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0 Notations

m and my : The Lebesgue measures on R and R?

f =g : f =g almost everywhere in sense of the Lebesgue measure
m

fn = f : The sequence (f,,) of functions converges uniformly to f

C(X) or C°(X) : The set of all continuous real-valued functions on X

C*(X)

: The set of all k-differentiable real-valued functions on X with the k-th derivative continuous

C>(X) : The set of all infinitely differentiable real-valued functions on X

Co(X)

Ce(X)

supp f :

esssup :

: The set of all uniformly continuous real-valued functions on X

: The set of all compactly supported continuous real-valued functions on X

The support {f # 0} of f, which is the smallest closed set containing all points not mapped to zero

The essential supremum

IT : The union of disjoint sets



1 Metric Spaces

1.1 Metric Spaces

Definition 1.1 (Metric spaces). Let X be a nonempty set. A map d: X x X — Ry is said to be a metric
on X, if it satisfies the following conditions:
(i) (Positive-definiteness). For each pair of points x,y of X, d(z,y) > 0; d(x,y) = 0 if and only if z = y.
(ii) (Symmetry). For each pair of points x,y of X, d(z,y) = d(y, x).
(iii) (Triangle inequality). For any z,y,z € X,

d(z,y) + d(y, z) > d(z, z).
The set together with the metric (X, d) is called a metric space.

Remark. The metricd: X x X — R, is a continuous map. To see this, we fix ¢ > 0 and let (z¢,y9) € X x X.
Then for all (z,y) € O(xg, €/3) x O(yo,€/3), we have |d(z,y) — d(zo,v0)| < d(z,z0) + d(y,yo) < 2¢/3 < e.

Example 1.2. The following are some instances of metric spaces.
(i) On the real line R, define d(z,y) = | — y|, «,y € R. Then (R, d) is a metric space.

(ii) On the n-dimensional real space R™, for two points x = (21, ,2Zn),y = (Y1, , Yn), define

n 1/p
pp(x, y) (Z ‘:En - y7l|p> ) pOO(xay) = E,Iel?;l}]( “r" - y7l|'
i=1

Then for every 1 < p < oo, (R", p,) is a metric space. To check this, we only need to verify the triangle
inequality, which is a special case of the Minkowski’s inequality. Also, (R, ps,) is a metric space.

(iii) (Discrete space). On a nonempty set X, define the discrete metric

0, z =y,

do(z,y) =
’ 1, x #£vy.

Then (X, dy) becomes a metric space called discrete space.

(iv) (Subspace). Let (X,d) be a metric space, and let A be a nonempty subset of X. We define on A the
restricted metric da(x,y) = d(x,y) for each pair of points z,y in A. Then (A, d4) is a metric space, and

we call it a subspace of X.

) i . DN 1 1 - , ;

(v) Let (X,d) be a metric space. Let f : Ry — R, be a function such that (a) f is well-defined on [0, c0)
(b) f is non-decreasing on [0, 00), strictly increasing at 0, and f(0) = 0; and (c) f is concave on [0, 00),
i.e. for all z,y € [0,00) and all « € [0, 1],

flaz+ (1 —a)y) > af(x)+ (1 —a)f(y) (1.1)
Then the composition
df(:c,y) = f(d(.’E,y)), z,y € X

is a metric on X. Moreover, it induces the same topology on X as d does.

Proof. To check that dy is a metric on X, it suffices to show the triangle inequality. Given z,y,z € X,



we want to show

fld(z,y)) + fd(y, 2)) = f(d(x, 2)). (1.2)

We show that for all s,¢ > 0, f(s)+ f(¢t) > f(s+t), which implies[(1.2)l Without loss of generality, we
assume s,t > 0. Then

'(S+t)+st+t'0>+f<st+t'(8+t)+s'0>

s 0 =1 (7 ~

{1 s t 0 t s 0
> 5+tf(s+t)+57+tf( )+37+tf(s+t)+57+tf()

= f(s+1).

Since f is strictly increasing at 0, there exists some ¢ > 0 such that f is strictly increasing on (0, 4).
Given zy be a point of X, let Og4(zo,7) := {x € X : d(z,29) < r} be the open ball of radius r centered
at xg. When f(r) <4, we have Oy4(xo,7) = Oq, (w0, f(1)) :={x € X : ds(x,70) < f(r)}.

To show that dy induces the same topology on X as d does, note that the collection

{Od(z,r) cxeX,r< f! (g)}

is a basis for the topology on X induced by d, which coincides with the basis

4
{Odf(acm) xeX,r< 2}

for the topology induced by f. O

When f(t) = min{¢, 1}, we obtain the standard bounded metric d(z,y) = min{d(z,y),1} on X.

Definition 1.3 (Limit). Let (X,d) be a metric space, and let {z,,}>2; be a sequence of points of X. Let
p € X. If for each € > 0, there exists a positive integer N such that d(x,,p) < € for all n > N, then we say
that the sequence {x,}22, converges to p, or that p is the limit of {x,}>2 . We write z,, — p, or

lim z, = p.
n—oo

Remark. By definition, convergence in metric space (X, d) equals convergence in the metric topology induced

by d. Then if two metrics, for example, d and dy in|{Example 1.2 (v)} induce the same topology, we can establish
the equivalence of convergence in the two corresponding metric spaces. The uniqueness of the limit is ensured

by the following lemma.

Lemma 1.4 (The uniqueness of limit). Let (X, d) be a metric space, and let {x,,}>2 ; be a sequence of points
of X. If x,, — x, and z,, — y, then = = y.

Proof. By the properties, we have for all n € N that
0 <d(z,y) < d(zn,z) + d(zn, y).

Let n — oo, we have d(z,y) = 0, hence x = y. O

Now we introduce the definition of complete metric spaces.



Definition 1.5 (Cauchy sequences and completeness). Let (X, d) be a metric space. A sequence {z,}32
of points of X is said to be a Cauchy sequence if for any € > 0, there exists N such that d(x,,x,,) < € for
all n,m > N. If every Cauchy sequence in (X,d) converges to some point of X, then (X,d) is said to be a

complete metric space.

Remark. For the metric space (R, d) where d(z,y) = |z — y|, the statement of completeness is in fact the

Cauchy’s criterion for convergence.

Lemma 1.6. Let (X,d) be a metric space. If (X, d) is complete, A is a closed subspace of X, and d4 is the
restricted metric of A, i.e. da(z,y) = d(z,y) Va,y € A, then (A, d4) is a complete metric space.

Proof. Let (z,,) be a Cauchy sequence in A under d4. Then (z,,) is also a Cauchy sequence in X under d, and
it converges to some z € X. By definition, any neighborhood U of z contains infinitely many points of (z,,).

Hence z is a limit point of A. Since A is closed, z € A, and (z,,) converges with respect to d4. O

Now we introduce a criterion for a metric space to be complete.

Lemma 1.7 (Subsequence criterion). A metric space (X, d) is complete if every Cauchy sequence in X has

a convergent subsequence.

Proof. Let (x,) be a Cauchy sequence in X, and let (z,,) be a convergent subsequence of (z,). Fix ¢ > 0.
We first choose a positive integer N such that n,m > N implies d(z,, z,,) < €/2.

Suppose that the subsequence (x,, ) converges to € X. We choose a sufficiently large integer K so that
ng > N and k > K implies d(x,,,z) < €/2. Then for any n > N, we have

d(xn, ) < d(Tn,, Tn) + d(Tn,,z) < % + % =e.

Since € is arbitrarily chosen, (z,) converges to x. O

Example 1.8 (Metrization of pointwise convergence). Let R*® = {x = (z1,22, ) : ,, € R Vn € N} be the
set of all real sequences. We define the metric

d(x — E . x = - ).
( 7.&) on 1 | N yn|7 ($17x27 )7 y (y17y27 )

n=1

Then (R, d) is a metric space. Furthermore, convergence of sequence {x(*)} to x in metric space (X, d) is

equivalent to pointwise convergence (or coordinate-wise convergence), i.e. limg_ o xﬁ{” =z, for all n € N.
Proof. “<”: If x*) converges to x pointwise, then for any € > 0, we choose a positive integer N, such that

L+ log(1/e)

N, >
log 2

Then we have for all £ € N that

> 1 |mn —x’ > 1 €
DOEETE (*) < 2. n S (13)



Moreover, for each n = 1,---, N., we can choose K, such that }zglk) - a:n| < ¢/N, for all k > K,,. Let K be
the largest of K. Then for all k > K, we have

N 1 ’!Enk—
Zgn'1+| (k) a;

n=1

IN

J 1 €
=gl el <y (L)

Combining and we conclude that x(*) converges to x under d.
“=": For any n € N and sufficiently large k, note that

2" - d(x*) x)

0. 0
| —1=92n -d(X(k),X) —

|a:51 -z,

Example 1.9 (Metrization of convergence in measure). Let G be the set of all Lebesgue measurable functions
on [a,b] that is bounded almost everywhere. We define an equivalence relation ~ on G as follows: f ~ g if
f = g almost everywhere. Let G = G/ ~. For f,g € G, define

[ -l
df,9) = /H T 170 — g

Then (G,d) is a metric space. Furthermore, convergence of sequence (f,) to f in metric space (G,d) is

equivalent to convergence in measure, i.e. m(|f, — f| > €) — 0 for all € > 0.

Proof. “«<”: Given € > 0, define

Bu={z e lotl: o) - 101 2 s | (15)
Then there exists N such that m(E,) < €/2 for all n > N. As a result, for all n > N, we have
_ fO—ol HOEF O
W)= [ T O+ [ T
< t) — g(t)|dm(t dm(t
/[mb]\Enm) obm(e) + [ dmr)
<(b-a)- 2(b€—a) +m(E,) <e.

“=": For any € > (0, we have

_ | fn — f] €
m(f”_f|26)_m<1+|fn—f| = 1+e>

1+4€ |fn_f|
< . /[a,b] 7 7f|dm—> 0. (1.6)

Hence f,, converges in measure to f. O



1.2 Banach Spaces and Hilbert Spaces
1.2.1 The Hamel Basis

Definition 1.10 (Vector spaces, linearly independent subsets). A wvector space over a scalar field F is a
non-empty set X together with a binary operation + : X x X — X called vector addition, and a binary
function F x X — X called scalar multiplication. Let x,y,z be any elements of X, and «, 8 be any scalar in
F. A vector space satisfies the following axioms:
(i) (Associativity of vector addition). (z +y) + 2z =2 + (y + 2).
(ii) (Commutativity of vector addition). x +y =y + x.
(iii) (Identity element of vector addition). There exists an element 0 € X called the zero vector such that
r+0=zforall x € X.
(iv) (Inverse elements of vector addition). For each x € X, There exists an element —x € X called the
additive inverse of x such that = + (—z) = 0.
(v) (Compatibility of scalar multiplication with field multiplication). «(8z) = (af8)z.

(vi) (Identity element of scalar multiplication). 1z = x, where 1 is the multiplicative identity in F.
(vii) (Distributivity of scalar multiplication with respect to vector addition). a(z +y) = az + ay.
(vii) (Distributivity of scalar multiplication with respect to field addition). (o + 8)x = ax + Sz.
A finite subset {x1,-- ,2,} of X is said to be linearly independent, if it satisfies following: ZZ;I a;x; =0
if and only if ;1 = as = -+ = a, = 0, i.e. there exists no nontrivial linear combination of z1,--- ,z, that

equals the zero vector. An infinite subset A of X is said to be linearly independent, if every nonempty finite

subset of A is linearly independent.

Remark. When the field F is chosen to be the real field R (or the complex field C), we say that X is a real

vector space (or a complex vector space).

Definition 1.11 (Basis). Let X be a vector space. A collection B of vectors in X is said to be a basis of X,

if B is linearly independent, and every vector x € X can be obtained as a linear combination of vectors in B.
A natural question arises: does every vector space has a basis?

Theorem 1.12 (Hamel basis). Let X be a vector space. Let A be a linearly independent subset of X.
Then there exists a mazimal linearly independent subset B of X such that A C B, and there exists no linearly
independent subset of X that includes B properly. Furthermore, B is a basis of X, called a Hamel basis.

Proof. We use Zorn’s lemma: Suppose a partially ordered set P has the property that every totally ordered
subset of P has an upper bound in P, then P has at least one maximal element.

Let ¥ be the set of all linearly independent subsets of X that contains A. We order the elements of % by
proper inclusion. For any totally ordered subset {Ax, A € A} of €, where A is an index set, the union

C:UAA

AEA

is an upper bound of {Ax, A € A}. We verify that C € €. Clearly, A C C, then we show that C is linearly
independent. For any finite subset {z1,---,x,} of C, there exists Ay, 3 x; for each i. Since Ay,,---, Ay, are
totally ordered, we can find Ay, that contains all of them. Hence {z1,--- ,z,} as a finite subset of the linearly
independent subset A, is linearly independent, and C' is linearly independent.

By Zorn’s lemma, there exists a maximal linearly independent subset B in %, and B is a basis of X. In
fact, if B is not a basis for X, we can choose € X not lying in the span of B. Then B U {z} is an linearly
independent subset of X, which contradicts the maximality of B! O



1.2.2 Normed Spaces and Banach Spaces

Definition 1.13 (Normed spaces). A seminorm on a real (or complex) vector space X is a function || - || :
X — R, satisfying the following conditions:
(i) (Positive semi-definiteness). For all z € X ||z| > 0;
(ii) (Homogeneity). For all « € R (or C) and all x € X, |laz|| = |af||z||;
(iii) (Triangle inequality). For all z,y € X, ||z + y|| < ||z + |ly]|-

A norm on X is a seminorm || - || that satisfies the following: ||z|| = 0 only if z = 0. A vector space together
with a norm (X, || - ||) is called a normed vector space, or briefly, a normed space.
Remark. A norm | -|| on a vector space X automatically induces a metric on X defined as d(z,y) = ||z —y]|.

By equipping a norm, we introduce a topological structure to a vector space, which is an algebraic structure.
The norm || - || is a continuous map in space (X, || - ||), which is implied by the triangle inequality. To see
this, fix e > 0 and g € X. Then for all z € O(xg, €), we have

izl = llzolll < [l — @oll <,
which meets the definition of continuity.

Example 1.14. Following are some instances for normed spaces.

(i) Let C(Ja,b]) be the set of all real-valued continuous functions on [a, b]. Define
il = max £0)l 7 € Cas).

Then (C([a,b]), ] - |l) is a normed space.
(ii) Let k be a positive integer. Let C*([a,b]) be the set of all functions f on [a,b] such that f is k-

differentiable, and the k-th derivative f*) is continuous. Define

_ () k
£l 00 Olgfgk;g[%lf (z)], feC%([a,b]).

Then (C([a,b]), || - |oo) is & normed space.

(iii) Let (X, </, u) be a measurable space. For 1 < p < oo, define LP(X, o7, 1) to be the set of all measurable
functions f such that |f|? is integrable, i.e. [y [f[Pdu < co. We define

1/p
1l = ( /. fl”du) , feLrX. o, p).

Then |- ||, is a seminorm on £P(X, o7, u). To check this, it suffices to prove the following two inequalities.

o (Hoélder’s inquality). For all p,q > 1 with p~ 4+ ¢~! = 1, it holds

/ Faldu < £ lollglla

Proof. Without loss of generality, suppose || f|l, = [|g][q = 1. We use Young’s inequality:

Poope 1 1 Pl
log (a + ) > —log(a?) + —log(b?) = ab< <4
p q p q p q

Concavity of the logarithmic function



Then we have

|f($)‘p |g($)|q Integration W M_
F@)g(a)] < + 2 / ol < L BO0

which concludes the proof. [

e (Minkowski’s inquality). For all p > 1, we have

1+ gllp < [1£1lp + llgllp-

Proof. We only prove the case p > 1. Let ¢ = ﬁ, then

I+l < /X FL-1f g /X gl - 1f + g dy

1/q
< (I£fllp + llgllp) (/X |f + 9|(p_1)qd,u> (By Holder’s inquality)

< (I£llp + llgllp) - 11F + gllE/.

Note that p — p/q = 1, then we conclude the proof. O

(iv) Let f ~g el f = g be a equivalence relation on LP(X, o, ;). We define the LP space as LP(X, o/, ) =
“w

LP(X, 27, )/ ~, and maintain the norm ||[f]||, = || f|l,- This is a well-defined norm, since || f|, = ||gll,
if f ~ g. For simplicity, we drop the brackets and use f to denote its corresponding equivalence class [f]
in LP(X, <, ). Then the space (LP(X, </, 1), - ||p) is a normed space.

(v) Let p =00 in (ii), then we obtain the set of essentially bounded functions on X, which is
LX) = {f : X >R |3M >0, p(lf] > M) =0},
The seminorm || - ||oo on £%°(X) is the essential supremum:

o = esssup |f|:= inf  sup z)|.
191 = dat s 1702)

Also, we define L*(X, o, ) = L2(X, o/, )/ ~. Then (L*>(X, </, u), || - ||so) is a normed space.

Definition 1.15 (Banach spaces). Let (X,]| - ||) be a normed space. If X is complete given the metric
induced by || - ||, then (X, ] - ||) is said to be a Banach space.

Remark. A Banach space is a complete normed space. Let (z,,) be a Cauchy sequence in a Banach space
(X, -1, ie. [|xn — zm|| — 0 as n,m — oo, then (x,) converges to some point of X.

As a result of a closed subspace A of a Banach space (X, || -||) is also a Banach space under
the restricted norm. Note that when we use the term “subspace” in discussions of vector spaces, we refer to a

vector subspace.

Following are some instances of Banach spaces.

Example 1.16. Recall [Example 1.14 (i) and (ii)]
(i) The normed space (C([a,b]), | - |lo) is a Banach space;

(ii) For each k € N, the normed space (C*([a,b]), || - |[x.00) is & Banach space.

10



Proof. (1) We pick a Cauchy sequence f,, in C([a,b]), i.e. Ye > 0, AN € N such that ||f, — fin|lco < € for all
n,m > N. Then for each x € [a,b], fn(z) is a Cauchy sequence in R, which converges to some f(x) € R by
completeness of real numbers. Thus we obtain a function f on [a,b].

Now we prove that f is continuous. Fix € > 0. Then for all x € X, we have

[fn(x) = f(2)| < ||fn = finlloo <€, Vn,m > N.

Let m — oo, then we get |f,(x) — f(z)| < e for all x € X. Hence f,, converges to f uniformly. Since f, is
continuous on [a, b], so is f.

(i) We first prove the case k = 1. We pick a Cauchy sequence f,, in C'([a,b]). Then both f, and f/,
are Cauchy sequences in (C([a,b]), || - |lco), which converge uniformly to some continuous functions f and g,
respectively, by (i). We need to show that f is differentiable, and that g is the derivative of f.

By fundamental theorem of calculus, we have

Fu(@) — fula) = / " P () dt, Yn e N,

Let € > 0 be given. Since f], converges to g uniformly on [a, b], there exists N such that |f/ (z) — g(z)| < € for
all n > N and z € [a,b]. Hence

[ wae= [“ow dt| < [(15200) - gto) dt < o a), vz N,

Hence [ f1(t)dt — [T g(t)dt. As a result,

f@) = fa) =l (fa(o) ~ Fula) = lim [ fa®rde= [ g(t)t
n—roo n—oo a a
which implies f' = g.
For the general case k € N, let f,, be a Cauchy sequence in C*([a, b]). Similar to the above procedure, we can

show that the sequence fﬁj ) converges to some continuous function uniformly on [a, b] for each j = 0,1, - | k,

and that lim,,—, o f,gj ) is the derivative of limy,— 0o fr(Lj -1, O

Example 1.17 (RieszFisher). Let (X,.<, ) be measure space. Then for each 1 < p < oo, the space
(LP(X, 27, 1), || - lp) is a Banach space.

Proof. We pick a Cauchy sequence f, in LP(X, o/, ), i.e. Ve > 0, 3N such that ||f, — fillp < € for all
n,m > N. By Chebyshev’s inequality, for any n > 0, we have

! p 1 p
:u(|fn _fm| > 77) < 777/)( |fn _fm| dﬂ = 777||fn _mep'

Hence f,, is a Cauchy sequence in measure. Starting from k = 1, we choose an integer ny > ng_1 such that
w(|frn — fm| = 27%) < 27F for all n,m > ny. Then we obtain a subsequence f,,, such that

1(Ey) < 27, where By = {|fn,, — funl =277}

Let Fy = Uj—y Ex, and E = Ny, Fnv. Then p(Fy) < 27Nt and p(E) = 0. For every z € X\E, there
exists N such that @ ¢ Fyy. Then for all k > N, |fy,,, (2) — fa, (x)] <27%. and |f,, (z) — fu, (@) < 275 for
all [ > k > N. Hence f,, (z) is a Cauchy sequence, which converges to some f(z) € R. Define f(E) = {0},
then the subsequence f,, converges to f almost everywhere.

11



Fix € > 0, and find N such that || f,, — fmllp < € for all ny,m > N. Given m > N, apply Fatou’s lemma:

J U = tl = [t 1o = Fl die < imint o, = Sl < (17)
X X k—o0 k—o0

Hence f — fn € LP(X, o, 1), and f = (f — fm) + fm € LP(X, o7, u). Furthermore, since € is arbitrary, we
have || f — fu|lb — 0, i.e. f is the limit of f,, in LP(X, </, ). O

Remark. In this example, we also prove that every Cauchy sequence f,, in measure has a subsequence f,,,
that converges almost everywhere. In fact, we can prove that f, converges in measure. In the above proof, we
have for all x € X\ F}, that

(@) = Fan @) <D g (@) = fy (2)] < 2751
j=k

Fix € > 0, and choose N such that 2=V*! < ¢. Then for all £ > N, we have

1 fa = F1 2 ) <l fu, — F1 2 2750 < p(Fr) < 271 0.

Hence f,, converges in measure to f. Now given n > 0 and € > 0, choose K such that u(|fn, — f] > n/2) < €/2
for all k > K, and N such that u(|fn — fm| > 1n/2) < €/2 for all n,m > N. Then for all n > max{ng, N},
choose k such that ng > n, we have

:u(‘fn_.ﬂ ZU)SM(|fm _fn|+‘fnk_f|2n)
<u(lfu = ful 2 5) 4 (lf 12 F) <

Therefore f, converges in measure.

Example 1.18. Let (X, .o, u) be measure space. Then the space (L (X, .o, u), || - |lo) is @ Banach space.

Proof. We pick a Cauchy sequence f,, in L=°(X, &7, ), i.e. Ve > 0, AN € N such that || fr, — finlleo < € for all
n,m > N. Now for each pair m,n € N, we define the set F,, ,, of measure zero as

Emn =A{z € X :[fn(x) = fm(2)| > [Ifn = finlloc} s #(Emn) =0

Then the union

E = U E,,n of countably many sets of measure zero also has measure zero.
n,meN

For each x € X\E, |fun(z) — fim ()| < |[fr = fimlloo, fu(x) is a Cauchy sequence in R, which converges to
some f(x) =1lim, e frn(z) € R. Now fix € > 0. By defining f(E) = {0}, we obtain a function on f: X — R.
Now fix € > 0, and choose N such that ||f, — fim|leo < € for all n,m > N. Then for all x € X\ E, it holds

|fn(@) = fin(@)] < | fr = finlloo <€ VR,m >N
Let m — oo, we have |f,(z) — f(z)| < efor all z € X\FE and n > N. Then ||f, — f|looc < €. Moreover,

sup [f(z)| < sup [f(z) = fu(z)|+ sup [fn(2)] < e+ |[[falloc < o0
zeX\E z€X\E z€X\E

Hence f € L>™°(X, o/, u). Since € is arbitrary, || fn — f|loc = 0, and f,, converges to f in L>®(X, .o, p). O
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1.2.3 Inner Product Spaces and Hilbert Spaces

Definition 1.19 (Inner product spaces). Let H be a real (or complex) vector space. A semi-inner product
on H is defined as a function {-,-) : H x H — R (or C) satisfying the following conditions:

(i) (Positive semi-definiteness). (x,x) > 0 for all x € H;

(ii) (Linearity for the first variable). For all a, 8 € R (or C) and all z,y,z € H,

(ax + By, z) = alz, z) + By, 2);

(iii) (Conjugate symmetry). (z,y) = (y,z) for all z,y € H.
Furthermore, if (-,-) satisfies positive-definiteness, i.e. (x,x2) = 0 only if z = 0, then it becomes an inner
product on H. A real (or complex) vector space H equipped with an inner product (-,-) is called a real (or

complex) inner product space, or a pre-Hilbert space.

Remark. If H is a real inner product space, we can drop the conjugate in (iii) and obtain the linearity for

both variables. If H is complex, by (ii) and (iii), we have anti-linearity for the second variable:
(z,ax + By) = a(z,x) + B{z,y).

Example 1.20. Following are some instances for inner product spaces.
(i) Let x = (21, -+ ,xn),y = (Y1, ,yn) € C". Define

n
j=1

Then (-,-) is an inner product on C”.
(ii) Let (X, <, p) be a measure space. For f,g € L*(X, o/, ), define

(o) = [ F)aa) duto).
Then (-,-) is an inner product on (X, %7, u).

Lemma 1.21 (Cauchy-Schwarz inequality). Let (-,-) be a semi-inner product on a vector space H. Then
for all z,y € H, it holds

[z, ) < (z,2)(y, y)-
Proof. Let x,y € H. Then for all t € R (or C),

0 < (x+ty,x+ty) = (x,z) + 2Re(t{y, z)) + [t|* (v, ).

If <yay> # 07 set t = — 233) . Then

<

RN 0 -

(Y, ) (v, y)

>0 = [(z,y))? < (z,2)(y,y).
If (y,y) >0, set t = —%5(:5,3;), where 8 > 0. Then
(z, ) = Bl(y,2)* = 0, V8 >0,

which implies (z,y) = 0. Since «x is arbitrary, we have (x,y) =0 for all z € H. O

13



Lemma 1.22 (Induced norm). Let (-,-) be an inner product on H. Define |z|| = /{(z,z) for all z € H,

then || - || is a norm on H.

Proof. Check the four properties in O

Remark. Following [Lemma 1.22] we can rewrite Cauchy-Schwarz inequality (Lemma 1.21)) as

[z )| <l ]l -

Using this inequality, we can obtain continuity of inner products.

Lemma 1.23 (Continuity of inner products). Let (-,-) : H x H — R (or C) be an inner product on H. Then

(-,+) is a continuous map.
Proof. Let (z,) and (y,) be sequences of points of H that converge to © € H and y € H, respectively. Then

[{#n, yn) = (@, ) < [, yn) = (@ yn)| + (2, 90) = (2,9)]
< lwn =2l llynll + 2l llyn = yll = 0.

Thus we complete the proof. O

It is seen that in a vector space, an inner product automatically determines a norm. Conversely, if a norm

is induced by an inner product, we can also recover the inner product from the norm.

Lemma 1.24 (Polarization identity). Let H be an inner product space.
(i) If H is real, then for all 2,y € H,

1
{@y) =7 (e +yl* = llz = yl?) (1.8)
(ii) If H is complex, then for all z,y € H,
1 1<
(y) =7 (e +yl” +illz +iyl* = |z —yl* = illz = iy]*) = § > Fllr +ify)*. (1.9)
k=0
Proof. By direct calculation. O

We also introduce a necessary and sufficient condition for a norm to be induced by an inner product.

Lemma 1.25 (Parallelogram law). Let (X,|| -||) be a normed space. Then || - || is induced by an inner

product on X if and only if the parallelogram law holds for || - ||:
e+ yll* + lle = ylI* = 2 (=] + llyll*) - (1.10)

Proof. “=": By direct calculation.

“«<": We use the polarization identity to define a binary operation (-,-) on X, and verify
that (-,-) is an inner product. We work with the complex case, and define (-, -) by Let x,y € X. Then
we can obtain positive definiteness and conjugate symmetry:

(122 ]* + 311+ Dalf* = [0z — il (1 = D)) = =%,

Py

<$,$> =

14



(o) =7 (ly + =) —illy +iz)* = lly — «[* +illy — iz]|?)

[ =] =

(I +yll* = illz — iy = |z = ylI* +illz +iyl*) = (z,9).

4
Now we verify the additivity. For z,y,z € X, by|(1.10)} we have

1
lz+y+ 217 =5 (I@+2) +yl* + (v +2) + )

1 1
4 21 + Iyl = Slle+ 2 = yl* + ly + 21" + [l2]° = Slly + 2 — > (L.11)
Replace z by —z in then we have

lz+y+ 201 = lle+y — 207 = llz + 2l = |l = 2lI* =y + 21> — lly — 2| (1.12)

Replace z by iz in|(1.12)] then we have

lz+y +izl? = llo+y =iz = o+ i2l* = lz — iz]* = lly +i2]]* — [ly - iz])? (1.13)

Combining |(1.12)| and |(1.13)} we obtain

1 . e .
(w+y.2) =7 (lety+zl’ — oty —2® +illz +y+ie]® — il +y —iz]?)
1< 1<
=72 Pl il 4+ 3 D lly + 1% = (2) + (v, 2).
k=1 k=1

Now it remains to show the scalar multiplicativity. Given the additivity, we have that for every n,m € N,

(nx,2z) = (x,2) + -+ {x,2) = nlx,2z) = (m e 2) = %(m,z) = <%x,z> = % (x,2) .

n

Clearly, we have (iz, z) = i(z, z). Then for every A € Q+i1Q = {p +iq : p,q € Q}, we have (Az,z) = Az, 2).
Next we prove the Cauchy-Schwarz inequality. For x,z € X and A € Q +iQ,

0 < (2 +Az,2 + A2)(2, 2) = ||=[*][” + 2Re (A (z, 2) [|2]1*) + [A[|=]*
2
= [lz|?|2)1* = [z, 2)* + [Ml2)1* = (=, 2)],
which implies
2 Jlz?zl? < inf  |AlJz]® - ) 1.14
[z, 2)|7 = llz]I7]|z]]" < Aelé}+i@| 1] = (z, 2)]| (1.14)
Now fix « € C =R +iR. For all A € Q +iQ, we have

(o, 2) — a(z, 2)| = [((a@ = Az, 2) = (@ = A){z, 2)] < 2] = A[|[z[}[|2]],

where the inequality follows from By taking infimum of the right hand side, which is zero, we have
(az, z) = afx, z). Then we complete the proof. O

Review. Let H be an inner product space, then we obtain a norm || - || on H by defining ||z| = /(z, z)

for all € H. Following this, a metric d is determined by d(z,y) = ||z — y|| for all x,y € H. This metric
automatically induces a metric topology on H for which the basis is the collection of all open balls in H.
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Definition 1.26 (Hilbert spaces). Let H be an inner product space. If H is complete under the metric
induced by its inner product, then H is said to be a Hilbert space.

Remark. In other words, a complete inner product space is Hilbert. That is, every Cauchy sequence in H,
in sense of the induced norm || - || = 1/(:, ), converges in H.

Now we introduce the definition of orthogonality in inner product spaces.

Definition 1.27 (Orthogonality). Let H be a inner product space.
(i) Let 2 and y be two vectors in H. Then z is said to be orthogonal to y if (x,y) = 0, and we write z L y.
By direct calculation, we have the Pythagorean theorem for x L y:

lz +yl* = [l + llyll*.

(ii) Let 2 be a collection of non-zero vectors in H. If for each pair of distinct vectors x # y in ., we have
x L y, then J# is said to be an orthogonal system.

(iii) Furthermore, if ||z|| = 1 for all € S, then S is said to be an orthonormal system.
(iv) Let . be an orthonormal system in H. Then the set of numbers

{{z,e),e € H}

is said to be the Fourier coefficients of x relative to J#. If e € 7, then (x,e) is called the Fourier
coeflicient of x relative to e.

Example 1.28 Following are some examples of orthogonal families.

(i) Consider the n-dimensional Euclidean space R™. The vectors

61:(17()’"'70)’ 62:(0717"'70)7 "'7en:<070a"'71)

form an orthonormal system on R”.
(ii) Consider the space L%([0, 27]) of real-valued square-integrable functions on [0, 27]. Define inner product

2w

(f.9) f(2)g(z)dz, f,g € L*([0,2x]).

:277 0

The functions

{1,\[2cosas, 2sinx,\/§cos2x,\f2sin2x,~~ ,\@cosn:r,\/ﬁsinnx,n-}

form an orthonormal system on L?([0,27]). Furthermore, for a function f € L?([0,27]), the Fourier
coefficients are

1 27
ao = (f,1) o J, (@) de,
1 27
an = (f,V2cosnz) = ft)cosnzdt, n > 1,
21 0
1 27
by, = (f,V2sinna) = — F(t)sinnzdt, n > 1.
™ Jo

16



(iii) Consider the space L2([0,27], C) of complex-valued square-integrable functions on [0, 27]. Define inner

product
2m

gy == [ f@)g@)de, f.g € L3([0,27],C).

:27T 0

The functions {e”®,n € Z} form an orthonormal basis on L?([0,27],C). Furthermore, the Fourier
coefficients of f € L?([0,2x],C) are

2m
Cn = / e f(x) dx, n € Z.
0

Review: Summation over arbitrary index sets. Let A be an index set, and let {¢) : A € A} be a
collection such that ¢y > 0 for all A > A. We pick a set F(A) = {F C A : F is finite}, and we define a
preorder on .% by inclusion: F; < Fy dg' Fy C F5. Then .# becomes a directed set since every pair Fy, Fy of
elements of .# has an upper bound F; U F» € .#. The general definition of the summation ), , cx is given
by the following limit, provided it exists:

That is,

Zc,\zc < Ve >0, 3F) € .Z(A) such that VF € #(A) and F D Fy, <e.

AEA

Sene

AEF

Claim 1.29. If ) ,_, c\ converges, then {c) : A € A} has at most countably many non-zeros.

Proof. Let )y ca = c. For all n € N, consider the set

Fn::{)\eA:cA>1},

n
Then F; C F, C-+- C F,, C Fj41 C -+ form a chain on .#, and Z/\an c) is increasing. Moreover,
1
c> Z ey > —|Fy| = |Fn| < ne< oo
n
AEF,
Note that the set of all non-zero elements is given by

{)\EA:C,\;&O}:UF,“
n=1

which is at most countable. O

Theorem 1.29 (Bessel’s inequality). Let H be an inner product space, and let 5 = {e) : A € A} be an
orthonormal system on H. Then for all x € H,

Dl ea)” < .

AEA
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Proof. Let F be a finite subset of A. Consider

x(xz xe,\ )Jrz xe,\ €ex,

AEF AEF

=y =z

we have

z>=2|(x,eA ZZ x,en) V) (ex,e,) =0.

AEF ANeFveF
SV

By Pythagorean theorem, ||z||? = ||y||* + ||z]|? > ||2||?, that is,

> el <z

AEF

By [Claim 1.29, the set F, = {A € A: [(z,ex)| > n~'} has no more than n?||z|? elements, and the set of
nonzero Fourier coefficients Foo = J.—, F,, = {\ € A: (z,e,) # 0} is at most countable. Hence

S lmelf= 3 lmenf = lim 3 [, en)f? < o],

AEA AeF AEF,

which is the desired result. O

Corollary 1.30. Let {e,,n € N} be an orthonormal system on H. Then for all z € H,

lim (x,e,) =0.

n—oo
Remark. Now we let H be a Hilbert space. Fix x € H, we proved that {ex € J : (x,e\) # 0} is at most
countable. If it is countable, we can write it as a sequence {ex,,€x,, - ,€x,, - }. According to Bessel’s

inequality, we have Y |(x, ex,)|* < oo. Then for m,n € N,

n 2

Z <$, ez\k> EXg

k=m+1

n
= Z [z, ex)]> = 0 as n,m — oo.
k=m+1

Thus we obtain a Cauchy sequence {3 °;_; (z,ex,)ex,},., in H, which converges to some vector y in H.
Intuitively, the vector does not depend on our choice of permutation {A1, Aa, -+, Ap, -+ }.

Let {es,, €00, " s€0,, -} be another permutation of {eyx € 5 : (z,ex) # 0}. Following the above
procedure, {>°}_ (%, €0, ) €0, }52 is a Cauchy sequence in H, which converges to some y' € H. We fix € > 0,
and choose N such that Y 77 | [z, ex, )? < €2/4. Since {eqys oy 2€ans -} = {Ex1, 01 »Ex,s- -}
there exists M > N such that Ay :={A1, - ,An} C{o1, - ,0m}. Then

M N M N
=Y (weo) e | S ly =D (menden| + || D (T o) e — Y (2,01,
m=1 n=1 m=1 n=1
e} M
2 2
= D lee '+ > lzes,)l
n=N-+1 m=1,0m¢AN
oo
<2, > e <e
n=N+1
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Let M — oo, then ||y — ¢'|| < e. Since € is arbitrary, we have ||y — ¢/|| = 0, which implies y = 3. As a result,

we can define

n

Z (x,ex) ey := nh_}rrgoz (x,ex,) ex-
AEA k=1
By definition, we have

Z (x,ex)ex

A€EA

n
L 2 2
—nlggo;lmewl =D laenl”.

AEA

We use

span{ex, A € A} := {Zak@kk meN, ar, - ,a, €C, A, 0, A GA}
k=1

to denote the vector space spanned by orthonormal system {ex, A € A}, and use span {e), A € A} to denote its
closure. By the above discussion, ), (z,ex) ex € 5pan {ex, A € A}.

Theorem 1.31 (Orthonormal basis). Let H be a Hilbert space, and let 7 = {e) : A € A} be an orthonormal
system on H. The following are equivalent:
(i) Forallw € H, x =) .5 (x,ex) ex;
(11) spﬁ{e;w)\ € A} = H,;
(ili) For x € H, x L ey for all A € A only if z = 0;
(iv) (Parseval equality). For all z € H, ||z]|* = Y., {2, ex)?.
If 57 satisfies the above conditions, then 7 is said to be an orthonormal basis of H.

Proof. (i) = (ii): Clearly, span {ex, A € A} C H. The other direction follows from the above Remark.
(ii) = (iii): Let = € H be such that (z,ex) =0 for all A € A. Since x € H = span {ex, A € A}, there exists

sequence z,, of vectors in span {ex, A € A} such that x,, — z. By continuity of inner product,

(z,z) = nlgg()(x,xn) = 0.

(iii) = (i): Givenw € H, let y = >, (z,ex) ex. Then z —y L ey for all A € A, which implies z —y = 0.

(i) < (iv): We only prove (iv) = (i), the other direction is clear. Given x € H, let y = >, (x,ex) ex.
Then (z — y,y) = 0. By Pythagorean theorem, ||z — y||* = ||z||* — ||ly||* = 0, which implies z = y. O

Following are some examples for orthonormal basis.

Example 1.32. Recall [Example 1.28 (ii)l The set

H = {1,\@cosx,\@sinx,\/icos2x,\f251n2x,~~ ,\/icosnx,\/isinnx,n-}

is an orthonormal basis of L?([0, 27]).

Proof. Following [Theorem 1.31} it suffices to show that span.# = L?([0, 2n]). Denote by

C>(0,27) = {f e O([0,2n)) : f is smooth, [f £ 0} C (O,27r)}
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the set of all smooth functions that have compact support in (0,27). Clearly, C°(0,27) < L?([0,2x]).

Furthermore, for any f € C2°(0,27), the Fourier coefficients are given by

CLn(f)ZQi 27rf(if)\/icosntclt:—\/1E 27rf”(t)cosntdt = |an(f)| < Hf;;l‘oo’
™ ™

e L s
() =57 | F@VBsmatdt =~ [ @) simntd, = ()] < 5

Then the partial sum

1

(Snf)(x) = o J, Trf(t) dt + Z (an(f)\/icosnw—i— bn(f)\@sinnx)
k=1

converges uniformly on [0, 27r]. By Dini-Lipschitz criterion, S, f converges uniformly to f, and || f — S, f|l2 — 0.
Hence f € span 7, and L%([0,27]) = C°(0,27) C Span /7. O

The following theorem reveals the existence of an orthonormal basis for a Hilbert space.
Theorem 1.33. Suppose A is an orthonormal system on a Hilbert space H. Then there exists an orthonormal
basis of J# such that s# D A. In other words, A can be expanded to an orthonormal basis of H.

Proof. As you can imagine, we use Zorn’s lemma. Denote
F ={B: B is an orthonormal system on H, B D A},

and order the elements of F by inclusion: B < B’ if B C B’. Let M = {Bx,\ € A} be a totally ordered
subset of F. Then the union

B:UBA

AEA

is an orthonormal system on H. To see this, choose distinct x,y € B, and assume f € By,,g € B),. Since M
is totally ordered, we have either By, C By, or By, D B),, which implies that f and g belongs to the same
orthonormal system. Clearly, B D A. Then B is an upper bound of M in F, and we can apply Zorn’s lemma.

Let # be a maximal element in F, then J# is an orthonormal basis. Otherwise, there exists z € H\{0}
such that (z,ey) = 0 for all e € S, which implies 57U{x/||z||} € F, contradicting the maximality of 5! O

1.2.4 The Projection Theorem

Review. Let (X,d) be a metric space, and let A be a subset of X. The distance from a point z € X to A
is defined as

d(z,A) = ing d(z,a).

ac

The function d(-, A) : X — R, is continuous. To see this, fix € > 0 and 9 € X. Then there exists a € A such
that d(xo,a) < d(xo,A) + €/2. Once d(z,z0) < €/2, we have

d(z, A) < d(z,a) < d(zg,x) + d(zg,a) < d(xg, A) + €.

Similarly, d(xo, A) < d(z, A) + €. Hence x — d(x, A) is continuous.
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A projection of x on A is defined as a point ag € A such that d(z,ag) = d(z, A). In other words,

d(x,aq) = mind(zx, a).
( ) 0) acA ( ’ )
The existence of projection is not ensured. For example, consider the point z = —1 and the open interval (0, 1)
in Euclidean space R. Also, a point has possibly more than one projections on a set. For example, consider
the point z = 0 and the unit circle T = {e!?, # € [0,27)} in the complex plane C.

In this section, we discuss the projection in context of Hilbert spaces.

Definition 1.34 (Convex sets). A subset C of a vector space X is said to be conver, if for all z,y € C and
allt €[0,1], tz + (1 —t)y € C.

Theorem 1.35. Let H be a Hilbert space, and let M be a closed convex subset of H. Then for all z € H,
there exists a unique o € M such that ||z — zo|| = d(x, M) := inf e ||z — y]|.

Proof. Choose a sequence (x,,) of points of M such that || — x,|| — d(z, M). By the parallelogram law,

2

_IntTm + || — T, VYn,m € N.

2o =l + 2o = 2 = 4 o = 225

Then 0 < ||z, — 2m|? < 2|z — 2, + 2|z — 2 ||* — 4d(x, M)? — 0, and (z,,) is a Cauchy sequence. By
completeness of M, which is a closed subset of a complete space H, the sequence (z,) converges to some
xo € M, and ||z — zo|| = limy— oo ||z — 20 || = d(z, M).

To prove the uniqueness, suppose x(, € M also satisfies the condition. Then
xo + x}) 2

<0.

os|%xﬂ2—2mme+nm%2>4k

Hence ||z — zo|| = 0, zo = . O
Theorem 1.36 (Projection theorem). Let M be a closed subspace of a Hilbert space H. Then for all 2 € H,
there exists unique 2o € M such that ||z — zo|| = d(x, M), and © — 29 L M.

Proof. Following it remains to show that x — x¢g L M. Given y € M, the vector xg + ty lies in
M for all t € R (or C). Then

d(z, M)? < ||z — zo — ty|* = ||z — @ol* + [t/*[ly[|* — 2Re (t(y, z — @0)) -

Let t = Ma — 20,), then we have 2\ |(z — 0, 9)|* < A2||y||2 |(z — z0,)|” for all A € R, which holds only if
(x — xo,y) = 0. Therefore x — xg L M. O

We also have another version of projection theorem.

Theorem 1.37 (Projection theorem). Let M be a closed subspace of a Hilbert space H. Then for all z € H,
there exists unique zp € M and 21 1. M such that = ¢ 4+ 21. Furthermore, ||z — x¢|| = d(z, M).

Proof. We first prove the existence of x¢ and x;. Note that M is closed in H, M is also a Hilbert space. By
Theorem 1.33] there exists an orthonormal basis {ey, A € A1} of M, which can be expanded to an orthonormal
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basis {ex, A € A2} of H such that Ay D A;. By
x = Z (z,ex)ex = Z (x,ex)ex—+ Z (z,ex)ex.

AEAL AEA; AEA2\AL

=ixgEM =z LM
For the uniqueness, suppose = = yg + y1, where yo € M and y; L M. Then 2y — yog = y1 — 21, and
lzo = yolI* = (o — yo, y1 — 21) = 0.
——— ——
eM 1M
Hence =g = yp, and z1 = y;. O

Remark. Let M be a subspace of a Hilbert space H. We define the orthogonal complement of M of H as
the set M~ of all vectors in H that are orthogonal to every vector in M:

M*={z€H:z 1 M}.

By continuity of inner product, M= is closed: Given a limit point 2 of M=, we can find a sequence z,, in M+
that converges to x. Then for each y € M, (x,y) = lim,, o0 (zn,y) = 0. As a result, M+ is complete.

If M is a closed subspace of H. Following the above proof, we can show that M = span {ex, A € Ao\Aq}.
By [Theorem 1.31| it suffices to show that for y € M=+, y = ZA€A2\A1(y,eA>e>\. This is clear, because
(y,ex) = 0 for all A € Ay, and y = >\ 4, (y,ex)ex. Following [Theorem 1.37) every vector z € H can be

uniquely decomposed as & = xo + x;, where g € M and x; € M*. That is, the Hilbert space H admits the
direct sum H = M & M~*.

Corollary 1.38. Let M be a closed subspace of a Hilbert space H. If M # H, then M+ # {0}.

Proof. Let x € H be a vector that does not lie in M. For the decomposition x = xg + 1, where o € M and
x1 € M+, we have x # . Hence z; # 0. O
Corollary 1.39. Let M be a subspace of a Hilbert space H. Then M = (MJ-)J‘, and M+ = (H)L
Furthermore, M+ = {0} if and only if M is dense in H.

Proof. Clearly, M C (MJ-)L: Let x € M. Then
(x,y) =0, Vye M+ = z ¢ (ML)L.
Since (MJ-)L is closed, we have M C (MJ-)J'. If M is a proper subspace of (MJ-)J', there exists nonzero
T € (MJ-)J' QML - (ML)L N M+, Then x L x, contradicting = # 0! Hence M = (MJ-)J'.
Apply this to M+, we have M+ = ((ML)l)l = (M)J'

If M is dense in H, then M+ = H+ = {0}. Conversely, if M+ = {0}, then M = (MJ-)J‘ =H. O

Remark. For general subspace M of a Hilbert space H, we have H = M & M.
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1.3 Density and Separability
1.3.1 Dense sets

Definition 1.40 (Density). Let X be a topological space. Let A and B be subsets of X. Then A is said to
be dense in B if B C A.

Remark. The condition of density can be described as follows: A is dense in B, if for all x € B and all
€ > 0, there exists a € A such that d(z,a) < e.
By definition, density is transitive: If A is dense in B and B is dense in C', then A is dense in C.

Example 1.41. Following are some instances for dense sets:

(i) The set of rational numbers Q is dense in the real line R.
(ii) (Stone-Weierstrass). The set of all polynomial functions P([a, b]) on closed interval [a, b] is dense in the

space (C([a,b)]), || - ||lso) of continuous functions on [a, b].

Example 1.42. Let (X, , 1) be a measure space. The set of all simple functions

S:{chXAk:neNa Cl7"'7cn€Ra Ala"'aAnev(Z{}
k=1

is dense in LP(X, o/, ), where 1 < p < oo.

Proof. (1) We first consider bounded measurable functions that vanish outside a set A with finite measure.

Choose f € LP(X, «, i) such that | f| < M for some M > 0, and {f # 0} C A for some u(A) < oo. Forn € N,

we divide [~ M, M| into intervals of length not greater than n—!:

1
“M=yo<p1 < <ym=M+ .
2n

Define E, = {z € A: f(z) € [yr—1,yx)}. The function f, = >7" | yxXg, is simple, and |f — f,| < n~!'. Note
that f is defined on a set A with finite measure,

1
0<1f = fully = [ 17 = fulPdi < ) 0.

(ii) We then consider unbounded measurable functions that vanish outside a set A with finite measure.
Choose f € LP(X, o/, ) such that {f # 0} C A for some p(A) < co. Define the M-truncated function as

M, f(z) > M,
[flm(2) = f(z), =M < f(z) < M,
-M, f(x) < —M.

By monotone convergence theorem,

[

Given € > 0, we choose M, such that

J17 =17

P

P
d,u<2p.

P [ A de= [

23



By (i), there exists simple function g € S such that [ |[f]a. — g|” dp < 27P¢P. Hence

/|f 9|pdﬂ<2pl</ If — M\pd,u-l-/| M—g|pdu><ep

(iii) Now we prove the general case. Let f € LP(X, o/, ) and € > 0 be given. For n € N, we define the
level set Fj, = {x € X : |[f[ > n~'}. Then u(F,) < nl|f||5 < oo, and {f # 0} =U,_, Fn.
Consider the sequence fxr,, which converges to f pointwise. By monotone convergence theorem,

J1srau= i [ \xe, " du.

Hence there exists N, such that for all n > N,
/ |f = fxe, P dp < / |fI” dp — / | fxm, P dp < < TR

By (ii), there exists simple function h € S such that [ |fxr, — AP du < 27P€P, which implies

Jorr=mrawso ([ 17—l dut [ 1o, - b de) <o
X X X

Then we conclude the proof. O

Example 1.43. Following [Example 1.42] the set S of all simple functions is dense in L (X, <7, u).

Proof. Let f € L>(X, 4/, ). Then the bad set E = {x € X : f(x) > || f]lo} has zero measure. For n € N, we

divide [~/ f|lso, || f]|so] into intervals of length not greater than n=!:

~[fllse =20 <w1 <+ <wm = lfllc +

Define Ay, = {z € X : f(2) € [ys—1,yx)}. Then the function f,, = > ;- yrxa, € S satisfies

1 1
sup |f(x)_fn(x)| S - = OS Hf_anoo S*_>0-
zeX\E n n

Hence S is dense in L>=(X, &7, 1), as desired. O

Review: Compact supported functions. Let X be a topological space. The support of function f : X —
R is defined as the closure of the set of all points in X not mapped to zero by f:

supp f = {x € X : f(x) # 0} = {f # 0}.

If the support of f is compact in X, f is said to be compactly supported. Following this definition, any function
defined on a closed interval [a, b] can be extended to a compactly supported function on R.

The set of all continuous compactly supported functions on X is denoted by C.(X). If f € C.(X), then f
is uniformly continuous on supp f. Note that f = 0 outside supp f, we have that f is uniformly continuous on
X, which implies C.(X) C Cy(X). Furthermore, by extreme value theorem, f has maximum and minimum

on supp f, which implies that f is uniformly bounded on X, i.e. max,cx |f(z)] < co.
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Review: Radon measure. A Radon measure on a topological space X is a Borel measure p such that
(i) p is finite on all compact sets, i.e. u(K) < oo for all compact K C X;
(ii) p is outer regular on all Borel sets, i.e., for all Borel set B C X,

w(B) =inf{u(U) : U D B, U is open};
(iii) p is inner regular on all open sets, i.e., for all open set U C F,
w(U) =sup{u(K) : K C E, K is compact}.

Let (X, %) be a Borel measurable space, and let p be a Radon measure on 4. Since every compact set in
X has finite measure, the compactly supported functions are always integrable:

1/p 1/p
1= ([ vrpa) = ([ 1gpim) < e 7151 <

Hence C.(X) C LP(X) for all 1 < p < 0.

Example 1.44. Let X be a locally compact Hausdorff space. Let Z be the Borel o-algebra, and let p be a
Radon measure. Then C.(X) is dense in LP(R, %, 1), where 1 < p < 0.

Proof. Since the set of all simple functions § is dense in LP(X), it suffices to approximate each simple function
Xe € S in LP norm, where F is a Borel set. For any € > 0, we pick an open set U and a compact set K such
that K C E C U and u(U\K) < e. By Urysohn’s lemma, there exists f € C.(X) such that xx < f < xu.
Then [|xs — fI12 < p(U\K) < e. 0

Remark. Particularly, since the Lebesgue measure, restricted to the Borel sets, is a Radon measure, we have
C.(R™) c LP(R™) for 1 < p < 0.

Review: Convolution. Let f,g: R — R be Lebesgue measurable functions. Define the bad set as
B(f.9) = {o e ®: [ 1@ = natldy =}
R
The convolution of f and g is the function f % g : R — R defined by

Je fle =y)g(y)dy, = ¢ E(f,9),

(f*g)(z) =
0, x € E(f,g).

Clearly, the convolution operation is commutative and associative, i.e. fxg = gx*f, and (f*xg)xh = fx*(gxh).

Furthermore, the distributivity of convolution with respect to functional addition immediately follows.

Proposition 1.45 (Properties of convolution). Let f,g: R — R be Lebesgue measurable functions.
(i) If f,g € L'(R), then u(E(f,9)) =0, f * g € L'(R), and

[Ggrim= [ sam [ gan. (1.15)

(ii) If f € Co(R) and g € L*(R), then f * g € Co(R).
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Proof. (i) Define F : R? — R, (z,y) — f(z) and G : R* — R, (z,y) — g(y). Then for all « € R, both
F1((a,0)) = f71((a,0)) x R and G~ ((a,0)) = R x g7 ((,00)) are Lebesgue measurable sets in R,
which implies that both F' and G are measurable, as well as their product F' - G : (z,y) — f(x)g(y). Let
T(x,y) = (x — y,y) be a linear transformation. Then the composition H = (F - G)oT : (z,y) — f(z —y)g(y)

is measurable. By Tonelli’s theorem,

[ tame = [ ([ 156 = nllatl ) as = 17k lol.

Hence H : R? — R is integrable. By Fubini’s theorem, for a.e. 2 € R, y — H(x,y) is integrable, hence
w(E(f,g)) = 0. Furthermore, the function f % g : x — [, H(x,y)dy is also integrable, that is, f x g € L'(R).
The equation follows from Fubini’s theorem.

(ii) Given € > 0. By uniform continuity of f, there exists n > 0 such that |f(z) — f(z')] < €/]|g|]1 for all
|z — 2’| <n,. As a result, we have

[(f +g)(@) = (f x g)(@")| = [f(x—y) f@" = y)lgy) dy

/Ifx— £ =)o)l dy <
for all z, 2" € R such that | — 2| < 7. O

Proposition 1.46 (Convolution of compactly supported functions). Let f,g: R — R.

(i) If f,g € L*(R), then supp (f * g) C supp f +suppg := {z +y:x € supp f,y € suppg}. Furthermore,
if both f and g are compactly supported on R, then f * g is also compactly supported. In this case,
supp (f * g) C supp f + supp g.

(i) Let 1 < p < oo, and let k € Ng. If f € C¥(R) and g € LP(R), then f x g € C§(R). Furthermore,

differentiation commutes with convolution, i.e.,

Dj(f*g>:DJf*ga .]:0713 7ka

where D7 f = fU) stands for the j-th derivative.
(iii) Let 1 <p < oo. If f € C(R) and g € LP(R), then f % g € C§°(R). Similarly, differentiation commutes
with convolution, i.e., D*(f x g) = D* f x g for all k € Ny.

Remark. Combining (ii) and (iii), we obtain a useful conclusion stated as follows: Let 1 < p < oo and
k€ NoU {oc}. If f € C¥(R) and g € LP(R) is compactly supported, then f * g € C*(R).

Proof of Proposition 1.46. (i) Let f,g € L*(R). Take any = € R. Note that

* — y)dy = — dy.
(f*g)( /fﬂs y = /(z_suppf)msuppgf(w v)9(y) dy

For x ¢ supp f + supp g, we have (x — supp f) Nsupp g = @, which implies (f * g)(xz) = 0. Hence

(f*g)(x) #0 = x €supp f +suppg = supp (f *g) C supp f +suppyg.

If f,g € C.(R), then supp f and supp g are compact in R. Define ¢(z,y) = x + y, which is a continuous map
on R%. Then supp f + suppg = ¢(supp f x suppg) is also compact. Hence supp f + suppg is closed, and
supp (f * g) as a closed subset is also compact, which implies f * g € C.(R).
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(i1) Step I: We first show the case k = 0. Let ¢ = p/(p — 1). Note that f is continuous and compact
supported, then m(supp f) < oo, f is uniformly continuous, and || f||cc = maxzesupp s |f(x)| < co. By Holder’s
inequality, for all z € R, we have

/le(w — )l o)l dy < || Fllallglly < m(supp £)"[ fllso lglly < oo.

Then f * g is well-defined on R. To show the uniform continuity of f * g, we fix ¢ > 0 and let n be such that
|z — 2’| < n implies |f(z) — f(2')] < e. Then

I(f #9)(x) = (f % g)(a)| = \ / e —y) — F(2' —y)]g(y) dy
< m(supp f) /" g, e.

Step II: We prove the case k = 1. It suffices to show the interchangeability of derivative and integral.
Given any quantity 6 — 0, we have

(f*g)(x+5)—(f*g)x:/ flat+d—y) - flz—y)
5 R 5

9(y) dy. (1.16)

Since f € C}(R), by Lagrange’s mean value theorem, there exists ¢ € [0, 1] such that

flz+d—y)— flz—y)
5

\ _\f(z 40— ), (1.17)

Note that f’ is also continuous and compactly supported on R, the RHS of [(1.17)|is bounded by || f/||cc < o0,
and the integrand in is dominated by an integrable function ||f’||g. Using Lebesgue’s dominate

convergence theorem, we have

hm/Rf(x“Lé_yg_f(m_y)g(y)dyZ/Rf’(x—y)g(y)dy.

6—0

Therefore (f * g)’ = f’ * g. Since f’ € C.(R), we have (f * g) € Co(R), and f * g € C3(R).
Step II: Use induction. Suppose our conclusion holds for C*~1(R). For each f € C¥R) c CF~1(R),
D*-1f € CYR). By Step II, we have

D*(fxg) =D(D"'(f xg)) = D(D* ' fxg) = (D*f) x g,

which is uniformly continuous on R. Hence f x g € C¥(R).

(iii) Note that C°(R) = N~y C¥(R), we have D¥(f x g) = D¥*f % g for all k € Ny. Following Step II,
Dk f € C.(R) implies D*(f % g) € Co(R) for all k € Ng. Hence f x g € i~y CH(R) = C5°(R). O

Review: Translation operators. Let X be a vector space, let YX be the set of functions f : X — Y, and

let s be a vector X. The translation operator 75 : YX — YX is defined as
(rof)(x) = f(z —s), Vf e Y¥.
Proposition 1.47. Let 1 < p < co. For any f € C.(R),

lim [l7.f — f]l, = 0. (118)
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Proof. Let f € C.(R). The collection of functions {7sf : |s| < 1} has a common support

K= |J supp(rf)=suppf+[-1,1] ={z+y:z esuppf,y € [-1,1]} = ¢(supp f x [~1,1]),
s€[—1,1]

which is compact as the image of a compact set under a continuous map ¢ : R? = R, (z,y) — = + y.

By uniform continuity of f, given € > 0, there exists § > 0 such that |f(z) — f(y)| < € for all |z —y| < 4.
Then for any s < |min(d, 1)|, we have

Ired =Sl = [ 1@ =) = @)rde < ulx)
K
Since p(K) < 00, and € is arbitrary, we conclude that ||75f — f]|, — 0 as s — 0. O
Example 1.48. For 1 < p < oo, C2°(R) is dense in LP(R).

Proof. Let f € Cc(R). Then We choose a function ¢ € C2°(R) such that [ ¢ dm = 1, for example,

=ex 1t x) = _v@
010 = o (7 ) xoaa©): 900 AT

and define ¢(z) = 1¢ (£) for € > 0. By [Proposition 1.46 f * ¢ € C°(R), and

P

Lo —s@par= [ [ (@) s@)oin ) d

R

< / / |(f(x—y) — f(x)]” de(y) dyda (By Jensen’s inequality)
R J[—¢€,€]

= [ ot = sl

< sup | f = fl-
y€[—e.€]

which converges to 0 as € — 0 by |[Proposition 1.47} Since C.(R) is dense in LP(R), the result follows. O

Remark. In fact, the limit[(1.18)|in [Proposition 1.47 remains zero for all f € L?(R). Fix € > 0, there exists

g € C°(R) such that ||f — g|lo < €/3 by [Example 1.48] Choose ¢ such that |75 — g||, < €/3 for all |s| < ¢.
Then for all € (—4,0),

I7sf = Fllp < 175 f = 7sgllp + 759 = gllp + lg = fllp = 2015 = gl + I7s9 = gll» <€

Similarly, we have the following conclusion similar to

Example 1.49. Denote by CS°(a,b) the set of functions f : [a,b] — R such that f is smooth and compactly
supported in (a,b), i.e. supp f C (a,b). Then C¢°(a,b) is dense in L”([a,b]), where 1 < p < co.
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1.3.2 Separable sets

Definition 1.50 (Separability). Let X be a topological space. Then X is said to be separable if it has a

countable dense subset.

Example 1.51. Following are some instances for separable spaces.
(i) The space R™ is separable, since Q™ is a countable dense subset.
(ii) The spaces C([a,b]) and L?([a,b]),1 < p < co are separable: The set P([a,b]) of all polynomials on [a, b]
is dense in C([a,b]), and the set of all polynomials with rational coefficients is dense in P([a, b]).

(iii) If (X, d) is separable, so is (A, d), where A C X.

Proof of (iii). Let D = {x,,n € N} be a countable dense subset of X. Then we have X C O(xy,,¢€) for all
e > 0. For every n, k € N, choose arbitrary y, r € AN O(xy, 1/k) provided it is not empty. Given y € A and
e > 0, we choose an integer k > 2/e. By density of D, there exists x,, € D such that d(y, z,) < €/2. Moreover,
AN O(xp,1/k) is not empty since it contains y. Then

e 1
d(y’yn’k) < d(y,xn) + d(xnayn7k> < § + E < €.

Hence {y, x : n,k € N} is dense in A. O

Example 1.52. Let U C R be Lebesgue measurable with u(U) > 0. If 1 < p < oo, then LP(U) is separable.
Proof. Consider the set of countably many functions in LP(U):

n

D:= chx(aj,bj)ﬁU ne N7 a‘17b17cl7' o 7a’n7bnacn € Q
=1

For any f € LP(R), approximate it with functions in D as follows: (i) By approximate f by
a simple function ¢ = >, 7Xx4,, with m(A4;) < oo for each i. (ii) By Littlewood’s first principle, we can
approximate each Lebesgue measurable set A; with a finite collection of disjoint open intervals {(si;, ;) ;-
Then we obtain a simple function ¢ = Y7 Y7 7iX(s,, +,,) near to 1; (iii) Approximate ¢ by rational
coefficients and endpoints.

According to the above procedure, D is dense in LP(U). O

Remark. The space L>(R) is not separable. To see this, consider the set A = {X(_o0,t € R}. For any

two distinct functions f and g in A, we have ||f — g||lococ = 1. Then any proper subset of A is not dense in A,
and A is not separable. As a result, L°°(R) is not separable.
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1.4 Completeness
1.4.1 Complete metric spaces

Lemma 1.53. The following statements are true.
(i) (Lemma 1.6) A closed subspace of a complete metric space is complete.
(ii) (Lemma 1.7} subsequence criterion) A metric space (X,d) is complete if every Cauchy sequence in X

has a convergent subsequence.

(iii) If A is a dense subset of a metric space (X, d), and every Cauchy sequence in A converges to some point
of X, then (X, d) is complete.

Proof of (iii). Let (x,) be a Cauchy sequence in X. Since A = X, there exists find a, € A such that
d(an,zn) < 1/n for each n € N. Fix € > 0. Then there exists NV such that d(zy,,z) < €/3 for all n,m > N.
By setting n,m > max{N, 3e¢"1}, we have

d(ana anl) S d(anaxn) + d(‘rfhx'm) + d(xma anl) < €.

Hence (ay,) is a Cauchy sequence in A, and it converges to some = € X. Since d(zy,a,) — 0, and d(ay,,z) — 0,

we have d(z,, ) — 0, which concludes the proof. O

Example 1.54 (Quotient spaces). Let M be a subspace of a vector X. For z,y € X, define x ~ y if and
only if # — y € M. Then ~ is an equivalence relation on X. We define the quotient space X/M as

X/M =X/~ ={[z] : x € X}, where [z] :={x +y:y € M} is an equivalence class.

The quotient map is defined as 7 : X — X/M,z — xz. Clearly, X/M forms a vector space, if we set
[z] + [y] = [ + y] and afz] = [ax], where z,y € X and a € R (or C), and let [0] be the zero element.

If X is a normed space and M is a closed subspace of X, then we define a norm || - || on X/M by
llz1lf = d(z, M) = inf o —y]

It is easy to verify that || - || satisfy the conditions in Moreover, || - || is well-defined, because
 ~y implies ||[]]| = [|[y]]-

Note that we require M to be closed. Otherwise, there exists x € X\ M such that x is a limit point of M,
and there exists a sequence (z,) of points of M such that z, — z. As a result, ||[z]|| = infyenm ||z —y|| = 0.

However [z] # [0], a contradiction! In this case, || - || is merely a seminorm on X /M.

Claim. If (X, | -||) is a Banach space, so is (X/M, | - ||)-

Proof. Let ([z,]) be a Cauchy sequence of points of X/M. Then for all € > 0, there exists N € N such that

lzn] = [zm]l| = infyen ||2n — zm — y|| < € for all n,m > N. We choose a subsequence ny, such that

. —k
y&&”x"k“ — T, —yl| <277, ke N

Then there exists y, € M such that ||zn,,, — 2, — Y&l < 27%. We define another sequence (], ) by

r r_ 1 E k=3, .
Ty, = Tnys Ty, = Tny — Y1, "',$nk—$nk+ (_1> Yjs -
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/
MNk+1

sequence in Banach space (X, || - ||), which converges to some z’ € X.

By definition, ||z -, || <27%, and 2, — ,,, € M, which implies [2], | = [#,]. Then (], ) is a Cauchy

As a result, the subsequence [z, ]| converges to [z'] € X/M:

0 < [lfzn,] = 2l = [|lz7,] = ]| = Jnf, a7, — 2" =y < ||, —2'[| = 0.
By subsequence criterion (Lemma 1.53|), X/M is a Banach space. O

Example 1.55 (Functions of bounded variation). Let V([a,b]) be the set of all functions f : [a,b] — R of

bounded variation, i.e., the total variation of f on [a,b] is bounded:

VE(f) = sup{2|f(xi) —flric1)neNa=x0 <21 < <y :b} < 00.
i=1
For all f € V([a,b]), we define the norm

11l = [£ ()] + V2 ().

Then (V([a,b]), ] - ||) is @ normed space.
Let Vo([a,b]) be the subspace of V([a,b]), which consists of all functions f : [a,b] — R such that f is of

bounded variation, f(a) = 0 and that f is right-continuous on (a,b). We continue to use the norm || - || on
V([a, b]), which becomes || f|| = V2(f) for f € Vy([a,b]). Then (Vo([a,b]), || - ||) is also a normed space.

Claim. V([a,b]) and V;([a,b]) are Banach spaces.

Proof. (i) We first show that V([a,b]) is Banach. Let (f,) be a Cauchy sequence in V([a,b]), i.e. for all € > 0,
there exists N such that |f,(a) — fm(a)| + V(fn — fm) < € for all n,m > N. Given z € [a, ],

[fn(2) = fm(@)| < |fnla) = fm(a)| + [(fn (@) = () = (fn(a) = fin(a))|
< |fn(a) - fm(a)‘ + V:(fn - fm)

Then f,(x) is a Cauchy sequence, which converges to some f(z) € R. Hence we obtain a function f on [a, b]
to which f,, converges pointwise.

Let a = 29 < 1 < --- < 2 = b be any partition of [a,b]. Then we have

Z |f(zj) = flwj-1)] < Z |f(z5) — fulxs)] + Z |fr(zj) = falzio1)] + Z | fu(@j-1) — f(xj-1)]
k k
<Y 1f (@) = fa(@) ) | fulajo1) = i)+ V2 (fa) .-

(b)

(a)

The term (a) converges to zero, since f,, converges to f pointwise. Hence it suffices to bound term (b). Note
that (f) is a Cauchy sequence, there exists N such that || f, — fi]| < 1 for all n,m > N. Then the sequence
is uniformly bounded by M = {||fi|l,--, [[fv—1l, 1 + [|f~]}, and V2(fn) < [|full < M for all n € N. Since
the partition a = o < x1 < --- < x, = b is arbitrary, the total variation of f is also bounded by M.

Now it remains to show || f — f»|| = 0. Note that f,(a) = f(a), we need to show V*(f — f,) — 0. Given
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€ > 0, we choose N such that || f, — fin]| < € for all n > N. Then

k
D= Fad(@) = (fn = fa)(zj-1)| < e

j=1
holds for all partition a = xp < 1 < -+ < x, = b and all n,m > N. Let m — oco. Since f, converges to f

pointwise, we have || f — f,|| < €, as desired.

(ii) To show Vy([a,b]) is Banach, it suffices to show that Vj([a, b]) is a closed subspace of V([a, b]). Let f,
be a sequence of functions in Vy([a, b]) that converges to f € V([a,b]) in sense that ||f, — f|| = 0. It suffices
to show that f is right-continuous.

Let z € (a,b) and € > 0 be given. Then there exists N such that || f — fn|| < €/3, which implies

[f(x+h) = f@)| <[f(z+h) = @+ D)+ [y +h) = fn@)] + [ n(z) - f(2)]
<|fn(z+h) = fy(@)]+ 2] /5 = fll
<[fn(x+h) = fn(x)] + 2¢/3.

Moreover, by right continuity of fu, there exists 6 > 0 such that |fy(z + h) — fn(z)| < €/3 for all h € (0.9).
Hence |f(z + h) — f(x)] < e for all h € (0,0). As a result, limy,_g+ |f(x + h) — f(z)| = 0, which implies the

right continuity of f. O
Theorem 1.56. Let (X,] -||) be a finite-dimensional normed space. Then X is complete.
Proof. Suppose dim X = n. Choose a basis of X : ey, - - ,e,. We claim that there exists c1,co > 0 such that

forallz =3 " | ze; € X,

n n
o () <t (3202).
1=1 =1

- :{inei:x§+-~-+mi:1}
i=1

in R, and the map f : S" ' = R, (z1, -+ ,2,) — || Y i, ®i€;||, which is continuous. By compactness of
S7=1 there exists c1,ca > 0 such that f(S™~!) C [c1, c2]. By homogeneity of norm, the claim is satisfied.

We consider the unit sphere

As a result, any sequence in X converges relative to || - |2 also converges relative to || - ||. Since the space

(R™, ]| - ||2) is complete, (X, ] - ||) is also complete. O
Corollary 1.57. Let L be a finite-dimensional subspace of a normed space X. Then L is closed in X.

Example 1.58. The space (C([0,1]),] - ||1), which is a subspace of L([0,1]), is not complete. Define

1,0z <,
fa(z) = q1-n(z-1/2), 3 <a< 5+,
1.1
0,5+ <z<l1
which converges to X[o,1/2) pointwise. As a result, ||f, — x[0,1/2l = 1/2n — 0. Thus we obtain a Cauchy

sequence in C([0, 1]) that does not converges in (C([0,1]),] - |l1)-
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Now we introduce the nested sequence theorem.

Theorem 1.59 (Nested sphere theorem). Let (X, d) be a complete metric space. Let
B,={ze X :d(z,z,) <e,}

be a sequence of monotone decreasing closed spheres: By D Ba D --- D B,, D Bpy1 D ---. If lim, 00 €y, =0,

then there exists a unique £ € (2, B,.

Proof. For any n > m, z,, € B,, C B,,, then d(z,,z,,) < €,. Since lim,, ., €, = 0, (z,) is a Cauchy sequence
in X, which converges to some x by completeness of X. Let m — oo, we have d(z,z,) < €,, which implies
z € B, for all n € N. Hence z € |J,~_, By.

To show uniqueness, let y € (J,~; By,. Then z,y € B, for all n € N, and d(z,y) < 2¢, — 0. O

The depiction of nested sequence also implies completeness of the corresponding metric space.

Theorem 1.60. Let (X,d) be a metric space in which the nested sphere theorem (Theorem 1.59) holds.
Then (X, d) is complete.

Proof. Let (z,,) be a Cauchy sequence in X, we choose a subsequence () such that d(z,,,z,,,,) < 27"
Then for all m > k, d(z,, ,7s, ) < 27FF1. We choose sequence of closed sphere By, = B(z,,,27 1), then we
have By D By D --- and limy_, . 27%T1 = 0. As a result, there exists a unique r € UZO:1 B, to which (z,)

converges. ]
1.4.2 Completion

We consider the procedure from incomplete to complete space.

Definition 1.61 (Completion). Let (X,d) be a metric space. A complete metric space (Y,d) is said to

be a completion of (X,d), if there exists an injective mapping ¢ : X — Y such that (i) ¢ is isometric, i.e.

d(u(x), v(a')) = d(z,2') for any pair z,z’ € X, and (ii) «(X) = Y. In this case, ¢ is called an imbedding.
The following theorem states that every incomplete metric space has at least one completion.

Theorem 1.61 (Existence of a completion). Let (X, d) be a metric space. Then there exists a completion

of (X,d). Namely, there exists an isometric imbedding from X to a complete metric space.

Proof. We construct a complete metric space which consists of equivalence classes of Cauchy sequences in X.

Step I: Let Y’ be the set of all Cauchy sequences x = (21, x2,---) in X. Let d'(x,y) := lim,— 00 d(Zp, Yn)-
Then d’ is a pseudometric on Y, that is, d’ : Y’ x Y’ — R, satisfies symmetry and triangle inequality.

Step II: Define a relation ~ on Y': for x = (z,,) and y = (y,,) in Y7,

x~y € lim d(xn,yn) = 0.

n—oo

It is clear that ~ is an equivalence relation on Y’, i.e., ~ has reflexivity, symmetry and transitivity. Let
Y =Y’/ ~ be the set of equivalence classes on Y', and define d:Y xY — Ry as

d([x],[y]) = lim d(zn,yn).

n— oo

Note that d([x],[y]) = d’(x,y). Following Step I, d is a metric on Y.
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Step IIT: Define 1: X — Y, x [(x,,--+)], which maps a point of X to an equivalence class of a constant
sequence. Clearly, J(L(x), t(y)) = d(z,y), which implies that ¢ is an isometric imbedding.
Now we show that 1(X) = Y. Given any Cauchy sequence x = (z,,) € Y’, we have

lim d(u(z,),[x]) = lim d(z,,zn,) =0,

n—o0 n,m—oQ

)=

uX
Step IV: Tt remains to show the completeness of (Y, d). By |Lemma 1.53 (iii)} it suffices to show that every

which implies [x] € ¢(X). Since x is arbitrary, we have

Cauchy sequence in ¢(X) converges in Y.
Let {[x("™]},en be a Cauchy sequence in +(X), where x(") = (x,,,x,,---) for each n € N. By definition,
d([x™)], [x™]) = d(z,,, ,,), which implies that x = (z,,) is a Cauchy sequence in X. Moreover,

n— oo n—oo | k—oo

lim d ([x(”)], [x]) = lim {hm d(zn,xk)} =0,

which implies [x(™] — [x] € Y. Therefore we obtain a completion of X. O

By construction, we showed that every metric space has at least one completion. Naturally, we wonder if

the completion is unique. We have the following theorem.

Theorem 1.62 (Uniqueness of the completion). The completion of a metric space (X,d) is uniquely de-

termined up to an isometry. Namely, if ¢; : X — Y7 = 11(X) and 15 : X — Yo = 15(X) are two isometric
imbeddings from X to a complete metric space, then there exists an isometric bijection from Y; to Y5.

Proof. Step I: Define map ¢g : t1(X) — 12(X), t1(z) — t2(x), which is bijective and isometric from ¢; (X)) to
t2(X). We extend ¢g to ¢ : Y1 — Y5 as follows: Given y; € Y7, choose a sequence (z,,) of points of X such
that dy, (¢1(zy),y1) — 0, which is feasible because Y7 = ¢1(X), and define

o(y1) = nhﬁn;O do(t1(zp)) = lm wo(xy,).

n—oo

Step II: check that ¢ is well-defined. Since (¢1(z,)) converges to y; € Y7, it is a Cauchy sequence in Y;.
Note that ¢; and ¢o are isometric, (z,,) is a Cauchy sequence in X, and (t2(zy,)) is a Cauchy sequence in Y3.
By completeness of Ys, (t2(x;,)) converges to some point yo of Ys.

Suppose (2,) is another sequence of points of X such that ¢1(«]) — y1. Repeat the above procedure, there
exists y4 € Y3 such that o(z),) — y5. Moreover,

dy,(y2,95) = 1 dy, (ta(xn), 12(2),)) = lim d(zp,af,) = lim dy, (e1(2n), 01(20,)) = dy, (y1,91) = 0.

n,m—oco n,m—oo n,m—00

Hence yo = y4. Therefore, ¢ : Y1 — Y3 is well-defined and agrees with 5 o Ll_l on ¢1(X).

Step III: 1t remains to show that ¢ is isometric. Given y,y’ € Y1, we choose two sequences (x,,) and ()
from X such that ¢;(x,) — y and ¢1(2!,) — v'. Then we have

dy,(¢(y), ¢(y)) = lim dy,(ea(xn), t2(27,)) = lim d(wn,a,) = lim dy, (u(zn), w(z,)) = dv, (y,4").

n,m— oo n,m—oo n,m— 0o

Hence ¢ is an isometric bijection from Y7 to Y5. O

Remark. Combining|Theorem 1.61]and [Theorem 1.62] we conclude that for every metric space, there exists

a unique completion up to an isometry.
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1.4.3 Contraction mappings and Banach Fixed Point Theorem

Review: Newton’s method. To solve a equation f(z) =0,z € [a,b], where f is differentiable, define

ﬂ@:x—;%§

We choose zg € [a,b], and update z,+1 = T(x,). In appropriate conditions, x,, — z such that f(z) = 0.

Review: Picard’s method for ordinary differential equations. To solve the ODE

=3

Y

dr — f(l'7y),
(

T s @ mwe / (5,91 (1.19)

For appropriate f, let po(z) = yo. Update:
xr

%Hw:m+/f@%@m&

Zo

Then ¢,, = ¢, where ¢ is the solution of [ODE (1.19)

Definition 1.63 (Fixed points). Let X be a nonempty set, and let ¢ : X — X. If there exists z* € X such
that ¢(z*) = a*, then a* is said to be a fized point of X.

Definition 1.64 (Contraction mappings). Let (X, d) be a metric space, and let ¢ : X — X. If there exists
~v € (0,1) such that d(¢(x), ¢(y)) < vd(x,y) for all x,y € X, then ¢ is said to be a contraction mapping on X.
Lemma 1.65. A contraction mapping is continuous.

Proof. Given z,, — z, d(¢(x,,), ¢(x)) < vd(zp,x) — 0 as n — oo. O
Theorem 1.66 (Banach fixed point theorem). Let (X, d) be a complete metric space. Let ¢ : X — X be a
contraction mapping on X. Then ¢ has a unique fixed point.

Proof. Choose zg € X. Let ©, = ¢p(z,—1) = ¢"(x0) for all n € N. We claim that (z,) is a Cauchy sequence
in X. For all n € N,

d(xn+17 xn) =d (¢(xn)a ¢(xn—1)) < 'Yd(xnv In—l) <--< ’Ynd(xlv 930)'
For any n,p € N, by triangle inequality,

A @ntp, Tn) < d(Tntp, dnyp-1) + A@nip—1, dntp—2) + - + d(@nt1,dn)

< (,yn+p—1 + ,Yn—&-p—? 4+ 7") d(xl, xg) < 11

Pyd(xl,l‘o). (1.20)

Then (z,,) is a Cauchy sequence, which converges to some z* € X. Let p — oo in|(1.20)] then
n

11—

d(z*, zp,) < d(x1,x0).
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As a result, x is a fixed point of ¢:
ox*)=¢ ( lim xn) = lim zpy1 = 2",
n—oo n—oo

To show the uniqueness, let x’ be a fixed point of ¢. Then
d(@,a*) = d(6(@), 6()) < Ad(a, d(a"),
which implies d(2’,2*) = 0, and 2’ = z*. O
Remark. If X is not complete, Banach fixed point theorem does not hold. Consider
¢ :(0,00) = (0,00), z — vz, where 0 <y < 1.
Furthermore, if v =1 in Banach fixed point theorem does not hold. Consider

¢ :[0,00) — [0,00), z— z+

1+2a

Theorem 1.67 (Generalization). Let (X, d) be a complete metric space, and let ¢ : X — X is a map on X.
If there exists n € N such that ¢" is a contraction mapping, then ¢ has a unique fixed point.

Proof. Denote 1) = ¢". By 1 has a unique fixed point z* € X. Also,
o(z") = ¢ (Y(2")) = 9" (") = ¢ (¢(27))

is a fixed point of ¢, which implies ¢(z*) = x*. Hence x* is a fixed point of . To show the uniqueness, let =’
be a fixed point of ¢. Then z’ is a fixed point of ), which implies z’ = z*. O

We present some applications of Banach fixed point theorem.

Example 1.68 (Implicit function theorem). Let f : R? — R be continuous on D = [a,b] x R, and there
exists m < M such that 0 < m < D, f(z,y) < M for all (z,y) € D. Then there exists unique continuous
¢ € C([a,b]) such that f(z,¢(z)) = 0.

Proof. Define A : C([a,b]) = C([a,b]) in (C([a,b]).]| - ||) by

(Ap)(w) = p(a) — 21, o(x)).

Then A is a contraction on (C([a,b]).| - ||):

[Ap1 — Apalloc = sup [Apr(z) — Apa ()]
xreE|a,
1
= sup |p1(z) = @2(x) — 7= (f(2, p2(2)) — f(z,01(2)))
z€la,b] M
1
= sup |1-— MDyf(x, &) o1 (x) — pa(x)] (By mean value theorem)
z€la,b]
m
<(1-— - .
< (1 M) o2 — @1lloo
By |Theorem 1.66 there exists unique ¢ € C([a, b]) such that Ay = ¢, which implies f(z,p(z)) = 0. O
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Example 1.69 (Volterra integral equation). Suppose f € C([a,b]), and K € C(D), where
D:{(x,y)6]R2:a§x§b,a§y§x}.
Then for all A € R, the Volterra integral equation
olo) = @) 42 [ K)ot dy

has a unique continuous solution in C(]a, b]).

Proof. Set M = sup, ,ep |K(x,y)|. Define B : C([a,b]) — C([a,b]) by
(B)@) = 1)+ [ K(wy)ely) do
For all 1, g2 € C([a,b]) and all z € [a, D],

[(Be2)(x) = (Ber)(@)| = [Al

/az K (2,)(¢2(y) — ¢1(v)) dy‘

< M(z = a) [A ez = ¢1lloo,

|(B%@2)(w) = (B*¢1)(2)] = |A

/ " K(e9) [(Bea)(y) — (Boy)(w)] dy‘

IN

A

/M~M<ya>|x|||ga2sol||oody\

1
< M2 (@ = a)® AP o2 = o1 oc,

by induction,

1 n
|(B"¢2)(z) = (B"¢1)(@)] = S M" (2 —a)" A" |02 = @1l
for all n € N. Then for efficiently large n,

1 n n n
MM —a)" A < 1,

and B" is a contraction mapping. By B has a unique fixed point ¢*, which is the solution of
Volterra integral equation. O
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1.5 Compactness and Sequential Compactness

Review: Compactness and sequential compactness. Given a subset A of a topological space X, A is
said to be compact if every open cover of A has a finite subcover, and A is said to be sequentially compact if
every sequence of points of A has a subsequence that converges to some point of A.

In a metric space X, a subset A is compact if and only if it is sequentially compact.

Review: Relatively compactness and relative sequential compactness. Let (X, d) be a metric space,
and let A be a subset of X.
(i) A is said to be relatively compact (or precompact) if its closure is compact;
(ii) A is said to be relatively sequentially compact, if for every sequence (x,,) C A there exists a subsequence
that converges to some z € X. (Clearly, z € A.)
The following proposition reveals the equivalence of these two definitions.

Proposition 1.70. Let (X, d) be a metric space. Let A C X. Then A is relatively sequentially compact if

and only if A is relatively compact.

Proof. Suppose that A is compact. Then A is also sequentially compact by Theorem 4.36, and the relative
sequential compactness of A is clear.

Conversely, suppose that A is relatively sequentially compact. We show that A is sequentially compact.
Let (z,) be a sequence of points of A. For every n € N, since x,, € A, we can choose y, € A such that
d(Zn,yn) < 1/n. By relative sequential compactness of A, there is a subsequence (y,,) with y,, — y € A.

Fix € > 0. We first choose K7 € N such that d(y,,,y) < €/2 for all £ > K;. Then we choose K3 € N such
that ng > 2/e for all k > Ky, which implies d(xy, ,Yn,) < €/2. Hence d(z,,,y) < € for all k& > max{K;, K},
and the subsequence (z,, ) converges to y € A as k — oo. Therefore A is sequentially compact. O

Review: Totally bounded sets. Let (X,d) be a metric space, and let A be a subset of X.

e Ais said to be bounded, if its diameter diam(A) := sup,, ¢ 4 d(x,2’) is finite.

e Given € > 0, an e-cover of A is a collection of open balls of radius € of which the union covers A. An

e-net is the centers of balls in an e-cover.

e If for all € > 0, A has a finite e-net, then A is said to be totally bounded.
Let A be a totally bounded set. Clearly, A is also totally bounded. Fix e > 0, we first cover A by finitely
many open balls O(zj,€/2), j = 1,---,n. For any y € A, there exists € A such that d(z,y) < /2. As a
result, we can cover A by expanding the radii of the balls to e.

The following theorem reveals the equivalence between totally bounded sets and relatively compact sets in

metric spaces.

Theorem 1.71 (Hausdorff). Let X be a metric space. Let A C X.
(i) If A is relatively compact, then A is totally bounded.
(ii) If X is complete and A is totally bounded, then A is relatively compact.

Proof. (i) Consider a cover of A consists of open e-balls, the conclusion is clear by finding a finite subcover.

(ii) We shall prove that A is sequentially compact. Let (z,,) be a sequence of points, it suffices to construct
a subsequence of (x,,) that is a Cauchy sequence, which converges by completeness of A.

We first cover A by finitely many 1-balls. At least one of these balls, denoted by O:, contains infinitely
many elements of (z,). We denote by J; = {n € N: z, € O1} the index set of these elements.

Next, cover A by finitely may 1/2-balls. Since .J; is infinite, at least one of these balls, denoted by Os,
contains infinitely many elements of {z,, : n € J;}. Similarly, let Jo = {n € J; : 2,, € Oz}. By repeating this

38



procedure, we obtain a finite cover of A by 1/k-balls and an infinite index set J, = {n € Jy_; : x,, € Oy} for
arbitrarily large k, with Jy C Jx—1 C --- C J;.

Choose ny € J;. Given ny_1, choose ny € Ji with ng > ng_1, which is feasible because Jj, is infinite. For
any l,m >k, n;,ny, € Jy, and z,,,, z,,, € Ok, implying d(z,,, Tn,,) < 2/k. Hence the subsequence (z,,) is a

Cauchy sequence, as desired. O

Theorem 1.72. A metric space X is complete if every totally bounded set in X is relatively compact.

Proof. Let (z,) be a Cauchy sequence in X. Given € > 0, there exists N such that d(x,,x,) < € for all
n,m > N. Hence O(xy,€), k=1,--- ,N is an e-net of {x,,n € N}.

By every Cauchy sequence (z,,) in X is relatively sequentially compact, and the completeness
follows from subsequence criterion . O

Lemma 1.73. Any relatively compact set is separable.

Proof. Let A be a relatively compact subset of a metric space X. Since A is totally bounded, we can cover
it by finitely many 1-balls. We denote the centers of these balls by Cy. Similarly, we can cover A by finitely
many 1/n-balls for arbitrarily large n € N, and extract their centers C,,. Then Uzozl C.,, being the union of

countably many finite sets, is a countable dense set in X. O

Example 1.74. We know that in a finite-dimensional space R", the closed unit ball
B:{(x17--. ,xn):x%+...+xigl}

is compact. However, this does not hold when the dimension becomes infinite.

We give a counterexample here. Let ? := {x = (z1,22,--+): > o [x,]? < oo} be the set of square-

summable real sequences. Then [? is a Banach space under norm

(|2 =

)
D> Ll
k=1

Consider the closed unit ball

BZ{X:(I'hl‘g,'-')€l212|$k|2§1}.
k=1

We let e, = (0,---,0, klth, 0,--) be the unit vector whose k-th element is 1, and choose open balls

O={xel:|x|a<1}, Op={xel:|x—e*<1/2}, keN.

And for each x € E := B\ (O U (U, Ok)), define Ox = {y € 1* : |y — x||2 < 1/2}. Then e, ¢ Ox for eack k.

As a result, we obtain an open cover
o0
ou (U Ok> U (U Ox>
k=1 xek

of B. Moreover, every open ball in this cover contains at most one ey.
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Lemma 1.75 (F.Riesz). Let X be a normed space, and let A be a closed proper subspace of X, i.e. A # X.
Then for all 0 < € < 1, there exists unit vector zo € X such that d(zg, A) > e.

Proof. Choose & € X\A. Since A is a closed subspace, d(Z,A) > 0, and there exists ' € A such that
|z —2'|| < d(z, A)/e. We define

T—a
To = 7= 1 ¢ A.
[z — ']
For any = € A, we have
z—a n x! T
T=—To=CT— 3=, =% — - —
EEEd F—al [z
——
€A ¢A
T d(z, A
|z — ol Zd<x,,A) = ,(L,) > €.
|z — /]| 1z — |
Since z is arbitrary, the result follows. O

Theorem 1.76. Let X be a normed space. If X is infinite-dimensional, then the closed unit ball in X is not

compact.

Proof. Choose x1 € X with ||z1]] = 1, and let A; = span{z1}. By [Corollary 1.57| and [Lemma 1.75| choose
x2 € X such that ||z2| =1 and d(z2, A1) > 1/2, and let Ay = span {x1, 22} # X. Repeat this procedure, we
obtain a sequence (z,,) of unit vectors in X. For any m < n, we have

T € Ap_1, Tn & Apn_1, d(Tp,Tm) > 1/2.

To obtain an open cover of the closed unit ball in X, we take open balls O = 0(0,1), O,, = O(z,,1/2) for
every n € N, and O, = O(z,1/2) for every x ¢ OUJ._; O,,. Each of them contains at most one element of

{zn,n € N}. Hence there exists no finite subcover. O

It is seen that bounded closed sets in infinite-dimensional spaces are not always compact. We are going to

discuss some instances for compact sets in infinite-dimensional spaces.

Review: Equicontinuity. Let X be a topological space and let (Y,d) be a metric space. Let F be a
collection of functions X — Y. Given zg € X, F is said to be equicontinuous at xq if for each ¢ > 0, there
exists a neighborhood U of zq such that d(f(z), f(xo)) < e for all zx € U and all f € F. If F is equicontinuous
at all z € X, then f is said to be equicontinuous.

Let (X,dx) and (Y,dy) be metric spaces. Let F be a collection of functions X — Y. F is said to be
uniformly equicontinuous if for each e > 0, there exists § > 0 such that d(f(z), f(2')) < e for all z,2" € X
such that d(z,2') < 6 and all f € F.

Theorem 1.77 (Arzela-Ascoli). Give C([a,b]) the uniform topology (induced by || - [|oc). A subset F of
C([a,b]) is relatively compact if and only if it is bounded and uniformly equicontinuous.

Proof. “If” case: Suppose F is bounded and uniformly equicontinuous. By it suffices to show
F is totally bounded. Given e > 0, there exists 6 > 0 such that |f(z) — f(2')| < ¢/3 for all |z — 2’| < J. We
first choose a partition a = zg < 1 < --- < &, = bsuch that |z; —x;_ 1| <dforall j=1,--- ,n.
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Since F is bounded, there exists K such that max,c(q |f(z)] < K for all f € F, and

A={(f(zo), f(x1),--, f(wn)) : f € F} C R

is a bounded set. Note that A is finite-dimensional, it is totally bounded. Then there exist f1,---, fr € F
that form a €/3-net of A.
We claim that {f1,---, fx} is an e-net of F: for any « € [a, b], it lies in some [x;_1, x;]; for any f € F, there

exists p € {1,--- , k} such that {f(z;),j =0,1,--- ,n} lies in the ¢/3-ball centered at {f,(z;),j =0,1,--- ,n}.

[f (@) = fp(@)| < |f (@) = [l + [f (@) = folai) + [ fpla;) = fo(z)] <e

As aresult, {f1, -, fx} is a e-net of F, as desired.

“Only if” case: Suppose F is relatively compact, it is totally bounded. Given € > 0, let N = {f1, -, fx}
be an €/3-net of F in C([a, b]). By compactness of [a, b], any f; is uniformly continuous on [a, b], and we choose
d; > 0 such that [f(z) — f(z')| < €/3 for all [z — 2| < 6. Let 6 = min;eyy.... x) 6;- Then for any f € F,

|f(z1) = flx2)| <|f(z1) = fplz)| + [fp(z1) — fp(za)| + [fp(ze) — flza)| <€, 3fp €N

Hence F is uniformly equicontinuous, as desired. [

Theorem 1.78 (Kolmogorov-Riesz-Fréchet). Let 1 < p < oo. Let F be a subset of LP(R). Then F is
relatively compact if and only if the following conditions hold:

(i) (Bounded). there exists M > 0 such that supscx || fl, <

(ii) (Equitight). For all € > 0, there exists r > 0 such that

/ |f(x)[Pdm(z) < €, Vf e F.
|z|>r
(iii) (LP-Equicontinuous). For all € > 0, there exists ¢ > 0 such that

lmnf — fllp <€ YfeF, he(0,0).

Proof. “If” case: We first suppose the functions F are supported on [a,b]. For any 6 > 0, define

@)= (o xiaa)@) = 5 [ fla—y)dm(y).

[-4,9]

For any f € F, by Jensen’s inequality, we have

1

g o= Tr — — X m
9@ 1@l = g5 [ (=) = S dm)

Given € > 0, we choose ¢ that satisfies condition (iii):

L1 sepane < g5 [ [ i s an) = g5 [ g - Sl <

We still denote by f° the restriction of f0 on [a,b]. Let F0 = {f%: f € F}. It is bounded and equicontinuous
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on [a,b]: For any f° € F and any x € [a,b],

1

1 . 1/p i
@) < 55 [ 1= pldm() < (35 17 -npant)) < @

To show equicontinuity, fix ¢ > 0, and choose ¢ such that |7, f — f|| < (20)'/P¢’. Then for any |z — 5| < &,

1/p
1 p
[P2n) = f(aa)] < (25 [, =0 = e =) dm(y))

< (215 / F(t+ a1 — ) — FOP dm<t>)1/p <.

Hence F? is a bounded and equicontinuous set in (C([a,b]), || - ||oo)- Using Arzela-Ascoli theorem, we choose
an e-net NO = {f, -+, f2} of F°. Then N? is an (b — a)'/Pe-net in LP([a,b]). Let N' = {f : f® € N}, then
Nisa ((b—a)/? +2) enet of F in LP([a,b]): For any f € F, choose the closest f; € N, then

1 = fillp < UF = L2l + 12 = f2llp + 17 = fillp < (0= a)!/Pe + 2e.

Since € is arbitrary, F is totally bounded.
Now we consider general f € LP(R). For any € > 0, by equitightness, choose R > 0 such that

€

[ it@ran < (5)"
jo|>R 3
Then Fr = {fX[-r,r) : f € F} is also a totally bounded set in LP([—~R, R]). Let
Nr={fiXi—rR) " fiXl-R.R] }
be an €/3-net of Fr in LP([~R, R]), then N' = {f : fx|—r,r] € Nr} is an e-net in LP(R):
If = fillo = If = Fxi—rmllp + I1f = fillp + 1 fi = fixi—r,millp <€

“Only if” case: Let F be relatively compact. Then F is totally bounded. Given € > 0, choose an €/3-net
N ={f1,-,fx} of F in LP(R). For each f; € N, by [Example 1.48 Remark] there exists §; such that
lmnfi — fill, < €/3 for all |h| < 6;. Let 6 = minje(y.... xy d;. For any f € F, there exists f; € N such that

lmnf = fllp < llmaf = 7nfillp + Imnfi = fillp + 11.fi = fllp <€ VIA] <6 (iif)

To show equitightness (ii), choose r; such that f\z|>1"' |fi(x)[P dm(z) < 27PeP. Let r = max;eq1,... &} 74, then

1/17 1/1) 1/17
)P dm(x = z) — fi(2)|P dm(x ()P dm(z
</|x>rf( ) <>> (/zl>r|f() fi@)] <>> +</z|>r|f( )| <>>
1/p
< — Jillp i\T Pdm(x €.
<lIf = 1l +</M|f<>| <>) <

Thus we complete the proof. O

Remark. In fact, condition (i) in [Theorem 1.78|is not required. Conditions (ii) and (iii) sufficiently imply
relative compactness of F.
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2 Linear Functionals

2.1 Linear Operators and Linear Functionals
In this section we investigate linear operators and linear functionals on general vector spaces.

Definition 2.1 (Linear operators). Let X and Y be two real (or complex) vector spaces. Amap T : X =Y
is said to be a linear operator from X to Y if for all z,2’ € X and all a € R (or C), it holds

T(x+2)=Tz+ Tz and T(az)=a(Tx).

The space X is said to be the domain of T, which is also denoted by © (7). The image T(X) C Y is said to
be the range of T, denoted by R(T). The subspace T=1({0}) = {z € X : T(x) = 0} is said to be the kernel
(or the null space) of T, denoted by ker T

Example 2.2. Following are some examples of linear operators.
(i) (Matrices). Let {e1, - ,e,} be a basis of R, and let {f1,---, fin} be a basis of R™. Consider the

operator A : R” — R™ corresponding to a m x n matrix (a;;),
n n
‘r:ijej = y:Am:Zylfh xlv"’,wnaylv"‘vyméR,

where y; = Z] 1a;jx;. Then A is a linear operator. With the bases {e1,---,e,} and {f1, -+, fm}

chosen, A is uniquely determined by matrix (a;;). Hence we also write A = (a;;).

(i) (Differentiation). Consider the differentiation operator D : C'([a,b]) — C([a,b]):

Df(x):%f(x): limw € [a,b].

h—0 h ’

This is a linear operator on C([a, b]).

(iii) (Fredholm integral operator). T : L?([a,b]) — L?([a, b]),

/Kafy y) dy,

where K is a continuous function on rectangle [a,b] X [a, b].

Theorem 2.3. Let (X, -||) and (Y, - ||) be normed spaces. Let T': X — Y be a linear operator. The
following are equivalent:
(i) T is a continuous operator; (ii) T is continuous at 0;
(iii) T is bounded, i.e. there exists M > 0 such that | Tz| < M||z| for all z € X.
Proof. (i) = (ii): Clearly.
(ii) = (iii): By assumption, there exists § > 0 such that ||Tz| < 1 for all ||z|| < é. Then for all z € X\{0},

irel = [Z (555 < S 2

Clearly, is true for x = 0. Setting M = 26! complete the proof.
(iii) = (i): For z,2’ € X, we have ||Tz — T2'|| < M||x — 2'||. Hence T is continuous at each z € X. O
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Remark. By we know that a linear operator is bounded if and only if it is continuous. Here
we present an example of unbounded linear operators. Consider T : C*([0,1]) — R,

T = )

—1
=3

We define sequence f,,(z) = 1sin(2n7z), then Tf, = f,(1/2) = (—=1)"2x. While f, — 0 relative to the
supremum norm || - ||, the image sequence T'f,, diverges.

Definition 2.4 (Operator norm). Let T' be a bounded operator from normed space X into normed space
Y. The norm of T is defined as

T
7] = sup 1221
20 12|

Clearly, [|Tz|| < ||T |||l for all bounded operators T" and all € X. Furthermore, by linearity of T', we have

IT|| = sup [|Tz|| = sup |[Tz| = sup |Tz].
lel=1 lzll<1 [EIS!

The last equality holds because ||Tz| = supgcq<i || ()| when we fix ||z|| = 1.
Example 2.5. Consider operator T on L*([a, b]):
@@ = [ s,

(i) If T is viewed as L'([a,b]) — C([a,b]), then ||T| = 1;
(i) If T is viewed as L'([a,b]) — L*([a,b]), then | T|| = b — a.

Proof. (i) By definition,

1T fl oo
Tl = .
17 rerr(ap\for £l
For any f € L'([a,b]) with f # 0,
Y o (L L

= Ssup ~ p =
IFIh wetad) [21f()dt ~ welat] [0 |f()|dt

If f is nonnegative on [a, b], the equality holds. Hence | T|| = 1.
(ii) By definition,

IT 1l
fert(as)\{oy Il

[

For any f € L'([a,b]) with f # 0,

127y _ Jo LS f@Odt[de _ [} @] dede ) [, 1f(@)]dtde
1f1lx T I e VO | A M K

Hence |T|| <b—a.
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For the other side, define f,, = nX[q,a4n-1(s—a)], Which is supported on closed interval [a, a + n=1(b— a)].
Then

+n" ! (b—a) o1 9
T falls _ Ja (x—a)dr + *=(b—a) 11
= = = g —(1->4-—)(b-a), neN.
L TAT - Ly L) e-a) vne
Let n — oo, we have ||T|| > b — a. O

Example 2.6. Let g € L*°([a,b]). Define T : L([a,b]) — L([a,b]) as

(Tf)(z) = f(z)g(z), x € [a,b].
Then we have

1Tl .
fert(as\{oy Il

1Tl =

For any f € L'([a,b]), we have

ITfx _ Jo 1 (@)g(e) da
1f1lx J21f ()| da

< [lglloo-

Hence ||T|| < ||g|loo- Furthermore, we define E,, = {x € X : g(x) > ||g||lcc — 1/n}. By definition of essential
supremuml || - |0, m(Ey) # 0 for all n € N. Then

ITxz. |l < (lgllee = n~")m(En)

1T = >
IxE. |l m(Ey)

1
=|gloc — =, Yn € N.
n
Let n — oo, then ||T]| > ||g]lco. Therefore | T|| = ||g]|oo-
Now we investigate the kernel of bounded linear operators.

Proposition 2.7. Let X and Y be normed spaces. Let T': X — Y be a bounded linear operator. Then
ker T is closed in X. The operator T : X/kerT — R(T), [z] — Tz, which is induced by T, is a bijection.
Furthermore, |T|| = ||T.

Proof. Note that {0} is closed in Y, and T': X — Y is continuous, the kernel
ker T = T~'({0})

is closed in X by continuity. To verify that T is a bijection from X/ker T, note that ker T = {[0]}, and that
for any y € R(T), there exists € X such that Tz = y, which implies T([z]) = y. Finally, we determine the
norm of 7. Without loss of generality, assume ker 7' # X. Since the quotient map 7 : X — X /ker T,z — [x]
projects unit ball {z € X : ||z|| < 1} onto {[z] : z € X, ||[z]|| < 1}, we have

1Tl = sup | T(fz])| = sup |Tz| =|T]|,
lizlli<1 Jall <1

which completes the proof. O
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Definition 2.8 (Spaces of bounded linear operators). Let X and Y be normed spaces. Define
B(X,Y)={T: T is a bounded linear operator from X into Y'}.
And we define addition and scalar multiplication on B(X,Y") by

(S+T)(z)=Sx+Tz, S,T € B(X,Y)
(aT)(z) = aTz, T € B(X,Y), «is a number.

Then
T
IT|| =0= sup IT=] =0 = Tr=0forallze X = T=0;
w0 ]|
15 + Tzl < 1Szl + [ Txl| < (SI + [ITIDllx]l = S+ T € BX,Y), [|S+TI < [S[I+ IT1;
T T T

sup [(eT)a] = sup ol Tw] = |a| sup IT=] = aT € BX,Y), ||aT|| = |of || T -

a0 |z ar0 |l a0 ||
Hence (B(X,Y), | - ||) is a normed space, where || - || is the operator norm.

We introduce another normed space Z, and define the multiplication operation by composition:
(SoT)(x)=5S(Tz), SeB(Y,Z), TeB(X,Y).
Then we have
[(SeoT) (@)l < IS Tl < ISINT] =], V= € X.

As aresult, SoT € B(X,Z), and ||SoT| < |IS| I
Specifically, we write B(X) = B(X, X). By the above discussion, B(X) forms an algebra, given the above

multiplication.
Lemma 2.9. Let X and Y be normed spaces. If Y is a Banach space, so is B(X,Y).
Proof. Let (T,) be a Cauchy sequence in B(X,Y). For each z € X,

[Tna — T < (1T — Tonl| ]| -

Then (T,,z) is a Cauchy sequence in Y, which converges to some point of Y, denoted by Tz. Hence we obtain

an operator T : X — Y to which T,, converges pointwise.

The linearity of T follows from T;,:

1T+ Ty~ T( + )| = | Jim (Taz + Ty - Tule + )| =0,

JoTe — T(az)] = |

lim (o1, — Tn(aaj))H =0.

n—oo

Choose N such that ||T;, — Ty, || < 1 for all n,m > N. Then for all z € X and all n € N,
[Tn|| < ([Tl [l]| < max{[[Ty],- -, [ Tn—all, [Tl + 1} |-

Hence ||Tz| < max {||T1|], -, |[Tn-1l, [|Tn] + 1} ||z|| for all z € X, and T € B(X,Y).
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It remains to show that ||T,, — T'|| — 0. Given € > 0, choose N, such that ||T,, — Ty, || < € for all n,m > N..
Then for all n > N,

[(Tn = T)all = lim [[(Ton — To)xf| < lim [T = Tl ||z]| < ellxll, Vo € X = [|Tn =T < ellz].
m— o0 m—0o0
Hence T,, converges to T relative to operator norm. [

Remark. In we do not require the completeness of domain X.

Let X be a vector space over field F. Then a linear operator f : X — F is said to be a linear functional on
X. The space of bounded linear functionals B(X,F) is said to be the dual space of X, denoted by X*.

Lemma 2.10. Let X and Y be two finite-dimensional normed spaces over R (or C). Then any linear operator
T:X — Y is bounded.

Proof. Use matrix representation of linear operators and equivalence of norms in finite-dimensional spaces. [

Theorem 2.11. Let X be a normed space. A linear operator f: X — Y is bounded if and only if its kernel
ker f is closed.

Proof. Following [Proposition 2.7] it remains to show sufficiency. Assume ker f is a closed subspace of X.
According to the quotient space

X/ ker f = {[a] = {x +y,y € ker £}}
has an immediate induced norm

=d(z,ker f) = inf |z —y, 2 € X.
el = d(aker f) = inf iz =y, =

We define f : X/ker f — R (or C), [z] — f(z). Since dim(X/ker f) = dim9R(f) < 1, by [Lemma 2.10] £ is

bounded. Furthermore, f is the composition
reX 5 [r]€ X/ker f EN f(z).
Then for all x € X,

[F @) < |F | Iw (@)1 < || £]] =]

Hence f is bounded. O

Remark. Let X be a normed space over R (or C). By |[Definition 2.8| the dual space X* is a vector space
equipped with a natural norm

11 = sup L@ 5 ¢ xo.
w20 |zl

Furthermore, X* is a Banach space by even though X is not complete.
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2.1.1 Riesz Representation Theorem

Now we discuss linear functionals on Hilbert spaces. We first introduce the definition of isomorphism, which

allows us to connect an abstract normed space to a specific one.

Definition 2.12 (Isomorphism). Let X and Y be normed spaces, and U is an operator from X into Y.
(i) If ||Uz|| = ||z|| for all z € X, then U is said to be a norm-preserving operator.
(ii) If U : X — Y is linear, norm-preserving and surjective, then U is said to be an isomorphism. If there

exists an isomorphism between X and Y, we say X and Y are isomorphic, and we write X =Y.

Remark. Isomorphism is an important tool when we investigate dual spaces. The dual space X*, which
consists of bounded linear functionals on a normed space X, can be intractable. Hopefully, we can find a
specific normed space Y that is isomorphic to X*. Then every bounded linear functional on X is uniquely

determined by some element y of Y.

Revisit: Let H be a Hilbert space, and let M be a closed subspace of H. Then the quotient
space H/M is isomorphic to the orthogonal complement M=.

Proof. For each x € X, by |[Theorem 1.37] there exists unique zg € M and x; € M+ such that z = z¢ + z1.
Then we can define U : X — M by U(z) = x;. Furthermore, for all y € M, we have z +y = (xo + y) + 21,
where 29 +y € M and x; € M+, which implies U(z + y) = z1. As a result, the induced operator

U:X/M— M, [2] = U(z)
is well-defined. Clearly, U is a linear operator, and U is norm-preserving;:

[Tt = Nzl = Jrll = inf s~y = inf fos + 20—yl = 2]

Furthermore, for any z; € M=+, ﬁ([wl}) =U(x1) = z1. Hence U is surjective. As a result, U is an isomorphism,
and H/M = M*. O

Review. Consider the finite-dimensional euclidean space R™ equipped with the standard inner product. We

choose an orthonormal basis {e, - ,e,} of R™. Then for every linear functional f on R", we have
fly=f Z(m,q)ej :Z@mej)f(ej), Ve € R™.
j=1 j=1

It is seen that f is uniquely determined by tuple (f(z1),- -, f(z,)) € R™. Similarly, every tuple (f1, -+, fn) €
R™ induces a linear functional f(x) = Z?Zl fj (x,e;). Furthermore,

el S|
Ll PR B N TIE

~

Hence we have (R™)* = R™, which is a standard conclusion in linear algebra.

For general Hilbert spaces, we have the following important theorem.
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Theorem 2.13 (Riesz representation theorem). Let H be a Hilbert space. Let F' € H*, i.e. F' is a bounded
linear functional on H. Then there exists uniquely y € H such that F'(z) = (z,y) for allz € X, and || F|| = ||y]|.

Proof. If F = 0, then y = 0. We assume F # 0. Then ker F' is a closed subspace of H, and there exists
z ¢ ker I such that z L ker F. We set zg = 2/F(z) € H, then zy L ker F', and F'(z) = 1.

For each x € H, we have

F(z — F(x)z9) = F(z) — F(2)F(z) = 0.

Hence we have x — F(z)zg € ker F', and (x, z9) = F(z) (20, 20). Setting y = Toooy Yields the desired result.
Uniqueness is clear, and || F|| = ||y]| O
Remark. By we have H* = H. Then every bounded linear functional F' on H corresponds

to a unique vector y € H, and we can write F' as F,, = (-, y).

Definition 2.14 (Sesquilinear forms). Let X be a complex vector space. Let ¢ : X x X — C.
(i) If for all x,y,z € H and all o, 8 € C,

plax + By, z) = ap(x, z) + Be(y, 2),

o(z, am + By) = ap(z, ) + Bo(2,y),
then ¢ is said to be a sesquilinear form on X. If there exists M > 0 such that
lo(z, y)l < M |[z]| ||yl , Yo,y € X,

then ¢ is said to be a bounded sesquilinear form on X, and we define norm of ¢ by

lell = sup  |o(z,y)l.
llzl|=[lyll=1

(ii) If ¢ is a sesquilinear functional on X and ¢(x,y) = ¢(y,z) for all z,y € X, then ¢ is said to be a

Hermitian form on X.

Remark. Let T be a bounded linear operator on a Hilbert space H. Clearly, the map p(z,y) := (Tx,y)

induced by T is a sesquilinear form on H. Moreover,

o(@,y)| = (Tz,y) < || Tl [yl < [Tl vl ve.y € H = [loll < |T],

IT|| = sup [Tzl = sup [(Tz,y)l= sup |p(z,y)| = ¢l =T
llzll=1 lzll=lyll=1 lzll=lyll=1
Therefore ||| = ||T'||. Furthermore, every bounded sesquilinear form on H uniquely determines a bounded

linear operator T' on H, as stated below.

Theorem 2.15 (Riesz). Let H be a Hilbert space, and let ¢ be a bounded sesquilinear form on H. Then
there exists uniquely 7' € B(H) such that ¢(z,y) = (Tz,y) for all z,y € H, and |T|| = ||¢|

Proof. Fix € H. By definition of bounded sesquilinear form, ¢,(-) = ¢(z,) is a bounded linear functional
on H, with |¢z]] < |l¢lllz]]. By Riesz representation theorem (Theorem 2.13), there exists z € H such that

o(r,y) = v (y) = (Y, 2) = (2,9), Yy € H,
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and ||z]] = |lezll < ||l |z]]. We denote by Tz = z the uniquely determined Riesz vector of ¢,. Then T is an
operator on X. Clearly, T is linear, and ||T']| < ||¢||. O

Lemma 2.16. Let H be a complex Hilbert space, and let ¢ be a bounded sesquilinear form on H.
(i) ¢ is Hermitian if and only if p(x,x) € R for all x € H;
(i) If ¢ is Hermitian, and there exists M > 0 such that |o(z,2)| < M|z||? for all x € H, then ¢ is bounded,
and ||| < M.

Proof. (i) The necessity is clear. To show sufficiency, use the polarization identity:

Zikga (a:—i—iky,x—i—iky), Va,y € H.

Then we can verify that ¢(x,y) = ¢(y, x).

(ii) Assume @(x,y) #0. Let A = \igi’zgl’ then p(A\z,y) € R, and

1 =

lo(z,y)| = p(Ar,y) = — [p(z +y, 2 +y) — p(z —y, 2 — y)]

M
< [le+yl*+ e = yll?]
M
= 2 (el + 1)
Whenever ||z|| = ||y|| = 1, we have |p(z,y)| < M. Hence ¢ is bounded, and ||¢|| < M. O

Remark. Let H be a complex Hilbert space. A linear operator 7' : X — X is said to be an Hermitian

operator if (Tz,z) € R for all z € H. By [Theorem 2.15| every bounded Hermitian form on H is uniquely
induced by a bounded Hermitian operator T € B(H). Furthermore,

1T = sup [(T'z,z)|.

llzll=1
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2.2 Hahn-Banach Theorem

Definition 2.17 (Linear extension). Let L be a real vector space, and let Ly be a subspace of L. Given a
linear functional fy on Lo, a linear functional f : L — R, is said to be a (linear) extension of fo, if f|r, = fo,
ie. f(z) = fo(zx) for all x € L.

Remark. Let {by,A € Ao} be a Hamel basis of Ly, we can expand it to a Hamel basis {bx, A € A} on L,
where Ag C A. Given a linear functional fy : Ly — R, we maintain f(by) = fo(bx) for all A € Ap, and set
f(bx) =0 for A ¢ Ag. Then we obtain a trivial extension of fy on L.

Definition 2.18 (Sublinear functional). Let L be a real vector space. A function p: L — R is said to be a

sublinear functional on L, if
p(x+y) <p(x)+p(y), Yo,y € Li p(Ax) = Ap(z), Vo € L, A>0.
Theorem 2.19 (Hahn-Banach, real version). Let p be a sublinear functional on a real vector space L. Let

Lo C L be a subspace. Suppose fy is a linear functional on Lg that is subject to p, i.e. fo(x) < p(z) for all
x € Ly. Then there exists an extension f : L — R of fy that is subject to p.

Proof. Step I: Suppose Lo # L, and choose z € L\Ly. We claim that fy can be extended to a linear functional
f1 on space Ly = span{Lg, z} such that f; is subject to p.
For any tz +x € Ly, where t € R and x € Ly, if f; is an extension of fy, then

filtz+x) =tf1(z) + folx).
We need to determine f1(2), denoted by ¢. To ensure that f is subject to p, we require

filtz + ) =tc+ folx) <p(tz+z), Yo € Lo,t € R.

If t > 0, then
te+ fo(x) <p(tz+z), Vo € Lo, t >0 & cSp(z—F%) — fo (%), Vo € Lg,t >0
& c<plz+y) - foly), Yy € Lo. (2.2)
If t <0, then
te+ fo(x) < ptz+x), Vo € Lo, t <0 < cZ—p(—z—%) —fo (%), Vo € Log,t <0
& c>—p(—2—y")— foly"), Vy" € Lo. (2:3)

By and |(2.3)] to choose an appropriate ¢, it suffices to show

sup —p(—z—y") = fo(y") < inf p(z+y') — fo(y)- (2.4)
y'"€Lg y’ €Ly

For any 3/, 3" € Lo, we have y' —y” € Ly. Then
p(z+y') = foly) + (=2 —y") + foy") 2 p(y' —y") — foly' —y") > 0,

which implies[(2.4)] Then we choose an appropriate ¢ and set f1(z) = c.
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Step II: Use Zorn’s lemma. Let S be the set of all extensions of fy:
H ={(f,Y): Lo CY C L is asubspace of L; f is a linear functional on Y such that f|r, = fo,f <p}

We define a partial order on J#: (f1,Y1) < (f2,Y2) if Y1 C Ys and foly, = f1. Let C = {(fr,Yy), A € A}
be a chain in 7, and let Y = U/\GA Y. Then Y is a subspace of L: for any x1, 25 € Y, there exists A\;, Ao € A
such that x; € Yy, and 2 € Y),. Furthermore, one of Y),, Y,, contains the other because C' is a chain, then
both z; and x4 belong to Y),, without loss of generality. Hence axy + Sx2 € Yy, C Y for o, 5 € R.

For any x € Y, there exists A € A such that € Y). Then we define f(x) = fi(x). Note that f(z) is
well-defined: if x belongs both Yy, NY),, fi, and fy, will agree on z, since C' is a chain. Similar arguments
also show that f is linear, subjected to p, and that it is an extension of fy for all A € A. Then we obtain an
upper bound (f,Y) of C in 4, and we can apply Zorn’s lemma.

Now . has a maximal element (f,Y). It remains to show Y = L; suppose not. By Step I, there exists
subspace Y1 2 Y, and f can be extended to f; : Y7 — R, contradicting the maximality of (f,Y)! O

The following theorem is a corollary of

Theorem 2.20 (Hahn-Banach, real version). Let Ly be a subspace of a real normed space L. If fj is a
bounded linear functional on Lg, then there exists an extension f : L — R of fy such that || f]| = || foll-

Proof. Let p(z) = || fol| ||| for all x € L, p is a sublinear functional to which f; is subject. By [Theorem 2.19
there exists an extension f : L — R of fy with f < p. Then

S@l g B@I L)

sein(o} 1Tl T aerovfoy 1zl zerovfor
=lfoll lz]| = =p(=2) < |f(z)| < p(z) = | foll |=||, Yo € L = [If[| <Ifoll-

£l =

= [ foll;

Hence ||| = || fol|- O
Now we consider the complex case. Let X be a complex vector space, and let f be a complex linear
functional on X. For each = € X, f(x) = Ref(z) + iIlmf(z). We denote fr = Ref, fr = Imf.
If f is C-linear, then for all x,y € X and all o, 8 € R,

fr(x+y) = fr(x) + fr(), frlz+y) = frz)+ fi(y),

fr((a+iB)z) = afr(z) — Bfi(z),

fr((a+iB)z) = Bfr(z) + afi(z).
Hence the following are equivalent: (i) f = fr+ifs is C-linear; (ii) fr and f; are R-linear, and fr(iz) = —f;(2)
for all x € X; (iii) fr and fr are R-linear, and fr(z) = fr(iz) for all z € X.

By (ii), f is uniquely determined by its real part fr: f(z) = fr(z) —ifr(iz). By (iii), f is uniquely
determined by its imaginary part fr: f(z) = fr(iz) + if;(z).

Theorem 2.21 (Hahn-Banach, complex version). Let Ly be a subspace of a complex vector space L. Let

p be a seminorm on L. Suppose fp is a linear functional on Lo such that |fo(z)| < p(x) for all € Ly. Then
there exists a linear functional f : L — R such that f|., = fo and |f(z)| < p(x) for all x € L.
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Proof. We first view L and Ly as R-vector spaces, denoted by Lg and Lgg, respectively. Then p is a sublinear
functional on Lgg, and for = Refy satisfies

for(z) < |fo(z)| < p(x), Yo € Log.

By [Theorem 2.19] there exists R-linear functional fr : Lg — R such that fr|r,, = for, and fr(z) < p(z)
for all z € Lg. Let f(x) = fr(x) —ifr(iz) for all € Lg. Then f is C-linear on L, and f extends fo.

For any = € L, denote 6 = Arg f(z). Then
[f(@)] = e f(z) = f(e™2) = fr(e™z) <p(e™x) < |e7|p(x) = p(x).

———
€R

Thus we complete the proof. O

Now we introduce some useful corollaries of Hahn-Banach theorem.

Corollary 2.22. Let X be a normed space.
(i) For each zg € X\{0}, there exists f € X* such that || f|| =1 and f(zo) = ||zo]-
(ii) For each x1,x9 € X such that x # x, there exists f € X* such that f(z1) # f(x2).
(iii) For all x € X,
lzll = max _ 1f(@)]
Proof. (i) Consider the subspace Y = span{z¢} = Czg = {az( : « € C}. Define fy: Y — C, azg — «f|xo|.
Then ||fo|| = 1. By Hahn-Banach theorem, there exists an extension f € X* such that ||f|| = ||fo]| = 1, and
fly = fo. Hence f(zo) = ||zol|.
(ii) Apply (i) to z¢g = z1 — 2.
(iii) Clearly, for all f € X* such that || f|| = 1, we have |f(z)| < ||z||. By (i), there exists f € X* such that
1l = 1 and [£(2)] = [l2] 0

Corollary 2.23. Let M be a closed subspace of a normed space X. For all x € X\ M, there exists f € X*
such that ||f|| =1, f(M) = {0}, and f(x) = d(z, M).

Proof. Let Xog = span{M,x}. For any y = m + Az € X, where m € M and A € R (or C), define
fo: Xo—= R (or C), m+ Az — Ad(z, M).

Then fj is a linear functional on Xg, and

ol = sup Wd@M) _ - d@ M) | deM)

mire0 M+ Azl pven lm' + x| infpren |m/ + 2|

By Hahn-Banach theorem, there exists an extension f of fy on X such that ||f|| = ||foll = 1, f(M) = {0},
and f(x) = d(x, M). Note that we require M to be closed. Otherwise, let = be a limit point of M not lying
in M. Then d(xz, M) =0, and fo =0 on Xj. O

Corollary 2.24. Let M be a subset of a normed space X. Let x € X. Then = € span(M) if and only if
f(z) =0 for all f € X* such that f(M) = {0}.
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Proof. “=7: Clearly. “<”: Argue by contradiction. By [Corollary 2.23| if = ¢ span(M), there exists f € X*
such that f(x) = d(z,span(M)) > 0 and f(M) = {0}. O

Now we introduce the generalization of orthogonal complements in Banach spaces.

Definition 2.25 (Annihilators and pre-annihilators). Let X be a normed space.
(i) For a subset M C X, the annihilator of M is defined as

M+ ={feX*: f(x)=0, Yo € M}.

(ii) For a subset N C X*, the pre-annihilator of N is defined as
IN={zeX:f(x)=0, Vf € N}.
Clearly, M~ is a closed subspace of X*, and + N is a closed subspace of X.

Remark. By definition, Ml C M. For each x € M, there exists sequences (x,) of points of M such that
r, — . If f € M+, by continuity of f, we have f(z) = lim, o0 f(z,) = 0. Hence M- =Mt

Similarly, for every f € N, there exists sequences (f,) of points of N such that f, — f, which implies
folz) = f(x) forallz € X. If z € * N, then f(x) = 0. Hence *N = +N.

Theorem 2.26. Let M be a closed subspace of a normed space X.

(i) For all m* € M*, there exists a norm-preserving extension z* of M* on X. We define

where [2*] is the equivalence class of z* in quotient space X*/M~. Then map o : M* — X*/M* is a
well-defined norm-preserving isomorphism.
(ii) Let 7 : X — X/M, x > [z] be the quotient map. For all f € (X/M)*, define

T(f)=fom
Then 7 : (X/M)* — M+~ is a norm-preserving isomorphism.
Proof. (i) We first check that the map o is well-defined. Let z*,y* € X* be two extensions of m* on X. Then
z*m = y*m = m*m for all m € M, and z* — y* € M*. Hence [z*] = [y*] in X/M*.
Clearly, o is linear: if z}, 23 € X* are extensions of mj, mj € M*, respectively, then ax} + Sz} is an
extension of amj + fmj. Also, o is norm-preserving: ||o(m*)|| = ||[z*]|| < ||=*|] = ||m*||, and
Yl =m*, Vy* €[] = |yl = [Im*[l, vy* € [z7] = [ll2"]l| = nf{[ly"[| : v € [z"]} = [[m7].
For any [z*] € X*/M™, o(x*|p) = [z*], which implies o is surjective. As a result, o : M* — X*/M* is a
norm-preserving isomorphism, and M* = X*/M*.
(ii) Clearly, 7 is linear. To show that 7 is norm-preserving, note that for all f € (X/M)*,

) gy F) f(l=]) sup 1D

vexwr Il sexaryen Wl wexiar infye lyll wexvar Nl

(NIl = = |If1I-

Finally, for each g € ML, we define §: X/M — R, [z] = g(z). Then g = jom = 7(g), and 7 is surjective.
Therefore, 7 : (X/M)* — M~ is a norm-preserving isomorphism, and (X/M)* = M+. O
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Finally, we present an interesting application of Hahn-Banach theorem.

Example 2.27. We wish to find a finitely additive translation-invariant probability measure p on R, such
that p is defined on all subsets of R, and

wla+ A)=pu(A) forall ACR and all « € R, where a+ A={zx+a:z € A}.

Let B(R) be the set of all bounded R-valued functions on R, and define ||f|l«c = sup,cg |f(z)| for all
f € B(R). Clearly, | - ||oo is @ norm on B(R), and (B(R), || - |le) is a Banach space.

Claim. We define p: B(R) — R as follows: for all f € B(R),

p(f) = inf {N(f;ah---,an) :ZSUPlzf(erak)}.
k=1

neN,ay, -+ ,a, €R secR M

Then p is a sublinear functional on R.

Proof. Clearly, for all A > 0, p(Af) = Ap(f). For all f,g € B(R) and alln € N, ay,--- , 0, € R,

n

N(f+g,0é1, 7O[n):SU.pl [f(8+0ék)+g(5+ak):| SN(f,ala 7Otn)+N(g;Oé]_7"' ,Oén)~

Hence p(f + g) < p(f) + p(g). -

Theorem. There exists a linear functional v : B(R) — R such that (i) »(1) = 1, and (ii) v(7f) = v(f) for
all & € R, where 7, is the translation operator (7,f)(z) = f(x — «).

Proof. We first consider the linear functional vp(al) = « on subspace R - 1, which satisfies vy = p. By

Hahn-Banach theorem, there exists linear functional v on B(R) extending vy, with v < p.

For all « € R and n € N, we have

praf — ) < N(raf — fro- na) = sup~ [f(s) — F(s +na)] < = flle.
sER n n

Let n — oo, then p(7of — f) <0, and v(7of — f) < 0. Analogously, v(f — 7o.f) < p(f — 7o f) < 0. Therefore
v(1of) = v(f) for all @ € R, completing the proof. O

For any A € R, we define u(A) = v(xa). Then p is the desired probability measure on R.
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2.3 Hyperplane Separation Theorem

Definition 2.28 (Hyperplane). Let f be a nonzero linear functional on a vector space X. Let ¢ be a

constant. The set
Me ={f(z)=c}={r e X: f(z) =c}
is said to be a hyperplane in X.

Definition 2.29 (Separation). Suppose X is a real vector space, M and N are subsets of X, and f is a
linear functional on X.
(i) If there exists ¢ € R such that f(z) > ¢ for all z € M, and f(y) < c for all y € N, then f is said to
separate M and N. In other words, sup,c y f(y) < infzenr f().
(ii) If sup,en f(y) < infien f(z), then f is said to strictly separate M and N.

Remark. By definition, the following are equivalent:
(i) f separates M and N;
(ii) f separates M — N and {0}, where M — N :={zx—y:x € M, y € N};
(iii) f separates M —x and N —z for all z € X, where M —x ={y —z:y € M}.
Lemma 2.30. Let M be a convex set in a normed space X. Then for allx € M, all y € M, and all ¢t € (0,1),
(1—t)z+ty e M.
Proof. Let 2 € M and y € M. Then there exists ¢ > 0 such that O(y,e) C M. Let 0 < ¢t < 1. Then

O((1—-t)x+ty,te) ={(1 —t)z+tz:2€ O(y,e)} C M.
Hence (1 — )z + ty € M. O
Now we introduce Minkowski functional theory, which connects convexity to seminorm.
Proposition 2.31. Let p be a seminorm on a vector space X. Then for all ¢ > 0, the set
M={ze X :p(x) <c}

satisfies the following: (i) 0 € M; (ii) M is convex; (iii) M is balanced: aM C M for all |a| = 1; (iv) M is

absorbing: for all € X, there exists a > 0 such that € aM; (v) The seminorm p can be recovered by

= inf .
p(x) a>0?rxl€aM ca

Proof. The properties (i), (ii), (iii) and (iv) are clear. It remains to prove (iv). For all z € X

reaM & plalz)<c & pa)<ca = p)<  inf ca

a>0,zcaM
Conversely, if p(z) # 0, then pfz) € M. Set o = @, then p(z) = ca, and
P = g
If p(z) =0, then x € aM for all @ > 0, and inf,~¢ ca = 0. O
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Let M be an absorbing convex set in vector space X. By definition, for all x € X, there exists a > 0 such
that x € aM. Hence 0 € M, and M is star-shaped: whenever x € M, we have tx € M for all t € [0,1]. As a
result, if z € aM for z € X and o > 0, then x € SM for all 5 > «.

Lemma 2.32 (Minkowski functionals). Let M be an absorbing convex subset of a vector space X. For each
r € X, define

= inf .
pM(I) a>0}2€aMa

Then ppr : X — Ry is called the Minkowski functional of M. It satisfies the following:
(i) pa is a sublinear functional on X;

(ii) If M is balanced, then pjs is a seminorm on X.

Proof. (i) Clearly, 0 € M, and py(Az) = Apas(z) for all A > 0. It remains to verify subadditivity.
For all z,y € X and all € > 0, by definition,

i e M, J e M.
p(z) +€ p(y) +e
Note that M is convex, we have
z+y __ pl)te =@ ply) € y

e M.

P@) T W) T2 @) +pW) T2 pl@) te  p@) +p@) T2 p) T e

Therefore p(x) + p(y) + 2¢ > p(x + y). Since € > 0 is arbitrary, the subadditivity of p follows.
(ii) Tt remains to show homogeneity. When A # 0,

pvu(Az) =inf{a:a >0, x € aM} =inf{a:a >0 "z M}
inf {a:a>0,[Na 'z € M}
[Minf{a:a >0,z € aM} = |Apm(z).

The third equality holds because M is balanced, which implies Aa~tx € M if and only if |\|ax € M. O
Lemma 2.33. Let X be a vector space, and let M be an absorbing convex subset of X. Then
{reX:pu@)<l}cMc{ze X py(z) <1}

Proof. For the first inclusion, let = be a point of X such that pys(x) < 1. Then there exists « € (0,1) such
that o' € M. Since M is star-shaped, z € M.
For the second inclusion, we have pys(z) =inf{a: a > 0,2 € aM} <1 for all x € M. O

Remark. Let X be a vector space. We consider the sets

P={p:pisaseminormon X} and #Z ={M C X: M is a balanced absorbing convex set in X}.

By [Proposition 2.31| and [Lemma 2.32| we define maps

P M, p—={reX plx)<l} and V:.# — P, M py,

where pys is the Minkowski functional of M. By [Proposition 2.31 (v), we have ¥ o ®(p) = p for all p € P.
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However, the equality ® o ¥(M) = M does not hold for all M € .#. To see a counterexample, let X be
the Euclidean space R™, and let M be the unit open ball {z € X : ||z|l2 < 1}. Then

pM(il?) - a>0}2£aMa - HxHZ’

and o ¥ (M) = {x € X : ||z|]2 < 1} is the unit closed ball. By [Lemma 2.33| when p,; is given, we can only
determine M between a lower bound {pps(x) < 1} and an upper bound {pas(z) < 1}.

Lemma 2.34. Let M be an absorbing convex set in a vector space X. Let x € X. The following are
equivalent: (i) par(z) < 1; (i) For all y € X, there exists €, > 0 such that z + ty € M for all |t| < €,.

Proof. (i) = (ii): By definition, for every y € X, there exists A, > 0 such that A;ly € M and —)\y_ly e M.
Since pps(x) < 1, there exists 0 < o < 1 such that a~'z € M. Then

z+(1foz)/\;1y€M, z—(1—a)r, 'y e M.

Note that = € M, we have x4ty € M for all [t| < e, := (1 —a)X\;".

(ii) = (i): We prove the contrapositive. Assume that pps(z) > 1, then =tz ¢ M for all 0 < o < 1.
Therefore, x + ex ¢ M for all € > 0, contradicting (ii). O

The following criterion to determine continuity of a Minkowski functional is useful.

Lemma 2.35. Let M be an absorbing convex set in a normed space X. The Minkowski functional p,; is

continuous if and only if 0 € M.

Proof. “=": By continuity, {par(r) < 1} = p;; ((—00,1)) is an open set containing 0 and contained in M.
“<”: Let O(0,9) be an open ball contained in M. Then p(z) < 1 for all ||z|| < §. Let o € X and € > 0

be given. For all z € O(xq, de/2), since p is a sublinear functional, we have
€
pv(x) — par (o) < pur(e — wg) < B) <e.
A similar statement holds for pys(xg) — par(x). Since zg is arbitrary, pas(x) is continuous on X. O

Lemma 2.36. Let M be an absorbing convex set in a normed space X such that 0 € M, and let y € X. If
pu(y) <1, then y € M. (Contrapositive: If y ¢ M, then pas(y) = 1.)

Proof. If ppr(y) < 1, then there exists A > 1 such that Ay € M. Since 0 € J\Zf, by [Lemma 2.30, y € M. O

Remark. By |[Lemma 2.33|and [Lemma 2.36} if y € M, where 9M = M N (X\M) is the frontier M of an
absorbing convex set M, then pys(y) = 1.

Now we discuss the separation of convex sets.

Lemma 2.37 (Separation of a convex set and a one-point set). Let A be a convex subset of a real normed
space X such that A # (0. Let yo ¢ A. Then there exists nonzero f € X* that separates A and {yo}

Proof. If a € /i, we separate A — a and {yo — a}. Without loss of generality, we suppose 0 € A. Then there
exists open ball O(0,¢) C A, and A is absorbing. By [Lemma 2.35 the Minkowski functional p4 is a continuous
sublinear functional on X. By [Lemma 2.33| pa(x) <1 for all z € A. By [Lemma 2.36} pa(yo) > 1.
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Let Xo =span{yo} =R -yo. Then fy : tyo — tpa(yo) is a linear functional on X, that is subject to pa:

tpa(yo) =pa(tye), t >0; tpa(yo) <0 <pa(tyo), t <O.

By Hahn-Banach theorem, there exists an extension f on X such that f|x, = fo and f < ps. To show
that f € X™, note that the continuity of f follows from p4:

[f (@) = f@@)] = [f(z = 2')| < palz — ')

Furthermore, f separates A and {yo}: f(z) < pa(x) <1 forall z € A, and f(yo) = pa(yo) > 1. O

Remark. In[Lemma 2.37] if A is an open convex set, and yo ¢ A, then

f(z) <sup f(y) < f(yo), Va € A.
yeA

For the first equality, let O(x,€) be an open ball contained in A. Since f is nonzero, there exists f(z) > 0.
Then o + 572 € A, and f(z) < f (x—l— m)
Theorem 2.38 (Hyperplane separation theorem). Let M and N be convex sets in a real normed space X.

If M # 0, and M NN = (), then there exists nonzero f € X* that separates M and N.

Proof. By |[Lemma 2.30 M is also a convex set. Define

A=M-N = U(M—y):{x—y:mEM,yGN}.
yeN

Then A is an open and convex set in X, and 0 ¢ A. By [Lemma 2.37] there exists nonzero f € X* that
separates A and {0}. Then f* separates M and N: sup, ¢y f(7) <infyen f(y).

Given x € M, we fix some z € M. Then (1 — t)a 4tz € M for all t € (0,1). Since f is continuous,

f(2) = lim f((1—ta+tz) < sup f() < inf ().

t—0t zeM yeEN

Since x € M is arbitrary, f also separates M and N. O

Corollary 2.39 (Hyperplane separation theorem). Let M and N be disjoint closed convex sets in a normed
space X. Then there exists nonzero f € X* that strictly separates M and V.

Proof. Since M and N are closed disjoint sets, d(M, N) = inf e yen ||z — y|| > 0. Let

NZILGJNOGC’W) :{xeX:d(x,N)<d(Mg’m}.

Then N is an open set in X that is disjoint from M. Furthermore, for all x,y € ]\7, there exists z, € M and
zy € M such that ||z — z,|| < $d(M, N) and ||y — z,|| < 3d(M, N). For all t € (0,1),

1
d((1=te+ty,N) < (A=t +ty — (1 =)z —tzyll < (1 = Dllz — 2zl + tlly — 2|l < (M, N).

Hence N is convex.
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By |Theorem 2.38] there exists nonzero f € X* that separates M and N:

sup f(z) < B < inf f(y), BER.
zeM yeN

Let y € N and z € O(O,M)7 then y —z € N. Since f(y) = f(y — 2) + f(z) > B+ f(2) for all
z € O(O, d(Ag’N)), we have

fly) > B+ sup f(z):5+w

, Vy € N.
2€0(0,d(M,N)/3) 3

As a result, f strictly separates M and N. O

2.4 Dual Spaces
2.4.1 Dual Spaces of LP(X, </, ) and C([a,b])

Example 2.40. Let (X, ., ) be a measure space, and let 1 < p < co. Given g € LU(X, o/, i), where ¢
is the conjugate of p. (That is, p~t 4+ ¢ ' =11if p > 1, and ¢ = oo if p = 1.) We define a linear functional
T:LP(X,o, ) — R by

T(f) = /X Fgdp, Vf € LP(X, o ).

By Holder’s inequality, T'(f) < || f|lpllgllq, which implies the continuity of 7. Furthermore, ||T|| = | gl|4-

Naturally, we wonder if every continuous linear functional on L?(X, <7, u) admits this form. If so, we can
determine a unique function g € LY(X, o7, u) for each T € (LP(X, o7, u))*, and ||gllq = || T]|- As a result, we
have (LP(X, o, )" = LI(X, o, ).

Riesz Representation Theorem. Let (X, o/, ) be a o-finite measure space. Let 1 < p < oo, and let

g be the conjugate of p. Then for any bounded linear functional T' € (LP(X, 7, u))*, there exists a unique
g € LY(X, 7, ) such that

T(7) = [ fodu vf € (X5 p).

Immediately, we have (LP(X, o7, u))* =2 LY(X, o, 11).

Proof. Step I: We first suppose pu(X) < co. Then x4 € LP(X, o/, p), VA€ o, and v: o/ - R, A T(xa) is
well-defined. By continuity of T, v is a signed measure that is absolutely continuous with respect to p:

nw(A) =0 = 0< [v(A)]=[T(xa)l < 1T Ixall, =0
By Radon-Nikodym theorem, there exists g € L*(X, 7, 1) such that
T(xa)=v(4) = / 9dﬂz/ gxadu, VA€ o.
A X

As a result, for all simple functions ¢ on (X, <7, 1), we have

T(p) = /X g dp. (2.5)
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Step II: We prove that [(2.5)[ holds for all bounded measurable ¢ on (X, 7, u). Suppose |p| < M. Then
there exists a sequence of simple functions ¢, such that |¢,| < M and ¢, converges pointwise to ¢. By

Lebesgue dominated convergence theorem,
lim [l — @nlH = lim / lo — onlP du = / lim |¢ — ¢,|P du = 0.
Since T is continuous, and |gp,| < M|g|, which is integrable, we have

T'(p) = lim T(wn):nlgngo/)(gwndu:/)(gwdu-

n—oo

Step III: We prove that g € LY(X, 7, ). Suppose p > 1 and ¢ < oco. Define sequence

|g(2)|7 'sgn (g(x)), if [g(x)|? < n,

0, otherwise.

gn(.%‘) =

By |[(2.5)] we have

1/p 1/q
[ lanttdn = T02) < 171 anl,, < 17 ( / gnqdu> = ( / |gn|qdu) <.
X X X

Let n — oo, then we have g € LY(X, o, ), and ||g|lq < |T||-
Step IV: We show that S(f) := T(f) — [ fgdp =0 for all f € LP(X, o, ). By Hélder’s inequality, S is

a continuous linear functional on LP(X, <7, 1) that vanishes on all bounded measurable functions. Since any
f € LP(X, o/, u) can be approximated by its n-truncations [f], = min{n, max{—n, f}} in || - ||,, the result
follows. The uniqueness of g is clear.

Step V: Let (X, o, p) be o-finite. Write X = (J;2 | X, where p(X,) < oo for all n € N. By Steps
I-IV, we can find g, € LI(X, o/, 1), supported within X,,, such that T(f) = [y fgndp = an fogn du for all
feLlP(X, o, u), and ||gnl|ly < ||T]|. Since g,’s are unique, we assume that g,+1 = g, on X,,.

Let g(z) = limy 00 gn(z) for all z € X. Then |g,|  |g|- By monotone convergence theorem,

[ dgtrdn = i [ gl dn < 7.
X n—oo JXx

Hence g € LY(X, o/, ). For any f € LP(X, o, 1), fn = fxx, — f pointwise, and |f,g| < |fg|.- By Lebesgue

dominated convergence theorem,
[ tgdn=tim [ fugdu=lim [ fagudu= lim T(5) =700,
X n (oo} X n—r oo Xn n—oo
as desired. Note the last equality follows from continuity of 7' O

Remark I. If p =1 and ¢ = oo, we need to modify Step III. Argue by contradiction. If g ¢ L (X, <, u),
we have p(E.) > 0 for E. = {|g| > ||T|| + €} and all € > 0. Then

T(xs,) = /X oxe. du > p(E) (1T + ¢

Meanwhile, |T(xg.)

< Tl lx

1 = W(Ee) ||T||, a contradiction! Hence g € L>(X, o7, 1), and ||gloc < ||

61



Remark II. If p > 1, we can drop the requirement of o-finiteness. Let (X, .o, u) be any measure space, and
let E C X be o-finite. Then there exists a unique gg € L4(X, &7, 1), vanishing outside E, such that

:/ fgrdp, Vf € LP(X, o7, n) vanishing outside E, and ||ggllq < || T
b's

By uniqueness of gg, for any A C E, g4 = gp almost everywhere on A. Define v(E) = [ |gp|? du for every
o-finite set £ in X. Then v is a measure such that v < p, and v(A4) < u(E) < ||T||9 for all A C E.

Let M = sup{v(F) : E is o-finite}, and {E,,n € N} a sequence of sets such that lim, ,. v(E,) = M.
Then H :=J,-, E, is o-finite, and v(H) = M. For any o-finite set F D H, gp = gy a.e. on H, and

/Igqudu—V( ) <v(H /IgHI“du

Hence gr = 0 a.e. on F\H. Let g = gy, we have g € LY(X, o/, ), and gr = g a.e. for all o-finite set FF D H.
Given f € LP(X, o, p), let E = {z € X : f(z) # 0}. Then E =J,2,{|f| > 1/n} is o-finite. As a result,

f):[Engdu:/ngdu-

Review: Lebesgue-Stieltjes Measure. Let 2 = [a,b] be a closed interval on R. Then the collection of
sets £ ={(u,v]:a<u<v<b}isaring: (1) D e&; (i) VA, Be &, ANBe&; (iii) VA, Be &, A\B€ €.

Let g be a non-decreasing function in Vy([a, b]), that is, ¢ is of bounded variation and right-continuous on
[a,b], and g(a) = 0. We define a finite additive measure pi94 on € by pog((u,v]) = g(v) — g(u), and extend it
to a pre-measure on the algebra A generated by £ by setting poy({a}) = 0. This pre-measure gives rise to an

outer measure:

1nf{z,uog {A,,neN}C A, UA DE}7VE€2Q.
n=1
By Carathéodory extension theorem, y is a measure on {A C Q: py(A) = py (AN E) + p; (A\E),VE C Q},
which is a o-algebra that contains all Borel sets %([a,b]). Furthermore, the restriction y, = pj|z®) is the
unique extension of pgg on B(R): pg((u,v]) = g(v) — g(u) forall a <u < v <b.
Generally, let g € Vo([a,b]) be given. Then

vg(x) ==V (g) = sup Z lg(z;) —g(tj—1)neN, a=tg<t1 < - <t, =z

is a monotone non-decreasing function in Vy([a,b]). Clearly, vy — g € Vo([a,b]), and for all a <z <y < b,

9(y) — g(x) <V (g) <V (9) = Va'(9) = vg(y) — v4(2).

Hence vy — g is also non-decreasing. As a result, we can find a signed Borel measure p4 := fi,, — jiy,—g such
that 11g((u,v]) = g(v) — g(u) for all @ < v < v < b. Moreover, if v, is another such extension on %4([a, b)),
then F = {E C [a,b] : p1g(E) = v4(E)} is a A-system that contains £, which is a m-system. By Dynkin’s -\
theorem, we have #([a,b]) C 0(£) C F. Therefore v, = pg4, and the extension i, is unique. We call this

unique signed Borel measure (1, the Lebesgue-Stieltjes measure of g.
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Theorem 2.41. Define the space of all finite signed Borel measures on [a, b] by
M([a,b]) = {w : p is a finite signed Borel measure on [a,b]},

and define a norm on M([a, b]) by

Il =sup > |u(E:)| : Ej € B(la. b)), [ Ei = [a,b] p, Y € M([a,b)).
j=1 i=1

Then Vy([a, b]) = M([a,b]).

Proof. Define U : Vy([a,b]) = M([a,b]), g — pg, where p, is the Lebesgue-Stieltjes measure of g € Vi([a, b]).
Clearly, U is a linear map. For all a =tg <t; < --- <t, = b, we have

> lats) = gt =Y lug (5, 651D < gl
j=1

=1

which implies ||g|| < [|ug]|. Furthermore, g1 = (vy — g) and g2 = 3(vy + g) are non-decreasing, then

ligll = Ntags = by | < Hligy + pgall = llso, | = vg(b) = Vo'(g) = llgll-

The inequality holds because |jg, (E) — f1g,(E)| < pig, (E) + pg, (E) for all E € %([a,b]).
Finally, for each p € M([a,b]), let g(z) := p((a,]), = € [a,b]. Clearly, V.’g < ||uy|. Moreover, for every

sequence €, \, 0,

lim_ p((a,2+€n]) = (ﬂ (a,z + en]> = u((a, z]).

Hence g is right-continuous, and p is the Lebesgue-Stieltjes measure of g € V([a, b]), which implies surjectivity
of the map U. Therefore, U : Vy([a,b]) — M([a,b]) is a norm-preserving isomorphism, as desired. O

Example 2.42 (Dual spaces of C([a,b])) Given a function g € Vp([a,b]), we define the Lebesgue-Stieltjes
integral of ¢ € C([a,b]) relative to g as

Re = | " olt) dg(t) = [ edu,

[a,b]

Clearly, Fy is a linear functional on C([a, b]). Moreover,

b
[Fy ()] S/ ()] ldg|(t) < llell gl

and the equality holds if ¢ = xp — xn, where PII N = [a, b] is a Hahn decomposition for p,. As a result, we
have F,, € (C([a,b]))", and ||Fy| = ||g]| = V,’(g). Naturally, we wonder if every continuous linear functional
on C([a,b]) is determined by Lebesgue-Stieltjes integration, which implies (C([a,b]))* = Vo([a, ]).

Riesz Representation Theorem. For all F € (C([a,b]))*, there exists a unique g € Vy([a, b]) such that

b
Fp) = Fylp) = / p(t)dg(t), Yo € C([a,b]), and |F|| = ||g]| = V;'(9)-
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Proof. Step I: We first view C([a,b]) as a subspace of (B([a,b]), || - ||c), Which is the space of all bounded
functions on [a,b], and || fllcc = sup,epqy | f(2)] for all f € B([a,b]). By Hahn-Banach theorem, there exists
an extension Fp : B([a,b]) — R of F such that Fg|c(ae) = F and [|Fg|| = || F|.

Step II: Let h(t) := Fp(X[a,y) for all ¢ € [a,b]. We first show that h € V([a,b]). For each partition
a=ty<t1<---<t, =0, let ¢, =sgn[h(t;) — h(tj—1)], t=1,--- ,n. Then

Z |h(t;) — h(tj-1)| = Z € [h(t;) — h(tj-1)]

n n

= FB Zer(tj,l,tj] § HFB” ZEjX(th,tj} S ||FH

j=1 j=1 .

Hence h € V([a,b]), and V.?(h) < ||F||. Clearly, h(a) = 0. Now we define

hIne~>0Jr h(x + 6)7 S (a7 b)v
h(z), x € {a,b}.

(r) =

Then g is right-continuous, and V,*(g) < V2(h).
Step I1I: We prove that

Fi(p) = / o(t) dg(t), Y € C((a, b]).

(k) (k)

Fix ¢ € C([a,b]), and choose partitions a =z’ <z << xS{? = b such that

° {x§.k), j=1- ng— 1} are continuous points of h; and
. k k
o limy_, o maxi<j<n, [:c§ ) x;_)l] =0.

We can always choose such partitions on [a, b], because a function h of bounded variation on [a, b] has at most

countably many discontinuous points. Define
S ()
Pr(t) = Zl‘a@(xj ) (X[a,x§k>](t) - X[a,mﬁ-’i)l}(t))
=
Then ¢, € B([a,b]), and limg_ « ||k — ¢|lcc = 0. Furthermore,
ng
k k k
Faler) = 3 o) (@) = n(a))]
j=1

- 2_: o(a) [9e2) — ()]

b Nk

b
— Zw(xyc)) (X[a’13k>](t)—X[a’zw](t)) dg(t)z/ or(t) dg(t).

a it

Note that |¢k| < ||¢]lco. By Lebesgue dominated convergence theorem,
b b
Falp) = Jim Fa(pr) = [ lm pn(0)da() = [ o(0)dg(o)

a

Then F(p) = Fg(p) = F,(p) for all p € C([a,b]). Clearly, |[F|| = || F,|| = V2(g), and g is unique. O
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Remark. By Vo([a,b]) = M([a,b]). Then (C([a,b]))* = M([a,b]): for all bounded linear

functional F' on C([a,b]), there exists a unique finite signed measure p on ([a, b], #([a,b])) such that
Fo) = [ du Yo < Cliat)

2.4.2 Reflexive Spaces

Let X be a normed space. The dual space X* is the set of all bounded linear functionals on X. The bidual
space X**, is the set of all bounded linear functionals on X*.

Definition 2.43 (Canonical maps). Let « be a normed space. Given z € X, define z** : X* — R as

e (f) = fla), Vf € X",

Then x** is a linear functional on X*, and |z**(f)| < ||f||||z||. Hence we have z** € X** and ||z**| < ||z|.
We define the canonical map J : X — X** as J(x) = x**.

Lemma 2.44. Let X be a normed space, and let J : X — X** be the canonical map. Then J is a

norm-preserving linear operator.

Proof. The linearity is clear: (ax + By)** = az™ + Sy** for all z,y € X, o, 8 € R (or C). To show that J is

norm preserving, it suffices to show ||z**|| > ||z|| for all € X. By [Corollary 2.22| there exists fy € X* such
that || fol| = 1 and fo(z) = [lz]. Then [**|| = 2**(fo) = fo(x) = [|=[|. 0

Definition 2.45 (Reflexive spaces). Let X be a normed space. X is said to be a reflezive space, if the

canonical map J : X — X** is an isomorphism. In this case, X** = X.

Remark. (i) If X is reflexive, so is X*: (X*)** = (X*)* = X*.
(ii) By definition, X** is complete. If X is not complete, then the closure of JX in X** automatically

gives a completion of X.

Example 2.46. Let (X, .o, u) be a measure space. By[Example 2.42 for 1 < p < oo, LP(X, o7, u) is reflexive.

Theorem 2.47. Let M be a closed subspace of a reflexive space X. Then M and X/M are reflexive.

Proof. (i) To prove that M is reflexive, it suffices to show the canonical map Jy; : M — M** is surjective.

Let m** € M**. Define **(f) = m**(f|n) for all f € X*. Then 2™ € X**, and there exists x € X such
that J(z) = **. If z ¢ M, by [Corollary 2.23] there exists f € X* such that f(z) # 0, f(M) = {0}. However,
f(z) = 2**(f) = m™(f|a) = 0, a contradiction! Hence z € M.

We want Jy(z) = m**, which completes the proof. For each g € M*, by Hahn-Banach theorem, there
exists an extension f € X* of g. Hence g(z) = f(x) = 2™ (f) = m™(f|m) = m*™(g), and m** = J(z).

(i) We show the canonical map Jx,ps : X/M — (X/M)** is surjective. Given [z]** € (X/M)**, we define
y*(fom) = [z]**(f) for all f € (X/M)*, where 7 : X — X/M is the quotient map. Then y** is a bounded
linear functional on (X/M)*om:={fomw: f € (X/M)*}, a subspace of X*. By Hahn-Banach theorem, there
exists an extension z** € X** of y**. Since X is reflexive, there exists © € X such that J(x) = x**.

It remains to show Jx/p([z]) = [z]**, which completes the proof: For all f € (X/M)*,

f(z]) = (fom)(x) = 2™ (fom) = y™*(f o m) =[] (/). O
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Lemma 2.48. Let X be a reflexive space. Then for all f € X*, there exists € X such that ||z|| = 1 and
f(x) =111

Proof. By |Corollary 2.22 (i)| for all f € X*, let z** € X** be such that ||**|| = 1 and =**(f) = || f||. By

reflexivity, choosing x such that J(z) = 2** completes the proof. O

We also have the following conclusion similar to [Corollary 1.39

Theorem 2.49. Let X be a normed space.
(i) Let M be a subspace of X. Then +(M*) = M;
(i) Let G be a subspace of X*. If X is reflexive, then (+G)* = G.

Proof. (i) Let € M. Then f(x) = 0 for all f € M*, which implies z €+(M~'). Since +(M™) is a closed
subspace of X, M Ct(M*1). If M # + (M%), choose x €-(M+)\M. By |Corollary 2.23 there exists f € X*
such that f(M) = {0} and f(z) # 0. Then f € M*. However, z € (M*) implies f(x) = 0, a contradiction!
(ii) Clearly, G C (*G)*. If G # (+G)*, choose g € (+G)F\G. There exists z** € X** such that
z** (G) = {0} and 2**(g) # 0. By reflexivity, choose x = J~*(z**) € X. Then = € G'c G+, and g(z) # 0.
However g € (+G)*, which implies g(z) = 0, a contradiction! O

Finally we see some examples of normed spaces that are not reflexive.

Lemma 2.50. Let X be a normed space. If X* is separable, so is X.

Proof. Tf X* is separable, choose a dense sequence {f,} in X* in the unit sphere Sx- = {f € X* : || f|| = 1}.
For each n € N, there exists z, € Sx = {x € X : ||z|| = 1} such that |f,(x,)| > 1/2. Denote by X, :=
span {x,,n € N} the closed subspace spanned by {x,}. We prove Xy = X.

Argue by contradiction. If z € X\ Xy, then there exists f € X* such that ||f]| = 1, f(Xo) = {0} and
f(z) # 0. Then for all n € N,

1
1fn = FIl = |fn(zn) = fl@n)l = [falzn)l > 3,

contradicting the density of {f,} in Sx-. Hence Xo = X. Furthermore, {gz,,q € Q,n € N} is a countable
dense subset of X, as desired. O

Example 2.51. The space L*([a, b]) is not reflexive.

Proof. If L'([a,b]) is reflexive, then (L!([a,b]))** = L'([a,b]). Since L'([a,b]) is separable, by [Lemma 2.5()
L>°([a,b]) = (L'([a,b]))* is separable. Recall that every countable subset of {X[q,t € [a,b]} is not dense in

itself, giving rise to a contradiction! O
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2.5 Weak and Weak-* Topologies

Pointwise convergence of sequences can be topologized in function spaces.

Definition 2.52 (Weak topology and weak-* topology). Let X be a normed space.

(i) Given a point xg of X, finitely many f1, -+, f, € X* and €1, - , €, > 0, define
U (wo) == {z € Xt [fi(w —xo)| < er, -+ [ falr — 20)| < en}
The collection of sets {U;ll”::f ;’; (x):zeX, neN, fi,-,fan€ X", €1, -, €, > 0} forms a basis for

a topology on X, which is called the weak topology.
(ii) Given a point fo of X*, finitely many z1,--- ,z, € X and €1,--- , €, > 0, define

Upign (fo) :=A{f € X7 |[(f = fo)(@1)] < ex,-- [(f = fo)(wn)| < en}

The collection of sets {Uzi7 5" (f) : f € X*, n€N, 2y, ,x, € X, €1, , &, >0} forms a basis for
a topology on X*, which is called the weak-* topology.

Remark. We obtain three topologies on the dual space X*: the norm topology, the weak topology, and
the weak-* topology. By definition, the weak-* topology is in fact the product topology (or the point-open
topology) on CX (the space of all complex-valued functionals on X) restricted to X*. Furthermore, if X is

reflexive, its weak and weak-* topologies coincide.

Definition 2.53 (Weak and weak-* convergence). Let X be a normed space. Let z € X and f € X*.
(i) A sequence (z,) of points of X is said to converges to x in the weak topology on X, if f(x,) — f(z) for
all f € X*. We write x,, — .
(ii) A sequence (f,) of points of X* is said to converges to f in the weak-* topology on X*, if f,(x) — f(z)
for all x € X. We write f, N f-

Theorem 2.54 (Banach-Alaoglu). Let X be a normed space. The unit closed ball B* = {f € X*: ||f|| <1}

is compact in the weak-* topology on X*.

Proof. The weak-* topology on X* is the same as the product topology on C¥X restricted to X*. Then they
also coincide on B* C X*. Hence we can prove that B* is compact in the product topology.

For each x € X, we define the closed disc D, = {z € C : |z| < ||z||}. Then D, is compact in C. By
Tychonoff theorem,

D=1]] D=

zeX

is a compact topological space under the product topology. Furthermore, every element f € D is a C-valued
functional on X such that |f(z)| < ||z|| for each x € X. Clearly, B* C D.

Tt suffices to show B* is closed in D (given the product topology), which implies compactness of B*. Let
{fx, A € A} be a net in B* such that fy — f € D. Since the projection maps 7, are continuous in the product

topology, we have
(@) =m(fr) = 7 (f) = f(x), Vz € X.

Then f(ax+pPy) = limy fr(az+Py) = limy(afa(x)+ 8 (y) = af(x)+5f(y) foralla, 8 € Cand all z,y € X,
and f is linear. By f € D, we have ||f|| < 1. Therefore f € B*, and B* is closed in D, as desired. O
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Remark. Let X be a normed space. If X* is infinite-dimensional, we know that the closed unit ball in
X* is not compact in the norm topology. However, by Banach-Alaoglu theorem, it is compact in the weak-*
topology. This is one important reason why we introduce the weak-* topology.

We also have another version of Banach-Alaoglu theorem on separable normed spaces, which is similar to

the Bolzano-Weierstrass theorem for R.

Theorem 2.55 (Banach-Alaoglu). Let X be a separable normed space. If {f,} is a bounded sequence of

points of X*, then there exists a subsequence {f,,} that converges in the weak-* topology on X*.

Proof. By boundedness, {f,} is contained in some closed ball B}, := {f € X* : || f|| < M}. By |Theorem 2.54

B3, is compact, hence limit-point compact in the weak-* topology on X*. Then {f,}, being an infinite subset

of B}, has at least one limit point fy € Bj;.

We want to find a subsequence f;,, N fo. Note that X is separable, we choose its dense subset {x,,,n € N}.
For each k € N, define

U= { £ € X 1@ = ool < oo )~ folan)] < 1 }-

Since fy is a limit point of {f,}, we can choose a subsequence f,, such that f, € Uy. For all z € X and all
€ > 0, there exists x,, such that || — z,,|| < €/(3M). Once k > max{m,3/e}, we have

[fo(@) = fur(2)] < [fo(@) = folzm)| + [fo(zm) = fa (@m)| + [ fry (2m) = fa, ()]
< 2M|jz — || + % <e.

Hence we have f,, > fo, as desired. O

Theorem 2.56 (Banach-Alaoglu). Let X be a reflexive space. The unit closed ball B = {z € X : ||z|| < 1}
is weakly sequentially compact.

Proof. We first assume that X = X** is separable, so X* is separable by Take (x,) C B. Then
the bounded sequence (Jz,) in X** has a weak® convergent subsequence (Jx,, ) by Since
J: X — X** is an isomorphism, (z,,) converges in the weak topology on X.

Now we assume that X is reflexive and let (x,) be a sequence in B. Let Y = span{z, : n € N}. Then
Y is separable by definition, and by Theorem Y is reflexive. Hence (x,) has a subsequence (x,, ) that
converges weakly to an element of B, and B is sequentially weakly compact. O

Remark. If X is a reflexive space, every bounded sequence in X has a weakly convergent subsequence.

Theorem 2.57 (Mazur). Let X be a real normed space, and let (x,) be a sequence of points of X that

converges to ¢ € X in the weak topology. Then there exists sequence (y,) such that every y, is a convex

combination of finitely many z,,,- - ,zp,, and that y, 0, Equivalently, x € co ({z,,n € N}).

Proof. Argue by contradiction. Let M := co ({z,,n € N}) be the convex hull of (z,). Using hyperplane
separation theorem, if x ¢ M, there exists f € X* and ¢ € R such that f(y) < ¢ < f(z) for ally € M. As a
result, f(x,) < ¢ < f(z), contradicting x,, = z! Therefore 2 € M, as desired. O

Corollary 2.58. Let M be a convex set in a normed space X. Then the closures of M in the norm topology

and in the weak topology coincide.
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3 Bounded Linear Operators

3.1 Baire Category Theorem

Definition 3.1 (Nowhere dense sets/rare sets). Let A be a subset of a topological space X. If the closure
of A does not contain any nonempty open subset of X, that is, A has no interior point, then A is said to be a

nowhere dense set (or a rare set) in X.
Remark. By definition, A is nowhere dense if and only if A is nowhere dense.

Lemma 3.2. Let A be a subset of a topological space X. Then A is rare if and only if X\A4 is dense in X.

Proof. X\ A is dense in X < X\A intersects every open set in X < A is rare in X. O

Example 3.3. Following are some instances for nowhere dense sets.
(i) The set of integers Z is rare in R. The set A = {1 :n € N} is rare in [0, 1].
(ii) Let X be a normed space. Let Y be a proper subspace of X. Then Y is rare in X. (If not, there exists
an open neighborhood of 0 contained in Y. Then Y is absorbing, and ¥ = X, a contradiction!)
(iii) A Cantor set C is obtained by repeatedly removing the open middle third from a collection of line

segments, starting from the unit interval [0, 1]:

=0+ com o [2a] » com o2 Yo T[]

The Cantor set C' = J;—; C,, is a rare set in R. To see this, let € C. Then any open interval of form
1 .
log 2

(x — €,z + €) is not contained in C, because the length of subintervals in C,, with n > is less than

27"+l < 2¢. (Note that C,, has 2"~! subintervals of the same length.)

(iv) A Smith-Volterra-Cantor set is also obtained by removing certain intervals from [0, 1]. For instance, we

start from [0, 1] and remove the middle 1/4™ from the remaining 2"~! intervals at the n-th step:

3 5 5 7 3 5 25 27
Km0 ko= o2 o[2] -+ w20 [0 [BZ]o[B] -

Similar to (iii), the Smith-Volterra-Cantor set K = |J,—, K,, is a nowhere dense set in R.

Note that at the n-th step, we remove subintervals of length 4™" x 2"~! = 27"~! in total. Then the

Lebesgue measure of K, is

n—1

1 11
m(Kn):l_ZQk+1 =5 T on
k=1

Hence m(K) = 1/2 > 0. It is seen that K is a rare set with positive Lebesgue measure.

Definition 3.4 (Baire spaces). A topological space X is said to be a Baire space if the following condition
holds: given any countable collection {C,,,n € N} of closed nowhere dense subsets of X, their union (J,-, C,

is also nowhere dense in X.
Remark. Let {A,,n € N} be a collection of nowhere dense subsets of a Baire space X. Then the union

U~ A, being a subset of J -, A, is also nowhere dense in X. Therefore we can drop the requirement of
“closed sets” in |[Definition 3.4 Applying Lemma 3.2, we obtain an equivalent definition of Baire spaces:
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A topological space X is a Baire space if and only if the following condition holds: given any countable
collection {U,,,n € N} of open dense subsets of X, their intersection () 2, U, is also dense in X.

Definition 3.5 (René-Louis Baire categories). Let A be a subset of a topological space X. Then A is said
to be of the first category if it is contained in the union of a countable collection of nowhere dense sets in X;

otherwise, it is said to be of the second category.

Lemma 3.6. A space X is a Baire space if and only if every open subset of X is of the second category.

Proof. If X is a Baire space, then the union of every countable collection of nowhere dense subsets of X is
nowhere dense, which is impossible to contain X. Hence X is of the second category.
If X is not a Baire space, let {C),,n € N} be a collection of nowhere dense sets in X such that the union

U2, C,, contains some open set U in X. Then U is of the first category. O

Remark. A space of second category is not necessarily a Baire space. Consider Y = X U Q, where X = [0, 1].

Since X is of the second category, so is Y. However, [ .o Y\{¢} is a countable intersection of open dense sets

q€Q
that is not dense.

Theorem 3.7 (Baire category theorem). A complete metric space X is a Baire space.

Proof. Let {C,,n € N} be a collection of closed nowhere dense sets in X. Given an open set U in X, we prove
that there exists x € U such that = ¢ |J;—, C,,. This implies |J;_, C,, is nowhere dense.

We first consider A;. By hypothesis, A; does not contain U. Then we choose 21 € U\A;. Since A; is
closed, we choose 0 < €1 < 1 such that U; = O(x1, €1) satisfies

U, cUand U NA; =0.

Now consider n > 2. With the open set U,_; given, we choose z,, € U,_1\A,, and choose 0 < €, < 1/n
such that U, = O(x,, €,) satisfies

U, CU,—1 and U, N A4,, = 0.

Since X is complete, by [Theorem 1.59} the nested sequence U; D U D --- admits a unique = € U:;in
Then X ¢ A, for all n € N, as desired. O

Remark. Let {U,,n € N} be a collection of open dense subsets of a complete metric space X. According

to their intersection (), ~_, U, is dense in X. Furthermore, we can prove that () —, U, is of the
second category. Otherwise, there exists a collection {Fy, k € N} of closed nowhere dense sets in X such that

Moy Un C Upey B, which implies (N2, Uy) N (Npe; X\Ex) = 0. However, this is a dense subset of X by

the conclusion we proved.

Example 3.8. Following are some instances for spaces of the first category and of the second category.

(i) The set of integers Z is a Baire space itself: Only @ is nowhere dense in X, because every subset of N is

open. Nevertheless, Z is of the first category in R.
(ii) The set of rationals Q is not a Baire space. It is of the first category in R.

(iii) The set of irrationals R\Q is of the second category. Otherwise, there exist countably many nowhere
dense sets {A4,} such that R\Q = U;_; An. Then R = (U2, An) U (U,eqfq}) is of the first category,
a contradiction to Baire category theorem!
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(iv) The unit closed interval [0, 1] is of the second category by Baire category theorem. Then it is uncountable.

Otherwise, it is of the first category.

(v) Choose a collection of open subsets
1 1
By, = it — ], .
k TLGJQ(T’n k2n,’/‘L+k2n> keN

By Baire category theorem, (), E) is a dense set in X of the second category. Since Q is of the first
category, we have @ C (,—, Ex. Then

0<m(Q) <m (U Ek> = lim m(E) = 0.
n=1

It is seen that (.-, Ey is a set of the second category with Lebesgue measure zero.

(vi) According to [Example 3.3 the Smith-Volterra-Cantor K is a set of the first category with m(K) > 0.

Review: Weierstrass function. Karl Weierstrass has given a construction of continuous but nowhere
differentiable functions. Let a € (0, 1), and let b be an odd integer such that ab > 1+ ‘37” We define function

flx) = Z a"cos (b"mx), x € R.
n=0

By Weierstrass M-test, the partial sum given by f converges uniformly, hence f is continuous. Interestingly,
f is nowhere differentiable on R. Fix zy € R. By definition, we need to argue that the limit

lim f(@) = f(=o)

T—Tg Tr — X

does not exist. In particular, we show that the difference quotient oscillates drastically as & approaches xg.
We first construct two sequences (yy,) and (z,,) that approach x( from below and above, respectively. For

each m € N, we choose an integer ., close to b"xg. To be specific, let a,, be such that

11
Ty =029 — ay, € (—2, 2} , Q € 7.
And choose y,, and z,, as follows:
1+z, Oy — 1 11—z, oy + 1
Ym = Lo — pm = pm Zm = To + pm = pm
The difference quotient at y,, is
fym) — f@o) _ Yoaiga”™ [cos(b"mym) — cos (b"mxo)]
Ym — X0 Ym — Zo
_ mz_l o cos(b" Y ) — cos (b"wxo) N i g cos(b" ™My, ) — cos ("M rxg)
n=0 Ym — Lo n—0 Ym — Zo
1 . b"w(ym+xo>) : (b"w(ym—m)
S Pl e il G ) B RO VL)
- 0 b 7 (Ym —x0) 1+, ?
n=0 2 n=0 pm
=:57 =:55
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We can easily bound S7:

m—1 1 717”7‘—(97"710) m—1
n | b7 (Ym + o) s ( 2 ) n (ab)™ —1
|S1] = Z m(ab)" |sin < 5 T e— < Z w(ab)” = (e
n=0 2 n=0
Hence there exists || < 1 such that S; = ¢ (;bbzzl. For Sy, drop all terms n > 1:
Z o (14 cos (b"7xs,)) > (14 cos (mzm)) > g’
n=0 1+ zp, 1+, 3

where the inequality follows from —1/2 < z,,, < 1/2. Then there exists n > 2 such that Sy = (—1)*" (ab)™.
As a result,

‘f(ym) — f(x0)

Ym — Zo

é&m 2 3r
:S—S = _1sz/ bm 1— —1(17"'7 > — bm 1—- — .
| 1 2‘ '( ) (a) 77( ( ) n(ab—l) —3(0’) Q(Gb—l) — 0
A similar statement also holds for (z,,). Therefore, f is not differentiable at (. Since xq is arbitrary, f is

nowhere differentiable on R.

Example 3.9 (The set of continuous and nowhere differentiable functions). The construction of continuous
but nowhere differentiable functions given by Weierstrass is non-trivial. Interestingly, we can argue that these
“strange” functions are very rich in the space of continuous functions.

Consider the space C([0,1]) of continuous functions on [0,1]. The set of all continuous and nowhere
differentiable functions on [0, 1] is of the second category in C([0, 1]). In a nutshell, there exists a large amount

of continuous and nowhere differentiable functions. To see this, we define a collection of subsets
Fy = {f € C([0,1]) : Vx € [0,1], Jy € [0,1] such that ‘W’ > N}, NeN.

Claim 1. We first claim that Fy is open. Let (f,) be a sequence of functions in

)= 10) ¢ )

Fy = {f € C([0,1]) : 3z € [0, 1] such that Vy € [0, 1],
r—=y

such that f, converges uniformly to f € C([0,1]). We choose z,, € [0,1] to be such that

Y—1=Tn

<N

for all y € [0,1]. There exists convergent subsequence z,, — x € [0, 1]. Then for all y € [0, 1],

(@) = fW) < (@) = fr (@) + [ fre (@) = fr @)l + [fre (@) = Frr @] + [ fr () = F(W)]
<N f = faclloo + Nl& = @n, | + Nlan, =yl + If = faulloo
<2 f = farlloo + 2N|z — 2y, | + Nz —y|.

Let k — oo, then we have f € F§,. Hence FY; is closed, and Fy is open.

Claim 2. We then claim that Fy is dense in C([0, 1]).

Proof. Given f € C(]0,1]) and € > 0, we wish to find g € Fiy such that || f — g|lcc < €. By uniform continuity
of f, we choose § > 0 such that |f(z) — f(y)| < ¢/5 for all |z —y| < 0.
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Let n > 1/§, and divide [0, 1] into n subintervals [%, %], within each the amplitude of f is less than €/5.

Then let M > ‘Z—N, and partition [ﬂ, E] into M subintervals again:
€ n n

k_l—x <(k_1)M+1—x < <kM—l
n_ (k—=1)M M (k—1)M+1 i

=TkM-1 < — = TkM-
n

For p =0,1,--- ,nM, we define g(x,) = f(z,) + (—1)P€/5 at =, € [0, 1], and connect points (x,—1,g(Tp—1))
and (xp, g(xp)) by line segment. Then we obtain a piecewise-linear function g € C([0,1]).

We show that g € Fyy. For each = € [0,1], choose © € [zkar4j—1, Tkaryj]. Then

g(@earyy) —g@) | | flermeg) + (DM He/5 — flapnre—1) — (1) e/5|
TpM4j — T B (nM)~1
2¢/5 — |f (@ka+j) — f(@ratj—1)]
(nM)~1

> N.

Then g € Fy. Furthermore,

|f(x) = g(x)| < |f(@) = f@pamrsg)| + [ f@remrsj) — 9(@emi)| + 19(@knr+s) — 9(2)]

<lg(@rm+;)—9(Trm+5—1)|

<|f(@) = f(@rarag)| + [f(@rearsg) — 9(@rars )| + [ f(@rarrs) — f(@rari-1)] + % <e

Hence ||f — g|loo < €. As a result, Fiy is dense in C([0, 1]). O

Claim 3. Finally, we claim that the set of all continuous and nowhere differentiable functions in C([0,1]) is

of the second category.

If f € C([0,1]) is differentiable at some z € [0, 1], then we choose § > 0 such that

‘f(fﬂ)f(y)‘

e ERRA O]

for all |z —y| < §. For |z — y| > 0, we have

’f(w)f(y)‘ < 2l flloo
z—y |~ o

Therefore, if we choose

N> max {1+ 17/ 2=,

then we have f ¢ Fy. Hence every function in (),—, F is continuous and nowhere differentiable. Moreover,

N~ Fu is of the second category by Baire category theorem.
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3.2 Banach Bounded Inverse, Open Mapping & Closed Graph Theorems

Definition 3.10 (Invertible bounded linear operators). Let X and Y be normed spaces. Let T' € B(X,Y).
Then T is said to be invertible if T : X — Y is bijective and T € B(Y, X).

Remark. By definition,the operator T' € B(X,Y) is invertible if and only if there exists S € B(Y.X) such
that SoT = Ix and T o S = Iy, where Ix and Ty are identity operators in X and Y. In this case, T~! := S
is said to be the inverse of T.

Example 3.11. Let X be a finite-dimensional normed space, and let 7' € B(X). Then T is injective if and
only if it is surjective. In this case, T~ € B(X).

However, for infinite-dimensional spaces, the case becomes complicated. Let X = [?(N) be the space of
square-summable sequences. Define the left-shift and right-shift operators on X as follows:

S:(x17x27"')_> ({L‘Q,(E3,"'), T:(CC17$27"')_>(07‘r17x27"')'

Then S-T = Ix, but ToS # Ix. Hence T is injective but not surjective, and S is surjective but not injective.

In [Definition 3.10, the boundedness of 7! is required. Here is an example of bounded linear operators that
are bijective but not invertible. Let X = C([a,b]), and let Y = {f € C([a,b]) : f(a) =0 and f' € C([a,b])} be
a subspace of X. Define T : X — Y as

(Tf(zx) = /:v f(t)dt, = € [a,b].

By definition, |T|| <b—a. Then T € B(X,Y), and T : X — Y is bijective. However, the inverse of T is the
differential operator: (T~1¢)(z) = -L(z), which is not bounded.

The reason that T': X — Y is not invertible is that Y is not complete. In general, we have the following

important theorem about invertible operators.

Theorem 3.12 (Banach bounded inverse theorem). Let X and Y be Banach spaces. If T € B(X,Y) is a
bijection from X onto Y, then T is invertible, that is, T-! € B(Y, X).

The proof of uses the open mapping theorem.

Theorem 3.13 (Open mapping theorem). Let X and Y be Banach spaces, and let T € B(X,Y). If
T : X — Y is surjective, then T is an open mapping, i.e. for all open U C X, its image TU is open in Y.

Proof of [Theorem 3.13 By definition, if 7 : X — Y is an open mapping, then 77! : ¥ — X is continuous. [

Before proving we introduce some notations. Let A be a subset of a vector space X. Let
z € X, and let @ be a number. Then x + A={zx+y:y € A}, aA={ax:x € A}.

Proof of [Theorem 3.13. Given an open set G C X, we prove that T'G is open in Y. That is, for any point z
of G, Tz is an interior point of TG. We use Ox and Bx to denote open and closed balls in X.

Step I: We prove that there exists 6 > 0 such that TBx(0,1) is dense in Oy (0, d).

Since X = o, Bx(0,n), we have Y = TX = J;2, TBx(0,n). By completeness of Y, it is of the second
category. Hence there exists T'Bx (0, V) that is not nowhere dense. As a result, there exists yo € Y and n > 0
such that TBx (0, N) is dense in Oy (yo,n).

Let Tzo = yo. If M = N + ||z¢]|, then TBx(0,M) D TBx(0,N) — Tz is dense in Oy (0,n).
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Step II: We prove that TBx(0,1) D Oy (0, g)
Choose yy € Oy (0,9). By Step II, choose z1 € Bx(0,1) such that |lyo — Tx1]] < /2, which implies
11 = Yo — Tz € Oy(0,6/2). By induction, with y,_1 € Oy (0,21’”5) given, choose x,, € Bx(0,2'~") such
that y, = yn—1 — T2, € Oy (0,27"9). Therefore
)
lyo = T(x1 + -~ +xp)| < TR
Since z,, € Bx(0,2'7™), by completeness of X, let zg = Y.~ z, € X. Then ||zo| < 307, [lznl < 2. By
continuity of T', we have Txg = yo. Then TBx(0,2) D Oy (0,9). The result follows from linearity of T'.
Step III: Since G is open, for all z € G, there exists Ox(0,b,) C G. If o < b, Bx(z,a) C G. Then

TBx(z,a) =Tz + aTBx(0,1) C TG.
By Step II, we have Oy (Tz, %) C TG. O

Remark. Analogously, an operator T : X — Y is said to be a closed mapping, if for all closed subset G C X,
its image T'G is closed in Y.

A surjection T € B(X,Y) is an open mapping, but it need not to be a closed mapping. For instance,
consider the projection map m; : R? — R, (x,y) — x. The set G = {(z,y) : 2y = 1} is a closed set in R?, but
its image TG = R\{0} is not closed in R.

Following are applications of bounded inverse theorem and open mapping theorem.

Theorem 3.14 (Equivalence of norms). Let | - ||, and || - || be two norms on a vector space X. If both
(X, |- 1la) and (X, || - ||») are complete, and there exists ¢ > 0 such that ||z||, < ¢||z||, for all z € X, then || - |4

and | - ||» are equivalent.

Proof. We show that there exists ¢’ > 0 such that ||z||, < ¢||z||s. Consider the identity map
Tdx = (X, |- fla) = (X (- l)-

Then || Idx]|| < ¢. By [Theorem 3.12} Idy" is also bounded, and the result follows. O

Theorem 3.15. Let X and Y be Banach spaces, and T' € B(X,Y) is injective. Then 9(T) is closed if and
only if T' is bounded from below, that is, there exists ¢ > 0 such that ||Tx| > ¢||z|| for all z € X.

Proof. If R(T) C Y is closed, then R(T) is complete. By [Theorem 3.12} T': X — 9R(T") has bounded inverse.
Conversely, let y,, be a sequence in R(T) that converges to y. It suffices to show y € R(T'). By injectivity
of T, choose z,, = T~ 1y,. Then ||z, — Zp|| < L[|y — ymll, and (z,) is a Cauchy sequence, which converges to

some x € X. By continuity of T', we have Tx = lim,, ..o Tx, = y. O
Example 3.16. Given ¢ € L>([0,1]), define linear operator M, on L'([0,1]) by

(Mo f)(8) = () (1), fe€L([0,1]), t €[0,1].
Then || Myl = ||¢llco, and M, is invertible if and only if there exists ¢ > 0 such that || > ¢ a.e. on [0,1].

Proof. If My, is invertible, then || f[ly < ||MJ|||M, f||, for all f e L'([0,1]). If m(|e| < [|[M;*]~!) > 0, we

derive a contradiction by setting f = X{jg|<|ipz1 (-1} Hence o] > c:=[|[M '[! ae. on [0,1].
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Conversely, if there exists ¢ > 0 such that || > ¢ a.e. on [0, 1], we can recover M " by

(M f) = L3, o) #0,
’ 0, @(t)=0

Clearly, | MZ'fll1 < L[| f|l for all f € L([0,1]), which implies M € B(L([0,1])), and ||M;] < 1.
An alternative proof is based on [Theorem 3.12) where we prove that T is a bijection on L'([0,1]). O

Now we introduce the definition of graphs.
Definition 3.17 (Graphs). Let T': ©(T) — Y be a map. The set
Gr(T) ={(z,Tz) : 2 € D(T)},
which is a subset of ©(T") x Y, is called the graph of T.

Remark. Let (X,dx) and (Y, dy) be metric spaces. We can define a product metric d on X x Y as

d((z,y), (',y) = Vdx (x,2")? + dy (y, ).

In fact, the topology that d induces is the product topology on X x Y. That is, every basis element of this
topology is of the form U x V', where U and V are open subsets of X and Y, respectively.

Let T: ®(T) — Y be a map, where D(T') C X. If Gr(T) is closed in X x Y (given the product topology),
then T is said to have a closed graph.

Lemma 3.18. Let X and Y be two topological spaces, and let Y be Hausdorff. Let T : D(T) — Y be a
continuous operator, and D(T) C X. If D(T) is closed, then T has closed graph.

Proof. Let (x0,y0) be a limit point of Gr (T') = {(x,Tx) : x € ©(T)}. Then every neighborhood of (¢, yo) has
at least one point of Gr (T'), and ¢ is a limit point of ©(T'). Since D(T) is closed, zy € D(T).

If yo # Txg, there exists disjoint open subsets U and V of Y that contains yy and Tz, respectively. By
continuity of 7', the set T~V x U is an open neighborhood of (g, o) in X x Y. However, it does not contain
any point of Gr (T"), contradicting the fact that (xo,yo) is a limit point of Gr (T"). Hence yo = Txo. O

Example 3.19. (Differential operator). We define T : C*([a, b]) — C([a,b]) to be the differential operator:

(TF)(t) = f't), feCab]), t€ab].

Give C!([a,b]) the supremum norm on C([a,b]). Clearly, T is unbounded: if f,,(T) = sin(nt) € C([0,27]), so
that || f,|| = 1, then

ITfnll = sup ncosnt=n— co.
te[0,27]

Interestingly, T' has a closed graph. To see this, let (f,) be a sequence in C*([a,b]) such that f, = f and
f!. = g. The uniform convergence of derivatives implies f € C1([a,b]) and f' = g.
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Theorem 3.20 (Closed graph theorem). Let X and Y be Banach spaces. Let T be a linear operator from
D(T) into Y, where ©(T) is a closed subspace of X. Then T is continuous if and only if it has a closed graph.

Proof. Following it remains to show the continuity of linear operator T" with a closed graph.
Define norm ||(z,y)|| = v/llz||? + |lyl|? on X x Y. Since X and Y are Banach spaces, X x Y becomes a
Banach space under norm || - ||. Clearly, the closed subspaces ©(T') and Gr (T') are also Banach spaces.

Define 7 : Gr (T) — ©(T), (x,Tx) — x. Then ||r|| <1, and 7 is bounded. By |Theorem 3.12 the inverse

7=tz (x,Tz) is also bounded, and

IT2|| < ||z, Ta)l| = 7~ @) < I~ |, Vo € D(T).

Hence T € B(D(T),Y) is continuous. O

Following are applications of closed graph theorem.

Example 3.21. Let f be a measurable function on [0,1]. If fg € L'([0,1]) for all ¢ € L%([0,1]), then
fe L*([0,1)).

Proof. Define T : L*([0,1]) — L([0,1]), g — fg. We show that T has closed graph.
Let g, be a sequence in L?([0, 1]) such that ||g, — g|l2 — 0 and || fgn — h||1 — 0. By Chebyshev inequality,
for all o > 0,

1 1
m(lgn = 9l 2 0) < —5llgn = gllz, 7| fgn =Bl = o) < —|fg = hl|x.

Hence g, — ¢, and fg, — h in Lebesgue measure, and there exists subsequence (g, ) such that g,, — ¢ a.e.,
and fgn, — h a.e.. Then fg = h, and T has closed graph.

By [Theorem 3.20] T' is continuous. Choose fx{|f|<n} € L*([0,1]), then

1LF2x g1 51<m I
1fx 2 = T < |ITI.
i< 1 xq11<nll2
Let n — oo, we have || f|l2 < ||T|. Hence f € L?([0, 1]). O

Example 3.22. Let X and Y be Banach spaces. Let T be an linear operator from X into Y. If foT € X*
for all f € Y*, then T € B(X,Y).

Proof. Following we show that T has a closed graph. Let (z,,) be a sequence of points of X
such that z, — x € X, and Tx,, > y € Y. We need to show that y = Tz.

By continuity of f € Y*, we have f(Txz,) — f(y). By continuity of foT, f(Tx,) — f(Txz). Then for
feyY* fly)= f(Tz). If y # Ta, by Hahn-Banach theorem, there exists fo € Y* such that f(y) # f(Tz), a

contradiction! Hence y = T'z. O
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3.3 Banach-Steinhaus Theorem

Theorem 3.23 (Banach-Steinhaus theorem /uniform boundedness principle). Let X be a Banach space, and
Y a normed space. Let {Th} ., C B(X,Y). If supyep [|[Thz|| < oo for all z € X, then supy¢y [|Th]| < co.

Proof. Since supycy ||Thz| < oo for all € X, we define a norm on X by

lalls = max{x||7 sup IITwll}-
AEA

We claim that (X, | -||1) is a Banach space. Let (z,,) be a Cauchy sequence in (X, || - ||1): for all € > 0, there
exists N such that ||, — 2,|j1 < €/2 for all n,m > N. Since ||z|| < ||z||; for all z € X, (z,,) is also a Cauchy
sequence in (X, | - ||). Hence there exists g € X such that lim, . ||z, — ol = 0.

Fix € > 0. Since (x,) is Cauchy relative to || - ||1, there exists N such that for all A € A and all n,m > N,

€

1T (zn — zm)|| < B

(3.1)
Let m — oo in we have ||Tx(z, — zo)|| < €/2 for all A € A and all n > N, which implies

sup || Ta(zn, — x0)|| < S €, Vn > N.
AeA 2

Hence lim, o0 ||2n — 2oll1 = 0, and (X, || - ||1) is complete. By |Theorem 3.14] there exists ¢ > 0 such that
lz]|1 < cllz| for all z € X. As a result, supyca ||[Taz|| < ¢f|z|| for all x € X, and supyep [|TH || < ¢ O

Remark. The hypothesis of completeness of X cannot be removed. Following is a simple counterexample.
Consider the space (C¢(R), |- ||oc), where C.(R) is the set of compactly supported continuous functions on
R, and || f|lec = supyer |f(t)] for all f € C.(R). Clearly, (C.(R),|| - ||s) is not a Banach space, because the
Cauchy sequence fp(t) = exp(—t?)X[—n,5(t) does not converges in C,(R).
We define operators T;, for all n € N as follows:

(Tnf) (t) = tX[—n,n] (t)f(t)a Vf € CC(R)

Then for all f € C.(R), t — tf(¢) is also compactly supported and continuous. Then we have
sup || T, f|| = suptf(t) < co.
neN teR

However, ||T,,|| = n, which implies that {7}, },en is not uniformly bounded.

Theorem 3.24 (Banach-Steinhaus, Baire category version). Let X be a Banach space, and let Y be a
normed space. Let {Th} o, C B(X,Y). If the set

R := {x € X :sup | Thz| < oo}
A€EA
is of the second category in X, then supy¢, [|Th] < oo.
Proof. Define p : X — [0,00], @ — supyey [|Thz||. Then p is a seminorm on X, and

Rz{meX:p(m)<oo}:U{xeX:p(x)Sk‘}:U ﬂ{xeX:HT,\J;HSkJ}

k=1 =X, k=1 XeA
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By continuity of Ty, {x € X : ||[Thz| <k} is closed in X, and X}, is closed for all £ € N. Since R is of the
second category, there exists X that is not nowhere dense. Moreover, there exists O(xg, €) contained in Xj.
Let N =k + p(z). Then O(0,¢) C Xy, which implies

2N
D (ex) <N, VeeX = p(x) < —|z|, Ve € X.
2||| €
As aresult, supyep [ Th] < 22, as desired. O

Example 3.25. By Holder’s inequality, we know that L?([0,1]) C L'([0,1]). In fact, L?([0,1]) is a first-
category subset of of L1([0,1]).

Proof. Let f, = nxjo,,-2) for all n € N. Define F;, € (L*([0,1]))* as

Fu(g) = [ }fngdm, Vg € L'([0,1]).
0,1

Then ||F,|| = || fnlleo = n. Meanwhile, for all h € L2([0,1]),

1
N

If L2([0,1]) is of the second category, [Theorem 3.24|implies that sup,,cy ||Fn|| < 00, a contradiction! O

Another version of Banach-Steinhaus theorem is based on countable collections of operators.

Eo(h) < full2 Al = —=lhll2 < [|A]l2 < o0, ¥n € N.

Theorem 3.26 (Banach-Steinhaus). Let X be a Banach space, and Y a normed space. Let (T,) be a
sequence of operators in B(X,Y). If (T,,x) converges in Y for all x € X, then there exists T € B(X,Y) such
that lim,, o Trnx = T, and || T|| < liminf, o | Tnl-

Proof. Define T : X — Y, z — lim, o Tpz. The linearity of T follows immediately from (7;,). Clearly,

{z € X :sup, ey [|Tnz||} = X is complete, hence of the second category. By [Theorem 3.24] sup,, oy [|Th]| < oc.
Furthermore,

ITz|| = lim |T,z| = liminf ||T,,z|| < liminf | T, | ||z]|, Vz € X.
Hence ||T|| < liminf, .o ||}, as desired. O

Example 3.27. Let 1 <p <oo. Let f be a Lebesgue measurable function on [a,b]. If fg € L'([a,b]) for all
g € L?([a,b]), then f € L([a,b]), where p~! + ¢~ = 1.

Proof. Choose g = X[q,5], We know that f € L'([a,b]). For all n € N, define sequence of bounded functions on

[a,b] by fn = fX|f|<n- Then f, — f a.e. on [a,b]. We then define

Fo(9) = - fngdm, g € LP([a,b]).

By Holder’s inequality, F,, € (LP([a,b]))*, and || Fy,|| = [|fnllq- Since |fng| < |fgl|, the Lebesgue dominated
convergence theorem implies

n—roo n—oo

lim F,(g) = lim / fngdmz/ fgdm, Vg € LP([a,b]).
[a,b] la,b]
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Define linear functional F'(g f[ o f9dm on L?([a,b]). Using [Theorem 3.26, we have F' € (L?([a,b]))*, and

1£llg = IIF|l <liminf, o HF ||, which implies f € L9(]a, b]). O

Analogous to the weak topology in dual spaces, we also use some weaker convergences in the space of
operators in lieu of convergence in operator norm.

Definition 3.28 Let X and Y be normed spaces. Let (T},) be a sequence of operators in B(X,Y), and
T e B(X,Y).
(i) (Convergence in strong operator topology, SOT). (T},) is said to converges to T in strong operator
topology, if lim,, o || Tne — Tx|| = 0 for all z € X. We write T,, o,
(i) (Convergence in weak operator topology, WOT). (T},) is said to converges to T in weak operator topology,
if T,z % T for all 2 € X, namely, f(T,z) — f(Tx) for all f € Y* and all z € X. We write T}, wer T,

Remark. Clearly, |Tz| < |[|T|| |||, and || f(Tz)|| < |f|||Tx||. Therefore,

o, Ur 5 0,°%r = 1,""1,
The converse does not hold in general. Let X = Y = [2(N), and consider the left-shift operator S and

right-shift operator 7T'.
sor

(i) S™ "= 0, but ||S"|| =1 for all n € N.
(i) T" 3T 0, but |IT™z| = ||z|| for all x € X and n € N, namely, T" does not converges to 0 in strong

operator topology.

Theorem 3.29 (Banach-Steinhaus). Let X and Y be Banach spaces. Let (T,) be a sequence of operators
in B(X,Y) such that T, ""S" T, where T € B(X,Y). Then sup, oy |Tn|| < oc.

Proof. By convergence in weak operator topology, f(T,x) — f(Tz) for all x € X and all f € Y*. Then
R, = {f eY* isup|f(Thz)| < oo} =Y
neN

is of the second category. By m sup, ey |Tnz|| < oo for all z € X. Again by m

supe [|Tn |l < 0.
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3.4 Adjoint Operators
3.4.1 Adjoint Operators in Normed Spaces

Definition 3.30 (Adjoint operators/conjugate operators). Let X and Y be normed spaces, and T €
B(X,Y). If there exists T* € B(Y™*, X*) such that (T*f)(x) = f(Tx) for all x € X and f € Y™, then
T* is said to be the adjoint (operator)/conjugate operator of T.

Example 3.31 Following are some instances for adjoint operators.
(i) Let X be an n-dimensional normed space, and {ej,--- ,e,} a basis of X. Let Y be an m-dimensional
normed space, and {f1,--, fm} a basis of Y. Then any linear operator T': X — Y is determined by an

m-by-n matrix A = (a;;)mxn:

m ail - Qip
de
Tej = Zakjfk <:; T(el7"' aen) = (fla"' afm)
=t ami  * Omnp
Let ej € X* be such that efe,, = d;5 for k=1,--- ,n. Then {ef, -+ ,e;} is a basis of X*. Similarly we
choose a dual basis {f7, -+, f } for Y*. Then
n air ot Gml
(T*f) e = f7(Tes) =Y arififu=ai; = T*(ff,, fr) = (€1, en)
k=1
Aln **° Omn

It is seen that under the dual basis, the adjoint of 7" is the matrix transpose.

(ii) We define an operator T on L'([a,b]) by

T - [ " J(0)dt, vf € LM(a,).

We view T as an operator from L!([a, b]) into C([a,b]). Let’s find its adjoint T* : Vg ([a,b]) — L*>([a, b)),
such that for all ¢ € Vy([a,b]) and all f € L([a,b]),

b b pt
o = 0f0) = [ @n®det) = [ [ fs)dsdote).

By Fubini’s theorem, since the mapping (s, t) — f(s) lies in L!([a,b] X [a,b]), we have

/ab/atf(S)dsd@(t) =/abf(8) (/jc&o(t}) ds.

Therefore (T*¢)(s) = [ dp(t), Vg € Vo([a,b)).
(iii) We view T as an operator from L!([a, b]) into L*([a, b]). Let’s find its adjoint T* : L°°([a, b]) — L*°([a, b)),
such that for all g € L>°([a,b]) and all f € L*([a, b)),

b b t b b
(T*9)(f) = (T, g) = / (TF)(t)g(t) dt = / / £()g(t) ds dt = / £(s) ( / g(t)dt> ds.

Therefore (T*g)(s) = fsb g(t)dt, ¥g € L*([a,b]).
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Theorem 3.32 (Properties of adjoint operators). Let X, Y and Z be normed spaces.
(i) For all T € B(X,Y), its has a unique adjoint 7" € B(Y™, X*).
(ii) The mapping T — T, B(X,Y) — B(Y™*, X*) is linear and norm-preserving,.

) Idy = Idx-.

(iv) For all T € B(X,Y) and S € B(Y, Z), (ST)* = T*5*.

(v) Whenever T' € B(X,Y) is invertible, so is T*. Moreover,

(ii

(T*)71 _ (Tfl)*'

(vi) For all T € B(X,Y),
ker(T*) = R(T)*, ker(T) = *R(T™).

As a result, R(T) = + ker(T™).
(vii) View X and Y as subspaces of X** and Y**, respectively. Then for all T' € B(X,Y), the biconjugate
T = (T*)* € B(X*,Y*), and T*|x = T.

Proof. (1) Clearly, |f(Tx)| < ||fll IT] ||| for all f € Y* and z € X. Given f € Y*, define
(")) = f(Tx), ¥ € X.

Then T*f € X*, and ||T*f|| < ||f|| |IT]|- Furthermore, T* € B(Y™*, X*), and ||T*| < ||T||.
(ii) The linearity of T — T™ is clear. Following (i), it remains to show ||[T*| > ||T||: if T # 0,

[Tzl = sup — |f(T2)|= sup [(T*f)(x)] < sup  [T*f] [l] < [T [l] -
ey, |fl=1 ey, |fl=1 fev=|fl=1

(iii) By definition, for all f € X*,
(Id% f)(z) = f(Idx(z)) = f(z), Yz € X.
(iv) For all f € Z*, we have
((ST)"f) () = f(S(Tx)) = (" [)(Tz) = (T*(S"f))(x), Va € X.
(v) Let V.=T-" Then VT = Idy, and TV = Idy. By (iii) and (iv), we have
T*V* = (VT)* = Idx-, V*T* = (TV)* = Idy-.
(vi) By definition, we have

y* €ker(T*) & Try* =0 & 0= (T"y")(z) =y*(Tx), Vz € X & y* € R(T)*.
zcker(T) & Tr=0 & 0=y"(Tz) = (T*y")(z), V" €Y* & zc TR(T).

By [Theorem 2.49, R(T) = L(R(T)+) = L ker(T™).

(vii) For all x € X, let ** = Jx(x), where Jx : X — X** is the canonical map. Then
(Ta™) f = a™(T7f) = (T" f)(2) = f(Tx), Vfe Y.

Then T**z** = (Tx)**, which is the embedding of Tz into Y**. As a result, T"*|x = T. O
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Remark. We have an immediate corollary of [Theorem 3.32 (vi)i Let X and Y be normed spaces, and
T € B(X,Y). (i) R(T) is dense in Y if and only if T is injective; (ii) If R(T*) is dense in X*, then T is

injective. Furthermore, we have the following conclusion.

Lemma 3.33. Let X and Y be Banach spaces, and T' € B(X,Y). If T* is injective, and R(T™) is closed,

then T is surjective.

Proof. Tt R(T™) is closed, then T : Y* — R(T™) is a bijection between Banach spaces. By bounded inverse
theorem, there exists § > 0 such that ||T*y*|| > §||y*| for all y* € Y*. We claim that Oy (0,6) € TBx/(0,1).
Then akin to Step II in the proof of open mapping theorem , we have Oy (O, g) C TBx(0,1).
Hence T is surjective.

Let’s prove our claim. If there exists yo € Y such that ||y|| < ¢ and yo ¢ TB(0,1). Since TBx(0,1) is a
closed convex subset of Y, by hyperplane separation theorem, there exists f € Y* such that f(yo) > 1 and

f(ly) <1lforall y e TB(0,1). Then for all z € Bx(0,1),

(T f)(@)| = [f(Tz)| <1,

which implies |7 f|| < 1. However,

|f(yo)| _ 1
IfII> > <,
llvoll 0
which implies | T* f|| > 6||f]| > 1 > ||T* f||, a contradiction! Hence Oy (0,0) C TBx(0,1). O

Now we introduce the closed range theorem.

Theorem 3.34 (Closed range theorem). Let X and Y be Banach spaces, and T € B(X,Y). The following
are equivalent: (i) R(T) is closed; (ii) R(T*) is closed; (iii) R(T) = + ker(T*); (iv) R(T*) = ker(T)= .

Proof. (i) = (iii) is clear by [Theorem 3.32 (vi)} (iii) = (i) and (iv) = (ii) are trivial.
Now we prove (ii) = (i) = (iv). We first decompose T as

T=1oTom: X =5 X/ker(T) i>§R(T) =Y,
where 7 is the quotient map from X onto X/ ker(T), T[z] = Tz is the induced map from X/ ker(T) to R(T),
and ¢ : R(T) — Y is the identity embedding. Correspondingly, we decompose T™* as

*

T* =" o T* 00* : X* & (X/ker(T))* L (m(T)) &Y.

We first check 7*. For all g € (X/ker(T))* and all z € X, we have (7*g)(z) = g(n(x)). By
7* 1 g+ g o7 is a norm-preserving embedding from (X/ker(T))* into X*, and R(7*) = ker(T)= .

Next we check ¢*. For all f € Y* and all £ € R(T), we have (¢*f)(€) = f((§)) = f(§). It is seen that ¢* is
in fact the restriction: *f = f |m. By Hahn-Banach theorem, ¢* is surjective.

Now we check T': X/ ker(T) — R(T). Clearly, R(T) = R(T). Then T has dense range, and T* is injective.
If R(T*) is closed, so is R(T*) = R(T™*) o 7, because ¢* is surjective and 7* is a norm-preserving embedding.
By T is surjective, and R(T) = R(T) = R(T). Hence (i) = (iv).

If R(T) is closed, T : X/ker(T) — R(T) is a bijection between Banach spaces. By bounded inverse
theorem, T is invertible, so is T*. As a result, T* : (R(T))* — (X/ker(T))* is a bijection. Since * is
surjective, we have R(T*) = R(1*) = ker(T)*+. Hence (i) = (iv). O
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Using [Theorem 3.34} we obtain the converse of [Theorem 3.32 (v)|in Banach spaces.

Corollary 3.35. Let X and Y be Banach spaces, and T € B(X,Y’). Then T is invertible if and only if T*
is invertible.

Proof. Following [Theorem 3.32 (v)} it remains to show that T is invertible whenever T* is invertible. If T™* is

invertible, 23(T™) is closed. By [Theorem 3.34]

ker(T)* = R(T*) = X*, R(T) = T ker(T*) = +{0} =Y.

By Hahn-Banach theorem, ker(7T") = {0}. Hence T': X — Y is a bijection. Using the bounded inverse theorem,
T is an invertible operator between Banach spaces. O
3.4.2 Adjoint Operators in Hilbert Spaces

Now we discuss adjoint operators in Hilbert spaces. Since any Hilbert space H is isomorphic to its dual space

H*, we can define adjoint operators on primal spaces.

Definition 3.36. (Adjoints). Let H; and Hs be Hilbert spaces. Then for all T € B(H;, Hs), there exists a
unique operator T* € B(Hs, Hy) such that

(Tz,y) = (2, T"y), Vz € H1, Vy € H>. (3.2)

Furthermore, ||T*|| = ||T||. The operator T* is said to be the adjoint (operator) of T.

Proof. Given y € Hy, we have [(Tx,y)| < ||T|| |||l |ly|| for all z € Hy. Hence the mapping = — (Tx,y) is a
bounded linear functional on H;. By Riesz representation theorem, there exists a unique &, € H; such that
(Tz,y) = (x,&) for all x € X. Define T* : Hy — Hy, y — &,. Clearly, T* is linear and satisfies
Furthermore, T* is bounded: [|§,[|? = (T¢,,y) < ||T|||I&, ]l ly|l, which implies ||| < ||T||. Furthermore,

|1T2|* = (2, T*Tx) < ||l [T*] [Tz, V= € X,
which implies ||T|| < ||T*||. Hence [|T*|| = ||T|| O

Example 3.37. Following are instances for adjoint operators in Hilbert spaces.

(i) Let Hy be an n-dimensional Hilbert space, and {ej,- - ,e,} an orthonormal basis of H;. Let Hy be an
m-~dimensional normed space, and {f1,---, f;} an orthonormal basis of Hs. Then any linear operator
T : Hy — H; is determined by an m-by-n matrix A = (a;;)mxn:

. aiq a1in
d
Te,= anifi & Tler - en) = (fio+ )
k=1 Am1 Amn

By definition of orthonormal basis, a;; = (T'e;, f;) = (e;, T* fi) = (I'"* fi, ej). Hence

ain v Gml
T*(fh'" 7fm):(617"' 7en)

A1n ot Gmn

Under the orthonormal basis, the adjoint of T' is its conjugate transpose.
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(ii) (Fredholm integral operator). Let H = L?([a,b]), and K € L?([a,b] x [a,b]). Define Tx : H — H by
Th )= [ Ke) Sy, 7 € 2200,
Then

2 b b 2 2 2
)f(y) dy dxﬁ/ / K (2, y)” dy||f |y dz = K31 £]]>-

b
wwﬁzf

Hence Tk € B(H), and | Tk|| < ||K||2. Now let’s find the adjoint of T. For all f,g € L?([a,b]), by

Fubini’s theorem, we have

(Tx f,9) 7/ </f tsds) ()dt—/abf(s)(/abK(t,s)g(t)dt>ds. (3.3)

Since (Txf,9) = (f,T%9) f f(s)(Tig)(s) ds, if we define (T3g)(s) = f;

(T f,9) = (f,Tjg) for all f,g € L*([a,b]).

K(t,s)g(t)dt, we have

Remark. To apply Fubini’s theorem in we need to show K (s,t)f(t)g(s) € L'([a,b] x [a,b]):

/ <><M>@ﬁ<ﬁu¢/ o(s)[2dsdt = 1K1l 11 o1
[a,b]x[a,b] a b ><[a b]

Similar to the conjugate transpose of matrices, we define the conjugate transpose of K by K*(s,t) = K(t,s),
where s,t € [a,b]. Then T} = Tk-.

Theorem 3.38 (Properties of adjoints in Hilbert spaces). Let H, G and K be Hilbert spaces.
(i) Foral T € B(H,G), allz € H and all y € G, (y,Tx) = (T*y,z). As aresult, (T*)* =T.
(ii) For all T, S € B(H,G) and all o, 3 € C, (S + BT)* = aS* + BT*.

(iii) For all T € B(H,G) and all S € B(G, K), (ST)* =T*S*.

(iv) For all T € B(H,G), |T||* = |[T*T|| = | TT*|.

(v) For all T € B(H,G), T is invertible if and only if T* is invertible. Moreover, (T*)~! = (T—1)*.
(vi) For all T € B(H,G)

b b

ker(T™) = R(T)*, ker(T) = R(T*)*, R(T) = ker(T*)L, R(T*) = ker(T)* .

Proof. (i) For all T € ®B(H,G), allz € H and all y € G,

(y, Tx) = (Tx,y) = (x,T*y) = (T"y, z).
(ii) For all z € H and all y € G,
((aS+BT)"y,x) = (y, (aS + BT)x) = aly, Sz) + By, Tx) = a(S™y,x) + B(T"y, z).
(iii) For all z € H and all z € K,

((8T)*z,2) = (2,5(Tx)) = (572, Tx) = (T"(5"2), ).
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(iv) Cleatly, |T*T| < | T*|| |T|| = ||T||?. For the other side,
(Tz,Ta) = (T*Tx, ) < ||T*Tx|| |z < |T*T| |«|*, Vo € H, = |T|]* < ||T*T|.

Similarly, we have || TT*| = ||T||*.
(v) Let V.=T7. Then VT = Idg, and TV = Idg. By (iii) and (iv), we have

T*V* = (VT)* = Idy, V*T* = (TV)* = Idg.

Hence T* is invertible, and (T—1)* = (T*)~!. If T* is invertible, by (i), T'= (T*)* is also invertible.

(vi) By definition, we have

ycker(T*) & T'y=0 & (,T*y) = (Tx,y) =0, Ve € H & yc R(T)".

reker(T) & Te=0 & (Ta,y) = (x,T*y) =0, Vy € H & x € R(T*)" .

By [Corollary 1.38) R(T) = (R(T)*)* = ker(T*)*, and R(T*) = (R(T*)*)* = ker(T)+. O

Now we introduce some special operators, which is the generalization of unitary matrices, Hermitian ma-

trices and normal matrices.

Definition 3.39. Let H be a Hilbert space, and let T' € B(H).
(i) (Unitary operators). T is said to be a unitary operator if T*T = TT* = Idy.
(ii) (Self-adjoint operators). T is said to be a self-adjoint operator if T* =T.
(iii) (Normal operators). T is said to be a normal operator if T*T = TT*. By definition, both unitary and

self-adjoint operators are unitary.

Example 3.40. Let L be a subspace of a Hilbert space H. Let P;, : H — L be the projection operator.

Then Py, is a self-adjoint operator.

Proof. For all z,y € H, let x = 29 + x; and y = yo + y1, where zg,70 € L and 1,7, € L*. Then
(z, Piy) = (PL>,y) = (z0,%0 + y1) = (%0, %0) = (¥o + 71, %0) = (z, Pry), Yz € H.
Hence P} = Py, O

Lemma 3.41. Let H be a complex-valued Hilbert space, and T' € B(H). Then T is self-adjoint if and only
it (Te,z) eRforall z € H.

Proof. If T is self-adjoint, then
(Tz,z) = (x,Tz) = (T*x,x) = (Tx,x), Vo € X.

Conversely, if (Txz,z) € R for all z € X, then

(T(x+vy),z+y) = (Tx,x) + (Ty,z) + (Tz,y) + (Ty,y) € RVa,y € H = Im((Tz,y) + (Ty,z)) =0
(T(x +1iy),z +iy) = (Tz,z) + (Ty,z) — {Tz,y) + (Ty,y) € R,Vax,y € H = Re((Tz,y) — (Ty,z)) =0.
Therefore (Tx,y) = (Ty,z) = (T*x,y) for all z,y € H, and T is self-adjoint. O
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Lemma 3.42. Let H be a Hilbert space, and U € B(H). Then U is a unitary operator if and only if U is

surjective and norm-preserving.

Proof. If U is unitary, then U is bounded and invertible. Clearly, U is surjective. Furthermore, |U|| = ||[U*| =
|lU=U| = 1.

el = U Uz|| < [U*[||Uz]| = [|Uz|| < U {l2]] = l|=[l, V& € H.

Hence U is norm-preserving, i.e. ||Uz|| = ||z|| for all z € H.

Conversely, suppose U € B(H) is surjective and norm-preserving. We first prove that U is and inner-

product-preserving. By polarization identity,

3 3
Uz, Uy) =Y Uz +FUy|> = iz +*y[* = (2,y), Yo,y € H.
k=0 k=0

Since U preserves inner product, we have
({U*Uz,y) = (Ux,Uy) = (x,y), Vz,y € H.
Hence U*U = Idy. Moreover, for all y € H, by surjectivity of U, there exists £, € H such that U, = y, and
(UU*x,y) = (UU*x,U&) = (U, &) = (z,U&) = (x,y), Y,y € H.
Therefore UU* = Idg, and U is unitary. O

Lemma 3.43. Let H be a Hilbert space, and T € B(H) is a normal operator on H. Then ker(T") = ker(T™),
and ker(7) L (7).

Proof. For all x € H,
|Tz||* = (Tx, Tx) = (x, T*Tx) = (x, TT*z) = (T*2, T*z) = | T*z||*.

Hence ker(T') = ker(T*). The second result follows from ker(T*) = R(T)*. O
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4 Spectral Theory

Without specification, the vector spaces we are going to discuss in this section are all complex.

4.1 Resolvent Sets and Spectra

Recall that in matrix theory, the scalar-vector couple (A, v) is said to be an eigenpair of a matrix A, if v # 0
and Av = Av. A is said to be an eigenvalue of A, and v is said to be the related eigenvector of A. Clearly, A is
a linear mapping defined on a finite-dimensional space. We can extend this definition to linear operators on

general vector spaces.

Definition 4.1. Let X be a complex vector space, and let T': X — X be a linear operator on X.
(i) (Eigenvalues and eigenvectors). A € C is said to be an eigenvalue of T, if there exists nonzero vector
x € X such that Tx = Axz. The vector z is said to be an eigenvector of T associated with A.
(ii) (Eigenspaces). The eigenspace (or characteristic subspace) of T associated with eigenvalue A is defined
as the set Ey = {z € X : Tz = Az}. Clearly, E) is a subspace of X. The dimension of E} is said to be
the multiplicity of A.

Let’s find eigenvalues of some linear operators.

Example 4.2. (i) Let P : H — M be the projection operator onto a subspace M of a Hilbert space H.
For all x € M, Pz = x; and for all z € M+, Px = 0. If A ¢ {0,1}, P — AIdy is invertible. Hence P has
eigenvalues 1 and 0, and the corresponding eigenspaces are E; = M, and Ey = M~.

(ii) Define T' : L*([a,b]) — L*([a,b]), (Tf)(z) = [ f(t)dt, Vf € L?*([a,b]). We solve the characteristic
equation T'f = Af as follows:

o If A =0, then F(x) = [ f(t)dt =0 for all x € [a,b], which implies F’ = f =0 (a.e.) on [a,b].

o If A # 0, then f(z) = } [7 f(t)dt for all x € [a,b], and f' = 1 f. By solving the differential equation,

f(t) = Ce~t/* for some constant C. Since f(a) = 0, we have C' =0, and f = 0.

Hence T has no eigenvalue.

Remark. By [Example 4.2 (ii)] we see that linear operators on infinite-dimensional spaces possibly have no
eigenvalue. According to we can equivalently define eigenvalues of operator 1" as the numbers
A € C such that T'— A Idx is not injective. If X finite-dimensional, a linear operator T : X — X is invertible

if and only if it is injective. However, it is not the case when the dimension of X becomes infinite. Inspiring

by this observation, we introduce the definition of spectra.

Definition 4.3 Let X be a complex normed space, and T € B(X). Let I be the identity operator on X.
(i) (Regular value). Given A € C, if T — AI is invertible, i.e. T — AI is a bijection X — Y, and the inverse
R\(T) = (T — X\)~! is bounded, then \ is said to be a regular value of T. The inverse operator Ry (T)
is said to be the resolvent of T
(ii) (Resolvent sets). The resolvent set of T is the set of all regular values of T

p(T)={AeC:T-IeB(X)}.

(iii) (Spectra). The spectrum of T is the complement of the resolvent set: o(L) = C\p(L). In other words,
the spectrum o(T) of T' is the set of all A € C such that 7' — AI is not invertible.
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Proposition 4.4. Let X be a complex Banach space, and T € B(X).
(i) Given a polynomial p(z) = > _, arz® (a, # 0) defined on C, define p(T) = >",_, axT". Then

o(p(T)) = p(a(T)) == {p(A) : A € o(T)} .

(ii) If T is invertible, then

o(T™HY=0o(T)™! = {i ‘A€ a(T)} )

Proof. (i) We first prove a technical lemma: Let Th,7T € B(X), and T1'Te> = ToTy. Then T1T5 is invertible
if and only if both 77 and T are invertible. If both 77 and T, are invertible, then T{lel € B(X) is the
inverse of T1Ty. Conversely, if 71Ty is invertible, then (T1T) 17Ty = To(TyT) ! is the bounded inverse of 17,
and (T1T2) YTy = Ty (T1Tz) ! is the bounded inverse of T5.

Let 4 € C, and let p(z) — p = a, [[f_,(z — A\x) be the factorization of polynomial p(z) — u, where
Ay, Ay € C Then p=p(A\g) for all k=1,--- ,n. By above lemma,

n

p(T) = pl = an [J(T = M)
k=1

is invertible if and only if T — Ax [ is invertible for all k =1,--- ,n. Then

uw€o(p(T) & p(T)— wpl is not invertible < there exists Ag such that T'— Mg I is not invertible
< there exists A\, such that A\, € o(T)
< there exists A € o(T) such that p(A) — p = 0.

(ii) Clearly, 0 ¢ o(T). If A # 0, then T — A is invertible if and only if  — 7~ is invertible, as desired. [

4.1.1 Classification of Points in the Spectrum

Now we discuss the spectrum of bounded linear operators on Banach spaces.

Definition 4.5. Let X be a Banach space, and T' € B(X). Let A € o(T). Then A is one of the three cases:

(i) If T — AI is not injective, by definition A is an eigenvalue of T'. The set of all eigenvalues of T is said to

be the point spectrum of T
op(T)={N€o(T): ker(T — \I) #0}.
(ii) If T — AI is injective but does not have dense range, A is said to belong to the residual spectrum of T
o, (T) = {A € o(T) : ker(T — \I) =0, R(T — M) # X} .
(iii) If T — A is injective and has dense range, A is said to belong to the continuous spectrum of T
oo(T) = {)\ € o(T): ker(T — ) =0, R(T — M) = X} .
In this case, T'— AI is not bounded from below. In fact, if there exists ¢ > 0 such that ||Tx|| > ¢||z|| for all

x € X, by [Theorem 3.15, R(T — AI) is closed. Hence R(T — A\I) =R(T — M) = X, and T — A\ € B(X)

by bounded inverse theorem. But A € o(T), a contradiction!
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Remark. Since X is a Banach space, all bijections on X are invertible. Hence there exists no A € o(T) such
that T'— AI is a bijection that has unbounded inverse. As a result, we have the following decomposition of the

spectrum of T
oT)=0,(T) o, (T)Oo.(T).
Example 4.6. (i) Let X = C([0,1]). Define T : X — X by

(Tf)(z)=af(z), Vf e X.

Then T' € B(X), and ||T'|| = 1. We find the spectrum of T as follows.
e If \ ¢ [0, 1], then for all g € C([0,1]), the equation (T — AI)f = g has a unique solution f(z) = ?(I) and

[FAIES _ 2Pzefo1] (7))‘ sup 1 :max{1 —1} < o0.
19lloe suPLejo,1 9(x ) = 2€0,1] T = A 1=A" A

Hence T — A is invertible, and X\ € p(T).
e If A € [0,1], we have ker(T' — A[) = 0: U Tf =0, f(z) =0 for all z # A, and f = 0 by continuity.
Furthermore, R(T — AI) C {g € C([a,b]) : g(A) = 0}, and

R(T = M) C{g e C([a,b]) : g(N) = 0} = {g € C([a,b]) : g(A) = 0} # C([a, b]).

Hence A € 0,.(T). To summarize, o(T) = o.(T) = [0, 1].

(ii) We shift to X = L2([0,1]). Still, T € B(X), and ||T|| = 1. We find the spectrum of T as follows.
o If A\ ¢ [0, 1], similar to (i), T'— Al is invertible, and A € p(T)).

o If X\ €[0,1], we have ker(T'— AI) = 0: If Tf = 0, then f = 0 a.e. on [0,1]\{\}, and the modification at
single point A does not change f € L?([0,1]). However, f is not surjective, since X0, € R(T — AI).
Given g € L?([0,1]), we choose the sequence g,, = 9X{a:lz—A|>n-1}- By Lebesgue dominated convergence
theorem, ||g, — g|l2 = 0 as n — oo. Furthermore, define f,(z) = g;f(z)\) for x # A and f,,(A) = 0, then

[ @pas | ng(a)?da = g < x.
[0,1] {z:|z—A[>n—1}

Hence f,, € L?([0,1]), and g, is a sequence in R(T — AI) that converges to g. As a result, R(T — \) =
L2([0,1]), and X € o.(T). To summarize, o(T) = o.(T) = [0, 1].

Now we discuss the spectrum of adjoint operators.

Theorem 4.7. Let X be a Banach space, and let T' € B(X). Then (i) o(T) = o(T™*); (ii) 0.(T*) C 0,(T),
and o,.(T) C 0,(T™); (iil) oo(T*) = 0.(T).

Proof. (1) By [Corollary 3.35| T'— Alx is invertible if and only if (T' — A x)* = T* — AIx~ is invertible.
(il) It A € 0, (T*), then R(T* — Mx-) # X*, and

ker(T — Mx) = *R(T* — M x-) = *R(T* — Mx-) # {0}.

Hence A € 0,(T'), and 0,.(T*) C 0,(T'). Similarly, o,.(T) C 0,(T*).
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(iii) Following [Theorem 3.32 (vi)|and Remark of [Definition 2.25}

ker(T* — Mx-) = R(T — Mx) ", ker(T — My) = “R(T* — Mx-).
Then

A€o (T) & ker(T —MNx)=0, R(T-Nx)=X
& R(T* — ANx«) = X", ker(T" —Ix«) =0 & A€o (T").
Therefore, 0.(T*) = o.(T). O

When we discuss adjoints in Hilbert spaces, need modification.

Theorem 4.8. Let H be a Hilbert space, and let T € B(H). Then (i) o(T*) = o(T) := {A: A€ o(D)};

(ii) o (T*) C 0p(T), and 0, (T) C 0,(T*); (iii) 0.(T*) = 0.(T).

Proof. Similar to [Theorem 4.7, Note that in Hilbert space H, (T — \I)* = T* — AI. O

4.1.2 Properties of the Spectrum

Lemma 4.9 (Neumann series). Let X be a Banach space, and let T € B(X). If |T|| < 1, then I — T is

invertible, and

(I-7)7' =) 1"

k=0

Proof. We first verify that the limit lim,, oo > p; T* exists. By completeness of B(X), it suffices to show
that (ZZ:1 Tk)neN is a Cauchy sequence:

" g T (1 )
| < 3 =]
> > -

k=m-+1

, VYn > m.

k=m-+1

Since |T|| < 1, (X4, TF) is a Cauchy sequence, hence converges in B(X). Furthermore,

neN
SN TEI-T)=I-17)) TF= lim Y (I-T)T"= lim I 7" =1.
Hence (I —T)~t =72, T". O

Corollary 4.10. Let X be a Banach space, and let T' € B(X) be invertible. If S € B(X) satisfies ||[S—T| <
apr=ry» then S is invertible, and S~ — T < 2|7 |]*||T — S|].

Proof. Since T is invertible, we have
1
S=T+S-T)=T{I+TY(S-T)), IT"HS-D<|T7IS-T|< 3
By I+T71(S—T) is invertible, hence S is invertible. Furthermore,

s~ =+ 12 s =)~ | < | s = )| < 2 (4.1)
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We use (4.1) to bound |[S~1 — T~1|:
Is7 =17 = |57 = 77| < s IT = S| || < 2 |77 I - S (4.2)

Remark. Following our discussion, the set of all invertible linear operators in B(H) is an open set, and the
map T +— T~ is continuous. O

Theorem 4.11. Let X be a Banach space, and T € B(X).
(i) If |A] > ||T||, then X € p(T);
(ii) p(T) is open in C;
(iii) o(T) is compact.
Proof. (i) When [\ > | T, T — AI = X (¥ — I) is invertible by [Lemma 4.9]
(ii) By if A € p(T), namely, T'— AI is invertible, then T' — p1 is invertible for all

1

p=A < g
=A< ST A

Hence A is in the interior of p(T'). As a result, p(T) is open in C.

(iii) By (i) and (ii), o(T) = C\p(T) C {z € C: |z] < ||IT||}. Then o(T) is a bounded closed subset of C,
hence is compact. ]

Definition 4.12 (Spectral radii). The spectral radius of operator T is defined as

r(T):= sup |\
A€o (T)

Remark. Following [Theorem 4.11} we have r(T') < ||T||. Generally, »(T') = ||T|| does not hold.

0
Example 4.13. (i) Consider the space C2. Let A = (0

1
0). Then ||A]| =1, 0(A) = {0}, and r(A4) = 0.
(ii) Let % be the space of all square-summable sequences. Define the left-shift and right-shift operators:

51(1'1,5172,"')’—) ({L‘Q,(E:g,"'), TZ($1,.’L'27"')'—>(0,5E1,.’E27"').

Choose an orthonormal basis e, = (0,---,0, 1 ,0,---),n € N of [2. Then Te,, = e,11, Seni1 = €, and

n-th
Se; = 0. As a result,

o0 o0 (oo} (oo}
T Z Tnen | = Z Tpent1, S Z Tpen | = Z Tpti1€n-
n=1 n=1 n=1 n=1

Then ||S|| = ||IT|| =1, »(S) <1, and r(T) < 1. Moreover, we can verify T' = S*, which implies o(T) = o(S5).
Consider the operator S — Al for |A| < 1. Note that

(S = A)(z1,22,---) =0 = Zpt1 = Az, R €N

If [A| < 1, then (1,A,A2%,--+) € ker(S) for all |A| < 1, which implies X € 0,,(S). By[Theorem 4.11] the spectrum
of S is closed, hence o(S) ={z € C: |z| < 1}.
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In fact, 0,(S) = {#z € C: |z| < 1} is then open unit disk, and o.(S) = {z € C: |z| = 1} is the unit circle.
To see this, let [A] = 1, and fix (y1,y2,---) € I>. Given € > 0, choose n such that Y7 [yx|* < €, and choose

the sequence

Koy
Z?:O )\jyk+j7 kilv , T
T =

0, k>n.

Then (z1,22,---) € 1%, and (S — X\)(x1,22,--) = (Y1, ,Yn,0,-+-). Therefore (yi,y2, --) € R(S), and
A€ o.(S5).

(iii) Let H be a Hilbert space, and let U be a unitary operator on H. Clearly, ||U| = 1, which implies

o(U)c{z€C:|z|] <1}. Theno(U*) =0o(U) C{z€C:|z|<1},and o(U 1) C {z € C:|z| > 1}. Note that

U* = U™, we conclude that o(U) C {z € C: |2| = 1}.

(iv) Let H be a Hilbert space, and let T' € B(H) be a self-adjoint operator on H. Then o(T') = o(T*) =
o(T), which implies o(T") C R.

(v) Let H be a Hilbert space, and let T € B(H) be a normal operator on H. If there exists A € o,.(T),
then X € 0,(T*), and there exists 2 # 0 such that 7"z = Az. By normality of T,

ker(T — M) = ker(T* — \I) # 0,
contradicting A € o,(T")! Hence 0,(T) =0, and o(T) = 0,(T) W o.(T).
Example 4.14. Given a Lebesgue measurable function ¢ € L>°([0, 1]), we define M,, € B(L*([0,1])) by

(M, f)(x) = @) f(t), f e L*([0,1]),¢ € [0,1].

Clearly, ||Myl|| < |l¢|loc. To prove the other side, note that by choosing E. = {z € [0,1] : |p(z)| > ||¢|l — €},

we have
M / [o(@)|?dz > ([l — €) Vil(Ee) = (lolloo — €) lIXE, |2, Ve > 0.
Hence || M, || = ||¢||oc, and r(M,) < ||¢|lcc. Now we determine the adjoint of M,:
Mot.g)= [ engam= [ 1Gadm = (fMz0). V1. € P(0.1))

Hence M} = Mg, and M, is a normal operator on L*([0,1]). As a result, o(M,) = 0,(M,,) o (M,).
Now let’s find the spectrum of M,. We define the essential range of ¢ € L>([0,1]) as

esstanp = {A € C: m ({|o(x) — A| < €}) #0, Ve >0}

If 1 ¢ essran, there exists € > 0 such that m(Ey) = 0, where E, = {z € [0,1] : [p(z) — p| < e€}. Let
f € L?([0,1]) be given, we define

f(x) €
—, t¢FE
gp(x) = { # fo [ lgPams [

0, r € Ef, [0,1] c@ B

IIsz

d<

(4.3)

Define T : L*([0,1]) — L3([0,1]), f — g¢. By|(4.3)} T is linear and bounded: ||T'|| < e~'. Furthermore, we
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have T'(M, — plI) = (M, — pI)T = I. Therefore, € p(M,).
Conversely, if p1 € p(M,), then for all g € L2([0,1]), there exists f € L?([0,1]) such that (M, — ul)f =
In other words, 2% € L?([0,1]). We prove that ﬁ € L*>([0,1]). If not, then

m({’ ! ‘>n}) >0, Vn € N,
Y — W
N———

=F,

Clearly, ﬁ € L?([0,1]), which implies lim,, ,o, m(E,) = 0. Then we can choose a subsequence such that
mM(Ep, \En,,) > 0, and define g € L*([0,1]) as follows:

XE \E >~ 1 > 1 T

’Vlk 71k+1 | 2 i -0

g gl dm < E < g = —.
\/ nk \Enk+1 [0 1 ”Z TL2 6

k=1 n=1
However,
2 00 1 4 o
/ 9 L am=3 fEn;\EnkH CIA S g (B \Bo) _
[0,1] L k=1 T m(Enk \E”k+1) k=1 . m(ETLk \Enk+1)

a contradiction! Hence ﬁ € L>([0,1]), which implies p ¢ essran . Therefore, (M) = essran ¢.

Finally we determine the point spectrum of M,. If A\ € 0,(M,,), there exists f € L?([0,1]) such that
m({f # 0}) > 0 and (M, —AI)f = 0, which implies m({z € [0,1] : p(x) = A\}) > m({f # 0}) > 0. Conversely,
if m({z € [0,1] : p(x) = A}) > 0, we have (M, — M) X{p(z)=r} = 0, which implies A € o;,(M,,). Hence

op(My) ={A e C:m({z €[0,1] : p(z) = A} > 0}.
Since o (M) = op(M,) I o.(M,), we can obtain o.(M,) by choose the complement.
Theorem 4.15. Let X be a Banach space, T € B(X). Given f € B(X)*, define F : p(T) — C by
PO) = F(T=AD)Y).

Then F is analytic on p(T).

Proof. For all \,u € p(T), we have (T — NXI)™' — (T — pl)™t = (A — u)(T — XI)~Y(T — pI)~1. Then F is
differentiable on p(T'):

po ST =ADTY) — F (T = X))
A= Ao A— X

= f((T = XI)7?).

Since p(T) is open, F is analytic on p(T). O
Corollary 4.16. Let X be a Banach space, and T € B(X). Then o(T') # 0.

Proof. If o(T) =0, p(T) = C. Given f € B(X)*, let F(\) = f (T — AI)~'). While [X| > [T,

AT
(- A1) Z o = @07 < 2 e <

n=0
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ﬂmﬂ@ﬂ)%swwwﬂvwsMW%m¢ggmma

Since F is analytic on C, by Liouville’s theorem, F' = 0. Then for all A € C, f ((T — /\I)*l) = 0 for all
f € B(X)*. By Hahn-Banach theorem, (T — AI)~' = 0, a contradiction! O

It is seen that any bounded linear operator on Banach spaces has non-empty compact spectrum. Using

the Laurent series, we obtain the exact formula for spectral radii.

Theorem 4.17 (Gelfand). Let X be a Banach space, and T' € B(X). Then

r(T) = lim ||T7"/".

n— oo

Proof. Step I: Let a = inf,>1 |T™||"/". We claim that lim,,_,. |T"(|*/" = a.
By definition, for all e > 0, there exists m > 1 such that | T™||*/™ < a +e. For alln € N, let n = km + 1
where k € Ng and [ € {0,1,--- ,m — 1}. Then

1/n

mn n m l m/n n
jre e < (I r)) < (ak ef )

Let n — oo, we have limsup,,_, . [|T"||*/™ < a + € for all € > 0. Hence

n—oQ

a < liminf ||T"||1/" < lim sup HT”HU" <a.
n— 00

Step II: If |A| > a, we have

(TN a
i = — < 1.
ﬁﬁ(wwl A

Then S = — 3% I converges in norm, and S(T — A\I) = (T — X)S = I. Hence X € p(T) for all || > a,

n=1 \»
which implies 7(T) < a = lim,, o [|T"||*/". Furthermore,

_ — "
(T — \I) 1:—ZM+1, Al > a.
n=1

Step III: We prove the other side. For all f € B(X)*, use Laurent series:

)\n+1 ?

(o) Tn
STy =32 s (4.4)
n=1
By uniqueness of Laurent series, |(4.4)| holds for all |A| > =(T"). Hence for all € > 0,

SO
2 G <

n=1

Let U, = W Since sup,,>1 | f(Un)| < oo holds for all f € B(X)*, by Banach-Steinhaus theorem,

there exists M > 0 such that sup, > [|Un|| < M. Hence
IT"|| < M (r(T) +&)"*

for all n € N, and lim,, o |T"||Y/" < #(T) + €. Let € — 0, we have lim,,_, | 77"/ < 7(T), as desired. [
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Now we show some applications of Gelfand spectral radius theorem.

Corollary 4.18 (F. Riesz). Let S and T be bounded linear operators on a Banach space X.
(i) r(ST) =r(TS).
(i) it ST =T8S, then r(S+T) <r(S)+r(T).

Proof. (i) Using [Theorem 4.17} we have
r(ST) = Tim [[(ST)"|["/" = lim [|S(TS)"T|"/" = lim |||/ [|(2.8)"~|"™ 7Y/ = #(TS).

Similarly, we have r(T'S) < r(ST), which concludes the proof of (i).
(ii) Suppose ST = T'S. Given ¢ > 0, we choose M > 0 such that ||S”||'/™ < r(S)+eand | T"||/™ < r(T)+e

for all n > M. For sufficiently large n, we have

s+ <3 () s

- i (Z> IS () + " + n_ﬁ_l (Z) (r(S) + )" (r(T) + )" "

' —Zn: <7"(%L) B (Z) (r(S) + )" (r(T) + )" "

Smax{og]ljzw (T(Sﬂe)k, L max ((ﬂ)’“}z(’;) ((8) + ) (r(T) + "

k=0

=L (r(S)+r(T)+2¢)", -

where L is a constant independent of n. Let n — oo, we have (S +T) < r(S) 4+ r(T) + 2¢. Since € > 0 is
arbitrary, the result follows when € — 0. O

Remark. (i) In fact, we have o(ST)\{0} = o(T'S)\{0}. To see this, note that

(I-8ST)(I+SI-TS)™'T)=(I+SUI—-TS)"'T)(I—-ST)=1,
(I-TS)(I+T(I—-ST)"'S)=(I+T(I—-ST)""'S)(I-TS)=1.

Hence I — ST is invertible if and only if 7 — TS is invertible. As a result, for all A # 0, ST — A is invertible
if and only if T'S — A is invertible.

(ii) The second statement in [Corollary 4.18|fails when S and T are not commutable, i.e. ST # T'S. For

instance, consider
g_ 0 1 CT— 0 0 7
0 0 1 0

which are linear operators on C2. Then r(S) =r(T) =0, but (S +T) = 1.
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Corollary 4.19. Let H be a Hilbert space, and let T' € B(H) be a normal operator on H. Then r(T) = ||T||.
Proof. First, let T be self-adjoint. Then ||T||> = | T*T| = ||T?||, and T? is also self-adjoint. By induction,
7|2 = |72 = |7 = 7% = - = |7|* =||7%|, VkeN.
Hence r(T') = limkﬁooHTyc ||1/2k =||T||. Now let T' be normal. If (T")*T™ = (T*T)", then
(Tt = (T TT = T*(T*T)"T = T*(TT*)"T = (T*T)" .
By induction, (T7)*T™ = (T*T)™ for all n € N. Furthermore, we have
H(T)? = T [TV = Y (T T = T [[(T°T)" Y = r(T°T).

Since T*T is self-adjoint, 7(T*T) = ||T*T|| = | T||*. Hence r(T) = T O

Example 4.20. Suppose f € C([a,b]), and K € C(D), where D = {(x,y) eER?:a<zr<bha<y< a:}
Define T : C([a,b]) — C([a, b]) by

T = [ Kle)iw)dy, V5 € Clab),
Following
(T )@ < M~ )" o, Var € [a, 8]

where M = sup(, ,yep |[K(z,y)|- As a result,

M —a)
Vn!

r(T) = lim ||T"|Y™ < lim
n—o0 n—oo

Since o(T') # 0, we have o(T) = {0}.
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4.2 Compact Operators
4.2.1 Finite-rank Operators and Compact Operators

Definition 4.21 (Finite-rank operators). Let X and Y be vector spaces, and let T': X — Y be a linear
operator. T is said to be a finite-rank operator if T X is a finite-dimensional subspace of Y.

Remark. By definition, if Y is finite-dimensional, all linear operators from X into Y are of finite rank.

Proposition 4.22. Let X and Y be vector spaces, and let T': X — Y be a linear operator. Then T is a
finite-rank operator if and only if there exist linear functionals f1,---, f, on X and linear independent vectors
Y1, ,Yn of Y such that

Tm—Zf] x)y;, Vo € X.

Proof. We only show the “only if” case, since the other direction is trivial. Let 7" : X — Y be a finite
rank operator. We choose a basis {y1, -+ ,yn} of TX. Then for all x € X, there exist uniquely determined
fi(x), -, fa(x) € F such that Ta = Z?:1 fj(x)y;. It remains to verify f; is linear for each j.

Given 7,7’ € X and «, 8 € IF, we have

n

T(axy + Bx2) = oz, + fTxy = Zf] (ax1 + Bx2)y Z (afj(x1) + Bfi(z2)) yj-

j=1 j=1

Since y1,- - - , yn are linearly independent, f;(cx1+B8x2) = af;(x1)+ B f;(x2) for each j. Hence f; is linear. [

Proposition 4.23. Let X and Y be normed spaces, and let T': X — Y be a linear operator. Then T is a
bounded finite-rank operator if and only if there exist bounded linear functionals fi,---, f, € X* and linear

independent vectors yi1,- - ,y, of Y such that
Tm—Zf] x)y;, Vo € X.

Proof. “<": Clearly T is of finite rank. Furthermore, ||Tx| < 377, [|f;]l [ly; [l =]

“=": By |[Proposition 4.22] there exist linear functionals fi,--- , f, on X and points yi,- - ,y, of Y such
that Tx = ijl fj(z)y; for all x € X. It remains to show f; is bounded for all j € {1,--- ,n}.

Let L_; = span{y1,--- ,¥j—1,Yj+1, - ,Yn}. By Hahn-Banach theorem, there exists f € Y* such that
f(L—-;) =0, and f(y;) =1. Then

(ij ) fula), Vo € X.

As aresult, f, = foT € X*. O

Example 4.24 (Finite-rank operators on infinite-dimensional spaces). Let X be an infinite-dimensional

Banach space, and let T' € B(X) be a finite-rank operator. By |[Proposition 4.23 there exist g, -, a, € X*

and linear independent vectors x1,--- ,z, € X such that

n
Tx = Zozj(x)xj, Vo e X.
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To find the eigenvalues of T, we solve the equation Tx = Ax. If A = 0, we have ay(z) = -+ = a,(x) = 0.
For each j, the induced map &; : X/kera; — C, [z] — «;(z) is an injection into C, which implies

codimker a;; = dim(X/kera;) <1 = codim ﬂ keroy | < Zcodimker aj <n.
7j=1 j=1

Hence ﬂ?:l ker a; is an infinite-dimensional subspace of X. As a result, there exists nonzero = € 0?21 ker o
such that Tz = 0, which implies 0 € o,(T).

If A # 0, we have = € span {x1, -+ ,z,}, because
1 - ai(z) .
x:XT:E:Z@-x]—, B = ])(\),jzl,~~~,n. (4.5)
j=1

Plugging into Tz = Az, we have

n

Z ABjx; = Zﬁkak = Z Zﬁkaj(xk)xj = A3j = Zaj(xk)ﬂk.
j=1 k=1

k=1 k=1j=1

Hence A is an eigenvalue of matrix A = (Aji)nxn = (aj(zk)),,,,, and 8 = (B1, -+ ,B,)" is the associated

eigenvector. Conversely, if (), 3) is an eigenpair of matrix A, we have

T Zﬂjxj = ZZBjak(a:j)xk = (z1,  ,xpn) AB=A (21, ,xn) B = A Zﬂjx]—
j=1 j=1k=1 J=1
Hence 0,(T) = 0,(A) U {0}.
Definition 4.25 (Compact operators). Let X and Y be normed spaces, and let T : X — Y be a linear

operator. Then T is said to be a compact operator if T' maps every bounded subset of X to a relatively compact
subset of Y, i.e., for all A C X such that sup,c 4 ||z|| < oo, TA is a compact subset of Y.

Remark. By definition, a compact operator is automatically bounded, since it maps bounded subsets to
bounded subsets.
Lemma 4.26. Bounded linear finite-rank operators are compact operators.

Proof. Let X and Y be normed spaces, and let T € B(X,Y) be finite-rank linear operators. Then TX is a

finite-dimensional subspace of Y. By [l'heorem 1.56) T'X is complete.
Let A be a bounded subset of X, then T'A is a bounded subset of T'X. Since T'X is finite-dimensional, all
bounded subsets of T X are totally bounded, hence relatively compact. O

Example 4.27 (Fredholm integral operators). Given K € C([a, b] X [a, b]), define the corresponding Fredholm
operator Tk : C([a,b]) — C([a,b]) as follows:

b
(Tko)(x) = / K(2,y)o(y) dy, Yo € C(la, b]).

Then Tk is a compact operator. To prove this, let A be a bounded subset of C([a,b]). By Arzela-Ascoli
theorem (Theorem 1.77)), it suffices to show that Tk A is bounded and uniformly equicontinuous.
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Choose M > 0 such that ||¢|le < M for all p € A. Then

I Tx¢lloc = sup <(b-a) Kl el < (0—a)M[K|, Vo€ A

z€Ja,b]

b
/ K(z,y)p(y) dy

Hence Tk A is bounded. Furthermore,

b
(Tieo) () — (Tieo) ()] = / (K (2,) - K(&',9)) o () dy

<

b
/ (K(z,y) - K(',y)) dy] o], (4.6)

Note that K is uniformly continuous. Given e > 0, choose § > 0 such that |K(z,y) — K(2/,y)| < —ay for
all z, 2’ € [a,b] such that |z — 2’| < § and all y € [a,b]. By [(4.6)] we have |(Tk¢)(x) — (Tke)(z')| < € for all
¢ € A. Hence Tk A is equicontinuous.

Theorem 4.28. Let X, Y and Z be normed spaces. Denote by K(X,Y) the set of all compact operators
from X into Y. Then:

(i) £(X,Y) is a linear subspace of B(X,Y).
(i) B(Y,Z) o K(X,Y) C K(X, Z), and K(X,Y) 0 B(Z,X) C K(Z,Y).
(iii) If Y is a Banach space, then IC(X,Y") is a closed subspace of Y.

Proof. (i) Let S,T € K(X,Y), and a € C. Clearly, oS € K(X,Y). To show that S+ 7T € K(X,Y), let A be a
bounded subset of X, and choose a sequence (z,) of points of A. Since T'A is relatively compact, we can find
a subsequence (z,,) that Sz,, converges in Y. Also, we choose a subsequence (z, ) of (zy, ) such that Tz,
converges in Y. Hence (S + Tz, converges in Y, and (S + 7)) A is relatively compact.

(ii) Let S € K(X,Y), and T € B(Y, Z). If A C X is bounded, then SA C Y is relatively compact. Since
T is continuous, T(SA) C Z is relatively compact. Hence T'S € K(X, Z).

Now let S € B(Z,X), and T € K(X,Y). If B C Z is bounded, then SB C Z is also bounded, and
T(SB) C Y is relatively compact. Hence T'S € K(Z,Y).

(iii) Clearly, B(X,Y") is a Banach space. Let T,, : X — Y be a sequence of compact operators that
converges to T € B(X,Y). It suffices to show that T € K(X,Y): Let A be a bounded subset of X such that
L = sup ¢4 ||z]] > 0. We prove that T'A is totally bounded.

Given € > 0, we choose N > 0 such that ||T}, — T|| < 5% for all n > N. By definition, Ty A is totally

bounded, so we choose an €/3-net {Tyz1,--- ,Tnzm} of TyA. Then {Txy,--- , Tz} is an e-net of TA: for
each x € A, choose z, such that |Tyx — Ty x| < €/3, hence

||T£C — Tl'k” < ||Tl’ — TNJS” + HTNI — TNIkH + ||TN:Ck — TJE}CH
<|T =Tl o]l + 1 Tve — Tyael + ([T = T[] [k

Therefore T' A is totally bounded, and T is a compact operator. O

Corollary 4.29. Let X be a normed space, let Y be a Banach space, and let T,, : X — Y be a sequence of
bounded finite-rank operators. If T,, = T € B(X,Y) in norm, T is a compact operator.

Proof. By [Theorem 4.28 (iii)} O
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Review: separable Hilbert spaces. Recall that every Hilbert space H has an orthonormal basis {ex, A €
A} such that H = span {ex, A € A}. If H is separable, we take a countable dense subset @ of H. For every
x € @, there are at most countably many basis element ey such that (x,ey) # 0. Take E, = {ex : (z,ex) # 0},
then z € span E,. Furthermore, E = Uer FE, is a countable basis of H:

QcspanE = H=Q=spankE.
Therefore, every separable Hilbert space H has a countable basis {e,,n € N}.

Remark. Let X be a Banach space, and T' € B(X). If T is a compact operator, so is 72. Conversely, even
if T? is a compact operator, T is possibly not a compact operator.

Here is a counterexample. Let H; and Hs be two infinite-dimensional separable Hilbert spaces. Let
{en,n € N} be an orthonormal basis of Hy, and {f,,n € N} an orthonormal basis for Hy. Define

Hy; Ho
0o 1\ .
T — 0 0 , L.e. T@n = O7 Tfn = €ep, vn c N

Clearly, T? = 0 is a compact operator. However, T' maps unit ball in H, to unit ball in H;, which is not

relatively compact! Hence T is not a compact operator.

Corollary 4.30. Let H be a separable Hilbert space, and T' € B(H). Then T is a compact operator if and

only if T is the limit of a sequence of bounded finite-rank operators.

Proof. Following [Corollary 4.29] it suffices to show the “only if” case. Let T € K(H), and let {e,,n € N} be

a basis of H. Define P, to be the projection operator from H into the subspace span {es,--- ,e,}, i.e.

Px = Z(w,ej>ej, Vo € H.
j=1

Clearly, P, T is a sequence of bounded finite-rank operators. It remains to show that P,7 — T in norm.
Since T is a compact operator, T'B(0, 1) is relatively compact, hence totally bounded. Given € > 0, we choose
a ¢/2-net {T'ry, -, Tz} of TB(0,1), where 1, -, 2z, € B(0,1). Then there exists N > 0 such that
(I —P,)Tz;|| <e/2forall j€{l,---,m}. Then for each x € B(0, 1), choose z; such that | Tz —Txz;|| < €/2.
Once n > N, we have

(I = Po)Tx|| < [|(I = Po)T(x — ;)| + (I = Pn) Tyl
<N (@ —25)| + (I — Po)Ta|

P
272" ¢
Hence ||(I — P,)T|| < € for all n > N. Since € > 0 is arbitrary, P,,T converges to T in norm. O

Example 4.31 (Fredholm integral operators). Given K € L?([a,b] x [a,b]), define the corresponding Fred-
holm operator Tk : L?([a,b]) — L?([a,b]) as follows:

(Tkp)(x / K(z,y)p(y) dy, Vo € L*([a,b]).

Following [Example 3.37 (ii)| | Tx|| < ||K||2. Furthermore, Tk is a compact operator.
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Proof. We approximate K € L?([a, b] x [a, b]) by a sequence of simple functions

Mn

Kn(37 t) = Z On,kXDp k>
k=1

where Dy, = (@n,k, bn,k) X (Cn,ks dn k) is an open rectangle, and || Tk — Tk, || = [Tk k)|l < [[K — Kpll2 = 0,
hence Tk, — Tk in norm. By it suffices to show that every Tk, is of finite rank:

b Mn My, dn.k
(T P)@) = [ 3 cnaxo,uo0)ol) dy =3 ana ( [ ew dy) Ko ()
k=1

a p_1 Cn,k

Hence R(Tk,,) C span {X(a, ,,bn ») }Z:’l, which is of finite dimension. O

Finally, we discuss the adjoints of compact operators.

Proposition 4.32. Let X and Y be normed spaces, and T' € K(X,Y"). Then T X is a separable subset of Y.

Proof. By definition, TB(0,n) is a relatively compact subset of Y for all n € N. By |[Lemma 1.73) TB(0,n) is
separable. As a result, TX = J,—, TB(0,n) is separable. O

Theorem 4.33. Let X and Y be normed spaces, and T' € B(X,Y). Let T* € B(Y™*, X*) be the adjoint.
(i) If T is a compact operator, so is T*.

(ii) If Y is a Banach space and T™* is a compact operator, so is T'.

Proof. (i) Let (f,) be a bounded sequence in Y* such that ||f,|| < M for all n € N. We want to prove that
there exists a subsequence (fy, ) such that (T f,, ) converges in X*.

Step I: Let Yy = TX, which is a separable subspace of Y. We define Ty : X — Yy, 2 — Tx. Then for all
f eY* wehave T*f = T f|v,. Hence (T*f,,) converges in X* if and only if (T f,|v,) converges in X*.
Without loss of generality, we suppose Y is separable.

Step II: By Banach-Alaoglu theorem (Theorem 2.55)), there exists a subsequence (f,,) that converges in
the weak-* topology on Y*:

k—

Step III: We verify that (T f,,,) converges in norm. Let S = {z € X : ||z|| = 1} be the unit sphere in X.
Then we have

1T fre = T7f|| = sup [(T" fr,, = T"f)(@)| = sup | fn, (Tx) — f(Tx)| = sup [fu,(y) = f(W)].  (4.7)
zeS €S yeTSs
Since T'S is relatively compact, given € > 0, we choose an z5;-net {y1, -+ ,ym} of T'S. Then for all y € T'S,

there exists y; such that ||y — ;|| < 357. Furthermore, we choose K > 0 such that |fy, (y;) — f(y;)| < €/3 for
all j € {1,--- ,m} and all k> K. Then

|fnk (y) - f(y)| < |fnk (y) - fnk (yj)| + |fnk (yj) - f(yj)| + ‘f(yj) - f(y)|
< el ly = y5ll + e () = £l + 171 ly — w5l

€ € €
— -4+ —M =€,V > K.
<3MM—|—3+3MM e, VyeTS, k> K

Since € > 0 is arbitrary, by T* fr, —T*fl] = 0 as k — co.
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(ii) Since T* € K(Y*,X*), by (i), T* € K(X*,Y**). We view X and Y as subspaces of X** and
Y** respectively. Then the unit ball Bx(0,1) C Bx++(0,1) is a bounded subset of X**, and T**Bx (0,1) is
relatively compact, hence totally bounded in Y**. By [Theorem 3.32 (vii)} T'B(0,1) = TB**(0, 1) is totally
bounded in Y**, so is in Y. Since Y is a Banach space, TB(0,1) is relatively compact in Y. O

4.2.2 Spectra of Compact Operators

Theorem 4.34 (Riesz-Schauder). Let X be a Banach space, and T' € K(X).
(i) If dim X =00, 0 € ¢(T'). In other words, T is not invertible.
(ii) If A € o(T)\{0}, there exists = # 0 such that Tz = Ax. Namely, every nonzero point of o(T) is an
eigenvalue of T. Following (i), if dim X = oo, then o(T') = 0,(T") U {0}.
(iii) If A € o(T)\{0}, dimker(T — A\I) < oo, i.e. the eigenspace of A is a finite-dimensional subspace of X.
(iv) Eigenvectors associated with distinct eigenvalues of T are linearly independent.

(v) o(T) has at most one limit point, which would necessarily be zero.

Proof. We leave the proof of (ii) for later.

(i) If T is invertible, T-! € B(X), and I = T~!T is a compact operator on X. Nevertheless, by
the unit ball B(0, 1) is not relatively compact, a contradiction!

(iii) For every zg € By = {z € ker(T — AI) : |lz|| < 1}, we have 29 = A"1Txg = T(A\"1zp). As a result,
By C TB(0,|A|71) is relatively compact. Since By is the unit ball in ker(T' — M), dimker(T — \) < cc.

(iv) Let A1, -+, A, be distinct eigenvalues of T, and let 1, - - - , z,, be the associated eigenvectors. Suppose

a1xy + -+ apr, = 0. Then

I 1 1 1T a1T1 + -+ anTy 0
All AQI s AnI (65X 7(&1$1‘+"'+-Qn$n) 0
NN o N T ) N\, T Yoz + -+ anwy) 0
Since the Vandermonde matrix is invertible, ayjz; = aszs = -+ = ayx, = 0.

(v) We prove an equivalent statement: for all ¢ > 0, the set {A € o(T) : |A\| > €} is finite. If not,
choose a sequence (\,) of distinct eigenvalues, and let (z,,) be the sequence of associated eigenvectors. Denote

L, = span{zy, -+ ,z,}. By|[Lemma 1.75 there exists sequence (y,) of unit vectors such that y, € L, and

d(yn, Ln—1) > 1/2. Note that y,, — :’;\n" € L,,_;. Furthermore, once n > m,

HTyn ~ Tym|| _ ’y B <y _ Tyn +Tym>H !
)\n A'I'VL " " A"L ATﬂ 2
€Ln—1
However, {TAyn ,n e N} C TB(0,e71) is relatively sequentially compact, a contradiction! O

Remark. The statement (v) also gives a characterization of the spectrum of compact operator T: o(T) is

discrete, i.e. o(T) has at most countably elements:
o(T) = U {Nea(T): |\ >n"}.
n=1

As a result, if T has infinitely many eigenvalues, we can make a sequence (A, )nen of these eigenvalues,

which satisfies lim,, oo |An| = 0. Clearly, we can permute them in a decreasing order: |A1| > |Ag| > ---.

The proof of [Theorem 4.34 (ii)|is a bit complicated, which requires some technical lemmas.
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Lemma 4.35. Let X be a Banach space, T € K(X), and A € C\{0}. If (T — AI)X = X, then X € p(T).

Proof. We assume dim X = oo, since the finite-dimensional case is clear. By bounded inverse theorem, it
remains to show T' — AT is injective. We choose L,, = {x € X : (T'— AI)"x = 0} = ker(T — AI)". Then we
obtain a sequence Ly C Ly C --- of subspaces of X. We wish to show L; = {0}.

If Ly # {0}, choose 21 € L; such that 27 # 0, and generate a sequence by choosing (T — A\)x, = Zp_1.

Then z,, € L,\L,—1. By[Lemma 1.75] we can choose a sequence (y,,) of unit vectors such that y,, € L,\L,_1
and that d(y,, L,—1) > 1/2. Once p > ¢, we have L, C L,_1 C L,, and

Ty,  Tyql| _ (T =Alyp | (T = Ay, 1
‘ XA Yo =\ Ya X T 7y
€Ly 1
However, {Tf\’ ,nE N} C TB(0,\71) is relatively sequentially compact, a contradiction! O

Lemma 4.36. Let X be a Banach space, T € K(X), and A € C\{0}. R(T — \I) is a closed subspace of X.

Proof. Let (y,) be a sequence of points of R(T — AI) that converges to y € Y, and choose sequence (z,,) such
that (T — AI)z,, =y, for all n € N. We need to show y € R(T — AI).

Step I: If (x,,) is a bounded sequence, by compactness of T', there exists subsequence (z,, ) such that (Tzy, )
converges in X. As a result, the subsequence z,, = A‘l(Txnk — Yn,,) also converges. Let z = limy_,o0 Tp,
then y = limy_y00 Yn,, = (T — M)z, which implies y € R(T — AI).

Step II: If (x,,) is not bounded, let o, = d(xy,ker(T — AI)) > 0. Then there exists sequence (w,) C
ker(T' — AI) such that o, < [z, — wy| < (14 1) ay,. Define ), = z,, — w,, then (T — A)z), = y,, and

oy <zl < (1+ 2) ap. If () is bounded, so is (z7,). Back to Step I.

’

T

Step III: If (o) is not bounded, choose subsequence a,, — oo, and let z, = Ty~ Then llzx]l = 1, and
i

(T — M)z, = ﬁ — 0. Since T is compact, there exists subsequence 2z, = A™! (T'z, — (T — \)zy,) such
"k
that (zx,) converges to some z € X. Clearly, (T'— AI)z = 0. Furthermore,

T, — (w"kz +sznk1 — Wny, H) = (Zkl B Z)Hxnkz — Wny, H

€ ker(T—X\I)
As a result, we have

N, >1
1—|—nkl =2

1
s, < ot = ll o, = | < g =2l (14 2 ) am, = [l =<1 >

However, z, — z, a contradiction! Hence (o) is bounded, and R(T — AI) is closed. O

Now we are prepared to prove [Theorem 4.34 (ii)]

Proof of [Theorem 4.34 (ii). If X € o(T)\{0} is not an eigenvalue of T, ker(T' — M x) = {0}. By [Lemma 4.36]
and [Theorem 3.34) R(T — Alx) is closed, and

R(T* — Mx-) = ker(T — A x)*" = X*.

By [Theorem 4.33|and [Lemma 4.35) T* € K(X™*), and A\ € p(T*). However A € o(T') = o(T*), a contradiction!
Therefore, A € o(T)\{0} is an eigenvalue of T. O
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Theorem 4.37 (Riesz-Schauder). Let X be a Banach space, and T' € K(X). Let T* € K(X*) be the adjoint.
(i) o(T) = o(T™).
(ii) If A € o(T)\{0}, then

dimker(T — M x) = dimker(T™* — M x+) = codim R(T — A x) = codim R(T* — Al x~).

(iii) If A\, p are distinct eigenvalues of 7', then f(x) =0 for all « € ker(T' — A x) and all f € ker(T™* — ulx~).
(iv) If A € o(T)\{0}, then

R(T — Mx) = Lker(T* — Mx~), R(T* — Mx-) =ker(T — M x)*t.

Proof. (ii) We first claim that codim9R(T — Alx) < dimker(T — Alx). Clearly, n = dimker(T — A x) > 0,
and we choose a basis {z1, -+ ,z,} of ker(T — M x). If codim R(T — Alx) > n, there exists y1, -+ ,ynt1 € X
such that {[y1],--- , [yn+1]} are linearly independent in X/R(T — M x).

By Hahn-Banach theorem, there exist fi,---, f, € X* such that f;(zg) = d;, for all j,k € {1,--- ,n}. Let

Az =Tz — ij(x)yj, Vo € X.

Jj=1

Then A € K(X). We will verify that A — Al x is injective. If (A — Alx)z = 0, then

(T=Mx)z=> filx)y; = 0=>_ fi(@)ly] = flz)=-=folx) =0 = (T —Ax)z=0.

j=1 j=1
Let # = >} _, ki € ker(T — Mx). Then 0 = f;(z) = ¢; > p_, fj(xx) = ¢; for all j, which implies z = 0.
Hence A — MIx is injective. Since A # 0, and A € K(X), we have A € p(A). As a result, A — Al is invertible,
and there exists z,11 € X such that (A — M x)Zn4+1 = Ynt1. Then in X/R(T — Ax),

[Ynt1] = [(A = Mx)2pi1] = [(T = Mx)zni1 — Z fi(@ns)yj| = — Z fi(@ns)ly;]-
j=1 j=1
However {[y1],- -, [yn+1]} are linearly independent in X/9R(T — Ax), a contradiction!

Similarly, we know that codim R(T™* — M x~) < dimker(T* — Al x~). By [Lemma 4.36] T'— A x has closed
range. Using [I'heorem 3.34] and [I'heorem 2.26| we have

dimker(T — Alx) > dim X/R(T — Mx) = dim (X/R(T — Mx))" = dimR(T — M x)*
= dimker(T* — M x~) > dim X*/R(T* — M x-) = dim X*/ ker(T — M x)*
= dim (ker(T — Mx))" = dimker(T — ).
¢
dimker(T — Alx) = dimker(T" — M x+) = codimR(T — AIx) = codim R(T™* — Alx+).

(iii) Let = € ker(T' — M x) and all f € ker(T™* — plx-). Since p # p, we have

Te=xe, T"f = pf = A=pf(x)=fAz) = (uf)(x) = f(Tz) = (T"f)(z) =0 = f(z)=0.

(iv) is a corollary of [Lemma 4.36| and [Theorem 3.34} O
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4.3 Compact Self-adjoint Operators

Let T be a compact operator on a Hilbert space. If T* = T', then T is a compact self-adjoint operator. The

spectrum of T' possesses some nice properties.

Lemma 4.38. Let H be a Hilbert space, and let T be a compact self-adjoint operator on H.
(i) If X\ is an eigenvalue of T', then A € R.
(ii) If A and p are distinct eigenvalues of T', the eigenvectors associated with A and p are orthogonal.
(ili) maxyeq,(r) [Al = [T

Proof. (i) Let Tx = Az, where x # 0. Then
Mz, z) = Az, z) = (Tx,2) = (x,Tx) = (x, \x) = XNz, x).
(ii) By (i), A\, € R. Let Tx = Az, and Ty = py, where x,y # 0. Then

(A = p)(z,y) = (Az,y) — (2, py) = (Tz,y) — (x,Ty) = 0.

(iii) The case T = 0 is trivial. If T' # 0, by [Corollary 4.19} »(T") = | T|| > 0. By [Theorem 4.34 (v)| there exists
A1 € o(T) such that [A\;| = maxye, (7 |A| = 7(T) = ||T'||. Since A\; # 0, we have \; € 0,,(T). O

Theorem 4.39. Let T be a compact self-adjoint operator on a Hilbert space H. Then there exist eigenvectors
{ex, A € A} of T that form a orthonormal basis of H.

Proof. Since T is compact, let {A;}res be the nonzero eigenvalues of T, where .J is finite or countable. By
Riesz-Schauder theorem, nj = dimker(T' — ApI) < oo for all k € J, and ker(T — A\I) L ker(T — A1) for all
k # 1. For every k € J, we choose an orthonormal basis {ey ;}7%, of ker(T'— AxI). By [Lemma 4.38 (ii)| we
obtain an orthonormal system on H:

ylz{ek’jtkELL ]:1,,nk}

If Zi+ = {0}, then .#; is an orthonormal basis of H, and the result holds.
If #i- # {0}, let H; = span.%1, and Hy = Hi{- = #;-. Then TH; = H;. Furthermore,

(x,Ty) = (Tx,y), Ve € Hy,y € Hy = Ty € Hy, Yy € Hy = THy C Hy.

Since Hj is an invariant subspace of T', we use its restriction T = T'|m,, which is also a compact self-adjoint

operator. If T # 0, by |Lemma 4.38 (iii)L T has at least one nonzero eigenvalue )y, with a corresponding
eigenvector xg € Hp\{0}. However, Tzy = Tzo = Aozo, which implies zq € Hj, contradicting o € Hy!
Therefore T = 0, and Hy is the eigenspace of 0 € 0,(T"). We choose an orthonormal basis %y of Hy. Then
1 U Zy is the desired orthonormal basis of H = H1 & H. O

Remark. If T has only finitely many nonzero eigenvalues A1,---,A,, then H; is finite-dimensional. Let

Ey = ker(T — A1) be the eigenspace of A, where k =1,--- ;n. Then Hy = E; ®---® E,. For all x € H, let
r = 1 + xg, where 1 € Hy and zg € Hy. Then

Tx = Tl’l =T <Z PEklj) = ZAkPEkxl = Z)‘k‘PEkx
k=1 k=1 k=1

Hence we have T'= >"}'_, A Pg,. In fact, we can extend this result to the case where T has infinitely many

nonzero eigenvalues.

106



Theorem 4.40. Let T be a compact self-adjoint operator on a Hilbert space H. If T has infinitely many
nonzero eigenvalues, we sequentialize them in decreasing order: |[\1| > |A2| > |An=1] = |[An] > -+, Let
E, =ker(T — A\, I) be the eigenspace of A,,. Then

T= Z A Pg,  (convergence in norm).
Proof. For any n > m, define S, ,,, = > p_, APpg,. Then ||S, | = [Am| = 0 as n,m — 0. As a result,

> oo | AnPE, converges in norm. Take the orthonormal basis .7 U.%; defined in the proof of [Theorem 4.39

Since z = EEAE%U% (x,ex)en,

n oo Nk 2 o0 Nk ?
TI‘—ZAkPEk ZZ)\k x e;w €k — Z)\kz LL‘ ek7j>ek,j = Z Z)\k <$>€k,j> €k,j
k=1 k=1 j=1 = j=1 k=n+1j=1
[e%s) ng
<l D0 D 1 mens) P < P 1) (Bessel’s inequality)
k=n+1j=1
Hence | T — >"1_; MePr, || < [An+1]| — 0, which implies T = >">° | A, Pg,,. O

Example 4.41 (Mercer). Let K € C([a,b] X [a,b]) be a conjugate symmetric function, i.e. K(s,t) = K (¢, s)
for all s,t € [a,b]. Following [Example 3.37 (ii)| and [Example 4.31] the Fredholm integral operator

(The £)(s /Kst £)dt, Vs € [a,b], f € L2([a,b))

is a compact self-adjoint operator on L?([a, b]). Using we choose an orthonormal basis %1 U %
of H, where %7 contains the eigenvectors associated with nonzero eigenvalues of Tk, and %, possibly empty,
is an orthonormal basis of ker(Tk). Clearly, .#; is countable. Since L?([a,b]) is separable, .%, is chosen to be
at most countable. Hence .Z; U .%o = {¢,,n € N} is a countable orthonormal basis of L?([a, b]).

Let A\, be the eigenvalue of T associated with ¢,,. Without generality, assume |A1| > [Ag| > -+ > [\ > - -.
Note that {\,,n € N} may have finitely many nonzero elements. By we have

Ticf =Y Anlfsn)én, f € L7([0,1]).

n=1

Given s € [a, b], define K(t) = K(s,t) for all t € [a,b]. Then

b
<K57¢n> = / K(Sat)¢n(t) dt = (TK¢n)<8) = Anﬁsn(s)

By expanding K, we obtain the following representation of K:

o0

K(s,t) = Z K, ¢n)on(t) ZM%¢H. (4.8)

Note that K € C([a,b] x [a,b]) C L?([a,b] x [a,b]). Using we have

//|Kst\2dsdt Zz/\/\/qu ) (s ds/¢m Vb (t) dt = Z\/\ ? < oco.

m=1n=1

Then back in the function series converges in L? sense.
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4.4 Spectral Measures
4.4.1 Projection Operators and Spectral Measures

Theorem 4.42. Let H be a Hilbert space, and P € B(H). Then P is a projection if and only if P is
self-adjoint and idempotent, i.e. P = P* = P2,

Proof. Clearly, a projection P is idempotent. Following it is self-adjoint.
Conversely, if P is self-adjoint and idempotent, let L = {z € H : Pz = 2}. We claim that P is a projection

onto L. Clearly, L is a closed subspace of H. Then it suffices to prove that (Pv,v — Pv) =0 for all v € H:
(Pv,v — Pv) = (Pv,v) — (Pv, Pv) = (Pv,v) — (P*Pv,v) = (Pv,v) — (P?v,v) = (Pv,v) — (Pv,v) = 0. O

We denote by P(H) the set of all projections on a Hilbert space H, which has a nice structure.

Proposition 4.43. Let Py, Py € P(H), where M and N are closed subspaces of Hilbert space H.
(i) Py Py € P(H) if and only if Py Py = Py Pys. Furthermore, Py Py = 0 if and only if M | N.
(ii) Py + Py € P(H) if and only if M L N. If so, Py + Py is the projection onto M @& N.
(iii) Pas — Py € P(H) if and only if M D N. If so, Pys — Py is the projection onto M © N := M N N+,
(iv) Let P, be a sequence of mutually orthogonal projections onto closed subspaces M, i.e. P, P, = 0 for
all n #m. Then Y 2 | P, 9T pe P(H), where P is the projection onto M = span {M,} .
Proof. (i) The first statement is clear, since Py; Py = Py Py if and only if Py Py is self-adjoint and idempotent.
For the next statement, if M L N, then Pyxz € N C M~ for all z € H, which implies Py; Py = 0. Conversely,
if PyyPy =0, then (z,y) = (Pyx, Pny) = (z, Py Pny) =0 for all z € M and all y € N.
(ii) The sufficiency is clear. For the necessity, if Py + Py € P(H), then

Py + Py = (Py + Py)? = Py + Py + Py Py + PPy = Py Py + PyPy =0
= Py Py + Py PnPy = 0= Py PyPy + PnPiy
:}PMPNZPNP]\/IZO = M 1L N.

(111) If N C M, then Py Py = PyPy = PN, and
(Py; — Pn)? = Py + Py — Py Py — PyPyy = Py — Py

Conversely, if Py — Py € P(H), let L =ker(I — Py + Py). Then Pyy — Py = Pr, and (ii) implies L L N.
Hence for all z € N, 0 = Prx = Pyyx — Pyx = Pyjx — x, which implies x € M.
(iv) For all # € H, note that

2
< [l

n
D Pl =
k=1

n
> P
k=1

Then (ZZ=1 ka) 2021 is a Cauchy sequence. Define operator T" as the strong operator limit:

n—oo

Pz = lim » P, Vz € H.
k=1
One can easily verify that P? = P. Furthermore, for all z,y € H,

(Pa,y) = lim ;<Pkw7y> = lim_ ;(x,Pm = (z, Py).
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Hence P is self-adjoint, and P is a projection operator.

It remains to show P = Py;. If 2 € M*, then P,z = 0 for all n € N, which implies Pz = 0. If 2 € M,,
then Pz = P,z =z, and © € M. As a result, ker(I — P) contains each x € M, hence contains M. Therefore
P is the projection onto M. O

Definition 4.44 (Spectral measures). Let %(C) be the set of all Borel sets in C. A spectral measure is a
function E : B(C) — P(H) satisfying the following conditions:

(i) E(C) =1, where I is the identity map on H;

(ii) If {By }nen is a collection of disjoint Borel sets in C, then

E (U Bn> = Z E(B,) (convergence in SOT).
n=1 n=1

Remark. We can apply standard techniques in complex-valued measures to derive many basic facts about
spectral measures.
(i) E®) = 0;
(ii) Following [Proposition 4.43 (ii)} if By and B; are disjoint Borel sets in C, then E(By) L E(By).
(iii) Following [Proposition 4.43 (iii)} if By C By, then ||[E(Bg)z| < ||E(By)z|| for all z € H.
(iv) Let By and Bj be Borel sets in C. Then

E(By)+ E(B1) = E(ByU By) + E(ByN By).

Furthermore, observing that E(By)E(BgN B1) = E(BoN By) and E(By)E(BoU By) = E(By), we have
E(Bo)E(By) = E(BoN By).

Proposition 4.45. Let E: B(C) — P(H) be a projection-valued function such that for all =,y € H,

<E (U Bn> m,y> = Z(E(Bn)x, y), V sequence {B, }ne, of disjoint Borel sets in C
n=1 n=1

and that E(C) = 1. Then E is a spectral measure.

Proof. We need to verify the second property in [Definition 4.44] Let {B,}%2 ; be a sequence of disjoint Borel
sets in C. By assumption,

<Z E(Bk)x,y> => (E(By)z,y) = <E (U Bk> xy> , Va,y € H.
k=1

k=1 k=1

Then

En:E(Bk)x =F (0 Bk> x, Vo € H. (4.9)

the sequence z,, = (B, ) is summable. Let n — oo in (4.9), we have E (", By) “Z" 32 LE(By). O

n=1 n n=

Observing that

2

b

S IEB)z|* = (E(B,)x,x) = <E (U Bn> xx> =

n=1
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4.4.2 Spectral Integrals and their Associated Operators

Let H be a Hilbert space, and let E be a spectral measure on H. Given two vectors z,y € H, define
E*(B) = (E(B)z,y), VB € (C).

By definition, £* is a complex-valued Borel measure on C. Hence for all Borel-measurable function f on C,

we can compute its Lebesgue-Stieltjes integral with respect to E*. For brevity, we denote E(\) by E).

Definition 4.46 (Spectral integral). Let E be a spectral measure on a Hilbert space H. We define the
spectral integral of the measurable function f with respect to x,y € H to be the Riemann-Stieltjes integral

JESLET)
which we sometimes abbreviate [ f())dE.

Definition 4.47 (The spectrum of a spectral measure). Let E be a spectral measure on a Hilbert space H.
The spectrum of E is defined to be the set

o(E) =C\ (U Ua> :
acJ

where the union is taken over all open sets U, such that E(U,) = 0. We say E is compact if o(FE) is compact.

Theorem 4.48. Let E be a compact spectral measure on a Hilbert space H. There is a unique normal
operator T such that [Ad(Exz,y) = (T'z,y) for all z,y € H. For the sake of brevity, we write T' = [ AdE.

Proof. Since o(E) is compact, let M = maxyeq(g) |A|. Define o(x,y) = [ Ad{E\z,y). Clearly, ¢ : Hx H — C
is a sesquilinear form. Furthermore,

o) = \ [ 2.

< [latEsw ) = M [ d|Esal® < Mol
Use the parallelogram law,
1 . .
(e, y)l < 1M (Il +yll? + llz + iyl + o —yl* + = iwl?) = M (l2] + [[y]?) -

Set ||z]| = ||y|| = 1, we have ||| < 2M. By|Theorem 2.15| there exists a unique operator 7' € B(H) such that
o(x,y) = (Tx,y) for all z,y € H.

We now show that 7' is a normal operator. Define S = [ AdE. Then

(x, Sy) = (2 = / Nd(Exy, ) = / Nz, Ery) = / Ad(Erz,y) = (T, ).

Hence S is the adjoint of T'. Furthermore, for all B € %(C),

(E(B)a, Ty) = Ty, B(B)z) = / Nd(Exy, E(B)z) = / \d{E(B)Exy. )

:/)\d<E(Bﬁ/\)y,x> :/B)\d<E,\y,;v>:/BXd<x,E>\y> Z/BXd<E,\m,y>. (4.10)
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Given z,y € H, by |(4.10), we have
(STz,y) = (Tx,Ty) = /Ad(EAz,Ty> = /A-Xd(E)\x,w = / I\|? dE.

Similarly we have (I'Sz,y) = [|A\[*dE. Since z and y are arbitrary, T is a normal operator. O

Theorem 4.49. If E is a compact spectral measure on a Hilbert space H, and T' = [ AdE, then o(E) = o(A).

Proof. Assume A9 € C\o(FE). By definition, C\c(E) is open, so there exists e > 0 such that B(\g,€) C C\o(E).
Then E(B(Xg,€)) =0, and T — Mol = [(A — X\g) dE, and

Tz — Moz :/|)\—)\0|2d<E,\x,x) :/ A= N2 d(Ex, 7) > € |||
C\B(Xo,€)

Hence T'— ¢! is bounded from below. Following[Theorem 3.15} if we Ty = T'— Ao has dense range in H, then
Ao € p(T). Equivalently, we prove R(T — A\gI)*t = 0: If x € R(T — \oI)L, then (Tjz,y) = (z,Toy) = 0 for
all y € H, which implies Tijx = 0. Meanwhile, Tj is normal by hence ker(T) = ker(Tp) = 0.
Therefore x = 0.

Conversely, assume A\; € o(FE). Given n > 0, we have E(B(A1,n)) # 0. Since F(B(A1,7)) must maintain
some unit vector u € H, we have

T — Ayul]? = /B LS M2 d(Exyu, u) < n? Jul.
1,1

Because n > 0 is arbitrary, T — A1 is not bounded below, hence is not invertible. O
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