A Derivation of Non-central Chi-square Density
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Non-central chi-square distribution. Let (Xi,---,X,,) be p independent Gaussian random variables with
X; ~ N(u;,1). The random variable V = Y% X2 is distributed according to the non-central chi-squared

distribution, with degree of freedom p and noncentrality parameter \ = Zle u2.

Main Theorem. (Density of non-central chi-square distributions). Suppose V is a non-central chi-square
variable with degree of freedom p > 0 and non-centrality parameter A > 0. Then the probability density
function of V is
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where fy2(-;p + 2k) is the probability density function of x?(p + 2k):
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I use the characteristic function method to derive the formula . First let’s introduce some lemmas.

Lemma 1.  Suppose X ~ N(u,1). Then the characteristic function of X? is

.2
exp (11521&)
h(t;p) = m, € R.

Proof. By definition, the characteristic function of X? is

>
—
Ny
Il
=
m»—u
~+~
>
N
|
5l
R)
——
g 8
©]
M
kel
—
=
8
(S
[N}
——
(o}
8

1 & . 1 2 ipt
- (1 - 212 — d
Ner: eXp{ 2 [( e - Gy | T (W

2 fe%s) 2
_ ip”t 1 1 _oipl/2. K
= exp (1 . 2it> /_Oo T { 2 [(1 ) e = G| (4 )

(@)

where the term (a) is (1 — 2it)~'/? as a Gaussian integral with complex shift. O

Lemma 2. Suppose V is a non-central chi-square variable with degree of freedom p > 0 and non-centrality

parameter A > 0. Then V can be represented as
V2212+Z22++Z§7 ZINN(\/le)v Z27"' aZpNN(Oal)a (3)

where Z1, -+, Z, are independent.



Proof. Let X; ~ N(pi,1),i=1,---,p, with A = uf 4 - + p2 > 0. Denote by X the random vector composed
of Xy,---,X,. By definition,

V=X{+X3+ -+ X, =|X]3 X~N(pI,),

)\71/2 T
where g = (p11,- -+, 41p) € RP. Then we can expand A~'/?y to an orthogonal matrix Q = [ H 1 of which
*
the rows form an orthonormal basis on RP. Let Z = QX. Then
Zi+Z3+ -+ Zy = |1ZI5 = |QX3 = |X[3 = V-
Moreover, Z1, Za,- - , Zy, are independent Gaussian variables characterized by . O

Lemma 3 (Convolution theorem). Let X,Y be independent random variables. Then the characteristic
function of X 4+ Y is the pointwise product of the characteristic functions of X and Y.
Now we are prepared to prove the Main Theorem in the beginning.

Proof of Main Theorem. We use the representation of V' given by Then applying Lemmas [I] and
yields the characteristic function of V :

L €xp (li—)\Qtit)
ov (t) = h(t; VX) Hh(t;O) = =2 teR.

We can expand the numerator as follows:
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Applying Fourier transform on both sides of yields the result of . O

Remark. This theorem proposes another method of generating non-central chi-square variables. Fix p, A > 0.
e Generate k ~ Poisson(A/2).
e Generate i.i.d. X1, -+, Xpior ~ N(0,1), and set V.= X? + - + X§+2k.

Then V is a non-central chi-square variable with degree of freedom p and non-centrality parameter \.
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Appendix: Gaussian integral with complex arguments
In this section, I provide a detailed calculation of term (a) in (2).

Step I. Calculate the centered Gaussian integral

We consider the following improper integral:

G, ::/ e dz, ~€C, Re(y) > 0.
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The indefinite integral of function e g intractable, but we can transform the integrand by changing one

variable in a squared form:
G'Qv :/ / e’V(m2+y2)dzdy. (A1)

Then we can compute (A.1)) in the R? plane by converting from Cartesian to polar coordinates:
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where the last equality holds because Re(y) > 0.

Denote v = re'?, where r > 0 and 6 € (—g, %] Then the equation 1) has two conjugate solutions

G, = \/fe_.

Note that G, = 1 when 6§ = 0 < v € R, we have G, > 0. Following the continuity of G, the first solution is

NS

correct. We denote v/2 = \/rel/? by the square root of 7 of which the real part is positive:
T
G, = 1£
yH/2

Step II. Real shift

For any o € R, by changing the variable, we have

00 00
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Step III. Complex shift

Now we calculate the Gaussian integral with a complex shift o + i3:
Gapnr = / e @ tatif’®qy 4 e, Re(v) >0, a €R, B eR.

Without loss of generality, we suppose 8 > 0. We fix a number T > 0, and construct a contour C' composed of
line segments —T — T — T +if — =T +i8 — —1T, as is shown in Figure 1.
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Figure 1: Integral path

By Cauchy’s integral theorem (See [Howie 2003]), the integral of function f(z) := e 7G+2° which is

holomorphic in the complex plane C, is zero along any simply closed contour. Then
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Now let T — oo, then exp {—v(£T + iy + @)} — 0. The integrals (ii) and (iv), defined on a bounded interval

[0, 8], converge to zero, and (A.4) reduces to
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Combining with (A.3), we proved that for any ~, u € C with Re(y) > 0, we have

/OO e qy = N .
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Step IV. Plugging-in

Using formula (A5, we can immediately calculate the term (a) in (2):

(a) = /_Z J%exp{—l _22” (m— - _“21t>2}dx
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Then we complete the entire proof of
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