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In this article, we study the minimax theorems, which provide conditions ensuring that the max-min

inequality is also an equality. For any function f : X × Y → R, the max-min inequality asserts

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y)

This is also called weak duality in optimization. We wonder if the equality holds under certain conditions.

1 Quasi-convex Functions

Definition 1 (Quasi-convexity). Let V be a vector space. A function ϕ : V → R is said to be quasi-convex,

if for each x, y ∈ V and each 0 ≤ λ ≤ 1,

ϕ(λx+ (1− λ)y) ≤ max {ϕ(x), ϕ(y)} .

A function ϕ : V → R is said to be quasi-concave if its negative is quasi-convex. In other words, ϕ is

quasi-concave if for each x, y ∈ V and each 0 ≤ λ ≤ 1,

ϕ(λx+ (1− λ)y) ≥ min {ϕ(x), ϕ(y)} .

We have the following level-set characterization of quasi-convex functions.

Theorem 2. Let V be a vector space. A function ϕ : V → R is quasi-convex if and only if each sublevel set

ϕ−1((−∞, α]) = {x ∈ V : ϕ(x) ≤ α} , α ∈ R

is a convex set in V .

Proof. Assume ϕ : V → R is quasi-convex, and fix α ∈ R. For any pair x, y ∈ ϕ−1((−∞, α]),

ϕ(λx+ (1− λ)y) ≤ max {ϕ(x), ϕ(y)} ≤ α, ∀0 ≤ λ ≤ 1.

Hence ϕ−1((−∞, α]) is convex. Conversely, assume each sublevel sets of ϕ is convex. Fix x, y ∈ V , and take

α = max{ϕ(x), ϕ(y)}. Then x, y ∈ ϕ−1((−∞, α]), and by convexity

λx+ (1− λ)y ∈ ϕ−1((−∞, α]) ⇒ ϕ(λx+ (1− λ)y) ≤ α = max{ϕ(x), ϕ(y)}, ∀0 ≤ λ ≤ 1.

Hence ϕ is quasi-convex.

Remark. Similarly, a function ϕ : V → R is quasi-concave if and only if the each superlevel set

ϕ−1([α,∞)) = {x ∈ V : ϕ(x) ≥ α} , α ∈ R

is a convex set in V .
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2 Von-Neumann Minimax Theorem

We first introduce an intersection property of convex sets.

Lemma 3. Let C1, · · · , Cn and C be compact convex sets in a Euclidean space such that

(i) C ∩
⋂n
i=1,i6=j Ci 6= ∅ for each j = 1, · · · , n; and

(ii) C ∩
⋂n
i=1 Ci = ∅.

Then C is not contained in
⋃n
i=1 Ci.

Proof. We proceed by induction on n. If n = 1, then (i) implies that C is nonempty, and (ii) implies that C

and C1 are disjoint. The result C 6⊂ C1 is then clear.

Suppose our assertion holds for n − 1, and consider the case n. According to (ii), C ∩ Cn and
⋂n−1
i=1 Ci

are disjoint compact convex sets, which can be strictly separated by a hyperplane H. Let D = C ∩ H, and

Di = Ci ∩H for i = 1, · · · , n. We verify that the sets D1, · · · , Dn−1 and D satisfies conditions (i) and (ii).

(i) Given any j ∈ {1, · · · , n− 1}, we can take xj ∈ C ∩
⋂n
i=1,i6=j Ci, and take xk ∈ C ∩

⋂n−1
i=1 Ci by (i). Since

xj ∈ C ∩ Cn and xk ∈
⋂n−1
i=1 Ci, they are separated by hyperplane H. We take yj to be the intersection

of the line segment [xj , xk] and the hyperplane H. Clearly, [xj , xk] lies in the convex set C ∩
⋂n−1
i=1,i6=j Ci.

Hence yj ∈ D ∩
⋂n−1
i=1,i6=j Di 6= ∅.

(ii) Since
⋂n−1
i=1 Ci and C ∩ Cn are strictly separated by H, we have D ∩

⋂n−1
i=1 Di = ∅.

By the induction hypothesis, there exists x0 ∈ D such that x0 /∈
⋃n−1
i=1 Di. Since D ∩Cn = (C ∩H)∩Cn = ∅,

it follows x0 /∈ Cn. Hence C 3 x0 /∈
⋃n
i=1 Ck, which completes the proof.

Remark. This proof is due to [1]. In fact, one can assume that C1, · · · , Cn and C to be closed convex sets.

Theorem 4 (Von Neumann Minimax theorem). Let U and V be topological vector spaces, and let X and Y

be compact convex subsets of U and V , respectively. Let f : X × Y → R be a function such that

(i) f is continuous on X × Y ;

(ii) f(x, y) is quasi-concave in variable x; and

(iii) f(x, y) is quasi-convex in variable y.

Then there exists a saddle point (x0, y0) ∈ X × Y such that

f(x, y0) ≤ f(x0, y0) ≤ f(x0, y), ∀x ∈ X, y ∈ Y.

Moreover, the max-min inequality for f is also an equality:

f(x0, y0) = max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

The proof of this result needs some technical lemmata.

Lemma 5. Define the sets

Eλ = {x ∈ X : f(x, y) ≥ λ for all y ∈ Y } ,

Fµ = {x ∈ X : f(x, y) ≤ µ for all x ∈ X} ,

where λ and µ are arbitrary real numbers. Define

λ0 = sup {λ : Eλ 6= ∅} , and µ0 = inf {µ : Fµ 6= ∅} .

Then

λ <∞, µ > −∞, and Eλ0 6= ∅, Fµ0 6= ∅.
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Proof. We define g(x) = infy∈Y f(x, y). Then g(x) ≥ λ if and only if f(x, y) ≥ λ for each y ∈ Y . Hence

Eλ = {x ∈ X : g(x) ≥ λ} =
⋂
y∈Y
{x ∈ X : f(x, y) ≥ λ}

is a superlevel set of function g, and it is convex. Furthermore,

inf
y∈Y

[f(x, y)− f(x′, y)] ≤ g(x)− g(x′) ≤ sup
y∈Y

[f(x, y)− f(x′, y)] .

By uniform continuity of f on the compact set X × Y , the function g is also (uniformly) continuous on X.

Then g is bounded, and λ <∞. Also, the level set Eλ = g−1([λ,∞)) is closed in X. Furthermore,

Eλ0
= g−1([λ0,∞)) = g−1

( ⋂
λ<λ0

[λ,∞)

)
=
⋂
λ<λ0

g−1([λ,∞)) =
⋂
λ<λ0

Eλ.

Since the closed sets Eλ are nonempty for all λ < λ0, by compactness of X, their intersection Eλ0
is also

nonempty. A similar assertion also holds for Fµ0
.

Lemma 6. λ0 ≥ µ0.

Proof. Fix arbitrarily ε > 0. By definition of λ0, we have Eλ0+ε = ∅. Hence for every x ∈ X, there exists

y ∈ Y such that f(x, y) < λ0 + ε. We define

U εy = {x ∈ X : f(x, y) < λ0 + ε} .

Since f is continuous, U εy is an open set. Furthermore,
⋃
y∈Y U

ε
y is an open cover of X. By compactness of X,

there exists finitely many y1, · · · , yn ∈ Y such that

X ⊂
n⋃
i=1

U εyi .

Similarly, we can find finitely many x1, · · · , xm ∈ X that form an open cover
⋃n
i=1 V

ε
xi

of Y , where V εx is

V εx = {x ∈ X : f(x, y) > µ0 − ε} .

Let C = conv(x1, · · · , xm), and let L = x1 + span{x2 − x1, · · · , xm − x1}. Clearly, C is compact, and L

is the minimal affine subspace containing C, which is homeomorphic to an Euclidean space. Then, X ∩ L is

covered by {Ui = U εyi ∩L, i = 1, · · · , n}. By dropping possibly redundant elements, one may assume the cover

{Ui, i = 1, · · · , n} is minimal, in the sense that C ⊂ ∩ni=1Ui and C 6⊂ ∩ni=1,i6=jUi for each j = 1, · · · , n. Define

Ci = L\Ui = {x ∈ X ∩ L : f(x, yi) ≥ λ0 + ε} , i = 1, · · · , n.

By continuity and quasi-concavity of f(·, yi), this is a compact convex set. Since the cover {Ui, i = 1, · · · , n}
is minimal, the two conditions in Lemma 3 are satisfied. Hence there exists x0 ∈ C such that

f(x0, yi) < λ0 + ε, ∀i = 1, · · · , n.

By quasi-convexity of f(x0, ·), we have

f(x0, y) < λ0 + ε, y ∈ D := conv(y1, · · · , yn).
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Similarly, there exists y0 ∈ D such that

f(x, y0) > µ0 − ε, x ∈ C := conv(x1, · · · , xm).

Therefore,

µ0 − ε < f(x0, y0) < λ0 + ε.

Since ε > 0 is arbitrary, we have µ0 ≤ λ0.

Now we are prepared to prove the von Neumann Minimax theorem.

Proof of Theorem 4. By Lemma 5, we take x0 ∈ Eλ0
and y0 ∈ Fµ0

. Then

λ0 ≤ f(x0, y0) ≤ µ0.

By Lemma 6, λ0 = µ0. Then for all x ∈ X and y ∈ Y ,

f(x, y0) ≤ µ0 = f(x0, y0) = λ0 ≤ f(x0, y)

Hence (x0, y0) is a saddle point. Furthermore,

λ0 = sup

{
λ : ∃x ∈ X such that inf

y∈Y
f(x, y) ≥ λ

}
= sup
x∈X

inf
y∈Y

f(x, y),

µ0 = inf

{
λ : ∃y ∈ Y such that sup

x∈X
f(x, y) ≥ µ

}
= inf
y∈Y

sup
x∈X

f(x, y).

Since both X and Y are compact, and both the mappings x 7→ infy∈Y f(x, y) and y 7→ supx∈X f(x, y) are

continuous, we have

max
x∈X

min
y∈Y

f(x, y) = λ0 = f(x0, y0) = µ0 = min
y∈Y

max
x∈X

f(x, y).

Thus we complete the proof.

Application: Matrix Game. Consider a two-player zero-sum matrix game, which is defined by a triplet

(A,B, F ). where A = {1, 2, · · · ,m} is a finite set of actions that the max player can take, B = {1, 2, · · · , n} is

the set of actions that the max player can take, and F : A × B → R is utility function. The zero-sum game

can be formulated as the following max-min problem

max
ξ∈∆(A)

min
η∈∆(B)

ξ>Fη,

where ξ ∈ ∆(A) and η ∈ ∆(B) are strategies for each player:

∆(A) = {ξ = (ξ1, · · · , ξm) : ξ1, · · · , ξm ≥ 0, ξ1 + · · ·+ ξm = 1} ,

∆(B) = {η = (η1, · · · , ηn) : η1, · · · , ηn ≥ 0, η1 + · · ·+ ηn = 1}

and F = (F (a, b))a∈A,b∈B ∈ Rm×n is the utility matrix. Clearly, the simplexes ∆(A) and ∆(B) are compact

convex subsets of Euclidean spaces. By von Neumann minimax theorem, there exists strategies ξ0 ∈ ∆(A)

and η0 ∈ ∆(B) such that

ξ0>Fη0 = max
ξ∈∆(A)

ξ>Fη0 = min
η∈∆(B)

ξ0>Fη.
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In fact, the last display implies

ξ0>Fη0 = max
i∈{1,··· ,m}

n∑
j=1

η0
jF (i, j) = min

j∈{1,··· ,n}

m∑
i=1

ξ0
i F (i, j).
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