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1 Measure of Information

Throughout this section, we assume that all random variables we study are discrete variables. We use capital
letters like X,Y, Z to denote random variables, and their probability mass functions px (z),py (y),pz(z). For
simplicity, we drop the subscripts and use the shorthand p(x), p(y), p(z) instead. We use calligraphy letters
like X, ), Z to denote the finite support of random variables.

1.1 Entropy and Conditional Entropy

Definition 1.1 (Entropy). Let X be a random variable supported on a finite state space X, with probability
mass function p(z). The entropy of X is a function of the distribution p(x):

1
H(X) =), ple)log s = ~Eflogp(X).
zeX p
Likewise, for a collection X7, -+, X,, of random variables, the (joint) entropy of Xy, -, X, is defined as the
entropy of the random vector (X1, -, X,):
H(X,. - . X)) = 1 i
( 1 ) n) Z p(ajla 73377,) ng(fv17~-~ 7xn)

T1EX,,Tn €EXp

Remark I. The entropy provides a measure of uncertainty of random variables. We also frequently use the
binary entropy function h : [0,1] — R, which is defined as the entropy of a Bernoulli variable:

H(a) = H(Bernoulli(a)) = —aloga — (1 — a)log(l — «), «€[0,1]
with the convention 0log0 = 0.

Remark II. Given any base b > 0, we define the entropy of X under base b to be

H(X) = 3 ple) logy =25 = H(X)logy .
rxeX

Clearly we have H(X) = H.(X). Another commonly used entropy is the bit entropy, in which the base b = 2:

o (X) = 37 ple) log — = H(X) logye.
zEX

Proposition 1.2. We have the following estimate for the entropy of a random variable X :
0 < H(X) < log|X]|.

Proof. The lower bound follows from the definition of entropy. For the upper bound, note that

1 o | X 1o ) 1o 1
> p(@)lor s = 3 p(a)log o S = log Y]+ ple) log 5o

reX reX zeX

<tog ¥+ X ple) (i 1) = gl
ex

Then we complete the proof. O



1

Remark. If |X| = oo, the entropy of a random variable can be co. For example, let A = >, Pog )

which is less than infinity. Define random variable X by

1

PX =n)= An(logn)?’

n=23-.

Then

= log A
H(X) > / 8L dr = co.
9 xlogx

We may also wonder the uncertainty of a random variable when given potentially relevant observation.

Definition 1.3 (Conditional Entropy). Let X and Y be two random variables in the same probability space.
The entropy of Y conditioned on the event X = z is a function of the conditional distribution p(y|x):

1
HY|X =2x): Zpy\x og |) E[logp(ym‘X—x}

yey

The conditional entropy of Y given X is a function of the joint distribution p(z,y):

1
H(Y|X) ._me%eyp( y)log ——— (|) ]E{logp(ym}.

Remark. Note that H(Y|X) is a deterministic quantity rather than a random variable. In fact, we have

HY|X)= Y px)H(Y|X = ).

reX
Next, we study the relation between joint entropy and conditional entropy.

Proposition 1.4 (Chain rule for entropy). The joint entropy of X andY has the following decomposition:
HX,Y)=HY|X)+ H(X). (1.1)
More generally,
H(X1, X2, Xp) = H(X1) + H(X2|X1) + H(X3| X2, X1) + -+ + H(Xp[ X1, -+, X1). (1.2)

Proof. We first verify the bivariate case (L.1)):

1
HY|X)+HX)= > play 1og Pt Z %87
TEX,YCY
1
= > paylog——+ Y pla,y)log—
TE€EX,YeY y|x reX,ycy p(@)
1
= Z p(m,y)logﬁ = H(X,Y).
rEX gEY P,y
The general case ([1.2)) follows from mathematical induction. O

Remark. The equality (1.1) also implies the chain rule for conditional entropy:

H(X,Y|Z) = HX|Y,Z)+ H(Y|Z)



1.2 Mutual Information

Definition 1.5 (Mutual information). Let X and Y be two discrete random variables in the same probability

space. The mutual information of X and Y is defined as

I(X;v)= Y p(ﬂﬂ,y)log]m-

rzeX yey

Proposition 1.6 (Properties of mutual information). Let X and Y be two discrete random variables.
(i) (Symmetry). I(X;Y)=1(Y; X).
(i) (Reduction). I(X;Y)=H(X)—-H(X|Y)=H(Y)- HY|X).
(iii) (Measure of dependency). 1(X;Y) > 0, and the equality holds if and only if X and Y are independent.

Proof. The assertion (i) follows from definition, and the second from direct calculation. Now we verify (iii):

> pla,y)log 22> > play) (1—79(””)7’(3’)):0,

TEX,yeY p(x)p(y) TEX,YeY p(z,y

Clearly, the equality holds if and only if p(x,y) = p(z)p(y) for every x € X and y € V. O

Remark. Combining (ii) and (iii), we see that conditioning does not increase entropy:
HX|Y)<H(X), and H(Y|X)<H().

Based on this property, we introduce an important property of entropy as the function of distribution.

Theorem 1.7 (Concavity of entropy). Let p and q be two probability distributions that are supported in a

common space X. Then for all 0 < X\ <1, we have
H(Ap+ (1= A)q) = AH(p) + (1 = \)H(q). (1.3)
Proof. Let X; ~ p and X5 ~ ¢ be two independent random variables, and let Z ~ Bernoulli(\). Define
Xo=X1Z+X2(1-2).
Then X ~ Ap+ (1 — \)g, and
H(X)) > H(X\|Z) = AH(XA|Z = 1) + (1 — N)H(X\|Z = 0) = AH(X,) + (1 — ) H(X2).
This is in fact the equality . O

Remark. Using the concavity, we can interpret why a transfer of probability that makes the distribution

more uniform increases the entropy. We consider the following transformation:

Pi +Dpj pi + Dy
2 T2

(pla"'apia"'vpj7"'apm)—>(pla"'7 7"'7p7n>a p1++pm:1

Let p = (p1, - ,Di, - ,Pjs - sPm), and let ¢ = (p1,--- ,pj,- - ,Di, - ,Pm) be the probability vector with
i-th and j-th elements exchanged. Then



Mutual information as a function of distribution. If p(z,y) is the joint probability mass function of
random variables X and Y. The mutual information I(X;Y") is in fact a function of p and does not depend
on the probability space where X and Y are defined. We can write I(X;Y) = I(p) with (X,Y) ~ p.

We consider the decomposition p(z,y) = p(z)p(y|x), where p(z) is the marginal distribution of X and
p(y|z) is the conditional distribution of Y given z. Then the mutual information between X and Y is a
function of p(z) and p(y|z):

1@, p0l) = 3 pe)pwle) e 292 where p)= 3 p(@p(sl).

reEX ,yey p(y) TEX

Proposition 1.8 (Marginal convexity of mutual information). Let 0 < A < 1. Let p(z) and g(x) be two
distributions of X, and let p(y|z) and q(y|z) be two conditional distributions of Y given X. Then

I(Ap(x) + (1 = Ng(z), p(ylz)) < M (p(x), p(ylz)) + (1 = N)I(q(x), p(y|)),

and

I(p(z), A\p(y|z) + (1 = Nq(y|z)) < M(p(z),p(ylz)) + (1 = N I(p(x), q(y|z)).

Proof. Let Z ~ Bernoulli(A), X1 ~p, Xa ~q, X, = X1Z 4+ X2(1 — Z), and Y| X ~ p(y|z). Then

I(Ap(x) + (1 = Ng(z), p(ylz)) = 1(Xx;Y).
Since conditioning does not increase entropy,
IXnY) S I(XxnY, 2) = (X Y2) + 1(Xx; Z)

=PZ=DIX\;Y|Z=1)+P(Z=0)I(X\;Y|Z=0)+0
= M(X13Y) + (1= N)I(X5;Y)
= M(p(z), p(ylx)) + (1 = A)I(g(x), p(y|z)).

This proves the first inequality. The second one follows in a similar approach. O

Similar to the conditional entropy, we can define the conditional mutual information.

Definition 1.9. Let X,Y and Z be discrete random variables in the same probability space. The conditional
mutual information of X and Y given Z is defined as

I(X;Y|Z)= Y plx,y,2)log
zeEX,yeYy,zeZ

Similar to Proposition [1.6] conditional mutual information has the following properties.

Proposition 1.10 (Properties of conditional mutual information). Let X,Y and Z be discrete random vari-
ables in the same probability space.
(1) (Symmetry). I(X;Y|Z) =1(Y;X|2).
(ii) (Reduction). I(X;Y|Z)=H(X|Z)—- H(X|Y,Z)=H(Y|Z)- HY|X, Z).
(iii) (Measure of dependency). I(X;Y|Z) > 0, and the equality holds if and only if X andY are conditionally
independent on Z.

By direct calculation and induction, we also have the following chain rule for mutual information.



Proposition 1.11 (Chain rule for mutual information). The mutual information I[(X;Y,Z) has the following

decomposition:
I(X;Y,2)=1(X;2)+ I[(X;Y|2).
More generally,
I(X;Y1,Ys,-- Vo) =I(X; Y1) + I(X; Y2 Y1) + I(X; Y3|Ye, Y1) - - + I(X; Y| Yio1, -+, Y1),

We can use this rule to derive the data processing inequality for Markov chains.

Definition 1.12 (Markov chain). Random variables X,Y and Z are said to form a Markov chain, written
X Y — Z,if X and Z are conditionally independent on Y:

p(x, 2y) = p(zly)p(zly).
Particularly, if Z = ¢g(Y") is a function of Y, then X - Y — Z.
The following theorem asserts that no manipulation of Y can increase the mutual information.

Theorem 1.13 (Data processing inequality). If X —Y — Z, then
I(X;Y) > I(X; 2).
Particularly, for any function g defined on Y, we have
I(X;Y) 2 I(X;9(Y)).
Proof. By chain rule, we have that
I(XY)+ (X Z]Y) = [(X;Y, Z) = I(X; Z) + [(X;Y|2).
Since X 1l Z|Y, we have I(X;Z|Y) = 0. Since I(X;Y|Z) > 0, the result follows. O

Remark. By Proposition we also have H(X|Z) > H(X|Y) when X - Y — Z.

Next, we introduce an alternative definition of mutual information.

Definition 1.14 (Kullback-Leibler divergence/relative entropy). Let p and ¢ be two probability distributions
such that X = supp ¢ D suppp. The Kullback-Leibler divergence of g from p is defined as

- plz) _ p(X)
Dlplla) = 3 p(e)1og 2 = s [l 2.

zeX

This is also known as the relative entropy.

Remark. By definition, we have

D(pllg) = Y _ p(x)] (; ZX < 2) — 0.

reX



Therefore, D(pllqg) > 0, and the equality holds if and only if p = ¢q. Moreover, by definition, we have the

following result:

I(X;Y) = D(pxy lpxpy) = Ex~py [D(pyxllpy)] -

In other words, the mutual information of X and Y is the relative entropy of their marginal product pxpy

from their joint distribution px y.

Application: Misclassification Rate. To end this section, we introduce a useful application of mutual
information. We discuss the estimation of a discrete random variable X from an observation Y. To deal with
this problem, we construct a function ¢ : Y — X. The probability of error of the estimator X = ¢(Y) is

pe = P(X # X).
The following Fano’s inequality provide a lower bound of the error rate p,.
Theorem 1.15 (Fano’s inequality). For any estimator X of X such that X —Y — )?, we have
H(X|Y) < h(pe) + pelog | X|.

Particularly, we have

H(X|Y) —log2

>
Pe= " og ]

Proof. Let B=1 {x=X}" which is a Bernoulli variable with parameter p.. By the chain rule, the conditional

entropy of (B, X) given X is
H(B|X)+ H(X|B,X)=H(B,X|X)=H(X|X)+ H(B|X, X).

Now we analyze the four terms in the equality.
(i) Since conditioning does not increase entropy, H(B|X) < H(B) = h(p.).
(ii) The conditional entropy H(X|B,X) has the following estimate:

HXBX)= Y > ZP(B:b,X:x,X:%)logP

be{0,1} TEX TEX (X =2/B=b,X =7)

YN P(B=0,X=2X=23)log ———
P(X =z|B=0,X =7)

reEX TEX
~ ~ 1
=Y P(B=0,X=%)» P(X=zB=0,X=2)log ~———— < p.log|X|
Tex T€X P(X =2|B=0,X=2)
<log | X|
(i) Since X — Y — X, the data processing inequality implies H(X|X) > H(X|Y).
(iv) Since B is a function of X and X, we have H(B|X,)?) =0.
Combining these estimates, we obtain
H(X]Y) < h(pe) + pe log | X| < log2 + p log | X].
Then we complete the proof. O



1.3 Typical Sets and Asymptotic Equipartition Property

In this section, we investigate a sequence of i.i.d. copies X7, X, -+ of a random variable X ~ p(z) with finite
support X'. We write for a random vector of length n and its realization

Xl:n:(Xla"' 7Xn)7 xl:n:(-rh'" 71'71)-
The joint distribution of Xj., is given by
p(xl:n) = ]P(Xl:n = xl:n) = P(ml)p(x2) o p(xn)

In this section, we focus on finding a confidence set A C X" that contains our observation X;., with a high
probability. Formally, we require P(Xy.,, € A) > 1 — §, where § > 0 is an arbitrarily given small quantity.

Typical Sets. Here is an idea of constructing high probability sets. Let g : X — R be a function such that
E|g(X)| < co. By the weak law of large numbers, for each ¢ > 0 and § > 0, there exists N5 > 0 such that

|

Consequently, almost all probability mass is concentrated on the following set A:

1 S (X)) — ]E[g(X)]‘ < e) >1—¢ Vn>N..
n
=1

A= {HCLn EX" E[g(X)] —€e< %Zg(a?l) <E[g(X)] +e}.
i=1

In the last display, the constraint can be equivalently expressed as
2~ nElg(X)]+e) < 9= i1 9(zi) < 9= n(Elg(X)]—e)

The construction of typical sets follows by plugging in g(z) = log, ﬁ.

Definition 1.16. The e-typical set is defined by
A = {1 € X7 27001 < pay,,) < 2700
or equivalently, the set of all tuples x1.,, € X™ obeying

1
Hy(X)—e€< - logy p(21.) < Ha(X) + €.

Clearly, for each 6 > 0, there exists a positive integer N, s such that for all n > N s, the typical AE") contains
X1.n, with probability at least 1 — §. In other words,

lim P (Xl:n e A@) — 1.

n—oo
Size of Typical Sets. When n increased, the number of possible realizations of X;.,, would rise very quickly,

which is |X|™. The idea of typical sets is to concentrate the probability mass of X7i.,, on a smaller set A&”):

€

A — {;Clm € xn 9 M HAX)H) < gy < 2—n<H2<X>—e>},

In this set, all tuples have roughly the same probability mass. This is know as the Asymptotic Equipartition
property (AEP). Here is an intuition of this typical set:



e For the low probability tuples p(z1.,) < 27 "H2(X)+€) they are too unlikely to matter;
e For the high probability tuples p(z1.,) > 2~ *(H2(X)=9) they are too few to matter;

e Therefore, we exclude those unimportant tuples and retain only the average probability tuples.

We now study the size of the reduced set.

Proposition 1.17. Let AE”) be the e-typical set for Xi.,. For each § > 0, there exists Nc s > 0 such that
P (le e Ag”>) >1-6, VYn>Nes.
Furthermore, the upper bound of the typical set is given by

‘Agn) < ()46 yp > 1.

and the lower bound of the typical set is given by

\Ai’” > (1—6)2"H079 v > N 5.

Proof. For the upper bound, note that

g—n(Ha(X)+e)

1= > pea) = > plew) = A0

T EXT o1 A

For the lower bound, when n > N, s, we have

1-6<P (Xlzn € Agm) = Y plera) < \Agm 9= n(Hz(X)=¢)

z1, €A™

Rearranging each inequality completes the proof. O

Application: data compression. A source code is a mapping C' from a sequence of symbols from an
information source X to a sequence of alphabet symbols D (usually bits D = {0,1}) such that the source
symbols can be exactly recovered from the bit sequence (lossless source coding) or recovered within some
distortion (lossy source coding). This is one approach to data compression.

We will discuss lossless coding in Chapter 2. Let us first focus on lossy source coding. Suppose the input
is a sequence of i.i.d. random variables X7, -+, X,, ~ p, and we want to compress a sequence of length n to a
bit sequence. In other words, we want to find a source code C' : X™ — {0,1}*, where {0, 1}* is the set of all
bit sequences of finite length. The rate R of this code is the average length per symbol:

1
R = - Z p(z1:0) X length of C(z1.p)

T1.n€EXT

For the compression efficiency, we wish to minimize the average length per symbol. Furthermore, we also want
to recover the original sequence from the code. We consider the following encoding algorithm:
e Tor each sequence z1., in the typical set A™ since the size of A™ is no more than n(Hz(X) + €), the
encoder assigns a unique bit sequence of length [n(Ha(X) + €)];
e Otherwise, the encoder throws an arbitrary bit sequence of length [n(H2(X) +€)].
For any probability of error § > 0, when n is sufficiently large, the input sequence falls in the typical set with

10



probability at least 1 — d, and the encoder does not make an error. Furthermore, the rate of this code satisfies
1 1
R=—[n(Ha(X)+¢€)] <Hy(X)+e+— — Hy(X)+e, as n— oo
n n

Theorem 1.18 (Shannon’s source encoding theorem). The minimum rate R at which an information source
can be compressed with negligible probability of error is the entropy rate Ho(X) (in bits per symbol) of the
source. This statement involves two aspects:
(i) (Achievability) For each € > 0, there exists a source code with rate R no greater than Hy(X) + € and
negligible probability of error as the block length n — oc.
(i1) (Converse) Any source code with rate R < Ho(X) has probability error bounded away from 0 as n — 0.

Proof. The achievability part is established by our preceding discussion. To prove the converse part, we use
the following technical result:

Lemma 1.19. Let X4, -+, X, be i.i.d. variables drawn from X ~ p. For 0 < § < 1, define
Ss(n) =inf {|A|: A € X" and p(4) > 1 -6},
where we also write p for the joint distribution of (X1, Xa, -+, X,) for simplicity. Then

n—00 n

= H(X).

For any 0 < § < 1, to ensure that the probability of error no greater than §, we require the source code to
be one-to-one on a subset 4, C X™ with probability at least 1 — J. If the code has rate R < Hy(X), then

log, |An|

lim = R < Hy(X),
which contradicts Lemma[I.19] Then we complete the proof. O

Remark. Since the number 0 < ¢ < 1 is arbitrarily chosen, we in fact prove that the probability of error for
a source code with rate R < Hy(X) converges to 1 as n — oo.

Proof of Lemma[I.19 O

11



1.4 Jointly Typical Sets
In this section, we discuss the construction of typical sets for multiple random variables.

Definition 1.20 (Jointly typical sets). Let p(z,y) be the joint distribution of random variables X and Y.
The e-typical set Ag") with respect to the joint distribution p(z,y) is defined by

AP = (@1, yin) € X" x Y75 27 0T < (g, ) < 2700,
2—n(H2(Y)+6) < p(ylm) < 2—"(H2(Y)—€)7

9—n(H2(X,Y)+e) < p(T1imy Y1) < 27n(H2(X,Y)7e)}'

Theorem 1.21 (Properties of jointly typical sets). Let (Xi.n, Y1.n) be a sequence of length n drawn i.i.d.
according to (X,Y) ~ p(x,y). Let Agf) be the joint typical set with respect to p(x,y). Then

(i) High probability:
lim P ((le, Vi) € Agm) —1.

n—r oo

(ii) Estimate of size: for alln € N,

< Qn(H(X7Y)+e)

)

2

Furthermore, given any 6 > 0, for sufficiently large n,

’Agn) > (1 — §)2nHE )=,

(iii) Joint asymptotic equipartition property: If ()?1:”,371;”) ~ p(T1:0)0(Y1:n), i-e. Xl;n,fﬁm are independent
with the same marginals as p(x™,y™), then

P (K1, Vi) € A < 27T =30),
Furthermore, given any § > 0, for sufficiently large n,
P (Kiim, Vim) € AP > (1= g)2- X450,

Proof. By the weak law of large numbers,
lim P 1 lo ! Hy(X)| > 0, lim P 1 lo L Hy(Y)| > 0

im — —_ = = im — —_— = =
n—roo n 82 p(X1n> 2 ¢ ’ n 82 p 2 ¢ ’

1
lim P

1
Clogy ———— — Hy(X,Y = 0.
n—00 (’TL Og2 p(Xl:nvyl:n) 2< ' )‘ ” 6)

Since the event (Xi.n, Y1) € A£”> is the complement of the union of the three events quantified above, the
result (i) follows. To show the first part of (ii), just note that

1 Z Z p(xl:naylzn) Z Z 27n(H2(X’Y)+6) = ‘Agn)

wl:n,7y1:neA£n) $12n7y1:neA£n)

27n(H2(X,Y)+e) )

It remains to show (iii). Since p(x1.,) < 2 n(H2(X)=€) and P(Y1m) < 2 n(H2(Y)=€) for al] (T1:m, Y1) € Ag")7

9—n(Ha(X)+H2(Y)=2¢)  9—n(I(X;Y)—3¢)

P (()?1:7’7,7)7121’7,) S AE")) = Z p(xl:n)p<y1:n) S ‘AE")

Il:nvylzn€A£n>

The other part of (i) and (iii) are similar. O

12



1.5 Entropy Rates

In this section, we study a discrete-time stochastic process X = (X;):en, where each X; is a random variable

in a finite range X. These random variables do not need to be i.i.d..

Definition 1.22. Let X = (X;):;cn be a stochastic process.
(i) Average entropy per symbol

H(X)= lim M

n—oo n

(ii) The k-th order entropy
HY(X) = H(Xg| X1, X1)
(iii) Rate of information innovation

H>(X) = lim H¥X) = Jim H(Xg| Xy, X3)
—00

k— o0

Remark. If X = (X})ten is an i.i.d. sequence, we have
H(X)=H>(X)=H(Xy).
Stationarity. Recall that a stochastic process X = (X;)ien is said to be (strongly) stationary if
P(Xi =z, , Xp=x,) =P (Xgy1 =21, , Xpnok = Tp)
for every n € N, every lapse k € N and all z1,--- , 2, € X.
Theorem 1.23. For a stationary process X = (X¢)ten,
H(X)=H>(X).

Proof. We first prove the existence of rate of information innovation. By stationarity,

H™(X) = H(Xn|Xn-1,-++, X2, X1) S H(Xy| X1, -, Xo) = H(Xp1[Xp—2, -+, X1)

Therefore, H(X,|Xn—1, -+, X1) is decreasing in n. Since conditional entropy is nonnegative, the monotone

sequence converges: H™ N\, H*. Next, by the chain rule of entropy,

1 1 ¢
~H(Xy, o, X)) = — D H(Xi[Xog,o, Xa).

i=1

The right-hand side of the last display, which is a Cesaro mean, has the same limit as H(X,|X,,-1, -, X1),
which is H*°(X). Since the limit of the left-hand side is the average entropy per symbol, the result follows. [

Kolmogorov extension. If (X;):cy is a stationary process, then all finite-dimensional marginal distributions
of this process are determined. By Kolmogorov extension theorem, we can extend the index of this process to
the integer set Z and obtain a stationary process (X;):cz. We write for the past history

Xeco = (Xp)te-n, = (Xo, X1, X_2,---).

13



Furthermore, we can define the conditional p.m.f. of X; given X<o:

p(#1]X<0) = E [I{x, =} [ X<o0] = nlgngo [Lx, o | X0, X1, o0, X 0]

= lim p(l'1|X0,X,1,"' aan)'
n—00

Here the convergence holds both in L' and almost surely, since the sequence we take limit of is a uniformly
integrable martingale. Furthermore, by Lebesgue’s dominated convergence theorem,

E [~ log p(X1]|X<o)] = lim H*(X) = H>(X).
Ergodicity. Let (Q,.#,P) be a measure space. A measurable mapping T : (2, %) — (2, %) is said to be
ergodic, if every set A € . such that TA = A a.e. satisfies P(A) = 0 or P(A) = 1. We let T play a role of
time shift. The stochastic process X = (X;)sen is said to be an ergodic process, where X;(w) = Xo(T*w) for
allt € Nand Xj: Q2 — X is a random variable.

According to Birkhoff’s ergodic theorem, the strong law of large numbers holds for a stationary ergodic
process X = (X¢)en:

1 n
— ZXk - p=EX;, a.s.
k=1

3

Lemma 1.24. For the process (Xi)icz, define the k-th order Markov approzimation by

n

pk(Xlzn) :p(Xl:k) H p(Xj|Xj—17"' 7Xj—k)'
j=k+1

If (X4)iez is a stationary ergodic process,

1 1 1
“log ——— — H¥(X) a.s., and =log————— — H®(X) a.s..
w8 i ) 0 % p(XrlXz) )

Proof. Since (X})tez is an ergodic process, so is the process Y; = f(X<¢), where f is any measurable function.
Then both log p(X,, | Xy—1,- -, Xn—k) and logp(X,,|X<,—1) are stationary ergodic processes on n € N. By
Birkhoff’s ergodic theorem, we have

1 1
—log ——— 71 lo
n gpk(Xlzn) Xlk 7’L Z & X Xj 1, ] k:)

— 0+ H*(X), a.s.,

1

1 1 1
“log = =N og S H®(X), a.s..
n 8 p(Xnl X<0) n; & (X X<j0) (X)

Then we complete the proof. O

Lemma 1.25 (Sandwich). Let (Xy)iez be a stationary ergodic process. Then

k
: p*(X1:n) . p(X1:n)
limsup — log ————+ <0 a.s., limsu 10 ———— <0 a.s..
n_mopn & (Xln) n—)oop s (X1n|X<O) N

Proof. Let A be the support set of p(x1.,). Then

]E{ (;ilnn} Z p $1n p(T1m) = Z Pk(flcn)ﬁ Z pk($1;n)=1.

Jj
L: n 1., €A T1.n €EXT

14



By Markov’s inequality, we have

1 pk(Xlzn) 210gn> (pk(Xlzn) 2) 1
P( —lo > =P|———>n"| < —
(n 8 p(Xl:n) o n p(Xlzn) o o n2

By Borel-Cantelli Lemma, since Y-, n™? < oo, the events

1. pF(Xim) _ 2logn }
—1lo > , neN
{n & p(X1n> o n

happens finitely many times with probability 1, which proves the first result. On the other hand, let B(X <o)
be the support set of p(z1.,|X<0). Then

XSOHZE Y. p(Xua)| <L

1., €B(X<o)
The second result then follows from a similar procedure. O

Now we point out that, the Asymptotic Equilibrium property holds not only for i.i.d. sequences, but also
for stationary ergodic processes.

Theorem 1.26 (Shannon-McMillan-Breiman). Let (X;)iez be a stationary ergodic process. Then

1 1

nli_)ngoﬁlog o) = H*(X).
Proof. By Lemmas and almost surely,
limsupllog gliminfllog#:Hk(X),
nooo M p(Xim n—oo m” pF(Xip)
1
linrr_1>i£f % log o) > ligsolip%log P X <o) = H®(X).
Therefore, for all k£ € N, we have
HOO(X)gliminfllog glimsupllog ! < H*¥(X).
nooo U p(Xin) T onsee o P(Xiin)
Since X is stationary, H*(X) \, H*(X) as k — oco. Hence L log m 3 H>*(X). O

Remark. An example for stationary ergodic process is the irreducible and aperiodic Markov chain.
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2 Lossless Compression

In this section, we study the problem of lossless coding. To begin with, we have a source alphabet A and a
D-ary alphabet {0,1,---,D — 1}. Our key goal is to transform a string of X to a string of D.
e A source code is a mapping C : X — D* where D is a D-ary alphabet {0,1,---,D — 1}, and

D = Dl D",

The elements of C(X) are called codewords. For every symbol z € X, we denote by ¢(z) the length of
the codeword C(x) associated with x.

e A source code C' : X — D* is said to be nonsingular if it is injective.

e The extension C* : X* — D* of a source code C' is the mapping from finite length strings of X to finite
length strings of D:

C*(x129 - p) = C(21)C(x2) - - C(my).

e A source code C : X — D* is said to be uniquely decodable if its extension C* is injective.
e A source code C': X — D* is said to be instantancous (or prefiz-free) if no codeword of C' is prefixed by
any other codeword.
e We have the inclusions: nonsingular codes O uniquely decodable codes O instantaneous codes.
In general, some nice properties of a code are wanted:
e it is uniquely decodable;
e it is prefix free, so one can decode a string instantaneously while reading;
e it is efficient, i.e. given the distribution p of letters X in a string, we would like to minimize the average

codeword length:

E[0(X)] = ) pla)t(z).

2.1 Kraft-McMillan Inequality

Tree representation. A D-ary code C': X — D can be represented as a D-ary tree that consists of a root
with branches, nodes and leaves. The root and every node has exactly D children, with each branch labeled
by a letter in D. Starting from the root, each vertex is uniquely associated with a string d € D*, specified by
the path from the root to itself. Some examples of binary trees are given below.

nonsingular but not prefix-free prefix-free

16



We can determine whether a code is instantaneous right away by looking at its tree.
Proposition 2.1. A code C : X — D* is instantaneous if and only if all its codeword are leaves.

Proof. If C': X — D* is an instantaneous code, then each of its codeword has no descendant in the tree, which
is a leaf; conversely, if each codeword of C' is a leaf in the tree, it has no ancestor which is also a codeword,
and C is instantaneous. O

Using the tree representation, we can show a property which characterizes the instantaneous codes.

Theorem 2.2 (Kraft’s inequality). Let £ : X — N be a length function. Then ¢ is the length function of an

instantaneous code if and only if it satisfies Kraft’s inequality:

> D < (2.1)

zeX

Proof. We first prove necessity. Let £ is the length function of an instantaneous code C, and let L be the depth
of the tree. Then every codeword C(z) at depth ¢(z) prunes away D*~“®) leaves from the complete tree of
depth L. Since there are no more than D’ leaves in the complete tree, we have

Z DL—Z(x) < DL = Z D—é(z) <1.
reX zeX

Now we prove the sufficiency. To this end, we prove the following argument: at every step k € N, after all
codewords of length £(z) < k have been assigned, there is enough room left at the depth k for the codewords
of length ¢(x) = k. More explicitly, we want to show

pk— N DM'@W>|cTN(DM)|, Vi<k<L
reX:A(x)<k

Note that

|C_1(Dk)’ _ Z Dk—@(m).

zeX:U(z)=k

Then our conclusion holds if
> D*®<1, vkeN
zeX:(x)<k

Clearly this is valid by Kraft’s inequality (2.1). O
The Kraft’s inequality is also a necessary condition for a code to be uniquely decodable.
Theorem 2.3 (McMillan). Every uniquely decodable code C : X — D* satisfies Kraft’s inequality .

Proof. Let C': X — D* be a uniquely decodable code, and let L = max,cx ¢(z), where £ is the length function

of C. Then for a source string x1.,, the length of the extended codeword C*(z1.,) is given by

n

O (z1m) = > (x;) < nL.

i=1

Let Nj be the number of source strings of length n with £*(z1.,) = k. Since C' is uniquely decodable, the
source strings with codewords of length k are no more than D-ary strings of length k, i.e. N, < D¥. Then

nlL nlL
Z D~ @m) — ZNkD*’c < ZD’CD*’C < nlL.
k=1 k=1

T1n€EX™

17



On the other hand,

S D@ = 30 % Y pten pten) L potn)

T1n EX™ T1EX T2€X T, €X
- X D 3 pr e 3 prte (3200
r1EX roEX T €EX reX
Therefore, we have
> D7) < inf V/nL = 1.
ceX neN
Then we complete the proof. O

Remark. To summarize, the Kraft’s inequality (2.1)) is a
e sufficient condition for the existence of an instantaneous code;

e necessary condition for a code to be uniquelt decodable.

2.2 Fundamental Limits of Compression

In this section, we study the limits of lossless compression. Given a source distribution p on X, we want to
minimize the average codeword length of our code. By Kraft-McMillan inequality, the search for optimal code

can be expressed as the following optimization problem:

, , —t(w)
 min p(x)l(z) subject to Z D <1
zeEX rzeX

Following is a fundamental result of lossless compression.

Theorem 2.4. For any source distribution X ~ p on X, the expected length E[£(X)] of an optimal uniquely
decodable D-ary code satisfies

H(X)
ogD T (2.2)

<E[(X)] <

log D

Proof. UPPER BOUND. By Theorem [2.2] it suffices to construct a length function £ : X — N that satisfies both
the Kraft’s inequality and the second (strict) inequality given in (2.2)). Consider Shannon’s length function:

U(z) = {ng p(laj)-‘ . TERX, (2.3)

Since

S DD < N plEor@ = N p(a) =1,

zeX reX zeX

there exists an instantaneous code C' : X — D* whose length function is £. On the other hand,

) H(X)

E[((X)] =Y pla)l(x) < Y plx) <logD I% )= gD b

rzeX zeX

Hence the upper bound holds.

18



LOWER BOUND. We consider the following relaxed optimization problem:

min Zp(x)@(x) subject to Z D@ <1,
T aex zeX

Note that the range of ¢ is Ry. The Lagrange function is

L\ = Z p(x)l(z) + A (Z DH®) _ 1) ,

reX reX

with KKT conditions

% =p(z) =AD" '@ log D =0,
A>0, 3,y D@ —1<0,

ANE,ex D@ —1) =0.

The optimal solution is given by

1 Alog D
= , z)=1 =1lo , T € X,
and the optimal value is
1 H(X)
S p@)iz) = 3 p(a) logp —— = =), (2.4)
TEX reX p(x) IOgD

Since our problem is relaxed, the primal problem ([2.3)) has optimal value no less than (2.4). Hence the lower
bound holds for all uniquely decodable codes. O

Remark. In fact, we proved the existence of an instantaneous code with

H(X)

(0] < 15,5 + L

Coding over blocks. Using integer codeword lengths may lead to waste of memory. To overcome this effect,

we consider coding over blocks of input symbols. If the input data X, Xo,--- is an i.i.d. sequence of symbols,
we partition it into blocks of size n and create a new source X, Xs, - -+, where
Xi= (X1, Xp), Xo=(Xpg1, Xon), s X = (Xhotynsts > Xpn), -

Consequently, every vector )N(k can be viewed as a symbol from the alphabet X=4x " and we can find an
optimal code C': X — D, whose length function ¢ satisfies

iy == [w] = 5

1.
logD — *

Note that H(X) = nH(X), the average codeword length per symbol (in X) satisfies

HX) 1. <1 HX) 1
log D = EE [E(X)] < log D + n’

As the block size n increases, the integer effect becomes negligible. However, we also introduce delay in our

system and increase the complexity of our code.
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2.3 Shannon-Fano-Elias Coding

In this section, we introduce a specific coding approach that is near-optimal.

Midpoints of CDF. Without loss of generality, we assume that the source alphabet is X = {1,2,---

and p(1) > p(2) > -+ > p(m). The cumulative distribution function of p is
j=1

We define F(z) to be the midpoint of the interval [F(z — 1), F(x)):

Then F(z) is a real number in (0, 1) that uniquely identifies z € X

D-ary expansion and truncation. The D-ary expansion of a real number F(x) € (0,1) is given by

F(z) =(0.2122---)p :szD*k:leflJerD*QJr" , 21,22, €{0,1,--- /D —1}.
k=1

Given a positive integer £ € N, one have the /-truncation of the D-ary expansion of F(z):
¢
C(z) =(0.z122 - 20)p = Z 2 D7F
k=1

To ensure that the codeword of z is unique, we let F(z) — C(z) < @, so that
Clx—1)<Flx—-1)<F(z—-1)<C(x).

To this end, we set

1
(= |logp — | +1,
[ &p M
then

F(z)—C(z) < Dt < D™ 'o8p ol < ]% < @

Construction of the Shannon-Fano-Elias code. For each z € X:

e Let z be the D-ary expansion of x;

e Choose the length of the codeword of z:

1
{(x) = |log —‘ + 1;
)= [ 5
e Choose the codeword of x to be the first most significant D-ary digits:
z2=10.2122" " 2¢(a) Zo(x)41 """ -
—_———

C(x)

20
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An example of binary Shannon-Fano-Elias code. Here we let X = {1,2,3,4,5}, and D = 2.

0.9257
0.775T
F(x) 0.600“_ ______________
0.3757
0.1257
: : > X
0 1 2 3 4 ) 6

x| p(x) | F(x) | F(z) | F(z) in binary | (z) = {log2 ﬁ—‘ +1 | codeword
11025 | 0.25 | 0.125 0.001 3 001
21025 | 05 | 0375 0.011 3 011

31 02 0.7 0.6 0.10011 4 1001
41015 | 085 | 0.775 0.1100011 4 1100

5 | 0.15 1.0 | 0.925 0.1110110 4 1110

Shannon-Fano-Elias code is instantaneous. If the codeword C(x) = (0.21 - - - 2(z)) p is a prefix of another
codeword, this codeword lies in the half-open interval

1
(0.21 - 2¢(2)) D> (0.21 - - 2¢(2)) D + Dl(m)) .

However, a contradiction rises because
Cla+1) = C@) > F(z) - Fla) = X&) 5 pte)

Average codeword length. The average codeword length of Shannon-Fano-Elias code is given by

B0 = 3 plo) ([1oe0 2] +1).

zeX

which satisfies

1<E[{(X
logD+ <EX )]<1ogD

It is revealed that the Shannon code is sub-optimal.
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2.4 Shannon Code

Improvement of Shannon-Fano-Elias code: Shannon code. We consider

x—1
1
F(z) = p(x), €x:{log-‘.
(0= Xortoh 40 = [l 1
We choose the codeword c¢(z) to be the ¢(z)-truncation of the D-ary expansion of F'(x).

Shannon code is instantaneous. For every symbol i, the number F; = 22;10 p; has the binary expansion
o0
F; = (0.212’2"')2 :sz27k, 21,29 € {0,1}
k=1

The round off to ¢; is obtained by truncating the bits after /;:
£
ci =(0.z129-+2p,)2 = Z 227k,
k=1

Fix i € {1,---,m — 1}. Since {; = {logQ piw > log, i, we have
Fip1— Fy = p; = 218270 > 274,

For any j > i, we have I} — I} > 2= If c; is prefixed by c;, then F; and Fj share the first ¢; bits, which
implies F; — F; < 2~ a contradiction! Hence the Shannon code is prefix-free.

Average length of Shannon code. The average length of this code L = >~ p;{; satisfies

- 1« 1 - 1
H(X)=> pilog,— <> p; {log2 w <Y i (10g2+1> = H(X)+1.
i=1 pi i bi i=1 P
Hence H(X) < L < H(X) + 1.

Example. We construct the Shannon code for the probability distribution (0.5,0.25,0.125,0.125) for exam-
ple. The code is shown below.

i Di F(x) ;= {log2 i—‘ Codeword
1] 05 0=(0.0), 1 0

2 | 0.25 0.5 = (0.1), 2 10

3 | 0.125 0.75 = (0.11) 3 110

4 | 0.125 | 0.875 = (0.1110)5 3 111
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2.5 Huffman Coding

The search for binary optimal code was discovered by David Huffman (1952).

Construction of Huffman tree. The construction procedure is greedy.
e Take the two least probable symbols, which will be assigned the longest codewords having equal lengths
and differing only at the last digit;

e Merge these two symbols into a new symbol with combined probability mass and repeat.

Codeword | x | p(z)
01/ 040 0
10 | 2| 015 — 0
100 | 3 | 0.15 0 — 1
2 .
101 | 4 | 0.10 EE ' 0.6
1110 | 5 | 0.10 '
11110 | 6 | 0.05
111110 | 7 | 0.04
111111 | 8 | 0.01

Optimality of Huffman code. Let X = {1,2,--- ,m}. Without loss of generality, assume probabilities are
in descending order p(1) > p(2) > --- > p(m). We prove the optimality of Huffman code through three step.

Lemma 2.5. In an optimal code, shorter codewords are assigned larger probabilities, i.e. p(i) > p(j) implies
£(i) < £(5)-

Proof. Argue by contradiction. If there exists i,j € X with £(i) < £(j) and p(i) > p(j), then we can exchange
these codewords and reduce the expected length. Hence the code is not optimal. O

Lemma 2.6. There exists an optimal code for which the codewords assigned to the smallest probabilities are
siblings, i.e., they have the same length and differ only in the last symbol.

Proof. Consider any optimal code. By Lemma the codeword C(m) has the longest length. Assume for
the sake of contradiction, its sibling is not a codeword. Then the expected length can be decreased by moving
C(m) to its parent. Thus, the code is not optimal and a contradiction is reached.

Now, we know the sibling of C(m) is a codeword. If it is C(m — 1), we are done. If it is some C(¢) for
i # m — 1 and the code is optimal, by Lemma [2.5] we have p(i) = p(m — 1). Therefore, C(i) and C(m — 1)
can be exchanged without changing expected length. O

Theorem 2.7 (Optimality of Huffman coding). Huffman’s coding algorithm produces an optimal code tree.

Proof. Let ¢ be the length function of the optimal code. By Lemmas and C(m) and C(m — 1) are
siblings and the longest codewords. Then we merge the two symbols and let p; > -+ > p,,,—1 denote the
reordered probabilities after merging p(m) and p(m — 1), and denote by C~'1, oo+, Cpu_q the corresponding
codewords. The reduced length function { satisfies

E[((X)] = E [U(%)] +P (4X) £ UX)) =E [AZ)] + p(m — 1) + p(m).
Hence ¢ is the length function of an optimal code if and only if / is the length function of an optimal code

for the reduced alphabet. The problem then is reduced to finding an optimal code tree for p; > -+ > Dpy_1-
Repeat the merging procedure above for m times, and the result follows. O
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2.6 Coding with Unknown Distributions

Given a distribution X ~ p, it is possible to construct a code that achieves the optimal expected length.
However, we do not know what to do when the distribution p is unknown. In this section, we suppose that X
is drawn from some distribution py parameterized by an unknown parameter 6 € O.

Definition 2.8 (Redundancy). The redundancy of coding a distribution p with respect to the optimal code
for a distribution ¢, i.e. £(z) = —logq(x), is given by

Ripa) = 3 p()(@) — Hp) = 3 p(a) log ggmg — D(pllg).

rzeX reX

Given a family of distributions {pg}gco, the minimax redundancy is
R* = mi R(pg, q).
min max (po, q)

Remark. Intuitively, the distribution ¢ leading to a code that minimizes the maximum redundancy is the
distribution at the center of the “information ball” of radius R*. Therefore, by constructing an optimal code
based on ¢, we can reduce the redundancy in the worst case.

Lemma 2.9. We impose a prior distribution m on ©. Then

I;leaé( R(po, q) = max Z R(pg,q
6cO
Proof. On the one hand,
I;leaé( R(py,q) max Z 30, (0)R(pe,q) < maxeeZ@ R(pg,q

On the other hand, if 6* € © maximizes R(pg, q), one have

> 7O Rps,q) <D m(0)R(po-,q) = R(por,q) = max R(p, q), Vm € A(O).
0coO 0co

Then we complete the proof. O]
We also introduce another technical theorem.

Theorem 2.10 (Minimax theorem). If f : X x ¥ — R is a continuous function that is conver in the first

variable and concave in the second variable. If both X and Y are conver compact sets, then

a a.
ggg(lgleXf(wy) I;lefjngnf( Y)-

Remark. To develop the following theorem, we use the joint convexity of Kullback-Leibler divergence:

D((1 = N)po + Ap1[[(1 = A)go + Ag1) < (1 — A)D(pollqo) + AD(p1llq1)-

Theorem 2.11. The minimaz redundancy is the mazimum mutual information between 8 and X :
R* = max I(6; X),
s

where w(0) is the prior distribution of the parameter 6, and X |0 ~ py(z).
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Proof. Using Lemma [2.9 and Theorem we reformulate the optimization problem:

R = mqin max R(ps,q) = rnqin max Z m(0)R(po, q) = max HllIl Z R(pe, q). (2.5)
4SS 0ce
We write
gr(z) = ) m(O)po(x).
0cO
Then

> 7 (O)R(ps,q) = > 7(0)D(polla) — D(grllg) + D(gxllg)

6co 0eO
=3 w(0)ps(x)log (( )) + D(gxllq)

Il
g
g

3
=
]
i‘i\

0€eO zeX TEX 0O
X

= 3" S (0ol Tog “E ; + D(gllg)
0cO zcX qn\T

Since the first term does not depends on g, the last display reaches its minimum if and only if ¢ = q;:

mm Z R(pe,q) = Z Z w(0)py(x) log Sig;

0c® 0coO xcX

R o5 e

0eO® zeX

where 7(6)pg(x) is the joint distribution of 8 and X, and ¢, (z) is the marginal distribution of X. Plugging in
this expression to (2.5 completes the proof. O
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3 Channel Coding

Motivation. In a communication situation, we often have two primary goals:
e Reliability. The received message should be equal to the transmitted message in most cases. In other
words, we wish to reduce the error probability:

P, =P (received message # transmitted message) .

e Ffficiency. The message should be transmitted as quickly as possible. In other words, we wish to send

as much information as possible in a unit time:
R = average number of information bits transmitted per unit time.

However, these two goals often conflict with each other. We use the Binary Symmetric Channel (BSC) to
interpret this. Suppose that we want to send a bit W € {0,1}. A binary symmetric channel has a binary
input X € {0,1} and a binary output Y € {0,1}. While sending a bit, it flips the bit with probability a:

l—«
0—0
«
«

To reduce the error probability, we use the channel multiple times. Assume that each use of the channel
consumes a unit time, and the channel is memoryless, i.e., given the input, the outputs of the channel are
conditionally independent. We encode the bit using a repetition code:

W=0 = X3.,=00---0, W=1 = Xy,=11---1.
N~—— N——

n n

Given the output Y7.,, we decode the bit using the maximum likelihood rule:

/V[7 B 0, if there are more 0’s observed in Y1., than 1’s,
1

, otherwise.

As the uses n of channel increases, the error probability decreases, but the bit the channel transmitted every
unit time R = 1/n also decreases. Hence a tradeoff between reliability and efficiency is required.

3.1 Set-up of Channel Encoding

In this section, we study the problem of channel coding. Consider the communication over a random channel:

Message Encoder Xin Channel Yin Decoder Estimate
. > > — —
w EW) p(ylz) D(Y1:n) W
e The message W € {1,---, M} is one of the possible M numbers that we want to send. We always assume

W to be uniformly distributed over all possibilities.
e An (M, n)-coding scheme is an encoder € : {1, -+, M} — X™ that maps the message M to an n-length
string of channel inputs X";
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e The channel specifies the probabilistic transformation from inputs to outputs:
p(yl:n|x1:n> == IE:D(le =Y, aYn = yn|X1 =Ty, 7Xn = xn) .

We are particularly interested in the discrete memoryless channel (DMC), which is specified by
(i) an input alphabet X,
(ii) an output alphabet Y, and

(iii) a conditional probability distribution py|x(y|z) such that the outputs between channel uses are

conditionally independent given the inputs:
p(y1:n|$1:n) = pY|X(y1|301) " 'pY|X(yn\l‘n)~

e A decoder D : Y* — {1,--- , M} maps an n-length string of channel outputs Y;., to an estimate W of
the transmitted message.
Now recall our two primary goals in communication:
e Reliability. Assuming that the message W is uniformly distributed over all possibilities, the conditional
error probability and the average error probability are

M
— — 1
P (w) =P(W #w|W =w), PM™=PW £W)= i > PM(W).
w=1

The maximum error probability is

pln _ P () — P(W W = w).
emax(W) = max PeU(w) = max W PWFw|W=w)

e FEfficiency. The rate R of an (M,n) encoding scheme is

log, M
n

R =

bits/transmission.

Alternatively, the number of messages for a given rate R and block-length n is given by M = 2", To
specify a rate R code, we write (2% n) instead of (M,n). Particularly, are interested in the case that
the error probability becomes negligible as the coding length n goes infinity.

Definition 3.1 (Operational Capacity). A rate R is achievable for given discrete memoryless channel p(y|z),
if there exists a sequence of ([2"#],n) coding schemes such that maximum error probability

lim P =0.
Jim Pl =0
The operational capacity Cyp is the supremum over all achievable rates:

Cop =sup{R : R is achievable} .

Definition 3.2 (Information Capacity). The information capacity of a discrete memoryless channel is

py|x(y|x)
C =supI(X;Y) = sup px (2)py|x (y|x) log
PX PX wez\;ey ! 2 Zm’e)( pY|X(y|37/>pX (.’IJ/>

Remark. Since the map px,py|x + I(X,Y) is concave about px, we can always find a maximizer p% that
reaches the supremum: C' = max,, I[(X;Y).
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3.2 Shannon’s Channel Coding Theorem: Achievability

In the next two sections, we will establish Shannon’s channel coding theorem.

Theorem 3.3 (Shannon’s channel coding theorem). The operational capacity of a discrete memoryless channel

is equal to the information capacity:

Cop =supI(X;Y).
pPx

Remark. In fact, the channel coding theorem consists of two statements:
e Achievability. Every rate R < C is achievable, i.e. there exists a sequence of (2", n) coding schemes

such that the maximum error probability Pe(?gax — 0 asn — oo:

R<C = R isachievable.

e Conwverse. Any sequence of (2"% n) coding schemes with the maximum error probability Pe(ffgax — 0 as

n — oo must satisfy R < C.

R is achievable = R<C.
In this section, we are going to establish the achievability part of channel encoding theorem.

Construction of encoder £. A (2"% n) encoder £ can be represented by a codebook:

o (Eln(2) _ (El(?) .’1,'2(2) . xn(2) c X2"R><n. (31)
:El:n(QnR) x1(2nR) x2(2nR) . xn(2nR)

To transmit a message w, the encoder assigns
E(w) =10 (w), we {1,2, e ,Q”R} )

We consider the construction of random encoder. To proceed, we first choose a input distribution px. We let
each entry in the codebook £ to be drawn from i.i.d. px. The probability of generating any particular random
codebook (3.1)) is then given by

2nR

p(€) = [T I px(za(w)).

w =1

With the codebook & specified, the conditional distribution of input string Xi., is the

2nR
1
le:n\g(xl:n) = 2717]{ Z ]1{11:,1:5(111)}7 T1:n € Xn;
w=1
and
2nR
lem|S(y1:n) = 277,7R Z leleLn (y1n|5(w))a Yi:n S yn
w=1
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To find the unconditional distribution, note that each row of the codebook has the same distribution:

leﬂ xln HPX xl

PYi (Y1m) = Z PX1on (T10)PY1 0 | X1 (Y1 |10
T1n €EXT

Z Z Z HPX pY\X (yilz:)

r1EX z2€X T, €X 1=1

n
=11 (Z px (zi)py|x (yilzi) ) pr (i)

i=1 \z;eX

Py (i)

Since the channel is memoryless, the information density of (X1.,, Y1.n) can be factorized:

PX1n,Yiin (xlznv yl:n) -1 pY11n|X1m (yl:n|x1:n)

7;(-’L‘I:n; yl:n) = 1Og2

len(xl n)len(ylzn) B 2 le;n(ylzn)
n n
Py |x (Yk|Tk) .
= logy P = S i ).
— py (Yr) —

These distributions arise from the randomness in both the codebook and the message.

Construction of decoder D. To finish the construction of a coding scheme, we need to find an optimal
decoder. To minimize the probability of error, we use a mazimum a posteriori (MAP) decoder:

D* (ylzn) argmax pW\Ylm, (w|y1n)

we{l,... 2nk}

= argmax pW(w)pYLnlW(ylinlw)'
we{l’...’an}

Since the message W is uniform, the MAP decoder is equivalent to the maximum likelihood decoder:

D* (yl:n) = argmax Pys, n|W(y1 n |w)
we{l,--- 2nR}

Using the information density, we have

D*(y1n) = argmax  py,,|x,., (Yin|T1n(w))
w€{1,~--,2"R}

Py, | X1 (yl:n "rlin (w))
= argmax
wefl, 2nR} PYion (Y1:n)

= argmax (T1.,(W);Y1.n)-
we{l,-,2nR}

To simplify the analysis, we study a sub-optimal thresholding decoder: For a given threshold T,,, we define
the decoding rule as follows:

ﬂj\v Z.f Z(xl n( ) Yi: n) > Tn and Z(ml n( )7y1n) S Tn fO’/’ all w 7é ﬂ]\a

D(ylzn) -
0, otherwise.

29



Decoding error is uniform. We now analyze the decoding error of our coding scheme. By uniformity of

our construction of codebook and the message W,

P(W £ W) = Zp P(W # W|E)
2nR

Sop(E) Y g POV # WIE W =)
£

w=1

2nR

:2nRZZp P(W # W|E,W = w)
w=1 &
2nR

:2nRZZp P(W £ W|E,W =1)

w=1 &
Zp P(W £ WIE,W =1)

=P(W £ W|W = 1)

Therefore, it suffices to control the decoding error conditioned on the event W = 1.

Proof of Theorem (Achievability). Define events A and B as follows:

nR
Ap = {i(X1:0(1); Y1n) > T}, By = h {i( X1 (w); Yiin) < T}
Consider the following bound:
P(W # W|W =1) = P(A% UBS) < P(AS) + P(BS).
Analysis of P(A%). By construction, the input X7.,(1) and output Yi., satisfies
(Xi(1),Y5) "= " PXDPy|x-

Meanwhile,

py|x (Y| Xk (1))

E [Z(Xk(l)vyk)] =E |:10g2 py(Yk)

] _I(X:Y), where (X,Y)~ pxpyix.

By strong law of large numbers,

Z(Xln( Yln _

®

i:

Zz Y I(X;Y) as n— occ.

k=1

3\>~

Fix any € > 0, and set T, = n(I(X;Y) — €). Hence

limsup P(Af) = limsup P (Z(X“L(I)’Yln) <I(X;Y)-— e)

n—00 n— 00 n
<1P><ﬂ U {X” i Y1in) gI(X;Y)e}>
N=1n=N
:P(limsupWWSI(X;Y)—e):O.
n—00 n
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Analysis of P(BS). By construction, for all w # 1, Xy.,(w) is independent of X;.,(1). Since the output
Y., is generated from X.,(1) and py|x, it is independent of X1.,(w):

(Xk(w), Yy) K pxpy.

Using the Chernoff bound, we have

]P)(Z(Xln(UJ), Yin) > Tn) < 2_T"E |:2i(X1:n(w);Y1:n):|
— 2—Tn]E |: PX1.n,Yiin (Xlzn(w)a ifln) :|
PxX1o (X1 (W))Pyi, (Y1)

_ PXy.,,Yq. (xl:nayl:n)
-9 Tn DXy (xl: )pY . (yL ) 1:n,Y1:in
m;nzejﬂ,’“' ylmzejyn : B " px, . (T1n)Py:., (Y1)

=21,

We then employ a union bound:

2nR

PBE) =P ( |J {i(X1n(w), Y1) > T}

21LR

S Z P (i(Xlzn(w)7Y1:’rL) > Tn)
w=2

< 271R—Tn

_ 2n(R7[(X;Y)+e) )

Choice of ¢ and px. Since R < C = sup,, I(X;Y), we choose € = %(C’ — R), and choose px such that

I(X;Y) > R+ 2

1
=(C - =(C - R).
Then we have

lim P(W # W|W =1) < lim P(A%) + lim P(BS)
n—oo n—oo

n—oo

< lim 27" =0.

n—oo

Based on our previous discussion, the result follows.

Strengthening the proof. Yet we have not find a deterministic codebook with small error of probability.
To finish the proof, we will strengthen this conclusion by getting rid of the average over codebooks. Note that

the average probability of error over codebooks is small:

P(W £ W)=Y BW £ WI[EP(E) <,
&

where € > 0 is an arbitrarily fixed quantity. Hence, over the set of possible codebooks, there exists at least

one codebook £* with a small probability of error:

P(W#£W|E=E")<e
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At this point, it is still possible that the codebook £* contains some codewords with bad conditional error
probabilities. Define

Aw) =P(W £ W € =E* W = w).

Since W is uniformly distributed over {1,2,---,2"#} the number of “bad” codewords satisfies
an
1 < 2"RIP> W £ WIE = &%) < 27R0-3),
1;:1 {A(w)>2¢} Z 26 ( 7& | )
Therefore, if we expunge the worst half of the codewords, the maximum conditional error of the remaining
codewords is Pé n)lax < 2¢, and the rate of the new codebook is R — +. Since this difference goes to zero as
n — 00, we can conclude that Pe(fﬁzax converges to 0 as n — oo. O

Remark. Although the theorem shows that there exist good codes with arbitrarily small error probability
for long block lengths, it does not provide an approach to construct the optimal codebooks. Without some
structure in the code, the simple decoding scheme of table lookup requires an exponentially large table.

3.3 Shannon’s Channel Coding Theorem: Weak Converse

In this section, we prove the converse part of Shannon’s channel coding theorem.

Lemma 3.4. Let C = sup,, (X;Y) be the information capacity of a discrete memoryless channel py|x. For
any input distribution px,. (T1.,), it holds

I(Xl:n; 1/ln) <nC.
Proof. We decompose the mutual information I(Xj.,;Y1.,) by chain rule:
I(Xlzn; Yl:n) = H(Yln) - H(Y1:n|X17 T 7Xn)

=Y HY|Yioy, -+ Y1) =Y HYi|Yioq, -+ Y1, X1, , Xp)

n

= ZH(YHYFM'“ Y1) —ZH(K’|X1')
=1

i=1

<> H( ZH Y;| X;) zn:I(Xi;Yi)gnC.

=1 =1

3

Hence we conclude the proof. O

Proof of Theorem [3.3 (Converse). By Fano’s inequality [Theorem ,

— HW|W)=1 HW|W)-1
P —P(W £ W) > = .
¢ W#W) = log, 271 nR

Since W is uniform over all possibilities,

nR=HW) =HW|W)+ I(W;W) =nRP™ + 1+ I(W; W)
< nRPe(") + 14+ I(X1m; Y1) (By data processing inequality)
< nRP™ + 14 nC.
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Therefore, we have

R-C)-1 C
po > ME=O =1, Oy o
e R A
If R > C, the error probability Pe(n) does not converge to 0, and R is not achievable. O

Further discussion about random coding: Privacy. We will provide more analysis about the privacy
of this random coding scheme. Suppose that an eavesdropper observes the channel output Y., but does not
know the codebook £. We are worried that the eavesdropper might figure out the codebook.

Since the codebook £ is randomly chosen, the difficulty of recovering the codebook £ from the outputs Y7.,
depends on the their mutual information. We will prove the following bound:

I(&;Y1.,) < n(C — R) + Hy(P™) + PM™nR.
Using the chain rule, we have the decomposition

e We first bound I(Y1.,;E, W). Since Xi., is a function of W and &, and Y3, is conditionally independent
of £, W given Xi.,,

I(Yln,(c/‘,W) = I(Yn,g, VV,Xl:n) = I(len;Xl:n) S nC’

where the last inequality follows from Lemma |3.4]

e Now we bound I(Y7.,; W |E). Since the message W and the codebook £ are independent, we have
IW;Y10|E) =I(W; Y10, E) — I(W5E) = I(W; Y10, ).
Since W is conditionally independent of W given Y™ and £, we have

I(W3Yi |€) = I(W; Y1, €) > I(W3 W, €
=H( H(W|W, ) (chain rule)
> H(

~—

(data processing inequality)
W) —
W) — H(W|W) (Conditioning does not increase entropy)

By Fano’s inequality,

H(W |W) < Hy(PM™) + PM™ log W] < nRP™ + Hy(P™).
Note that W ~ Unif(1,2,---,2"%) we have
I(W: Y10 | €) > HW) = H(W[W) = (1= P™)nR — Hy(PM).
According to the two bounds, we have
I(E; Y1) = I(Y1; €, W) — I(Yi; W | €) < nC — (1 — P )nR + Hy(P™).

) is sufficiently small, increasing the rate R leads to

This proves the result. As long as the error probability Pé"
better privacy. An interpretation is that a coding scheme with higher rate R produces less redundancy while

transmitting a message. In this case, there is less information about the codebook £ in the output Yi.,.
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3.4 Feedback Capacity

We turn to another setting of channel coding, where we allow our encoder to use previous outputs. That is, at
the n-th step, our encoder assigns a channel input X,, according to not only the message W to be transmitted,
but also the previous outputs Yi.(,—1). This setting is called the channel coding with feedback.

Message Encoder X Channel Y, Decoder Estimate
—_— > T > — —~
144 EW, Y1.(n—1)) p(y|r) | D(Y1:n) w
: :
T  FReedback

Theorem 3.5. Feedback cannot increase capacity. For a discrete memoryless channel, the capacity with
feedback, Cpp, is the same as the capacity without feedback:

Crpg =C.
Proof. Like the proof of the weak converse, since W is uniform over all possibilities,

nR=H(W)=HW|W)+I(W;W)

= nRP™ +1 4+ I(W; ﬁ/\) (By Fano’s inequality)
< nRPM™ + 14+ I(W;Yi.,). (By data processing inequality)
Then it remains to bound the mutual information I(W;Y7.,). Since X; is a function of W and (Y;—_1,---,Y;),

and Y; is conditionally independent of W and (Y;_1,---,Y;) given X;, we have

H(Y;,D/Z717 7Y17W) = H(K|Y;717 7Y17WX’i) = H(Y;‘XZ)

Then
I(W, Yl:n) - H(Yln) - H(Y1:7L|W)
=Y HYi[Yi1,-+ Y1) = > HYi|Yiiy, -+, Y1, W)
i=1 i=1
n n
=Y HYi|Yi1,--- Y1) = Y H(Yi|X))
i=1 i=1
<D HY) - Y H(Yi|X;)
i=1 i=1
=Y I(X;;Y;) <nC.
i=1
Therefore,
R-C)-1 C
po s MBE=C =, Oy oy
S D A
If R > C, the error probability P@(n) does not converge to 0, and R is not achievable. Hence R < C. O

Remark. This surprising fact stems from the memorylessness of the channel. Of course, feedback can help
simplify our encoding and decoding schemes in terms of complexity.
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3.5 Hamming Code

Motivation. The object of coding is to introduce redundancy so that even if some of the information is lost
or corrupted, it is still possible to recover the message at the receiver.
A simplest coding scheme is to repeat information. For example, consider sending a bit W € {0, 1} with a
binary symmetric channel. One repeat the bit over n channel uses, i.e. send 11---1 for 1 and 00---0Q for 0.
— —

n n

This code can correct up to ”Tfl flips, and the error probability converges to 0 as n — co. However, the rate

R = 1/n of this code also goes to 0, which is not very useful.

Parity check code. Instead of simply repeating the bits, we can introduce each extra bit to check whether
there is an error in some subset of the information bits. This is called an error-detecting code.

A single parity check code is a (2"~1,n) coding scheme for a binary symmetric channel which sends n — 1
information bits, and the n-th bit encodes the parity of the entire block, i.e. whether the number of 1’s in the
information bits is even or odd. Then if there is an odd number of errors during transmission, the receiver will
notice that the parity has changed and detect the error. This code does not detect an even number of errors

and does not give any information about how to correct the errors that occur.

Hamming Code. To illustrate the idea of Hamming codes, we begin with an m x (2™ — 1) binary matrix
formed by arranging the 2™ — 1 nonzero binary column vectors of length m in ascending order. The matrix H
is called a parity check matriz. For example, when m = 3, the parity check matrix H € {0,1}>*7 is given by

0 001 1 11
H=|0 1 1 0 0 1 1
101 0101

From now on, all operations will be done modulo 2. Under this setting, the set {0,1} becomes a field:
0+£0=0, 0+1=1 1+1=0, 0-0=0, 0-1=0, 1-1=1,

The Hamming codewords correspond to the null space of the parity check matriz. In other words, each Hamming

codeword c is a solution of the linear system
Hc=0,
where ¢ € {0,1}?" ! is a binary vector. For the case m = 3, there are 16 Hamming codewords:

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

We call this a (7,4) Hamming code, and the rate is

B log, 16 - é

R - =

Furthermore, since the null space ker(H) is a subspace of the vector space {0,1}2"~!, the sum of any two
codewords is also a codeword.
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Rate of the Hamming code. According the rank-nullity theorem, for a parity matrix H € {0,1}m*2" 1),

rank(H) + dimker(H) = 2™ — 1.

Since we can always pick the m distinct one-hot vectors from the columns of H, we have rank(H) = m, and
dimker(H) = 2™ —m — 1. Therefore, the null space of H has dimension k = 2™ —m — 1, and over the binary
field there are 2¥ Hamming codewords. This is called a (N, k) Hamming code, which carries k = 2™ —m — 1
information bits via N = 2™ — 1 channel uses. The rate of this code is

k m+1

As we can see, the rate R of the Hamming code converges to 1 as m — oo.

Minimum weight and minimum distance. Since the columns of H are distinct, the sum of any two
columns of H must not be the all-0 vector. Hence the minimum number of 1’s in any nonzero codeword is 3.
This is called the minimum weight of the Hamming code.

If ¢1 # co are two distinct Hamming codewords, we have H(c; — c2) = 0, and ¢; — ¢ has minimum weight
3. Hence ¢ and c¢; differ at no less than 3 bits. This is called the minimum distance of the Hamming code.

Covering property of the Hamming codewords. We can show that the Hamming words are widely
dispersed in the space of bit words. Let ¢ € {0,1}?"~! be a Hamming codeword, and write by [¢| the ball
centered at ¢ of radius 1 in {0,1}2" 1, i.e. [¢] is set of all bit words of length 2™ — 1 whose distance to c is

not greater than 1. For example, when m = 3 and ¢ = 0100101,
[0100101] = {0100101, 1100101, 0000101,0110101,0101101,0100001,0100111,0100100}

Generally, the ball [¢] contains 2™ words, which are c¢ it self and the 2™ — 1 words obtained by flipping
exactly one bit of ¢. Since the minimum distance of the Hamming code is 3, we have [¢] N [¢] = () for any
codewords ¢ # ¢. As a result, there are 25 . 2™ = 22" ~1 distinct bit words in the union of the unit balls
centered the Hamming codewords ¢, ¢z, - - - , Cox. Since there are in total 22 ~! bit words of length 2 — 1,

{0,1)*" 7t = [e1] Ulea] U+~ U 1]

Thus we obtain a cover of the space of all bit words generated by the Hamming codewords. In this sense,
every bit word of length 2™ — 1 either is a codeword or differs from a unique codeword in exactly 1 bit.

Hamming code corrects up to 1 flip. If a codeword c is corrupted in only one bit, it will differ from any
other codeword in at least two bits. Hence c is the unique closest codeword.

In fact, we can identify the closest codeword without a brutal search of all codewords. We assume that e;
is the one-hot vector whose 3" bit is 1. If the " bit of the codeword c¢ is flipped, the received vector is then

given by r = ¢+ e;, which satisfies
Hr=H(c+e;) = Hc+ He; = He,.

This is simply the i*" column of the parity check matrix H.
Thus, assuming that only one bit was flipped, the vector Hr is the binary representation of index of the
flipped bit. By flipping this bit in the received vector r, we recover the original codeword c.
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Application: the hat game. We see an application of the Hamming code in game theory. In a hat game
of N players, each player is independently assigned a hat. Each hat is colored 0 or 1 with probability 1/2.
Here are the rules of the game:

e Players act a team — everyone wins or everyone loses.

e A player can observe the hats of all other players, but cannot observe the color of her own hat.

e Once hats have been distributed, there no communication between team members.

e When asked the color of their hats, all players must answer simultaneously.

e Each person is allowed to pass rather than guess a color.

e Team wins if at least one player guesses correctly and none guess incorrectly. Otherwise, the team loses.
We focus on finding an optimal strategy that maximizes the winning rate. Before we proceed, let us take a
look at the best result the players can make. We let ; be the color of the i*? player’s hat.

e In this game, each player’s decision making process is independent of the color of their own hat.

e If the j“‘ player gives a correct guess in the case (z1,- - 51,0, 2541, ,Zn), she must give a wrong
guess in the case (x1,---,%j—1,1,%41, -+ ,Tn), and vice versa. Therefore, no matter what strategy the
players take, there must be an equal number of correct and wrong guesses among all possible outcomes.

e However, this fact does not mean that our overall strategy has to lose as much as it wins! According
to the rule, we require each win to have at least one correct guess and no wrong guess. To increase
our overall winning rate, we would like that there are less correct guesses in each win and more wrong
guesses in each loss. In the optimal case, we would have exactly one correct guess in every win.

e Among all 2V outcomes, we assume that there are G wins. According to the constraint we discussed
previously, to maximize G, we assume that each win has only a single correct guess. Since each loss has
up to N wrong guesses, we have

G<NE2Y-aG).

This gives an upper bound of the winning rate, and we cannot do any better:

N

The optimal strategy. In the hat game, when the number of the players is of the form N = 2™ — 1, we

consider the following strategy: Player j forms the bit word (z1,---,2j_1,%,2 41, - ,Zn), Where z; is the
color of the i" hat.

o If (x1,--- ,2j-1,0,2;41, -+ ,xn) forms a Hamming codeword, the player j guesses 1;

o If (x1,--- ,xj_1,Ll,zj41, -+ ,xn) forms a Hamming codeword, the player j guesses 0;

e Otherwise, the player j passes.
Using this strategy, there are only two possible outcomes:
o If (21, -+ ,x,) is not a Hamming codeword, then it differs from a unique Hamming codeword in exactly
one bit, denoted by x;. In this case, all players except j pass and the player j gives a correct guess.
o If (x1,--- ,x,) is a Hamming codeword, then each player gives a wrong guess.
Then the winning rate is one minus the proportion of Hamming codewords to all bit words:
ok 92™—m-—1 N

P(win):l—ﬁzwzl_Q*m:m.

Hence this strategy reaches the optimal winning rate. Furthermore, the winning rate converges to 1 as m — oo.
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4 Differential Entropy and Gaussian Channels

4.1 Differential Entropy of Continuous Random Variables

Motivation: Entropy of continuous random variables. We let X be a continuous real-valued random
variable supported on [a, b]. Assume that the density function f of X is a continuous function. Then

x
]P’(XS:I:):/ f@®)dt, a<z<b.
a
We divide the range of X into bins of width é > O:
a=ty <ty <ty < - <t 1 <b<t,, ti—ti_1=029.

By mean-value theorem, there exists x; € [t;—1, ;] such that
t;
f(zi)d = f(z)dz.

ti—1

We then quantize X by defining
X6:{L‘i, Zf tio1 <X <t.

Then X is a discrete random variable, and its probability mass function is given by

PO =)= [ f(@)de = f(z:)6.

ti—1

The entropy of X? is

n

(X% = Y f@)dlog sz = Y- f@)d g + 3 f(w)61ow 5

= (b~ 1) (i) o % +log < > |t

ti—1

= 1 1
= Z;(tz —ti—1)f(zi)log @) + log 3
This entropy blows up as § — co. Therefore, the entropy of a continuous random variable is infinite. However,
since f : [a,b] — R, is Riemann integrable, we have
1

b
%ifg (H(Xg)—log(s) = ’ f(x)logﬁdx

We can extend this definition to multidimensional spaces.

Definition 4.1 (Differential entropy). Let X ~ f be a continuous random variable, and the range of X is
X C RP. If the function x — f(x)log f(x) is integrable, define the differential entropy of X to be

B(X) = [ @) log s do = —E log ()]
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Example 4.2. Here are some examples of differential entropy

(i) Let X be a uniform random variable on [0,a]. Then h(X) = [ Llogads =loga. When 0 < a <1, we

have h(X) < 0. It is seen that the differential entropy can be negative!
(ii) Let X ~ N(0,02) be a Gaussian random variable. Then

h(X):/_O:O L i <log(\ﬁa) )d:c—-i— log (210?) .

2ro 2

(#ii) Let X ~ N(0,%) be a p-dimensional Gaussian random vector, where the covariance matriz ¥ € RP*P s

nonsingular. Then

o 1 —12TE" 1y p/2 1/2 1 Ty—1
h(X)—/]Rp (ZW)P/Qdet(E)l/Qe (log ((271') det(X) >—|—2x X7z | dx

1 1
= glog(Zﬂ') + 3 log det(X) + 51[*3 [(XTE 1 X]

| S —
=1 tr(S-1E[XXT])

1
= ‘glog(27re) + 3 log det(X).

The definition of conditional differential entropy, mutual information and relative entropy then follows from
the differential entropy.

Definition 4.3. Let X,Y,Z ~ f be three continuous random variables. For brevity, we also write f(x) and
f(y) for the marginal density function of X and Y, respectively.
(i) The joint differential entropy between X and Y is the differential entropy of the random vector (X,Y);
(ii) The conditional differential entropy of Y given X is

WYX == [ flaw)log f(ylo) do
XxY
(iii) The mutual information between X and Y is
f(z,y)
I(X;Y :/ f(z,y)log ———— dzx dy.
( ) XXy ( ) f(x fly
(iv) The conditional mutual information between X and Y given Z is

”X’Y'Z"/szf( ' 2)log 7 < 57l e

(v) Given two density functions f and g defined in the same space X C RP such that ¢ < f, i.e. g(x) =0
for all x € U with f(z) = 0. Then the Kullback-Leibler divergence of g from f is

9]

D79y = [ gL ar <y [l 105

Remark. Many identities and inequalities in the discrete case also applies to the continuous case:
h(X Y) =h(X)+ h(Y]X).
I(X;Y) = h(Y) = h(Y]X) = h(X) = R(X]Y).
I(X;Y) = D(fxv || fx fr)-
(
(

1(x: Y| Z) = W(X|Z) - WX|Y,Z) = hY|Z) - WY |X, Z).
I(X;Y,2) =1(X;Z2) + 1(X;Y|2).
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Example 4.4. We aim to compute the mutual information between two jointly Gaussian variables.
(a) Let X andY be two jointly Gaussian random vectors:

o) = () )

by by
where Y11 € RP*P gnd Yoo € R7*? are both nonsingular, and the covariance matrix ¥ = ( H 12)

Yo1 Yoo
is also monsingular. Then

1
WY X) = /R @) [ fi)los g dy o

1
= / (=) (]2) log(2me) + 5 log det(Egg,l)) dx
R
q 1
=3 log(2me) + 3 log det(Xa2.1)
where the conditional covariance matriz is Yog 1 = Yoo — 22121_11212. By Schur complement,

det(Z) = det(En) det(Egm) = IOg det(E) = log det(EH) + IOg det(222.1).

Therefore,

I(X;Y) = h(Y) — h(Y]X)

1 1
= glog(%re) + 3 log det(¥11) — %log(%re) ~3 log det(Xa2.1)
1 det(Zu) det(ZQQ)

=1
2 %% T det(D)
To summarize,
q 1 det(X) D 1 det(X)
h(Y|X) = = log(2 —log ———, h(X|Y)==log(2 —log ———~
( | ) 2 Og( We)—’_ 2 Og det(zll)’ ( | ) 2 Og( 7Te)+ 2 Og det(222)7

and

. o 1 det(Zu)det(Egg)
[X:Y) = 5loe ——345y

by 0
In particular, if X andY are independent, the covariance matriz is ¥ = < -

,and I(X;Y) =0.
0 22

(b) We consider the bivariate Gaussian distribution:

X N 0 o’% pPO102
Y 0/’ pPO201 0% ’
where p € (—1,1) is the correlation coefficient between X and Y. Then

1 1

In particular, if p = 0, the mutual information between X and Y is 0; and if p = +1, the mutual
information between X and 'Y is infinity.
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(c) Let X ~ N (p1,%1) and Y ~ N (uz2,X2), where 31,35 € RPXP. Then

fx(X )]
fr(X)
det(Eg)

DX|Y)=E [log

Theorem 4.5 (Linear transformation). Let A € RP*P be a nonsingular matriz, and b € RP. Let X be a

continuous p-dimensional random vector. Then
h(AX 4 b) = h(X) + log|det(A)].

Proof. Let Y = AX. If X has density function f, the density of Y is given by

_ f(AThy) »
9(y) = m7 y € R

Then the differential entropy of Y is

hY) = — / o) log gly) dy

_ [ 1Ay (AT
=7 oo Jdet(A)] %% Jder(A)] ¥

== /]Rp |d£t(gc/)1)| log dﬁt((x/)m |det(A)| dx (change the variable z = A~ 1y)

[ fa)og@)ds+ [ o) togldet(4)] da
RP R™

= h(X) + log |det(A)] .

By change the variable Z =Y + b = Az + b, we know that h(Z) = h(Y"). This is the desired result. O

Remark. This transformation formula also holds for conditional differential entropy. Analogous to this

formula, we have the transformation invariance for mutual information and KL-divergence:

h(Az +b|Y) = h(X]|Y) + log |det(4)],
I(AX +bY) =I(X;Y),
D(faz+oll fav+s) = D(fx| fr)-
We have the following estimate for the differential entropy of a random vector.
Theorem 4.6 (Upper bound of the differential entropy). If X is a p-dimensional random vector with mean

1 € RP and covariance matrix ¥ € RP*P,

h(X) <

[NV

1
log(2me) + 3 log det(X)

The inequality holds if and only if X ~ N(u,X). In other words, the Gaussian distribution mazimizes the

differential entropy under second moment constraints.
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Proof. We may assume p = E[X] = 0 without loss of generality. Let Z ~ fz be the Gaussian random variable
with E[Z] = E[X] = 0 and Cov(Z) = Cov(X) = 3. Then

fx(X)}
f2(X)

=—-h(X)+ | fx(z) (‘Z log(27) + %log det(X) + ;xTElx> dz
RP

0< D(fx| fz) = E [mg

1 1
=—h(X)+ g log(27) + B log det(X) + 3 fx(@)tr (S ez do
Rp
1
=—h(X)+ glog@we) +3 log det(X).

Therefore,

h(X) <

N3

1
log(2me) + 3 log det(X) = h(Z).

The equality holds if and only if D(fx ||fz) = 0, which is equivalent to X 24z O

Theorem 4.7 (Estimation error and differential entropy). Let X be a p-dimensional random vector, and let

X be an estimate of X. If X -Y — X form a Markov chain,
R 2p(X]Y)
E[lx - X" > 22—,
2me

where | - | denotes the Fuclidean norm.

Proof. Conditioning on the event {Y = y}, the variables X and X are independent. We assume 3 € RP*P ig
the conditional covariance matrix of X given Y = y. Since the expectation 4 = E[X |Y = y| minimizes the

mean square error E[|X — u|? |Y = y], we have
512
E[[X - XY =y 2E[(X - ) (X - )|V =y] = ().
We let Ay > Ay > --- > A, > 0 be the eigenvalues of 3. Then

MFd+- A
p

1 1 1
logtr(X) = logp + log < ) >logp+ I;logAl + ];logAg + et If?log)\p
1
=logp + — logdet(X).
p
By Theorem we have
1 p
3 logdet(X) > h(X |Y =y) — 3 log(2me).
Hence
~ 2 —
E [|X - X|2 Y = y} =tr(X) > exp (logp +-hMX|Y =y)— log(27re)> = %e%h(xly_y).
D ™

Take expectation on both sides. The result follows then from Jensen’s inequality. O
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4.2 Capacity of Gaussian Channels

Motivation. In many scenarios, the error between the sent message X and the received message Y can be
modeled as additive white Gaussian noise (AWGN). A discrete-time Gaussian channel is given by

Y, =X, +7Z;, where Z;~ N(0,N) is independent of X;.

If there is no constraint on the input, we can choose an infinite subset of inputs arbitrarily far apart to separate
the output with arbitrarily small probability of error. To mode real-world constraints, we impose average power
constraint on codewords (x1,- -+ ,x,):

Communication of one bit. We provide a simple strategy for communication on the AWGN channel. To
transmit a single bit, we send X = —/P for 0 and send X = /P for 1. Then the received signal

Y=+VP+Z

is symmetric. For the decoder, we can simply choose VP when Y > 0 and —vP when Y < 0. Then the
probability of error is

Pe:%P(Y20|X:—\/F)+%P(Y<0\X:\/TD)
%P(Zz\/ﬁ)+%ﬂm(z<—\/ﬁ)
:P(z>ﬁ):1—@<W),

where ® is the cumulative distribution function of N(0,1) distribution. It is seen that the probability of error

is small when the signal-noise ratio (SNR) P/N is large.

Theorem 4.8. The information capacity of the Gaussian channel with additive noise power B and power

constraint P 1is

1 P
C:= I(X;Y)= -1 1+—=.
5 O = 31 )

Proof. The mutual information between X and Y is
1
IX;Y)=hY)=hY|X)=h(Y)-h(X+Z|X)=h(Y)—h(Z)=h(Y) — 3 log(2meN).

Since X and Z are independent, the variance of Y = X + Z is less than or equal to P+ N, and the differential
entropy of Y is maximized when Y is Gaussian:

max h(Y)= %1og(27re(P+ N)).

E[Y2]<P+N
Then
max I(X;Y)= 1log(27re(P +N)) — 1log(27reN) = 1log (1 + P) :
fxE[X?]<P 2 2 2 N
The equality holds when X ~ N(0, P). O
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Definition 4.9. A rate R is achievable for a Gaussian channel with a power constraint P if there exists a
sequence of (2% n) codes with codewords satisfying the power constraint such that the maximal probability
of error Pe(fﬁ)lax converges to zero. The capacity of the channel is the supremum of the achievable rates:

Cop =sup{R : R is achievable}

Theorem 4.10. The capacity of the Gaussian channel with additive noise power N and power constraint P

1 P
Cop:210g(1+N).

Remark. This theorem also has two parts:
e (Achievability) If R < 2 log (14 £), then R is achievable.
e (Converse) If R is achievable, then R < $log (1+ £).

is equal to the information capacity:

Proof of Theorem (Achievability part). Similar to our proof of the availability part of Theorem [3.3|in the
case of discrete channels, we employ a random coding approach as follows:

e Construction of a random codebook. For each message w € {1,2,---,2"%} independently generate

Xy (w), Xo(w), -+, Xn(w) "X N(0, P —e).

Then we get a codebook £ : W — R”™, and it is revealed to both the encoder and the decoder. When
the encoder receives a message w, it sends X7.,,(w) to the Gaussian channel Y = X + 7.

e Decoding. When receiving the output Y7.,, the decoder looks down the list of codewords X;.,,(w), and
searches for a codeword that is jointly typical with Yi.,. If there exists a unique such codeword Xi., (w),
the decoder declares W = w; otherwise, it declares an error. The receiver also declares an error if the
chosen codeword does not satisfy the power constraint £ 3" | X;(w)? < P.

e Probability of error. Without loss of generality, assume the message 1 is transmitted. Then the output
is V1., = X1.0(1) 4+ Z1.. Define the following events:

1 n
En,O = {ZXl(U))2 >P}7 Enz - {(Xln(z)ayln) GAgn)}» 221727 72nR.
i
We fix € > 0. By the weak law of large numbers,

1
lim P (n (X1(1)* + X2(1)* 4+ -+ X, (1)) > P) =0.
Since Xi.,(1) and Y7, are jointly typical,
lim P(E; ;) = 0.

n—0o0

Furthermore, by joint asymptotic equipartition property, since Xji.,(w),Y1., have the same marginal as
X1.n(1), Y1, and are independent for all i = 2,3, --- 2",

P(E,;) < 2—71(1()(;1/)—36)7 i=2,3,-- ’QnR.
We choose N, > 0 great enough such that

P(E,o) <e and P(E;;) <e foralln> N
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Similar to the analysis in the discrete case, the probability of error is uniform over the events W = 1,2, --- |
Then for all n > N,

P(W #W)=P(W #£W|W =1) =P (EnoUES UE,oU---N E, gnr)
< 2+ 2771(](X§Y)7R736)'

Note that

I(X;Y) = h(Y) — h(Y|X) = h(Y) — h(X + Z|X) = h(Y) — h(Z) = %log (1 + PA; 6)

If the rate R < %log(l + %), we can find a sufficiently small € > 0 such that

| j
I(X;Y)—R—Se:2log(1+N€> —R—3¢>0.

Then the error probability tends to 0 as n — oo and € — 0.

Since this error probability is the average over all codebooks and all messages, we reapply our trick in
the proof of discrete memory loss channel: choose a good codebook £* and expunge the worst half of the
codewords. Then the maximal conditional probability of error is small. In particular, each of the remaining
codewords must satisfy the power constraint, otherwise it has conditional probability of error 1 and must
belong to the worst half. The new code has rate R — %, which can be arbitrarily close to the capacity C'. Thus
we proved the availability part of the theorem. O

Proof of Theorem (Converse part). Consider any (277, n) code that satisfies the power constraint:

le(w)2§P7 w:]~727"'72nR-
i=1
Let W ~ Unif{1,2,---,2"%}. We then consider the Markov chain W — Xy.,(W) — Yi.,, — w. By Fano’s
inequality, if P(W # W) = P™,
H(W[W) < 1+nRP™.
Let X;1.,(W) = X1.,,. Then

Wi W) + H(W|W)

X3 Yim) +1+ nRPe(") (by data processing inequality)
Yiin) = h(Yi|X1:0) + 1 4+ nRP™

Vi) = h(Z1m) + 1+ nRPM™

nR = H(W)

I IA
S>> NN
—~ o~ —~

hY;) = h(Z1.p) + 1+ nRP™ (conditioning does not increase entropy)

NE

1

-
Il

h(Y;) =Y h(Z) +1+nRPM™. (4.1)
=1

I
M=

-
Il
_

Assume that the average power of the i-th column of the codebook:

-
gon 2 (@) =P, =12 n.
w=1
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Since Y; = X; + Z;, and since X; and Z; are independent, the average power E[Y;?] = P; + N. The differential
entropy is maximized by the Gaussian distribution:

1
h(Y)) < 3 log(2me(Ps + N).
Plugging in this to (4.1]), we have

| P;
nR§221og(1+N>+1+nRPe(”>

i=1
n " P
< 5 log (1 + ; n]i/'> +1+nRP™ (by Jensen’s inequality)
n P "
< glog <1+N> +1+nRP™
Therefore
1 P 1
PM>1— —log(l4+~=)—-— N.
> 2Rog(+N> R Vn €
Since Pe(n) — 0 as n — 0, we require R < %log (1 + %) O

4.3 Parallel Gaussian Channels

Problem Setting. We consider k independent Gaussian channels with a common power constraint:

Channel : Y; = X;+ Z;, i=1,2,--- k,
k k

Power constraint : ZE[X?] = Z P, <P,
i=1 i=1

Independent additive Gaussian noises : Z; ~ N(0O,N;), i=1,2,--- ,k

Our goal is to distribute the power amongst the channels to maximize the total capacity:

k
C = max {I(Xl;k;m) X1, Xg, -, X0y E[X]] < P}

i=1

An upper bound. As usual, we decompose and estimate the mutual information as follows:

I(Xl:k:; Yi:k) = h(Yik) - h(leklxlzk)
= h(}/ik) - h(Xl:k + Zl:k‘Xlzk)
= h(lek) - h(lek)

k
STh(YilYiy, - Y1) =Y h(Z)

i=1 i=1

k
(1)~ h(z) < 5 Y tos (14 4F).

©
Il

-

©
Il
-
.
Il
-

This upper bound can be reached when X1, Xs,--- , X are independent with
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Solution. To solve the capacity, we consider the following optimization problem:

k
max Zlog(l—&—)7 subject to P1,~-7Pk207ZPZ-§P.

Py, Py
TR = i=1

Since the objective function is concave about Py, --- , Py, define the Lagrangian function:

L(Pl,"',P]“ Zlog(1+> Z,UZPZ A(ZP P) Pka,“*lf"a,uka)‘zo-

Apply the KKT conditions to solve the problem:
oL 1
oP, P +N;
ShL B P,
Zle il =0,
Py, Propa, oo e, A > 0.

Then for each i = 1,2, --- |k, the optimal solution satisfies
. 1
i //L;k + )\* (3]

and at least one of P; and p is zero. This implies

Pz*()\*) = A* A - = max (* _Ni’0>
0, LN, <0 A
Furthermore, we require
k
Y B\ —P=0. (4.2)
i=1
Since the function A\ — Z -1 max( NZ,O) is strictly monotone decreasing from oo to 0 on the interval
(0, m), one can solve A* > 0 uniquely from || By construction,the power allocation P;(A*)

satisfies the constraints of our problem and thus is a feasible solution. Hence

k

1 Pr(A) 1
0:521 <1+ ) Zlog( +maX<)\* Nia0)>v

i=1

where A* > 0 is the unique solution to the equation

k 1

g — —N; =P
4 max ()\* 1,0)

i=1

This is also known as the water filling solution.
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4.4 I-MMSE Relationship

Setting. Given a random variable X with finite variance o > 0, let
Y =VsX+W, W~N(,1) is independent of X.

This is a variant of the Gaussian channel, and the constant s > 0 is called the signal-to-noise ratio (SNR) of
the channel. The capacity of this channel is measured by the mutual information I(X;Y).

Estimation error. The minimum mean-squared error (MMSE) in estimating X from Y is defined as

mmse(X|Y) = min E [(Q(Y) - X)Q}

g:Y—R

It is easy to verify that the optimal estimation function g(Y") is given by the conditional expectation E[X|Y].
Consequently, the MMSE can be written as

mdeW):E“Y—MXWW}:EWMQﬁﬂ.

This is in fact the squared distance from X to its projection onto the subspace spanned by Y. The MMSE
measures the uncertainty of X given an observation Y.
The I-MMSE relationship states that for any distribution on X, the derivative of the mutual information
with respect to the signal-to-noise ratio is equal to one half the MMSE:
d

1
—I(X;Y) == X|Y).
SI(X;Y) = Smmse(X]Y)

In the remainder of this section, we aim to establish this result.
Lemma 4.11 (Almost Gaussian variable). Let X be a random variable with mean p and finite variance o > 0,

and let W ~ N(0,1) be a noise independent of X. When'Y = \/sX + W, and Y' ~ N(/sp,1 + s0?) is a
Gaussian variable that has the same mean and variance as'Y , then

D(Y||Y’
L DOVIY)

s—0 S

=0.

Proof. We may assume p = 0 without loss of generality, otherwise we replace X with X — p. By definition,

N fY(y) _ 1 2 y2
DY) = [ Frimtos P dy = [ (o) (Gloen(1+50%) + 5t ) dy = hiy)
2
= (; log (27(1 + so?)) + 2(]1E—[|—Ysi2)> dy — h(Y)

= %log (2me(1 + so?)) — h(Y).

We fix M > 0, and define B = 1| x <} Then

hY)=P(B=1)h(Y|B=1)+P(B=0)h(Y|B=0)
—P(B=1)h(Y|B=1)+P(B = 0)h(v/sX + W|B =0)
>P(B = 1)h(Y|B = 1) + P(B = 0)h(W),

where the last inequality holds because W is independent of B and X, and B is a function of X:

h(v/sX + W|B =0) < h(v/sX + W|X, B =0) = h(y/sX + W|X) = h(W).
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Since | X| < M conditioning on the event B = 1, using Taylor’s expansion, we have

1 2
fy(yB=1)=E { e~ (W= VEX)T/2
(vl ) N

21

=

e—v>/2 s

= s b {1 +VsyX + (" = DX+ o(s)
e v/2 5

= 7 (1+\/§y]E[X\B:1]+§(y2_1)E[X2‘B:1]+O(S))’

=

where o(s) is a quantity smaller than s in the sense that lim,_, °ls) — 0. Hence

hY|B =1)=-E[log fy(Y|B =1)|B =1]
= %E[YQ\B =1+ %log(%r) —VsE[Y|B=1E[X|B =1] + ;E[Y2|B =1E[X|B = 1)
- %E[YQ —1|B = 1|E[X?|B = 1] + o(s)
= S Var(X|B=1) + %log(%re) _ SE[X|B = 1] + o(s)
where the last equality holds because

E[Y|B = 1] = E[/sX + W|B = 1] = sE[X|B = 1],
E[Y2B=1]=E[(vsX + W)?B=1] = sE[X?|B=1] + 1.

For any § > 0, by Lebesgue’s dominated convergence theorem, we can choose M = Ms > 0 such that
P(B=1)>1-46, |E[X|B =1]| <6 and |Var(X|B = 1) — 02| < 4. Therefore

1 2
MYIB = 1) > S log(2me) + °0- - ga +ols).

Then for sufficiently small s, we have

WY) =P(B = 1)h(Y|B =1)+P(B = 0)h(W)

502

=P(B=1) <; log(2me) + - = ;5 + 0(5)) +P(B= O)% log(2me)
1lo (2me) + (1 — 6)ﬁ - §6 + o(s)
2 8 2 2 ’
and
DY|Y") = %log(%‘e(l +50%)) — h(Y)

1 1
< 3 log(2me) + 5502 +o(s) — h(Y)

(532 + ;) 5+ o(s).

Since the choice ¢ > 0 is arbitrary and does not depend on s, we have D(Y||Y’) < o(s). O

IN

Remark. We have an intuitive interpretation for this lemma. When s > 0 is sufficiently small, the random
variable Y = /sX + W is almost Gaussian. In fact, the density of Y is the convolution of the density
of Gaussian variable W and a “pulse” near 0. Hence Y = /sX + W is “close” to the Gaussian variable

Y’ ~ N(0,1+ so?), which has the same mean and variance as Y.
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Lemma 4.12. Under the assumption of Lemma one have

I . 2
i LE&GY) 0%
s—0 S 2

Proof. We may assume E[X] = 0. Let Y’ ~ N(0,1 + s0?). Then

I(X;Y) //ny (,9) fY'X(y‘x) dz dy

fr(y)
L T Yy
)

)
o Lo e i

/ fx(2)D(/5x + W|Y')dz — D(Y|Y").

We analyze the first term. Since \/sz + W ~ N (y/sz,1) and Y’/ ~ N(0,1 + so?) are both Gaussian,

1s(2% — 0?)

2 1+ s02

)

1
D(Vsz+W|Y') = 5 log(1+ s0?) +

and

15(X2—0?)

1 2
2 1+ so2 _510g(1+80 )

/fX D(Vsz+W|Y')dz = E %log(l+so2)+

According to Lemma [4.11] the second term is controlled by o(s), and

80'2

I(X;Y) = %log(l + s0°) + o(s) = — T o(s)-

Thus we finish the proof. O

Now we are prepared to prove the main result.

Theorem 4.13. Let X be a random variable with finite variance, and let W ~ N (0,1) be a noise independent
of X. Then

d

1
£I(X; VX +W) = Emmse(X | Vs X + W).

Proof. Let Y = /sX + W. We compute the derivative of I(X;Y"). We write

I(s)I(X;Y)I(X;\/§X+W)I<X;X+1W>, s> 0.

/s
Define
Z1=X+ ! Wi o =71+ h W-
1= \/m 1, 2 — 41 S(8+h) 2,

where W and W5 are independent N (0, 1) variables that are also independent of X. Then X —Y; — Yz is a
Markov chain, and

I(s+h)—I(s)=1(X;2,) — I(X;Zs) = I(X;Z1,25) — I(X; Z2) = I(X; Z1| Zs).
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We define

S h h S
Yy L Vi LA iy L Vi AL

Clearly, U,WW ~ N(0,1) are two independent Gaussian variables. Since U is a function of Wy and W, it is
independent of X. Hence U is independent of Zo = X + W/,/s. Moreover, we decompose Z; as

S h h 1
Z1 = Zo — | ——=W- X+ Wi
! s+h< ? s(s+h) 2>+S+h( Vs+h 1)

Z hX h
%2 LYy
s+h s+h s+h

We fix the event {Zs = 25}, where 25 € R. Under this event,

= I(X;VhX +U|Zy = ).

sZy  hX  vh
U|Zy =
"s+h s+h+s+h ‘ 2 ZQ)

According to Lemma .12}
h
I(X;VhX +U|Zy = 2) = 5 Var(X|Zy = 25) + oh).
Note that Y = /sX + W = /sZ5. Hence

(X Z1|Z,) = gE[Var(X|Z2)] +o(h) = gE[Var(X|Y)] +o(h) = gmmse(X|Y) + o(h),

and
1 h)—1 1
1}3{% M = §mmse(X|Y).
The case h 1 0 follows from a similar approach. Thus we finish the proof. O

Remark. We can also write this theorem to an integral form:
I(X;VsX +W)= ;/OS mmse (X | /X + W) dy.
Now we use this result to derive a new representation of differential entropy.
Lemma 4.14. Under the assumption of Lemma[{. 11}, one have
lim D(Y[[Y") = D(X||X),

where X' ~ N (u1,0?) is a Gaussian variable with the same mean and variance as X.

Proof. Let W1, Wy ~ N(0,1) be independent Gaussian variables that are also independent of X. If #; < to,
by data processing inequality for KL-divergence,

D(X + VtaW | X' + Vta W) = D(X + VWi + Vit — i Wa || X + VE W1 + Vit — 11 Wa)
< DX +Va W | X + vt W)
= D(X +VuW | X' +VEW).
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By rescaling by /s, one have D(Y||Y') = D(X + W/+/s|| X’ + W/+/s), which is monotone increasing with
respect to s > 0. Furthermore, it is bounded by D(X||X’) from above. Hence

lim D(Y||Y’) < D(X||X").
S§—00
On the other hand, by Fatou’s lemma,

D(X||X") < liminfD< HX’ + > = lim D(Y[|[Y").
S§—00

Thus we complete the proof. O

Theorem 4.15. Let X be a random variable with finite variance o > 0, and let W ~ N(0,1) be a noise
independent of X. Then

1 1 [ o2
X) = = log(2mec?) — = — - X |AX .
h(X) =  log(2meo?) 2/0 (HW? mmse(X | 7 +W)>d7

Proof. Let X' be a Gaussian variable with the same mean and variance as X. Define Y = /sX + W and
Y’ =/sX' + W. In the proof of Lemma we obtained

1
I(X;Y) = 5 log(1 + sa?) — D(Y||Y").
By Lemma and Theorem
D(X|X') = lim D(Y||Y")
S—> 00

= — lim (;bg(l + s0?%) — I(X;Y))

55— 00

1

o0 0_2

Note that h(X) = h(X') — D(X||X’), the result follows. O

Remark. This result can be extended to multi-dimensional vectors. Let X be a p-dimensional random vector
with covariance matrix 3 > 0, and let W ~ N(0,1d,) be a noise independent of X. Then

1 1 [ -
h(X) = 5 log ((2me)? det (X)) — 5/ (tr (vId+x71) to mmse(X | /7 X + W)) dry.
0
4.5 Entropy Power Inequality
Lemma 4.16. Let X and Y be independent random variables with finite variance, and o € [0,2w). Then
h(X cos(a) + Y sin(a)) > h(X) cos?(a) + h(Y) sin?(a).
Proof. Let Z = X cos() + Y sin(a). According to Theorem [4.15]

h(Z) — h(X) cos?(a) — h(Y) sin®(a)
1

=3 /0 ) (mmse(Z | \/7Z + W) — mmse(X | /71X + W) cos*(a) — mmse(Y | 7Y + W)sin®(a)) dy  (4.3)

52



Let W1, Wo ~ N(0,1) be independent Gaussian variables, and define
U=/ X+Wi, V=Y +W,.
Let W = Wj cos(a) + Wasin(a). Then \/7Z + W = U cos(a) + V sin(a).
mmse(Z | \/7Z + W) > mmse(Z |U,V) = mmse(X | U) cos*(a) + mmse(Y | V) sin*(a).

Hence the integrand in (4.3)) is nonnegative, and the result follows. O

Theorem 4.17. Let X and Y be independent one-dimensional random variables such that h(X), h(Y) and
WX 4+Y) exists. Then

th(X+Y) 2 e2h(X) + th(Y). (44)
Proof. We choose « € [0,7/2) such that
tan(a) = Y =X),

We define U = X/ cos(a), and V =Y/ sin(a). By Lemma

(X +Y) = h(U cos(a) + Vsin(a)) > h(U) cos?(a) + h(V) sin?(«)

21 eh(X) 2 h(Y)
= cos”(«a) log cos(a) + sin“(«) log Sn(a)
_ %log (eZh(X) n th(Y)) .
Then we complete the proof of (4.4). O

Remark. This conclusion can be generalized to multi-dimensional cases. Let X and Y be independent
p-dimensional random vectors such that h(X), h(Y) and h(X +Y) exists. Then

e Zh(X+Y) > edh(X) | o2h(Y),

4.6 Entropic Central Limit Theorem
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5 Rate Distortion Theory

A continuous source contains an infinite amount of information and cannot be represented exactly using a
finite number of bits. In lossy source coding, we seek instead a representation that is close to the source (with
respect to some fidelity criterion) and can be represented using a finite number of bits.

5.1 Quantization

Setting. Let X be a continuous random variable. For every value x € X, we would like to find a represen-
tation #(x) where 4 can take on only 2% different values for a given rate R (measured in bits).

Example: Quantizing a Gaussian variable with squared error distortion. Let X ~ N(0,0?) be a
Gaussian random variable. We wish to minimize the mean-squared error distortion E [(X — #(X))?].

If we use R = 1 bit to represent X (i.e., we can chose only 27 = 2 different reconstruction symbols), then
we should use the bit to indicate whether X is positive or negative. To minimize the square error distortion,
the reconstruction symbols should be the conditional mean given the sign:

> 9 202
E[X|X > 0] = LA 3 M il
0 2o T

Hence

The average distortion is

E[(X —£(X))?] = (1 - 2) o?.

™

General quantization. A quantization scheme is characterized by a partition (V;) of the metric space (X', d)
and the corresponding reconstruction points (#;) C X

i(x) =a, if eV,

The regions and reconstruction points should satisfy:
e Given a set of reconstruction points (z;), the regions should be chosen to minimize the distortion. This
occurs if the regions are the Voronoi cells:

Vi={z e X :d(z,z;) <d(z,z;), Yj#i}

e Given a set of regions, the reconstruction points should be chosen to minimize the distortion. Under
squared error distortion, this is given by the conditional expectation:

& =E[X|X € V.

Lloyd’s Algorithm is an iterative algorithm for constructing a quantization function. Starting with an initial
set of reconstruction points, the algorithm repeats the following two steps:

e Given reconstruction points (z;), find the optimal partition (V;);

e Given a partition (V;), find optimal set of reconstruction points (x;).

This algorithm will converge to a local optimum (but not necessarily the global optimum).
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5.2 Lossy Source Coding

Vector quantization. Let X;., be an length-n random vector with i.i.d. entries. For every realization

X1.n = T1.m, we would like to find a representation " (x1.,) where ™ can take on only 2"t (Jifferent values

for a given rate R. One option is to use the rate R scalar quantization strategy we discussed in the previous

section. However, it turns out that quantizing jointly can be much better than quantizing separately.

Source Encoder W e{1,2,-.. 2"k} Decoder Estimate
E—— > ~
Xl:n fn(X1n> gn(W) Xl:n
e The source produces a sequence X7, Xo,--- of i.i.d. random variable with distribution p(x) supported
on a possibly infinite alphabet X.
e The encoder is a mapping f, : X" — {1,2,--- ,Q”R} that describes every source sequence by an index
w. The rate is given by
1
R - — 10g2 |W| R
n
e The decoder g, : {1,2,---,2"F} — xn maps each index w to an estimate " € /"Y\, where X is a finite

reconstruction alphabet.

Definition 5.1 (Rate measure). A per-letter distortion measure is a mapping X X X — R, from the set of

source alphabet-reconstruction pairs into the nonnegative real numbers. The distortion measure is bounded if

the maximum value of the distortion is finite:

sup d(z, %) < cc.
TEEX FEX

The distortion between two sequences x1., and Z1., is given by the average per-letter distortion:

n

~ 1 N
d(xlz'ruxl:n) = E Zd(x“xl)

i=1

Example 5.2. Here are two examples of distortion.

(i) (Hamming distortion). d(x,z) = L,4zy. This is often used for discrete alphabets.

(ii) (Square-error distortion). d(z,%) = |z — Z|?>. This is one of the most popular distortion measures used

for continuous alphabets.

Definition 5.3. A (2"F,n) rate distortion coding scheme consists of

e a source alphabet X and a reconstruction alphabet X ,

e aencoder f,, : X" — {1,2,---,2"%} and a decoder g, : {1,2,--- ,2"F} — X", and

e a distortion measure d : X x X — R,.

The (expected) distortion associated with this coding scheme is defined as

D=E d(Xlzna‘)?l:n)} — Z p(‘rlzn) d(xlnygn(fn(mln)))

T1p€EXT

The collection of n-tuples g, (1), gn(2), - - , gn(2"%), denoted by flm(l), )?1:”(2), e
codebook, and f; (1), f71(2), -, £ 1(2"%) are the associated assignment regions.

n

, X,,(2"R), constitutes the

Remark. Xj., is referred to as the vector quantization, reconstruction, or estimate of Xi.,.
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Definition 5.4. We call (R, D) a rate-distortion pair.
(i) A rate-distortion pair (R, D) is said to be achievable if there exists a sequence of (2"%,n) rate distortion
coding schemes (fy, gn) with

limsup E d(le,)?Ln) <D.

n— oo

(ii) The rate distortion region for a source is the closure of the set of achievable rate distortion pairs (R, D).

(iii) The rate distortion function R(D) is the infimum of rates R such that (R, D) is in the rate distortion
region of the source for a given distortion D.

(iv) The distortion rate function D(R) is the infimum of all distortions D such that (R, D) is in the rate
distortion region of the source for a given rate R.

Remark. If the distortion rate is D = 0, the coding scheme is accurate. According to Shannon’s source
coding theorem, we require R = H(X). This is not feasible for continuous variable X.
5.3 Information Rate Distortion Function

Definition 5.5. Let X be a source from a distribution p(z) on X. The information rate distortion function
RU (D) for a source X with distortion measure d is defined as

RU(D) = inf  I(X;X)= inf  I(p(a),p(Z|x)).
p(&|2): E[d(X,X)]<D p(@l2): E[d(X,X)]<D

Here the infimum is taken over all conditional distributions of X given X such that the expected distortion
constraint E[d(X, X)] < D is satisfied.

We first introduce an important property of rate distortion function R(D), then calculate the information

rate distortion function for some sources.
Theorem 5.6. The information rate distortion function R(I)(D) i$ a non-increasing conver function of D.

Proof. When the distortion D increases, the set of feasible conditional distributions p(Z|z) is also increasing.
Since RUY)(D) is the infimum taken over this set, it is non-increasing.

To show the convexity of RY), take Dy, Dy > 0 and € > 0. Let X;|X ~ p1(Z|z) and X5|X ~ po(Z|z) be
the conditional distributions such that

I(X;X1) < RD(Dy) 46 I(X;X5) < RD(Dy) +e.

For any A € [0, 1], consider the distribution py(Z|x) = Ap1(Z|z) + (1 — A)p2(Z|x). The distortion associated to
the distribution py(z,Z) = px(Z]z)p(z), by linearity of expectation, satisfies

E [d(X,)?)} < Dy=AD; + (1 - \)Ds.
By convexity of mutual information,
I(p(@), pa(@l)) < M (p(a), p1 (F12)) + (1 = NI (p(a), ps (&) < ARD (D1) + (1 = NRD(Dy) +e.
Since RU )(D,\) is no greater than the last display, and € > 0 is arbitrarily taken, we have
RU(Dy) < ARV (Dy) + (1 = )RD(Dy)

Thus we complete the proof. O
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Example 5.7 (Binary source with Hamming distortion). The information rate distortion function for an i.i.d.

X ~ Bernoulli(p) source with Hamming distortion is given by

H(p)— H(D), 0<D <min{p,1—p}

RUD(D) =
0, D > min{p,1 — p}.

Proof. Let X = {0,1}, and let p(Z|z) be any distribution satisfying the expected distortion constraint, That
is, P(X # X) < D. Consider B = Ligixy = X + X mod 2. Then

I(X;X)=H(X)- H(X|X)=H(X) - HB|X) > HX) — H(B).

When D < 1/2, we have H(B) < H(D), and I(X; X) > H(p) — H(D); otherwise, we have D > min{p, 1 —p},
and by definition I(X; X) > 0. Hence

H(p) — H(D), 0<D <min{p,1-p}

RU(D) >
0, D > min{p,1 — p}.

It remains to show the opposite inequality. If p < % and D > p, we let X = 0 with probability 1. Then

]P’()? # X)=p< D, and I(X; )/(\') = 0. A similar conclusion applies for p > % and D > 1 — p. Hence
RD(D)=0, D> min{p,1—p}.

Now we show the case 0 < D < min{p, 1 —p}. Without loss of generality assume 0 < D < p < % We consider
the joint distribution

P(X =0,X =0) = (1_1)1)(52_;_D)» P(Xzovf(:l):%’
]P(le,)A(ZO):%v P(X:l,)?:l):%

This distribution satisfies the expected distortion constraint ]P’()? # X) =D, and

~ ~

R(D) < I(X; X) = H(X) - H(X|X) = H(p) - H(D).

Thus we complete the proof. O

Example 5.8 (Gaussian source with square-error distortion). The information rate distortion function for an
ii.d. X ~ N(0,0?) source with square-error distortion is given by

o)
57
, D > o2

| —
[\v]

log 0<D<g?

RUD(D) =

(=R \)

Proof. Let (X, X) be distributed such that X ~ N(0,02) and E [(X — )?)2} < D. Then
I(X; X) = h(X) — h(X|X) = log(2mea?) — h(X — X|X) > log(2mec?) — h(X — X).
By Theorem

h(X — X) < log (27reIE [(X — )A()Q]) < log(2meD).

57



Hence

N 2
RO(D) > inf ILX,X)zxnm<{bg°',o}.
p(2|2): E[(X - X)2)<D D

Now we prove the other side. If D > o2, we can simply set X = 0, which satisfies the expected distortion
constraint E[(X — X)?] < D. If D < o2, we choose distribution given by the Gaussian kernel

X=X+2 X~N(0,06>-D) and Z~ N(0,D).

which also satisfies the expected distortion constraint E[(X — X)2] = D Then

RD(D) > I(X; X) = h(X) — h(X|X) = log ‘g.

Thus we complete the proof. O

5.4 Rate Distortion Theorem

The main theorem of rate distortion theory can now be stated as follows:

Theorem 5.9. The rate distortion function for an i.i.d. source X ~ p and a bounded distortion measure
d: X x X — Ry is equal to the associated information rate distortion function, i.e.

R(D) = RD(D).

This theorem includes two parts:
e (Achievability). If R > RY) (D), the rate-distortion pair (R, D) is achievable.
e (Converse). If the rate-distortion pair (R, D) is achievable, then R > R (D).

Proof of Theorem (Converse). For any sequence of (2% n) coding schemes such that

lim E[d(X71.; le:n)} <D,

n—oo

we want to show that R > R(I)(D). We take € > 0, then there exists N such that E[d(le;)?lm)] <D-+e
for all n > N. Since there are 2" values in the range of f,,

By data processing inequality,

(X f(X1)) > T(X1n; X1i) = H(X 1) — H(X 10| X120

= Z H(X;) — H(Xl:np?lzn) (By independence of Xj.,,)

i=1
n n R

= ZH(Xz) - ZH(Xi|Xi—17 - X1, X)) (By the chain rule)
i=1 i=1

> Z H(X;) - Z H(X,|X,) (Conditioning does not increase entropy)
i=1 i=1

= ZI(Xi;)?i)' (5.2)
i=1
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By definition of the information distortion function RU)(D),
1(X; %) 2 RD (B [d(X3; %)) -

By convexity of R()(D) and Jensen’s inequality, we get

iI(Xz‘;)?i) > zn:R(I) (]E [d(Xi;)A(z')D > nRY <1 zn:]E {d(XiE)?i)}> =nRY (IE [d(XLn;)A(Ln)D .

i=1 i=1 i
(5.3)
Combining , and , we obtain
R> R (B [d(X0; Xin)] ) 2 RO(D +6).
This inequality holds for all € > 0. Since the function R()(D) is convex, it is continuous, and
R > lim RU(D +¢) = RD(D).
Thus we complete the proof. O
Definition 5.10 (Distortion e-typical set).
Proof of Theorem (Achievability). O
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6 f-Divergences

6.1 Definition and Properties

Definition 6.1 (f-divergence). Let P and @ be two probability measures on a measurable space (X,.%). For
any convex function f : [0,00) — (—00, 00] such that (i) f(1) =0, (ii) f is strictly convex at 1E| and (iii) f is
finite except possibly at 0, the f-divergence of @ with respect to P is defined as follows:

() IfQ < P,
Dy (@QIP) :—/f<dQ) ap,

where the notation i—g stands for the Radon-Nikodym derivative of () with respect to P.
(ii) More generally, let p be any dominating measure of P and @, i.e. P < pand Q < pu. Assume dP = pdpu
and d@ = gdu. Then

Dy(QIP) = /{ N (g)pdwf’(oo)cz{p — 0}, (6.1)

where f/(00) = lim, o+ zf(2).

Remark. In fact, the definition (6.1)) comes from the following division:

_ 1) g4 p(q>d: ()d im, ()
D/(QIIP) /{p>0}f<p> P+/{p_0}qf 1) dQ /{p>0}f D) pdu+ tim of (1) QLo =0

In practice, we often use the following two forms of f-divergence:

e When X is discrete, P and @) are probability mass functions:

Dy(QIP) = Zf( i) >=Ep{f(ﬁ>]

zeX

e When P and @ are characterized by density functions p and ¢ (i.e. their Radon-Nikodym derivatives

with respect to the Lebesgue measure), respectively, then

Ds(al) = [ (25 ) o =5, |1 (251

We use the convention that

. £(0) = F(0*),

e 0f(2) =0, and

o 0f (&) =lim, o+ zf (%) = af’(c0).
Furthermore, by definition, if P L @,

DH@IP) = 10)+ £/(00) = tim [0 =o)f (2 ) +ar ()] > tim 71 = 50) =0,

An f-divergence provide an evaluation of the difference between two probability distributions.

1By strict convexity at 1, we mean that for all z,y € (0,00) and 0 < A < 1 such that Az + (1 — A\)y = 1, we have
Af(x) + (A =N Fy) > F(1).
For a random variable X with E[X] = 1, the Jensen’s inequality E[f(X)] > f(E[X]) is strict if X is not a constant.
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Proposition 6.2 (Positive-definiteness of f-divergence). Let D be an f-divergence. Then
Dy(Q|P) =0,

and the equality holds if and only if P = Q.

Proof. From Jensen’s inequality, the convexity of f implies:

Dy(QIIP) =Ep [f (ﬁ)} >y (EP m) — ) =o.

By the strict convexity of f at 1, the equality holds if and only if P = Q. O

Definition 6.3 (Examples of f-divergence). The following are some commonly used f-divergences:

(i) Total variation distance. f(z) = |z — 1| :

1 Q 1
drv(P,Q) = =Ep || —1|| == [ |dQ — dP].
w(P.Q) = 8 || 2 1] = § [la0-ar
Clearly, we have dry (P, Q) = drv(Q, P). Furthermore, the triangle inequality follows from definition:

dTv(P, Q) < dTv(P, R) + dTv(R, Q)

Therefore, the total variation distance is a metric on the space of all probability measures on (X, X).

(ii) Kullback-Leibler divergence. f(z) = xlogx :

a5 [$on ()] 2o (3]

(iii) Pearson y2-divergence. f(r) =2%—1:

(iv) Squared Hellinger distance. f(z) = (1 — /z)%:

H*(P,Q) = %]Ep [(1 - g)z

:%/(\/ﬁ—\/@)2.

Clearly, we have H2(P, Q) = H?(Q, P). We further define the Hellinger distance H (P, Q) = /H2(P, Q).
Then the triangle inequality H (P, Q) < H(P, R)+ H (R, Q) follows from the case for L?>-norm. Therefore,
the Hellinger distance H(-,-) is a metric on the space of all probability measures on (X, ).

x

(v) Jensen-Shannon divergence. f(z) = %logz — % log (142)

Dis(P,Q) = 5D(P|M) + 3 D(@] M),

where M = %P + %Q This is also known as the symmetrized Kullback-Leibler divergence.

(vi) Le Cam distance. f(z) = &2
' ~ 2(1+w)

Now we discuss more properties of f-divergences.
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Proposition 6.4 (Properties of f-divergences). Let Dy be an f-divergence.
(i) (Monotonicity). Let Pxy and Qx,y be two joint distributions of random variables X and Y. Then

max {Dy(Qx||Px), Df(Qy||Py)} < Df(Qxvy|[Pxy).

(ii) (Data processing inequality). Fix the conditional distribution Py|x of Y given X. Let Pxy = PxPy|x
and Qxy = Qx Py x. Then

Dy(Qy||Py) < Dy(Qx||Px)-

(i11) (Joint convexity). The mapping (Q,P) — D;(Q||P) is jointly convex. That is, for any distributions
P17P23Q13Q2 and anyOS A § 1;

Dy (AQ1 + (1 = N)Q2|[AP1 + (1 = A\)P2) < AD#(Q1]|P1) + (1 — AN)Dy¢(Q2|| P2).

(iv) (Conditional increment). Given two conditional distributions Py x and Qy|x and a marginal distribution

Px, define the conditional f-divergence:
Dy(Qyx |1Pyx|Px) == /XDf(QY\X=x||PY\X:x)dP($) =Ex~pry [Df(Qyix|Pyix)] -
Let Pxy = PxPy|x and Qxy = PxQy|x. Then
D¢(Qy||Py) < Dy(Qy x| Pyx|Px)-

Proof. (i) Using Jensen’s inequality:

Dy (@QxylIPxy) = pry[ (Qxyﬂ =Epx {EPY'X {f <QX’Y)H

Pxy Pxy

> e[ (0, [222))]
~ep [ (L, [22))

Py x
—ene (%]

= Dy(Qx||Px).

Switching X and Y yields Df(QX,Y”PX,Y) > Df(QyHPy).
(ii) Following that (i), it suffices to show D;(Qx||Px) = Ds(Qx,v||Px,y). This is true since the conditional
distribution Py x is fixed:

D@l =Brvy 1 (22 )] =2nes |1 (F)

_Ep {f (Pxﬂ — D;(Qx]|Px).

(iii) Fix A € [0,1], and let B ~ Bernoulli(A). We set Px|p=1 = P1, Px|p=g = P», and Qx|p, = Q1 and
Qx|B=0 = Q2. Since the distribution Px of X is fixed,

@Qxp _ QsQ@xiB _ Qx|B
Pxp Pp Pxp  Pxip’
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Then

Qx|B
Px|p

D¢(Qx,BllPx,B) = Ep, [EPX|B {f ( )H = AD¢(Q1||P1) + (1 = A)D#(Q2| P2).

On the other hand, the monotonicity implies

D¢(Qx,BlIPx,B) = Df(Qx||Px) = Dy (AQ1 + (1 = N)Q2[[AP1 + (1 = M) 1%).

Combining the last two displays gives the wanted result.

(iv) By calculus, the marginal distributions of Y are given by

Qy = / Qy|x=2dPx(7) = Expy[Qy|x], Py = / Py|x=; dPx(z) = Ex~py [Py|x].
x X
Then by joint convexity of Ds(||-) and Jensen’s inequality,

Ds(Qyx|IPyx|Px) = Ex~py [Df(Qy x| Pyix)] = Df (Ex~px[Qy|x] | Ex~px[Pyx]) = Df(Qy | Py).
Thus we complete the proof. O
The data processing inequality for f-divergence has many applications. Here are some basic examples.

Proposition 6.5. Let P and Q be two probability measures on (X, %), and let A € F
(i) |P(A) = Q(A)| < dvv(P.Q).  (ii) [\/P(A) —/Q(A)| < V2H(P,Q).
(iii) [P(A) — Q(A) < x2(QIIP)P(A)(1 — P(A)).
(i) Q(A)log iy < D(Q|P) + log 2.

Proof. We fix X ~ Py = Por X ~ Qx = @, and define Y = Iyxc4;. Then Py = Bernoulli(P(A)), and
@y = Bernoulli(Q(A)). Use the data processing inequality:

Dy(Qy||Py) < Df(Qx||Px) = Ds(Ql|P).
(i) Since drv(Py,Qy) = 3|Q(A) — P(A)| + 5[1 - Q(A) — (1 — P(A))| = |Q(A) — P(A)|, we have
|P(A) — Q(A)| < drv(P, Q).

(ii) By definition,

H?(Py,Qy) = % (\/ ) ) (\/1 “P(A) — /1 Q(A)>2 .
Hence
5 (VPG - Va[)” < B(Pr,@v) < HX(P,Q)
(iii) By definition,
Oy Py) = Q(4) = PP [1-Q(A) - (1= PA)P _ |Q(4) = P(A)?

P(A) 1- P(A) P(A)(1— P(4))

Hence

[Q(A) = P(A)] < x*(Q||P)P(A)(1 — P(A)).
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(iv) By definition,

D@y I1Py) = QA log g + (1 = QU log [ —py
> Q(A)log 35 + (1~ QA log 5y — o2
Hence
Q(A) log P(IA) < D(Q||P) +log 2.

Thus we conclude the proof.

In fact, the first inequality in the above proposition can become equality.

Proposition 6.6. Let P and Q be two probability measures on (X, %). Then

drv(P,Q) = sup P(A) = Q(A).

Proof. We consider the signed measure ;4 = P — (). By Hahn decomposition theorem, there exists a partition
X =P NN such that
(i) PN e€F and PNN =10,
(i) PANP)—-QANP)>0forall Aec.Z, and
(iii) P(ANP)—Q(ANP)<0foral Ae Z.
We take A = P. Then

1 1
drv(P.Q) = 5 [ [aP—dQ)+ 3 [ lag -
P N
— [ 1dr - Q)= P() - @(a).
P
The conclusion then follows from Proposition i). O

6.2 Variational Representation

Definition 6.7 (Fenchel conjugate). Let (X, (-,-)) be a real Hilbert space, and let f : X — (—o0, 4] be a
proper function, that is, dom(f) := {z € X : f(z) € R} # 0. The Fenchel conjugate of f is defined as

fr(t) = sup{(z,t) — f(x)}, t € X. (6.2)

reX

Remark. It can be seen that f* is the pointwise supremum of a collection of affine functions, hence f* is
convex, regardless of f is convex or not. Moreover, it can be shown that the duality (f*)* = f holds if f is
convex and lower semicontinuous. Below is an immediate consequence of this definition.

Proposition 6.8 (Fenchel-Young inequality). For all z,t € X,
f@) + () = (,1).
Remark. Recall that in Definition f is defined on [0, +00). We complete f by redefining f(z) = oo for

x < 0, which preserves the convexity of f. Moreover, the Fenchel conjugate of f : R — (—o0,400] is well
defined: f*(t) = sup,cp{te — f(x)}, t € R. The f-divergence admits the following variational representation.
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Lemma 6.9 (Variational representation of f-divergence). Denote M by the class of measurable functions on
(X,X). Then the f-divergence can be represented as

Dy(@|1P) = sup { [oia- [0 dP} = sup {Eoly(X)] ~ Erlf*(4(X))]}. (63

Where f* is the Fenchel conjugate of f. If f is differentiable, the supremum is reached at g = f’(g—g).

Proof. We fix the measurable function g € M. By Fenchel’s duality, we have

s 5D -1 (D) < £ ate).

Take integration with respect to P on both sides of the equation above, we have

/ 9(x) dQ(x) — D4(Q|IP) < / F*(9(x)) dP(x).

Since g is arbitrarily chosen, we immediately conclude the equality (6.3). The supremum can be found when

the derivative of (6.2)) vanishes. O
Proposition 6.10. We provide the variational form of f-divergences in Definition [6.3,
. t, |t < 1/2
o Total variation distance. f*(t) =
oo, |t| >1/2

drv (P, Q) =;| sHup<1 (/gdP—/ng>

o Kullback-Leibler divergence. f*(t) =et~1:
D@IP) = sup { [ atw) d0ta) - [t apo) f
geM

) } 57 Qf, t<1/2
e Squared Hellinger distance. f*(t) =
o0, t>1/2

H(P,Q) = qigg{ gdQ —

P}:mf(/hd@ /dP)

—3log(2 —e?), t < $log2

o Jensen-Shannon divergence. f*(t) =
oo, t> %1og 2.

D;js(P,Q) = sup {/ng—i—;/log@—e?g)dP}

g<3log2

_1 sup {/log(l +h)dQ + /log(l —h) dP} : (h=¢e%9 —1)

2 |l <1

e Pearson x*-divergence. f*(t) = +t? +1:
2 1 2
xX*(Q|IP) = sup {/ng—4/g dP—l}. (6.4)
geM
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Let g = a4+ bh, and solve with respect to a,b, we obtain a more symmetric version which is directly
related to the bias-variance tradeoff:

9 B a? ab b? 9
X(Q||P)—SSEG%E£R{Q_4+b/th_2/th_4 th—l}
B (a [hdP =2 [ hdQ)® a2 _afhdP -2 [hdQ
- o iﬁ%{ A[h2dP - (1 - 5) <take b= [h2dp )
B ([ hdQ — [ hdP)? (takGQthQdP—thdeth)
- mX=r [h2dP — ([hdP)® T [h?dP = ([hdP)?

We can write this equality to the expectation form:

2 ) (Eq[h(X)] — Ep[h(X)])?
X (QIIP) = h:S)?ER ¢ Varp(h(;;))

This bound extremely useful later.

Theorem 6.11 (Donsker-Varadhan).

6.3 Inequality between f-Divergences and Joint Range

Theorem 6.12. For two probability measures P and Q on a measurable space (X, F),
D(Q|IP) <log (1+x*(Q|IP)) - (6.6)
Proof. By Jensen’s inequality,
g (1-+ 2(@1P) =tou [ C]i) > [ Qs = pi@ie)

Thus we complete the proof. O

Theorem 6.13 (Pinsker’s inequality). For two probability measures P and Q on a measurable space (X, F),

drv(P,Q) </ 3 D(QIP).

Proof. We first consider the case P = Bernoulli(p) and @ = Bernoulli(q) with p < ¢q. Then

q 1—¢q
D(Q||P) =qlog =+ (1 — q) log
(@I1P) = qlog 2 + (1 - ) log 2

9 dt 4 dt
[ [
P

— /pq t(ql_—tt) dt > 4/pq(q —t)dt = 2(q — p)>.

Since drv (P, Q) = g—p, the inequality follows. For the general case, we take A € #. Let P4 = Bernoulli(P(A))
be the distribution of the variable 1;x¢ 4y under X ~ P, and we define @4 = Bernoulli(Q(A)) similarly. Using
the conclusion above and the data processing inequality,

IPL) - QUA) = drv(Pa, Q) < [ 2D(@allPs) <\ 1D(QIP).
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Taking the supremum dpv (P, Q) = sup 4 # |P(A) — Q(A)|, we have the desired result. O
A refinement of Pinsker’s inequality is presented below.

Theorem 6.14 (Bretagnolle-Huber). For two probability measures P and Q on a measurable space (X, .F),

drv(P,Q) < V1 —e=D@IP) <1 - %G—D(QHP).

Proof. Similar to the proof of Pinsker’s inequality, it suffices to show the Bernoulli case. Let P = Bernoulli(p)
and @ = Bernoulli(q) with p < ¢. Then

q 1-
D(Q||P) = qlog; + (1 —q)log I

1-p
= —2qlog \/pq — 2(1 — q) log -

> —21og (Vo + VI -1 - 1)
Hence
—D@IP) < (\/p—q+ \/mf
< (vpa+ W)Q + (Ve =p) — V(- q)q)2
=1-(¢-p)°=1-drv(P,Q)*
The desired bound then follows. 0

The downside of ad hoc approaches is that it is hard to tell whether those inequalities can be improved or
not. However, the key step when we proved the Pinksers inequality, reduction to the case for Bernoulli random
variables, is inspiring: is it possible to reduce inequalities between any two f-divergences to the binary case?

The joint range of f-divergences provides a systematic approach to find inequalities between f-divergences.

Definition 6.15 (Joint range). Consider two f-divergences Dy and D,. The joint range between Dy and D,
is a subset of Ri defined by

R ={(D;(Q||P),Dy(Q||P)) : P and Q are probability measures on some measure space},
Ri ={(D;(Q||P),Dy(Q||P)) : P and Q are probability measures on {1,2,--- ,k}}, k=2,3,---.

If we know the region R, we can find a tight inequality between Dy and D,:

Dy(QIIP) = F(Ds(QIP)),

where F' is the lower boundary of R:

F():=inf{z>0: (t,x) e R} = Dy(P||Q), t>0.

inf
(P,Q):Ds (PlQ)=t

The region R seems difficult to characterize since we need to consider probability measures P and @) over
all measurable spaces. On the other hand, the region Ry for small k is easy to obtain. The main theorem we
will prove is the following, which provides a simple characterization of R.

Theorem 6.16 (Harremoés-Vajda). Given two f-divergences Dy and Dy, their joint range satisfies

R = Conv(Rz2).
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The proof of this theorem requires some technical lemmata.

Lemma 6.17. Given two f-divergences Dy and D, their joint range is

CAEFXO]+ (o)1 -EX]DY L ‘ ‘
R = { (E[Q(X)] +g'(00)(1 E[X])) : X is a random variable with X > 0 and E[X] < 1} . (6.7)

Furthermore, for any integer k greater than 1,

R = E[f(X)] 4 f'(c0)(1 =E[X])\ X takes at most k — 1 values, X >0 and E[X] <1 6.8
b Elg(X)] + ¢'(0)(1 —E[X]) ] = or X takes at most k values, X >0 and E[X]=1[" (6.8)

~

Proof. Given any pair of distributions (P, Q) that produces a point of R, let p, ¢ denote the densities of P, Q
under some dominating measure p, respectively. Take

q
X:]l{p>0}];, MX:P~ (69)

Then X > 0 and E[X] = Q({p > 0}) < 1. Moreover,
= 4 (o0 = = "(00)(1 —
Dy(QIIP) = /{ o (p) pdpit f(0)Q({p = 0}) = E[f(X)] + f'(00) (1 — E[X]).

D,(Q|IP) = /{ e (;) pdji+ ¢ (00)Q({p = 0}) = Elg(X)] + ¢/ (c0)(1 — E[X)).

On the other hand, for any random variable X with X > 0 and E[X] < 1 with X ~ g, let
dP =dp, dQ=Xdu+ (1 -E[X])i_w, (6.10)
where —oo is an arbitrary symbol outside the support of X. Then
D#(QIIP) =E[f(X)] + f'(00)(1 — E[X]), Dy(QIIP) =E[g(X)] + ¢'(c00)(1 - E[X]).

Now we consider Ri. Consider any two probability measures P and @ on {1,2,--- [ k}. If P < @, the
likelihood ratio X defined in takes at most k values and E[X] = 1; otherwise, X takes at most k — 1
values and E[X] < 1. On the other hand, for any variable X taking at most k values with E[X] > 0 and
E[X] = 1, the construction of P and @ in are on the same support of size k; for any variable X taking
at most k — 1 values with E[X] > 0 and E[X] < 1, the support of ) increases at most by 1. O

Theorem 6.18 (Carathéodory). Let S be a nonempty subset of R™. For each x € Conv(S), there exist n+ 1
points x1,xa, -+, Tpy1 € S such that x € Conv{xy,za, -, Tnt1}-

Proof. We first prove that each point x € Cone(S) can be represented as a positive combination of linearly
independent vectors from S, where Cone(S) is the minimum convex cone containing S, i.e.

N
Cone(S) = {Zaixi:NeN, xy, o ,TN €S a1, an 20}.

i=1

Take € Cone(S) with  # 0. Let m be the minimum integer such that there exist zq,---,z,, € S and
a1, -+, > 0 satisfying © = 3" | a;a;. If the vectors z1,- -+, &, are not linearly independent, there exist
A,y Am € R with at least one A\; > 0 such that Z:;l Aix; = 0. Consider the greatest v* € R such that
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a; —yA; > 0foralli=1,--- ,m. Then

(ai - ’Y*)\i)mu
1

m
€Tr =
1=

which is a positive combination of at most m — 1 vectors in S, contradicting the minimality of m!
Now we consider the set U = {(x,1) : z € S}. If € Conv(S), the extended vector (x,1) € Cone(U).

By our conclusion above, one can find linearly independent vectors (z1,1),---,(zm,1) € U C R*™! with
m < n+ 1, and corresponding weights a1, - - , a,, > 0 such that
m
(J?, 1) = Zai(xi, 1)
i=1

The last coordinate implies that Y ., a; = 1. Therefore, any z € Conv(S) is the convex combination of no
more than n + 1 points of S, which finishes the proof. O

Lemma 6.19. Given two f-divergences Dy and Dy, their joint range satisfies
R =TRs.

Proof. Tt suffices to show that R C R5. We define the set S = {(z, f(z),g(z)) : @ > 0} C R3. For any pair
of distributions (P, Q) that produces a point of R, consider the likelihood ratio X defined in . Then
(E[X],E[f(X)],E[g(X)]) € Conv(S). By Carathéodory theorem, there exist points x1,z2,x3, 24 > 0 and the
corresponding weights o, as, as, ay > 0 with oy + as + ag + a4 = 1 such that

Zai(wi,f(xi),g(xi)) = (E[X], E[f(X)], E[g(X)])

Consider the random variable Y supported on {z1, z9, z3, 24} and taking value x; with probability «;. Then

Since Y takes at most 4 values, Y > 0 and E[Y] = E[X] < 1, by Lemma

(Df<Q||P)> _ (E[f(X)] + [(00)(1 — E[XD) _ (EW)] + ['(00)(1 — E[Y])) R
Dy(Q|P) )1 Elg(Y)] + ¢'(c0)(1 — E[Y])

Thus we conclude that R C Rs. O
Lemma 6.20. Given two f-divergences Dy and Dy, their joint range R is a conver set in R

Proof. Given any two pairs of distributions (Pp, Qo) and (P;, Q1) on some measurable space (X,.%) and given
any 0 < A < 1, we construct a random variable Z = (X, B) such that B ~ Bernoulli(\), Pxjp ~ P; and
Qx|B=i = Qi, where i = 0,1. Then we can verify that

D¢(Qx,BlI1Px,B) = (1 = A)Ds(Qol|Po) + AD(Q1]| P1).

The same conclusion holds for D,. Hence R is convex. O

Remark. If we further assume that X = {1,2,--- ,k} in our proof, where k = 2,3, -+, it turns out that

COnV(Rk) C Rok.
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Lemma 6.21. Given two f-divergences Dy and Dy, their joint range satisfies
Ri+1 C COHV(RQURk), k=2,3,---. (6.11)

Proof. Given any pair of distributions (P,Q) on {1,2,--- ,k + 1} that produces a point of Ry, we take the
likelihood ratio X as in that takes at most k£ + 1 values.

o If E[X] = Q({p > 0}) <1, and P is supported on at most k values. Denote by x the smallest possible
value of X and then x < 1. Assume px(z) = A, then

px = Ay + (1= M),

where 1/ is supported on at most k — 1 values of X other than z. Let ps = d,. To prove (6.11), we aim
to find a probability measure p; and 0 < « < 1 such that

px = apr + (1 — a)uz,

where Y ~ puy takes at most k — 1 values and E[Y] < 1, or Y ~ puy takes at most k values and E[Y] = 1.
—KHE/[X]<1 welet py =p' anda=1- A\

— IfE,/[X] > 1, we consider 1 = 5d, + (1 — )1/, where we take 8 = ]]g“:gg:i so that E[Y] =1. In
this setting, we let oz = ]E[lx_];z.

o If E[X]=Q{p > 0}) =1, we have Q < P. Denote the smallest value of X by x and the largest value
by y, respectively, and then <1, y > 1. Assume px(z) =7 and px(y) = s. Then

px =10, + 86y + (1 —1—s)p',

where 1/ is supported on at most k — 1 values of X other than z and y.
Let po = y:i 0y + ﬁéy, S0 Z ~ o takes at most 2 values and E[Z] = 1. To prove 1) we aim to

y
find a probability measure p; and 0 < « < 1 such that

px = apr + (1 — a)uz,

where Y ~ py takes at most k — 1 values and E[Y] <1, or Y ~ p; takes at most k values and E[Y] = 1.

— IfE,/[X] <1, we consider 1 = d, + (1 — )1/, where we take g = ;:EZ; gg so that E[Y] =1. In
this setting, we let a =1 — %;

— If E,/[X] > 1, we consider iy = 36, + (1 — )y, where we take g = ;‘::{% so that E[Y] =1. In
this setting, we let a =1 — @

Let Y ~ py and Z ~ po. Applying the construction in (6.10) with p1 and uo, we obtain two pairs of measures
(P, Q1) supported on k values and (P, Q2) supported on two values, respectively. Then

D,(QIP)) ~ \Elg(0)] +¢/(00) (1 ~ E[X]
o <E[f(Y)] + f(00)(1 - E[Y])) l-a) (E[f(Z)] + f(00)(1 - IE[ZD>
(1

<Df(QIIP)> _ (E[f(X)] + f'(00)(1 Em))
(X) 1 - E[X])

E[g(Y)] + ¢'(c0)(1 — E[Y])

o (Dr@IPDY ) (DA@IPDY
! <D9<Q1|P1>>+(1 )<D9(Q2||P2)>€C (R> URs)

Therefore, Ri4+1 C Conv(Rgo U Ry). O
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Now we are prepared to prove the main result.

Proof of Theorem[6.16. According to Lemma we have R3 C Conv(R3). By induction, we conclude that
k=4,5--.

Ri C Conv(Re URg—1) = Conv(Rs),
Particularly, we have Rs C Conv(Rz). On the other hand, by Lemma and the definition of Ry, we have

CODV(RQ) CR4CR5C---.
[

Finally, using Lemma [6.19] we obtain R = R5 = Conv(Rs).

Remark. To summarize, we have shown that

Ra CRgCR4:R5:"':R:COIIV(R2)
Bernoulli(g), where

Every point the joint range R can be parameterized as P = Bernoulli(p) and Q =
p,q € [0,1]. Note that Ds(P||Q) = Ds(P||@), where P = Bernoulli(l — p) and @ = Bernoulli(1 — ¢).
Therefore, to determine the region Ro, it suffices to consider the image of the triangle

S={(p,q):0<p<q<1}

under the transformation (p, ¢) — (D¢, Dy). Then, to determine the joint range R, we simply take the convex

hull of the image of the triangle S.
Theorem 6.22 (Sandwich bound). Let P and Q be two probability measure on some measurable space. Then

HQ(PaQ)SdTV(PaQ)SH(PvQ) 2_H2(P7Q)7

Proof. We consider the distributions P = Bernoulli(p) and @ = Bernoulli(q), where 0 < p,q < 1. Clearly,
H*(P,Q) =1~ /pg — /(1 -p)(1 - q).

dTV(P7 Q) = |q _p|a

The joint range of dpv and H? is

Ry = lg —
1—ypg—+/(1-p)(1—4q)

) :0<p,g< 1}
Since both dpyv and H? are symmetric, it suffices to consider the case p < ¢. We fix t = dpv(P,Q) > 0.

0<p<1—t.

Consider the function
p(p) = H*(P,Q)=1—/plp+1t)— /(1 —p)(L—p—1),

1=t and maximum at both p =0 and p = 1 — t. Hence

2

1-V1-2<g(p)<1-VI—t,

and Ry is the region between the two curves given in the start and end of the last display. Since R = Conv(Rz),

we take the convex hull of R and get
R:{(x y):0<x <1, andl—x/l—ﬁﬁyﬁx}.

This function attains minimum at p =
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According to this joint range, for all probability measures P and () on some measurable space, we have

1= V1—drv(P,Q)? < H(P,Q) < drv(P,Q),
or equivalently,
H*(P,Q) < drv(P,Q) < H(P,Q)\/2 — H*(P,Q),
which is the desired bound. O

Remark. We visualize the joint range of dryv and H? in the following figure.

H2
I

The sandwich bound is described by the diagonal line and the lower arc. According to our discussion, this
sandwich bound is non-improvable. Under the constraint drvy (P, Q) = t, the upper bound is attained when

P = Bernoulli <12t) .Q = Bernoulli (T) ,

and the lower bound is attained when
P=(1-1t1t0),Q=(1-¢0,1).

Theorem 6.23 (Total variation versus chi-square divergence). Let P and @Q be two probability measure on
some measurable space. Then
) 42, 0<
X (P”Q) > f(dTV(PaQ))7 where f(t) = ¢ 1
-t 2

Proof. We consider the distributions P = Bernoulli(p) and @ = Bernoulli(g), where 0 < p,q < 1. Clearly,

> (1-p)?

_ 2

1=
l1—g¢ q(1—q)

The joint range of dpv and H? is

(e
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We fix drv(P,Q) = |¢ —p| =t € (0,1). It turns out that

_ t2 _ t2
Cql-q) q(l-g)

X*(PllQ)

e If t < 1, the minimum is attained when ¢ = § and p = 1 — ¢, and x*(P||Q) = 4¢?;
e If t > 1, the minimum is attained when ¢ =t and p = 0, and x*(P[|Q) = L.
We consider the function f : [0, 1] — R4 defined as follows:

IN
— N

4%, 0< ,
1
§ .

t
<t

IN

Then f is a convex function on [0, 1], and Rs is the epigraph {(¢,z) : 0 <t <1, & > f(¢)}. Since Ry is convex,
we have R = Conv(Rz) = Rz. The desired bound follows this range. O

Remark. We visualize the joint range of dry and x? in the following figure.

X*(PllQ) ,
=/ /
(3,1)
f(t) = 4t?
drv(P,Q)

A direct corollary of this range is that as drv(P, Q) — 1, we have x?(P|Q) — oc.

Theorem 6.24 (Total variation versus Le Cam divergence). Let P and @ be two probability measure on some
measurable space. Then

dTV(P)aQ)2 < Le(P”Q) < dTV(Pa Q)
Proof. We consider the distributions P = Bernoulli(p) and @ = Bernoulli(gq), where 0 < p,q < 1. Clearly,

(p—q)? (p—q)?

dTV(PvQ):|q_p|a Le(PvQ):2(p+q) 2(2_p_q)

The joint range of drv and H? is

Rz = {(|q =7 éI(Jquz; " Q(ép_th)jq)> Ospas 1}

We fix dpv(P,Q) = |¢ —p| =t € (0,1). It turns out that

t2
(2p+t)(2—2p—1t)

Le(P,Q) =
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Over the interval 0 < p <1 —t, we have

t
t? <Le(P,Q) < —.
< Le(P,Q) < 57—

Therefore, the joint range is
t
R2={@w%0St§Lt2§x§2t},‘RZmeRﬁ={@w%0§t§Lt2§x§ﬂ.

The desired inequality follows from this joint range. O

Remark. We visualize the joint range of drv (P, Q) and Le(P, Q) in the following figure.

Le(P, Q)
1 ,,,,,,,,,,,,,,,,,,,,,

1 drv(P,Q)

Example 6.25 (Total variation versus Jensen-Shannon divergence). Let P and @ be two probability measure
on some measurable space. Then

1-— dTV(Pa Q)
2

1 + dTV(P7 Q)

log (1 —drv(P,Q)) + 5

log(1 +drv(P,Q)) < djs(P|Q) <log2-drv(P,Q).

Proof. We consider the distributions P = Bernoulli(p) and @ = Bernoulli(q), where 0 < p,q < 1. Then

i (P.Q) = li-1l. dis(P.Q) =1 (P30 = L) - 3 (o).

The joint range of dyy and djg is
p+q 1 1
Re={ (la= sl (P50) - 3H0) - 31@ ) :0<p<a <1
We fix p=a — §,¢g=a+ L. It turns out that
1 t 1 t

Over the interval % <a<l- %, we have

G, l—a 1 l—a-—1% l—a+i
L d5s(P,Q) =1 2 (log—/— 22 e 22 )
15(P, Q) = log — <0g oL tls—— )

5 2 2 3
52 2 t2
@dJS(Pv Q)= a(da? — 12) + 41— a)((1—a)?—12) -0
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Hence djs(P, Q) attains minimum when a = § or 1 — £, and attains maximum when o = £.

()40 sommsn () n(15) ()

Therefore
1-—-1t 1+t t Hi(t
Ro =< (t,x): log(1—1t)+ + log(l+¢t) <z <H|< _H® ,
2 2 2 2
1-— 1+1¢
R = Conv(Rz) = {(t, x): log(1—1t)+ 3 log(1+t) <z <tlog 2}
The desired bound follows from the joint range. O

Remark. We visualize the joint range of drv (P, Q) and djs(P, @) in the following figure.

dys(P, Q)

log 2

Example 6.26 (Total variation versus Kullback-Leibler divergence). The joint range between KL and TV
is shown in the following figure. Although there is mo known close-form expression, the following parametric
formula of the lower boundary is known:

v, 4 (1 (o)~ 1)

. t>0.
KL; = tcoth(t) + log (t esch(t)) — t2csch?(t)

A direct corollary of this formula is Vajda’s lower bound:

1 + dTV(P7 Q) 2dTV(Pa Q)

DPIQ) 2 log 3= B 0) ~ TH dev(P.Q)°

D(P||Q)

drv(P,Q)

(0]



6.4 Pearson y2-Divergence and Information Bounds

The Pearson x2-divergence is special because most f-divergences are locally y2-like.

Theorem 6.27. Let Dy be an f-divergence such that f € C*(Ry) and limsup,_, . f"(x) < co. Then
(i) If \*(Q||P) < oo, then for any 0 < X < 1,

Dy(AQ + (1 - NP|[P) < o5
(ii) I 2(QI|P) < oo,
. 1 (1
tm 0,0+ -nP1p) = e )e) (6.12)
Proof. We will use the integral remainder of Taylor’s expansion:
1
F() = $(@) + f'(@)(@ — a) + (= — a)? / (1= 6)f"(a+ 0z — a) db.

For any 0 < A < 1,

D;(AQ + (1 — N P|P) = /f <1 + A‘wd;dp> P
- / (f(l) + () ()\C@d;dp) + (AW)Q/;Q — o) (1 +9Ade;dP> d9> P

=A2/<flg—1)2 (/01(1—9)f” <1+9>\de;dP> d9> dP.

Since 1+ 9)\% >1— X and limsup,_, ., f”(z) < oo, the function f” is bounded on [1 — A, 00). Hence

! —dpP 1
/ 1-0)f" {1+ GAM do <= sup f’(z) = Cy, (6.13)
0 ap 2 zE[1—)\,00)

and therefore D;(AQ + (1 — M) P||P) < X2C\x?*(Q||P) < oo. To prove (ii), it remains to determine

o1 L dQ 2t . dQ — dP
i )\2Df()\Q+(1/\)P|P)_Ali>rg+/<(ﬂ31) </O (1-0)f (1+9Adp) d9> dP.

According to the bound 1' forall 0 < A < %7

aQ  \* [ , dQ — dP dQ 1\’ -
(dP—1> /0(1—0)f (1+9>\dp>d9<0§ (—1> €LY (X, Z#,P).

By dominated convergence theorem,

2 1
A1%/ @g - 1) (/O (1-6)f" (1+0>\de;lP> d9) dP

_ / (Zg _ 1)2 (Ahj{)ﬂ /01(1 —o)f" (1 + eAde;dP> d9) P (6.14)
- [(%- 1)2 P ap = T 2 p).
O

Thus we complete the proof.
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Remark. In fact, the identity (6.12) remains correct even if x?(Q||P) = oo and f”(1) > 0, i.e.
Di(AQ + (1= NP||P) =w(N\?), A—0.

To see this, under the condition @ < P, we replace the equality (6.14])) with “>” by Fatou’s lemma:

lim / <flg — 1)2 (/01(1 —0)f" (1 + 0AW> da) dP > @XQ(QHP). (6.15)

A—01

Since x?(Q||P) = oo and f”(1) > 0, the RHS of the last display is oo, and the equality holds naturally.

Parameter estimation. Let {P,0 € O} be a family of probability distributions parameterized by 6 € O.
The estimation of parameter 6 can be described by the following Markov chain:

9*—>X—>§,

where 0* is the true parameter, the sample X ~ Py« is drawn from the distribution Py-, and the estimator
0= a(X ) is a (possibly random) mapping from the sample space X to the parameter space ©. We use the
quadratic loss to evaluate the difference between the real and the predicted parameter, i.e. E(g) = |§ —0*]2.
The mean-squared error/risk of estimator 9 when the real parameter is given by 6* is

]

For an estimator 6 of 6, we have the following Hammersley-Chapman-Robbins (HCR) lower bound of risk.

-~

Ry (0) = Eg- |

00" =Ex.p, [\5()() g

Theorem 6.28 (Univariate Hammersley-Chapman-Robbins bound). If © C R, any estimator 0 satisfies

~ ~ 2
~ (Eg* [0] — Eq [9])
Varg«(6) > su , V6" e 0.
o-(6) = eeezegée* X2 (Pol| Po-)

Proof. For all 8 € ©, the distribution Py of X and the mapping rule = §(X ) together induce a distribution
Qg of the estimator 0. We fix 0*,0 € © with 6 £ 6*. By data processing inequality,

X°(Pol Po-) > x*(QollQo-)- (6.16)
We take h(z) = x in the variational representation (6.5 of x2-divergence, hence

X*(QollQo-) > (Eg*\[fir; ];3;)[9]) : (6.17)

Combining (6.16)) and (6.17), we get

~ _ (Eq-10] — Eolf])”
Varg«(0) > IR

Since this inequality holds for all 8 # 6*, we take supremum on both sides to get the desired bound. O

Remark. Define the bias function of 8 by b(0) = Ey [5] — 0. According to the bias-variance decomposition,

0y — 0 p*\2 (EG*@ _E9[§D2 12
Ry« (0) = Eg-[(0 — 607) ]2%81:19&0* A, +b(0)°.
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Theorem 6.29 (Multivariate Hammersley-Chapman-Robbins bound). If © C R"™, any estimator ) satisfies
X2(Po||Po-) > (Eg-[6) — Eg[B]) " Cove- (B) " (Eg- (0] — Ey[f]), V6*,0 € O©.

Proof. Based on the same procedure establishing (6.16]), we take h(x) = £z in the variational representation
(6.5) of x*-divergence, where ¢ € R™\{0}. Then

(€7 Eo- 6] ~ € TEo[6)”

2
X~ (Qol|Qo~) = 6.18
(@l &7 Cove- ()€ (015
Combining (6.16)), (6.17) and taking the supremum with respect to £ € R™\{0}, we get
~ ~ ~ AT
ET (Eg-[0] — Eg[0]) (Eg-[0] — Eg[0]) £
Xz(PGHPH*)Z sup ( [ } T[ ])( ,\[ ] [ ]) )
¢eRn\ {0} §T Cove-(0)€
Using the fact supgegn {0y 2735 w! M~ w from linear algebra, we obtain the desired bound. O

Score function. In many cases, we can express Py in form of the likelihood function:
Pp(X € A) :/ Py(x) p(dx), A€ .Z,
A

where p is a dominating measure. For example, i is the counting measure in the discrete case or the Lebesgue
measure in the continuous case. The partial derivative of the log-likelihood log Py(x) with respect to § € © is
called the score. Under regularity conditions on Py (x)ﬂ the expectation of the score function evaluated at the

true parameter 0 is zero:

[;elogPe( )} -/ BPZ@() w= [ Sr@a=v, [ AE=o

2To be specific, we assume © is an open subset of R, and assume 6 + Py(x) to be a continuously differentiable function. For
fixed parameter value 6y € © and € > 0, we consider the following conditions:

i) / Py(z)dz < oo for all 0 € B(0p,e) :={0 €O :|0—0* <e}

(ii) / —Pg (z) dz is continuous at 6 = 6p;

7]
(ii”) sup — Py(x)|dx < oo
X 0€B(0,¢) | 00
€l o .
(iii) — Py 1tu(z)| dt dz < oo for all unit vectors |u| = 1.
xJo |08

Under conditions (i), (ii) and (iii), we use Fubini’s theorem:

1
E/ (Pog+hu(®) — Pyy(x)) do = — / / P90+tu(z dtd:cf / / ng(z )dx dt, V|u|=1.

Letting h — 0 on the both sides, we obtain

7]
Vg/ Py(z) dx = / — Py, (x) dx
x 0=6, x 00
Under conditions (i) and (ii’), for all |h| < € and |u| = 1, the difference quotients are dominated by an integrable function:
P, - P 1 [h o 0
9o-+hu () — Poo () | _ 7/ 2 ppsra@dd| < sup |2 Py(a)].
h hJo 06 9€B(60,¢) | 90

By Dominated Convergence Theorem,

1im/ Poythu(z) — Poy () dx:/ lim Pyy1hu(x) — Poy ()
h—0 Jx h x h—0 h

dz, Vju|=1 & Vg/ Py(z) dz
x

0
= — P, dx.
0=00 /X a0 o () do
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Fisher information. The Fisher information Z(0) is defined to be the covariance of the score when the

9 d "1 0pap

Using the Taylor’s expansion of Py at 68*, we have

true parameter is 6:

Z(0) = Ey

0Py~
Py — Py = (60— 0%)T =2 4 0(]0 — 07).
00
Under regularity conditions E| on Py(x),
Py — Py.)?
XQ(POHPG*):/( 0P 0)
6*
=(0—0")TZ(0")(0 — ") + 0 (|0 — 07]?). (6.19)

Therefore, the y2-divergence is “locally Fisher information”. Using this property, we can derive a universal
bound for estimation error in terms of Fisher information.

Theorem 6.30 (Cramér-Rao bound). Let © C R. Under reqularity conditions, for the quadratic loss, any
unbiased estimator 0 satisfies

Ra- (B) = 50-[0 - 071 > 5.

Vo* € ©.

where Z(0%) is the Fisher information evaluated at the true parameter 6* € ©.

Proof. Using the Hammersley-Chapman-Robbins bound and the unbiasedness of 5,

S . (Eg- 0] - Ee[a])Q
Eo-[(0 - 07)7] 2 Py X% (Py || Po-

li = .
650+ (0 — 0)2Z(0%) + o((6" — 0)2)  Z(67)
Thus we complete the proof. O

For biased estimators, we also have a similar bound.

3Define the remainder of the first-order Taylor expansion as follows:

0Py~
ro = Py — Ppr — (6 — 0%)T =25 = 5(|0 — 0*|).
o0
By Cauchy-Schwarz inequality, (6.19) is valid if r¢ vanishes under the weighted inner product:

3 (z)
Py« (z)

dz = o(|6 — 0*]?).

r3(2)

W is dominated by some L!-function on X within some

By Dominated Convergence Theorem, if the mapping =
deleted neighborhood 0 < |6 — 6*| < €, we have

2 2
lim ——— (@) 33:/ lim %%()dzzo.
0—6* 10 — 0*|2 /] Py« (z) 0—0* Py« (x)|0 — 0*|2

We can require that for some € > 0,

2
/ sup %7@) dx < oo.

0:0<|0—6%|<e Pox ()]0 — 6*|2
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Theorem 6.31 (Biased Cramér-Rao bound). Let © C R. Given an estimator 8, assume that the function
0 — Egl0] is continuously differentiable. Under reqularity conditions, for the quadratic loss, the estimator 0

satisfies

14 b/(67))?

Rg*(ﬁ):Eg*[(g—G*)Q]z( 707 +b(0")2, V" €O,

where Z(0*) is the Fisher information evaluated at 0* € O, and b(0) = Ey [5] — 0 is the bias of 0.

Proof. Using the Hammersley-Chapman-Robbins bound, we have

- 9 9
~ Eo-[0] — Eg[0 0 —0*+0b(0)—b(0* (6%))2
Varp- (6) > lim (Bo- 0] —Bol0])” _ .~ ( +5(0) = b(6"))"  (1+0(60)
0-0*  x2(Ppl|Po-) 0-0% (0% — 0)2Z(0%) + o((0* — 0)?) Z(6%)
The result then follows from bias-variance decomposition. O

Theorem 6.32 (General Cramér-Rao bound). Let © C R™. Given an estimator 0, assume that the function
0 — Eo[0] is continuously differentiable. Let ¢(0) = ZEq[0]. Then estimator 0 satisfies

Z(0") = $(0%) Cove-(0)'6(67) ", and  Cove- = 9(6")(O)Z(69") " 6(6") .
where A = B denotes that £ (A — B)¢ >0 for all £ € R™.
Proof. Fix any £ € R™. Since ¢ — Ey [5] is continuously differentiable, we have
Eg+ 1 ne[0] — Eo- (0] = he " ¢(0%) + o(h).
Plugging in this equation and into the multivariate Hammersley-Chapman-Robbins bound, we have

o(h?)
12

R 2
> €76(6") Cove- () 6(0") T + X2

€T IT(07)€ +
Letting h — 0, we obtain the first bound. Furthermore, according to the univariate HCR bound,

(€TEp-[6) — £TEy[6))?
X% (Py || Po~)

€7 Covg- (5)5 = Varg- (§T§) >

For any n € R", letting 6 = 6* + hn, we have

S R2(ETg(0%)m)" +o(h?) (T H(0%)n)”
¢ Covo- 00 2 = ez Gy T o)~y Z@ )0

vn € R™.

Using the fact SUP,crn\ {0} % = w " M~ w from linear algebra, we have

¢" Cove- () > £ 0(07)Z(9") "' 6(67) .
Since £ € R" is arbitrary, we obtain the second bound, concluding the proof. O
Remark. If 6 is an unbiased estimator, ¢(0) = 1d,,. We have the unbiased Cramér-Rao bound:

Cove-(0) = Z(6%)".

When the dimension n = 1, the Theorem reduces to the case in Theorem [6.31
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Bayesian case. From a Bayesian perspective, in each experiment, the true parameter 6 is subject to a prior
distribution 7 on ©. The average risk of 8 over the prior 7 is

m@:mwm@:mwﬁﬁwﬂ.

Given a prior distribution 7, the Bayesian risk for 7 is defined as the infimum of the average risk:

R} = inf Re(8) = inf Egr [ (8- 0)%]
g g
Theorem 6.33 (Bayesian Cramér-Rao bound).

1
Eor[Z(0)] + Z(m)’

R 1nfR (9)

where () = f® “?/ is the Fisher information of the prior.
Proof. Consider the following comparison of experiments:

X~pxi|e X~gxie
p7r—>9—>X—>9 q7r—>0—>X—>0

By the data processing inequality and the variational representation,

E, [0 — 0] — E,[0 — 0))”
Varp(efg)

X*(ao,xPo.x) = X*(ay 5llPg 5) = X*(5_5llPg_5) >

Let 7 be the prior obtained by shifting 7 by ¢, i.e. 7(0) = 7(6 — ). We choose px|g = Py and qxj9 = Pp—s.
Then px = qx, and p; = q5. Hence Ey[0 — 5] —E,[6 - 5] = ¢, and

~ 62
Var,( —0) > ————. 6.20
a )_X2(qe,x||;09,x) (6:20)
On the other hand,
go(ax|o — Pxo) + (a0 — Po)px1o)”
Clanxlpo) = [ [0 gy gy // R N
Po,x Po,x
:/qidg Wwdx+/wd@/pxwdaj—!—/qe(qemd9/(q;<|9—px|9)d$
Do Px|o Po Po

2
q
= /XQ((JX\erxw);Z d6 + x*(qollpo)-

According to Taylor’s expansion, we have XQ(QX\GHPXW) = X2(Py_s||Ps) = 6°Z(0) + 0(62), and x%(qo||lps) =
X2(m(- = 0)||7) = 6%Z(m) + 0(6%). Hence

X*(a0.x |po.x) = 0°Ep, [Z(0)] + 6°Z(m) + 0(8%). (6.21)

Combining (6.20) and (6.21]), and letting 6 — 0, we have

1

(0~ 0)°) 2 Varo-s(0 = 0) 2 g~ g 7y

Since 8 is arbitrary, we obtain the desired bound for Bayesian risk. O
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6.5 Application: Kernel Density Estimator

Setting. In this section, we consider the estimation of the density of a channel output Y. Assume that
we are given a known channel Py |x, and let Px be any unknown input distribution. Given observations

Xy, , X, "&" Py, the empirical distribution of X is

P, =Y dx,.
j=1

A natural estimate of the distribution of Y is Py x o ﬁn In many practical cases, the conditional density of Y
given X = z is of the form Py|x—, = ¢(- —x), where ¢ is a fixed density. For example, the additional channel
Y = X + Z satisfies this formula when Z ~ ¢ is independent of X. In this case, we can think of Py x o P, as
a kernel density estimator (KDE), whose density is

e[ e Pa®) ] ()
—E/ﬁMﬂgm dg+EU@mngm@ﬁ
[ Py (¥)
g

PX(Z/)

dy

dy+/Em@mo

=B [D(Pyx o Pall Py)| + D(Py|1Px)

In this section, we determine the convergence rate of the expected estimation error E[D(Py|x o P, ||Py)]-

Mutual y*-information. Consider two random variables X,Y ~ Pxy. Let Px and Py be the marginal
distributions of X and Y, respectively. The mutual information between X and Y is defined as

P
I(X;Y) =D (Pxy|PxPy) :/ny log =Y
Py Py

Similarly, we define the mutual x2-information between X and Y to be
L2(X;Y) = x*(Pxy||/PxPy).

More generally, if D is an f-divergence, the mutual f-information between X and Y is
I;(X;Y) = Dy (Pxy||PxPy).

Theorem 6.34. Under the above setting, we have the following upper bound for the estimation error:
=~ 1
E [D(PY‘X o Pn||Py)} < log (1 + e (X; Y)> :
n
Moreover, we have the following lower bound for the estimation error:

lim nE {D(PY|X 013,,||PY)} >

1
n—00 -2

Le(X;Y).
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Proof. We first prove the upper bound. Note that

E[\*(Pyix o PullPy)] = E [/ (P (v) —py(y))Qdy}

py (y)
_E /

:/py (inwx ylX;) —py(y )) dy.

(;Z prx 1)) (y)) dy

2

For any X; ~ px, we have

E [pyix (WX;) — py(y)] =0,

and
E [(pyix (WX;) —pv(y)?] | (pyix (ylz) — py (y))?
/ or(®) ay= [ [P sy
// pxy(x y —px(@)py (v))* de dy
pY(y)
2 (X:Y).
Hence

E {XQ(PYD( o ﬁnHPy)} - %IXZ (X;Y).
By and Jensen’s inequality,
E {D(PHX o 13”||Py)} <E [log (1 + X3 (Py|x ﬁnHPy)ﬂ
<tog (14 B [(Prix 0 Pul )] ) =og (14 110(X:7) )

To prove the lower bound, we let X* ~ Unif(Xy,---, X,), and let Y* be the output of the channel Py |x given
the input X*. Then Y* 1y marginally, and the joint distribution of (Xi.,,Y™) is

P ) = px(en) () 0ly ).
j=1

Then
Y= [ ... *(pq.-o 2 o pr(z1, - T, y) 1 dx
I(Xis Y )*/ //p @1, 2wyl S o () - @y () 0
—/~--//px<m1>-~px<xn>-izdmyxj>1ogwdydxl---dxn
=t (6.22)
— 1 - Z] 1¢( )
B /nz:: npy (y) dy

—E [D(PY‘X o Pn||Py)} .
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On the other hand, by the chain rule,

n

H(Xuni V) = h(Xim) — B(XaalV*) = S0 = S HOGIY X1, X0)

. = a (6.23)
>3 (X)) = h(XGIY) =D I(X; V") = nl(Xy; V™).
j=1 j=1
The joint distribution of X; and Y™* is
1 n
p*(r1,y) = /"'/px(ﬂﬁ) copx(Tn) - o Z;(é(y — xj)dxg ceedxy,
]:
1 1«
= E/m/px(xl)--~px(xn)¢(y—x1)das2---dxn + ﬁZ/m/px(xl)--~px(xn)¢(y—wj)dxz--~dxn
j=2
1 n—1
= —px(21)9(y — 21) + ——px (21)py ().
Hence by Theorem [6.12
. 1 n—1 1, ,
I(Xl;Y )ZD ﬁPXY“F " Px Py || Px Py Zﬁx (nyHP)(Py)-i-O(n ) (624)
Combining , (6.23)) and ((6.24]),
. =~ 1
Tim [D(Pyp( ° Pn||Py)} > SLa(X:Y),
Thus we conclude the proof. O

Remark. We can summarize our result as follows:

o If [,2(X;Y) < 00, we have E [D(PY‘X o ﬁn||Py):| =O0(n™Y);
o If [,2(X;Y) = 0o, we have E [D(PY‘X o 13,L||Py)} = w(n ).

Discrete case. When X is a discrete random variable, we take Py x to be the identity dx to obtain the
guarantee on the closeness between the empirical and the population distribution. This fact can be used to
test whether the sample was truly generated by the distribution Px.

Corollary 6.35. Assume that Px is supported on a discrete space X. If |X| = oo, we have

Tim [D(ﬁnHPX)} = 0;

Otherwise,
B [D(BlIPy)] < F=2,
Proof. We note that
)= 5 2
zeX
The corollary then follows from Theorem O
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