C™T2(U) N L>=(U) for all
i,j=1,2,--- ,nand f € H™""Y(U), by the induction hypotheses, if u € H'(U) is a weak solution of (5.27),
then u € Her2(U)7 and for each W & U, there exists a constant C7 > 0 depending on U, W and L such that

loc

lull gm+zqwy < Cv ([l ermy + llullL2@n) - (5.28)

Step II. We fix V € W € U and a multi-index o with |a| = m + 1. For each ¢ € C(W),

B(u,D“qS):/ Za”um (D“}), +ZquI1Da¢+cuD°‘¢ da
U

,j=1

= [ |3 0 D) + 300D (W) + 00" ) | d

ij=1 i=1

- m+1/ ( ) (D*Pai DPu,, ), +Z DY DPug, )¢ + (D PeDu)g | do
U,8<oc

i,j=1 i=1
_ m+1/
U
n

+ (—1)m+1/U >

ij=1

( ) = > (D P DPuy,),, + Y (D P DPu,,) + (D PeDPu) | ¢ da

B<a i,j=1 i=1

a”’(Du)y, ¢u, + Z b (D), ¢ + c(D*u)¢ | da.
i=1
Since u is a weak solution of (5.27), we have B(u, D*¢) = (f, D¢) 2y = (—1)m+tHDef, ®)r2vy- Let
f=D"f-%" < ) =Y (D*Pa DPu,,)., + Z (D*=Pb DPu,,) + (D> PeDPu) | . (5.29)
7,7=1
Then the last two displays imply
B(Dau7 ¢) = <.]?7 ¢>L2(U)a

which holds for all ¢ € C°(W), and by density for all ¢ € H}(W). Hence & = D%u is a weak solution of

Li=f inW.
By (5.28) and (5.29),

1fllzowy < Co ([[f | zrmsr @y + Nullgmez@ry) < Cs (|| mmer @y + lullz@))
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Step III. By Theorem and estimates (5.28)-(5.29), we see that D%u € H?(V), and
[ D%ul| g2 vy < Cy (||f||L2(W) + HDau”LQ(W)) < Cs (Iflm+r @y + lullL2w)y) -

This result is valid for all multi-indices |a| = m + 1. Hence u € H™*3(V), and

lullgrmsacvy < Co | lullgmezgny + D 1D 2y | < Cr (Ifllamer @y + Il 2r) -
|a]=m+1

Then we conclude the proof. O
Remark. By Theorem if 2(m 4 2) > n, we can conclude that the weak solution u € C™+1 =13 ().

Theorem 5.19 (Infinite differentiability in the interior). Assume that a¥, bt c € C®(U) N L>=(U) for all
i,j=1,2,---,nand f € C®U). Ifu € H'(U) is a weak solution of the elliptic equation

Lu=f iU, (5.30)

then u € C*>*(U).

Proof. By Theorem u € H"(U) for all integers m € N. We fix V € U. According to Theorem [£.12]

u € Ck(V) for each k > 5 by modifying u on a Lebesgue null set if necessary, and hence u € C*°(V). Since
V € U is arbitrary, u € C*°(U). O
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5.5.3 Boundary Regularity
Now we study the regularity of the weak solution up to the boundary of the domain U C R"™. The function u

we study is a weak solution of the BVP

Lu=f inU,
u=0  on JU,

Theorem 5.20 (Boundary HZ2-regularity). Assume that a” € CY(U) and b',c € L*(U) for all i,j =
1,2,---,n, and f € L?>(U). Assume further that OU is C?. If u € H}(U) is a weak solution of the BVP

Lu=f U, (5.31)
u=20 on OU,
then u € H*(U), and there exists a constant C depending on U and the coefficients of L such that
lull >y < Cllullzz @y + 1fllz2@))- (5.32)
Proof. See Evans [I] Theorem 4 of §6.3.2. O

Remark. If uw € H}(U) is a unique weak solution of the BVP (5.31), by Theorem we can simplify the
estimate (5.32) to

lull 2wy < ClfllL2)-

Theorem 5.21 (Higher boundary regularity). Let m € No. Assume that a* b, c € C™tY(U) for all i,j =
1,2,--+,n, and f € H™(U). Assume further that U is C™*2. If u € H3(U) is a weak solution of

Lu=f inU,

(5.33)
u=0 on OU,

then w € H™2(U), and there exists a constant C' depending on U,m and the coefficients of L such that

||UHHm+2(U) < C(HUHHm(U) + ||f||L2(U))~
Proof. See Evans [I] Theorem 5 of §6.3.2. O
Theorem 5.22 (Infinite differentiability up to the boundary). Assume that a®,b',c € C*°(U) N L>®(U) for

alli,j=1,2,--+ nand f € C®(U). If u € H}(U) is a weak solution of the BVP

Lu=f U,

(5.34)
u=0 on OU,

then u € C>=(U).

Proof. By Theorem [5.21) v € H™(U) for all integers m € N. According to Theorem u € C*(U) for each
k > % by modifying u on a Lebesgue null set if necessary, and hence u € C*(U). O
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5.6 Maximum Principles

In this section, we work with the elliptic operator of non-divergence form

n

Lu:—z ugE%—l—Zb ) ug, + c(x)u,

i,j=1

and derive the maximum principles. As before, we assume the uniform ellipticity and symmetry condition in
Definition holds. The maximum principles are based upon the observations that a C? function u attains
a local maximum at a point z¢ in an open set U if and only if Du(z¢) = 0 and D?u(xq) < 0.

Throughout this section, we require that our solutions u are at least C? so that it makes sense to consider
the pointwise values of Du and D?u. This assumption is satisfied under some regularity conditions on the
coefficients of L and the domain U.

5.6.1 Weak Maximum Principles

The weak maximum principles identify the functions that attain their maximum on the boundary.

Theorem 5.23 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient
of L be c=0in U. Assume that u € C*(U)NC(U) and Lu <0 in U. Then

maxu = maxu.
T U

Proof. Step 1. We first assume the strict inequality Lu < 0 in U. By uniform ellipticity of L, the matrix
A(zp) = (aij(xo))zjzl is positive definite, and we take the spectral decomposition

n
=1

where ¢1,--- ,g, € R” form an orthonormal basis of R™, and the eigenvalues Ay, ---, A, > 6 > 0. If there
exists a point zg € U with u(zo) = maxg u, we have Du(zg) = 0, and D?*u(z) < 0. Then

n

Lu(xo) = Z ;5 (20) Uz, (To +Zb T)ug,

1,7=1 =1

n

= Z i(20) Uz, o, (T0) = —tr (A(zo)D*u(zg)) = — Z)\iqiTDzu(xo)qi >0,

=1 i=1

contradicting our assumption Lu < 0 on U. Hence a strict subsolution u attains its maximum over U on 9U.

Step II. For the general case, we let A > [|b]| o (17)/6, and define uc(x) = u(z) + ee*** for z € U. Then
Luc(z) = Lu(z) — eX2a (2)e?® 4+ eXb! (2)e?™t < —eXe?™1 (M — bt (z)) < 0

for each € > 0 and our choice of A. By Step I, we have maxz ue = maxay u., which implies and

maxu+6€—Adiam(U) < r%axu_i_Ee)\cliam(U).
U U

Passing € | 0 implies that

maxu < maxu.
U U

Since OU C U, we also have maxgr v > maxpy U, which concludes the proof. O

62



Remark. (i) A function satisfying Lu < 0 in U is called a subsolution. We are thus asserting that a subsolution
attains its mazimum on OU. Similarly, a function satisfying Lu > 0 in U is called a supersolution. If the
supersolution v € C?(U) N C(U), we may apply this result to —u to obtain

minu = min u.
T oU

(ii) If Lu = 0 in U, we have

max |u| = max |ul.
U oU

(iii) According to our proof, a strict subsolution Lu < 0 in U has no local minimum in U.
We can modify the weak maximum principle to allow for a nonnegative zeroth-order coefficient.

Theorem 5.24 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient
of L be ¢ >0 in U. Assume that u € C*(U)NC(U) and Lu <0 in U. Then

maxu < max ut. (5.35)
U

Furthermore, the equality holds if supy u > 0.

Proof. Let u be a subsolution, and define Ku = Lu — cu on the bounded open set V = {z € U : u(z) > 0}.
Then K has no zeroth-order term, and Ku < 0 on V. By Theorem maxy, ¢ = maxgy U.
If V is empty, we have © < 0 on U, and the inequality is trivial. If V is nonempty, we have
maxay ¢ > 0. We claim that {z € OU : u(z) > 0} = {x € OV : u(z) > 0}:
e If x € OU and u(z) > 0, by continuity of u, there exists ¢ > 0 such that v > 0 on U N B(x,¢), and
UNB(x,e) CV. Then x € V. Since x ¢ V, it must be the case z € V.
o If v € OV and u(z) > 0, it is clear that x € U. If z € U, there exists € > 0 such that u > 0 on
B(z,e) C U, and B(z,e) C V, contradicting the fact € V. Hence = € 9U.

Therefore max v = maxy, v = maXsy © = maxapy u, which concludes the proof. O]

Remark. Similarly, if u € C?*(U) N C(U) and Lu > 0 in U, we have

minu > —maxu .
U oU

In particular, if Lu = 0 in U, we combining the last two results to obtain
max |u| = max |ul.
T U

Following is an immediate consequence of the weak maximum principle.

Corollary 5.25 (Uniqueness of solutions to the Dirichlet problem). Let the zeroth-order coefficient of L be
¢>0inU. Let g € C(OU). The Dirichlet problem

Lu=f iU,

(5.36)
u=g on U

has at most one solution in C*(U) N C(U), i.e. there may be no solution or a unique solution but cannot be

two or more solutions.

Proof. Let uy,us € C?(U) N C(U) be two solutions to (5.36). Then L(u; — uz) = 0 and u; — ug = 0 on OU.
By the weak maximum principle, maxg |u| = maxgy |u| =0 on U. Hence u =0 on U. O
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5.6.2 Strong Maximum Principles

We next substantially strengthen the foregoing assertions, by demonstrating that a subsolution u cannot attain
its maximum at an interior point of a connected region at all, unless u is constant. Before we proceed, we

introduce a technical lemma.

Lemma 5.26 (Hopf’s lemma). Let U be a bounded open set, and let the zeroth-order coefficient of L be ¢ =0
in U. Assume that

(i) ue C2(U)NCU);

(ii) Lu <0 in U, and there exists a point 2° € OU such that u(z®) > u(x) for all 2° € U; and
(iii) U satisfies the interior ball condition at x°, that is, there exists an open ball B C U with 2° € 0B.

Th
en o

v

where v € R™ is the outer unit normal to B at 2°. Furthermore, if we relax our assumption by only requiring

(%) >0,

that the zeroth-order coefficient ¢ > 0 in U, then the same conclusion holds provided that u(x®) > 0.

Proof. Step I. Let B(y,r) be an open ball such that 2° € 0B(y,r) and B(y,r) C U. Define
v(z) = e~ Ae—yl* _ e_’\TQ7 x € B(y,r),
where A > 0 is to be selected below. We also assume ¢ > 0 in U. By uniform ellipticity,

Lv(z) = —4/\264"%79'2(33 —y)TA(z)(z —y) + 22e Me—vl A(z) — 2/\67)“9”7y|2b(m)T(m —y) + c(z)v(z)
< e MNemvl® (L4X%|z — y[? + 22 tr A(z) — 2A|b(@)| |z — y| + (=) .

In the open annular region D = B(z,7)\B(z, 3),

Lv(z) < e Me—ul® (—0X°r® + 2Xtr A(z) — 2A|b(2)| 7 + c(2)) .

By choosing 0 large enough, we have Lv < 0 in D.

Step II. Since u(z”) > u(x), there exists € > 0 so small that u(z°) > u(z) + ev(z) for € dB(x, 5). Also note
that u(z%) > u(x) + ev(x), since v = 0 on dB(x,r). Then

u(z) + ev(z) —u(z’) <0 on dD.
Meanwhile, by Step I, if u(z°) > 0 or ¢ =0 on U, we have
L(u+ ev — u(2°)) = Lu+ eLv — cu(z®) < —cu(2®) <0 in D.

We apply the weak maximum principle [Theorem [5.24] to obtain that u + ev — u(z%) < 0 in D. Note that
w(z®) + ev(2®) — u(2®) = 0. Hence

au 0 81} 0
5 . >
au(x )+€8u(x )20
Consequently,
?(IO) Z 76?(5170) =ev - 2\(zo — y)e*MIO*yI2 —2eare M S 0,
v v
as desired. .
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The Hopf’s lemma is an important tool in the proof of the strong maximum principle.

Theorem 5.27 (Strong maximum principle). Let U be an open, connected set. Assume u € C*(U) N C(U),
Lu <0 in U, and there exists x* € U such that

u(z™) = maxu.
U

(i) If the zeroth-order coefficient ¢ =0 in U, then u is a constant within U.
(ii) If the zeroth-order coefficient ¢ > 0 in U, and u(x*) > 0, then u is a constant within U.

Proof. We write M = maxgu. If u# M on U, we take z € E with u(z) < M, and let E be the connected
component of {x € U : u(z) < M} that contains z. Then E C U is an open set, and E # U since 2* ¢ E. We
also note that E\OU is nonempty, since both E and U is connected. We fix z; € E\OU and € > 0 with
B(x1,e) CU. Then y € B(xy, 5) N E satisfies d(y,0F) < § < d(y,0U).

Next, we let B(y,r) be the largest open ball lying in E, and take 2° € 0B(y,r) N OE. By definition,
u(z®) = M > u(z) for all € B(y,r). We then apply Hopf’s lemma to obtain that 2%(2°) = v - Du(z°) > 0.
On the other hand, since u attains its maximum at 2° € U\E, and Du(z°) = 0, which is a contradiction. [

Remark. (i) Let the zeroth-order coefficient of L be ¢ = 0 (resp. ¢ > 0) in U. Assume that u € C?(U)NC(U)
and Lu > 0 in U. If there exists * € U such that

u(z*) = minu
U

(add condition u(z*) < 0 for ¢ > 0), then w is a constant within U.

(ii) In this theorem, we do not require U to be bounded. Therefore, the weak maximum principle for unbounded
sets, for example, the half space U = {z € R™ : 1 > 0}, where OU = {x € R" : 21 = 0}.
5.6.3 Harnack’s inequality

Harnack’s inequality asserts that the values of a nonnegative solution of a linear elliptic PDE are comparable,
at least in any subregion away from the boundary. For simplicity, we work with elliptic operators of the form

n
_ ij
Lu=— E a Uy,
t,j=1
where the coefficients a* (i, = 1,--- ,n) are smooth.

Theorem 5.28 (Harnack’s inequality). Let V € U be connected. Then for each u € C*(U) with u > 0 in U
and Lu =0 in U,

supu < Cinf u,
v \4

where C' is a constant depending only on V and the coefficients of L.

Proof. We may assume u > 0 in U, for otherwise we could apply the result to u + € and then let € | 0. O
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5.7 Eigenvalues and Eigenfunctions

In this section, we consider the eigenvalue problem

Lw=Xv inU,

(5.37)
w=20 on 90U,

where U is an open bounded region, and A is an eigenvalue of differential operator L provided there is a
nontrivial solution of (5.37)). For simplicity, we work with symmetric elliptic operators of the form

n

Lu= Z (aij(m)uxi)xj . (5.38)

ij=1
The associated bilinear form is

B(u,v) / E umivmj dx.

i,j=1

Theorem 5.29 (Eigenvalues of symmetric elliptic operators). Let L be a uniformly elliptic operator of the
form (5 , where a;; € CY(U) for all i,j =1,2,---, and U is C*.

(i) All eigenvalues of L are real with finite multiplicity;

(i1) If we repeat each eigenvalue according to its finite multiplicity, we have ¥ = {A,}72 | with

O<A <A<,

and A\, T oo as k — oo;
(iii) Finally, there exists an orthonormal basis {wy}32, of L*(U), where wy € H{(U) is an eigenfunction
corresponding to Ag:

ka = /\kwk m U,
wg =0 on OU,

k=1,2,---.

According to the regularity theory discussed before, wy, € H*(U) for k=1,2,---

Proof. Step I. Recalling the proof of Theorem we have 7 = 0 in the energy estimate for symmetric elliptic
operator L. By Theorem for every f € L*(U), there is a unique u € Hg(U) solving B(u,v) = (f,v)r2(v)
for all v € HE(U). Furthermore, following the proof of Theorem the inverse K defined by Kf = u is a
compact bounded linear operator mapping L?(U) into itself.

Step II. We claim that K is self-adjoint. Let f, g € L?(U). Then u = K f is a weak solution of the corresponding
elliptic BVP, and B(u,v) = (f,v)2(v) for all v € H}(U). We choose v = Kg, so B(v,u) = (g, u) r2()- Hence

(fi Kg) 2y = (f,v) 2y = B(u,v) = B(v,u) = (g,u) L2y = (9, K f) L2 (1)

Step III. According to the spectral theory for compact self-adjoint operators, K has at most countably many
non-zero eigenvalues, each with a finite-dimensional eigenspace. Also note that

(f, Kf)r2y = B(u,u) >0,

and 0 is not an eigenvalue of K. Hence all eigenvalues of K are positive. We write 71 > 12 > --- > 0 for the
eigenvalues of K, and write wy, for the corresponding normalized eigenfunctions, which form an orthonormal
basis of L2(U). Since L?(U) is infinite-dimensional, L has infinitely many eigenvalues, and 7, . 0 as k — oco.
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Step IV. Let n # 0. Then

Kw=nw < B(nw,v)=(w,0)@), Yo € H)(U) & Lw:%.

Hence the eigenvalues of L are A\, = 1/ng, k=1,2,---, with A\ T 0o as k — o0, and Lwy = A\pwy. O

Remark. The eigenfunctions (7;7),6 form an orthonormal basis of Hg(U) under the inner product B(,-).
=1

Since Lwy = Apwy, we have
B(wg, wy) = (Lwg, i) 2y = AkHUJkH%z(U) = A,
B(wk,wl) = (ka,wl>Lz(U) = )\k(wk,wl>Lz(U) = O, k 75 l.

By classical Poincare’s inequality and uniform ellipticiy, H}(U) is a Hilbert space under B(,-). If u € H3(U)
and B(wy,u) =0 for all k¥ € N, we have

B(wg,u)

=0, k=1,2,---
)\k 9 [ ]

<wlm U>L2(U) =

Noticing that (wy)%2; is an orthonormal basis of L?(U), we have u = 0. Therefore (wy)?2; is an orthogonal
basis of H}(U) under B(-,-), and

bl Wi W
u = Blu — | —,
S5 7) 7o

where the series converges in H}(U).

In particular, the eigenfunctions (\/1“::7)% - of L = —A form an orthonormal basis of H}(U). Using

integration by parts, we have

/|Vwk|2dac:—/kawkd:c:)\/w,%dx:)\k,
U U U

/Vwk-led:v:—/kawldx:)\l/wkwldx:O, k#I.
U U U

Following the same procedure as above, we see that (wy)?S, is an orthogonal basis of Hg(U).
We call the smallest eigenvalue Ay > 0 the principal eigenvalue of L.

Theorem 5.30 (Variational principle for the principal eigenvalue). Let A1 be the principal eigenvalue of L.
(i) (Rayleigh’s formula)
A =min {B(u,u) : u € Hy(U), ||ul|p2ry = 1} (5.39)

(i) Furthermore, the above minimum is attained for a function wy, positive within U, which solves

L’LU1 = /\1w1 m (]7

wp =0 on U.
(iii) Finally, if u € HY(U) is any weak solution of

Lu=Mu inU,

(5.40)
u=0 on U,

then u is a multiple of wy.
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Proof. Step 1. We let (wy)72; be the normalized eigenfunctions of L, which form an orthonormal basis of
L*(U) and an orthonormal basis of Hj(U) under B(-,-). If u € Hj(U) and ||ul| g2y = 1, we write

= W Wi

Zuka2(ka—ZB< )

k=1 k=1 VAR VA
Since ||ul|z2y = 1, we have

1=

oo
(u, we) L2 w 1 B(u,u
(u 'IU]g L2(U) E )B< b ) < E )\7 u, UJk L2 U)B(U U}k) ()\1 )

Mg

>
Il

1

Therefore B(u,u) > A1, and the inequality holds if w = wy. This proves (i).

Step II. Let uw € H(U) and [lul[z2y = 1. We claim that u is a weak solution of (5.40) if and only if
B(u,u) = A1. Clearly, (5.40)) implies B(u,u) = (A\u, u) 2@y = )\1||u||2L2(U) = A1. Conversely, if B(u,u) = Ay,

> A wi) iy =M = =D (wwi) oy Blu,wi) = Y Molus wi) fa -
k=1 k=1 k=1

Consequently, (u, wy) 2y = 0 for all A, > A;1. Since A; has finite multiplicity, it follows that

m
E u, wk L2(U)Wk
k=1

for some m, and Lu = >, (u, wi) L2y Lwe = >3 (w, we) L2y Awy, = Au, with u = 0 on OU.

Step III. We prove that if u € HE(U) is a nontrivial weak solution of (5.40)), then either u > 0 in U or u < 0
in U. We may assume [|u||r 2y = 1, and take

a:/U(qu)2d:c, 5:/{J(u*)2dx

Then a + 8 = 1. Furthermore, by Proposition ut € HY(U), with

Du a.e. on {u > 0}, _ 0 a.e. on {u > 0},
and Du~ =

0  ae. on {u <0}, —Du a.e. on {u <0}.

Dut =

Then B(u™,u~) = B(u",u") =0, and
A = Blu,u) = B(ut,ut) + B(u™,u™) = Ml e + Al [Ba = Ala+ B) = Ar.
The above inequality is in fact an equality, and
B(u®,ut) = Ml[ut L2y, Blu™,u”) = Mllu T2,

Hence both u* and u~ solves (5.40)) in the weak sense. Since the coefficients of L are in C>°(U), we have
ut,u™ € C°(U). Note that Lu™ = \jut > 0 on U, by the strong maximum principle, we have either u > 0
in U or u=0in U. The same conclusion holds for «~. This proves (ii).

Step IV. Let u and u be two nontrivial weak solution of (5.40)). By Step III,

/Uﬂdz#O.
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Then there exists a constant ¢ such that

/U(ufcﬂ)d:zzzo.

Note that u — cu is also a weak solution of (5.40)). By Step III, u = cu in U. This proves (iii). O
Remark. The assertion (iii) says the eigenspace of \; is one-dimensional, and 0 < A\; < Ay < A3 <

Theorem 5.31 (Courant’s minimax principle). Let 0 < A\ < Ag < A3 < --- be the eigenvalues of elliptic
operator L with zero Dirichlet boundary condition. Then

AL = min max B(u,u), k=1,2---,
S€¥k_1  yest
”u”L2(U):1

where Y _1 is the collection of all (k — 1)-dimensional subspaces of HE(U).

Proof. Let S € ¥3,_1, and Wy, = span{wy,--- ,wy}. Since S is (k — 1)-dimensioanl, S+ N W}, is a subspace
with positive dimension. We take u € S+ N W}, with llull 2y = 1. Then u = Zle (u, wy) 2 (ywy, and

’U, U}l L2(U) > )\k

HM;T

k
g uwleU)Buwl
=1

Hence for all S € 3;_1,

max  B(u,u) > A. (5.41)

4

el 2y =1
On the other hand, if we take S = span{wy,--- ,wy_1} and u = wy, € S, we have
B(wy, wi) = A {wp, wp) 720y = Ak
Therefore the lower bound in can be reached, and

Ar = min max  B(u,u).
S€¥k-1  wueSt
HUHL?(U):1

Thus we finish the proof. O
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6 Second-order Parabolic Equations

Setting. In this chapter, we study the second-order parabolic equations, which are natural generalizations
of the heat equation. We assume U is an open and bounded set, and set Up = U x (0, T] for some fixed time
T > 0. We study the initial/boundary-value problem

u+Lu=f in Ur,
w=0 on U x [0,T], (6.1)
u=g on U x {t =0},

where f : Ur — Rand g : U — R are given, and v : Uz — R is the unknown, written u = u(x,t). The variable
x taking value in U is called the spatial variable, and the variable t taking value in [0,7] is called the time
variable. Given coefficient functions a*, b, ¢, (i,5 = 1,--- ,n), the second-order partial differential operator L
is given by the either the divergence form

n

Lu=— Z (a™ (x,t)uzi)xj + Zbi(x,t)uxi + c(z, t)u (6.2)
i=1

i,j=1
or the non-divergence form

n

Lu=— " a¥(2,)uge; + Y b (2,0)uq, + c(z, t)u. (6.3)

ij=1 i=1
We give the definition of parabolic operators below.

Definition 6.1 (Uniformly parabolic operators). Let L be a partial differential operator of either divergence
form (6.2)) or non-divergence form (6.3). Assume the coefficient functions a®,b',¢ € L>(Ur) for all i,j =

1,---,n, and also assume the symmetry condition

a’ =a*, di,5=1,--- ,n.

The differential operator % + L is said to be (uniformly) parabolic, if there exists a constant 6 > 0 such that

n

> a(x,t)g& > 0)¢

ij=1
for all (x,t) € Ur and all £ € R™.

Remark. In particular, for each fixed time 0 < t < T, the operator L is a uniformly elliptic operator in the

spatial variable z.

General second-order parabolic equations describe in physical applications the time-evolution of the density
of some quantity u, e.g. a chemical concentration, within the region U. The second-order term Y27 .| a" g4,
describes diffusion, the first-order term Z?:l biu,,, describes transport, and the zeroth-order term cu describes
creation or depletion. A simplest example of second-order parabolic equation is the heat equation

ut—Au:O iIlUT,

u=0 on OU x [0, T, (6.4)
u=g on U x {t =0},
where A =" | 8672? is the Laplacian operator. In this example, a;; = 0;5,b; = 0,c =0 forall 4,5 =1,--- ,n.
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6.1 Banach Space-Valued Functions

In this section, we study a special kind of Sobolev spaces, which consist of functions mapping time into Banach
spaces. For the completeness of our discussion, we first study the property of functions taking values in Banach
spaces. We work with a Banach space X equipped with a norm || - ||. We will specify later the what are the
elements of the space X.

6.1.1 Definition and Properties

Definition 6.2. Let (Q, %, u) be a measure space, and (X, || - ||) a Banach space.
(i) A function s : Q — X is said to be simple if it is of the form

s(t) = ZXE (t)ui,

where each F; is a measurable subset of Q with m(E;) < oo and u; € X.

(ii) A function w : Q — X is said to be strongly measuable if there exist simple functions s : Q — X such
that ||u(t) — s(t)|| — O for a.e. t € Q.

(iii) A function u : Q@ — X is said to be weakly measuable if for every f € X*, the mapping t — (f, u(t)) is
a measurable function.

(iv) A function u : Q — X is said to be almost separably valued if there exists a subset E C Q with m(E) =0
such that the set {u(t) : t € Q\E} is separable.

Remark. A strongly measurable function w : © — X must be weakly measurable. To see this, we take a
sequence of simple functions sy : @ — X such that |u(t) — si(t)|| — 0. For each f € X*  the mapping t —
(f,s(t)) is of the form Y. ;| X, (t){f, u;), which is a simple function on . Then the mapping ¢t — (f, u(t))
is a.e. the pointwise limit of a sequence of simple functions, which is measurable.

Also, a strongly measurable function u : 2 — X must be almost separably valued. To see this, we take
Sk to be the range of s, which is a finite set, and let E be the set of points ¢ € §2 such that s (¢) does not
converge to u(t). Then m(E) =0, and {u(t) : t € Q\E} = Up—; Sk-

We have the following criterion for strong measurability.

Theorem 6.3 (Pettis). A function u : Q — X is strongly measurable if and only if it is weakly measurable

and almost separably valued.

Proof. We only need to show the “if” part. We may assume without loss of generality that {u(t) : t € Q} is
separable. We may also assume X is separable, else we can replace X by the closure of the range of u.

Since X is separable, the closed unit ball in X* is weak™ separable. We take a sequence (f;) C X* with
[l /x|l <1 such that for each f € X* with ||f[| <1, there exists a subsequence (fx,) such that (f,,u) — (f,u)
for all u € X. For any a € R and f € X*, we define

A={teQ:|u@®)| <a}, and A;={teQ:|(f,u®)| <a}.

It is clear that A C ﬂH <t Ay. On the other hand, by Hahn-Banach theorem, for each ¢t € Q, there exists
[ foll =1 such that (fo,u(t)) = [[u(t)||. Hence A > ;<1 Ar. Applying our density assertion, we have

o0
A= () Ar=[)As.
lri<1 k=1
Since u is weakly measurable, every Ay, is measurable, and the intersection A is also measurable. Hence the

function ¢ — [|u(t)|| is measurable.
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Since the range of u is separable, for each k € N, we cover u(£2) by a sequence of open balls B(uy;, %) As
before, the mapping ¢~ [|u(t) — uy ;|| is also measurable. Then the sets By ; = {t € Q: |u(t) —up | < £}
are measurable, with Q = U;’il By, ;. We set

uk(t) = Uk,j, ift e Bl/@j = Bkﬂ'\(Bk.J U---uy Bk7j_1).

By definition, we have |luy(t) — u(t)| < + for every ¢t € Q. Therefore (u) is a sequence of simple functions
with strong limit w, and w is strongly measurable. O

Next we define the integration of Banach space-valued functions.

Definition 6.4 (Bochner Integral). For a simple function s(t) = Y. | X, (t)u;, define

[ stmtan =3 u(Enus
Q i=1

A strongly measurable function u : 2 — X is said to be Bochner integrable, if there exists a sequence of simple
functions s — w a.e. in such a way that

lim /Q u(t) — sk ()] p(dt) = 0. (6.5)

n—oo

In that case, we define the Bochner integral

/Q w(t)u(dt) = lim | sp(t)u(dt). (6.6)

n— oo Q

Remark. To justify this definition, we need to verify the limit on the right-hand side of exists and is
independent of the choice of approximation sequence (sg). Note that

which converges to 0 as k,m — oo, and the limit exists by completeness of X. Also, the limit is independent

[ sutomian - [ sm<t>u<dt>H < [ su(®) = sm@lnta) < [ Clsete) = @)] + s (0) ~ u(o)]) uta)

of the choice of (si), since any two such sequences can be combined into a single approximating sequence.

Theorem 6.5 (Absolute integrability). A strongly measurable function uw : Q — X is Bochner integrable if

and only if the function ||u|| is integrable. In that case,

H/Qu(t)u(dt)H S/QHu(t)H,u(dt). (6.7)

Proof. The “only if” part. Since wu is strongly measurable, ¢t — ||u(t)|| is measurable. By condition (6.5)), we
have [, [|sk(t) — w(t)|| u(dt) < 1 for large enough k, and

/Q lu(®)llde) < / ()| (dt) + / l56(t) — w(t) [u(dt) < 0.

The “if” part. Let uw be a strongly measurable function such that ||u| is integrable, and let (ug) be a
simple approximating sequence. Then sx = X {|ju;||<2|lu|} ¥k 1S also a simple approximating sequence such that
sk < 2||u|. By dominated convergence theorem,

lim /Q ut) — s (8)]|(dlt) = 0.

k—o0

The final inequality is trivial for simple functions, and the general case follows by approximation. O
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Corollary 6.6 (Dominated convergence theorem for the Bochner integral). Let uy be a sequence of Bochner
integrable functions such that wp — w a.e.. If there exists an integrable function g : Q@ — Ry such that

|luk|| < g a.e. for all k, then w is Bochner integrable and

/Qu(t)ﬂ(dt) = lim [ wg(t)u(dt).

k— o0 Q

Proof. Since ||u|| < g a.e., u is Bochner integrable. Note that |u — u|| < 2¢g. We then apply Theorem
and dominated convergence theorem to obtain

Mﬂ/u@mm/uWMWWSHm Jea(t) — o (B)]a(de) = 0.
Then we conclude the proof. O]

Theorem 6.7. Let X and Y be Banach spaces, and let T : X — Y be a bounded linear operator, and
u :  — X a Bochner integrable function. Then Tw : Q0 — Y is Bochner integrable, and

7 [ w(outdn) = [ (Tu)outdo. (6.8)

Proof. Take simple functions s — w a.e.. Then T's; is a simple approximating sequence of Tu, and Tu is
strongly measurable. Also note is valid for simple functions, and the general case follows by definition. [

Remark. In particular, if f € X* we have

(1. [ wtomtan) = [ (unutan,

6.1.2 Spaces Involving Time

In this section, we consider the time interval Q = [0,7] with the Lebesgue measure. Generally, X is a real

Banach space comprising functions on some measure space.

Definition 6.8 (LP and C spaces involving time). Let T'> 0, and (X, || - ||) a Banach space.
(i) Let 1 < p < oo. The space LP(0,T; X) consists of all strongly measurable functions w : [0,7] — X with

1/p

T
|l e (o,7:x) = (/ [l (®)])P dt) < 0.
0

The space L>°(0,T; X) consists of all strongly measurable functions w : [0,T] — X with
llw] oo (0,7 x) = esssup [[u(t)|| < oo.
0<t<
(ii) The space C([0,T]; X) consists of all continuous functions w : [0,7] — X with
lulleorx) = sup [u(t)] < oo.
0<t<T

Definition 6.9 (Weak derivative). Let u € L'(0,T;X). We say a function v : [0,7] — X is the weak
derivative of u, written u’ = v, if for all scalar test functions ¢ € C°([0,77]),

/0 ¢(t)u(t)dt:—/0 o(t)v(t) dt
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Definition 6.10 (Sobolev spaces involving time). Let 1 < p < co. The Sobolev space W1P(0,T; X) consists
of all functions w € LP(0,T; X)) such that u’ exists in weak sense and belong to LP(0,T; X). We define

1/p

(/0 (IIU(t)IlerIIU’(t)Ip)dt) , 1<p<oo,

esssup ([lu(t)]| + [|[u'(#)]]) , p = oo.
0<t<T

||u||W1=P(O,T;X) =

We also write H(0,T; X) = W12(0,T; X).
The space W1P(0,T; X) can be continuously embedded into the space C([0,T7]; X).

Proposition 6.11 (Calculus in an abstract space). Let 1 < p < oo, and w € WHP(0,T; X). Then
(i) uw e C([0,T]; X) after possibly being redefined on a subset of [0, T] of measure zero.
(i) For all0 <s<t<T,

t
u(t) =u(s) + / ' (7)dr.
S
(i4i) There exists a constant C depending only on T such that
sup lu(t)[| < Cllullwrrorx):
0<t<T
Proof. We consider the mollification u¢ = 7, * u, where 7, is a mollifier on R. Analogous to the Remark under

Lemma, we can check that (u€)’ = 7. * u’. By Proposition and the appending Remark, as ¢ | 0, we
have u¢ — w a.e. on [0,7], and (u)’ — ' in L'(0,T; X). Given 0 < s <t < T, we have

¢
u(t) = u(s) +/ (u)' (1) dr.
S
Letting €} 0, we have for a.e. 0 < s <t < T that
t
u(t) = u(s) —|—/ u' (1) dr.

Since u’ € LP(0,T; X) C L*(0,T; X), the integral is continuous in both s and t. Hence w is in fact continuous
on [0,T], which gives both (i) and (ii). For the estimate (iii), the case p = oo is clear. If 1 < p < 0o, we write

mm><ng+13mﬂm-<w@m+lﬂwvnm.

We integrate this relation with respect to s to obtain

T T rt
Tl < [ uslas+ [ [ )i
S
T T
< [ luelds+1 [ jo)ar
0 0
1 1
< T Hullroron + T2 v,

Since this estimate holds for all ¢ € [0, T, the proof is completed. O

In the study of second order parabolic PDEs, we often work with the functions w € L?(0,T; Hg(U)) for
which u' € L?(0,7; H=*(U)). We have the following more specific results for these functions.
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Theorem 6.12 (More calculus). Suppose u € L?(0,T; H}(U)) and v’ € L*(0,T; H=*(U)). Then
(i) w e C([0,T); L>(U)) after possibly being redefined on a subset of [0, T] of measure zero.
(ii) The mapping t — ||u(t)|| 12y is absolutely continuous, and

%Hu(t)HL?(U) = 2(u/(t), u(t))

for a.e. 0 <t < T, where {-,-) is the pairing between Hi(U) and H=(U).
(iii) There exists a constant C depending only on T such that

sup |lu(t < C( u . + [|u’ - ) )
ogthH ()||L2(U)_ [ ||L2(0,T,H5(U)) [ HL2(0,T,H L))

Proof. We take the mollification u¢ = 7, * u, where 7, is a mollifier on R. By the Remark under Lemma [2.5
Proposition and the appending Remark, as € | 0, we have u¢ — u a.e. on [0,7] and in L?(0,T; H}(U)),
and (uf) =n. xu' — w' in L2(0,T; H1(U)). For any 0 <t < T, we have

% ||U€(t) — u5(t)||L2(U) = %/U (ue(t) — ué(t))2dx = /U2 [(uf)/(t) — (ué)/(t)] . [’u,ﬁ(t) — U‘s(t)} dr

=2((u)'(t) — () (1), u(t) — (1)),

where we apply the dominated convergence theorem to interchange the differentiation and integration. Next,
we fix s € [0, 7] such that u¢(s) — u(s) in L2(U). Then

Hus(t) - ué(t)HLz(U) < Hue(s) - ué(s)HLz(U) + 2/0 |<(u6)l(7—) - (’u’é)/(T)?'u’e(T) - u6(7)>’ dr

T
< o) = @ Oy +2 N0 = @Oy 1) = 00y
< u(s) - ué(s)Hm(U) +[(u) - (ué)/|‘L2(O,T;H*1(U)) + [t - u§||L2(0,T;Hg(U)) '

which holds for all 0 < ¢ < T. Therefore the mollifcation (u¢) is a Cauchy net in C([0,T]; L?(U)), which
converges to some v € C([0,T]; L2(U)). Note that for a.e. t € [0,7], we have u®(t) — u(t) in H}(U), and also
in L2(U). Then we conclude that u = v a.e., which gives (i). To show (ii), note that

t
€ 2 € 2 € €
[ Ol 2y = lw ()72 0y +2/ [((u®)' (1), u"(7))| dr.
Identifying w with v above and letting € | 0, we have for all 0 < s <t < T that
2 2 ’
lu®)Iz2 0y < lwls)llz2 (o) +2/ [(w'(7), u(r))| dr.
S
Finally, to show (iii), we integrate the above relation with respect to s to get
) T ) T 4t
Tty < [l ds+2 [ [ 1) up)aras
T T

2
< [ o) ey ds 2T [ )2 () g s
< ||U||%2(0,T;L2(U)) +T (HquLZ(o,T;Hg(U)) + ||“/||2L2(0,T;H—1(U))) :

Since this estimate holds for all ¢ € [0, 7], and |[w|z2(0,7;22v)) < [[wllz20,7;2 (), We conclude the proof. [
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Theorem 6.13 (Mapping into better spaces). Let U be a bounded open set such that QU is smooth, and
m € Ny. Suppose u € L*(0,T; H"2(U)) and v’ € L*(0,T; H™(U)). Then

(i) w e C([0,T]; H"(U)) after possibly being redefined on a subset of [0,T] of measure zero.

(i) There exists a constant C depending only on T,U and m such that

sup |[Ju(t)||gm+ry < C (||U||L2(0,T;Hm+2(U)) + Hu/||L2(O,T;H’"(U))) .
0<t<T

Proof. Step I. We first assume that m = 0. We take a bounded open set V' 3 U, and apply Theorem to
construct an extension Eu = w on R™, which compactly supported on V. In view of the estimate (3.4), we
have w € L2(0,T; H*(V)), and

@l 2 0.7:02(vy) < CrllwllL20.1:020))- (6.9)

In addition, since E is a bounded linear operator from L?(U) into L?(V'), we consider the difference quotients
in variable ¢ and apply methods similar to Theorem We fix € > 0. Then for all 0 < |h| < §,

L2(e,T—¢;L2(U)) > L2(0,T;L2(U))>
|D" | <l
and
1D ul| L2(e.7—ei2(vy) < IE L2 D™l 2(e r—L20)-
We apply Theorem (ii) and let € | 0 to get
[ (| 20,7502(v)) < Collwll 20,520 (6.10)

Step II. If w is smooth, we apply integration by parts to obtain

i/ | D (t)|? dx
dt |y

We then integrate on both sides with respect to ¢ to get

=2 =2 < Cs (@' ()| c2vy + [@(t) |2 vy) -

/ D' (t) - Du(t) dz
\%4

/ o' (t)Au(t) dz
\%4

1Dt r20vy < Ca (W | L2007 02(vy) + 1Bl 20,7 12(v)) ) -
Similarly,
@)l L2vy < Cs (@] L20,m:L20v)) + @l L20,7:22(v)) -

Recalling the estimates and (6.10]), we have

sup [lw(®)llgr @y < Co (10l L20,m5220)) + @l L20,m302(0))) -
0<t<T

The same estimate holds even if u is not smooth, by approximating 7. *u, as before. As in the previous proofs,
it also follows that w € C([0,T]; H'(U)).

Step III. For the general case m > 1, we finish the proof by induction. Let « be a multiindex of order |a| < m,
and set v = D%u. Then v € L?(0,T; H*(U)) and v’ € L*(0,T; L?*(U)). Then v € C([0,T], H*(U)), and

sup [lv(t)||grwy < C (HU/HLQ(O,T;L?(U)) + ||’U||L2(0,T;H2(U))) .
0<t<T

We take summation over all multi-indices |&| < m to conclude the proof. O
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6.2 Weak Formulation of Second-order Parabolic Equations

In this section, we study the initial/boundary-value problem

u + Lu = f in Up,
u=0 on U x [0,T], (6.11)
u=g on U x {t =0},

where L is a uniformly parabolic operator of the divergence form
_ ij i
Lu ..Zl (a ($7t)uzi)mj + 21) (z,t)ug, + c(x, t)u. (6.12)
i,j= i=
To find an appropriate weak formulation for the initial/boundary-value problem we assume for now that
ad bt ce L®(Uyr), fe€L*(Ur), and g€ L*(U).

Definition 6.14. The time-dependent bilinear form B : H}(U) x Hg(U) — R associated with the divergence
form operator L defined by (5.2)) is given by

n

B(u,v;t) :/U Z

a’ (-, )y, vy, + Z b (- g, v + (-, t)uw | do
ij=1 i=1
for u,v € Hj(U) and a.e. t € [0,7].

Motivation. We assume that u is a smooth solution of the PDE (/6.11)). We switch our viewpoint by associate
u with a mapping w : [0,T] — HE(U) defined by

[w(®)](z) = u(x,t), €U, 0<t<T.
Also, we define f :[0,7] — L*(U) by
[f®)(z) = f(z,t), z€U, 0<t<T.
If v € HY(U), we multiply the PDE u; + Lu = f by v and integrate by parts to obtain
(W'(t),v) 2wy + B(w,v;t) = (f(t),v) 2y, 0<t<T. (6.13)

Meanwhile, recalling Theorem [5.1] we have

Uy :g0+igij = (fibiumi cu) fi (iaijux) c HY(U),
=1 : ' v

with the estimate
1/2

el oy < < C (lullmyw) + 1 2 -

A
S~
1[~]

[

This estimate suggests that it may be reasonable to find a weak solution with ' € H=1(U) for a.e. 0 <t < T,
in which case the first term in (6.13)) can be rewritten as (w'(t), v), which is the pairing of H~1(U) and H}(U).
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Definition 6.15 (Weak solutions). Let L be a divergence form operator defined by (5.2), and let B(-,-;t) be
the associated time-dependent bilinear form. A function w € L?(0,T; H}(U)) with v/ € L?*(0,T; H=1(U)) is
said to be a weak solution to the parabolic initial/boundary-value problem (6.11), if w(0) = g, and

(u'(t),v) + B(u,v;t) = (f(t),v) (6.14)

for each v € H}(U) and a.e. 0 <t <T.

Remark. According to Theorem we identify u with the continuous version w € C([0, T]; L?(U)), and thus
the requirement w(0) = g makes sense.

Next, we study the existence and uniqueness of weak solutions of second-order parabolic PDEs.

6.2.1 Galerkin’s Method

In this part, we build a weak solution of the parabolic initial/boundary-value problem (6.11)) by constructing
finite-dimensional approximations and passing to limits. This is called the Galerkin’s method.

Approximation on finite basis. We take a collection of smooth functions wy, = wy(x) such that
(i) (wg)%2, is an orthogonal basis of Hj(U), and
(ii) (wg)$2, is an orthonormal basis of L?(U).
For example, we can take (wg)52; to be the completed set of appropriately normalized eigenfunctions of the
negative Laplacian operator —A in Hg.
We fix m € N, and seek a function w,, : [0,7] — H}(U) that can be seen as a projection of a solution of
(6.11)) onto the finite-dimensional subspace spanned by functions (wy)jr ;. This projection is of the form

m
U (t) = Z d® (t)wy. (6.15)
k=1
By definition of the weak solution, we select the coefficients d¥, according to

dﬁz(o) = <97wk>L2(U)7

(6.16)
(up, (), wi) L2 vy + B, wis t) = (F(E), k) L2 v)-

Theorem 6.16 (Construction of approximate solutions). For each m € N, there exists a function w,, of the

form (6.15)) that satisfies (6.16]).
Proof. If u,, is of the form (6.15)), by orthonormality of (wg)32 |,

m
(dF) (t) = (ul, (t), wk)r2@y, and  B(wp,wp;t) = Zekl(t)dﬁn(t),
1=1
where ¥ (t) = B(wy, wy;t) for k,1 =1,2,---. We further write f*(t) = (f(t),wr) 2y and gk = (9, wr) L2(v)-
Then (6.16]) becomes a linear system of ODE

() (t) + 202 M (D), (1) = F4 (1),

k=1,2,---,m. (6.17)
dk, (0) = g*,

According to standard existence theory for ordinary differential equations, there exists a unique absolutely
continuous function d,,(t) = (dL,(¢),--- ,d™(t)) satisfying (6.17) for a.e. ¢t € [0, T]. Hence the u,, defined by
(6.15)) solves ([6.16) for a.e. t € [0,T). O
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6.2.2 Energy Estimates

To establish an appropriate convergence result for the approximating sequence (u,,)S>_; constructed by

Galerkin’s method, we need some uniform estimates.

Theorem 6.17 (Energy estimates for the parabolic PDE). Let (u,,)%_, be the approzimating sequence (6.15))
obtained by solving (6.16]). Then there exists a constant C' > 0, depending only on U, T and coefficients of L,
such that form=1,2,---,

OiltlgTHum(t)HLz(U) + wmll 20,3 0y + 1wz mm— @y < C (Ifleeomzw)y) + lgllzz@y) - (6.18)

Proof. Step I. Combining and 7 we have
(up, (), tm) L2y + B, tmit) = (F(t), wm) 2(0) (6.19)
for a.e. ¢t € [0,T]. By Theorem there exist constants 3 > 0 and y > 0 such that
Bllwm Oz @y < Btm, wmst) +vwm (@220
for all t € [0,T] and m € N. Since %Hum(t)H?LQ(U) = 2(uy,,(t), wm) 12(v), the estimate implies

d
(1) 0 + 28l (O 1y < Cr (et ()220, + 15D 201) (6.20)

for all ¢t € [0,T], where C} is a constant depends only on U and coefficients of L.
Step II. We relax estimate (6.20) to obtain

T t
et D120y < Nt ()220 + / 1£(5) 2200y ds + C / o (3)112 0 ds.

By Gronwall’s lemma, for all 0 <t < T,

T
[ ()12 1) < €** (llum(0)|%2(w +/0 £ ()12 dS) :
Note that ||, (0)( 22y < llgllz2), we have
sup |wp ()| 72y < €7 (||f||%2(O,T;L2(U)) + ||g||L2(U)) . (6.21)
0<¢<T

Step II1I. We integrate both sides of (6.20]), and apply (6.21) to get

T 1T
Cl(l + e~ )
w720, 113 (1)) = /o [ ()02 (1) dt < Y R <||f||%2(o,T;L2(U)) + ||9||L2(U)) : (6.22)

Step 1V. We take any v € Hi(U), with vl y < 1, and write v = vo + v1, where vy = > (v, W) L2 (Wi
is the projection of v onto span{wi,--- ,wy,}, and (vi,w) 2@y = 0 for all k = 1,2,--- ,m. By (6.16)),

(u, (t),v0) L2(v) + B(tm, voit) = (F(t),v0) 20

for a.e. ¢ € [0,T]. Since |[voll iy < [Vl < 1, we have

(21, (8), )] = [ (0 (8), w0} 20| = [{F (), 00) £20) — B, 003 )] < Ca (Bl + e () sy ) -
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The above estimate holds for all v € Hg (U) with |[v]| g1y < 1. Hence

et Ol 0y < Ca (1Ol + llem Ol my o ) -

We integrate this relation on [0, 7] and apply the estimate (6.22]) to obtain

[l 20,711y < Cs (”f”%Q(O,T;L?(U)) + ||g||L2(U)> . (6.23)
Combining (6.21)), (6.22) and (6.23]), we conclude the proof. O

6.2.3 Existence and Uniqueness

In this part, we pass m to infinity and show that a subsequence of the solutions (u,,)>_; of the projected
problem ([6.16)) converges to a weak solution of (6.11)).
Theorem 6.18 (Existence theorem for weak solutions). There exists a weak solution of the parabolic initial /boundary-

value problem (6.11)).

Proof. We take the approximating sequence (u,)5°_; constructed by Galerkin’s method.

Step I. By Theorem ([6.18), the sequence (w,,)35_; is bounded in L*(0,T; H(U)), and the sequence (ul,)35_,
is bounded in L?(0,7; H~'(U)). By Banach-Alaoglu theorem, there exists a subsequence (w,,, )2, such that
o (u;,, ), converges weakly to some function u in L?(0,T; HJ(U)), and
e (u),, )72, converges weakly to some function v in L*(0,T; H=(U)).
We claim that w' = v. Using integration by parts, for any ¢ € C>°(0,7) and h € H}(U),

/ O(t) (utly, (1), b dt = — / & (£) (2t (1), 1) .
0 0

Letting | — oo, the weak convergence implies

| owwienna=— [ o ou.n
0 0

which holds for all h € H}(U). Hence

T T
/ d(t)v(t)dt = f/ ¢ (t)u(t) dt
0 0

in H=1(U). Note that ¢ € C2°(0,T), the result follows.
Step II. We fix an integer N, and take a function v € C*([0,T]; Hj (U)) of the form

N

v="> d"(tyw,, (6.24)

k=1
where (d*)I¥_, are given smooth functions. Recalling (6.16]), for any m > M, we have
T T
| (@000 o) + Blun,vit) dt = [ (0,000 120 (6.25)

0 0

We let m = m; and pass | — oco. The weak convergence result implies

T T
/ (' (), 0(0)) + Blu, v;1)) dt = / (1), w(8)) dt. (6.26)
0 0
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The above equality also holds for all v € L?(0,T; Hi(U)) by applying the dominated convergence theorem,
since the functions of the form (6.24) is dense in this space. In particular, for each v € H}(U), plugging in
v(t) = ¢(t)v to the last display for all ¢ € C°(0,T") gives

(u'(t),v) + B(u,v;t) = (f(t),v) forae 0<t<T.

By Theorem we can identify uw € C([0,T]; L*(U)).
Step III. Tt remains to verify that u(0) = g. We take any v € C'([0,T]; H}(U)) with v(T) = 0. Applying
integration by parts, (6.26|) becomes

T T
/0 (— (! (£), w(t)) + Blu, v:t)) dt = / (), 0(6)) dt + (u(0), 0(0)), (6.27)
Also, becomes

/0 (= (' (1), o (£)) + Bt 03)) dlt = / (F(0), 0(1)) 220y dt -+ {um (0), 0(0)).

Letting m = m; — oo, we get

T T
| o Ou®) + Bluvi)dt = [ 0,00 1w di + 0.00). (6:29)
0 0
Comparing (6.27) and (6.28)), and noticing that v(0) is arbitrary, we conclude that u(0) = g. O

In addition, the weak solution of a parabolic PDE is unique.
Theorem 6.19 (Uniqueness of weak solutions). The weak solution of the parabolic PDE (6.11)) is unique.

Proof. Tt suffices to check that u = 0 is the only weak solution of the problem

us + Lu=0 in Urp,
u=0 on OU x [0, T, (6.29)
u=0 on U x {t =0},

which is satisfied by the difference of any two weak solutions of (6.11)). We set v = w(t) in (6.14). Then
1d /
3 g IeOll2@) + Blu, u;t) = {u'(t), u(t)) + B(u, u;t) = 0
for a.e. 0 <t <T. Since
B(u, u;t) = Bllut)llmyw) — MWl = =Lz,
and ©(0) = 0, we have

t
lw()1Z2 1) < 27/0 l()lIZ2 0 ds,

for all 0 <t <T. By Gronwall’s lemma, we immediately conclude u = 0. O
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6.3 Regularity Theory

In this section, we study the smoothness of the weak solutions of parabolic PDEs. We work with the parabolic
operator of divergence form:

6 n B n )
En + L, where Lu = — ijz_:l(a”um)mj + ; b'uy, + cu.

We further suppose that

e U is an open, bounded set with OU smooth, and

e the coefficients a'/, b%, ¢ (i,j = 1,--- ,n) are smooth on U and not dependent on the time variable t.
For simplicity, we take (u,,)3>_; to be the eigenfunctions of —A on U, which form an orthonormal basis of
L?(U) and an orthogonal basis of H}(U). Our analysis will be based on the weak solution constructed by
Galerkin’s method.

Theorem 6.20 (Improved regularity). Suppose that w € L?(0,T; Hi(U)) with u' € L?(0,T; H-Y(U)) is the
weak solution of the initial/boundary-value problem

ur +Lu=f inUr,
u=0 on 90U x [0,T],
u=g on U x {t =0}.

(i) Assume that g € H}(U) and f € L*(0,T; L?(U)). Then
w € L?(0,T; H*(U)) N L*>®(0,T; H3(U)) and w' € L*(0,T; L*(U)).
Furthermore, we have the estimate

esssup [[u(t)lmy o) + el 20 20 + Il 0 20y < © (I lz0.mn2w0y + o)

where the constant C' depends only on U, T and the coefficients of L.
(ii) In addition, assume that g € H*(U) and f' € L*(0,T; L*(U)). Then

we L®0,T; HA(U)), u' € L>(0,T;L*(U))Nn L*0,T;Hy(U)), and " € L*(0,T;H*(U)).
Furthermore, we have the estimate
%SgtséuTI) ()l 20y + 1w’ @)l L20y) + W'l 220,02 0y + 10" | 220,01 (1)
<C (||f||H1(0,T;L2(U)) + ||9||H2(U)) )
where the constant C' depends only on U, T and the coefficients of L.

Proof. See Evans [I] Theorem 5 of §7.1.3. O

Theorem 6.21 (Higher-order regularity). Suppose that w € L*(0,T; H(U)) with v’ € L*(0,T; H=*(U)) is
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the weak solution of the initial/boundary-value problem

Ut+L'LL:f ZnUTa
u=0 on 9U x [0,T],
u=g on U x {t = 0}.

Let m € Ny, and assume that g € H*"+1(U) and ‘g%,{ € L2(0,T; H*™=2k(U)) for all k =0,1,--- ,m. Suppose

also the following m™-order compatibility condition holds:

dmflf

g0 =9 € Hy(U), g1:=f(0) = Lgo € Hy(U), -+, gm 1= =7 (0) = Lgm—1 € Ho(U),
Then
d*u 2 2m+2—2k
T €LA0.TH (U)), k=0,1,---,m+1.

Furthermore, we have the estimate

m+1 k m k

d"u d*f
> dtk =C <Z dt + ||9||H2m+1(U)> ;
paurt L2(0, T3 H2m+2=2 (1)) part L2(0, T3 H2m =2k (1)

where the constant C' depends only on m, U, T and the coefficients of L.
Proof. See Evans [I] Theorem 6 of §7.1.3. O

Theorem 6.22 (Infinite differentiability). Suppose that w € L*(0,T; H}(U)) with v’ € L*(0,T; H=*(U)) is
the weak solution of the initial/boundary-value problem

ug+ Lu=f inUrp,
u=0 on 9U x [0,T),
u=g on U x {t =0}.

Assume that g € C°(U) and f € C*®(Ur), and the following m™-order compatibility condition holds for all
m € N. Then u e C®(Ur).

Proof. Apply induction and Theorem [6.21 O
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6.4 Maximum Principles

In this section, we work with the uniformly parabolic operator of non-divergence form:

P L n
g + L, where Lu=— Z aUg; 2, + 2()%%. + cu.

ij=1

We assume that the coefficients a,b/, ¢ (i,57 = 1,--- ,n) are smooth, and we write I'r = Up — Ur for the
parabolic boundary of Ur.

6.4.1 Weak Maximum Principles

Theorem 6.23 (Weak maximum principle). Let U be a bounded open set. Assume that u € C*1(Ur)NC(Ur)
satisfies

ur +Lu <0 inUp. (6.30)
If either (i) the zeroth-order coefficient of L is ¢ =0 in Ur, or (ii) maxg, u =0, then

maxu = maxu.
Ur I'r

Proof. We first assume the strict inequality u; + Lu < 0 in Uy, and there exists a point (zg,ty) € Ur where u

attains its maximum over Ur. Similar to the proof of Theorem [5.23, Lu > 0 at (xq,to). If 0 < to < T, then

uy =0 at (zo,to). If to =T, we have uy > 0 at (z9,tp). In either case, us + Lu > 0 at (g, tp), a contradiction.
In the general case that holds, we define u(x,t) = u(z,t) — ¢, where € > 0. Then

u; + Lu =up —e+ Lu <0 in Ur.
By the previous result,

maxu — €I’ < maxu® = maxu® < maxu.
Ur Ur I'r Ir

Letting € | 0 concludes the proof. O

Theorem 6.24 (Weak maximum principle). Let U be a bounded open set, and let the zeroth-order coefficient
of L satisfy ¢ > 0 in Up. Assume that u € C>'(Up) N C(Ur) satisfies

ug + Lu <0 in Up.

Then

maxu < maxu’.

U~ I'r

Proof. We first assume the strict inequality u; + Lu < 0 in Up, and there exists a point (zg,tg) € Ur where u
attains a positive maximum over Ur. Then u; + (Lu — cu) > 0 at (2o, to). Since ¢ > 0 and u(zg,to) > 0, we
can derive the same contradiction u; + Lu > 0 at (x0, %) as before.

In the general case, we define uf(z,t) = u(x,t) — €; where € > 0. Then u§ + Lu® < 0 in Up, and

maxu — €I’ < maxu® = maxu® < maxu.
Ur Ur I'r I'r

Letting € | 0 concludes the proof. O
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Remark. (i) Likewise, if ¢ =0 in Ur and
u; + Lu >0 in Urp,
we have

minu = minu.
ﬁT I'r

If we only require ¢ > 0 in Ur, then

minu > —maxu .
UT I'r

(ii) In particular, if ¢ > 0 and u; + Lu = 0 in U, we have

max |u| = max |ul.
B e

(iii) In fact, our conclusion also holds for time-varying domains. To be specific, let @ C R"*! be a region
in R™ x [0,T], where {x € R" : (x,t) € Q} is a nonempty open set in R™ for each ¢t € (0,T]. Then all our
conclusions apply to the domain 2 and the parabolic boundary Z2Q = Q\Q.

Corollary 6.25 (Uniqueness for Cauchy-Dirchlet problem). Let U be a bounded open set, and let the zeroth-
order coefficient of L be ¢ > 0 in Ur. Let h € C(0U). The Cauchy-Dirichlet problem

ur +Lu=f inUp,
u=nh on 9U, (6.31)
u=g on U x {t =0}

has at most one solution in C*2(Ur) N C(Ur), i.e. there may be no solution or a unique solution but cannot
be two or more solutions.

Proof. Let u,u € C*1(Ur) N C(Ur) be two solutions of the Cauchy-Dirichlet problem (6.31)). Then

ve+Lv=0 in Up,
v=20 on 90U,

where v = u — u. By the weak maximum principle, |[v| =0 in Ur. O

6.4.2 Strong Maximum Principles

For uniformly parabolic operator, we also have a strong maximum principle. If a subsolution u attains its

maximum at some interior point, then u is contant at all earlier times.

Lemma 6.26. Let U be a connected, bounded and open set. Assume that u € C?>1(Ur) N C(Ur) satisfies
ug +Lu <0 inUp, (6.32)

and v <0 on I'p. If there exists (x*,t*) € Up such that u(x*,t*) =0, then u =0 on Uy,.

Proof. Step I. Let A >0 and R > 0. We define a function 1 € C%1(R"” x R) by

Y(at) = e M (R~ |zf?)’ .

85



In the cylinder B(0, R) x [0,7T], we have
b+ Lp = e M (R? — |z?)°

n n
+e M (R2 — |x|2) —24 Z aijxix‘j + GZ(bixi — a”) (R2 — \x|2) +c (R2 — |9U|2)2
ij=1 i=1

< e M (R~ |af?) (24032 + (6 Zn:(bi:ci —a") + 240) (B? = |z?) + (¢ = A) (R — 5U|2)2> :

=1

By taking

3 ii i ’
A=l + g (0 e 1ol + e ¥R 46)
we have v, + L < 0 in B(0, R) x [0,T]. Clearly, 1, + L) = 0 when |z| > R. Since ¢ € C*1(R" x R), we
conclude that ¥; + Ly < 0 in R™ x [0, T7.

Step II. Let ¢(x,t) = p(x — t&,t), where £ € R". Then

¢r+ L=y — £ Dyap + Lap.

We can replace the coefficient b of L with b — £ and take an appropriate A > 0 to obtain ¢; + L¢ = 0 in
R™ x [0,T]. Also, we have ¢ > 0 in the infinite oblique cylinder {(z,¢) : 0 <t < T, |z —t{| < R}.
Step III. Assume that u(x,to) < 0, where (xo,t9) € Up-. We take R > 0 so small that B(zo, R) C U and
u(z,tg) > 0 for all z € B(zg, R). Then there exists ¢ > 0 such that e(z — zo,to) + u(z,to) < 0 in B(zo, R).
Note that v < 0 and u; + Lu < 0 in Ur, and ¢ = 0 on dB(xp, R) x R. We then apply the weak maximum
principle on € + u to obtain that ey +u < 0, and v < 0 in B(z, R) x (to, T].

Similarly, for any ¢ € R™, if the oblique cylinder {(z,t) : to <t < Ty, | — 20 — t€| < R} lies in Ur, where
to < Tp < T, we apply a similar statement to obtain v < 0 in this cylinder. In particular, u(z,Ty) < 0 for all
x € B(zg + To€, R). Therefore, if B(zg,p) C U, we have u < 0 in B(xg, p) X (to, T].

Step IV. Finally, we use a chain of balls B(z;,p;) C U, i = 1,2,--- |k with 21 = xg, 2,41 € B(x;, p;) and
x = * and apply the above result in each ball. Then u < 0 in B(z;, p;) X (to, T] for each 4, and in particular
u(x*,t*) < 0, a contradiction! Hence u = 0 on Uy-. O

Theorem 6.27 (Strong maximum principle). Let U be a connected, bounded and open set. Assume that
u € C2YUr)NC(Ur) satisfies

us + Lu <0 in Up,

and u attains its mazimum over Ut at a point (z*,t*) € Urp.
(i) If the zeroth-order coefficient ¢ =0 in U, then u is a constant on Us,.
(i) If the zeroth-order coefficient ¢ > 0 in U, and u(x*,t*) > 0, then u is a constant on Uy, .

Proof. Let M = u(z*,t*) = maxg, u. We apply Lemma on u— M. O

Remark. We also have the strong minimum principle:
Let U be a connected, bounded and open set. Assume that v € C%1(Ur) NC(Ur) satisfies u; + Lu > 0 in Ur,
and v attains its minimum over Uz at a point (z*,t*) € Ur.

(i) If the zeroth-order coefficient ¢ = 0 in U, then u is a constant on Uy,.

(ii) If the zeroth-order coefficient ¢ < 0 in U, and u(x*,t*) > 0, then u is a constant on Uy, .
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6.5 Second-order Parabolic PDE Semigroup
In this section, we use the tool of semigroup theory to study the parabolic equation

ou

E+Lu:0 in Up,
u=0 on OU x [0, T, (6.33)
u=g on OU x {t =0},

where L is a uniformly elliptic operator of the divergence form:

n

n
Lu=— Z (aijuxi)xj + Z biug, + cu.
ij=1 i=1
We further suppose that
e U is an open, bounded set with OU smooth, and
e the coefficients a*,b?,c (i, = 1,--- ,n) are smooth on U and not dependent on the time variable t.
We can reinterpret as the flow determined by a semigroup on the Hilbert space L?(U). We set

D(A) := HY(U) N H*(U),

and define Au = —Lu for u € D(A). Then A : D(A) — L%*(U) is an unbounded linear operator. Before we
proceed, we recall the Hille-Yosida-Phillips theorem, which discusses the generation of a semigroup from an

infinitesimal generator.

Theorem 6.28 (Hille-Yosida-Phillips). Let A : ©(A) — X be a linear operator with a dense domain ®(A) C X
on a real Banach space X. Assume that A has a closed graph. Fiz w € R and M > 1. Then the following are
equivalent:

(1) A is the infinitesimal generator of a strong continuous semigroup (S¢)i>o0 that satisfies
[1Sell < Me*t for allt > 0. (6.34)

(i1) For every real number A > w, the operator N\Id —A : D(A) — X is bijective, and

[(ATd—A)7F| < for all A > w and k € N. (6.35)

M
A—w)h

In that case, the strongly continuous semigroup (Si)i>0 generated by A is uniquely determined by the strong

operator limit

Sl tk)\Qk‘
Spu = lim e ) o (Ad ~A)Fu, uweX, t>0.
k=0 ’

AToo

Semigroup theory provides an elegant method for constructing a solution to the initial/boundary-value

problem (6.33]). We recall the energy estimate in ([5.11)):
Bllullyy ) < Bl w) + a2, (6.36)

where B is the associated bilinear form

B(u,v) = /U Z aijumivmj + Zbiuriv +cuv | dz, wu,v e Hy(U).

i,j=1 i=1
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Theorem 6.29 (Second-order parabolic PDE as semigroups). The operator A generates a strongly continuous
semigroup (St)i>0 on L*(U) such that

[Se|l < e for all t > 0.

Proof. We prove the theorem by verify the hypotheses of the Hille-Yosida-Phillips Theorem in the case w =~
and M = 1. It is clear that the domain D(A) = H}(U) N H%(U) is dense in L?(U).

Step I. We prove that A : ®(A) — L*(U) has a closed graph in L*(U) x L*(U). Let (ux)2, C D(A) satisfy
up —u and  Auy — f in L2(U).
According to the regularity Theorem there exists a constant C' such that
lue — wll g2y < C ([ Auk — Awl 2@y + lue — wll2)) -

Then (ug)?2, is a Cauchy sequence in H?(U), which converges to some v € H*(U). Hence u € D(A), and
Aup, — Auin L?(U). Hence f = Au and A has a closed graph.

Step II. Now we check that A\Id —A : D(A) — L?(U) is bijective for each A > ~. By Theorem (existence
theory) and Theorem (regularity theory), for each A > v, the boundary-value problem

A—Au=f inU,

(6.37)
u=0 on OU

has a unique weak solution u € H}(U) N H2(U), which satisfies (\Id —A)u = f. Hence the operator A\Id —A :
D(A) — L*(U) is bijective, and [y, 00) C p(A).

Step III. Finally we check the resolvent condition (6.35) with w = « and M = 1. Consider the weak
formulation of the boundary-value problem ([6.37):

B(u,v) + Mu, v) 2y = (f,v) 1217y, for each v € L*(U).
Setting A > ~, v = u and applying the energy estimate (6.36)), we have
A =DlulZey < Blu,u) + Mullza ) = (f, ) 2wy < Iz lull 2 o).

Note that v = (A\Id —A)~!f. Then

[(AId —A) " f| 2 ”J;”L g”, for all f € L2(U).
Therefore for each A > v, we have [[(AId—A) 7| < 2=, and [|(AId —A) "] <1 ) for all k € N. Then we
conclude the proof. O

Remark. We fix g € L?(U), and let (S;)>0 be the strongly continuous semigroup generated by A = —L. Then
the function u(t,-) = Sig satisfies the following:
e for each t > 0, the function u(t, ) € D(A) = H}(U) N H*(U);

e v : Ur — R solves the linear Cauchy equation

Hence u is a weak solution of the boundary /initial-value problem (6.33)).
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7 Calculus of Variations

7.1 Introduction

In this section, we introduce a new method of solving partial differential equations

where AJ-] is a possibly non-linear partial differential operator and u is the unknown. The calculus of variations
identifies an important class of PDEs and transform the problem to an optimization problem. To be specific,

we aim to find an appropriate energy functional J[-] whose “derivative” is A[-].

7.1.1 The Dirichlet Principle

We consider Poisson’s equation

—Au=f inU,

7.1
u=g on 90U, (1)

where U is a bounded, open subset of R, f € C(U) and g € H'(U). According to Corollary |5.25 the
boundary-value problem (7.1)) has at most one solution in C?(U) N C(U). We demonstrate that the solution
can be characterized as the minimizer of an appropriate functional. Define the energe functional

sl = [ (GIDul? - ur ) s

where w belongs to the admissible set
A={weC*U)NCU):w=gondU}.
Theorem 7.1 (Dirichlet’s principle). Assume u € C?(U) N C(U) solves Poisson’s equation (7.1). Then

Ju] = 11011612 J[w]. (7.2)

Conversely, if u € A satisfies (7.2)), then u solves ([7.1]).
Proof. Step I. Given any w € C%(U) N C(U), we multiply both sides of Possion’s equation by w — u and use
integration by parts. Since w — u = 0 on 0U, the boundary term is eliminated, and

Oz/U(w—u)(—Au—f)dx
:/U(Du~Dw—wf)dw—/U(|Du|2—uf)dx.

We then apply the estimate Du - Dw < %|Du|? + 1|Dw|? to obtain

/U <;|Du|2 - uf) dx < /U (;|Dw|2 - wf) dx.

Since u € A, we conclude ([7.2)).
Step II. Conversely, if (7.2) holds, we fix ¢ € C2°(U) and define

jr)y=Ju+T1e), TER.

89



Since u+T7p € A for each 7 € R, and j(7) is minimized by 0, we should have j'(0) = 0, provided the derivative
exists. On the other hand, note that

1 72
jr) = /U (|Du + 7'D<,0|2 — (u+ T(p)f) dr = /U (2|Du|2 +7Du- Dy + ?\Dv|2 — (u+ T(p)f) dzx.

Hence
0=70)= [ (Du-Do—pp do= [ (~Bu- s,
U U
which holds for all ¢ € C°(U). Hence —Au = f, and u solves (7.1]). O

Example 7.2 (Generalized Dirichlet’s principle). Consider the linear elliptic equation
=Y (aYu,), =f inU. (7.3)
J
i,j=1

The associated energy function is given by

1 < ..
Jw :/ — avwywe; —wf | dx.
wl= [ |53 at

i,j=1

Similar to Theorem [7.1} we can use integration by parts to show that a solution to (|7.3) must be a minimizer

of the energy function J. As we will discuss later, the uniform ellipticity ensures the existence of a minimizer.

Theorem 7.3 (Abstract Dirichlet’s principle). Let H be a Hilbert space and f € H*. Define
1 2
Tw) = gl — Fw), we H.

Then functional J has a unique minimizer u in H, and every minimizing sequence sequence converges to it,
i.e., Jug] = infyem J[w] implies uy, — w in H. Finally, the minimizer u is characterized by

0= %ﬂun] = (u,w)g — f(w) =0 for all w € H.
t=0

Proof. First note that inf,c g J[w] > —o0, since

1 1 1
Jw] = gllwlf = f(w) = Sllwlf = 1l lwle > =51 fllae > —oo.
Next, we apply the parallelogram identity to obtain

u—+v
2

1 1 1 1
= ol = Gl + 3ol =l ol = I + 701 27 | “52] . woe

If both u,v € H are minimizers of .J, we have §|lu — v||3, = 2infy J — 2J [“}*] <0, and u = v. This proves

the uniqueness of minimizer. For the existence, we plug-in v = u; and v = u,, to get
1 9 )
ZHuk — U |7 < Juk] + Jum] — 21%1“1
Hence any minimizing sequence is a Cauchy sequence, and the minimum exists by completeness of H. Finally,

the characterization of minimizer u is obtained by forcing the derivative of j(t) = J[u+ tw] to vanish at t = 0,
analogous to the proof of Theorem O
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7.1.2 The Euler-Lagrange System

We consider the integral energy functional
Jw] = / L(Dw,w,z)dx, (7.4)
U

where U is a bounded, open set with smooth boundary U, and L : R™*" x R™ x U — R is a smooth function
called Lagrangian. For clarity of our notation, we write

L:L(P,Z,:Z?):L(p%,~~ 7p:1n721 vaxla"' axn)

) )

for P € R™*" 2z € R™ and x € R™, where

pi o D
P=: ;
pi D

We write Lk, L.k, Ly, for the partial derivatives of L with respect to certain variables. For a differentiable

function w = (w!,--- ,w™) : R® — R™, its gradient/Jacobian matrix is given b
b bl b
1 1
wwl .« . wa:/”
Dw = :
m m
wxl .« e wajn

Connection to PDEs. Now we show that, to each minimization problem of the energy functional as above,
one can associate a PDE. Let u € C°°(U;R™) be a smooth minimizer of J[-], taken among functions equal to
a function g : R” — R™ on 9U, and fix any ¢ € C°(U;R™). We define the first variation

j(T)zJ[u—l—T(p]:/L(Du—i—TDgo,u—i—Tga,x)da:, TR
U

Then

j'(r) = / Z Z @’;inf (Du+ 17D, u + T, x) + Z ©* L (Du + 7D, u+ T, x) d.
Uk=1i=1 / k=1

Since v is a minimizer of J and u + 7¢ is in the domain of J for all 7 € R,
0=j4'(0)= Z/ Z ap:’;inz;(Du, u, ) + o Lx (Du, u, ) d.
=17V i=1

As this identity holds for all ¢ = (p!,---, ™) € C°(U;R™), we apply integration by parts to conclude that

n

— Z (Lpée (Du, u, x))

+ Lo (Du,u,z) =0 in U, k=1,2,---,m.
i=1 i

x

This is known as the Euler—Lagrange system associated with the energy functional J[-] defined by (7.4), which
is a coupled system of m quasilinear second-order PDEs. In particular, when m = 1, we write the Lagrangian
L=1L(p,z) = L(p1,- -+ ,pn, 2, 2) and obtain the Euler-Lagrange equation

n

- Z (Lp,(Du,u, ), + L.(Du,u,x) = 0.
i=1
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Example 7.4. Following are some example of nonlinear PDEs associated with certain energy functionals.
(1) (Nonlinear Poisson equation). Let f: R — R be a smooth function, and define its antilinear derivative
fo t) dt. Then the Euler-Lagrange equation associated with the energy functional

sl = [ (G0 = Fw)) do

is the nonlinear Poisson equation
—Au = f(u) inU.
(ii) (Minimal surface equation). Define the Lagrangian
L(p,z,z) = \/1+ |p|?.
Then the energy functional is

:/ \/1+‘Dw|2dl‘,
U

and the associated Euler-Lagrange equation is the minimal surface equation

=0 inU.

Z(W)

The left hand side div (D“) is n times the mean curvature of the graph of u.

1+ Dul?

Now we study certain systems of nonlinear PDEs for which every smooth function is a solution.

Definition 7.5 (Null Lagrangians). The function L is called a null Lagrangian if every smooth function
u € C®(U;R™) solves the associated Euler-Lagrange system

72 (Lp;c(Du,u,x))x. + L« (Du,u,z) =0 in U, k=1,2,---,m. (7.5)
— i

Remark. For the case m = 1, a trivial example of null Lagrangians is the linear function in p:

L(p,z,x) = Bip1 + Pap2 + - + Bnbn.

The energy functional corresponding to a null Lagrangian only depends on the boundary condition.

Theorem 7.6 (Null Lagrangians and boundary conditions). Let L be a null Lagrangian, and
Jw] = / L(Dw,w, ) dx.
U

the corresponding energy functional. For any two functions u,v € C*°(U;R™) with u = v on OU,

Proof. We define



For notation simplicity we write w, = 7u + (1 — 7)v. Then
m n m
/ Z DL (Dwr, wr, ) + Z(uk — "L« (Dw,, wy, ) de.
Uk=1i=1 k=1

Since L is a null Lagrangian, w, solves ([7.5]), and

n

—m ub — ok [ = k(Dw,, wy, x
—;/U( >< S (L (Dur,wr,2)

X T4
i=1

+ sz(DwT,wT,m)> dr=0, 0<7<1

Hence j(0) = j(1), and we finish the proof. O
Now we introduce a nontrivial null Lagrangian.

Lemma 7.7 (Divergence-free rows). Given a matriz P € R"*™, denote by P* the cofactor matriz of P, whose
(k, i)™ entry is the cofactor

(PF)F = (=1)"*""det(AZ}),
where P=F is the (n — 1) x (n — 1) matriz obtained by removing the k™ row and i™ column of P. Let

u € C®(R™;R"™) be a smooth mapping. Then

n

> (Duh)f,, =0, k=12 ,n.
=1

Proof. According to the identity (det P)Id = PT P*, we have

n

(det P 5;“:2 ki=1,---,n, (7.6)
and in particular,
Odet P
PH™  m,j=1,---,n. 7.7
o = (P (77)

We set P = Du in ([7.6) and differentiate with respect to x; to obtain

o Y (a7 (D), =S (D, (Du)] + (Dwi(Du),,).
j,m=1 j=1
We then sum over all ¢ = 1,--- ,n to obtain
> D, = > (e DV + (DWLDWY, ), k=1,
Jjm=1 i,j=1

which also reads

En:ufgk <§:(Duﬁ)fxz> =0, k=1,---,n.
j=1

i=1

If det Du(z) # 0, we have ZL(DU”)%,. =0at z forall j =1,--- ,n. Otherwise, if det Du(z) = 0, we take
u(y) = u(y) + ey for € > 0, apply the previous steps to & and send € | 0. O
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Theorem 7.8 (Determinants as null Lagrangians). The deterministic function
L(P,z,z) =det P

is a null Lagrangian.

Proof. Fix u € C*(U;R™). By (7.7) and Lemma[7.7] we have

Z (Lpic(Du,u,x)) = Z(Duﬁ)fx =0, k=1,---,n.
i=1 S
Hence u solves the associated Euler-Lagrangian system, and we finish the proof. O

7.1.3 Application: Fixed Point Theorems

We can apply the null Lagrangians to provide an analytic proof for a fundamental result in algebraic topology.

Theorem 7.9 (Brouwer’s fixed point theorem). Let u: B — B be a continuous mapping, where B = B(0,1)
is the closed unit ball in R™. Then u has a fized point, i.e. there exists x € B such that u(z) = x.

Proof. Step I. We first claim that there does not exist a smooth mapping w : B — 9B such that w(z) = x
for all x € 9B. Indeed, if w were such a mapping, then w = Idg on dB. Since the determinant is a null
Lagrangian, by Theorem we have

/ det Dw dx = / det DIdg dx = m(B) > 0. (7.8)
B B

On the other hand, since w takes values in B, we have |w|?> = 1, and the gradient (Dw) "w = 0. Note |w| = 1.
Then 0 is an eigenvalue of Dw for each x € B, and det Dw = 0 in B, contadicting (|7.8]).

Step II. We then claim that there does not exist a continuous mapping w : B — 9B such that w(z) = x for
all z € OB. If w were such a mapping, we continuously extend to R™ by assigning w(x) = z for all z € R™\B.
We take w® = 1. * w, where 0 < ¢ < 1 and n. € C*(R") is a standard mollifier. By Proposition (i),
w® — w uniformly on B(0,2) as € | 0. On the other hand, since 7. is radial, w*(x) = « for all € R™\B(0,2).

Consequently, we fix € € (0,1) so small that infyegn |w(z)| > 0. Then

owe (2x) .
w2l) = [y ©€ P

is a smooth mapping from B to 9B such that we(x) = x for all € 9B, contradicting our claim in Step I.

Step III. Finally, assume that w : B — B is a continuous mapping. If u has no fixed point, we define the
mapping w : B — 0B by setting w(z) to be the point on 0B hit by the ray emanating from u(x) and passing
through . Since u(x) # x for each x € B, this mapping is well-defined. To be explicit,

w(z) =z + 7(x)(u(z) —x), =z € B,

where

2" (2 — u(@) — /(1 = [22) [u(@) — af* + 27 (2 — u(@))

u(z) — 2/

T(z) =

Therfore, w : B — 9B is a continuous mapping and satisfies w(z) = z for all x € 9B, which contradicts our
claim in Step II. Then we complete the proof. O
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The Brouwer’s fixed point theorem can be easily generalize to homeomorphic spaces of the closed unit ball
in Euclidean spaces.

Corollary 7.10 (Brouwer’s fixed point theorem). Let A be a topological space that is homeomorphic to the
closed unit ball B in R™, i.e. there exists a bijection f : A — B such that both f and f~' are continuous.
Then every continuous mapping u : A — A also has a fixed point.

Proof. We note that the mapping fouo f~!: B — B is also a continuous mapping, which has a fixed point
z € B by Theorem Clearly, f~!(z) € A is a fixed point of u. O

We can further generalize Brouwer’s fixed point theorem to Banach spaces.

Theorem 7.11 (Schauder’s fixed point theorem). Let X be a Banach space. If K C X is a compact and

convez subset, and T : X — X is a continuous mapping, then T has a fixed point in K.

Proof. Step I. By compactness of K, we fix € > 0 and cover K by finitely open balls B(z1,€),---, B(zn,,€),
where z1,--- ,zn. € K. We take K, to be the convex hull of these centers. Since K is convex, K. C K.
Step II. We claim that K, is homeomorphic to the closed unit ball in RM< for some M, < N, — 1. Without
loss of generality, we assume that 0 € K., and take M, to be the dimension of the subspace spanned by
{z1, - ,zn.}. Then K, lies in a M.-dimensional real vector space, which is homeomorphic to RM-,

o If M, =0, then K. is a singleton, and the result is clear;

o If M. > 1, then K, is a compact and convex set with nonempty interior in a M.-dimensional real vector

space, which is homeomorhic to the closed unit ball in R,

Step I1I. We define a mapping S, : K — K, by

>y d(w, K\B(x;,€)z;

Sex = jivl , reK,
Zj:l d(z, K\B(z;,€))
where the denominator is never zero because B(x1,¢€),--,B(zn,,€) cover K. Clearly, S. is a continuous

mapping. Furthermore, since d(x, K\B(z;,€)) > 0 if and only if « € B(x;,€), we have the estimate

N,

Ve d(z, K\B(z;, _—
||Sex—x||§ZJ*1 ng \B(z;,€))llz — 2] <e ek (7.9)
> j=1 d(x, K\B(zj,€))

Step IV. We further define a mapping T, : K. — K, by

Tx=S8.(Tx), z¢€K,

which is also continuous. Since K, is homeomorphic to the closed unit ball in RM<, by Brouwer’s fixed point
theorem, there exists . € K. such that T,z = x.. Since K is compact, there exists a subsequence €; such
that x., converges to a limit z € X. By estimate (7.9),

lwe, = Taxe, || < ||Te,xe, — Tae,|| < ||Se;Txe, — T, || < €.

Since T' is continuous, ||z, — Tz,|| = || — T'z|| = 0. Hence we conclude Tz = x. O

95



7.2 [Existence Theory for Variational Problems

In this section, we discuss some conditions on the Lagrangian L : R™*™ x R™ x U — R which ensure that the

energy functional J[-] defined by
Jw] = / L(Dw,w,z)dx
U

indeed has a minimizer, where w : U — R"™ is taken over an appropriate Sobolev space, possibly under some
boundary conditions.

7.2.1 Existence and Uniqueness of Minimizers

Some functions have an infimum but do not have a minimizer, for instance, the functions that vanish at
infinity, like e~1* ”, Heurestically, we may require hypothesis that controls the value of the objective functional
for points near infinity. Also, to ensure that the functional attains its infimum, we need some continuity
conditions. In fact, there is a systematic approach for constructing minimizers, which is based on the so-called
Direct method of the calculus of variations.

Theorem 7.12 (Direct method). Let X be a reflexive Banach space, and let A C X be a weakly closed subset.
Let J: A — R be a (possibly nonlinear) functional satisfying the following conditions:

(i) (Coercivity). Ju] — oo as ||ul]] = oo, and

(ii) (Sequential weak lower semicontinuity). If (ur) C A and up — u weakly in u, then

J[u] < liminf Jlug].
k— o0

Then J is bounded from below on A and attains its infimum on A.

Proof. Let (uy) be a minimizing sequence in A, i.e.

lim J[ug] = ingJ[v].

k—o0 ve

By the coercivity condition, (u) is a bounded sequence, which has a weakly convergent subsequence (uy;)
because X is reflexive. Since A is weakly closed, the weak limit u is in A. By weak lower semicontinuity,

< liminf = inf .
el < gt ] = Jag b

Therefore J attains its infimum on A at u. Since J[u] > —oo, the conclusion follows. O

Coercivity. In accordance with the coercivity condition in the direct method, we hope the energy functional
J[w] to grow rapidly as w tends to infinity. To this end, we assume that for some 1 < ¢ < oo, there exist
constants o > 0, 5 > 0 such that

L(P,z,z) > a|P|?— B forall (P, z,2) € R™*" x R" x U.
Therefore
Jlu) > 81Dl )~

for v = Bm(U) and some 6 > 0, and J[w] — oo as || Dw|| ey — oo.

Weak convergence in Wh4(U). Since we assume 1 < g < oo, the space LI(U) is a reflexive space. For a
bounded sequence (u;) in W4(U), there exists a subsequence (uy,) and a function u € W4(U) such that
ug; — u weakly in L9(U) and Dug; — Du weakly in LY(U;R™). For brevity, we say uy, — u in wha(u).
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Now we discuss the relation between convexity and weak lower semicontinuity.

Definition 7.13 (Tonelli). Assume that L : R™*" x R™ x U — R is smooth and bounded from below, and
the mapping P +— L(P,z,x) is convex for every (z,2) € R™ x U. Then J[] is sequentially weakly lower
semicontinuous on W14(U;R™) for each ¢ € (1, 00).

Proof. We may assume L > 0, otherwise we add a large constant to L since it is bounded from below. Let

(ur) be a weakly convergent sequence in Wh4(U;R™) with weak limit u. We aim to show that

J[u] < liminf Jlug].

k—o0

By passing to an appropriate subsequence, we may replace the lim inf with an actual limit. Since (uy) is weakly
convergent in Wh4(U;R™), it is bounded. By Rellich-Kondrachov compactness theorem [Theorem [4.16], we
have u;, — u in L?(U;R™) up to a subsequence, and uy — u a.e. up to a further subsequence. Now we fix
€ > 0 and apply Egoroff’s therorem to conclude that there exists a set E. C U such that m(U\E,) < € and
uy — u uniformly on E.. We may assume E. C E. for 0 < ¢ < e. We take the good set

G = {x € E. : |u(z)| + |Du(z)| < 1}

so m(U\G.) L 0 as €] 0.
By convexity of L(P,z,z) in P and the fact L > 0, we have

L(Du,uy, x) dx —|—/ Lp(Du,ug,x) - (Duy — Du) dx. (7.10)

J[uk]z/ L(Duk,uk,x)dmZ/
G G G.

e €

By definition of G, and the dominated convergence theorem,

lim L(Du,uk,x)dx:/ L(Du,u,z) dx.
k—oo Ge Gs

Also, since Lp(Du,uy, ) — Lp(Du,u,x) uniformly on G, and Duy — Du weakly in LY(U;R™), we have

lim Lp(Du,ug,x) - (Duy — Du)dx = 0.

k—o0 G.

Hence for each € > 0, we let n — oo in (7.10)) to see

lm J[uy] 2/ L(Du,u,x) dz.
k—o0 G

€

We let € | 0 and apply the monotone convergence theorem to conclude the proof. O

Minimizers for the variational problem. We discuss the variational problem under Dirichlet boundary

conditions, where the energy functional
Jw] = /UL(Dw,w, x)dz
is defined on the admissible set
A= {weW"(U;R™): w=gon dU in the trace sense} .

We say u € WH4(U; R™) is a minimizer of J, if J[u] < J[u+ ¢] for all ¢ € Wol’q(U;]Rm). In other words, the
Sobolev function u minimizes J in its own Dirichlet class W1 4(U; R™) := u + Wy 9 (U; R™).
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Theorem 7.14 (Existence of Minimizers). Let 1 < q < oo. Assume that L : R™*" x R™ x U — R is smooth
and bounded from below, the mapping P — L(P,z,x) is convex for every (z,z) € R™ x U, and there exist
constants o > 0,8 > 0 such that

L(P,z,x) > a|P|9— B for all (P,z,x) € R™"™ x R™ x U.
Then for each o € C°(U;R™), the enregy functional J has a minimizer in A = o + Wy (U;R™).
Proof. We first check the coercivity of J. We have shown that
Jw) > Dl ) — Bm(U)
for some 6 > 0. Since w — @ € Wol’q(U) for all w € A, by Poincaré’s inequality [Corollary ,

lwll ey < llw = @llLawy + l@llaw) < CillDw — Dellpawy + el ey < Co (1Dwll Lawy + lellwraw)) -

Hence ||w||w1.ay < C3([[Dw||pay +1). As [Jw|lw1.a(ry = 00, we have |Dul| ey — oo and J[w] — oc.
Next, since 1 < ¢ < oo, we know that W14(U) is a refelxive Banach space. Also, by Mazur’s theorem, the
admissible set A = v + W, '%(U) is a weakly closed space. By Theorem J attains its infimum on A. [

Now we discuss the uniqueness of the minimizer.

Theorem 7.15 (Uniqueness). Assume that the Lagrangian L = L(P,x) does not depend on z, and L is
uniformly convex in P, i.e. there exists 6 > 0 such that

S Ly (Pa)ekel > olef?

i,j=1k,l=1
for all P, € R™*™ and x € R™. Then the minimizer u € A of J[-] in Theorem 18 unique.

Proof. Assume both u,v € A minimizes J[-] over A. By uniform convexity,
0
L(P2) 2 Q) + DpL(Q.2) - (P~ Q) + 5P~ QPF, w€R", P.Q e ™",

We set P = Du, Q = w and integrate over U:

J(u)>J(u+v>+/DPL(Du+Dv,x>-Du_Dvdx—i—Z/|DU—DU|2d$~
U U

2 2 2
Symmetrically,
D D Dv—D 0
Jw) > J utv —|—/DpL ut U,m L2 uda:—&—f/ |Dv — Dul? da.
2 U 2 2 8 Ju

Combining the last two displays, we have

J<u+v>+9/|Dv_Du|2deJ(u)+J(v).
2 8 Ju 2

Since both u and v are minimizers of J[-| over A, and 3% € A, the above inequality is indeed an equality,
and Du = Dv a.e.. Since u = v = ¢ on OU in the trace sense, it follows that u = v a.e.. O
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7.2.2 Weak Solutions of Euler-Lagrange System

In this section, we show that the minimizer of the energy functional J[-] on the admissible set .4 solves the
associated Euler-Lagrange system in some suitable sense. Suppose there exists some constant C' such that

[Lp(Pz,2)| < C(IP|"~" + |27 + 1), (7.11)
|L.(P,z,2)] < C(|P]97 4+ |20 +1).

for all P € R™*" > € R™ and z € U. Then for each w € WH4(U; R™), we have
C (|Dw|i™! + |w|?™t + 1) € LY (U)

where ¢’ is the conjugate ¢ = _L;. Consequently, both |Lp(Dw,w,z)| and |L.(Dw,w,z)| are in L9 (U).

Weak formulation. Recall the Euler-Lagrange system associated with J[w] = [;; L(Dw,w, x) dz:

>, (Lp:; (Du, u,x)) + Lx(Du,u,z) =0 inU, k=1,---,m,
i - (7.12)
u=g on OU.

We multiply this system by a test function v = (v!,--- ,v™) € C(U;R™) and integrate by parts to obtain
/ (Z L, (Du,u,x)vlji dzx + L« (Du, u,x)vk> dr=0 k=1,---,m.
U=t

Consequently, we see using a standard approximation argument that the above equality remains valid for all
v € WH4(U;R™). This motivates the following weak formulation.

Definition 7.16 (Weak solutions). Let u € W4(U;R™). Then u is said to be a weak solution of the
Euler-Lagrange system (7.12) provided

Z/ (Z Ly (Du, u, x)v]; dx + L« (Du, u, x)vk> drx =0 (7.13)
k=1"U \i=1

for all v = (v, ,0™) € Wy U(U; R™).
Accordingly, the minimizer of the energy functional solves the Euler-Lagrange system in the weak sense.

Theorem 7.17. Suppose that the Lagrangian L : R™*" x R™ x U — R satisfy the growth condition (7.11]),
and u € W (U;R™) satisfies
J[u] = min J{w].

weA

Then u is a weak solution of the Euler-Lagrange system (7.12)).

Proof. Without loss of generality, we proceed with m = 1. We fix v € VVO1 (U), and define
jir)y=Ju+71v], T€R.
By (7.11)), |5(7)| < oo for all 7 € R. We write the difference quotient

M:/ L™ () da,
T U
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where
L (z) = 1 [L(Du(z) + 7Dv(z),u(x) + 7(x)v,x) — L(Du(z),u(z),z)] for a.e. z € U.
T
Note that
1 (7 d
L™ (z) = —/ —L(Du+ sDv,u+ sv,x)ds
T Jo ds

1/ 1 /("
= 7/ DU'LP(DU+SDU,U+SU,$)dS+*/ v- L,(Du+ sDv,u+ sv,x)ds.
T Jo T Jo

Since u,v € WH4(U; R™), by Young’s inequality ab < % + bqq, and the growth condition (7.11)), we have

! /!

L7(z) < 1/7 <|Dv|q N |Lp(Du+ sDv,u+ sv, )| n |v]® . |L2(Du+st,u+sv,x)|q/> ds
T Jo

q q q q
< 1 /T (|Dv|q n |v|® n Cy (|Du—|—st\q/—|— |u+ sv|? + 1)) s
T Jo q q q

< Gy (IDe]? + Jo] + [Duf? + [u]7 + 1)

for some constant Cp,C2 > 0 and all 0 < |7] < 1. Also, we let 7 — 0 to get
lin%J L™ (z) = Dv- Lp(Du,u,z) 4+ v- L,(Du,u,z) for a.e. xz € U.
T—

By the dominated convergence theorem, j is differentiable and

T7—0

j'(0)=1lim [ L7(z)dx = / [Dv - Lp(Du,u,z) +v - L,(Du,u,x)] dz,
U U

Since j attains its minimum at 7 = 0, we have j'(0) = 0. Hence

0= / [Dv - Lp(Du,u,z) + v - L,(Du,u,x)] dx = Z/ (Z L, (Du, u,x)v’;i + sz(Du,u,x)vk> dez,
U =17V \iz1

and u is a weak solution of (7.12). O

In general, the minimizers of the energy functional do not capture all weak solutions of the Euler-Langrange
system. Nevertheless, in the special case that the joint mapping (P, z) — L(P, z,x) is convex for each z € U,

then each weak solution is in fact a minimizer.

Proposition 7.18. Assume that (P,z) — L(P,z,x) is convex for each x € U. Then each weak solution
u € ng’q(U;]Rm) of (7.12)) is a minimizer of J over ng’p(U;Rm).

Proof. Suppose u € ng’q(U;Rm) solves (|7.5)) in the weak sense. For each w € W;’Q(U;Rm), by convexity of
the mapping (P, z) — L(P, z, ),

L(P’Z7$)+LP(P>Z7‘%')'(Q_P)+Lz(P7Z’$)'(y_Z) SL(Q7:U,$)-

We let P = Du,Q = Dw,z = u and y = w, and integrate on U. Then
J[u] +/ [Lp(Du,u,x) - (Dw — Du) + L,(Du,u,z) - (w—u)]dx < J[w].
U
Since v = w — u € Wy4(U;R™), the second term on the left side is zero. Hence J[u] < J[w). O
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7.2.3 Local Minimizers

A cirtical point u of the energy functional
Iw] = / L(Dw,w,z)dx
U
among functions w satisfying the boundary condition w = g on OU satisfies the Euler-Lagrange system

_ Z?:l (Lpf (Du, u, :E))
u=gq on OU.

+sz(Du;U,$):0 inU, k:l’...7m7

T

We assume u is a smooth solution of the Euler-Lagrangian PDE. In this section, we identify the case that u is a
local minizer of the energy functional. For simplicity, we as usual let P — L(P, z, x) be a convex mapping, and
assume the graph of x — wu(z) lies within a region R generated by a parameteric family of graphs x — wu(z, A)
corresponding to other critical points. To be specific, we suppose D C R™ is an open set containing 0 and
{u(-,A) : A € D} is a smooth family of solutions of the Euler-Lagrange PDE

n

-y (Lp;c (Du(m,)\),u(L)\),x)) + Le(Du(w, A),u(z,\),2) =0 in U, k=1,--,m, (7.14)
=1

with u(z) = u(z,0) in U. For notation simplicty, we write
Aki(:c, A) = L, (Dyu(z, A),u(z, N),x),
so ([7.14) becomes

=3 A2, \) + Lo (Du(z, A),u(z,A),2) =0 inU, k=1,--- ,m. (7.15)
i=1

Next, we construct a subregion of admissible set by taking smooth functions § : U — D with § = 0 on U,
and defining

w(z) =u(z,0(x)), zeR.
This function satisfies w = u = g on OU. We let R C A be the set of all functions w constructed as above.
Theorem 7.19. The function w = u(-,0) is a local minimizer within the region R, in the sense that
Iu] < I[w]
for all functions w constructed as above.

Proof. Step I. Using the chain rule, the derivatives of w(z) = u(x, #(x)) is given by

Wy, (T) = Uy, (x,0(x)) + ur(z, 0(x))0,,.

i

Then we use convexity of P+ L(P,z,z) to conclude
Iw] = / L(Dw,w,z)dx = / L(Dyu(z,0) + ux(z,0)DO, w, x) dz
U U
> / [L(Dyu(z,0),w,z) + Lp(Dyu(z, 0),w, x) - ux(z, §) DO dz. (7.16)
U

101



Step II. We define a vector field b = (b*,--- ,b") : R® — R” by

m 1
bt = Z/ Aki(x79) ulf\(x7t9) . edt, el

Now we compute the divergence of b. By definition,

m n 1
div b(z ZZ/ AF (2, 10) (ui(x,10) - O, + uly, (2,10) - 0 + tuy (2,10) 0,, - 0) dt
k=1i=1"0
m n 1
+ZZ/ (AN (2, 10) + AY (,10) - t0,,) ub (2, 1) - O dt
k=11:=1
m n 1
=3 3 [ (AF(x,t0)u} (z, t0) + LAV (2, 10)uf\ (2,10) 0 + (uf (2, 20) - t0) AN (2,10)) - 0, dit
k=1i=1"0

n
NE

=

—

i=1

n 1
> / (AR (2, t0) uf, (2,0) - 0 + AR (2, 10) ufi (2, 0) - 0) dt
0
1

I
NE
NERS

/ (A¥ (x, t0)uX (x, 10) - 10,,), dt
0

k=1 1=1

m n 1 m 1
Y / AR, 10) b, (,10) - 0t + Y / Lo (Dou(z, 1), u(w, 10), ) ux (2, 10) - 0 dt .

k=11i=1"0 k=170

By
Note that
(L(Dyu(z, t0), u(z, t0), ZZLP (Dyu(z, t0), u(z, 0), ) urg, (z, t0) - 0
=11i=1

m

+Zsz (Dyu(z,t0), u(x, th), ) ux(x, th) - 6.
=1

Combining the last two displays, we have

div b(x Z Z ARz, 0)ub (2,0) - 0., + L(Dy(u, ), u(z, ), z) — L(Dyu(x,0), u(x,0), z)
k=1 11=1
= Lp(Dy(u,0),w,x) - ux(z,0)D0 + L(Dy(u,0),w,x) — L(Du,u, x). (7.17)

Step I11. We combine (|7.16]) and (7.17]), and apply Gauss-Green Theorem to obtain
Iw] > / (divd(z) + L(Du,u, x)) dx
U
_ / b@) - vdS + I[u] = I[u],
U

since b = 0 on the boundary 0U. Thus we complete the proof. O

Remark. By the implicit function theorem, if

ux(z,0) # 0

for all € U, then we can write any w that is sufficiently close to u pointwise in this form.

102



References

[1] Lawrence C. Evans. Partial Differential FEquations, 2nd Edition. America Mathematical Society. 2010.
[2] Kosaku Yosida. Functional Analysis, Springer, 1995.

[3] Giovanni Leoni. A First Coursein Sobolev Spaces, 2nd Edition. America Mathematical Society. 2010.

103



	Notations
	Convolution and Smoothing
	Convolution
	Local Mollification
	Application: Smooth Partition of Unity

	Sobolev Spaces
	Hölder Spaces
	Weak Derivatives
	Sobolev Spaces and Approximation
	Absolute Continuity on Lines

	Extensions and Traces
	Extensions
	Traces

	Sobolev Inequalities
	Sub-dimensional Case p<n: Gagliardo-Nirenberg-Sobolev Inequality
	Super-dimensional Case p>n: Morrey's Inequality
	General Sobolev Inequalities
	Sub-dimensional Case: kp<n
	Super-dimensional Case: kp>n
	The Borderline Case: kp=n

	Compact Embeddings: Rellich-Kondrachov Compactness Theorem
	Poincaré’s Inequality

	Second-order Elliptic Equations
	The Dual Space of H01
	The Lax-Milgram Theorem
	Weak Formulation and Poisson's Equation
	Existence of Weak Solutions
	Energy Estimate
	The Fredholm Alternative

	Regularity Theory
	Difference Quotients
	Interior Regularity
	Boundary Regularity

	Maximum Principles
	Weak Maximum Principles
	Strong Maximum Principles
	Harnack's inequality

	Eigenvalues and Eigenfunctions

	Second-order Parabolic Equations
	Banach Space-Valued Functions
	Definition and Properties
	Spaces Involving Time

	Weak Formulation of Second-order Parabolic Equations
	Galerkin's Method
	Energy Estimates
	Existence and Uniqueness

	Regularity Theory
	Maximum Principles
	Weak Maximum Principles
	Strong Maximum Principles

	Second-order Parabolic PDE Semigroup

	Calculus of Variations
	Introduction
	The Dirichlet Principle
	The Euler-Lagrange System
	Application: Fixed Point Theorems

	Existence Theory for Variational Problems
	Existence and Uniqueness of Minimizers
	Weak Solutions of Euler-Lagrange System
	Local Minimizers

	Constraints


