
A Derivation of Non-central Chi-square Density

Junyi Liao

Non-central chi-square distribution. Let (X1, · · · , Xp) be p independent Gaussian random variables with

Xi ∼ N(µi, 1). The random variable V =
∑p
i=1X

2
i is distributed according to the non-central chi-squared

distribution, with degree of freedom p and noncentrality parameter λ =
∑p
i=1 µ

2
i .

Main Theorem. (Density of non-central chi-square distributions). Suppose V is a non-central chi-square

variable with degree of freedom p > 0 and non-centrality parameter λ > 0. Then the probability density

function of V is

fNC(v; p, λ) =

∞∑
k=0

e−λ/2(λ/2)k

k!
fχ2(v; p+ 2k), (1)

where fχ2(·; p+ 2k) is the probability density function of χ2(p+ 2k):

fχ2(v; p+ 2k) =
vp/2+k−1

2p/2+kΓ(p/2 + k)
e−v/2.

I use the characteristic function method to derive the formula (1). First let’s introduce some lemmas.

Lemma 1. Suppose X ∼ N(µ, 1). Then the characteristic function of X2 is

h(t;µ) =
exp

(
iµ2t
1−2it

)
(1− 2it)1/2

, t ∈ R.

Proof. By definition, the characteristic function of X2 is

h(t) = E
[
eitX

2
]

=
1√
2π

∫ ∞
−∞

exp

{
itx2 − (x− µ)2

2

}
dx

=
1√
2π

∫ ∞
−∞

exp

{
−1

2

[
(1− 2it)1/2x− µ

(1− 2it)1/2

]2
+

iµ2t

1− 2it

}
dx

= exp

(
iµ2t

1− 2it

)∫ ∞
−∞

1√
2π

exp

{
−1

2

[
(1− 2it)1/2x− µ

(1− 2it)1/2

]2}
dx︸ ︷︷ ︸

(a)

, (2)

where the term (a) is (1− 2it)−1/2 as a Gaussian integral with complex shift.

Lemma 2. Suppose V is a non-central chi-square variable with degree of freedom p > 0 and non-centrality

parameter λ > 0. Then V can be represented as

V = Z2
1 + Z2

2 + · · ·+ Z2
p , Z1 ∼ N(

√
λ, 1), Z2, · · · , Zp ∼ N(0, 1), (3)

where Z1, · · · , Zp are independent.
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Proof. Let Xi ∼ N(µi, 1), i = 1, · · · , p, with λ = µ2
1 + · · ·+ µ2

p > 0. Denote by X the random vector composed

of X1, · · · , Xp. By definition,

V = X2
1 +X2

2 + · · ·+X2
p = ‖X‖22, X ∼ N(µ, Ip),

where µ = (µ1, · · · , µp)> ∈ Rp. Then we can expand λ−1/2µ to an orthogonal matrix Q =

[
λ−1/2µ>

∗

]
of which

the rows form an orthonormal basis on Rp. Let Z = QX. Then

Z2
1 + Z2

2 + · · ·+ Z2
p = ‖Z‖22 = ‖QX‖22 = ‖X‖22 = V.

Moreover, Z1, Z2, · · · , Zp are independent Gaussian variables characterized by (3).

Lemma 3 (Convolution theorem). Let X,Y be independent random variables. Then the characteristic

function of X + Y is the pointwise product of the characteristic functions of X and Y .

Now we are prepared to prove the Main Theorem in the beginning.

Proof of Main Theorem. We use the representation of V given by Lemma 2. Then applying Lemmas 1 and 3

yields the characteristic function of V :

ϕV (t) = h(t;
√
λ)

p∏
i=2

h(t; 0) =
exp

(
iλt

1−2it

)
(1− 2it)p/2

, t ∈ R.

We can expand the numerator as follows:

exp

(
iλt

1− 2it

)
= e−λ/2 exp

(
λ/2

1− 2it

)
=

∞∑
k=0

e−λ/2

k!

(
λ/2

1− 2it

)k
.

Then

ϕV (t) =

∞∑
k=0

e−λ/2(λ/2)k

k!

1

(1− 2it)p/2+k︸ ︷︷ ︸
CF of χ2(p+2k)

. (4)

Applying Fourier transform on both sides of (4) yields the result of (1).

Remark. This theorem proposes another method of generating non-central chi-square variables. Fix p, λ > 0.

• Generate k ∼ Poisson(λ/2).

• Generate i.i.d. X1, · · · , Xp+2k ∼ N(0, 1), and set V = X2
1 + · · ·+X2

p+2k.

Then V is a non-central chi-square variable with degree of freedom p and non-centrality parameter λ.
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Appendix: Gaussian integral with complex arguments

In this section, I provide a detailed calculation of term (a) in (2).

Step I. Calculate the centered Gaussian integral

We consider the following improper integral:

Gγ :=

∫ ∞
−∞

e−γx
2

dx, γ ∈ C, Re(γ) > 0.

The indefinite integral of function e−γx
2

is intractable, but we can transform the integrand by changing one

variable in a squared form:

G2
γ =

∫ ∞
−∞

∫ ∞
−∞

e−γ(x
2+y2)dxdy. (A.1)

Then we can compute (A.1) in the R2 plane by converting from Cartesian to polar coordinates:

G2
γ =

∫
R2

e−γ(x
2+y2)dxdy =

∫ 2π

0

∫ ∞
0

re−γr
2

drdθ = π

∫ ∞
0

e−γtdt (By changing variable t = r2)

= −πe−γt

γ

∣∣∣∣∞
0

=
π

γ
. (A.2)

where the last equality holds because Re(γ) > 0.

Denote γ = reiθ, where r > 0 and θ ∈
(
−π2 ,

π
2

]
. Then the equation (A.2) has two conjugate solutions

Gγ =

√
π

r
e−

iθ
2 or Gγ = −

√
π

r
e−

iθ
2 .

Note that Gγ = 1 when θ = 0 ⇔ γ ∈ R, we have Gγ > 0. Following the continuity of Gγ , the first solution is

correct. We denote γ1/2 =
√
reiθ/2 by the square root of π of which the real part is positive:

Gγ =

√
π

γ1/2
.

Step II. Real shift

For any α ∈ R, by changing the variable, we have

Gα,γ :=

∫ ∞
−∞

e−γ(x+α)
2

dx =

∫ ∞
−∞

e−γx
2

dx =

√
π

γ1/2
, γ ∈ C, Re(γ) > 0. (A.3)

Step III. Complex shift

Now we calculate the Gaussian integral with a complex shift α+ iβ:

Gα,β,γ :=

∫ ∞
−∞

e−γ(x+α+iβ)2dx. γ ∈ C, Re(γ) > 0, α ∈ R, β ∈ R.

Without loss of generality, we suppose β > 0. We fix a number T > 0, and construct a contour C composed of

line segments −T → T → T + iβ → −T + iβ → −T , as is shown in Figure 1.
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Figure 1: Integral path

By Cauchy’s integral theorem (See [Howie 2003]), the integral of function f(z) := e−γ(z+α)
2

, which is

holomorphic in the complex plane C, is zero along any simply closed contour. Then

0 =

∮
C

e−γ(z+α)
2

dz

=

∫ T

−T
e−γ(x+α)

2

dx︸ ︷︷ ︸
(i)

+

∫ β

0

e−γ(T+iy+α)2dy︸ ︷︷ ︸
(ii)

+

∫ −T
T

e−γ(x+iβ+α)2dx︸ ︷︷ ︸
(iii)

+

∫ 0

β

e−γ(−T+iy+α)2dy︸ ︷︷ ︸
(iv)

. (A.4)

Now let T →∞, then exp
{
−γ(±T + iy + α)2

}
→ 0. The integrals (ii) and (iv), defined on a bounded interval

[0, β], converge to zero, and (A.4) reduces to∫ ∞
−∞

e−γ(x+iβ+α)2dx =

∫ ∞
−∞

e−γ(x+α)
2

dx.

Combining with (A.3), we proved that for any γ, µ ∈ C with Re(γ) > 0, we have∫ ∞
−∞

e−γ(x−µ)
2

dx =

√
π

γ1/2
. (A.5)

Step IV. Plugging-in

Using formula (A.5), we can immediately calculate the term (a) in (2):

(a) =

∫ ∞
−∞

1√
2π

exp

{
−1− 2it

2

(
x− µ

1− 2it

)2
}

dx

=
1√
2π
·

√
π

(1− 2it)1/2/
√

2
=

1

(1− 2it)1/2
.

Then we complete the entire proof of Lemma 1.
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