On Minimax Theorems
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In this article, we study the minimax theorems, which provide conditions ensuring that the max-min
inequality is also an equality. For any function f: X x Y — R, the maz-min inequality asserts

inf < inf
sup inf f(z,y) < leelY 22)% f(z,y)

zeX Y€

This is also called weak duality in optimization. We wonder if the equality holds under certain conditions.

1 Quasi-convex Functions

Definition 1 (Quasi-convexity). Let V' be a vector space. A function ¢ : V — R is said to be quasi-converz,
if for each x,y € V and each 0 < X\ <1,

Az + (1= A)y) <max{p(z),¢(y)} -

A function ¢ : 'V — R is said to be quasi-concave if its negative is quasi-convex. In other words, ¢ is
quasi-concave if for each x,y € V and each 0 < A <1,

oAz + (1 —N)y) > min{p(z),p(y)}.

We have the following level-set characterization of quasi-convex functions.

Theorem 2. Let V' be a vector space. A function ¢ : V — R is quasi-convex if and only if each sublevel set
¢ ((~o0,a]) ={zr eV:p(@)<a}, acR

is a convex set in V.

Proof. Assume ¢ : V — R is quasi-convex, and fix o € R. For any pair x,y € ¢~ ((—o0, a]),
e(Az + (1= Ny) <max{p(z),o(y)} <a, VO<A<IL

Hence ¢~ 1((—00,a]) is convex. Conversely, assume each sublevel sets of ¢ is convex. Fix z,y € V, and take
a =max{p(z),¢(y)}. Then z,y € ¢~ ((—o0, a]), and by convexity

M+ (1=Ny e ((—00,a]) = olz+(1-Ny) <a=max{p(x),oy)}, YO<I<I.
Hence ¢ is quasi-convex. O
Remark. Similarly, a function ¢ : V' — R is quasi-concave if and only if the each superlevel set
p (o)) ={r eV p@)2a}l, acR

is a convex set in V.



2 Von-Neumann Minimax Theorem

We first introduce an intersection property of convex sets.

Lemma 3. Let Cy,---,C, and C be compact convex sets in a Fuclidean space such that
(Z) an ﬂ?:l’i#]’ Ci 7& (Z) fO’I” eaChj = 17 Ny and
(ii) CNi, Ci = 0.

Then C is not contained in |J;_, C;.

Proof. We proceed by induction on n. If n = 1, then (i) implies that C' is nonempty, and (ii) implies that C
and C are disjoint. The result C' ¢ C1 is then clear.

Suppose our assertion holds for n — 1, and consider the case n. According to (ii), C N C, and ﬂ?z_ll C;
are disjoint compact convex sets, which can be strictly separated by a hyperplane H. Let D = C' N H, and
D;=C;nH fori=1,--- ,n. We verify that the sets D;,---,D,,_1 and D satisfies conditions (i) and (ii).

(i) Given any j € {1,---,n—1}, we can take z; € CN(\,_, ;; Ci, and take z}, € CnNiZ Ci by (i). Since
z; € CNC, and xy, € ﬂ:.:ll C;, they are separated by hyperplane H. We take y; to be the intersection

n—1

of the line segment [z, zx] and the hyperplane H. Clearly, [z;, zx] lies in the convex set C'N ﬂizl’i# C;.
Hence y; € DN ﬂ?;l{i;éj D; # 0.
(i) Since 7=, C; and C' N C,, are strictly separated by H, we have D N (/- D; = 0.
By the induction hypothesis, there exists 2y € D such that zq ¢ UZL:_11 D;. Since DNC,, = (CNH)NC, =0,
it follows zo ¢ C,. Hence C 3 zo ¢ |J_; Ck, which completes the proof. O

Remark. This proof is due to [I]. In fact, one can assume that Cy,---,C),, and C to be closed convex sets.

Theorem 4 (Von Neumann Minimax theorem). Let U and V' be topological vector spaces, and let X and Y
be compact conver subsets of U and V', respectively. Let f: X xY — R be a function such that
(i) f is continuous on X xY;
(ii) f(z,y) is quasi-concave in variable x; and
(iii) f(x,y) is quasi-convez in variable y.
Then there exists a saddle point (xo,yo) € X X Y such that

f(@,90) < f(x0,90) < f(wo,y), VeeXyeY.

Moreover, the maz-min inequality for f is also an equality:

f(zo,90) = max min flx,y) = min max f(z,y).

The proof of this result needs some technical lemmata.

Lemma 5. Define the sets

Ex={zeX: f(z,y) >\ forallyeY},
F,={zeX: f(z,y) <p forall z € X},

where A and p are arbitrary real numbers. Define
Xo =sup{\: Ex#0}, and po=inf{p:F, #0}.
Then

A<oo, p>—oco, and Ex,#0, F,, #0.



Proof. We define g(x) = inf,cy f(z,y). Then g(x) > X if and only if f(x,y) > A for each y € Y. Hence

Ex={zeX:g)>A=(){zreX:flz,y) >}
yey

is a superlevel set of function g, and it is convex. Furthermore,

inf [f(z,y) = f(',9)] < g(z) — 9(a') < sup [f(z,y) - f(z",y)].
ye yey

By uniform continuity of f on the compact set X x Y, the function ¢ is also (uniformly) continuous on X.
Then g is bounded, and A < co. Also, the level set Ex = g~!([)\, o0)) is closed in X. Furthermore,

E)\o :gil(P‘Ovoo)) :gil < m [)‘7OO)> = m gil(P\’ OO)) = n By
A<Xo A< A<o

Since the closed sets Ey are nonempty for all A < Ag, by compactness of X, their intersection E), is also
nonempty. A similar assertion also holds for £},,. O

Lemma 6. \g > pup.

Proof. Fix arbitrarily € > 0. By definition of g, we have E) 4. = 0. Hence for every z € X, there exists
y € Y such that f(z,y) < Ao + €. We define

Uy={z e X: f(z,y) <o +e}.

Since f is continuous, Uy is an open set. Furthermore, J U¢ is an open cover of X. By compactness of X,

yey “y
there exists finitely many y;,- - ,y, € Y such that
n
xclJug.
i=1
Similarly, we can find finitely many z1,--- ,2,, € X that form an open cover | J-_, Vi, of Y, where V[ is

Vi ={z e X: f(z,y) > po — €}

Let C' = conv(xy,- -+ ,xy), and let L = x; + span{ze — 21, -+ , &, — x1}. Clearly, C is compact, and L
is the minimal affine subspace containing C', which is homeomorphic to an Euclidean space. Then, X N L is
covered by {U; = Uy,NLi=1,--- ,n}. By dropping possibly redundant elements, one may assume the cover
{Ui,i=1,--+ ,n} is minimal, in the sense that C C NI, U; and C ¢ Mizq,iz;Ui for each j =1, n. Define

Ci=L\U;={zeXnNL: f(z,y;) >XNo+¢€}, i=1--n.

By continuity and quasi-concavity of f(-,y;), this is a compact convex set. Since the cover {U;,i =1,--- ,n}
is minimal, the two conditions in Lemma [3] are satisfied. Hence there exists x¢ € C such that

f@o,y:) <Xo+e, Vi=1,---,n.
By quasi-convexity of f(xg,-), we have

flzo,y) <Xo+e, y€D:=conv(ys, - ,Yn)



Similarly, there exists yo € D such that
flz,y0) > o —€, x € C:=conv(zy, - ,Tm)-
Therefore,

po — € < f(xo,y0) < Ao + €.

Since € > 0 is arbitrary, we have g < Ag. O
Now we are prepared to prove the von Neumann Minimax theorem.

Proof of Theorem [} By Lemma we take xg € Ey, and yo € F},,. Then

Ao < f(zo,90) < po-

By Lemmal[6] Ao = po. Then for allz € X and y € Y,

f(@,90) < po = fwo,90) = Ao < f(w0,y)

Hence (x9, yo) is a saddle point. Furthermore,

Ao = sup {/\ : 3z € X such that inf f(z,y) > )\} = sup inf f(z,y),
yey zeX YeY

Lo = inf{)\ :Jdy €Y such that sup f(x,y) > ,u} = 1nf sup f(x,y).
zeX Y zex

Since both X and Y are compact, and both the mappings z — infyecy f(z,y) and y — sup,cx f(z,y) are
continuous, we have

_A = s = = 1 s .
glea;gggnf(x y) = Ao = f(zo,y0) = 1o ryrggggcf(x Y)

Thus we complete the proof. O

Application: Matrix Game. Consider a two-player zero-sum matrix game, which is defined by a triplet
(A, B, F). where A= {1,2,--- ,m} is a finite set of actions that the max player can take, B = {1,2,--- ,n} is
the set of actions that the max player can take, and F' : A x B — R is utility function. The zero-sum game
can be formulated as the following max-min problem

max min &' F7,
£eA(A) neA(B)

where £ € A(A) and n € A(B) are strategies for each player:

(A) { (517"'76771):517""5771207 §1++€m:1}7
AB)={n= (1, mn) im0 =20, m+ -+ 0, =1}

and F = (F(a,b))acapen € R™*™ is the utility matrix. Clearly, the simplexes A(A) and A(B) are compact
convex subsets of Euclidean spaces. By von Neumann minimax theorem, there exists strategies &Y € A(A)
and n° € A(B) such that

0T 0 _ 0T
Frn® = ma Fn min F
¢ K  cea ),(4) ¢ nEA(B) ¢ -



In fact, the last display implies
n

0T 17,0 0/ - . 0. .
Fn’ = m ' F = J .
&y ie{l,»z-l-)fm};:ln] (i,4) je{ql,_l'r}’n};:lfz (i,4)
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