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1 Measure of Information

Throughout this section, we assume that all random variables we study are discrete variables. We use capital

letters like X,Y, Z to denote random variables, and their probability mass functions pX(x), pY (y), pZ(z). For

simplicity, we drop the subscripts and use the shorthand p(x), p(y), p(z) instead. We use calligraphy letters

like X ,Y,Z to denote the finite support of random variables.

1.1 Entropy and Conditional Entropy

Definition 1.1 (Entropy). Let X be a random variable supported on a finite state space X , with probability

mass function p(x). The entropy of X is a function of the distribution p(x):

H(X) :=
∑
x∈X

p(x) log
1

p(x)
= −E [log p(X)] .

Likewise, for a collection X1, · · · , Xn of random variables, the (joint) entropy of X1, · · · , Xn is defined as the

entropy of the random vector (X1, · · · , Xn):

H(X1, · · · , Xn) =
∑

x1∈X1,··· ,xn∈Xn

p(x1, · · · , xn) log
1

p(x1, · · · , xn)
.

Remark I. The entropy provides a measure of uncertainty of random variables. We also frequently use the

binary entropy function h : [0, 1]→ R+, which is defined as the entropy of a Bernoulli variable:

H(α) = H(Bernoulli(α)) = −α logα− (1− α) log(1− α), α ∈ [0, 1]

with the convention 0 log 0 = 0.

Remark II. Given any base b > 0, we define the entropy of X under base b to be

Hb(X) =
∑
x∈X

p(x) logb
1

p(x)
= H(X) logb e.

Clearly we have H(X) = He(X). Another commonly used entropy is the bit entropy, in which the base b = 2:

H2(X) =
∑
x∈X

p(x) log2

1

p(x)
= H(X) log2 e.

Proposition 1.2. We have the following estimate for the entropy of a random variable X:

0 ≤ H(X) ≤ log |X |.

Proof. The lower bound follows from the definition of entropy. For the upper bound, note that

∑
x∈X

p(x) log
1

p(x)
=
∑
x∈X

p(x) log
|X |

p(x)|X |
= log |X |+

∑
x∈X

p(x) log
1

p(x)|X |

≤ log |X |+
∑
x∈X

p(x)

(
1

p(x)|X |
− 1

)
= log |X |.

Then we complete the proof.
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Remark. If |X | = ∞, the entropy of a random variable can be ∞. For example, let A =
∑∞
n=2

1
n(logn)2 ,

which is less than infinity. Define random variable X by

P(X = n) =
1

An(log n)2
, n = 2, 3, · · · .

Then

H(X) ≥
∫ ∞

2

logA

x log x
dx =∞.

We may also wonder the uncertainty of a random variable when given potentially relevant observation.

Definition 1.3 (Conditional Entropy). Let X and Y be two random variables in the same probability space.

The entropy of Y conditioned on the event X = x is a function of the conditional distribution p(y|x):

H(Y |X = x) :=
∑
y∈Y

p(y|x) log
1

p(y|x)
= E

[
log

1

p(Y |x)

∣∣∣∣X = x

]
.

The conditional entropy of Y given X is a function of the joint distribution p(x, y):

H(Y |X) :=
∑

x∈X ,y∈Y
p(x, y) log

1

p(y|x)
= E

[
log

1

p(Y |X)

]
.

Remark. Note that H(Y |X) is a deterministic quantity rather than a random variable. In fact, we have

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x).

Next, we study the relation between joint entropy and conditional entropy.

Proposition 1.4 (Chain rule for entropy). The joint entropy of X and Y has the following decomposition:

H(X,Y ) = H(Y |X) +H(X). (1.1)

More generally,

H(X1, X2, · · · , Xn) = H(X1) +H(X2|X1) +H(X3|X2, X1) + · · ·+H(Xn|Xn−1, · · · , X1). (1.2)

Proof. We first verify the bivariate case (1.1):

H(Y |X) +H(X) =
∑

x∈X ,y∈Y
p(x, y) log

1

p(y|x)
+
∑
x∈X

p(x) log
1

p(x)

=
∑

x∈X ,y∈Y
p(x, y) log

1

p(y|x)
+

∑
x∈X ,y∈Y

p(x, y) log
1

p(x)

=
∑

x∈X ,y∈Y
p(x, y) log

1

p(x, y)
= H(X,Y ).

The general case (1.2) follows from mathematical induction.

Remark. The equality (1.1) also implies the chain rule for conditional entropy:

H(X,Y |Z) = H(X|Y, Z) +H(Y |Z)
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1.2 Mutual Information

Definition 1.5 (Mutual information). Let X and Y be two discrete random variables in the same probability

space. The mutual information of X and Y is defined as

I(X;Y ) =
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
.

Proposition 1.6 (Properties of mutual information). Let X and Y be two discrete random variables.

(i) (Symmetry). I(X;Y ) = I(Y ;X).

(ii) (Reduction). I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

(iii) (Measure of dependency). I(X;Y ) ≥ 0, and the equality holds if and only if X and Y are independent.

Proof. The assertion (i) follows from definition, and the second from direct calculation. Now we verify (iii):

∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
≥

∑
x∈X ,y∈Y

p(x, y)

(
1− p(x)p(y)

p(x, y)

)
= 0.

Clearly, the equality holds if and only if p(x, y) = p(x)p(y) for every x ∈ X and y ∈ Y.

Remark. Combining (ii) and (iii), we see that conditioning does not increase entropy :

H(X|Y ) ≤ H(X), and H(Y |X) ≤ H(Y ).

Based on this property, we introduce an important property of entropy as the function of distribution.

Theorem 1.7 (Concavity of entropy). Let p and q be two probability distributions that are supported in a

common space X . Then for all 0 ≤ λ ≤ 1, we have

H(λp+ (1− λ)q) ≥ λH(p) + (1− λ)H(q). (1.3)

Proof. Let X1 ∼ p and X2 ∼ q be two independent random variables, and let Z ∼ Bernoulli(λ). Define

Xλ = X1Z +X2(1− Z).

Then Xλ ∼ λp+ (1− λ)q, and

H(Xλ) ≥ H(Xλ|Z) = λH(Xλ|Z = 1) + (1− λ)H(Xλ|Z = 0) = λH(X1) + (1− λ)H(X2).

This is in fact the equality (1.3).

Remark. Using the concavity, we can interpret why a transfer of probability that makes the distribution

more uniform increases the entropy. We consider the following transformation:

(p1, · · · , pi, · · · , pj , · · · , pm)→
(
p1, · · · ,

pi + pj
2

, · · · , pi + pj
2

, · · · , pm
)
, p1 + · · ·+ pm = 1.

Let p = (p1, · · · , pi, · · · , pj , · · · , pm), and let q = (p1, · · · , pj , · · · , pi, · · · , pm) be the probability vector with

i-th and j-th elements exchanged. Then

H

(
p+ q

2

)
≥ 1

2
H(p) +

1

2
H(q) = H(p).
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Mutual information as a function of distribution. If p(x, y) is the joint probability mass function of

random variables X and Y . The mutual information I(X;Y ) is in fact a function of p and does not depend

on the probability space where X and Y are defined. We can write I(X;Y ) = I(p) with (X,Y ) ∼ p.
We consider the decomposition p(x, y) = p(x)p(y|x), where p(x) is the marginal distribution of X and

p(y|x) is the conditional distribution of Y given x. Then the mutual information between X and Y is a

function of p(x) and p(y|x):

I(p(x), p(y|x)) :=
∑

x∈X ,y∈Y
p(x)p(y|x) log

p(y|x)

p(y)
, where p(y) =

∑
x∈X

p(x)p(y|x).

Proposition 1.8 (Marginal convexity of mutual information). Let 0 ≤ λ ≤ 1. Let p(x) and q(x) be two

distributions of X, and let p(y|x) and q(y|x) be two conditional distributions of Y given X. Then

I(λp(x) + (1− λ)q(x), p(y|x)) ≤ λI(p(x), p(y|x)) + (1− λ)I(q(x), p(y|x)),

and

I(p(x), λp(y|x) + (1− λ)q(y|x)) ≤ λI(p(x), p(y|x)) + (1− λ)I(p(x), q(y|x)).

Proof. Let Z ∼ Bernoulli(λ), X1 ∼ p, X2 ∼ q, Xλ = X1Z +X2(1− Z), and Y |Xλ ∼ p(y|x). Then

I(λp(x) + (1− λ)q(x), p(y|x)) = I(Xλ;Y ).

Since conditioning does not increase entropy,

I(Xλ;Y ) ≤ I(Xλ;Y,Z) = I(Xλ;Y |Z) + I(Xλ;Z)

= P(Z = 1)I(Xλ;Y |Z = 1) + P(Z = 0)I(Xλ;Y |Z = 0) + 0

= λI(X1;Y ) + (1− λ)I(X2;Y )

= λI(p(x), p(y|x)) + (1− λ)I(q(x), p(y|x)).

This proves the first inequality. The second one follows in a similar approach.

Similar to the conditional entropy, we can define the conditional mutual information.

Definition 1.9. Let X,Y and Z be discrete random variables in the same probability space. The conditional

mutual information of X and Y given Z is defined as

I(X;Y |Z) =
∑

x∈X ,y∈Y,z∈Z
p(x, y, z) log

p(x, y|z)
p(x|z)p(y|z)

.

Similar to Proposition 1.6, conditional mutual information has the following properties.

Proposition 1.10 (Properties of conditional mutual information). Let X,Y and Z be discrete random vari-

ables in the same probability space.

(i) (Symmetry). I(X;Y |Z) = I(Y ;X|Z).

(ii) (Reduction). I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(Y |Z)−H(Y |X,Z).

(iii) (Measure of dependency). I(X;Y |Z) ≥ 0, and the equality holds if and only if X and Y are conditionally

independent on Z.

By direct calculation and induction, we also have the following chain rule for mutual information.
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Proposition 1.11 (Chain rule for mutual information). The mutual information I(X;Y,Z) has the following

decomposition:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z).

More generally,

I(X;Y1, Y2, · · · , Yn) = I(X;Y1) + I(X;Y2|Y1) + I(X;Y3|Y2, Y1) · · ·+ I(X;Yn|Yn−1, · · · , Y1).

We can use this rule to derive the data processing inequality for Markov chains.

Definition 1.12 (Markov chain). Random variables X,Y and Z are said to form a Markov chain, written

X → Y → Z, if X and Z are conditionally independent on Y :

p(x, z|y) = p(x|y)p(z|y).

Particularly, if Z = g(Y ) is a function of Y , then X → Y → Z.

The following theorem asserts that no manipulation of Y can increase the mutual information.

Theorem 1.13 (Data processing inequality). If X → Y → Z, then

I(X;Y ) ≥ I(X;Z).

Particularly, for any function g defined on Y, we have

I(X;Y ) ≥ I(X; g(Y )).

Proof. By chain rule, we have that

I(X;Y ) + I(X;Z|Y ) = I(X;Y,Z) = I(X;Z) + I(X;Y |Z).

Since X ⊥⊥ Z |Y , we have I(X;Z|Y ) = 0. Since I(X;Y |Z) ≥ 0, the result follows.

Remark. By Proposition 1.6, we also have H(X|Z) ≥ H(X|Y ) when X → Y → Z.

Next, we introduce an alternative definition of mutual information.

Definition 1.14 (Kullback-Leibler divergence/relative entropy). Let p and q be two probability distributions

such that X = supp q ⊃ supp p. The Kullback-Leibler divergence of q from p is defined as

D(p‖q) :=
∑
x∈X

p(x) log
p(x)

q(x)
= EX∼p

[
log

p(X)

q(X)

]
.

This is also known as the relative entropy.

Remark. By definition, we have

D(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
≥
∑
x∈X

p(x)

(
1− q(x)

p(x)

)
= 0.
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Therefore, D(p‖q) ≥ 0, and the equality holds if and only if p = q. Moreover, by definition, we have the

following result:

I(X;Y ) = D(pX,Y ‖pXpY ) = EX∼pX
[
D(pY |X‖pY )

]
.

In other words, the mutual information of X and Y is the relative entropy of their marginal product pXpY

from their joint distribution pX,Y .

Application: Misclassification Rate. To end this section, we introduce a useful application of mutual

information. We discuss the estimation of a discrete random variable X from an observation Y . To deal with

this problem, we construct a function φ : Y → X . The probability of error of the estimator X̂ = φ(Y ) is

pe = P(X̂ 6= X).

The following Fano’s inequality provide a lower bound of the error rate pe.

Theorem 1.15 (Fano’s inequality). For any estimator X̂ of X such that X → Y → X̂, we have

H(X|Y ) ≤ h(pe) + pe log |X |.

Particularly, we have

pe ≥
H(X|Y )− log 2

log |X |
.

Proof. Let B = 1{X=X̂}, which is a Bernoulli variable with parameter pe. By the chain rule, the conditional

entropy of (B,X) given X̂ is

H(B|X̂) +H(X|B, X̂) = H(B,X|X̂) = H(X|X̂) +H(B|X, X̂).

Now we analyze the four terms in the equality.

(i) Since conditioning does not increase entropy, H(B|X̂) ≤ H(B) = h(pe).

(ii) The conditional entropy H(X|B, X̂) has the following estimate:

H(X|B, X̂) =
∑

b∈{0,1}

∑
x∈X

∑
x̂∈X

P(B = b,X = x, X̂ = x̂) log
1

P(X = x|B = b, X̂ = x̂)

=
∑
x∈X

∑
x̂∈X

P(B = 0, X = x, X̂ = x̂) log
1

P(X = x|B = 0, X̂ = x̂)

=
∑
x̂∈X

P(B = 0, X̂ = x̂)
∑
x∈X

P(X = x|B = 0, X̂ = x̂) log
1

P(X = x|B = 0, X̂ = x̂)︸ ︷︷ ︸
≤log |X |

≤ pe log |X |.

(iii) Since X → Y → X̂, the data processing inequality implies H(X|X̂) ≥ H(X|Y ).

(iv) Since B is a function of X and X̂, we have H(B|X, X̂) = 0.

Combining these estimates, we obtain

H(X|Y ) ≤ h(pe) + pe log |X | ≤ log 2 + pe log |X |.

Then we complete the proof.
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1.3 Typical Sets and Asymptotic Equipartition Property

In this section, we investigate a sequence of i.i.d. copies X1, X2, · · · of a random variable X ∼ p(x) with finite

support X . We write for a random vector of length n and its realization

X1:n = (X1, · · · , Xn), x1:n = (x1, · · · , xn).

The joint distribution of X1:n is given by

p(x1:n) = P (X1:n = x1:n) = p(x1)p(x2) · · · p(xn).

In this section, we focus on finding a confidence set A ⊂ Xn that contains our observation X1:n with a high

probability. Formally, we require P(X1:n ∈ A) ≥ 1− δ, where δ > 0 is an arbitrarily given small quantity.

Typical Sets. Here is an idea of constructing high probability sets. Let g : X → R be a function such that

E|g(X)| <∞. By the weak law of large numbers, for each ε > 0 and δ > 0, there exists Nε,δ > 0 such that

P

(∣∣∣∣ 1n
n∑
i=1

g(Xi)− E[g(X)]

∣∣∣∣ ≤ ε
)
≥ 1− ε, ∀n ≥ Nε,δ.

Consequently, almost all probability mass is concentrated on the following set A:

A =

{
x1:n ∈ Xn : E [g(X)]− ε ≤ 1

n

n∑
i=1

g(xi) ≤ E [g(X)] + ε

}
.

In the last display, the constraint can be equivalently expressed as

2−n(E[g(X)]+ε) ≤ 2−
∑n
i=1 g(xi) ≤ 2−n(E[g(X)]−ε).

The construction of typical sets follows by plugging in g(x) = log2
1

p(x) .

Definition 1.16. The ε-typical set is defined by

A(n)
ε =

{
x1:n ∈ Xn : 2−n(H2(X)+ε) ≤ p(x1:n) ≤ 2−n(H2(X)−ε)

}
,

or equivalently, the set of all tuples x1:n ∈ Xn obeying

H2(X)− ε ≤ − 1

n
log2 p(x1:n) ≤ H2(X) + ε.

Clearly, for each δ > 0, there exists a positive integer Nε,δ such that for all n > Nε,δ, the typical A
(n)
ε contains

X1:n with probability at least 1− δ. In other words,

lim
n→∞

P
(
X1:n ∈ A(n)

ε

)
= 1.

Size of Typical Sets. When n increased, the number of possible realizations of X1:n would rise very quickly,

which is |X |n. The idea of typical sets is to concentrate the probability mass of X1:n on a smaller set A
(n)
ε :

A(n)
ε =

{
x1:n ∈ Xn : 2−n(H2(X)+ε) ≤ p(x1:n) ≤ 2−n(H2(X)−ε)

}
.

In this set, all tuples have roughly the same probability mass. This is know as the Asymptotic Equipartition

property (AEP). Here is an intuition of this typical set:
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• For the low probability tuples p(x1:n) < 2−n(H2(X)+ε), they are too unlikely to matter;

• For the high probability tuples p(x1:n) > 2−n(H2(X)−ε), they are too few to matter;

• Therefore, we exclude those unimportant tuples and retain only the average probability tuples.

We now study the size of the reduced set.

Proposition 1.17. Let A
(n)
ε be the ε-typical set for X1:n. For each δ > 0, there exists Nε,δ > 0 such that

P
(
X1:n ∈ A(n)

ε

)
≥ 1− δ, ∀n ≥ Nε,δ.

Furthermore, the upper bound of the typical set is given by∣∣∣A(n)
ε

∣∣∣ ≤ 2n(H2(X)+ε), ∀n ≥ 1;

and the lower bound of the typical set is given by∣∣∣A(n)
ε

∣∣∣ ≥ (1− δ)2n(H2(X)−ε), ∀n ≥ Nε,δ.

Proof. For the upper bound, note that

1 =
∑

x1:n∈Xn
p(x1:n) ≥

∑
x1:n∈A(n)

ε

p(x1:n) ≥
∣∣∣A(n)

ε

∣∣∣ 2−n(H2(X)+ε).

For the lower bound, when n ≥ Nε,δ, we have

1− δ ≤ P
(
X1:n ∈ A(n)

ε

)
=

∑
x1:n∈A(n)

ε

p(x1:n) ≤
∣∣∣A(n)

ε

∣∣∣ 2−n(H2(X)−ε).

Rearranging each inequality completes the proof.

Application: data compression. A source code is a mapping C from a sequence of symbols from an

information source X to a sequence of alphabet symbols D (usually bits D = {0, 1}) such that the source

symbols can be exactly recovered from the bit sequence (lossless source coding) or recovered within some

distortion (lossy source coding). This is one approach to data compression.

We will discuss lossless coding in Chapter 2. Let us first focus on lossy source coding. Suppose the input

is a sequence of i.i.d. random variables X1, · · · , Xn ∼ p, and we want to compress a sequence of length n to a

bit sequence. In other words, we want to find a source code C : Xn → {0, 1}∗, where {0, 1}∗ is the set of all

bit sequences of finite length. The rate R of this code is the average length per symbol:

R =
1

n

∑
x1:n∈Xn

p(x1:n)× length of C(x1:n)

For the compression efficiency, we wish to minimize the average length per symbol. Furthermore, we also want

to recover the original sequence from the code. We consider the following encoding algorithm:

• For each sequence x1:n in the typical set A
(n)
ε , since the size of A

(n)
ε is no more than n(H2(X) + ε), the

encoder assigns a unique bit sequence of length dn(H2(X) + ε)e;
• Otherwise, the encoder throws an arbitrary bit sequence of length dn(H2(X) + ε)e.

For any probability of error δ > 0, when n is sufficiently large, the input sequence falls in the typical set with

10



probability at least 1− δ, and the encoder does not make an error. Furthermore, the rate of this code satisfies

R =
1

n
dn(H2(X) + ε)e ≤ H2(X) + ε+

1

n
→ H2(X) + ε, as n→∞.

Theorem 1.18 (Shannon’s source encoding theorem). The minimum rate R at which an information source

can be compressed with negligible probability of error is the entropy rate H2(X) (in bits per symbol) of the

source. This statement involves two aspects:

(i) (Achievability) For each ε > 0, there exists a source code with rate R no greater than H2(X) + ε and

negligible probability of error as the block length n→∞.

(ii) (Converse) Any source code with rate R < H2(X) has probability error bounded away from 0 as n→∞.

Proof. The achievability part is established by our preceding discussion. To prove the converse part, we use

the following technical result:

Lemma 1.19. Let X1, · · · , Xn be i.i.d. variables drawn from X ∼ p. For 0 < δ < 1, define

Sδ(n) = inf {|A| : A ∈ Xn and p(A) ≥ 1− δ} ,

where we also write p for the joint distribution of (X1, X2, · · · , Xn) for simplicity. Then

lim
n→∞

logSδ(n)

n
= H(X).

For any 0 < δ < 1, to ensure that the probability of error no greater than δ, we require the source code to

be one-to-one on a subset An ⊂ Xn with probability at least 1− δ. If the code has rate R < H2(X), then

lim
n→∞

log2 |An|
n

= R < H2(X),

which contradicts Lemma 1.19! Then we complete the proof.

Remark. Since the number 0 < δ < 1 is arbitrarily chosen, we in fact prove that the probability of error for

a source code with rate R < H2(X) converges to 1 as n→∞.

Proof of Lemma 1.19.
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1.4 Jointly Typical Sets

In this section, we discuss the construction of typical sets for multiple random variables.

Definition 1.20 (Jointly typical sets). Let p(x, y) be the joint distribution of random variables X and Y .

The ε-typical set A
(n)
ε with respect to the joint distribution p(x, y) is defined by

A(n)
ε =

{
(x1:n, y1:n) ∈ Xn × Yn : 2−n(H2(X)+ε) ≤ p(x1:n) ≤ 2−n(H2(X)−ε),

2−n(H2(Y )+ε) ≤ p(y1:n) ≤ 2−n(H2(Y )−ε),

2−n(H2(X,Y )+ε) ≤ p(x1:n, y1:n) ≤ 2−n(H2(X,Y )−ε)}.
Theorem 1.21 (Properties of jointly typical sets). Let (X1:n, Y1:n) be a sequence of length n drawn i.i.d.

according to (X,Y ) ∼ p(x, y). Let A
(ε)
n be the joint typical set with respect to p(x, y). Then

(i) High probability:

lim
n→∞

P
(

(X1:n, Y1:n) ∈ A(n)
ε

)
= 1.

(ii) Estimate of size: for all n ∈ N, ∣∣∣A(n)
ε

∣∣∣ ≤ 2n(H(X,Y )+ε);

Furthermore, given any δ > 0, for sufficiently large n,∣∣∣A(n)
ε

∣∣∣ ≥ (1− δ)2n(H(X,Y )−ε);

(iii) Joint asymptotic equipartition property: If (X̃1:n, Ỹ1:n) ∼ p(x1:n)p(y1:n), i.e. X̃1:n, Ỹ1:n are independent

with the same marginals as p(xn, yn), then

P
(

(X̃1:n, Ỹ1:n) ∈ A(n)
ε

)
≤ 2−n(I(X;Y )−3ε).

Furthermore, given any δ > 0, for sufficiently large n,

P
(

(X̃1:n, Ỹ1:n) ∈ A(n)
ε

)
≥ (1− δ)2−n(I(X;Y )+3ε).

Proof. By the weak law of large numbers,

lim
n→∞

P
(∣∣∣∣ 1n log2

1

p(X1:n)
−H2(X)

∣∣∣∣ > ε

)
= 0, lim

n→∞
P
(∣∣∣∣ 1n log2

1

p(Y1:n)
−H2(Y )

∣∣∣∣ > ε

)
= 0,

lim
n→∞

P
(∣∣∣∣ 1n log2

1

p(X1:n, Y1:n)
−H2(X,Y )

∣∣∣∣ > ε

)
= 0.

Since the event (X1:n, Y1:n) ∈ A(n)
ε is the complement of the union of the three events quantified above, the

result (i) follows. To show the first part of (ii), just note that

1 ≥
∑

x1:n,y1:n∈A(n)
ε

p(x1:n, y1:n) ≥
∑

x1:n,y1:n∈A(n)
ε

2−n(H2(X,Y )+ε) =
∣∣∣A(n)

ε

∣∣∣ 2−n(H2(X,Y )+ε).

It remains to show (iii). Since p(x1:n) ≤ 2−n(H2(X)−ε) and p(y1:n) ≤ 2−n(H2(Y )−ε) for all (x1:n, y1:n) ∈ A(n)
ε ,

P
(

(X̃1:n, Ỹ1:n) ∈ A(n)
ε

)
=

∑
x1:n,y1:n∈A(n)

ε

p(x1:n)p(y1:n) ≤
∣∣∣A(n)

ε

∣∣∣ 2−n(H2(X)+H2(Y )−2ε) ≤ 2−n(I(X;Y )−3ε).

The other part of (ii) and (iii) are similar.
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1.5 Entropy Rates

In this section, we study a discrete-time stochastic process X = (Xt)t∈N, where each Xt is a random variable

in a finite range X . These random variables do not need to be i.i.d..

Definition 1.22. Let X = (Xt)t∈N be a stochastic process.

(i) Average entropy per symbol

H(X) = lim
n→∞

H(X1:n)

n

(ii) The k-th order entropy

Hk(X) = H(Xk|Xk−1, · · · , X1)

(iii) Rate of information innovation

H∞(X) = lim
k→∞

Hk(X) = lim
k→∞

H(Xk|Xk−1, · · · , X1)

Remark. If X = (Xt)t∈N is an i.i.d. sequence, we have

H(X) = H∞(X) = H(X1).

Stationarity. Recall that a stochastic process X = (Xt)t∈N is said to be (strongly) stationary if

P (X1 = x1, · · · , Xn = xn) = P (Xk+1 = x1, · · · , Xn+k = xn)

for every n ∈ N, every lapse k ∈ N and all x1, · · · , xn ∈ X .

Theorem 1.23. For a stationary process X = (Xt)t∈N,

H(X) = H∞(X).

Proof. We first prove the existence of rate of information innovation. By stationarity,

Hn(X) = H(Xn|Xn−1, · · · , X2, X1) ≤ H(Xn|Xn−1, · · · , X2) = H(Xn−1|Xn−2, · · · , X1)

Therefore, H(Xn|Xn−1, · · · , X1) is decreasing in n. Since conditional entropy is nonnegative, the monotone

sequence converges: Hn ↘ H∞. Next, by the chain rule of entropy,

1

n
H(X1, · · · , Xn) =

1

n

n∑
i=1

H(Xi|Xi−1, · · · , X1).

The right-hand side of the last display, which is a Cesàro mean, has the same limit as H(Xn|Xn−1, · · · , X1),

which is H∞(X). Since the limit of the left-hand side is the average entropy per symbol, the result follows.

Kolmogorov extension. If (Xt)t∈N is a stationary process, then all finite-dimensional marginal distributions

of this process are determined. By Kolmogorov extension theorem, we can extend the index of this process to

the integer set Z and obtain a stationary process (Xt)t∈Z. We write for the past history

X≤0 = (Xt)t∈−N0
= (X0, X−1, X−2, · · · ).

13



Furthermore, we can define the conditional p.m.f. of X1 given X≤0:

p(x1|X≤0) = E
[
1{X1=x1}|X≤0

]
= lim
n→∞

[
1{X1=x1}|X0, X−1, · · · , X−n

]
= lim
n→∞

p(x1|X0, X−1, · · · , X−n).

Here the convergence holds both in L1 and almost surely, since the sequence we take limit of is a uniformly

integrable martingale. Furthermore, by Lebesgue’s dominated convergence theorem,

E [− log p(X1|X≤0)] = lim
n→∞

Hk(X) = H∞(X).

Ergodicity. Let (Ω,F , P ) be a measure space. A measurable mapping T : (Ω,F ) → (Ω,F ) is said to be

ergodic, if every set A ∈ F such that TA = A a.e. satisfies P (A) = 0 or P (A) = 1. We let T play a role of

time shift. The stochastic process X = (Xt)t∈N is said to be an ergodic process, where Xt(ω) = X0(T tω) for

all t ∈ N and X0 : Ω→ X is a random variable.

According to Birkhoff’s ergodic theorem, the strong law of large numbers holds for a stationary ergodic

process X = (Xt)t∈N:

Xn :=
1

n

n∑
k=1

Xk → µ = EX1, a.s..

Lemma 1.24. For the process (Xt)t∈Z, define the k-th order Markov approximation by

pk(X1:n) = p(X1:k)

n∏
j=k+1

p(Xj |Xj−1, · · · , Xj−k).

If (Xt)t∈Z is a stationary ergodic process,

1

n
log

1

pk(X1:n)
→ Hk(X) a.s., and

1

n
log

1

p(X1:n|X≤0)
→ H∞(X) a.s..

Proof. Since (Xt)t∈Z is an ergodic process, so is the process Yt = f(X≤t), where f is any measurable function.

Then both log p(Xn|Xn−1, · · · , Xn−k) and log p(Xn|X≤n−1) are stationary ergodic processes on n ∈ N. By

Birkhoff’s ergodic theorem, we have

1

n
log

1

pk(X1:n)
=

1

n
log

1

p(X1:k)
+

1

n

n∑
j=k+1

log
1

p(Xj |Xj−1, · · · , Xj−k)
→ 0 +Hk(X), a.s.,

1

n
log

1

p(X1:n|X≤0)
=

1

n

n∑
j=1

log
1

p(Xj |X≤j−1)
→ H∞(X), a.s..

Then we complete the proof.

Lemma 1.25 (Sandwich). Let (Xt)t∈Z be a stationary ergodic process. Then

lim sup
n→∞

1

n
log

pk(X1:n)

p(X1:n)
≤ 0 a.s., lim sup

n→∞

1

n
log

p(X1:n)

p(X1:n|X≤0)
≤ 0 a.s..

Proof. Let A be the support set of p(x1:n). Then

E
[
pk(X1:n)

p(X1:n)

]
=

∑
x1:n∈A

pk(x1:n)

p(x1:n)
p(x1:n) =

∑
x1:n∈A

pk(x1:n) ≤
∑

x1:n∈Xn
pk(x1:n) = 1.
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By Markov’s inequality, we have

P
(

1

n
log

pk(X1:n)

p(X1:n)
≥ 2 log n

n

)
= P

(
pk(X1:n)

p(X1:n)
≥ n2

)
≤ 1

n2

By Borel-Cantelli Lemma, since
∑∞
n=1 n

−2 <∞, the events{
1

n
log

pk(X1:n)

p(X1:n)
≥ 2 log n

n
, n ∈ N

}
happens finitely many times with probability 1, which proves the first result. On the other hand, let B(X≤0)

be the support set of p(x1:n|X≤0). Then

E
[

p(X1:n)

p(X1:n|X≤0)

]
= E

[
E
[

p(X1:n)

p(X1:n|X≤0)

∣∣∣∣X≤0

]]
= E

 ∑
x1:n∈B(X≤0)

p(X1:n)

 ≤ 1.

The second result then follows from a similar procedure.

Now we point out that, the Asymptotic Equilibrium property holds not only for i.i.d. sequences, but also

for stationary ergodic processes.

Theorem 1.26 (Shannon-McMillan-Breiman). Let (Xt)t∈Z be a stationary ergodic process. Then

lim
n→∞

1

n
log

1

p(X1:n)
= H∞(X).

Proof. By Lemmas 1.24 and 1.25, almost surely,

lim sup
n→∞

1

n
log

1

p(X1:n)
≤ lim inf

n→∞

1

n
log

1

pk(X1:n)
= Hk(X),

lim inf
n→∞

1

n
log

1

p(X1:n)
≥ lim sup

n→∞

1

n
log

1

p(X1:n|X≤0)
= H∞(X).

Therefore, for all k ∈ N, we have

H∞(X) ≤ lim inf
n→∞

1

n
log

1

p(X1:n)
≤ lim sup

n→∞

1

n
log

1

p(X1:n)
≤ Hk(X).

Since X is stationary, Hk(X)↘ H∞(X) as k →∞. Hence 1
n log 1

p(X1:n)

a.s.→ H∞(X).

Remark. An example for stationary ergodic process is the irreducible and aperiodic Markov chain.
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2 Lossless Compression

In this section, we study the problem of lossless coding. To begin with, we have a source alphabet X and a

D-ary alphabet {0, 1, · · · , D − 1}. Our key goal is to transform a string of X to a string of D.

• A source code is a mapping C : X → D∗, where D is a D-ary alphabet {0, 1, · · · , D − 1}, and

D∗ =

∞⋃
n=1

Dn.

The elements of C(X ) are called codewords. For every symbol x ∈ X , we denote by `(x) the length of

the codeword C(x) associated with x.

• A source code C : X → D∗ is said to be nonsingular if it is injective.

• The extension C∗ : X ∗ → D∗ of a source code C is the mapping from finite length strings of X to finite

length strings of D:

C∗(x1x2 · · ·xn) = C(x1)C(x2) · · ·C(xn).

• A source code C : X → D∗ is said to be uniquely decodable if its extension C∗ is injective.

• A source code C : X → D∗ is said to be instantaneous (or prefix-free) if no codeword of C is prefixed by

any other codeword.

• We have the inclusions: nonsingular codes ⊃ uniquely decodable codes ⊃ instantaneous codes.

In general, some nice properties of a code are wanted:

• it is uniquely decodable;

• it is prefix free, so one can decode a string instantaneously while reading;

• it is efficient, i.e. given the distribution p of letters X in a string, we would like to minimize the average

codeword length:

E [`(X)] =
∑
x∈X

p(x)`(x).

2.1 Kraft-McMillan Inequality

Tree representation. A D-ary code C : X → D can be represented as a D-ary tree that consists of a root

with branches, nodes and leaves. The root and every node has exactly D children, with each branch labeled

by a letter in D. Starting from the root, each vertex is uniquely associated with a string d ∈ D∗, specified by

the path from the root to itself. Some examples of binary trees are given below.
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We can determine whether a code is instantaneous right away by looking at its tree.

Proposition 2.1. A code C : X → D∗ is instantaneous if and only if all its codeword are leaves.

Proof. If C : X → D∗ is an instantaneous code, then each of its codeword has no descendant in the tree, which

is a leaf; conversely, if each codeword of C is a leaf in the tree, it has no ancestor which is also a codeword,

and C is instantaneous.

Using the tree representation, we can show a property which characterizes the instantaneous codes.

Theorem 2.2 (Kraft’s inequality). Let ` : X → N be a length function. Then ` is the length function of an

instantaneous code if and only if it satisfies Kraft’s inequality:∑
x∈X

D−`(x) ≤ 1. (2.1)

Proof. We first prove necessity. Let ` is the length function of an instantaneous code C, and let L be the depth

of the tree. Then every codeword C(x) at depth `(x) prunes away DL−`(x) leaves from the complete tree of

depth L. Since there are no more than DL leaves in the complete tree, we have∑
x∈X

DL−`(x) ≤ DL ⇒
∑
x∈X

D−`(x) ≤ 1.

Now we prove the sufficiency. To this end, we prove the following argument: at every step k ∈ N, after all

codewords of length `(x) < k have been assigned, there is enough room left at the depth k for the codewords

of length `(x) = k. More explicitly, we want to show

Dk −
∑

x∈X :`(x)<k

Dk−`(x) ≥
∣∣C−1(Dk)

∣∣ , ∀1 ≤ k ≤ L.

Note that ∣∣C−1(Dk)
∣∣ =

∑
x∈X :`(x)=k

Dk−`(x).

Then our conclusion holds if ∑
x∈X :`(x)≤k

D−`(x) ≤ 1, ∀k ∈ N.

Clearly this is valid by Kraft’s inequality (2.1).

The Kraft’s inequality is also a necessary condition for a code to be uniquely decodable.

Theorem 2.3 (McMillan). Every uniquely decodable code C : X → D∗ satisfies Kraft’s inequality (2.1).

Proof. Let C : X → D∗ be a uniquely decodable code, and let L = maxx∈X `(x), where ` is the length function

of C. Then for a source string x1:n, the length of the extended codeword C∗(x1:n) is given by

`∗(x1:n) =

n∑
i=1

`(xi) ≤ nL.

Let Nk be the number of source strings of length n with `∗(x1:n) = k. Since C is uniquely decodable, the

source strings with codewords of length k are no more than D-ary strings of length k, i.e. Nk ≤ Dk. Then

∑
x1:n∈Xn

D−`
∗(x1:n) =

nL∑
k=1

NkD
−k ≤

nL∑
k=1

DkD−k ≤ nL.
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On the other hand,∑
x1:n∈Xn

D−`
∗(x1:n) =

∑
x1∈X

∑
x2∈X

· · ·
∑
xn∈X

D−`(x1)D−`(x2) · · ·D−`(xn)

=
∑
x1∈X

D−`(x1)
∑
x2∈X

D−`(x2) · · ·
∑
xn∈X

D−`(xn) =

(∑
x∈X

D−`(x)

)n
.

Therefore, we have ∑
x∈X

D−`(x) ≤ inf
n∈N

n
√
nL = 1.

Then we complete the proof.

Remark. To summarize, the Kraft’s inequality (2.1) is a

• sufficient condition for the existence of an instantaneous code;

• necessary condition for a code to be uniquelt decodable.

2.2 Fundamental Limits of Compression

In this section, we study the limits of lossless compression. Given a source distribution p on X , we want to

minimize the average codeword length of our code. By Kraft-McMillan inequality, the search for optimal code

can be expressed as the following optimization problem:

min
l:X→N

∑
x∈X

p(x)`(x) subject to
∑
x∈X

D−`(x) ≤ 1.

Following is a fundamental result of lossless compression.

Theorem 2.4. For any source distribution X ∼ p on X , the expected length E[`(X)] of an optimal uniquely

decodable D-ary code satisfies

H(X)

logD
≤ E [`(X)] <

H(X)

logD
+ 1. (2.2)

Proof. Upper bound. By Theorem 2.2, it suffices to construct a length function ` : X → N that satisfies both

the Kraft’s inequality and the second (strict) inequality given in (2.2). Consider Shannon’s length function:

`(x) =

⌈
logD

1

p(x)

⌉
, x ∈ X , (2.3)

Since ∑
x∈X

D−`(x) ≤
∑
x∈X

DlogD p(x) =
∑
x∈X

p(x) = 1,

there exists an instantaneous code C : X → D∗ whose length function is `. On the other hand,

E[`(X)] =
∑
x∈X

p(x)`(x) <
∑
x∈X

p(x)

(
logD

1

p(x)
+ 1

)
=
H(X)

logD
+ 1.

Hence the upper bound holds.
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Lower bound. We consider the following relaxed optimization problem:

min
l:X→R

∑
x∈X

p(x)`(x) subject to
∑
x∈X

D−`(x) ≤ 1.

Note that the range of ` is R+. The Lagrange function is

L(l, λ) =
∑
x∈X

p(x)`(x) + λ

(∑
x∈X

D−`(x) − 1

)
,

with KKT conditions 
∂L
∂l(x) = p(x)− λD−l(x) logD = 0,

λ ≥ 0,
∑
x∈X D

−`(x) − 1 ≤ 0,

λ
(∑

x∈X D
−`(x) − 1

)
= 0.

The optimal solution is given by

λ =
1

logD
, l(x) = logD

λ logD

p(x)
= logD

1

p(x)
, x ∈ X ,

and the optimal value is

∑
x∈X

p(x)`(x) =
∑
x∈X

p(x) logD
1

p(x)
=
H(X)

logD
. (2.4)

Since our problem is relaxed, the primal problem (2.3) has optimal value no less than (2.4). Hence the lower

bound holds for all uniquely decodable codes.

Remark. In fact, we proved the existence of an instantaneous code with

E [`(X)] <
H(X)

logD
+ 1.

Coding over blocks. Using integer codeword lengths may lead to waste of memory. To overcome this effect,

we consider coding over blocks of input symbols. If the input data X1, X2, · · · is an i.i.d. sequence of symbols,

we partition it into blocks of size n and create a new source X̃1, X̃2, · · · , where

X̃1 = (X1, · · · , Xn), X̃2 = (Xn+1, · · · , X2n), · · · , X̃k = (X(k−1)n+1, · · · , Xkn), · · · .

Consequently, every vector X̃k can be viewed as a symbol from the alphabet X̃ = Xn, and we can find an

optimal code C̃ : X̃ → D, whose length function ` satisfies

H(X̃)

logD
≤ E

[
`(X̃)

]
≤ H(X̃)

logD
+ 1.

Note that H(X̃) = nH(X), the average codeword length per symbol (in X ) satisfies

H(X)

logD
≤ 1

n
E
[
`(X̃)

]
<
H(X)

logD
+

1

n
.

As the block size n increases, the integer effect becomes negligible. However, we also introduce delay in our

system and increase the complexity of our code.
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2.3 Shannon-Fano-Elias Coding

In this section, we introduce a specific coding approach that is near-optimal.

Midpoints of CDF. Without loss of generality, we assume that the source alphabet is X = {1, 2, · · · ,m},
and p(1) ≥ p(2) ≥ · · · ≥ p(m). The cumulative distribution function of p is

F (r) =

m∑
j=1

1{j≤r}p(j), r ∈ R.

We define F (x) to be the midpoint of the interval [F (x− 1), F (x)):

F (x) =

x−1∑
j=1

p(j) +
p(x)

2
, x = 1, · · · ,m.

Then F (x) is a real number in (0, 1) that uniquely identifies x ∈ X .

D-ary expansion and truncation. The D-ary expansion of a real number F (x) ∈ (0, 1) is given by

F (x) = (0.z1z2 · · · )D =

∞∑
k=1

zkD
−k = z1D

−1 + z2D
−2 + · · · , z1, z2, · · · ∈ {0, 1, · · · , D − 1}.

Given a positive integer ` ∈ N, one have the `-truncation of the D-ary expansion of F (x):

C(x) = (0.z1z2 · · · z`)D =
∑̀
k=1

zkD
−k

To ensure that the codeword of x is unique, we let F (x)− C(x) < p(x)
2 , so that

C(x− 1) ≤ F (x− 1) < F (x− 1) < C(x).

To this end, we set

` =

⌈
logD

1

p(x)

⌉
+ 1,

then

F (x)− C(x) < D−` ≤ D− logD
1

p(x)
−1 ≤ p(x)

D
≤ p(x)

2
.

Construction of the Shannon-Fano-Elias code. For each x ∈ X :

• Let z be the D-ary expansion of x;

• Choose the length of the codeword of x:

`(x) =

⌈
logD

1

p(x)

⌉
+ 1;

• Choose the codeword of x to be the first most significant D-ary digits:

z = 0. z1z2 · · · z`(x)︸ ︷︷ ︸
C(x)

z`(x)+1 · · · .
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An example of binary Shannon-Fano-Elias code. Here we let X = {1, 2, 3, 4, 5}, and D = 2.

x p(x) F (x) F (x) F (x) in binary `(x) =
⌈
log2

1
p(x)

⌉
+ 1 codeword

1 0.25 0.25 0.125 0.001 3 001

2 0.25 0.5 0.375 0.011 3 011

3 0.2 0.7 0.6 0.10011 4 1001

4 0.15 0.85 0.775 0.1100011 4 1100

5 0.15 1.0 0.925 0.1110110 4 1110

Shannon-Fano-Elias code is instantaneous. If the codeword C(x) = (0.z1 · · · z`(x))D is a prefix of another

codeword, this codeword lies in the half-open interval[
(0.z1 · · · z`(x))D, (0.z1 · · · z`(x))D +

1

Dl(x)

)
.

However, a contradiction rises because

C(x+ 1)− C(x) > F (x)− F (x) =
p(x)

2
≥ D−l(x).

Average codeword length. The average codeword length of Shannon-Fano-Elias code is given by

E[`(X)] =
∑
x∈X

p(x)

(⌈
logD

1

p(x)

⌉
+ 1

)
,

which satisfies

H(X)

logD
+ 1 ≤ E [`(X)] <

H(X)

logD
+ 2.

It is revealed that the Shannon code is sub-optimal.
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2.4 Shannon Code

Improvement of Shannon-Fano-Elias code: Shannon code. We consider

F (x) =

x−1∑
j=1

p(x), `(x) =

⌈
log

1

p(x)

⌉
.

We choose the codeword c(x) to be the `(x)-truncation of the D-ary expansion of F (x).

Shannon code is instantaneous. For every symbol i, the number Fi =
∑i−1
k=0 pi has the binary expansion

Fi = (0.z1z2 · · · )2 =

∞∑
k=1

zk2−k, z1, z2 · · · ∈ {0, 1}.

The round off to `i is obtained by truncating the bits after `i:

ci = (0.z1z2 · · · z`i)2 =

`i∑
k=1

zk2−k.

Fix i ∈ {1, · · · ,m− 1}. Since `i =
⌈
log2

1
pi

⌉
≥ log2

1
pi

, we have

Fi+1 − Fi = pi = 2log2 pi ≥ 2−`i .

For any j > i, we have Fj − Fi ≥ 2−`i . If cj is prefixed by ci, then Fj and Fi share the first `i bits, which

implies Fj − Fi < 2−`i , a contradiction! Hence the Shannon code is prefix-free.

Average length of Shannon code. The average length of this code L =
∑m
i=1 pi`i satisfies

H(X) =

m∑
i=1

pi log2

1

pi
≤

m∑
i=1

pi

⌈
log2

1

pi

⌉
<

m∑
i=1

pi

(
log2

1

pi
+ 1

)
= H(X) + 1.

Hence H(X) ≤ L < H(X) + 1.

Example. We construct the Shannon code for the probability distribution (0.5, 0.25, 0.125, 0.125) for exam-

ple. The code is shown below.

i pi F (x) `i =
⌈
log2

1
pi

⌉
Codeword

1 0.5 0 = (0.0)2 1 0

2 0.25 0.5 = (0.1)2 2 10

3 0.125 0.75 = (0.11)2 3 110

4 0.125 0.875 = (0.1110)2 3 111
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2.5 Huffman Coding

The search for binary optimal code was discovered by David Huffman (1952).

Construction of Huffman tree. The construction procedure is greedy.

• Take the two least probable symbols, which will be assigned the longest codewords having equal lengths

and differing only at the last digit;

• Merge these two symbols into a new symbol with combined probability mass and repeat.

Optimality of Huffman code. Let X = {1, 2, · · · ,m}. Without loss of generality, assume probabilities are

in descending order p(1) ≥ p(2) ≥ · · · ≥ p(m). We prove the optimality of Huffman code through three step.

Lemma 2.5. In an optimal code, shorter codewords are assigned larger probabilities, i.e. p(i) > p(j) implies

`(i) ≤ `(j).

Proof. Argue by contradiction. If there exists i, j ∈ X with `(i) ≤ `(j) and p(i) > p(j), then we can exchange

these codewords and reduce the expected length. Hence the code is not optimal.

Lemma 2.6. There exists an optimal code for which the codewords assigned to the smallest probabilities are

siblings, i.e., they have the same length and differ only in the last symbol.

Proof. Consider any optimal code. By Lemma 2.5, the codeword C(m) has the longest length. Assume for

the sake of contradiction, its sibling is not a codeword. Then the expected length can be decreased by moving

C(m) to its parent. Thus, the code is not optimal and a contradiction is reached.

Now, we know the sibling of C(m) is a codeword. If it is C(m − 1), we are done. If it is some C(i) for

i 6= m − 1 and the code is optimal, by Lemma 2.5, we have p(i) = p(m − 1). Therefore, C(i) and C(m − 1)

can be exchanged without changing expected length.

Theorem 2.7 (Optimality of Huffman coding). Huffman’s coding algorithm produces an optimal code tree.

Proof. Let ` be the length function of the optimal code. By Lemmas 2.5 and 2.6, C(m) and C(m − 1) are

siblings and the longest codewords. Then we merge the two symbols and let p̃1 ≥ · · · ≥ p̃m−1 denote the

reordered probabilities after merging p(m) and p(m − 1), and denote by C̃1, · · · , C̃m−1 the corresponding

codewords. The reduced length function ˜̀ satisfies

E [`(X)] = E
[˜̀(X̃)

]
+ P

(
`(X) 6= ˜̀(X̃)

)
= E

[˜̀(X̃)
]

+ p(m− 1) + p(m).

Hence ` is the length function of an optimal code if and only if ˜̀ is the length function of an optimal code

for the reduced alphabet. The problem then is reduced to finding an optimal code tree for p̃1 ≥ · · · ≥ p̃m−1.

Repeat the merging procedure above for m times, and the result follows.
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2.6 Coding with Unknown Distributions

Given a distribution X ∼ p, it is possible to construct a code that achieves the optimal expected length.

However, we do not know what to do when the distribution p is unknown. In this section, we suppose that X

is drawn from some distribution pθ parameterized by an unknown parameter θ ∈ Θ.

Definition 2.8 (Redundancy). The redundancy of coding a distribution p with respect to the optimal code

for a distribution q, i.e. `(x) = − log q(x), is given by

R(p, q) =
∑
x∈X

p(x)`(x)−H(p) =
∑
x∈X

p(x) log
p(x)

q(x)
= D(p||q).

Given a family of distributions {pθ}θ∈Θ, the minimax redundancy is

R∗ = min
q

max
θ∈Θ

R(pθ, q).

Remark. Intuitively, the distribution q leading to a code that minimizes the maximum redundancy is the

distribution at the center of the “information ball” of radius R∗. Therefore, by constructing an optimal code

based on q, we can reduce the redundancy in the worst case.

Lemma 2.9. We impose a prior distribution π on Θ. Then

max
θ∈Θ

R(pθ, q) = max
π

∑
θ∈Θ

π(θ)R(pθ, q).

Proof. On the one hand,

max
θ∈Θ

R(pθ, q) = max
θ0∈Θ

∑
θ∈Θ

δθ0(θ)R(pθ, q) ≤ max
π

∑
θ∈Θ

π(θ)R(pθ, q).

On the other hand, if θ∗ ∈ Θ maximizes R(pθ, q), one have∑
θ∈Θ

π(θ)R(pθ, q) ≤
∑
θ∈Θ

π(θ)R(pθ∗ , q) = R(pθ∗ , q) = max
θ∈Θ

R(pθ, q), ∀π ∈ ∆(Θ).

Then we complete the proof.

We also introduce another technical theorem.

Theorem 2.10 (Minimax theorem). If f : X × Y → R is a continuous function that is convex in the first

variable and concave in the second variable. If both X and Y are convex compact sets, then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Remark. To develop the following theorem, we use the joint convexity of Kullback-Leibler divergence:

D((1− λ)p0 + λp1||(1− λ)q0 + λq1) ≤ (1− λ)D(p0||q0) + λD(p1||q1).

Theorem 2.11. The minimax redundancy is the maximum mutual information between θ and X:

R∗ = max
π

I(θ;X),

where π(θ) is the prior distribution of the parameter θ, and X|θ ∼ pθ(x).
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Proof. Using Lemma 2.9 and Theorem 2.10, we reformulate the optimization problem:

R∗ = min
q

max
θ∈Θ

R(pθ, q) = min
q

max
π

∑
θ∈Θ

π(θ)R(pθ, q) = max
π

min
q

∑
θ∈Θ

π(θ)R(pθ, q). (2.5)

We write

qπ(x) =
∑
θ∈Θ

π(θ)pθ(x).

Then ∑
θ∈Θ

π(θ)R(pθ, q) =
∑
θ∈Θ

π(θ)D(pθ||q)−D(qπ||q) +D(qπ||q)

=
∑
θ∈Θ

∑
x∈X

π(θ)pθ(x) log
pθ(x)

q(x)
−
∑
x∈X

∑
θ∈Θ

π(θ)pθ(x) log
qπ(x)

q(x)
+D(qπ||q)

=
∑
θ∈Θ

∑
x∈X

π(θ)pθ(x) log
pθ(x)

qπ(x)
+D(qπ||q)

Since the first term does not depends on q, the last display reaches its minimum if and only if q = qπ:

min
q

∑
θ∈Θ

π(θ)R(pθ, q) =
∑
θ∈Θ

∑
x∈X

π(θ)pθ(x) log
pθ(x)

qπ(x)

=
∑
θ∈Θ

∑
x∈X

π(θ)pθ(x) log
π(θ)pθ(x)

π(θ)qπ(x)
= I(θ;X),

where π(θ)pθ(x) is the joint distribution of θ and X, and qπ(x) is the marginal distribution of X. Plugging in

this expression to (2.5) completes the proof.
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3 Channel Coding

Motivation. In a communication situation, we often have two primary goals:

• Reliability. The received message should be equal to the transmitted message in most cases. In other

words, we wish to reduce the error probability:

Pe = P (received message 6= transmitted message) .

• Efficiency. The message should be transmitted as quickly as possible. In other words, we wish to send

as much information as possible in a unit time:

R = average number of information bits transmitted per unit time.

However, these two goals often conflict with each other. We use the Binary Symmetric Channel (BSC) to

interpret this. Suppose that we want to send a bit W ∈ {0, 1}. A binary symmetric channel has a binary

input X ∈ {0, 1} and a binary output Y ∈ {0, 1}. While sending a bit, it flips the bit with probability α:

To reduce the error probability, we use the channel multiple times. Assume that each use of the channel

consumes a unit time, and the channel is memoryless, i.e., given the input, the outputs of the channel are

conditionally independent. We encode the bit using a repetition code:

W = 0 ⇒ X1:n = 00 · · · 0︸ ︷︷ ︸
n

, W = 1 ⇒ X1:n = 11 · · · 1︸ ︷︷ ︸
n

.

Given the output Y1:n, we decode the bit using the maximum likelihood rule:

Ŵ =

0, if there are more 0’s observed in Y1:n than 1’s,

1, otherwise.

As the uses n of channel increases, the error probability decreases, but the bit the channel transmitted every

unit time R = 1/n also decreases. Hence a tradeoff between reliability and efficiency is required.

3.1 Set-up of Channel Encoding

In this section, we study the problem of channel coding. Consider the communication over a random channel:

Message

W

Encoder

E(W )

Channel

p(y|x)

Decoder

D(Y1:n)

Estimate

Ŵ

X1:n Y1:n

• The message W ∈ {1, · · · ,M} is one of the possible M numbers that we want to send. We always assume

W to be uniformly distributed over all possibilities.

• An (M,n)-coding scheme is an encoder E : {1, · · · ,M} → Xn that maps the message M to an n-length

string of channel inputs Xn;
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• The channel specifies the probabilistic transformation from inputs to outputs:

p(y1:n|x1:n) = P (Y1 = y1, · · · , Yn = yn|X1 = x1, · · · , Xn = xn) .

We are particularly interested in the discrete memoryless channel (DMC), which is specified by

(i) an input alphabet X ,

(ii) an output alphabet Y, and

(iii) a conditional probability distribution pY |X(y|x) such that the outputs between channel uses are

conditionally independent given the inputs:

p(y1:n|x1:n) = pY |X(y1|x1) · · · pY |X(yn|xn).

• A decoder D : Yn → {1, · · · ,M} maps an n-length string of channel outputs Y1:n to an estimate Ŵ of

the transmitted message.

Now recall our two primary goals in communication:

• Reliability. Assuming that the message W is uniformly distributed over all possibilities, the conditional

error probability and the average error probability are

P (n)
e (w) = P(Ŵ 6= w|W = w), P (n)

e = P(Ŵ 6= W ) =
1

M

M∑
w=1

P (n)
e (W ).

The maximum error probability is

P (n)
e,max(w) = max

w∈{1,··· ,M}
P (n)
e (w) = max

w∈{1,··· ,M}
P(Ŵ 6= w|W = w).

• Efficiency. The rate R of an (M,n) encoding scheme is

R =
log2M

n
bits/transmission.

Alternatively, the number of messages for a given rate R and block-length n is given by M = 2nR. To

specify a rate R code, we write (2nR, n) instead of (M,n). Particularly, are interested in the case that

the error probability becomes negligible as the coding length n goes infinity.

Definition 3.1 (Operational Capacity). A rate R is achievable for given discrete memoryless channel p(y|x),

if there exists a sequence of (d2nRe, n) coding schemes such that maximum error probability

lim
n→∞

P (n)
e,max = 0.

The operational capacity Cop is the supremum over all achievable rates:

Cop = sup {R : R is achievable} .

Definition 3.2 (Information Capacity). The information capacity of a discrete memoryless channel is

C = sup
pX

I(X;Y ) = sup
pX

∑
x∈X ,y∈Y

pX(x)pY |X(y|x) log2

pY |X(y|x)∑
x′∈X pY |X(y|x′)pX(x′)

Remark. Since the map pX , pY |X 7→ I(X,Y ) is concave about pX , we can always find a maximizer p∗X that

reaches the supremum: C = maxpX I(X;Y ).
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3.2 Shannon’s Channel Coding Theorem: Achievability

In the next two sections, we will establish Shannon’s channel coding theorem.

Theorem 3.3 (Shannon’s channel coding theorem). The operational capacity of a discrete memoryless channel

is equal to the information capacity:

Cop = sup
pX

I(X;Y ).

Remark. In fact, the channel coding theorem consists of two statements:

• Achievability. Every rate R < C is achievable, i.e. there exists a sequence of (2nR, n) coding schemes

such that the maximum error probability P
(n)
e,max → 0 as n→∞:

R < C ⇒ R is achievable.

• Converse. Any sequence of (2nR, n) coding schemes with the maximum error probability P
(n)
e,max → 0 as

n→∞ must satisfy R ≤ C.

R is achievable ⇒ R ≤ C.

In this section, we are going to establish the achievability part of channel encoding theorem.

Construction of encoder E. A (2nR, n) encoder E can be represented by a codebook:

E =


x1:n(1)

x1:n(2)
...

x1:n(2nR)

 =


x1(1) x1(2) · · · xn(1)

x1(2) x2(2) · · · xn(2)
...

...
. . .

...

x1(2nR) x2(2nR) · · · xn(2nR)

 ∈ X 2nR×n. (3.1)

To transmit a message w, the encoder assigns

E(w) = x1:n(w), w ∈
{

1, 2, · · · , 2nR
}
.

We consider the construction of random encoder. To proceed, we first choose a input distribution pX . We let

each entry in the codebook E to be drawn from i.i.d. pX . The probability of generating any particular random

codebook (3.1) is then given by

p(E) =

2nR∏
w

n∏
i=1

pX(xn(w)).

With the codebook E specified, the conditional distribution of input string X1:n is the

pX1:n|E(x1:n) =
1

2nR

2nR∑
w=1

1{x1:n=E(w)}, x1:n ∈ Xn,

and

pY1:n|E(y1:n) =
1

2nR

2nR∑
w=1

pY1:n|X1:n
(y1:n|E(w)), y1:n ∈ Yn.
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To find the unconditional distribution, note that each row of the codebook has the same distribution:

pX1:n(x1:n) =

n∏
i=1

pX(xi);

pY1:n
(y1:n) =

∑
x1:n∈Xn

pX1:n
(x1:n)pY1:n|X1:n

(y1:n|x1:n)

=
∑
x1∈X

∑
x2∈X

· · ·
∑
xn∈X

n∏
i=1

pX(xi)pY |X(yi|xi)

=

n∏
i=1

(∑
xi∈X

pX(xi)pY |X(yi|xi)

)
︸ ︷︷ ︸

pY (yi)

=

n∏
i=1

pY (yi).

Since the channel is memoryless, the information density of (X1:n, Y1:n) can be factorized:

i(x1:n; y1:n) = log2

pX1:n,Y1:n
(x1:n, y1:n)

pX1:n
(x1:n)pY1:n

(y1:n)
= log2

pY1:n|X1:n
(y1:n|x1:n)

pY1:n
(y1:n)

=

n∑
k=1

log2

pY |X(yk|xk)

pY (yk)
=

n∑
k=1

i(xk; yk).

These distributions arise from the randomness in both the codebook and the message.

Construction of decoder D. To finish the construction of a coding scheme, we need to find an optimal

decoder. To minimize the probability of error, we use a maximum a posteriori (MAP) decoder:

D∗(y1:n) = argmax
w∈{1,··· ,2nR}

pW |Y1:n
(w|y1:n)

= argmax
w∈{1,··· ,2nR}

pW (w)pY1:n|W (y1:n|w).

Since the message W is uniform, the MAP decoder is equivalent to the maximum likelihood decoder:

D∗(y1:n) = argmax
w∈{1,··· ,2nR}

pY1:n|W (y1:n|w).

Using the information density, we have

D∗(y1:n) = argmax
w∈{1,··· ,2nR}

pY1:n|X1:n
(y1:n|x1:n(w))

= argmax
w∈{1,··· ,2nR}

pY1:n|X1:n
(y1:n|x1:n(w))

pY1:n
(y1:n)

= argmax
w∈{1,··· ,2nR}

i(x1:n(w); y1:n).

To simplify the analysis, we study a sub-optimal thresholding decoder: For a given threshold Tn, we define

the decoding rule as follows:

D(y1:n) =

ŵ, if i(x1:n(ŵ); y1:n) > Tn and i(x1:n(w); y1:n) ≤ Tn for all w 6= ŵ,

0, otherwise.
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Decoding error is uniform. We now analyze the decoding error of our coding scheme. By uniformity of

our construction of codebook and the message W ,

P(Ŵ 6= W ) =
∑
E
p(E)P(Ŵ 6= W |E)

=
∑
E
p(E)

2nR∑
w=1

1

2nR
P(Ŵ 6= W |E ,W = w)

=
1

2nR

2nR∑
w=1

∑
E
p(E)P(Ŵ 6= W |E ,W = w)

=
1

2nR

2nR∑
w=1

∑
E
p(E)P(Ŵ 6= W |E ,W = 1)

=
∑
E
p(E)P(Ŵ 6= W |E ,W = 1)

= P(Ŵ 6= W |W = 1)

Therefore, it suffices to control the decoding error conditioned on the event W = 1.

Proof of Theorem 3.3 (Achievability). Define events A and B as follows:

An = {i(X1:n(1);Y1:n) > Tn} , Bn =

2nR⋂
w=2

{i(X1:n(w);Y1:n) ≤ Tn} .

Consider the following bound:

P (Ŵ 6= W |W = 1) = P (Acn ∪Bcn) ≤ P(Acn) + P(Bcn).

Analysis of P(Acn). By construction, the input X1:n(1) and output Y1:n satisfies

(Xk(1), Yk)
i.i.d.∼ pXpY |X .

Meanwhile,

E [i(Xk(1), Yk)] = E
[
log2

pY |X(Yk|Xk(1))

pY (Yk)

]
= I(X;Y ), where (X,Y ) ∼ pXpY |X .

By strong law of large numbers,

i(X1:n(1);Y1:n)

n
=

1

n

n∑
k=1

i(Xk(1), Yk)
a.s.→ I(X;Y ) as n→∞.

Fix any ε > 0, and set Tn = n(I(X;Y )− ε). Hence

lim sup
n→∞

P(Acn) = lim sup
n→∞

P
(
i(X1:n(1);Y1:n)

n
≤ I(X;Y )− ε

)
≤ P

( ∞⋂
N=1

∞⋃
n=N

{
i(X1:n(1);Y1:n)

n
≤ I(X;Y )− ε

})

= P
(

lim sup
n→∞

i(X1:n(1);Y1:n)

n
≤ I(X;Y )− ε

)
= 0.
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Analysis of P(Bcn). By construction, for all w 6= 1, X1:n(w) is independent of X1:n(1). Since the output

Y1:n is generated from X1:n(1) and pY |X , it is independent of X1:n(w):

(Xk(w), Yk)
i.i.d.∼ pXpY .

Using the Chernoff bound, we have

P (i(X1:n(w), Y1:n) > Tn) ≤ 2−TnE
[
2i(X1:n(w);Y1:n)

]
= 2−TnE

[
pX1:n,Y1:n

(X1:n(w), Y1:n)

pX1:n(X1:n(w))pY1:n(Y1:n)

]
= 2−Tn

∑
x1:n∈Xn

∑
y1:n∈Yn

pX1:n
(x1:n)pY1:n

(y1:n)
pX1:n,Y1:n

(x1:n, y1:n)

pX1:n
(x1:n)pY1:n

(y1:n)

= 2−Tn .

We then employ a union bound:

P(Bcn) = P

2nR⋃
w=2

{i(X1:n(w), Y1:n) > Tn}


≤

2nR∑
w=2

P (i(X1:n(w), Y1:n) > Tn)

≤ 2nR−Tn

= 2n(R−I(X;Y )+ε).

Choice of ε and pX . Since R < C = suppX I(X;Y ), we choose ε = 1
3 (C −R), and choose pX such that

I(X;Y ) ≥ R+ 2ε

= C − 1

3
(C −R).

Then we have

lim
n→∞

P(Ŵ 6= W |W = 1) ≤ lim
n→∞

P(Acn) + lim
n→∞

P(Bcn)

≤ lim
n→∞

2−nε = 0.

Based on our previous discussion, the result follows.

Strengthening the proof. Yet we have not find a deterministic codebook with small error of probability.

To finish the proof, we will strengthen this conclusion by getting rid of the average over codebooks. Note that

the average probability of error over codebooks is small:

P(Ŵ 6= W ) =
∑
E

P(Ŵ 6= W | E)P(E) < ε,

where ε > 0 is an arbitrarily fixed quantity. Hence, over the set of possible codebooks, there exists at least

one codebook E∗ with a small probability of error:

P(Ŵ 6= W | E = E∗) ≤ ε.
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At this point, it is still possible that the codebook E∗ contains some codewords with bad conditional error

probabilities. Define

λ(w) = P(Ŵ 6= W | E = E∗,W = w).

Since W is uniformly distributed over {1, 2, · · · , 2nR}, the number of “bad” codewords satisfies

2nR∑
w=1

1{λ(w)≥2ε} ≤
nR∑
w=1

λ(w)

2ε
=

1

2ε
2nRP(Ŵ 6= W |E = E∗) ≤ 2nR(1− 1

n ).

Therefore, if we expunge the worst half of the codewords, the maximum conditional error of the remaining

codewords is P
(n)
e,max ≤ 2ε, and the rate of the new codebook is R − 1

n . Since this difference goes to zero as

n→∞, we can conclude that P
(n)
e,max converges to 0 as n→∞.

Remark. Although the theorem shows that there exist good codes with arbitrarily small error probability

for long block lengths, it does not provide an approach to construct the optimal codebooks. Without some

structure in the code, the simple decoding scheme of table lookup requires an exponentially large table.

3.3 Shannon’s Channel Coding Theorem: Weak Converse

In this section, we prove the converse part of Shannon’s channel coding theorem.

Lemma 3.4. Let C = suppX (X;Y ) be the information capacity of a discrete memoryless channel pY |X . For

any input distribution pX1:n(x1:n), it holds

I(X1:n;Y1:n) ≤ nC.

Proof. We decompose the mutual information I(X1:n;Y1:n) by chain rule:

I(X1:n;Y1:n) = H(Y1:n)−H(Y1:n|X1, · · · , Xn)

=

n∑
i=1

H(Yi|Yi−1, · · · , Y1)−
n∑
i=1

H(Yi|Yi−1, · · · , Y1, X1, · · · , Xn)

=

n∑
i=1

H(Yi|Yi−1, · · · , Y1)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi) =

n∑
i=1

I(Xi;Yi) ≤ nC.

Hence we conclude the proof.

Proof of Theorem 3.3 (Converse). By Fano’s inequality [Theorem 1.15],

P (n)
e = P(Ŵ 6= W ) ≥ H(W |Ŵ )− 1

log2 2nR
=
H(W |Ŵ )− 1

nR
.

Since W is uniform over all possibilities,

nR = H(W ) = H(W |Ŵ ) + I(W ; Ŵ ) = nRP (n)
e + 1 + I(W ; Ŵ )

≤ nRP (n)
e + 1 + I(X1:n;Y1:n) (By data processing inequality)

≤ nRP (n)
e + 1 + nC.
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Therefore, we have

P (n)
e ≥ n(R− C)− 1

nR
≥ 1− C

R
, ∀n ∈ N.

If R > C, the error probability P
(n)
e does not converge to 0, and R is not achievable.

Further discussion about random coding: Privacy. We will provide more analysis about the privacy

of this random coding scheme. Suppose that an eavesdropper observes the channel output Y1:n but does not

know the codebook E . We are worried that the eavesdropper might figure out the codebook.

Since the codebook E is randomly chosen, the difficulty of recovering the codebook E from the outputs Y1:n

depends on the their mutual information. We will prove the following bound:

I(E ;Y1:n) ≤ n(C −R) +Hb(P
(n)
e ) + P (n)

e nR.

Using the chain rule, we have the decomposition

I(E ;Y1:n) = I(Y1:n; E ,W )− I(Y1:n;W | E).

• We first bound I(Y1:n; E ,W ). Since X1:n is a function of W and E , and Y1:n is conditionally independent

of E ,W given X1:n,

I(Y1:n; E ,W ) = I(Y n; E ,W,X1:n) = I(Y1:n;X1:n) ≤ nC.

where the last inequality follows from Lemma 3.4.

• Now we bound I(Y1:n;W | E). Since the message W and the codebook E are independent, we have

I(W ;Y1:n | E) = I(W ;Y1:n, E)− I(W ; E) = I(W ;Y1:n, E).

Since W is conditionally independent of Ŵ given Y n and E , we have

I(W ;Y1:n | E) = I(W ;Y1:n, E) ≥ I(W ; Ŵ , E) (data processing inequality)

= H(W )−H(W |Ŵ , E) (chain rule)

≥ H(W )−H(W |Ŵ ). (Conditioning does not increase entropy)

By Fano’s inequality,

H(W | Ŵ ) ≤ Hb(P
(n)
e ) + P (n)

e log |W| ≤ nRP (n)
e +Hb(P

(n)
e ).

Note that W ∼ Unif(1, 2, · · · , 2nR), we have

I(W ;Y1:n | E) ≥ H(W )−H(W |Ŵ ) = (1− P (n)
e )nR−Hb(P

(n)
e ).

According to the two bounds, we have

I(E ;Y1:n) = I(Y1:n; E ,W )− I(Y1:n;W | E) ≤ nC − (1− P (n)
e )nR+Hb(P

(n)
e ).

This proves the result. As long as the error probability P
(n)
e is sufficiently small, increasing the rate R leads to

better privacy. An interpretation is that a coding scheme with higher rate R produces less redundancy while

transmitting a message. In this case, there is less information about the codebook E in the output Y1:n.
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3.4 Feedback Capacity

We turn to another setting of channel coding, where we allow our encoder to use previous outputs. That is, at

the n-th step, our encoder assigns a channel input Xn according to not only the message W to be transmitted,

but also the previous outputs Y1:(n−1). This setting is called the channel coding with feedback.

Message

W

Encoder

E(W,Y1:(n−1))

Channel

p(y|x)

Decoder

D(Y1:n)

Estimate

Ŵ

Xn Yn

Feedback

Theorem 3.5. Feedback cannot increase capacity. For a discrete memoryless channel, the capacity with

feedback, CFB, is the same as the capacity without feedback:

CFB = C.

Proof. Like the proof of the weak converse, since W is uniform over all possibilities,

nR = H(W ) = H(W |Ŵ ) + I(W ; Ŵ )

= nRP (n)
e + 1 + I(W ; Ŵ ) (By Fano’s inequality)

≤ nRP (n)
e + 1 + I(W ;Y1:n). (By data processing inequality)

Then it remains to bound the mutual information I(W ;Y1:n). Since Xi is a function of W and (Yi−1, · · · , Yi),
and Yi is conditionally independent of W and (Yi−1, · · · , Yi) given Xi, we have

H(Yi|Yi−1, · · · , Y1,W ) = H(Yi|Yi−1, · · · , Y1,W,Xi) = H(Yi|Xi)

Then

I(W ;Y1:n) = H(Y1:n)−H(Y1:n|W )

=

n∑
i=1

H(Yi|Yi−1, · · · , Y1)−
n∑
i=1

H(Yi|Yi−1, · · · , Y1,W )

=

n∑
i=1

H(Yi|Yi−1, · · · , Y1)−
n∑
i=1

H(Yi|Xi)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi;Yi) ≤ nC.

Therefore,

P (n)
e ≥ n(R− C)− 1

nR
≥ 1− C

R
, ∀n ∈ N.

If R > C, the error probability P
(n)
e does not converge to 0, and R is not achievable. Hence R ≤ C.

Remark. This surprising fact stems from the memorylessness of the channel. Of course, feedback can help

simplify our encoding and decoding schemes in terms of complexity.
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3.5 Hamming Code

Motivation. The object of coding is to introduce redundancy so that even if some of the information is lost

or corrupted, it is still possible to recover the message at the receiver.

A simplest coding scheme is to repeat information. For example, consider sending a bit W ∈ {0, 1} with a

binary symmetric channel. One repeat the bit over n channel uses, i.e. send 11 · · · 1︸ ︷︷ ︸
n

for 1 and 00 · · · 0︸ ︷︷ ︸
n

for 0.

This code can correct up to n−1
2 flips, and the error probability converges to 0 as n→∞. However, the rate

R = 1/n of this code also goes to 0, which is not very useful.

Parity check code. Instead of simply repeating the bits, we can introduce each extra bit to check whether

there is an error in some subset of the information bits. This is called an error-detecting code.

A single parity check code is a (2n−1, n) coding scheme for a binary symmetric channel which sends n− 1

information bits, and the n-th bit encodes the parity of the entire block, i.e. whether the number of 1’s in the

information bits is even or odd. Then if there is an odd number of errors during transmission, the receiver will

notice that the parity has changed and detect the error. This code does not detect an even number of errors

and does not give any information about how to correct the errors that occur.

Hamming Code. To illustrate the idea of Hamming codes, we begin with an m× (2m − 1) binary matrix

formed by arranging the 2m− 1 nonzero binary column vectors of length m in ascending order. The matrix H

is called a parity check matrix. For example, when m = 3, the parity check matrix H ∈ {0, 1}3×7 is given by

H =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .
From now on, all operations will be done modulo 2. Under this setting, the set {0, 1} becomes a field:

0± 0 = 0, 0± 1 = 1, 1± 1 = 0, 0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1,
0

1
= 0,

1

1
= 1.

The Hamming codewords correspond to the null space of the parity check matrix. In other words, each Hamming

codeword c is a solution of the linear system

Hc = 0,

where c ∈ {0, 1}2m−1 is a binary vector. For the case m = 3, there are 16 Hamming codewords:

0000000 0100101 1000011 1100110

0001111 0101010 1001100 1101001

0010110 0110011 1010101 1110000

0011001 0111100 1011010 1111111

(3.2)

We call this a (7, 4) Hamming code, and the rate is

R =
log2 16

7
=

4

7
.

Furthermore, since the null space ker(H) is a subspace of the vector space {0, 1}2m−1, the sum of any two

codewords is also a codeword.
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Rate of the Hamming code. According the rank-nullity theorem, for a parity matrix H ∈ {0, 1}m×(2m−1),

rank(H) + dim ker(H) = 2m − 1.

Since we can always pick the m distinct one-hot vectors from the columns of H, we have rank(H) = m, and

dim ker(H) = 2m −m− 1. Therefore, the null space of H has dimension k = 2m −m− 1, and over the binary

field there are 2k Hamming codewords. This is called a (N, k) Hamming code, which carries k = 2m −m− 1

information bits via N = 2m − 1 channel uses. The rate of this code is

R =
k

N
= 1− m+ 1

2m − 1
.

As we can see, the rate R of the Hamming code converges to 1 as m→∞.

Minimum weight and minimum distance. Since the columns of H are distinct, the sum of any two

columns of H must not be the all-0 vector. Hence the minimum number of 1’s in any nonzero codeword is 3.

This is called the minimum weight of the Hamming code.

If c1 6= c2 are two distinct Hamming codewords, we have H(c1 − c2) = 0, and c1 − c2 has minimum weight

3. Hence c1 and c2 differ at no less than 3 bits. This is called the minimum distance of the Hamming code.

Covering property of the Hamming codewords. We can show that the Hamming words are widely

dispersed in the space of bit words. Let c ∈ {0, 1}2m−1 be a Hamming codeword, and write by [c] the ball

centered at c of radius 1 in {0, 1}2m−1, i.e. [c] is set of all bit words of length 2m − 1 whose distance to c is

not greater than 1. For example, when m = 3 and c = 0100101,

[0100101] = {0100101, 1100101, 0000101, 0110101, 0101101, 0100001, 0100111, 0100100}

Generally, the ball [c] contains 2m words, which are c it self and the 2m − 1 words obtained by flipping

exactly one bit of c. Since the minimum distance of the Hamming code is 3, we have [c] ∩ [c̃] = ∅ for any

codewords c 6= c̃. As a result, there are 2k · 2m = 22m−1 distinct bit words in the union of the unit balls

centered the Hamming codewords c1, c2, · · · , c2k . Since there are in total 22m−1 bit words of length 2m − 1,

{0, 1}2
m−1 = [c1] ∪ [c2] ∪ · · · ∪ [c2k ]

Thus we obtain a cover of the space of all bit words generated by the Hamming codewords. In this sense,

every bit word of length 2m − 1 either is a codeword or differs from a unique codeword in exactly 1 bit.

Hamming code corrects up to 1 flip. If a codeword c is corrupted in only one bit, it will differ from any

other codeword in at least two bits. Hence c is the unique closest codeword.

In fact, we can identify the closest codeword without a brutal search of all codewords. We assume that ei

is the one-hot vector whose ith bit is 1. If the ith bit of the codeword c is flipped, the received vector is then

given by r = c+ ei, which satisfies

Hr = H(c+ ei) = Hc+Hei = Hei.

This is simply the ith column of the parity check matrix H.

Thus, assuming that only one bit was flipped, the vector Hr is the binary representation of index of the

flipped bit. By flipping this bit in the received vector r, we recover the original codeword c.

36



Application: the hat game. We see an application of the Hamming code in game theory. In a hat game

of N players, each player is independently assigned a hat. Each hat is colored 0 or 1 with probability 1/2.

Here are the rules of the game:

• Players act a team – everyone wins or everyone loses.

• A player can observe the hats of all other players, but cannot observe the color of her own hat.

• Once hats have been distributed, there no communication between team members.

• When asked the color of their hats, all players must answer simultaneously.

• Each person is allowed to pass rather than guess a color.

• Team wins if at least one player guesses correctly and none guess incorrectly. Otherwise, the team loses.

We focus on finding an optimal strategy that maximizes the winning rate. Before we proceed, let us take a

look at the best result the players can make. We let xi be the color of the ith player’s hat.

• In this game, each player’s decision making process is independent of the color of their own hat.

• If the jth player gives a correct guess in the case (x1, · · · , xj−1, 0, xj+1, · · · , xN ), she must give a wrong

guess in the case (x1, · · · , xj−1, 1, xj+1, · · · , xN ), and vice versa. Therefore, no matter what strategy the

players take, there must be an equal number of correct and wrong guesses among all possible outcomes.

• However, this fact does not mean that our overall strategy has to lose as much as it wins! According

to the rule, we require each win to have at least one correct guess and no wrong guess. To increase

our overall winning rate, we would like that there are less correct guesses in each win and more wrong

guesses in each loss. In the optimal case, we would have exactly one correct guess in every win.

• Among all 2N outcomes, we assume that there are G wins. According to the constraint we discussed

previously, to maximize G, we assume that each win has only a single correct guess. Since each loss has

up to N wrong guesses, we have

G ≤ N(2N −G).

This gives an upper bound of the winning rate, and we cannot do any better:

P(win) =
G

2N
≤ N

N + 1
.

The optimal strategy. In the hat game, when the number of the players is of the form N = 2m − 1, we

consider the following strategy: Player j forms the bit word (x1, · · · , xj−1, ∗, xj+1, · · · , xN ), where xi is the

color of the ith hat.

• If (x1, · · · , xj−1, 0, xj+1, · · · , xN ) forms a Hamming codeword, the player j guesses 1;

• If (x1, · · · , xj−1, 1, xj+1, · · · , xN ) forms a Hamming codeword, the player j guesses 0;

• Otherwise, the player j passes.

Using this strategy, there are only two possible outcomes:

• If (x1, · · · , xn) is not a Hamming codeword, then it differs from a unique Hamming codeword in exactly

one bit, denoted by xj . In this case, all players except j pass and the player j gives a correct guess.

• If (x1, · · · , xn) is a Hamming codeword, then each player gives a wrong guess.

Then the winning rate is one minus the proportion of Hamming codewords to all bit words:

P(win) = 1− 2k

2N
=

22m−m−1

22m−1
= 1− 2−m =

N

N + 1
.

Hence this strategy reaches the optimal winning rate. Furthermore, the winning rate converges to 1 as m→∞.
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4 Differential Entropy and Gaussian Channels

4.1 Differential Entropy of Continuous Random Variables

Motivation: Entropy of continuous random variables. We let X be a continuous real-valued random

variable supported on [a, b]. Assume that the density function f of X is a continuous function. Then

P(X ≤ x) =

∫ x

a

f(t) dt, a ≤ x ≤ b.

We divide the range of X into bins of width δ > 0:

a = t0 < t1 < t2 < · · · < tn−1 < b < tn, ti − ti−1 = δ.

By mean-value theorem, there exists xi ∈ [ti−1, ti] such that

f(xi)δ =

∫ ti

ti−1

f(x) dx.

We then quantize X by defining

Xδ = xi, if ti−1 ≤ X < ti.

Then Xδ is a discrete random variable, and its probability mass function is given by

P(Xδ = xi) =

∫ ti

ti−1

f(x) dx = f(xi)δ.

The entropy of Xδ is

H(Xδ) =

n∑
i=1

f(xi)δ log
1

f(xi)δ
=

n∑
i=1

f(xi)δ
1

f(xi)
+

n∑
i=1

f(xi)δ log
1

δ

=

n∑
i=1

(ti − ti−1)f(xi) log
1

f(xi)
+ log

1

δ

n∑
i=1

∫ ti

ti−1

f(x) dx

=
n∑
i=1

(ti − ti−1)f(xi) log
1

f(xi)
+ log

1

δ
.

This entropy blows up as δ →∞. Therefore, the entropy of a continuous random variable is infinite. However,

since f : [a, b]→ R+ is Riemann integrable, we have

lim
δ↓0

(
H(Xδ)− log

1

δ

)
=

∫ b

a

f(x) log
1

f(x)
dx

= E
[
log

1

f(X)

]
.

We can extend this definition to multidimensional spaces.

Definition 4.1 (Differential entropy). Let X ∼ f be a continuous random variable, and the range of X is

X ⊂ Rp. If the function x 7→ f(x) log f(x) is integrable, define the differential entropy of X to be

h(X) =

∫
X
f(x) log

1

f(x)
dx = −E [log f(X)] .
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Example 4.2. Here are some examples of differential entropy.

(i) Let X be a uniform random variable on [0, a]. Then h(X) =
∫ a

0
1
a log a dx = log a. When 0 < a < 1, we

have h(X) < 0. It is seen that the differential entropy can be negative!

(ii) Let X ∼ N(0, σ2) be a Gaussian random variable. Then

h(X) =

∫ ∞
−∞

1√
2πσ

e−
x2

2σ2

(
log
(√

2πσ
)

+
x2

2σ2

)
dx =

1

2
+

1

2
log
(
2πσ2

)
.

(iii) Let X ∼ N(0,Σ) be a p-dimensional Gaussian random vector, where the covariance matrix Σ ∈ Rp×p is

nonsingular. Then

h(X) =

∫
Rp

1

(2π)p/2 det(Σ)1/2
e−

1
2x
>Σ−1x

(
log
(

(2π)p/2 det(Σ)1/2
)

+
1

2
x>Σ−1x

)
dx

=
p

2
log(2π) +

1

2
log det(Σ) +

1

2
E
[
X>Σ−1X

]
︸ ︷︷ ︸
= 1

2 tr(Σ−1E[XX>])

=
p

2
log(2πe) +

1

2
log det(Σ).

The definition of conditional differential entropy, mutual information and relative entropy then follows from

the differential entropy.

Definition 4.3. Let X,Y, Z ∼ f be three continuous random variables. For brevity, we also write f(x) and

f(y) for the marginal density function of X and Y , respectively.

(i) The joint differential entropy between X and Y is the differential entropy of the random vector (X,Y );

(ii) The conditional differential entropy of Y given X is

h(Y |X) = −
∫
X×Y

f(x, y) log f(y|x) dx dy.

(iii) The mutual information between X and Y is

I(X;Y ) =

∫
X×Y

f(x, y) log
f(x, y)

f(x)f(y)
dx dy.

(iv) The conditional mutual information between X and Y given Z is

I(X;Y |Z) =

∫
X×Y×Z

f(x, y, z) log
f(x, y|z)

f(x|z)f(y|z)
dx dy dz.

(v) Given two density functions f and g defined in the same space X ⊂ Rp such that g � f , i.e. g(x) = 0

for all x ∈ U with f(x) = 0. Then the Kullback-Leibler divergence of g from f is

D(f ‖ g) :=

∫
X
f(x) log

f(x)

g(x)
dx = EX∼f

[
log

f(X)

g(X)

]
.

Remark. Many identities and inequalities in the discrete case also applies to the continuous case:

• h(X,Y ) = h(X) + h(Y |X).

• I(X;Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y ).

• I(X;Y ) = D(fXY ‖ fXfY ).

• I(X;Y |Z) = h(X|Z)− h(X|Y, Z) = h(Y |Z)− h(Y |X,Z).

• I(X;Y,Z) = I(X;Z) + I(X;Y |Z).
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Example 4.4. We aim to compute the mutual information between two jointly Gaussian variables.

(a) Let X and Y be two jointly Gaussian random vectors:(
X

Y

)
∼ N

((
0

0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

where Σ11 ∈ Rp×p and Σ22 ∈ Rq×q are both nonsingular, and the covariance matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
is also nonsingular. Then

h(Y |X) =

∫
Rp
f(x)

∫
Rq
f(y|x) log

1

f(y|x)
dy dx

=

∫
Rp
f(x)

(
p

2
log(2πe) +

1

2
log det(Σ22.1)

)
dx

=
q

2
log(2πe) +

1

2
log det(Σ22.1)

where the conditional covariance matrix is Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12. By Schur complement,

det(Σ) = det(Σ11) det(Σ22.1) ⇒ log det(Σ) = log det(Σ11) + log det(Σ22.1).

Therefore,

I(X;Y ) = h(Y )− h(Y |X)

=
q

2
log(2πe) +

1

2
log det(Σ11)− q

2
log(2πe)− 1

2
log det(Σ22.1)

=
1

2
log

det(Σ11) det(Σ22)

det(Σ)
.

To summarize,

h(Y |X) =
q

2
log(2πe) +

1

2
log

det(Σ)

det(Σ11)
, h(X|Y ) =

p

2
log(2πe) +

1

2
log

det(Σ)

det(Σ22)
,

and

I(X;Y ) =
1

2
log

det(Σ11) det(Σ22)

det(Σ)
.

In particular, if X and Y are independent, the covariance matrix is Σ =

(
Σ11 0

0 Σ22

)
, and I(X;Y ) = 0.

(b) We consider the bivariate Gaussian distribution:(
X

Y

)
∼ N

((
0

0

)
,

(
σ2

1 ρσ1σ2

ρσ2σ1 σ2
2

))
,

where ρ ∈ (−1, 1) is the correlation coefficient between X and Y . Then

I(X;Y ) =
1

2
log

1

1− ρ2
.

In particular, if ρ = 0, the mutual information between X and Y is 0; and if ρ = ±1, the mutual

information between X and Y is infinity.
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(c) Let X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2), where Σ1,Σ2 ∈ Rp×p. Then

D(X‖Y ) = E
[
log

fX(X)

fY (X)

]
=

1

2
log

det(Σ2)

det(Σ1)
− 1

2
E
[
(X − µ1)>Σ−1

1 (X − µ1)
]

+
1

2
E
[
(X − µ2)>Σ−1

2 (X − µ2)
]

=
1

2
log

det(Σ2)

det(Σ1)
− p

2
+

1

2
tr
(
Σ−1

2 E
[
(X − µ2)(X − µ2)>

])
=

1

2
log

det(Σ2)

det(Σ1)
− p

2
+

1

2

(
(µ1 − µ2)>Σ2(µ1 − µ2) + tr(Σ−1

2 Σ1)
)
.

Theorem 4.5 (Linear transformation). Let A ∈ Rp×p be a nonsingular matrix, and b ∈ Rp. Let X be a

continuous p-dimensional random vector. Then

h(AX + b) = h(X) + log |det(A)| .

Proof. Let Y = AX. If X has density function f , the density of Y is given by

g(y) =
f(A−1y)

|det(A)|
, y ∈ Rp.

Then the differential entropy of Y is

h(Y ) = −
∫
Rp
g(y) log g(y) dy

= −
∫
Rp

f(A−1y)

|det(A)|
log

f(A−1y)

|det(A)|
dy

= −
∫
Rp

f(x)

|det(A)|
log

f(x)

|det(A)|
|det(A)| dx (change the variable x = A−1y)

= −
∫
Rp
f(x) log f(x) dx+

∫
Rn
f(x) log |det(A)| dx

= h(X) + log |det(A)| .

By change the variable Z = Y + b = Ax+ b, we know that h(Z) = h(Y ). This is the desired result.

Remark. This transformation formula also holds for conditional differential entropy. Analogous to this

formula, we have the transformation invariance for mutual information and KL-divergence:

h(Ax+ b|Y ) = h(X|Y ) + log |det(A)| ,

I(AX + b;Y ) = I(X;Y ),

D(fAx+b‖fAY+b) = D(fX‖fY ).

We have the following estimate for the differential entropy of a random vector.

Theorem 4.6 (Upper bound of the differential entropy). If X is a p-dimensional random vector with mean

µ ∈ Rp and covariance matrix Σ ∈ Rp×p,

h(X) ≤ p

2
log(2πe) +

1

2
log det(Σ)

The inequality holds if and only if X ∼ N(µ,Σ). In other words, the Gaussian distribution maximizes the

differential entropy under second moment constraints.
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Proof. We may assume µ = E[X] = 0 without loss of generality. Let Z ∼ fZ be the Gaussian random variable

with E[Z] = E[X] = 0 and Cov(Z) = Cov(X) = Σ. Then

0 ≤ D(fX ‖ fZ) = E
[
log

fX(X)

fZ(X)

]
= −h(X) +

∫
Rp
fX(x)

(
p

2
log(2π) +

1

2
log det(Σ) +

1

2
x>Σ−1x

)
dx

= −h(X) +
p

2
log(2π) +

1

2
log det(Σ) +

1

2

∫
Rp
fX(x) tr

(
Σ−1xx>

)
dx

= −h(X) +
p

2
log(2πe) +

1

2
log det(Σ).

Therefore,

h(X) ≤ p

2
log(2πe) +

1

2
log det(Σ) = h(Z).

The equality holds if and only if D(fX ‖fZ) = 0, which is equivalent to X
d
= Z.

Theorem 4.7 (Estimation error and differential entropy). Let X be a p-dimensional random vector, and let

X̂ be an estimate of X. If X → Y → X̂ form a Markov chain,

E
[∣∣X − X̂∣∣2] ≥ p e

2
ph(X|Y )

2πe
,

where | · | denotes the Euclidean norm.

Proof. Conditioning on the event {Y = y}, the variables X and X̂ are independent. We assume Σ ∈ Rp×p is

the conditional covariance matrix of X given Y = y. Since the expectation µ = E[X |Y = y] minimizes the

mean square error E[|X − µ|2 |Y = y], we have

E
[∣∣X − X̂∣∣2 ∣∣Y = y

]
≥ E

[
(X − µ)>(X − µ)

∣∣Y = y
]

= tr(Σ).

We let λ1 > λ2 > · · · > λp > 0 be the eigenvalues of Σ. Then

log tr(Σ) = log p+ log

(
λ1 + λ2 + · · ·+ λp

p

)
≥ log p+

1

p
log λ1 +

1

p
log λ2 + · · ·+ 1

p
log λp

= log p+
1

p
log det(Σ).

By Theorem 4.6, we have

1

2
log det(Σ) ≥ h(X |Y = y)− p

2
log(2πe).

Hence

E
[∣∣X − X̂∣∣2 ∣∣Y = y

]
= tr(Σ) ≥ exp

(
log p+

2

p
h(X |Y = y)− log(2πe)

)
=

p

2πe
e

2
ph(X|Y=y).

Take expectation on both sides. The result follows then from Jensen’s inequality.
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4.2 Capacity of Gaussian Channels

Motivation. In many scenarios, the error between the sent message X and the received message Y can be

modeled as additive white Gaussian noise (AWGN). A discrete-time Gaussian channel is given by

Yi = Xi + Zi, where Zi ∼ N(0, N) is independent of Xi.

If there is no constraint on the input, we can choose an infinite subset of inputs arbitrarily far apart to separate

the output with arbitrarily small probability of error. To mode real-world constraints, we impose average power

constraint on codewords (x1, · · · , xn):

1

n

n∑
i=1

x2
i ≤ P.

Communication of one bit. We provide a simple strategy for communication on the AWGN channel. To

transmit a single bit, we send X = −
√
P for 0 and send X =

√
P for 1. Then the received signal

Y = ±
√
P + Z

is symmetric. For the decoder, we can simply choose
√
P when Y ≥ 0 and −

√
P when Y < 0. Then the

probability of error is

Pe =
1

2
P
(
Y ≥ 0 |X = −

√
P
)

+
1

2
P
(
Y < 0 |X =

√
P
)

=
1

2
P
(
Z ≥

√
P
)

+
1

2
P
(
Z < −

√
P
)

= P
(
Z >

√
P
)

= 1− Φ
(√

P/N
)
,

where Φ is the cumulative distribution function of N(0, 1) distribution. It is seen that the probability of error

is small when the signal-noise ratio (SNR) P/N is large.

Theorem 4.8. The information capacity of the Gaussian channel with additive noise power B and power

constraint P is

C := max
fX :E[X2]≤P

I(X;Y ) =
1

2
log

(
1 +

P

N

)
.

Proof. The mutual information between X and Y is

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X) = h(Y )− h(Z) = h(Y )− 1

2
log(2πeN).

Since X and Z are independent, the variance of Y = X+Z is less than or equal to P +N , and the differential

entropy of Y is maximized when Y is Gaussian:

max
E[Y 2]≤P+N

h(Y ) =
1

2
log(2πe(P +N)).

Then

max
fX :E[X2]≤P

I(X;Y ) =
1

2
log(2πe(P +N))− 1

2
log(2πeN) =

1

2
log

(
1 +

P

N

)
.

The equality holds when X ∼ N(0, P ).
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Definition 4.9. A rate R is achievable for a Gaussian channel with a power constraint P if there exists a

sequence of (2nR, n) codes with codewords satisfying the power constraint such that the maximal probability

of error P
(n)
e,max converges to zero. The capacity of the channel is the supremum of the achievable rates:

Cop = sup {R : R is achievable}

Theorem 4.10. The capacity of the Gaussian channel with additive noise power N and power constraint P

is equal to the information capacity:

Cop =
1

2
log

(
1 +

P

N

)
.

Remark. This theorem also has two parts:

• (Achievability) If R < 1
2 log

(
1 + P

N

)
, then R is achievable.

• (Converse) If R is achievable, then R ≤ 1
2 log

(
1 + P

N

)
.

Proof of Theorem 4.10 (Achievability part). Similar to our proof of the availability part of Theorem 3.3 in the

case of discrete channels, we employ a random coding approach as follows:

• Construction of a random codebook. For each message w ∈ {1, 2, · · · , 2nR}, independently generate

X1(w), X2(w), · · · , Xn(w)
i.i.d.∼ N(0, P − ε).

Then we get a codebook E : W → Rn, and it is revealed to both the encoder and the decoder. When

the encoder receives a message w, it sends X1:n(w) to the Gaussian channel Y = X + Z.

• Decoding. When receiving the output Y1:n, the decoder looks down the list of codewords X1:n(w), and

searches for a codeword that is jointly typical with Y1:n. If there exists a unique such codeword X1:n(w),

the decoder declares Ŵ = w; otherwise, it declares an error. The receiver also declares an error if the

chosen codeword does not satisfy the power constraint 1
n

∑n
i=1Xi(w)2 ≤ P .

• Probability of error. Without loss of generality, assume the message 1 is transmitted. Then the output

is Y1:n = X1:n(1) + Z1:n. Define the following events:

En,0 =

{
1

n

n∑
i=1

Xi(w)2 > P

}
, En,i =

{
(X1:n(i), Y1:n) ∈ A(n)

ε

}
, i = 1, 2, · · · , 2nR.

We fix ε > 0. By the weak law of large numbers,

lim
n→∞

P
(

1

n

(
X1(1)2 +X2(1)2 + · · ·+Xn(1)2

)
> P

)
= 0.

Since X1:n(1) and Y1:n are jointly typical,

lim
n→∞

P(Ecn,1) = 0.

Furthermore, by joint asymptotic equipartition property, since X1:n(w), Y1:n have the same marginal as

X1:n(1), Y1:n and are independent for all i = 2, 3, · · · , 2nR,

P(En,i) ≤ 2−n(I(X;Y )−3ε), i = 2, 3, · · · , 2nR.

We choose Nε > 0 great enough such that

P(En,0) < ε and P(Ecn,1) < ε for all n ≥ Nε.
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Similar to the analysis in the discrete case, the probability of error is uniform over the events W = 1, 2, · · · , 2nR.

Then for all n ≥ Nε,

P(Ŵ 6= W ) = P(Ŵ 6= W |W = 1) = P
(
En,0 ∪ Ecn,1 ∪ En,2 ∪ · · · ∩ En,2nR

)
≤ 2ε+ 2−n(I(X;Y )−R−3ε).

Note that

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X) = h(Y )− h(Z) =
1

2
log

(
1 +

P − ε
N

)
If the rate R < 1

2 log(1 + P
N ), we can find a sufficiently small ε > 0 such that

I(X;Y )−R− 3ε =
1

2
log

(
1 +

P − ε
N

)
−R− 3ε > 0.

Then the error probability tends to 0 as n→∞ and ε→ 0.

Since this error probability is the average over all codebooks and all messages, we reapply our trick in

the proof of discrete memory loss channel: choose a good codebook E∗ and expunge the worst half of the

codewords. Then the maximal conditional probability of error is small. In particular, each of the remaining

codewords must satisfy the power constraint, otherwise it has conditional probability of error 1 and must

belong to the worst half. The new code has rate R− 1
n , which can be arbitrarily close to the capacity C. Thus

we proved the availability part of the theorem.

Proof of Theorem 4.10 (Converse part). Consider any (2nR, n) code that satisfies the power constraint:

n∑
i=1

xi(w)2 ≤ P, w = 1, 2, · · · , 2nR.

Let W ∼ Unif{1, 2, · · · , 2nR}. We then consider the Markov chain W → X1:n(W ) → Y1:n → Ŵ . By Fano’s

inequality, if P(Ŵ 6= W ) = P
(n)
e ,

H(W |Ŵ ) ≤ 1 + nRP (n)
e .

Let X1:n(W ) = X1:n. Then

nR = H(W ) = I(W ; Ŵ ) +H(W |Ŵ )

≤ I(X1:n;Y1:n) + 1 + nRP (n)
e (by data processing inequality)

= h(Y1:n)− h(Y1:n|X1:n) + 1 + nRP (n)
e

= h(Y1:n)− h(Z1:n) + 1 + nRP (n)
e

≤
n∑
i=1

h(Yi)− h(Z1:n) + 1 + nRP (n)
e (conditioning does not increase entropy)

=

n∑
i=1

h(Yi)−
n∑
i=1

h(Zi) + 1 + nRP (n)
e . (4.1)

Assume that the average power of the i-th column of the codebook:

1

2nR

2nR∑
w=1

x2
i (w) = Pi, i = 1, 2, · · · , n.
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Since Yi = Xi +Zi, and since Xi and Zi are independent, the average power E[Y 2
i ] = Pi +N . The differential

entropy is maximized by the Gaussian distribution:

h(Yi) ≤
1

2
log(2πe(Pi +N)).

Plugging in this to (4.1), we have

nR ≤
n∑
i=1

1

2
log

(
1 +

Pi
N

)
+ 1 + nRP (n)

e

≤ n

2
log

(
1 +

n∑
i=1

Pi
nN

)
+ 1 + nRP (n)

e (by Jensen’s inequality)

≤ n

2
log

(
1 +

P

N

)
+ 1 + nRP (n)

e

Therefore

P (n)
e ≥ 1− 1

2R
log

(
1 +

P

N

)
− 1

nR
, ∀n ∈ N.

Since P
(n)
e → 0 as n→ 0, we require R ≤ 1

2 log
(
1 + P

N

)
.

4.3 Parallel Gaussian Channels

Problem Setting. We consider k independent Gaussian channels with a common power constraint:

Channel : Yi = Xi + Zi, i = 1, 2, · · · , k,

Power constraint :

k∑
i=1

E[X2
i ] :=

k∑
i=1

Pi ≤ P,

Independent additive Gaussian noises : Zi ∼ N(0, Ni), i = 1, 2, · · · , k

Our goal is to distribute the power amongst the channels to maximize the total capacity:

C = max

{
I(X1:k;Y1:k)

∣∣∣∣X1, X2, · · · , Xk :

k∑
i=1

E[X2
i ] ≤ P

}

An upper bound. As usual, we decompose and estimate the mutual information as follows:

I(X1:k;Y1:k) = h(Y1:k)− h(Y1:k|X1:k)

= h(Y1:k)− h(X1:k + Z1:k|X1:k)

= h(Y1:k)− h(Z1:k)

=

k∑
i=1

h(Yi|Yi−1, · · · , Y1)−
k∑
i=1

h(Zi)

≤
k∑
i=1

(h(Yi)− h(Zi)) ≤
1

2

k∑
i=1

log

(
1 +

Pi
Ni

)
.

This upper bound can be reached when X1, X2, · · · , Xk are independent with

Xi ∼ N(0, Pi), i = 1, 2, · · · , k.
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Solution. To solve the capacity, we consider the following optimization problem:

max
P1,··· ,Pk

k∑
i=1

log

(
1 +

Pi
Ni

)
, subject to P1, · · · , Pk ≥ 0,

k∑
i=1

Pi ≤ P.

Since the objective function is concave about P1, · · · , Pk, define the Lagrangian function:

L(P1, · · · , Pk, λ) =

k∑
i=1

log

(
1 +

Pi
Ni

)
−

k∑
i=1

µiPi − λ

(
k∑
i=1

Pi − P

)
, P1, · · · , Pk, µ1, · · · , µk, λ ≥ 0.

Apply the KKT conditions to solve the problem:

∂L

∂Pi
=

1

Pi +Ni
− µi − λ = 0,∑k

i=1 Pi − P = 0,∑k
i=1 µiPi = 0,

P1, · · · , Pk, µ1, · · · , µk, λ ≥ 0.

Then for each i = 1, 2, · · · , k, the optimal solution satisfies

P ∗i =
1

µ∗i + λ∗
−Ni,

and at least one of Pi and µ∗i is zero. This implies

P ∗i (λ∗) =


1

λ∗
−Ni, 1

λ∗ −Ni ≥ 0

0, 1
λ∗ −Ni < 0

= max

(
1

λ∗
−Ni, 0

)

Furthermore, we require

k∑
i=1

P ∗i (λ∗)− P = 0. (4.2)

Since the function λ 7→
∑n
i=1 max

(
1
λ −Ni, 0

)
is strictly monotone decreasing from ∞ to 0 on the interval

(0, 1
min1≤i≤k Ni

), one can solve λ∗ > 0 uniquely from (4.2). By construction,the power allocation P ∗i (λ∗)

satisfies the constraints of our problem and thus is a feasible solution. Hence

C =
1

2

k∑
i=1

log

(
1 +

P ∗i (λ∗)

Ni

)
=

1

2

k∑
i=1

log

(
1 +

1

Ni
max

(
1

λ∗
−Ni, 0

))
,

where λ∗ > 0 is the unique solution to the equation

k∑
i=1

max

(
1

λ∗
−Ni, 0

)
= P.

This is also known as the water filling solution.
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4.4 I-MMSE Relationship

Setting. Given a random variable X with finite variance σ2 > 0, let

Y =
√
sX +W, W ∼ N (0, 1) is independent of X.

This is a variant of the Gaussian channel, and the constant s ≥ 0 is called the signal-to-noise ratio (SNR) of

the channel. The capacity of this channel is measured by the mutual information I(X;Y ).

Estimation error. The minimum mean-squared error (MMSE) in estimating X from Y is defined as

mmse(X|Y ) = min
g:Y→R

E
[
(g(Y )−X)

2
]

It is easy to verify that the optimal estimation function g(Y ) is given by the conditional expectation E[X|Y ].

Consequently, the MMSE can be written as

mmse(X|Y ) = E
[
|X − E[X|Y ]|2

]
= E [Var(X|Y )] .

This is in fact the squared distance from X to its projection onto the subspace spanned by Y . The MMSE

measures the uncertainty of X given an observation Y .

The I-MMSE relationship states that for any distribution on X, the derivative of the mutual information

with respect to the signal-to-noise ratio is equal to one half the MMSE:

d

ds
I(X;Y ) =

1

2
mmse(X|Y ).

In the remainder of this section, we aim to establish this result.

Lemma 4.11 (Almost Gaussian variable). Let X be a random variable with mean µ and finite variance σ2 > 0,

and let W ∼ N (0, 1) be a noise independent of X. When Y =
√
sX + W , and Y ′ ∼ N (

√
sµ, 1 + sσ2) is a

Gaussian variable that has the same mean and variance as Y , then

lim
s→0

D(Y ‖Y ′)
s

= 0.

Proof. We may assume µ = 0 without loss of generality, otherwise we replace X with X − µ. By definition,

D(Y ‖Y ′) =

∫
R
fY (y) log

fY (y)

fY ′(y)
dy =

∫
R
fY (y)

(
1

2
log(2π(1 + sσ2)) +

y2

2(1 + sσ2)

)
dy − h(Y )

=

(
1

2
log
(
2π(1 + sσ2)

)
+

E[Y 2]

2(1 + sσ2)

)
dy − h(Y )

=
1

2
log
(
2πe(1 + sσ2)

)
− h(Y ).

We fix M > 0, and define B = 1{|X|≤M}. Then

h(Y ) = P(B = 1)h(Y |B = 1) + P(B = 0)h(Y |B = 0)

= P(B = 1)h(Y |B = 1) + P(B = 0)h(
√
sX +W |B = 0)

≥ P(B = 1)h(Y |B = 1) + P(B = 0)h(W ),

where the last inequality holds because W is independent of B and X, and B is a function of X:

h(
√
sX +W |B = 0) ≤ h(

√
sX +W |X,B = 0) = h(

√
sX +W |X) = h(W ).
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Since |X| ≤M conditioning on the event B = 1, using Taylor’s expansion, we have

fY (y|B = 1) = E
[

1√
2π

e−(y−
√
sX)2/2

∣∣∣∣B = 1

]
=

e−y
2/2

√
2π

E
[
1 +
√
syX +

s

2
(y2 − 1)X2 + o(s)

∣∣∣∣B = 1

]
=

e−y
2/2

√
2π

(
1 +
√
syE[X|B = 1] +

s

2
(y2 − 1)E[X2|B = 1] + o(s)

)
,

where o(s) is a quantity smaller than s in the sense that lims→0
o(s)
s = 0. Hence

h(Y |B = 1) = −E [log fY (Y |B = 1)|B = 1]

=
1

2
E[Y 2|B = 1] +

1

2
log(2π)−

√
sE[Y |B = 1]E[X|B = 1] +

s

2
E[Y 2|B = 1]E[X|B = 1]2

− s

2
E[Y 2 − 1|B = 1]E[X2|B = 1] + o(s)

=
s

2
Var(X|B = 1) +

1

2
log(2πe)− sE[X|B = 1]2 + o(s)

where the last equality holds because

E[Y |B = 1] = E[
√
sX +W |B = 1] =

√
sE[X|B = 1],

E[Y 2|B = 1] = E
[
(
√
sX +W )2|B = 1

]
= sE[X2|B = 1] + 1.

For any δ > 0, by Lebesgue’s dominated convergence theorem, we can choose M = Mδ > 0 such that

P(B = 1) ≥ 1− δ, |E[X|B = 1]| ≤ δ and
∣∣Var(X|B = 1)− σ2

∣∣ ≤ δ. Therefore

h(Y |B = 1) ≥ 1

2
log(2πe) +

sσ2

2
− 3

2
δ + o(s).

Then for sufficiently small s, we have

h(Y ) = P(B = 1)h(Y |B = 1) + P(B = 0)h(W )

= P(B = 1)

(
1

2
log(2πe) +

sσ2

2
− 3

2
δ + o(s)

)
+ P(B = 0)

1

2
log(2πe)

≥ 1

2
log(2πe) + (1− δ)sσ

2

2
− 3

2
δ + o(s),

and

D(Y ‖Y ′) =
1

2
log(2πe(1 + sσ2))− h(Y )

≤ 1

2
log(2πe) +

1

2
sσ2 + o(s)− h(Y )

≤
(
sσ2

2
+

3

2

)
δ + o(s).

Since the choice δ > 0 is arbitrary and does not depend on s, we have D(Y ‖Y ′) ≤ o(s).

Remark. We have an intuitive interpretation for this lemma. When s > 0 is sufficiently small, the random

variable Y =
√
sX + W is almost Gaussian. In fact, the density of Y is the convolution of the density

of Gaussian variable W and a “pulse” near 0. Hence Y =
√
sX + W is “close” to the Gaussian variable

Y ′ ∼ N (0, 1 + sσ2), which has the same mean and variance as Y .
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Lemma 4.12. Under the assumption of Lemma 4.11, one have

lim
s→0

I(X;Y )

s
=
σ2

2
.

Proof. We may assume E[X] = 0. Let Y ′ ∼ N (0, 1 + sσ2). Then

I(X;Y ) =

∫
R

∫
R
fX,Y (x, y)

fY |X(y|x)

fY (y)
dx dy

=

∫
R

∫
R
fX,Y (x, y)

fY |X(y|x)

fY ′(y)
dx dy −

∫
R

∫
R
fX,Y (x, y)

fY (y)

fY ′(y)
dx dy

=

∫
R
fX(x)

∫
R
fY |X(y|x)

fY |X(y|x)

fY ′(y)
dy dx−

∫
R
fY (y)

fY (y)

fY ′(y)
dy

=

∫
R
fX(x)D(

√
sx+W‖Y ′) dx−D(Y ‖Y ′).

We analyze the first term. Since
√
sx+W ∼ N (

√
sx, 1) and Y ′ ∼ N (0, 1 + sσ2) are both Gaussian,

D(
√
sx+W‖Y ′) =

1

2
log(1 + sσ2) +

1

2

s(x2 − σ2)

1 + sσ2
,

and ∫
R
fX(x)D(

√
sx+W‖Y ′) dx = E

[
1

2
log(1 + sσ2) +

1

2

s(X2 − σ2)

1 + sσ2

]
=

1

2
log(1 + sσ2).

According to Lemma 4.11, the second term is controlled by o(s), and

I(X;Y ) =
1

2
log(1 + sσ2) + o(s) =

sσ2

2
+ o(s).

Thus we finish the proof.

Now we are prepared to prove the main result.

Theorem 4.13. Let X be a random variable with finite variance, and let W ∼ N (0, 1) be a noise independent

of X. Then

d

ds
I(X;

√
sX +W ) =

1

2
mmse(X |

√
sX +W ).

Proof. Let Y =
√
sX +W . We compute the derivative of I(X;Y ). We write

I(s) = I(X;Y ) = I(X;
√
sX +W ) = I

(
X;X +

1√
s
W

)
, s > 0.

Define

Z1 = X +
1√
s+ h

W1, Z2 = Z1 +

√
h

s(s+ h)
W2,

where W1 and W2 are independent N (0, 1) variables that are also independent of X. Then X → Y1 → Y2 is a

Markov chain, and

I(s+ h)− I(s) = I(X;Z1)− I(X;Z2) = I(X;Z1, Z2)− I(X;Z2) = I(X;Z1|Z2).
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We define

W :=

√
s

s+ h
W1 +

√
h

s+ h
W2, U :=

√
h

s+ h
W1 −

√
s

s+ h
W2

Clearly, U,W ∼ N (0, 1) are two independent Gaussian variables. Since U is a function of W1 and W2, it is

independent of X. Hence U is independent of Z2 = X +W/
√
s. Moreover, we decompose Z1 as

Z1 =
s

s+ h

(
Z2 −

√
h

s(s+ h)
W2

)
+

h

s+ h

(
X +

1√
s+ h

W1

)

=
sZ2

s+ h
+

hX

s+ h
+

√
h

s+ h
U.

We fix the event {Z2 = z2}, where z2 ∈ R. Under this event,

I(X;Z1|Z2 = z2) = I

(
X;

sZ2

s+ h
+

hX

s+ h
+

√
h

s+ h
U

∣∣∣∣Z2 = z2

)
= I(X;

√
hX + U |Z2 = z2).

According to Lemma 4.12,

I(X;
√
hX + U |Z2 = z2) =

h

2
Var(X|Z2 = z2) + o(h).

Note that Y =
√
sX +W =

√
sZ2. Hence

I(X;Z1|Z2) =
h

2
E[Var(X|Z2)] + o(h) =

h

2
E[Var(X|Y )] + o(h) =

h

2
mmse(X|Y ) + o(h),

and

lim
h↓0

I(s+ h)− I(s)

h
=

1

2
mmse(X|Y ).

The case h ↑ 0 follows from a similar approach. Thus we finish the proof.

Remark. We can also write this theorem to an integral form:

I(X;
√
sX +W ) =

1

2

∫ s

0

mmse (X |√γX +W ) dγ.

Now we use this result to derive a new representation of differential entropy.

Lemma 4.14. Under the assumption of Lemma 4.11, one have

lim
s→∞

D(Y ‖Y ′) = D(X‖X ′),

where X ′ ∼ N (µ, σ2) is a Gaussian variable with the same mean and variance as X.

Proof. Let W1,W2 ∼ N (0, 1) be independent Gaussian variables that are also independent of X. If t1 < t2,

by data processing inequality for KL-divergence,

D(X +
√
t2W ‖X ′ +

√
t2W ) = D(X +

√
t1W1 +

√
t2 − t1W2 ‖X ′ +

√
t1W1 +

√
t2 − t1W2)

≤ D(X +
√
t1W1 ‖X ′ +

√
t1W1)

= D(X +
√
t1W ‖X ′ +

√
t1W ).
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By rescaling by
√
s, one have D(Y ‖Y ′) = D(X +W/

√
s ‖X ′+W/

√
s), which is monotone increasing with

respect to s > 0. Furthermore, it is bounded by D(X‖X ′) from above. Hence

lim
s→∞

D(Y ‖Y ′) ≤ D(X‖X ′).

On the other hand, by Fatou’s lemma,

D(X‖X ′) ≤ lim inf
s→∞

D

(
X +

W√
s

∥∥∥∥X ′ + W√
s

)
= lim
s→∞

D(Y ‖Y ′).

Thus we complete the proof.

Theorem 4.15. Let X be a random variable with finite variance σ2 > 0, and let W ∼ N (0, 1) be a noise

independent of X. Then

h(X) =
1

2
log(2πeσ2)− 1

2

∫ ∞
0

(
σ2

1 + γσ2
−mmse(X |√γX +W )

)
dγ.

Proof. Let X ′ be a Gaussian variable with the same mean and variance as X. Define Y =
√
sX + W and

Y ′ =
√
sX ′ +W . In the proof of Lemma 4.12, we obtained

I(X;Y ) =
1

2
log(1 + sσ2)−D(Y ‖Y ′).

By Lemma 4.14 and Theorem 4.13,

D(X‖X ′) = lim
s→∞

D(Y ‖Y ′)

= − lim
s→∞

(
1

2
log(1 + sσ2)− I(X;Y )

)
=

1

2

∫ ∞
0

(
σ2

1 + γσ2
−mmse(X |√γX +W )

)
dγ.

Note that h(X) = h(X ′)−D(X‖X ′), the result follows.

Remark. This result can be extended to multi-dimensional vectors. Let X be a p-dimensional random vector

with covariance matrix Σ � 0, and let W ∼ N (0, Idp) be a noise independent of X. Then

h(X) =
1

2
log ((2πe)p det(Σ))− 1

2

∫ ∞
0

(
tr
(
γ Id +Σ−1

)−1 −mmse(X |√γX +W )
)
dγ.

4.5 Entropy Power Inequality

Lemma 4.16. Let X and Y be independent random variables with finite variance, and α ∈ [0, 2π). Then

h(X cos(α) + Y sin(α)) ≥ h(X) cos2(α) + h(Y ) sin2(α).

Proof. Let Z = X cos(α) + Y sin(α). According to Theorem 4.15,

h(Z)− h(X) cos2(α)− h(Y ) sin2(α)

=
1

2

∫ ∞
0

(
mmse(Z |√γZ +W )−mmse(X |√γX +W ) cos2(α)−mmse(Y |√γY +W ) sin2(α)

)
dγ (4.3)
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Let W1,W2 ∼ N (0, 1) be independent Gaussian variables, and define

U =
√
γX +W1, V =

√
γY +W2.

Let W = W1 cos(α) +W2 sin(α). Then
√
γZ +W = U cos(α) + V sin(α).

mmse(Z |√γZ +W ) ≥ mmse(Z |U, V ) = mmse(X |U) cos2(α) + mmse(Y |V ) sin2(α).

Hence the integrand in (4.3) is nonnegative, and the result follows.

Theorem 4.17. Let X and Y be independent one-dimensional random variables such that h(X), h(Y ) and

h(X + Y ) exists. Then

e2h(X+Y ) ≥ e2h(X) + e2h(Y ). (4.4)

Proof. We choose α ∈ [0, π/2) such that

tan(α) = eh(Y )−h(X).

We define U = X/ cos(α), and V = Y/ sin(α). By Lemma 4.16,

h(X + Y ) = h(U cos(α) + V sin(α)) ≥ h(U) cos2(α) + h(V ) sin2(α)

= cos2(α) log
eh(X)

cos(α)
+ sin2(α) log

eh(Y )

sin(α)

=
1

2
log
(

e2h(X) + e2h(Y )
)
.

Then we complete the proof of (4.4).

Remark. This conclusion can be generalized to multi-dimensional cases. Let X and Y be independent

p-dimensional random vectors such that h(X), h(Y ) and h(X + Y ) exists. Then

e
2
ph(X+Y ) ≥ e

2
ph(X) + e

2
ph(Y ).

4.6 Entropic Central Limit Theorem
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5 Rate Distortion Theory

A continuous source contains an infinite amount of information and cannot be represented exactly using a

finite number of bits. In lossy source coding, we seek instead a representation that is close to the source (with

respect to some fidelity criterion) and can be represented using a finite number of bits.

5.1 Quantization

Setting. Let X be a continuous random variable. For every value x ∈ X , we would like to find a represen-

tation x̂(x) where x̂ can take on only 2R different values for a given rate R (measured in bits).

Example: Quantizing a Gaussian variable with squared error distortion. Let X ∼ N (0, σ2) be a

Gaussian random variable. We wish to minimize the mean-squared error distortion E
[
(X − x̂(X))2

]
.

If we use R = 1 bit to represent X (i.e., we can chose only 2R = 2 different reconstruction symbols), then

we should use the bit to indicate whether X is positive or negative. To minimize the square error distortion,

the reconstruction symbols should be the conditional mean given the sign:

E[X|X > 0] =

∫ ∞
0

2x√
2πσ

e−
x2

2σ2 dx =

√
2σ2

π
.

Hence

x̂(x) =


√

2
πσ, x ≥ 0,

−
√

2
πσ, x < 0.

The average distortion is

E
[
(X − x̂(X))2

]
=

(
1− 2

π

)
σ2.

General quantization. A quantization scheme is characterized by a partition (Vi) of the metric space (X , d)

and the corresponding reconstruction points (x̂i) ⊂ X :

x̂(x) = x̂i, if x ∈ Vi.

The regions and reconstruction points should satisfy:

• Given a set of reconstruction points (xi), the regions should be chosen to minimize the distortion. This

occurs if the regions are the Voronoi cells:

Vi = {x ∈ X : d(x, xi) < d(x, xj), ∀j 6= i}

• Given a set of regions, the reconstruction points should be chosen to minimize the distortion. Under

squared error distortion, this is given by the conditional expectation:

x̂i = E [X|X ∈ Vi] .

Lloyd’s Algorithm is an iterative algorithm for constructing a quantization function. Starting with an initial

set of reconstruction points, the algorithm repeats the following two steps:

• Given reconstruction points (xi), find the optimal partition (Vi);

• Given a partition (Vi), find optimal set of reconstruction points (xi).

This algorithm will converge to a local optimum (but not necessarily the global optimum).

54



5.2 Lossy Source Coding

Vector quantization. Let X1:n be an length-n random vector with i.i.d. entries. For every realization

X1:n = x1:n, we would like to find a representation x̂n(x1:n) where x̂n can take on only 2nR different values

for a given rate R. One option is to use the rate R scalar quantization strategy we discussed in the previous

section. However, it turns out that quantizing jointly can be much better than quantizing separately.

Source

X1:n

Encoder

fn(X1:n)

Decoder

gn(W )

Estimate

X̂1:n

W ∈ {1, 2, · · · , 2nR}

• The source produces a sequence X1, X2, · · · of i.i.d. random variable with distribution p(x) supported

on a possibly infinite alphabet X .

• The encoder is a mapping fn : Xn → {1, 2, · · · , 2nR} that describes every source sequence by an index

w. The rate is given by

R =
1

n
log2 |W| .

• The decoder gn : {1, 2, · · · , 2nR} → X̂n maps each index w to an estimate x̂n ∈ X̂ , where X̂ is a finite

reconstruction alphabet.

Definition 5.1 (Rate measure). A per-letter distortion measure is a mapping X × X̂ → R+ from the set of

source alphabet-reconstruction pairs into the nonnegative real numbers. The distortion measure is bounded if

the maximum value of the distortion is finite:

sup
x∈∈X ,x̂∈X̂

d(x, x̂) <∞.

The distortion between two sequences x1:n and x̂1:n is given by the average per-letter distortion:

d(x1:n, x̂1:n) =
1

n

n∑
i=1

d(xi, x̂i).

Example 5.2. Here are two examples of distortion.

(i) (Hamming distortion). d(x, x̂) = 1{x 6=x̂}. This is often used for discrete alphabets.

(ii) (Square-error distortion). d(x, x̂) = |x − x̂|2. This is one of the most popular distortion measures used

for continuous alphabets.

Definition 5.3. A (2nR, n) rate distortion coding scheme consists of

• a source alphabet X and a reconstruction alphabet X̂ ,

• a encoder fn : Xn → {1, 2, · · · , 2nR} and a decoder gn : {1, 2, · · · , 2nR} → X̂n, and

• a distortion measure d : X × X̂ → R+.

The (expected) distortion associated with this coding scheme is defined as

D = E
[
d(X1:n, X̂1:n)

]
=

∑
x1:n∈Xn

p(x1:n) d(x1:n, gn(fn(x1:n)))

The collection of n-tuples gn(1), gn(2), · · · , gn(2nR), denoted by X̂1:n(1), X̂1:n(2), · · · , X̂n(2nR), constitutes the

codebook, and f−n (1), f−1
n (2), · · · , f−1

n (2nR) are the associated assignment regions.

Remark. X̂1:n is referred to as the vector quantization, reconstruction, or estimate of X1:n.
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Definition 5.4. We call (R,D) a rate-distortion pair.

(i) A rate-distortion pair (R,D) is said to be achievable if there exists a sequence of (2nR, n) rate distortion

coding schemes (fn, gn) with

lim sup
n→∞

E
[
d(X1:n, X̂1:n)

]
≤ D.

(ii) The rate distortion region for a source is the closure of the set of achievable rate distortion pairs (R,D).

(iii) The rate distortion function R(D) is the infimum of rates R such that (R,D) is in the rate distortion

region of the source for a given distortion D.

(iv) The distortion rate function D(R) is the infimum of all distortions D such that (R,D) is in the rate

distortion region of the source for a given rate R.

Remark. If the distortion rate is D = 0, the coding scheme is accurate. According to Shannon’s source

coding theorem, we require R = H(X). This is not feasible for continuous variable X.

5.3 Information Rate Distortion Function

Definition 5.5. Let X be a source from a distribution p(x) on X . The information rate distortion function

R(I)(D) for a source X with distortion measure d is defined as

R(I)(D) = inf
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) = inf
p(x̂|x):E[d(X,X̂)]≤D

I(p(x), p(x̂|x)).

Here the infimum is taken over all conditional distributions of X̂ given X such that the expected distortion

constraint E[d(X, X̂)] ≤ D is satisfied.

We first introduce an important property of rate distortion function R(D), then calculate the information

rate distortion function for some sources.

Theorem 5.6. The information rate distortion function R(I)(D) is a non-increasing convex function of D.

Proof. When the distortion D increases, the set of feasible conditional distributions p(x̂|x) is also increasing.

Since R(I)(D) is the infimum taken over this set, it is non-increasing.

To show the convexity of R(I), take D1, D2 > 0 and ε > 0. Let X̂1|X ∼ p1(x̂|x) and X̂2|X ∼ p2(x̂|x) be

the conditional distributions such that

I(X; X̂1) ≤ R(I)(D1) + ε, I(X; X̂2) ≤ R(I)(D2) + ε.

For any λ ∈ [0, 1], consider the distribution pλ(x̂|x) = λp1(x̂|x) + (1− λ)p2(x̂|x). The distortion associated to

the distribution pλ(x, x̂) = pλ(x̂|x)p(x), by linearity of expectation, satisfies

E
[
d(X, X̂)

]
≤ Dλ = λD1 + (1− λ)D2.

By convexity of mutual information,

I(p(x), pλ(x̂|x)) ≤ λI(p(x), p1(x̂|x)) + (1− λ)I(p(x), p2(x̂|x)) ≤ λR(I)(D1) + (1− λ)R(I)(D2) + ε.

Since R(I)(Dλ) is no greater than the last display, and ε > 0 is arbitrarily taken, we have

R(I)(Dλ) ≤ λR(I)(D1) + (1− λ)R(I)(D2)

Thus we complete the proof.
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Example 5.7 (Binary source with Hamming distortion). The information rate distortion function for an i.i.d.

X ∼ Bernoulli(p) source with Hamming distortion is given by

R(I)(D) =

H(p)−H(D), 0 ≤ D ≤ min{p, 1− p}
0, D > min{p, 1− p}.

Proof. Let X̂ = {0, 1}, and let p(x̂|x) be any distribution satisfying the expected distortion constraint, That

is, P(X̂ 6= X) ≤ D. Consider B = 1{X̂ 6=X} = X + X̂ mod 2. Then

I(X; X̂) = H(X)−H(X|X̂) = H(X)−H(B|X̂) ≥ H(X)−H(B).

When D ≤ 1/2, we have H(B) ≤ H(D), and I(X; X̂) ≥ H(p)−H(D); otherwise, we have D > min{p, 1− p},
and by definition I(X; X̂) ≥ 0. Hence

R(I)(D) ≥

H(p)−H(D), 0 ≤ D ≤ min{p, 1− p}
0, D > min{p, 1− p}.

It remains to show the opposite inequality. If p < 1
2 and D ≥ p, we let X̂ = 0 with probability 1. Then

P(X̂ 6= X) = p ≤ D, and I(X; X̂) = 0. A similar conclusion applies for p > 1
2 and D ≥ 1− p. Hence

R(I)(D) = 0, D > min{p, 1− p}.

Now we show the case 0 ≤ D < min{p, 1− p}. Without loss of generality assume 0 ≤ D < p ≤ 1
2 . We consider

the joint distribution

P(X = 0, X̂ = 0) =
(1−D)(1− p−D)

1− 2D
, P(X = 0, X̂ = 1) =

D(p−D)

1− 2D
,

P(X = 1, X̂ = 0) =
D(1− p−D)

1− 2D
, P(X = 1, X̂ = 1) =

(1−D)(p−D)

1− 2D
.

This distribution satisfies the expected distortion constraint P(X̂ 6= X) = D, and

R(I)(D) ≤ I(X; X̂) = H(X)−H(X|X̂) = H(p)−H(D).

Thus we complete the proof.

Example 5.8 (Gaussian source with square-error distortion). The information rate distortion function for an

i.i.d. X ∼ N (0, σ2) source with square-error distortion is given by

R(I)(D) =


1

2
log

σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2.

Proof. Let (X, X̂) be distributed such that X ∼ N (0, σ2) and E
[
(X − X̂)2

]
≤ D. Then

I(X; X̂) = h(X)− h(X|X̂) = log(2πeσ2)− h(X − X̂|X̂) ≥ log(2πeσ2)− h(X − X̂).

By Theorem 4.6,

h(X − X̂) ≤ log
(

2πeE
[
(X − X̂)2

])
≤ log(2πeD).
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Hence

R(I)(D) ≥ inf
p(x̂|x):E[(X−X̂)2]≤D

I(X; X̂) ≥ max

{
log

σ2

D
, 0

}
.

Now we prove the other side. If D ≥ σ2, we can simply set X̂ = 0, which satisfies the expected distortion

constraint E[(X − X̂)2] ≤ D. If D < σ2, we choose distribution given by the Gaussian kernel

X = X̂ + Z, X̂ ∼ N (0, σ2 −D) and Z ∼ N (0, D).

which also satisfies the expected distortion constraint E[(X − X̂)2] = D Then

R(I)(D) ≥ I(X; X̂) = h(X)− h(X|X̂) = log
σ2

D
.

Thus we complete the proof.

5.4 Rate Distortion Theorem

The main theorem of rate distortion theory can now be stated as follows:

Theorem 5.9. The rate distortion function for an i.i.d. source X ∼ p and a bounded distortion measure

d : X × X̂ → R+ is equal to the associated information rate distortion function, i.e.

R(D) = R(I)(D).

This theorem includes two parts:

• (Achievability). If R > R(I)(D), the rate-distortion pair (R,D) is achievable.

• (Converse). If the rate-distortion pair (R,D) is achievable, then R ≥ R(I)(D).

Proof of Theorem 5.9 (Converse). For any sequence of (2nR, n) coding schemes such that

lim
n→∞

E[d(X1:n; X̂1:n)] ≤ D,

we want to show that R ≥ R(I)(D). We take ε > 0, then there exists N such that E[d(X1:n; X̂1:n)] ≤ D + ε

for all n ≥ N . Since there are 2nR values in the range of fn,

nR ≥ H(fn(X1:n)) = H(fn(X1:n))−H(fn(X1:n)|X1:n) = I(X1:n; f(X1:n)) (5.1)

By data processing inequality,

I(X1:n; f(X1:n)) ≥ I(X1:n; X̂1:n) = H(X1:n)−H(X1:n|X̂1:n)

=

n∑
i=1

H(Xi)−H(X1:n|X̂1:n) (By independence of X1:n)

=

n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|Xi−1, · · · , X1, X̂1:n) (By the chain rule)

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i) (Conditioning does not increase entropy)

=

n∑
i=1

I(Xi; X̂i). (5.2)
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By definition of the information distortion function R(I)(D),

I(Xi; X̂i) ≥ R(I)
(
E
[
d(Xi; X̂i)

])
.

By convexity of R(I)(D) and Jensen’s inequality, we get

n∑
i=1

I(Xi; X̂i) ≥
n∑
i=1

R(I)
(
E
[
d(Xi; X̂i)

])
≥ nR(I)

(
1

n

n∑
i=1

E
[
d(Xi; X̂i)

])
= nR(I)

(
E
[
d(X1:n; X̂1:n)

])
.

(5.3)

Combining (5.1), (5.2) and (5.3), we obtain

R ≥ R(I)
(
E
[
d(X1:n; X̂1:n)

])
≥ R(I)(D + ε).

This inequality holds for all ε > 0. Since the function R(I)(D) is convex, it is continuous, and

R ≥ lim
ε↓0

R(I)(D + ε) = R(I)(D).

Thus we complete the proof.

Definition 5.10 (Distortion ε-typical set).

Proof of Theorem 5.9 (Achievability).
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6 f-Divergences

6.1 Definition and Properties

Definition 6.1 (f -divergence). Let P and Q be two probability measures on a measurable space (X ,F ). For

any convex function f : [0,∞)→ (−∞,∞] such that (i) f(1) = 0, (ii) f is strictly convex at 1,1 and (iii) f is

finite except possibly at 0, the f -divergence of Q with respect to P is defined as follows:

(i) If Q� P ,

Df (Q‖P ) :=

∫
f

(
dQ

dP

)
dP,

where the notation dQ
dP stands for the Radon-Nikodym derivative of Q with respect to P .

(ii) More generally, let µ be any dominating measure of P and Q, i.e. P � µ and Q� µ. Assume dP = p dµ

and dQ = q dµ. Then

Df (Q‖P ) :=

∫
{p>0}

f

(
q

p

)
p dµ+ f ′(∞)Q{p = 0}, (6.1)

where f ′(∞) = limx→0+ xf( 1
x ).

Remark. In fact, the definition (6.1) comes from the following division:

Df (Q‖P ) =

∫
{p>0}

f

(
q

p

)
dP +

∫
{p=0}

p

q
f

(
q

p

)
dQ =

∫
{p>0}

f

(
q

p

)
p dµ+ lim

x→0+
xf

(
1

x

)
Q{p = 0}.

In practice, we often use the following two forms of f -divergence:

• When X is discrete, P and Q are probability mass functions:

Df (Q‖P ) =
∑
x∈X

f

(
Q(x)

P (x)

)
P (x) = EP

[
f

(
Q

P

)]
.

• When P and Q are characterized by density functions p and q (i.e. their Radon-Nikodym derivatives

with respect to the Lebesgue measure), respectively, then

Df (q‖p) =

∫
f

(
q(x)

p(x)

)
p(x) dx = EX∼p

[
f

(
p(X)

q(X)

)]
.

We use the convention that

• f(0) = f(0+),

• 0f
(

0
0

)
= 0, and

• 0f
(
a
0

)
= limx→0+ xf

(
a
x

)
= af ′(∞).

Furthermore, by definition, if P ⊥ Q,

Df (Q‖P ) = f(0) + f ′(∞) = lim
x→0+

[
(1− x)f

(
x

1− x

)
+ xf

(
1

x

)]
> lim
x→0+

f (x+ 1) = f(1) = 0.

An f -divergence provide an evaluation of the difference between two probability distributions.

1By strict convexity at 1, we mean that for all x, y ∈ (0,∞) and 0 < λ < 1 such that λx+ (1− λ)y = 1, we have

λf(x) + (1− λ)f(y) > f(1).

For a random variable X with E[X] = 1, the Jensen’s inequality E[f(X)] ≥ f(E[X]) is strict if X is not a constant.
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Proposition 6.2 (Positive-definiteness of f -divergence). Let Df be an f -divergence. Then

Df (Q‖P ) ≥ 0,

and the equality holds if and only if P = Q.

Proof. From Jensen’s inequality, the convexity of f implies:

Df (Q‖P ) = EP
[
f

(
Q

P

)]
≥ f

(
EP
[
Q

P

])
= f(1) = 0.

By the strict convexity of f at 1, the equality holds if and only if P = Q.

Definition 6.3 (Examples of f -divergence). The following are some commonly used f -divergences:

(i) Total variation distance. f(x) = 1
2 |x− 1| :

dTV(P,Q) =
1

2
EP
[∣∣∣∣QP − 1

∣∣∣∣] =
1

2

∫
|dQ− dP |.

Clearly, we have dTV(P,Q) = dTV(Q,P ). Furthermore, the triangle inequality follows from definition:

dTV(P,Q) ≤ dTV(P,R) + dTV(R,Q).

Therefore, the total variation distance is a metric on the space of all probability measures on (X ,Σ).

(ii) Kullback-Leibler divergence. f(x) = x log x :

D(Q‖P ) = EP
[
Q

P
log

(
Q

P

)]
= EQ

[
log

(
Q

P

)]
.

(iii) Pearson χ2-divergence. f(x) = x2 − 1 :

χ2(Q‖P ) =

∫
Q2

P
− 1 =

∫
(P −Q)2

P
.

(iv) Squared Hellinger distance. f(x) = 1
2 (1−

√
x)2 :

H2(P,Q) =
1

2
EP

[(
1−

√
Q

P

)2
]

=
1

2

∫ (√
P −

√
Q
)2

.

Clearly, we have H2(P,Q) = H2(Q,P ). We further define the Hellinger distance H(P,Q) =
√
H2(P,Q).

Then the triangle inequality H(P,Q) ≤ H(P,R)+H(R,Q) follows from the case for L2-norm. Therefore,

the Hellinger distance H(·, ·) is a metric on the space of all probability measures on (X ,Σ).

(v) Jensen-Shannon divergence. f(x) = x
2 log x− 1+x

2 log
(

1+x
2

)
:

DJS(P,Q) =
1

2
D(P‖M) +

1

2
D(Q‖M),

where M = 1
2P + 1

2Q. This is also known as the symmetrized Kullback-Leibler divergence.

(vi) Le Cam distance. f(x) = (1−x)2

2(1+x) :

Le(P,Q) =
1

2

∫
(P −Q)2

P +Q
.

Now we discuss more properties of f -divergences.
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Proposition 6.4 (Properties of f -divergences). Let Df be an f -divergence.

(i) (Monotonicity). Let PX,Y and QX,Y be two joint distributions of random variables X and Y . Then

max {Df (QX‖PX), Df (QY ‖PY )} ≤ Df (QXY ‖PXY ).

(ii) (Data processing inequality). Fix the conditional distribution PY |X of Y given X. Let PX,Y = PXPY |X
and QX,Y = QXPY |X . Then

Df (QY ‖PY ) ≤ Df (QX‖PX).

(iii) (Joint convexity). The mapping (Q,P ) 7→ Df (Q‖P ) is jointly convex. That is, for any distributions

P1, P2, Q1, Q2 and any 0 ≤ λ ≤ 1,

Df (λQ1 + (1− λ)Q2‖λP1 + (1− λ)P2) ≤ λDf (Q1‖P1) + (1− λ)Df (Q2‖P2).

(iv) (Conditional increment). Given two conditional distributions PY |X and QY |X and a marginal distribution

PX , define the conditional f -divergence:

Df (QY |X‖PY |X |PX) :=

∫
X
Df (QY |X=x‖PY |X=x) dP (x) = EX∼PX

[
Df (QY |X‖PY |X)

]
.

Let PX,Y = PXPY |X and QX,Y = PXQY |X . Then

Df (QY ‖PY ) ≤ Df (QY |X‖PY |X |PX).

Proof. (i) Using Jensen’s inequality:

Df (QX,Y ‖PX,Y ) = EPX,Y
[
f

(
QX,Y
PX,Y

)]
= EPX

[
EPY |X

[
f

(
QX,Y
PX,Y

)]]
≥ EPX

[
f

(
EPY |X

[
QX
PX

QY |X

PY |X

])]
= EPX

[
f

(
QX
PX

EPY |X

[
QY |X

PY |X

])]
= EPX

[
f

(
QX
PX

)]
= Df (QX‖PX).

Switching X and Y yields Df (QX,Y ‖PX,Y ) ≥ Df (QY ‖PY ).

(ii) Following that (i), it suffices to show Df (QX‖PX) = Df (QX,Y ‖PX,Y ). This is true since the conditional

distribution PY |X is fixed:

Df (QX,Y ‖PX,Y ) = EPX,Y
[
f

(
QX,Y
PX,Y

)]
= EPX,Y

[
f

(
QX
PX

)]
= EPX

[
f

(
QX
PX

)]
= Df (QX‖PX).

(iii) Fix λ ∈ [0, 1], and let B ∼ Bernoulli(λ). We set PX|B=1 = P1, PX|B=0 = P2, and QX|B1
= Q1 and

QX|B=0 = Q2. Since the distribution PX of X is fixed,

QX,B
PX,B

=
QB
PB

QX|B

PX|B
=
QX|B

PX|B
.
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Then

Df (QX,B‖PX,B) = EPB
[
EPX|B

[
f

(
QX|B

PX|B

)]]
= λDf (Q1‖P1) + (1− λ)Df (Q2‖P2).

On the other hand, the monotonicity implies

Df (QX,B‖PX,B) ≥ Df (QX‖PX) = Df (λQ1 + (1− λ)Q2‖λP1 + (1− λ)P2) .

Combining the last two displays gives the wanted result.

(iv) By calculus, the marginal distributions of Y are given by

QY =

∫
X
QY |X=x dPX(x) = EX∼PX [QY |X ], PY =

∫
X
PY |X=x dPX(x) = EX∼PX [PY |X ].

Then by joint convexity of Df (·‖·) and Jensen’s inequality,

Df (QY |X‖PY |X |PX) = EX∼PX
[
Df (QY |X‖PY |X)

]
≥ Df

(
EX∼PX [QY |X ] ‖EX∼PX [PY |X ]

)
= Df (QY ‖PY ).

Thus we complete the proof.

The data processing inequality for f -divergence has many applications. Here are some basic examples.

Proposition 6.5. Let P and Q be two probability measures on (X ,F ), and let A ∈ F .

(i) |P (A)−Q(A)| ≤ dTV(P,Q). (ii) |
√
P (A)−

√
Q(A)| ≤

√
2H(P,Q).

(iii) |P (A)−Q(A)|2 ≤ χ2(Q‖P )P (A)(1− P (A)).

(iv) Q(A) log 1
P (A) ≤ D(Q‖P ) + log 2.

Proof. We fix X ∼ PX = P or X ∼ QX = Q, and define Y = 1{X∈A}. Then PY = Bernoulli(P (A)), and

QY = Bernoulli(Q(A)). Use the data processing inequality:

Df (QY ‖PY ) ≤ Df (QX‖PX) = Df (Q‖P ).

(i) Since dTV(PY , QY ) = 1
2 |Q(A)− P (A)|+ 1

2 |1−Q(A)− (1− P (A))| = |Q(A)− P (A)|, we have

|P (A)−Q(A)| ≤ dTV(P,Q).

(ii) By definition,

H2(PY , QY ) =
1

2

(√
P (A)−

√
Q(A)

)2

+
1

2

(√
1− P (A)−

√
1−Q(A)

)2

.

Hence

1

2

(√
P (A)−

√
Q(A)

)2

≤ H2(PY , QY ) ≤ H2(P,Q).

(iii) By definition,

χ2(QY ‖PY ) =
|Q(A)− P (A)|2

P (A)
+
|1−Q(A)− (1− P (A))|2

1− P (A)
=
|Q(A)− P (A)|2

P (A)(1− P (A))

Hence

|Q(A)− P (A)| ≤ χ2(Q‖P )P (A)(1− P (A)).
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(iv) By definition,

D(QY ‖PY ) = Q(A) log
Q(A)

P (A)
+ (1−Q(A)) log

1−Q(A)

1− P (A)

≥ Q(A) log
1

P (A)
+ (1−Q(A)) log

1

1− P (A)
− log 2.

Hence

Q(A) log
1

P (A)
≤ D(Q‖P ) + log 2.

Thus we conclude the proof.

In fact, the first inequality in the above proposition can become equality.

Proposition 6.6. Let P and Q be two probability measures on (X ,F ). Then

dTV(P,Q) = sup
A∈F

P (A)−Q(A).

Proof. We consider the signed measure µ = P −Q. By Hahn decomposition theorem, there exists a partition

X = P ∩N such that

(i) P,N ∈ F and P ∩N = ∅,
(ii) P (A ∩ P)−Q(A ∩ P) ≥ 0 for all A ∈ F , and

(iii) P (A ∩ P)−Q(A ∩ P) ≤ 0 for all A ∈ F .

We take A = P. Then

dTV(P,Q) =
1

2

∫
P

[dP − dQ] +
1

2

∫
N

[dQ− dP ]

=

∫
P

[dP − dQ] = P (A)−Q(A).

The conclusion then follows from Proposition 6.5(i).

6.2 Variational Representation

Definition 6.7 (Fenchel conjugate). Let (X , 〈·, ·〉) be a real Hilbert space, and let f : X → (−∞,+∞] be a

proper function, that is, dom(f) := {x ∈ X : f(x) ∈ R} 6= ∅. The Fenchel conjugate of f is defined as

f∗(t) = sup
x∈X
{〈x, t〉 − f(x)}, t ∈ X . (6.2)

Remark. It can be seen that f∗ is the pointwise supremum of a collection of affine functions, hence f∗ is

convex, regardless of f is convex or not. Moreover, it can be shown that the duality (f∗)∗ = f holds if f is

convex and lower semicontinuous. Below is an immediate consequence of this definition.

Proposition 6.8 (Fenchel-Young inequality). For all x, t ∈ X ,

f(x) + f∗(t) ≥ 〈x, t〉.

Remark. Recall that in Definition 6.1, f is defined on [0,+∞). We complete f by redefining f(x) =∞ for

x < 0, which preserves the convexity of f . Moreover, the Fenchel conjugate of f : R → (−∞,+∞] is well

defined: f∗(t) = supx∈R{tx− f(x)}, t ∈ R. The f -divergence admits the following variational representation.
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Lemma 6.9 (Variational representation of f -divergence). Denote M by the class of measurable functions on

(X ,Σ). Then the f -divergence can be represented as

Df (Q‖P ) = sup
g∈M

{∫
g dQ−

∫
(f∗ ◦ g) dP

}
= sup
g∈M

{
EQ[g(X)]− EP [f∗(g(X))]

}
. (6.3)

Where f∗ is the Fenchel conjugate of f . If f is differentiable, the supremum is reached at g = f ′(dQdP ).

Proof. We fix the measurable function g ∈M. By Fenchel’s duality, we have

g(x)
Q(x)

P (x)
− f

(
Q(x)

P (x)

)
≤ f∗(g(x)).

Take integration with respect to P on both sides of the equation above, we have∫
g(x) dQ(x)−Df (Q‖P ) ≤

∫
f∗(g(x)) dP (x).

Since g is arbitrarily chosen, we immediately conclude the equality (6.3). The supremum can be found when

the derivative of (6.2) vanishes.

Proposition 6.10. We provide the variational form of f -divergences in Definition 6.3.

• Total variation distance. f∗(t) =

t, |t| ≤ 1/2

∞, |t| > 1/2
:

dTV(P,Q) =
1

2
sup
‖g‖∞≤1

(∫
g dP −

∫
g dQ

)

• Kullback-Leibler divergence. f∗(t) = et−1 :

D(Q‖P ) = sup
g∈M

{∫
g(x) dQ(x)−

∫
eg(x)−1 dP (x)

}
.

• Squared Hellinger distance. f∗(t) =

 t
1−2t , t < 1/2

∞, t ≥ 1/2
:

H2(P,Q) = inf
g< 1

2

{∫
g dQ−

∫
g

1− 2g
dP

}
= inf
h<1

1

2

(∫
h dQ−

∫
h

1− h
dP

)
.

• Jensen-Shannon divergence. f∗(t) =

− 1
2 log(2− e2t), t < 1

2 log 2

∞, t ≥ 1
2 log 2.

:

DJS(P,Q) = sup
g≤ 1

2 log 2

{∫
g dQ+

1

2

∫
log(2− e2g) dP

}
=

1

2
sup
‖h‖∞<1

{∫
log(1 + h) dQ+

∫
log(1− h) dP

}
. (h = e2g − 1)

• Pearson χ2-divergence. f∗(t) = 1
4 t

2 + 1:

χ2(Q‖P ) = sup
g∈M

{∫
g dQ− 1

4

∫
g2 dP − 1

}
. (6.4)
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Let g = a+ bh, and solve (6.4) with respect to a, b, we obtain a more symmetric version which is directly

related to the bias-variance tradeoff:

χ2(Q‖P ) = sup
h∈M

sup
a,b∈R

{
a− a2

4
+ b

∫
h dQ− ab

2

∫
h dP − b2

4

∫
h2 dP − 1

}

= sup
h∈M

sup
a∈R

{(
a
∫
h dP − 2

∫
h dQ

)2
4
∫
h2 dP

−
(

1− a

2

)2
} (

take b =
a
∫
h dP − 2

∫
h dQ∫

h2 dP

)

= sup
h:X→R

(∫
h dQ−

∫
h dP

)2∫
h2 dP −

(∫
h dP

)2 . (
take a =

2
∫
h2 dP − 2

∫
h dP

∫
h dQ∫

h2 dP − (
∫
h dP )2

)

We can write this equality to the expectation form:

χ2(Q‖P ) = sup
h:X→R

(EQ[h(X)]− EP [h(X)])
2

VarP (h(X))
(6.5)

This bound extremely useful later.

Theorem 6.11 (Donsker-Varadhan).

6.3 Inequality between f-Divergences and Joint Range

Theorem 6.12. For two probability measures P and Q on a measurable space (X ,F ),

D(Q‖P ) ≤ log
(
1 + χ2(Q‖P )

)
. (6.6)

Proof. By Jensen’s inequality,

log
(
1 + χ2(Q‖P )

)
= log

(∫
Q2

P

)
≥
∫
Q log

Q

P
= D(Q‖P ).

Thus we complete the proof.

Theorem 6.13 (Pinsker’s inequality). For two probability measures P and Q on a measurable space (X ,F ),

dTV(P,Q) ≤
√

1

2
D(Q‖P ).

Proof. We first consider the case P = Bernoulli(p) and Q = Bernoulli(q) with p ≤ q. Then

D(Q‖P ) = q log
q

p
+ (1− q) log

1− q
1− p

= q

∫ q

p

dt

t
− (1− q)

∫ q

p

dt

1− t

=

∫ q

p

q − t
t(1− t)

dt ≥ 4

∫ q

p

(q − t) dt = 2(q − p)2.

Since dTV(P,Q) = q−p, the inequality follows. For the general case, we take A ∈ F . Let PA = Bernoulli(P (A))

be the distribution of the variable 1{X∈A} under X ∼ P , and we define QA = Bernoulli(Q(A)) similarly. Using

the conclusion above and the data processing inequality,

|P (A)−Q(A)| = dTV(PA, QA) ≤
√

1

2
D(QA‖PA) ≤

√
1

2
D(Q‖P ).
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Taking the supremum dTV(P,Q) = supA∈F |P (A)−Q(A)|, we have the desired result.

A refinement of Pinsker’s inequality is presented below.

Theorem 6.14 (Bretagnolle-Huber). For two probability measures P and Q on a measurable space (X ,F ),

dTV(P,Q) ≤
√

1− e−D(Q‖P ) ≤ 1− 1

2
e−D(Q‖P ).

Proof. Similar to the proof of Pinsker’s inequality, it suffices to show the Bernoulli case. Let P = Bernoulli(p)

and Q = Bernoulli(q) with p ≤ q. Then

D(Q‖P ) = q log
q

p
+ (1− q) log

1− q
1− p

= −2q log
√
pq − 2(1− q) log

1− p
1− q

≥ −2 log
(√

pq +
√

(1− p)(1− q)
)
.

Hence

e−D(Q‖P ) ≤
(√

pq +
√

(1− p)(1− q)
)2

≤
(√

pq +
√

(1− p)(1− q)
)2

+
(√

p(1− p)−
√

(1− q)q
)2

= 1− (q − p)2 = 1− dTV(P,Q)2.

The desired bound then follows.

The downside of ad hoc approaches is that it is hard to tell whether those inequalities can be improved or

not. However, the key step when we proved the Pinksers inequality, reduction to the case for Bernoulli random

variables, is inspiring: is it possible to reduce inequalities between any two f -divergences to the binary case?

The joint range of f -divergences provides a systematic approach to find inequalities between f -divergences.

Definition 6.15 (Joint range). Consider two f -divergences Df and Dg. The joint range between Df and Dg

is a subset of R2
+ defined by

R = {(Df (Q‖P ), Dg(Q‖P )) : P and Q are probability measures on some measure space} ,

Rk = {(Df (Q‖P ), Dg(Q‖P )) : P and Q are probability measures on {1, 2, · · · , k}} , k = 2, 3, · · · .

If we know the region R, we can find a tight inequality between Df and Dg:

Dg(Q‖P ) ≥ F (Df (Q‖P )),

where F is the lower boundary of R:

F (t) := inf {x ≥ 0 : (t, x) ∈ R} = inf
(P,Q):Df (P‖Q)=t

Dg(P‖Q), t ≥ 0.

The region R seems difficult to characterize since we need to consider probability measures P and Q over

all measurable spaces. On the other hand, the region Rk for small k is easy to obtain. The main theorem we

will prove is the following, which provides a simple characterization of R.

Theorem 6.16 (Harremoës-Vajda). Given two f -divergences Df and Dg, their joint range satisfies

R = Conv(R2).
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The proof of this theorem requires some technical lemmata.

Lemma 6.17. Given two f -divergences Df and Dg, their joint range is

R =

{(
E[f(X)] + f ′(∞)(1− E[X])

E[g(X)] + g′(∞)(1− E[X])

)
: X is a random variable with X ≥ 0 and E[X] ≤ 1

}
. (6.7)

Furthermore, for any integer k greater than 1,

Rk =

{(
E[f(X)] + f ′(∞)(1− E[X])

E[g(X)] + g′(∞)(1− E[X])

)
:
X takes at most k − 1 values, X ≥ 0 and E[X] ≤ 1

or X takes at most k values, X ≥ 0 and E[X] = 1

}
. (6.8)

Proof. Given any pair of distributions (P,Q) that produces a point of R, let p, q denote the densities of P,Q

under some dominating measure µ, respectively. Take

X = 1{p>0}
q

p
, µX = P. (6.9)

Then X ≥ 0 and E[X] = Q({p > 0}) ≤ 1. Moreover,

Df (Q‖P ) =

∫
{p>0}

f

(
q

p

)
p dµ+ f ′(∞)Q({p = 0}) = E[f(X)] + f ′(∞)(1− E[X]),

Dg(Q‖P ) =

∫
{p>0}

g

(
q

p

)
p dµ+ g′(∞)Q({p = 0}) = E[g(X)] + g′(∞)(1− E[X]).

On the other hand, for any random variable X with X ≥ 0 and E[X] ≤ 1 with X ∼ µ, let

dP = dµ, dQ = X dµ+ (1− E[X])δ−∞, (6.10)

where −∞ is an arbitrary symbol outside the support of X. Then

Df (Q‖P ) = E[f(X)] + f ′(∞)(1− E[X]), Dg(Q‖P ) = E[g(X)] + g′(∞)(1− E[X]).

Now we consider Rk. Consider any two probability measures P and Q on {1, 2, · · · , k}. If P � Q, the

likelihood ratio X defined in (6.9) takes at most k values and E[X] = 1; otherwise, X takes at most k − 1

values and E[X] ≤ 1. On the other hand, for any variable X taking at most k values with E[X] ≥ 0 and

E[X] = 1, the construction of P and Q in (6.10) are on the same support of size k; for any variable X taking

at most k − 1 values with E[X] ≥ 0 and E[X] ≤ 1, the support of Q increases at most by 1.

Theorem 6.18 (Carathéodory). Let S be a nonempty subset of Rn. For each x ∈ Conv(S), there exist n+ 1

points x1, x2, · · · , xn+1 ∈ S such that x ∈ Conv{x1, x2, · · · , xn+1}.

Proof. We first prove that each point x ∈ Cone(S) can be represented as a positive combination of linearly

independent vectors from S, where Cone(S) is the minimum convex cone containing S, i.e.

Cone(S) =

{
N∑
i=1

αixi : N ∈ N, x1, · · · , xN ∈ S, α1, · · · , αN ≥ 0

}
.

Take x ∈ Cone(S) with x 6= 0. Let m be the minimum integer such that there exist x1, · · · , xm ∈ S and

α1, · · · , αm > 0 satisfying x =
∑m
i=1 αixi. If the vectors x1, · · · , xm are not linearly independent, there exist

λ1, · · · , λm ∈ R with at least one λi > 0 such that
∑n
i=1 λixi = 0. Consider the greatest γ∗ ∈ R such that
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αi − γλi ≥ 0 for all i = 1, · · · ,m. Then

x =

m∑
i=1

(αi − γ∗λi)xi,

which is a positive combination of at most m− 1 vectors in S, contradicting the minimality of m!

Now we consider the set U = {(x, 1) : x ∈ S}. If x ∈ Conv(S), the extended vector (x, 1) ∈ Cone(U).

By our conclusion above, one can find linearly independent vectors (x1, 1), · · · , (xm, 1) ∈ U ⊂ Rn+1, with

m ≤ n+ 1, and corresponding weights α1, · · · , αm > 0 such that

(x, 1) =

m∑
i=1

αi(xi, 1).

The last coordinate implies that
∑n
i=1 αi = 1. Therefore, any x ∈ Conv(S) is the convex combination of no

more than n+ 1 points of S, which finishes the proof.

Lemma 6.19. Given two f -divergences Df and Dg, their joint range satisfies

R = R5.

Proof. It suffices to show that R ⊂ R5. We define the set S = {(x, f(x), g(x)) : x ≥ 0} ⊂ R3. For any pair

of distributions (P,Q) that produces a point of R, consider the likelihood ratio X defined in (6.9). Then

(E[X],E[f(X)],E[g(X)]) ∈ Conv(S). By Carathéodory theorem, there exist points x1, x2, x3, x4 ≥ 0 and the

corresponding weights α1, α2, α3, α4 ≥ 0 with α1 + α2 + α3 + α4 = 1 such that

4∑
i=1

αi(xi, f(xi), g(xi)) = (E[X],E[f(X)],E[g(X)])

Consider the random variable Y supported on {x1, x2, x3, x4} and taking value xi with probability αi. Then

(E[X],E[f(X)],E[g(X)]) = (E[Y ],E[f(Y )],E[g(Y )]).

Since Y takes at most 4 values, Y ≥ 0 and E[Y ] = E[X] ≤ 1, by Lemma 6.17,(
Df (Q‖P )

Dg(Q‖P )

)
=

(
E[f(X)] + f ′(∞)(1− E[X])

E[g(X)] + g′(∞)(1− E[X])

)
=

(
E[f(Y )] + f ′(∞)(1− E[Y ])

E[g(Y )] + g′(∞)(1− E[Y ])

)
∈ R5.

Thus we conclude that R ⊂ R5.

Lemma 6.20. Given two f -divergences Df and Dg, their joint range R is a convex set in R2.

Proof. Given any two pairs of distributions (P0, Q0) and (P1, Q1) on some measurable space (X ,F ) and given

any 0 ≤ λ ≤ 1, we construct a random variable Z = (X,B) such that B ∼ Bernoulli(λ), PX|B ∼ Pi and

QX|B=i = Qi, where i = 0, 1. Then we can verify that

Df (QX,B‖PX,B) = (1− λ)Df (Q0‖P0) + λDf (Q1‖P1).

The same conclusion holds for Dg. Hence R is convex.

Remark. If we further assume that X = {1, 2, · · · , k} in our proof, where k = 2, 3, · · · , it turns out that

Conv(Rk) ⊂ R2k.
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Lemma 6.21. Given two f -divergences Df and Dg, their joint range satisfies

Rk+1 ⊂ Conv(R2 ∪Rk), k = 2, 3, · · · . (6.11)

Proof. Given any pair of distributions (P,Q) on {1, 2, · · · , k + 1} that produces a point of Rk+1, we take the

likelihood ratio X as in (6.9) that takes at most k + 1 values.

• If E[X] = Q({p > 0}) < 1, and P is supported on at most k values. Denote by x the smallest possible

value of X and then x < 1. Assume µX(x) = λ, then

µX = λδx + (1− λ)µ′,

where µ′ is supported on at most k − 1 values of X other than x. Let µ2 = δx. To prove (6.11), we aim

to find a probability measure µ1 and 0 ≤ α ≤ 1 such that

µX = αµ1 + (1− α)µ2,

where Y ∼ µ1 takes at most k− 1 values and E[Y ] ≤ 1, or Y ∼ µ1 takes at most k values and E[Y ] = 1.

– If Eµ′ [X] ≤ 1, we let µ1 = µ′ and α = 1− λ;

– If Eµ′ [X] > 1, we consider µ1 = βδx + (1− β)µ′, where we take β =
Eµ′ [X]−1

Eµ′ [X]−x so that E[Y ] = 1. In

this setting, we let α = E[X]−x
1−x .

• If E[X] = Q({p > 0}) = 1, we have Q � P . Denote the smallest value of X by x and the largest value

by y, respectively, and then x ≤ 1, y ≥ 1. Assume µX(x) = r and µX(y) = s. Then

µX = rδx + sδy + (1− r − s)µ′,

where µ′ is supported on at most k − 1 values of X other than x and y.

Let µ2 = y−1
y−xδx + 1−x

y−xδy, so Z ∼ µ2 takes at most 2 values and E[Z] = 1. To prove (6.11), we aim to

find a probability measure µ1 and 0 ≤ α ≤ 1 such that

µX = αµ1 + (1− α)µ2,

where Y ∼ µ1 takes at most k− 1 values and E[Y ] ≤ 1, or Y ∼ µ1 takes at most k values and E[Y ] = 1.

– If Eµ′ [X] ≤ 1, we consider µ1 = βδy + (1− β)µ′, where we take β =
1−Eµ′ [X]

y−Eµ′ [X] so that E[Y ] = 1. In

this setting, we let α = 1− r(y−x)
y−1 ;

– If Eµ′ [X] > 1, we consider µ1 = βδx + (1− β)µ′, where we take β =
Eµ′ [X]−1

Eµ′ [X]−x so that E[Y ] = 1. In

this setting, we let α = 1− s(y−x)
1−x .

Let Y ∼ µ1 and Z ∼ µ2. Applying the construction in (6.10) with µ1 and µ2, we obtain two pairs of measures

(P1, Q1) supported on k values and (P2, Q2) supported on two values, respectively. Then(
Df (Q‖P )

Dg(Q‖P )

)
=

(
E[f(X)] + f ′(∞)(1− E[X])

E[g(X)] + g′(∞)(1− E[X])

)

= α

(
E[f(Y )] + f ′(∞)(1− E[Y ])

E[g(Y )] + g′(∞)(1− E[Y ])

)
+ (1− α)

(
E[f(Z)] + f ′(∞)(1− E[Z])

E[g(Z)] + g′(∞)(1− E[Z])

)

= α

(
Df (Q1‖P1)

Dg(Q1‖P1)

)
+ (1− α)

(
Df (Q2‖P2)

Dg(Q2‖P2)

)
∈ Conv(R2 ∪Rk)

Therefore, Rk+1 ⊂ Conv(R2 ∪Rk).
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Now we are prepared to prove the main result.

Proof of Theorem 6.16. According to Lemma 6.21, we have R3 ⊂ Conv(R2). By induction, we conclude that

Rk ⊂ Conv(R2 ∪Rk−1) = Conv(R2), k = 4, 5, · · · .

Particularly, we have R5 ⊂ Conv(R2). On the other hand, by Lemma 6.20 and the definition of Rk, we have

Conv(R2) ⊂ R4 ⊂ R5 ⊂ · · · .

Finally, using Lemma 6.19, we obtain R = R5 = Conv(R2).

Remark. To summarize, we have shown that

R2 ⊂ R3 ⊂ R4 = R5 = · · · = R = Conv(R2).

Every point the joint range R2 can be parameterized as P = Bernoulli(p) and Q = Bernoulli(q), where

p, q ∈ [0, 1]. Note that Df (P‖Q) = Df (P‖Q), where P = Bernoulli(1 − p) and Q = Bernoulli(1 − q).

Therefore, to determine the region R2, it suffices to consider the image of the triangle

S = {(p, q) : 0 ≤ p ≤ q ≤ 1}

under the transformation (p, q) 7→ (Df , Dg). Then, to determine the joint range R, we simply take the convex

hull of the image of the triangle S.

Theorem 6.22 (Sandwich bound). Let P and Q be two probability measure on some measurable space. Then

H2(P,Q) ≤ dTV(P,Q) ≤ H(P,Q)
√

2−H2(P,Q),

Proof. We consider the distributions P = Bernoulli(p) and Q = Bernoulli(q), where 0 ≤ p, q ≤ 1. Clearly,

dTV(P,Q) = |q − p|, H2(P,Q) = 1−√pq −
√

(1− p)(1− q).

The joint range of dTV and H2 is

R2 =

{(
|q − p|

1−√pq −
√

(1− p)(1− q)

)
: 0 ≤ p, q ≤ 1

}

Since both dTV and H2 are symmetric, it suffices to consider the case p ≤ q. We fix t = dTV(P,Q) ≥ 0.

Consider the function

ϕ(p) = H2(P,Q) = 1−
√
p(p+ t)−

√
(1− p)(1− p− t), 0 ≤ p ≤ 1− t.

This function attains minimum at p = 1−t
2 and maximum at both p = 0 and p = 1− t. Hence

1−
√

1− t2 ≤ ϕ(p) ≤ 1−
√

1− t,

andR2 is the region between the two curves given in the start and end of the last display. SinceR = Conv(R2),

we take the convex hull of R and get

R =
{

(x, y) : 0 ≤ x ≤ 1, and 1−
√

1− x2 ≤ y ≤ x
}
.
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According to this joint range, for all probability measures P and Q on some measurable space, we have

1−
√

1− dTV(P,Q)2 ≤ H2(P,Q) ≤ dTV(P,Q),

or equivalently,

H2(P,Q) ≤ dTV(P,Q) ≤ H(P,Q)
√

2−H2(P,Q),

which is the desired bound.

Remark. We visualize the joint range of dTV and H2 in the following figure.

dTV

H2

1

1

R

R2

The sandwich bound is described by the diagonal line and the lower arc. According to our discussion, this

sandwich bound is non-improvable. Under the constraint dTV(P,Q) = t, the upper bound is attained when

P = Bernoulli

(
1− t

2

)
, Q = Bernoulli

(
1 + t

2

)
,

and the lower bound is attained when

P = (1− t, t, 0), Q = (1− t, 0, t).

Theorem 6.23 (Total variation versus chi-square divergence). Let P and Q be two probability measure on

some measurable space. Then

χ2(P‖Q) ≥ f(dTV(P,Q)), where f(t) =

4t2, 0 ≤ t ≤ 1
2 ,

t
1−t ,

1
2 < t ≤ 1.

Proof. We consider the distributions P = Bernoulli(p) and Q = Bernoulli(q), where 0 ≤ p, q ≤ 1. Clearly,

dTV(P,Q) = |q − p|, χ2(P‖Q) =
p2

q
+

(1− p)2

1− q
− 1 =

(q − p)2

q(1− q)
.

The joint range of dTV and H2 is

R2 =

{(
|q − p|, (q − p)2

q(1− q)

)
: 0 ≤ p, q ≤ 1

}
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We fix dTV(P,Q) = |q − p| = t ∈ (0, 1). It turns out that

χ2(P‖Q) =
t2

q(1− q)
=

t2

q(1− q)
.

• If t ≤ 1
2 , the minimum is attained when q = 1

2 and p = 1
2 − t, and χ2(P‖Q) = 4t2;

• If t > 1
2 , the minimum is attained when q = t and p = 0, and χ2(P‖Q) = t

1−t .

We consider the function f : [0, 1]→ R+ defined as follows:

f(t) =

4t2, 0 ≤ t ≤ 1
2 ,

t
1−t ,

1
2 < t ≤ 1.

Then f is a convex function on [0, 1], and R2 is the epigraph {(t, x) : 0 ≤ t ≤ 1, x ≥ f(t)}. Since R2 is convex,

we have R = Conv(R2) = R2. The desired bound follows this range.

Remark. We visualize the joint range of dTV and χ2 in the following figure.

dTV(P,Q)

χ2(P‖Q)

R

• ( 1
2 , 1)

f(t) = 4t2

f(t) = t
1−t

A direct corollary of this range is that as dTV(P,Q)→ 1, we have χ2(P‖Q)→∞.

Theorem 6.24 (Total variation versus Le Cam divergence). Let P and Q be two probability measure on some

measurable space. Then

dTV(P,Q)2 ≤ Le(P‖Q) ≤ dTV(P,Q).

Proof. We consider the distributions P = Bernoulli(p) and Q = Bernoulli(q), where 0 ≤ p, q ≤ 1. Clearly,

dTV(P,Q) = |q − p|, Le(P,Q) =
(p− q)2

2(p+ q)
+

(p− q)2

2(2− p− q)
.

The joint range of dTV and H2 is

R2 =

{(
|q − p|, (p− q)2

2(p+ q)
+

(p− q)2

2(2− p− q)

)
: 0 ≤ p, q ≤ 1

}
We fix dTV(P,Q) = |q − p| = t ∈ (0, 1). It turns out that

Le(P,Q) =
t2

(2p+ t)(2− 2p− t)
.
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Over the interval 0 ≤ p ≤ 1− t, we have

t2 ≤ Le(P,Q) ≤ t

2− t
.

Therefore, the joint range is

R2 =

{
(t, x) : 0 ≤ t ≤ 1, t2 ≤ x ≤ t

2− t

}
, R = Conv(R2) =

{
(t, x) : 0 ≤ t ≤ 1, t2 ≤ x ≤ t

}
.

The desired inequality follows from this joint range.

Remark. We visualize the joint range of dTV(P,Q) and Le(P,Q) in the following figure.

dTV(P,Q)

Le(P,Q)

R

1

1

Example 6.25 (Total variation versus Jensen-Shannon divergence). Let P and Q be two probability measure

on some measurable space. Then

1− dTV(P,Q)

2
log (1− dTV(P,Q)) +

1 + dTV(P,Q)

2
log(1 + dTV(P,Q)) ≤ dJS(P‖Q) ≤ log 2 · dTV(P,Q).

Proof. We consider the distributions P = Bernoulli(p) and Q = Bernoulli(q), where 0 ≤ p, q ≤ 1. Then

dTV(P,Q) = |q − p|, dJS(P,Q) = H

(
p+ q

2

)
− 1

2
H(p)− 1

2
H(q).

The joint range of dTV and dJS is

R2 =

{(
|q − p|, H

(
p+ q

2

)
− 1

2
H(p)− 1

2
H(q)

)
: 0 ≤ p ≤ q ≤ 1

}
We fix p = α− t

2 , q = α+ t
2 . It turns out that

dJS(P,Q) = H(α)− 1

2
H

(
α− t

2

)
− 1

2
H

(
α+

t

2

)
.

Over the interval t
2 ≤ α ≤ 1− t

2 , we have

∂

∂α
dJS(P,Q) = log

1− α
α
− 1

2

(
log

1− α− t
2

α+ t
2

+ log
1− α+ t

2

α+ t
2

)
,

∂2

∂α2
dJS(P,Q) =

t2

α(4α2 − t2)
+

t2

4(1− α)((1− α)2 − t2)
> 0.
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Hence dJS(P,Q) attains minimum when α = t
2 or 1− t

2 , and attains maximum when α = 1
3 .

H

(
t

2

)
− H(t)

2
≤ dJS(P,Q) ≤ H

(
1

2

)
− 1

2
H

(
1− t

2

)
− 1

2
H

(
1 + t

2

)
.

Therefore

R2 =

{
(t, x) :

1− t
2

log(1− t) +
1 + t

2
log(1 + t) ≤ x ≤ H

(
t

2

)
− H(t)

2

}
,

R = Conv(R2) =

{
(t, x) :

1− t
2

log(1− t) +
1 + t

2
log(1 + t) ≤ x ≤ t log 2

}
.

The desired bound follows from the joint range.

Remark. We visualize the joint range of dTV(P,Q) and dJS(P,Q) in the following figure.

dTV(P,Q)

dJS(P,Q)

R

log 2

1

Example 6.26 (Total variation versus Kullback-Leibler divergence). The joint range between KL and TV

is shown in the following figure. Although there is no known close-form expression, the following parametric

formula of the lower boundary is known:TVt = t
2

(
1−

(
coth(t)− 1

t

)2)
KLt = t coth(t) + log (t csch(t))− t2csch2(t)

, t ≥ 0.

A direct corollary of this formula is Vajda’s lower bound:

D(P‖Q) ≥ log
1 + dTV(P,Q)

1− dTV(P,Q)
− 2dTV(P,Q)

1 + dTV(P,Q)
.

dTV(P,Q)

D(P‖Q)

R Pinsker’s bound
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6.4 Pearson χ2-Divergence and Information Bounds

The Pearson χ2-divergence is special because most f -divergences are locally χ2-like.

Theorem 6.27. Let Df be an f -divergence such that f ∈ C2(R+) and lim supx→∞ f ′′(x) <∞. Then

(i) If χ2(Q‖P ) <∞, then for any 0 < λ < 1,

Df (λQ+ (1− λ)P‖P ) <∞;

(ii) If χ2(Q‖P ) <∞,

lim
λ→0+

1

λ2
Df (λQ+ (1− λ)P‖P ) =

f ′′(1)

2
χ2(Q‖P ). (6.12)

Proof. We will use the integral remainder of Taylor’s expansion:

f(x) = f(a) + f ′(a)(x− a) + (x− a)2

∫ 1

0

(1− θ)f ′′(a+ θ(x− a)) dθ.

For any 0 < λ < 1,

Df (λQ+ (1− λ)P‖P ) =

∫
f

(
1 + λ

dQ− dP
dP

)
dP

=

∫ (
f(1) + f ′(1)

(
λ
dQ− dP
dP

)
+

(
λ
dQ− dP
dP

)2 ∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP

= λ2

∫ (
dQ

dP
− 1

)2(∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP.

Since 1 + θλdQ−dPdP ≥ 1− λ and lim supx→∞ f ′′(x) <∞, the function f ′′ is bounded on [1− λ,∞). Hence∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ ≤ 1

2
sup

x∈[1−λ,∞)

f ′′(x) := Cλ, (6.13)

and therefore Df (λQ+ (1− λ)P‖P ) ≤ λ2Cλχ
2(Q‖P ) <∞. To prove (ii), it remains to determine

lim
λ→0+

1

λ2
Df (λQ+ (1− λ)P‖P ) = lim

λ→0+

∫ (
dQ

dP
− 1

)2(∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP.

According to the bound (6.13), for all 0 < λ < 1
2 ,

(
dQ

dP
− 1

)2 ∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ ≤ C 1

2

(
dQ

dP
− 1

)2

∈ L1(X ,F , P ).

By dominated convergence theorem,

lim
λ→0+

∫ (
dQ

dP
− 1

)2(∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP

=

∫ (
dQ

dP
− 1

)2(
lim
λ→0+

∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP (6.14)

=

∫ (
dQ

dP
− 1

)2
f ′′(1)

2
dP =

f ′′(1)

2
χ2(Q‖P ).

Thus we complete the proof.
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Remark. In fact, the identity (6.12) remains correct even if χ2(Q‖P ) =∞ and f ′′(1) > 0, i.e.

Df (λQ+ (1− λ)P‖P ) = ω(λ2), λ→ 0.

To see this, under the condition Q� P , we replace the equality (6.14) with “≥” by Fatou’s lemma:

lim
λ→0+

∫ (
dQ

dP
− 1

)2(∫ 1

0

(1− θ)f ′′
(

1 + θλ
dQ− dP
dP

)
dθ

)
dP ≥ f ′′(1)

2
χ2(Q‖P ). (6.15)

Since χ2(Q‖P ) =∞ and f ′′(1) > 0, the RHS of the last display is ∞, and the equality holds naturally.

Parameter estimation. Let {Pθ, θ ∈ Θ} be a family of probability distributions parameterized by θ ∈ Θ.

The estimation of parameter θ can be described by the following Markov chain:

θ∗ → X → θ̂,

where θ∗ is the true parameter, the sample X ∼ Pθ∗ is drawn from the distribution Pθ∗ , and the estimator

θ̂ = θ̂(X) is a (possibly random) mapping from the sample space X to the parameter space Θ. We use the

quadratic loss to evaluate the difference between the real and the predicted parameter, i.e. `(θ̂) = |θ̂ − θ∗|2.

The mean-squared error/risk of estimator θ̂ when the real parameter is given by θ∗ is

Rθ∗(θ̂) = Eθ∗ [|θ̂ − θ∗|2] = EX∼Pθ∗
[∣∣θ̂(X)− θ∗

∣∣2] .
For an estimator θ̂ of θ, we have the following Hammersley-Chapman-Robbins (HCR) lower bound of risk.

Theorem 6.28 (Univariate Hammersley-Chapman-Robbins bound). If Θ ⊂ R, any estimator θ̂ satisfies

Varθ∗(θ̂) ≥ sup
θ∈Θ:θ 6=θ∗

(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

, ∀θ∗ ∈ Θ.

Proof. For all θ ∈ Θ, the distribution Pθ of X and the mapping rule θ̂ = θ̂(X) together induce a distribution

Qθ of the estimator θ̂. We fix θ∗, θ ∈ Θ with θ 6= θ∗. By data processing inequality,

χ2(Pθ‖Pθ∗) ≥ χ2(Qθ‖Qθ∗). (6.16)

We take h(x) = x in the variational representation (6.5) of χ2-divergence, hence

χ2(Qθ‖Qθ∗) ≥
(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
Varθ∗(θ̂)

. (6.17)

Combining (6.16) and (6.17), we get

Varθ∗(θ̂) ≥
(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

.

Since this inequality holds for all θ 6= θ∗, we take supremum on both sides to get the desired bound.

Remark. Define the bias function of θ̂ by b(θ) = Eθ[θ̂]− θ. According to the bias-variance decomposition,

Rθ∗(θ̂) = Eθ∗ [(θ̂ − θ∗)2] ≥ sup
θ∈Θ:θ 6=θ∗

(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

+ b(θ∗)2.
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Theorem 6.29 (Multivariate Hammersley-Chapman-Robbins bound). If Θ ⊂ Rn, any estimator θ̂ satisfies

χ2(Pθ‖Pθ∗) ≥
(
Eθ∗ [θ̂]− Eθ[θ̂]

)>
Covθ∗(θ̂)

−1
(
Eθ∗ [θ̂]− Eθ[θ̂]

)
, ∀θ∗, θ ∈ Θ.

Proof. Based on the same procedure establishing (6.16), we take h(x) = ξ>x in the variational representation

(6.5) of χ2-divergence, where ξ ∈ Rn\{0}. Then

χ2(Qθ‖Qθ∗) ≥
(
ξ>Eθ∗ [θ̂]− ξ>Eθ[θ̂]

)2
ξ>Covθ∗(θ̂)ξ

. (6.18)

Combining (6.16), (6.17) and taking the supremum with respect to ξ ∈ Rn\{0}, we get

χ2(Pθ‖Pθ∗) ≥ sup
ξ∈Rn\{0}

ξ>
(
Eθ∗ [θ̂]− Eθ[θ̂]

)(
Eθ∗ [θ̂]− Eθ[θ̂]

)>
ξ

ξ>Covθ∗(θ̂)ξ
.

Using the fact supξ∈Rn\{0}
〈w,ξ〉2
ξ>Mξ

= w>M−1w from linear algebra, we obtain the desired bound.

Score function. In many cases, we can express Pθ in form of the likelihood function:

Pθ(X ∈ A) =

∫
A

Pθ(x)µ(dx), A ∈ F ,

where µ is a dominating measure. For example, µ is the counting measure in the discrete case or the Lebesgue

measure in the continuous case. The partial derivative of the log-likelihood logPθ(x) with respect to θ ∈ Θ is

called the score. Under regularity conditions on Pθ(x)2, the expectation of the score function evaluated at the

true parameter θ is zero:

Eθ
[
∂

∂θ
logPθ(x)

]
=

∫
X

∂
∂θPθ(x)

Pθ(x)
Pθ(x) dx =

∫
X

∂

∂θ
Pθ(x) dx = ∇θ

∫
X
Pθ(x) dx = 0.

2To be specific, we assume Θ is an open subset of Rn, and assume θ 7→ Pθ(x) to be a continuously differentiable function. For
fixed parameter value θ0 ∈ Θ and ε > 0, we consider the following conditions:

(i)

∫
X
Pθ(x) dx <∞ for all θ ∈ B(θ0, ε) := {θ ∈ Θ : |θ − θ∗| < ε};

(ii)

∫
X

∂

∂θ
Pθ(x) dx is continuous at θ = θ0;

(ii’)

∫
X

sup
θ∈B(θ0,ε)

∣∣∣∣ ∂∂θPθ(x)

∣∣∣∣ dx <∞;

(iii)

∫
X

∫ ε

0

∣∣∣∣ ∂∂θPθ0+tu(x)

∣∣∣∣ dt dx <∞ for all unit vectors |u| = 1.

Under conditions (i), (ii) and (iii), we use Fubini’s theorem:

1

h

∫
X

(
Pθ0+hu(x)− Pθ0 (x)

)
dx =

1

h

∫
X

∫ h

0
u>

∂

∂θ
Pθ0+tu(x) dt dx =

1

h
u>
∫ h

0

∫
X

∂

∂θ
Pθ(x) dx dt, ∀|u| = 1.

Letting h→ 0 on the both sides, we obtain

∇θ
∫
X
Pθ(x) dx

∣∣∣∣
θ=θ0

=

∫
X

∂

∂θ
Pθ0 (x) dx

Under conditions (i) and (ii’), for all |h| < ε and |u| = 1, the difference quotients are dominated by an integrable function:∣∣∣∣Pθ0+hu(x)− Pθ0 (x)

h

∣∣∣∣ =

∣∣∣∣ 1h
∫ h

0

∂

∂θ
Pθ0+tu(x)dθ

∣∣∣∣ ≤ sup
θ∈B(θ0,ε)

∣∣∣∣ ∂∂θPθ(x)

∣∣∣∣ .
By Dominated Convergence Theorem,

lim
h→0

∫
X

Pθ0+hu(x)− Pθ0 (x)

h
dx =

∫
X

lim
h→0

Pθ0+hu(x)− Pθ0 (x)

h
dx, ∀|u| = 1 ⇔ ∇θ

∫
X
Pθ(x) dx

∣∣∣∣
θ=θ0

=

∫
X

∂

∂θ
Pθ0 (x) dx.
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Fisher information. The Fisher information I(θ) is defined to be the covariance of the score when the

true parameter is θ:

I(θ) = Eθ

[(
∂

∂θ
logPθ(X)

)(
∂

∂θ
logPθ(X)

)>]
=

∫
1

Pθ

∂Pθ
∂θ

∂Pθ
∂θ>

.

Using the Taylor’s expansion of Pθ at θ∗, we have

Pθ − Pθ∗ = (θ − θ∗)> ∂Pθ
∗

∂θ
+ o(|θ − θ∗|).

Under regularity conditions 3 on Pθ(x),

χ2(Pθ‖Pθ∗) =

∫
(Pθ − Pθ∗)2

Pθ∗

= (θ − θ∗)>I(θ∗)(θ − θ∗) + o
(
|θ − θ∗|2

)
. (6.19)

Therefore, the χ2-divergence is “locally Fisher information”. Using this property, we can derive a universal

bound for estimation error in terms of Fisher information.

Theorem 6.30 (Cramér-Rao bound). Let Θ ⊂ R. Under regularity conditions, for the quadratic loss, any

unbiased estimator θ̂ satisfies

Rθ∗(θ̂) = Eθ∗ [(θ̂ − θ∗)2] ≥ 1

I(θ∗)
, ∀θ∗ ∈ Θ.

where I(θ∗) is the Fisher information evaluated at the true parameter θ∗ ∈ Θ.

Proof. Using the Hammersley-Chapman-Robbins bound and the unbiasedness of θ̂,

Eθ∗ [(θ̂ − θ∗)2] ≥ lim
θ→θ∗

(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

= lim
θ→θ∗

(
θ∗ − θ

)2
(θ∗ − θ)2I(θ∗) + o

(
(θ∗ − θ)2

) =
1

I(θ∗)
.

Thus we complete the proof.

For biased estimators, we also have a similar bound.

3Define the remainder of the first-order Taylor expansion as follows:

rθ = Pθ − Pθ∗ − (θ − θ∗)>
∂Pθ∗

∂θ
= o(|θ − θ∗|).

By Cauchy-Schwarz inequality, (6.19) is valid if rθ vanishes under the weighted inner product:∫
r2θ(x)

Pθ∗ (x)
dx = o(|θ − θ∗|2).

By Dominated Convergence Theorem, if the mapping x 7→ r2θ(x)

Pθ∗ (x)|θ−θ∗|2
is dominated by some L1-function on X within some

deleted neighborhood 0 < |θ − θ∗| < ε, we have

lim
θ→θ∗

1

|θ − θ∗|2

∫
r2θ(x)

Pθ∗ (x)
dx =

∫
lim
θ→θ∗

r2θ(x)

Pθ∗ (x)|θ − θ∗|2
dx = 0.

We can require that for some ε > 0, ∫
sup

θ:0<|θ−θ∗|<ε

r2θ(x)

Pθ∗ (x)|θ − θ∗|2
dx <∞.
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Theorem 6.31 (Biased Cramér-Rao bound). Let Θ ⊂ R. Given an estimator θ̂, assume that the function

θ 7→ Eθ[θ̂] is continuously differentiable. Under regularity conditions, for the quadratic loss, the estimator θ̂

satisfies

Rθ∗(θ̂) = Eθ∗ [(θ̂ − θ∗)2] ≥ (1 + b′(θ∗))2

I(θ∗)
+ b(θ∗)2, ∀θ∗ ∈ Θ,

where I(θ∗) is the Fisher information evaluated at θ∗ ∈ Θ, and b(θ) = Eθ[θ̂]− θ is the bias of θ̂.

Proof. Using the Hammersley-Chapman-Robbins bound, we have

Varθ∗(θ̂) ≥ lim
θ→θ∗

(
Eθ∗ [θ̂]− Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

= lim
θ→θ∗

(
θ − θ∗ + b(θ)− b(θ∗)

)2
(θ∗ − θ)2I(θ∗) + o

(
(θ∗ − θ)2

) =
(1 + b′(θ∗))2

I(θ∗)
.

The result then follows from bias-variance decomposition.

Theorem 6.32 (General Cramér-Rao bound). Let Θ ⊂ Rn. Given an estimator θ̂, assume that the function

θ 7→ Eθ[θ̂] is continuously differentiable. Let φ(θ) = ∂
∂θEθ[θ̂]. Then estimator θ̂ satisfies

I(θ∗) � φ(θ∗) Covθ∗(θ̂)
−1φ(θ∗)>, and Covθ∗ � φ(θ∗)(θ̂)I(θ∗)−1φ(θ∗)>,

where A � B denotes that ξ>(A−B)ξ ≥ 0 for all ξ ∈ Rn.

Proof. Fix any ξ ∈ Rn. Since φ 7→ Eθ[θ̂] is continuously differentiable, we have

Eθ∗+hξ[θ̂]− Eθ∗ [θ̂] = hξ>φ(θ∗) + o(h).

Plugging in this equation and (6.19) into the multivariate Hammersley-Chapman-Robbins bound, we have

ξ>I(θ∗)ξ +
o(h2)

h2
≥ ξ>φ(θ∗) Covθ∗(θ̂)

−1φ(θ∗)>ξ +
o(h2)

h2

Letting h→ 0, we obtain the first bound. Furthermore, according to the univariate HCR bound,

ξ>Covθ∗(θ̂)ξ = Varθ∗(ξ
>θ̂) ≥

(
ξ>Eθ∗ [θ̂]− ξ>Eθ[θ̂]

)2
χ2(Pθ‖Pθ∗)

.

For any η ∈ Rn, letting θ = θ∗ + hη, we have

ξ>Covθ∗(θ̂)ξ ≥
h2
(
ξ>φ(θ∗)η

)2
+ o(h2)

h2η>I(θ∗)η + o(h2)
→
(
ξ>φ(θ∗)η

)2
η>I(θ∗)η

, ∀η ∈ Rn.

Using the fact supη∈Rn\{0}
〈w,η〉
η>Mη

= w>M−1w from linear algebra, we have

ξ>Covθ∗(θ̂)ξ ≥ ξ>φ(θ∗)I(θ∗)−1φ(θ∗)>ξ.

Since ξ ∈ Rn is arbitrary, we obtain the second bound, concluding the proof.

Remark. If θ̂ is an unbiased estimator, φ(θ) = Idn. We have the unbiased Cramér-Rao bound:

Covθ∗(θ̂) � I(θ∗)−1.

When the dimension n = 1, the Theorem reduces to the case in Theorem 6.31.
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Bayesian case. From a Bayesian perspective, in each experiment, the true parameter θ is subject to a prior

distribution π on Θ. The average risk of θ̂ over the prior π is

Rπ(θ̂) = Eθ∼πRθ(θ̂) = Eθ∼π
[
(θ̂ − θ)2

]
.

Given a prior distribution π, the Bayesian risk for π is defined as the infimum of the average risk:

R∗π = inf
θ̂
Rπ(θ̂) = inf

θ̂
Eθ∼π

[
(θ̂ − θ)2

]
Theorem 6.33 (Bayesian Cramér-Rao bound).

R∗π = inf
θ̂
Rπ(θ̂) ≥ 1

Eθ∼π[I(θ)] + I(π)
,

where I(π) =
∫

Θ
π′

π is the Fisher information of the prior.

Proof. Consider the following comparison of experiments:

p : π → θ
X∼pX|θ
−−−−−→ X → θ̂, q : π̃ → θ

X∼qX|θ
−−−−−→ X → θ̂.

By the data processing inequality and the variational representation,

χ2(qθ,X‖pθ,X) ≥ χ2(qθ,θ̂‖pθ,θ̂) ≥ χ
2(qθ−θ̂‖pθ−θ̂) ≥

(
Ep[θ − θ̂]− Eq[θ − θ̂]

)2
Varp(θ − θ̂)

Let π̃ be the prior obtained by shifting π by δ, i.e. π̃(θ) = π(θ − δ). We choose pX|θ = Pθ and qX|θ = Pθ−δ.

Then pX = qX , and pθ̂ = qθ̂. Hence Eq[θ − θ̂]− Ep[θ − θ̂] = δ, and

Varp(θ − θ̂) ≥
δ2

χ2(qθ,X‖pθ,X)
. (6.20)

On the other hand,

χ2(qθ,X‖pθ,X) =

∫ ∫
(qθ,X − pθ,X)2

pθ,X
dx dθ =

∫ ∫ [
qθ(qX|θ − pX|θ) + (qθ − pθ)pX|θ

]2
pθ,X

dθ dx

=

∫
q2
θ

pθ
dθ

∫
(qX|θ − pX|θ)2

pX|θ
dx+

∫
(qθ − pθ)2

pθ
dθ

∫
pX|θ dx+

∫
qθ(qθ − pθ)

pθ
dθ

∫
(qX|θ − pX|θ) dx

=

∫
χ2(qX|θ‖pX|θ)

q2
θ

pθ
dθ + χ2(qθ‖pθ).

According to Taylor’s expansion, we have χ2(qX|θ‖pX|θ) = χ2(Pθ−δ‖Pθ) = δ2I(θ) + o(δ2), and χ2(qθ‖pθ) =

χ2(π(· − δ)‖π) = δ2I(π) + o(δ2). Hence

χ2(qθ,X‖pθ,X) = δ2Epθ [I(θ)] + δ2I(π) + o(δ2). (6.21)

Combining (6.20) and (6.21), and letting δ → 0, we have

E[(θ − θ̂)2] ≥ Varθ∼π(θ − θ̂) ≥ 1

Eθ∼π[I(θ)] + I(π)
.

Since θ̂ is arbitrary, we obtain the desired bound for Bayesian risk.
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6.5 Application: Kernel Density Estimator

Setting. In this section, we consider the estimation of the density of a channel output Y . Assume that

we are given a known channel PY |X , and let PX be any unknown input distribution. Given observations

X1, · · · , Xn
i.i.d.∼ PX , the empirical distribution of X is

P̂n =

n∑
j=1

δXj .

A natural estimate of the distribution of Y is PY |X ◦ P̂n. In many practical cases, the conditional density of Y

given X = x is of the form PY |X=x = φ(· − x), where φ is a fixed density. For example, the additional channel

Y = X +Z satisfies this formula when Z ∼ φ is independent of X. In this case, we can think of PY |X ◦ P̂n as

a kernel density estimator (KDE), whose density is

p̂n(y) = (φ ∗ P̂n)(y) =
1

n

n∑
j=1

φ(y −Xn).

Using the fact that E[p̂n(y)] = pY (y) for all y ∈ R, we have

E
[
D(PY |X ◦ P̂n‖PX)

]
= E

[∫
p̂n(y) log

p̂n(y)

pX(y)
dy

]
= E

[∫
p̂n(y) log

p̂n(y)

pY (y)
dy

]
+ E

[∫
p̂n(y) log

pY (y)

pX(y)
dy

]
= E

[∫
p̂n(y) log

p̂n(y)

pY (y)
dy

]
+

∫
E [p̂n(y)] log

pY (y)

pX(y)
dy

= E
[
D(PY |X ◦ P̂n‖PY )

]
+D(PY ‖PX)

In this section, we determine the convergence rate of the expected estimation error E[D(PY |X ◦ P̂n‖PY )].

Mutual χ2-information. Consider two random variables X,Y ∼ PX,Y . Let PX and PY be the marginal

distributions of X and Y , respectively. The mutual information between X and Y is defined as

I(X;Y ) = D (PXY ‖PXPY ) =

∫
PXY log

PXY
PXPY

.

Similarly, we define the mutual χ2-information between X and Y to be

Iχ2(X;Y ) = χ2 (PXY ‖PXPY ) .

More generally, if Df is an f -divergence, the mutual f -information between X and Y is

If (X;Y ) = Df (PXY ‖PXPY ) .

Theorem 6.34. Under the above setting, we have the following upper bound for the estimation error:

E
[
D(PY |X ◦ P̂n‖PY )

]
≤ log

(
1 +

1

n
Iχ2(X;Y )

)
;

Moreover, we have the following lower bound for the estimation error:

lim
n→∞

nE
[
D(PY |X ◦ P̂n‖PY )

]
≥ 1

2
Iχ2(X;Y ).
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Proof. We first prove the upper bound. Note that

E
[
χ2(PY |X ◦ P̂n‖PY )

]
= E

[∫
(p̂n(y)− pY (y))2

pY (y)
dy

]

= E

∫ 1

pY (y)

 1

n

n∑
j=1

pY |X(y|Xj)− pY (y)

2

dy


=

∫
1

pY (y)
E


 1

n

n∑
j=1

pY |X(y|Xj)− pY (y)

2
 dy.

For any Xj ∼ pX , we have

E
[
pY |X(y|Xj)− pY (y)

]
= 0,

and ∫ E
[
(pY |X(y|Xj)− pY (y))2

]
pY (y)

dy =

∫ ∫
(pY |X(y|x)− pY (y))2

pY (y)
pX(x) dx dy

=

∫ ∫
(pX,Y (x, y)− pX(x)pY (y))2

pX(x)pY (y)
dx dy

= Iχ2(X;Y ).

Hence

E
[
χ2(PY |X ◦ P̂n‖PY )

]
=

1

n
Iχ2(X;Y ).

By (6.6) and Jensen’s inequality,

E
[
D(PY |X ◦ P̂n‖PY )

]
≤ E

[
log
(

1 + χ2(PY |X ◦ P̂n‖PY )
)]

≤ log
(

1 + E
[
χ2(PY |X ◦ P̂n‖PY )

])
= log

(
1 +

1

n
Iχ2(X;Y )

)
.

To prove the lower bound, we let X∗ ∼ Unif(X1, · · · , Xn), and let Y ∗ be the output of the channel PY |X given

the input X∗. Then Y ∗
d
= Y marginally, and the joint distribution of (X1:n, Y

∗) is

p∗(x1, · · · , xn, y) = pX(x1) · · · pX(xn) · 1

n

n∑
j=1

φ(y − xj).

Then

I(X1:n;Y ∗) =

∫
· · ·
∫ ∫

p∗(x1, · · · , xn, y) log
p∗(x1, · · · , xn, y)

pX(x1) · · · pX(xn)pY (y)
dy dx1 · · · dxn

=

∫
· · ·
∫ ∫

pX(x1) · · · pX(xn) · 1

n

n∑
j=1

φ(y − xj) log

∑n
j=1 φ(y − xj)
npY (y)

dy dx1 · · · dxn

= E

∫ 1

n

n∑
j=1

φ(y −Xj) log

∑n
j=1 φ(y −Xj)

npY (y)
dy


= E

[
D(PY |X ◦ P̂n‖PY )

]
.

(6.22)
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On the other hand, by the chain rule,

I(X1:n;Y ∗) = h(X1:n)− h(X1:n|Y ∗) =

n∑
j=1

h(Xj)−
n∑
j=1

h(Xj |Y ∗, Xj−1, · · · , X1)

≥
n∑
j=1

(h(Xj)− h(Xj |Y ∗)) =

n∑
j=1

I(Xj ;Y
∗) = nI(X1;Y ∗).

(6.23)

The joint distribution of X1 and Y ∗ is

p∗(x1, y) =

∫
· · ·
∫
pX(x1) · · · pX(xn) · 1

n

n∑
j=1

φ(y − xj) dx2 · · · dxn

=
1

n

∫
· · ·
∫
pX(x1) · · · pX(xn)φ(y − x1) dx2 · · · dxn +

1

n

n∑
j=2

∫
· · ·
∫
pX(x1) · · · pX(xn)φ(y − xj) dx2 · · · dxn

=
1

n
pX(x1)φ(y − x1) +

n− 1

n
pX(x1)pY (y).

Hence by Theorem 6.12,

I(X1;Y ∗) = D

(
1

n
PXY +

n− 1

n
PXPY

∥∥∥∥PXPY ) =
1

2n2
χ2(PXY ‖PXPY ) + o(n−2). (6.24)

Combining (6.22), (6.23) and (6.24),

lim
n→∞

nE
[
D(PY |X ◦ P̂n‖PY )

]
≥ 1

2
Iχ2(X;Y ).

Thus we conclude the proof.

Remark. We can summarize our result as follows:

• If Iχ2(X;Y ) <∞, we have E
[
D(PY |X ◦ P̂n‖PY )

]
= O(n−1);

• If Iχ2(X;Y ) =∞, we have E
[
D(PY |X ◦ P̂n‖PY )

]
= ω(n−1).

Discrete case. When X is a discrete random variable, we take PY |X to be the identity δX to obtain the

guarantee on the closeness between the empirical and the population distribution. This fact can be used to

test whether the sample was truly generated by the distribution PX .

Corollary 6.35. Assume that PX is supported on a discrete space X . If |X | =∞, we have

lim
n→∞

nE
[
D(P̂n‖PX)

]
=∞;

Otherwise,

E
[
D(P̂n‖PX)

]
≤ |X | − 1

n
.

Proof. We note that

Iχ2(X;Y ) =
∑
x∈X

pX,Y (x, x)2

pX(x)pY (x)
− 1 = |X | − 1.

The corollary then follows from Theorem 6.34.
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