Fourier Analysis and Distribution Theory

Jyunyi Liao

Contents

1	Preliminaries					
	1.1	Convolution	2			
	1.2	The Schwartz Space	7			
2		rier Transform	9			
	2.1	Fourier Series	9			
	2.2	Fourier Transform on $L^1(\mathbb{R}^n)$	10			
	2.3	Fourier Transform on $L^2(\mathbb{R}^n)$	14			
	2.4	Fourier Transform of Radial Functions and Hankel Transform	16			
	2.5	Application in Partial Differential Equations	21			
3	Dist	ribution Theory	25			
	3.1	Topology on $C_c^{\infty}(U)$	25			
	3.2	Distributions				
	3.3	Compactly Supported Distributions	34			
	3.4	Tempered Distributions and Fourier Transform	35			

1 Preliminaries

1.1 Convolution

In this section we study the convolution operation on \mathbb{R}^n . If a function f is defined on $U \subset \mathbb{R}^n$, we can replace it by its natural zero extension $f : \mathbb{R}^n \to \mathbb{R}$ which assigns f(x) = 0 for $x \notin U$.

Definition 1.1 (Convolution). Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable functions. Define the bad set as

$$E(f,g) := \left\{ x \in \mathbb{R}^n : \int_{\mathbb{R}^n} |f(x-y)g(y)| \, dy = \infty \right\}.$$

The convolution of f and g is the function $f * g : \mathbb{R}^n \to \mathbb{R}$ defined by

$$(f*g)(x) = \begin{cases} \int_{\mathbb{R}^n} f(x-y)g(y) \, dy, & x \notin E(f,g), \\ 0, & x \in E(f,g). \end{cases}$$

Remark. Define $F : \mathbb{R}^{2n} \to \mathbb{R}, (x, y) \mapsto f(x)$ and $G : \mathbb{R}^{2n} \to \mathbb{R}, (x, y) \mapsto g(y)$. Then both F and G are measurable functions on \mathbb{R}^{2n} , as well as their product $F \cdot G : (x, y) \mapsto f(x)g(y)$. Given linear transformation T(x, y) = (x - y, y), the composition $H = (F \cdot G) \circ T : (x, y) \mapsto f(x - y)g(y)$ is measurable. By Tonelli's theorem, the function $x \mapsto \int_{\mathbb{R}^n} |H(x, y)| \, dy$ is measurable, and E(f, g) is a Lebesgue measurable set.

Clearly, the convolution operation is both commutative and associative, i.e. f * g = g * f, and (f * g) * h = f * (g * h). Furthermore, the distributivity of convolution with respect to functional addition immediately follows, i.e. f * (g + h) = f * g + f * h.

Proposition 1.2 (Properties of convolution). Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable functions. (i) If $f, g \in L^1(\mathbb{R}^n)$, then the bad set E(f, g) is of measure zero. Moreover, $f * g \in L^1(\mathbb{R}^n)$, and

$$\int_{\mathbb{R}^m} (f * g) \, dm = \int_{\mathbb{R}^n} f \, dm \int_{\mathbb{R}^n} g \, dm.$$
(1.1)

(ii) If $f \in C_u(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$, then $f * g \in C_u(\mathbb{R}^n)$.

(iii) If $f \in L^p(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$, then $f * g \in L^p(\mathbb{R}^n)$, and

$$||f * g||_{L^p} \le ||f||_{L^p} ||g||_{L^1}.$$

Proof. (i) Define the measurable function $H(x, y) \mapsto f(x - y)g(y)$ on \mathbb{R}^{2n} . By Tonelli's theorem,

$$\int_{\mathbb{R}^{2n}} |H| \, dm = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| \, |g(y)| \, dx \right) dy = \|f\|_{L^1} \|g\|_{L^1}.$$

Hence $H : \mathbb{R}^{2n} \to \mathbb{R}$ is integrable. By Fubini's theorem, for a.e. $x \in \mathbb{R}^n$, $y \mapsto H(x, y)$ is integrable, hence m(E(f,g)) = 0. Furthermore, the function $f * g : x \mapsto \int_{\mathbb{R}^n} H(x, y) \, dy$ is also integrable, that is, $f * g \in L^1(\mathbb{R}^n)$. The equation (1.1) follows from Fubini's theorem.

(ii) Given $\epsilon > 0$. By uniform continuity of f, there exists $\eta > 0$ such that $|f(x) - f(x')| < \epsilon/||g||_{L^1}$ for all $|x - x'| < \eta$, . As a result, for all $x, x' \in \mathbb{R}^n$ such that $|x - x'| < \eta$, we have

$$|(f * g)(x) - (f * g)(x')| \le \int_{\mathbb{R}^n} |f(x - y) - f(x' - y)| |g(y)| \, dy < \epsilon$$

(iii) is a special case of the following proposition.

Proposition 1.3 (Young's convolution inequality). Given $r \in [1, \infty]$ and Hölder r-conjugates $p, q \in [1, \infty]$, *i.e.* $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then the bad set E(f,g) is of measure zero, and we have

$$\|f * g\|_{L^r} \le \|f\|_{L^p} \|g\|_{L^q}.$$

 $\begin{array}{lll} \textbf{Remark.} & \text{Note that } r = \frac{pq}{p+q-pq} \geq 1 \ \Leftrightarrow \ \frac{pq}{p+q} \geq \frac{1}{2} \ \Leftrightarrow \ p \geq \frac{q}{2q-1} \ \Leftrightarrow \ q \geq \frac{p}{2p-1}, \\ \text{and } r < \infty \ \Leftrightarrow \ p+q > pq \ \Leftrightarrow \ p < \frac{q}{q-1} \ \Leftrightarrow \ q < \frac{p}{p-1}. \end{array}$

Proof. We first bound f * g. By applying generalized Hölder's inequality on $\frac{1}{r} + \frac{r-p}{pr} + \frac{r-q}{qr} = 1$, we have

$$\begin{split} |(f*g)(x)| &\leq \int_{\mathbb{R}^n} |f(x-y)| \, |g(y)| \, dy \\ &= \int_{\mathbb{R}^n} \left(|f(x-y)|^p |g(y)|^q \right)^{1/r} |f(x-y)|^{\frac{r-p}{r}} |g(y)|^{\frac{r-q}{r}} \, dy \\ &\leq \left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q \, dy \right)^{1/r} \left(\int_{\mathbb{R}^n} |f(x-y)|^p \, dy \right)^{\frac{r-p}{pr}} \left(\int_{\mathbb{R}^n} |g(y)|^q \, dy \right)^{\frac{r-q}{qr}} \\ &= \left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q \, dy \right)^{1/r} \|f\|_{L^p}^{\frac{r-p}{r}} \|g\|_{L^q}^{\frac{r-q}{r}} \, . \end{split}$$

Consequently, we have

$$\begin{split} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| \, |g(y)| \, dy \right)^r \, dx &\leq \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q \, dy \, dx \right) \|f\|_{L^p}^{r-p} \, \|g\|_{L^q}^{r-q} \\ &\leq \|f\|_{L^p}^{r-p} \, \|g\|_{L^q}^{r-q} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)|^p \, dx \right) |g(y)|^q \, dy = \|f\|_{L^p}^r \, \|g\|_{L^q}^r \, dy \, dx \end{split}$$

where we use Fubini's theorem in the second inequality. From the last display, we have m(E(f,g)) = 0, and $||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$.

Remark. If $f \in L^p_{\text{loc}}(\mathbb{R}^n)$, and $g \in L^q(\mathbb{R}^n)$ is compactly supported, then $f * g \in L^r_{\text{loc}}(\mathbb{R}^n)$.

Proposition 1.4 (Convolution of compactly supported functions). Let $f, g : \mathbb{R}^n \to \mathbb{R}$.

- (i) If $f, g \in L^1(\mathbb{R}^n)$, then $\operatorname{supp}(f * g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g} := \overline{\{x + y : x \in \operatorname{supp} f, y \in \operatorname{supp} g\}}$. Furthermore, if both f and g are compactly supported on \mathbb{R} , then f * g is also compactly supported. In this case, $\operatorname{supp}(f * g) \subset \operatorname{supp} f + \operatorname{supp} g$.
- (ii) Let $1 \leq p \leq \infty$, and let $k \in \mathbb{N}_0$. If $f \in C_c^k(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then $f * g \in C_u^k(\mathbb{R}^n)$. Furthermore, differentiation commutes with convolution, i.e.,

$$\partial^{\alpha}(f \ast g) = \partial^{\alpha}f \ast g, \qquad \forall |\alpha| \leq k,$$

(iii) Let $1 \leq p \leq \infty$. If $f \in C_c^{\infty}(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then $f * g \in C_u^{\infty}(\mathbb{R}^n)$. Similarly, differentiation commutes with convolution, i.e., $\partial^{\alpha}(f * g) = \partial^{\alpha}f * g$ for multi-indices α .

Remark. Here is a slight modification of assertions (ii) and (iii):

(ii') Let $1 \leq p \leq \infty$, and let $k \in \mathbb{N}_0$. If $f \in C_c^k(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then $f * g \in C_u^k(\mathbb{R}^n)$. Furthermore, differentiation commutes with convolution, i.e.,

$$\partial^{\alpha}(f * g) = \partial^{\alpha}f * g, \qquad \forall |\alpha| \le k,$$

(iii') Let $1 \leq p \leq \infty$. If $f \in C_c^{\infty}(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then $f * g \in C_u^{\infty}(\mathbb{R}^n)$. Similarly, differentiation commutes with convolution, i.e., $\partial^{\alpha}(f * g) = \partial^{\alpha}f * g$ for multi-indices α .

Proof. (i) Let $f, g \in L^1(\mathbb{R}^n)$, and take any $x \in \mathbb{R}^n$. Then

$$(f*g)(x) = \int_{\mathbb{R}^n} f(x-y)g(y)\,dy = \int_{(x-\operatorname{supp} f)\cap\operatorname{supp} g} f(x-y)g(y)\,dy.$$

For $x \notin \operatorname{supp} f + \operatorname{supp} g$, we have $(x - \operatorname{supp} f) \cap \operatorname{supp} g = \emptyset$, which implies (f * g)(x) = 0. Hence

$$(f * g)(x) \neq 0 \Rightarrow x \in \operatorname{supp} f + \operatorname{supp} g \Rightarrow \operatorname{supp} (f * g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g}$$

If $f, g \in C_c(\mathbb{R}^n)$, then $\operatorname{supp} f$ and $\operatorname{supp} g$ are compact in \mathbb{R}^n . Define $\phi(x, y) = x + y$, which is a continuous map on $\mathbb{R}^n \times \mathbb{R}^n$. Then $\operatorname{supp} f + \operatorname{supp} g = \phi(\operatorname{supp} f \times \operatorname{supp} g)$ is also compact. Consequently, $\operatorname{supp} f + \operatorname{supp} g$ is closed, and its closed subset $\operatorname{supp}(f * g)$ is also compact. which implies $f * g \in C_c(\mathbb{R}^n)$.

(ii) Step I: We first show the case k = 0. Let q = p/(p-1). Note that f is continuous and compact supported, then $m(\operatorname{supp} f) < \infty$, f is uniformly continuous, and $||f||_{\infty} = \max_{x \in \operatorname{supp} f} |f(x)| < \infty$. By Hölder's inequality, for all $x \in \mathbb{R}^n$, we have

$$\int_{\mathbb{R}^n} |f(x-y)| |g(y)| \, dy \le \|f\|_{L^q} \|g\|_{L^p} \le m \big(\operatorname{supp} f \big)^{1/q} \|f\|_{\infty} \|g\|_{L^p} < \infty.$$

Then f * g is well-defined on \mathbb{R}^n . To show uniform continuity of f * g, we fix $\epsilon > 0$ and let η be such that $|x - x'| < \eta$ implies $|f(x) - f(x')| < \epsilon$. Then

$$\begin{aligned} |(f * g)(x) - (f * g)(x')| &= \left| \int_{\mathbb{R}^n} \left[f(x - y) - f(x' - y) \right] g(y) \, dy \right| \\ &\leq 2m \big(\operatorname{supp} f \big)^{1/q} \, \|g\|_{L^p} \, \epsilon. \end{aligned}$$

Step II: We prove the case k = 1. It suffices to show the interchangeability of derivative and integral. Given any quantity h > 0, we have

$$\frac{(f*g)(x+he_i) - (f*g)(x)}{h} = \int_{\mathbb{R}^n} \frac{f(x+he_i-y) - f(x-y)}{h} g(y) \, dy.$$
(1.2)

Since $f \in C_c^1(\mathbb{R}^n)$, by Lagrange's mean value theorem, there exists $\xi \in [0, 1]$ such that

$$\left|\frac{f(x+he_i-y)-f(x-y)}{h}\right| = \left|\partial_{x_i}f(x+\xi he_i-y)\right|,\tag{1.3}$$

Note that $\partial_{x_i} f$ is also continuous and compactly supported on \mathbb{R}^n , the RHS of (1.3) is bounded by $\|\partial_{x_i} f\|_{\infty}$, and the integrand in (1.2) is dominated by an integrable function $\|\partial_{x_i} f\|_{\infty} g$. Using Lebesgue's dominate convergence theorem, we have

$$\lim_{h \to 0} \int_{\mathbb{R}^n} \frac{f(x + he_i - y) - f(x - y)}{h} g(y) \, dy = \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_i} (x - y) g(y) \, dy.$$

Therefore $\partial_{x_i}(f*g) = \partial_{x_i}f*g$. Since $\partial_{x_i}f \in C_c(\mathbb{R}^n)$, we have $\partial_{x_i}(f*g) \in C_u(\mathbb{R}^n)$, and $f*g \in C_u^1(\mathbb{R}^n)$.

Step III: Use induction. Suppose our conclusion holds for $C_c^{k-1}(\mathbb{R}^n)$. For each $f \in C_c^k(\mathbb{R}^n) \subset C_c^{k-1}(\mathbb{R}^n)$, $\partial^{k-1}f \subset C_c^1(\mathbb{R}^n)$. By Step II, for any $|\alpha| = k - 1$,

$$\partial^{\alpha+e_i}(f\ast g)=\partial_{x_i}(\partial^\alpha(f\ast g))=\partial_{x_i}(\partial^\alpha f\ast g)=(\partial^{\alpha+e_i}f)\ast g,$$

which is uniformly continuous on \mathbb{R}^n . Hence $f * g \in C_u^k(\mathbb{R}^n)$.

(iii) Note that $C_c^{\infty}(\mathbb{R}^n) = \bigcap_{k=0}^{\infty} C_c^k(\mathbb{R}^n)$, we have $\partial^{\alpha}(f * g) = \partial^{\alpha}f * g$ for all $\alpha \in \mathbb{N}_0^n$. Following Step II, $\partial^{\alpha}f \in C_c(\mathbb{R}^n)$ implies $\partial^{\alpha}(f * g) \in C_u(\mathbb{R}^n)$ for all $\alpha \in \mathbb{N}_0^n$. Hence $f * g \in \bigcap_{k=0}^{\infty} C_u^k(\mathbb{R}^n) = C_u^{\infty}(\mathbb{R}^n)$.

Translation operators. Let X be a vector space, let Y^X be the set of functions $f: X \to Y$, and let s be a vector in X. The translation operator $\tau_s: Y^X \to Y^X$ is defined as

$$(\tau_s f)(x) = f(x-s), \ \forall f \in Y^X.$$

The following proposition gives a description of the continuity of $(\tau_s)_{s \in X}$ in C_c and L^p spaces.

Proposition 1.5. Let $1 \le p < \infty$.

- (i) For any $f \in C_c(\mathbb{R}^n)$, $\tau_s f \to f$ uniformly and in L^p -norm as $s \to 0$.
- (ii) For any $f \in L^p(\mathbb{R}^n)$, $\tau_s f \to f$ in L^p -norm as $s \to 0$.

Proof. Let $f \in C_c(\mathbb{R}^n)$, and let $B_1 = \{x \in \mathbb{R}^n : |x| \le 1\}$ be the compact unit ball in \mathbb{R}^n . The collection of functions $\{\tau_s f : |s| \le 1\}$ has a common support

$$K = \bigcup_{|s| \le 1} \operatorname{supp}(\tau_s f) = \operatorname{supp} f + B_1 = \{x + y : x \in \operatorname{supp} f, y \in B_1\}.$$

Since the addition operation is continuous, K is also a compact subset of \mathbb{R}^n .

By uniform continuity of f, given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ for all $|x - y| < \delta$. Hence $\tau_s f \to f$ uniformly as $s \to 0$. Moreover, for any s with $|s| < |\min(\delta, 1)|$, we have

$$\|\tau_s f - f\|_{L^p}^p = \int_K |f(x - s) - f(x)|^p dx \le \mu(K) \,\epsilon^p.$$

Since $\mu(K) < \infty$, and ϵ is arbitrary, we conclude that $\|\tau_s f - f\|_{L^p} \to 0$ as $s \to 0$.

Now we assume $f \in L^p(\mathbb{R}^n)$, and fix $\epsilon > 0$. Since $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, there exists $g \in C_c(\mathbb{R}^n)$ such that $||f - g||_{\infty} < \epsilon/3$. Choose δ such that $||\tau_s g - g||_{L^p} < \epsilon/3$ for all $|s| < \delta$. Then for all $|s| < \delta$,

$$\|\tau_s f - f\|_{L^p} \le \|\tau_s f - \tau_s g\|_{L^p} + \|\tau_s g - g\|_{L^p} + \|g - f\|_{L^p} = 2\|f - g\| + \|\tau_s g - g\|_{L^p} < \epsilon.$$

Therefore, $\lim_{s\to 0} \|\tau_s f - f\|_{L^p} = 0$ for all $f \in L^p(\mathbb{R}^n)$.

Proposition 1.6 (Mollification). Let $\phi \in L^1(\mathbb{R}^n)$, with $\int_{\mathbb{R}^n} \phi \, dx = a$. Given t > 0, define

$$\phi_t(x) = \frac{1}{t^n} \phi\left(\frac{x}{t}\right). \tag{1.4}$$

(i) If $f \in L^p(\mathbb{R}^n)$, $f * \phi_t \to af$ in $L^p(\mathbb{R}^n)$ as $t \to 0$.

(ii) If f is bounded and uniformly continuous, $f * \phi_t \to af$ uniformly as $t \to 0$.

Proof. Using the decomposition $\phi = \phi^+ - \phi^-$, we may assume $\phi \ge 0$ on \mathbb{R}^n . We further assume a = 1 by replacing ϕ by ϕ/a if necessary. Then

$$(f * \phi_t)(x) - f(x) = \int_{|y| \le t} (f(x - y) - f(x))\phi_t(y) \, dy = \int_{|y| \le t} (\tau_y f - f)(x)\phi_t(y) \, dy.$$

By Jensen's inequality and Fubini's theorem,

$$\begin{split} \int_{\mathbb{R}^n} |(f * \phi_t)(x) - f(x)|^p \, dx &= \int_{\mathbb{R}^n} \left| \int_{|y| \le t} (\tau_y f - f)(x) \phi_t(y) \, dy \right|^p \, dx \\ &\le \int_{\mathbb{R}^n} \int_{|y| \le t} |\tau_y f(x) - f(x)|^p \, \phi_t(y) \, dy \, dx \le \sup_{|y| < t} \|\tau_y f - f\|_{L^p}. \end{split}$$

By continuity of the translation operator, the first result follows. For the second result, use the same estimate for $f * \phi_t - f$ and the uniform continuity of f.

When we establish the density arguments of C_c^{∞} functions, the above result is very useful.

Proposition 1.7. For $1 \le p < \infty$, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.

Proof. By the first assertion in Proposition 1.6, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $C_c(\mathbb{R})$ in $\|\cdot\|_1$ norm. Since $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, the result follows.

Proposition 1.8. For $1 \leq p < \infty$, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $C_0(\mathbb{R}^n)$.

Proof. By the second assertion in Proposition 1.6, $C_c^{\infty}(\mathbb{R}^n)$ is dense in $C_c(\mathbb{R})$ in $\|\cdot\|_{\infty}$ norm. Since $C_0(\mathbb{R}^n)$ is the closure of $C_c(\mathbb{R}^n)$ in $\|\cdot\|_{\infty}$ norm, the result follows.

Aside from the convergence in L^p -norm discussed in Proposition 1.6, we are also interested in the pointwise convergence property of mollification $f * \phi_{\epsilon}$.

Proposition 1.9 (Mollification). Assume $\phi \in L^1(\mathbb{R}^n)$ satisfies $|\phi(x)| \leq C(1+|x|)^{-n-\gamma}$ for some $C, \gamma > 0$, and $\int_{\mathbb{R}^n} \phi \, dx = a$. Define ϕ_{ϵ} as in (1.4). Let $1 \leq p \leq \infty$. If $f \in L^p(\mathbb{R}^n)$, then $(f * \phi_{\epsilon})(x) \to af(x)$ as $\epsilon \to 0$ for every Lebesgue point x of f.

Proof. If x is a Lebesgue point of f, we have

$$\lim_{r \to 0^+} \frac{1}{r^n} \int_{B(x,r)} |f(y) - f(x)| \, dy = 0.$$

For any $\epsilon > 0$, we choose $\delta > 0$ such that $\int_{B(x,r)} |f(y) - f(x)| \, dy < r^n \epsilon$ for all $r \leq \delta$, and set

$$I_{1} = \int_{|y| < \delta} |f(x-y) - f(x)| |\phi_{t}(y)| \, dy, \quad I_{2} = \int_{|y| \ge \delta} |f(x-y) - f(x)| |\phi_{t}(y)| \, dy$$

We claim that I_1 is bounded by $A\epsilon$, where A is independent of t, and $I_2 \to 0$ as $t \to 0$. Since

$$|(f * \phi_t)(x) - af(x)| \le I_1 + I_2,$$

we will have

$$\limsup_{t \to 0^+} |(f * \phi_t)(x) - af(x)| \le A\epsilon,$$

Since $\epsilon > 0$ is arbitrary, the proof will be completed.

To estimate I_1 , let N be the integer such that $2^N \leq \delta/t < 2^{N+1}$, if $\delta/t \geq 1$, and N = 0 if $\delta/t < 1$. We view the ball $|y| < \delta$ as the union of the annuli $2^{-k}\delta \leq |y| < 2^{1-k}\delta$, $1 \leq k \leq N$ and the ball $|y| < 2^{-N}\delta$. On the k^{th} annulus we use the estimate

$$\left|\phi_t(y)\right| = \frac{1}{t^n} \left|\phi\left(\frac{y}{t}\right)\right| \le Ct^{-n} \left|\frac{y}{t}\right|^{-n-\gamma} \le Ct^{-n} \left(\frac{2^{-k}\delta}{t}\right)^{-n-\gamma}$$

and in the ball $|y| < 2^{-N}\delta$, we use the estimate $|\phi_t(y)| \leq Ct^{-n}$. Thus

$$\begin{split} I_{1} &\leq \sum_{k=1}^{N} Ct^{-n} \left(\frac{2^{-k}\delta}{t}\right)^{-n-\gamma} \int_{2^{-k}\delta \leq |y| < 2^{1-k}\delta} |f(x-y) - f(x)| \, dy + Ct^{-n} \int_{|y| < 2^{-N}\delta} |f(x-y) - f(x)| \, dy \\ &\leq C\epsilon \sum_{k=1}^{N} (2^{1-k}\delta)^{n} t^{-n} \left(\frac{2^{-k}\delta}{t}\right)^{-n-\gamma} + C\epsilon (2^{-N}\delta)^{n} t^{-n} = 2^{n} C\epsilon \left(\frac{\delta}{t}\right)^{-\gamma} \sum_{k=1}^{N} 2^{k\gamma} + C\epsilon \left(\frac{2^{-N}\delta}{t}\right)^{n} \\ &= 2^{n} C\epsilon \left(\frac{\delta}{t}\right)^{-\gamma} \frac{2^{(N+1)\gamma} - 2^{\gamma}}{2^{\gamma} - 1} + C\epsilon \left(\frac{2^{-N}\delta}{t}\right)^{n} \leq \underbrace{2^{n} C \left(\frac{2^{\gamma}}{2^{\gamma} - 1} + 1\right)}_{=:A} \epsilon. \end{split}$$

As for I_2 , if q is the conjugate exponent to p and χ is the characteristic function of the set $\{y \in \mathbb{R}^n : |y| \ge \delta\}$,

$$I_{2} \leq \int_{|y| \geq \delta} \left(|f(y-x)| - |f(x)| \right) |\phi_{t}(y)| \, dy \leq \|f\|_{L^{p}} \|\chi\phi_{t}\|_{L^{q}} + |f(x)| \|\chi\phi_{t}\|_{L^{1}}.$$

If $q = \infty$,

$$\|\chi\phi_t\|_{L^{\infty}} \le Ct^{-n} \left(1 + \frac{\delta}{t}\right)^{-n-\gamma} = \frac{Ct^{\delta}}{(t+\delta)^{n+\gamma}} \le \frac{Ct^{\delta}}{\delta^{n+\gamma}},$$

which converges to 0 as $t \to 0$. If $1 \le q < \infty$, we switch to the sphere coordinates:

$$\begin{aligned} \|\chi\phi_t\|_{L^q} &= \int_{|y|\ge \delta} t^{-nq} \left|\phi\left(\frac{y}{t}\right)\right|^q dy = \int_{|z|\ge \delta/t} t^{n(1-q)} |\phi(z)|^q dz \\ &\le C_n t^{n(1-q)} \int_{\delta/t}^{\infty} r^{n-1} C(1+r)^{-(n+\gamma)q} dr \\ &\le C_n C t^{n(1-q)} \int_{\delta/t}^{\infty} r^{n-1-(n+\gamma)q} dr \\ &= C_n C t^{n(1-q)} \frac{(\delta/t)^{n-(n+\gamma)q}}{(n+\gamma)q-n} = \frac{C_n C \delta^{n-(n+\gamma)q} t^{\gamma q}}{(n+\gamma)q-n}, \end{aligned}$$

which also converges to 0 as $t \to 0$. Therefore $I_2 \to 0$ as $t \to 0$, and we are done.

Finally we see an application of the mollification.

Proposition 1.10 (C^{∞} -Urysohn lemma). Let $U \subset \mathbb{R}^n$ be an open set, and let $K \subset U$ be a compact set. There exists $f \in C_c^{\infty}(U)$ such that $0 \leq f \leq 1$, and f = 1 on K.

Proof. Since K is compact and U is open, we take $0 < \epsilon < d(K, U^c)$. Define

$$V = \left\{ x \in U : d(x, K) \le \frac{\epsilon}{3} \right\}, \quad \text{and} \quad W = \left\{ x \in U : d(x, K) < \frac{2\epsilon}{3} \right\}.$$

Then V is a compact set, W is an open set, and $K \subset V^{\circ} \subset V \subset W \subset \overline{W} \subset U$. By Urysohn's lemma, there exists $g \in C_c(W)$ such that $0 \leq g \leq 1$ and g = 1 on V. Now we choose $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that ϕ is supported on the closed ball $\overline{B(0, \frac{\epsilon}{3})}$ and $\int_{\mathbb{R}^n} \phi(x) dx = 1$. Then $f = g * \phi$ is the desired function.

1.2 The Schwartz Space

Definition 1.11 (Schwartz space). The Schwartz space consists of all C^{∞} -functions, which, together with their derivatives, vanishes at infinity faster than any power of |x|. More precisely, for any $f \in C^{\infty}(\mathbb{R}^n)$, any nonnegative integer N and any multi-index $\alpha \in \mathbb{N}_0^n$, define the norm

$$||f||_{(N,\alpha)} = \sup_{x \in \mathbb{R}^n} (1+|x|)^N |\partial^{\alpha} f(x)|.$$

The Schwartz space is

$$\mathcal{S}(\mathbb{R}^n) = \left\{ f \in C^{\infty}(\mathbb{R}^n) : \|f\|_{(N,\alpha)} < \infty \text{ for all } N \in \mathbb{N}_0, \ \alpha \in \mathbb{N}_0^n \right\}.$$

Remark. For any $\phi \in C_c^{\infty}(\mathbb{R}^n)$, all its derivatives are also C_c^{∞} , and

$$\|\phi\|_{(N,\alpha)} \le \sup_{x \in \operatorname{supp} \phi} (1+|x|)^N \|\partial^{\alpha}\phi\|_{\infty} < \infty.$$

Therefore, we have $C_c^{\infty}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$.

Proof. It suffices to show the completeness of $\mathcal{S}(\mathbb{R}^n)$. Let (f_k) be a Cauchy sequence in $\mathcal{S}(\mathbb{R}^n)$, which implies that $||f_k - f_m||_{(N,\alpha)} \to 0$ as $k, m \to \infty$ for all $N \in \mathbb{N}_0$ and all multi-indices $\alpha \in \mathbb{N}_0^n$. In particular, for each α , the sequence $(\partial^{\alpha} f_k)$ converges uniformly to a function g_{α} . We denote by $e_j = (0, \cdots, \frac{1}{4^{i+1}}, 0, \cdots, 0)$. Then

$$f_k(x + he_j) - f_k(x) = \int_0^h \frac{\partial f_k}{\partial x_j}(x + te_j) dt.$$

Letting $k \to \infty$ and apply dominated convergence theorem, we obtain $g_0(x + he_j) - g_0(x) = \int_0^h g_{e_j}(x + te_j) dt$, which implies that $\partial_{x_j} g_0 = g_{e_j}$ by the fundamental theorem of calculus. An inductive argument on $|\alpha|$ implies $D^{\alpha}g_0 = g_{\alpha}$. Then $||f_k - g_0||_{(N,\alpha)} \to 0$ for all $N \in \mathbb{N}_0$ and all $\alpha \in \mathbb{N}_0^n$.

Proposition 1.13 (Characterization of Schwartz space). Let $f \in C^{\infty}(\mathbb{R}^n)$. The following are equivalent: (i) $f \in \mathcal{S}(\mathbb{R}^n)$;

- (ii) For all multi-indices $\alpha, \beta \in \mathbb{N}_0^n$, the function $x^\beta \partial^\alpha f$ is bounded;
- (iii) For all multi-indices $\alpha, \beta \in \mathbb{N}_{0}^{n}$, the function $\partial^{\alpha}(x^{\beta}f)$ is bounded.

Proof. To show (i) \Rightarrow (ii), note that $|x|^{\beta} \leq (1+|x|)^{N}$ for $|\beta| \leq N$. On the other hand, if (ii) holds, we fix an order $N \in \mathbb{N}$ and a multi-index $\alpha \in \mathbb{N}_{0}^{n}$, and take

$$\delta_N = \min\left\{\sum_{j=1}^n |x_j|^N : |x|^2 = \sum_{j=1}^n |x_j|^2 = 1\right\} > 0.$$

By homogeneity, we have $\sum_{j=1}^{n} |x_j|^N \ge \delta_N |x|^N$ for all $x \in \mathbb{R}^n$, and

$$(1+|x|)^{N} \le 2^{N} \left(1+|x|^{N}\right) \le 2^{N} \left(1+\frac{1}{\delta_{N}} \sum_{j=1}^{n} |x_{j}|^{N}\right) \le \frac{2^{N}}{\delta_{N}} \sum_{|\beta| \le N} |x^{\beta}|.$$

Hence (ii) \Rightarrow (i). The equivalence of (ii) and (iii) follows from the fact that each $\partial^{\alpha}(x^{\beta}f)$ is a linear combination of terms of the form $x^{\delta}\partial^{\gamma}f$ and vice versa, by the product rule.

Proposition 1.14. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$. Then $f * g \in \mathcal{S}(\mathbb{R}^n)$.

Proof. By Proposition 1.4 (iii), we have $f * g \in C^{\infty}(\mathbb{R}^n)$. Furthermore, since

$$1 + |x| \le 1 + |x - y| + |y| \le (1 + |x - y|) (1 + |y|),$$

we have for all order $N \in \mathbb{N}_0$ and multi-index $\alpha \in \mathbb{N}_0^n$ that

$$\begin{aligned} (1+|x|)^{N} \left| \partial^{\alpha} (f*g)(x) \right| &\leq \int_{\mathbb{R}^{n}} \left(1+|x-y| \right)^{N} \left| \partial^{\alpha} (x-y) \right| (1+|y|)^{N} \left| g(y) \right| dy \\ &\leq \|f\|_{(N,\alpha)} \|g\|_{(N+n+1,\alpha)} \int_{\mathbb{R}^{n}} \left(1+|y| \right)^{-n-1} dy \\ &\leq \|f\|_{(N,\alpha)} \|g\|_{(N+n+1,\alpha)} \int_{0}^{\infty} \frac{C_{n}}{1+r^{2}} dr < \infty, \end{aligned}$$

where C_n is some constant depends only on the dimension n.

Proposition 1.15. $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ $(1 \le p < \infty)$ and in $C_0(\mathbb{R}^n)$.

Proof. Since $\mathcal{S}(\mathbb{R}^n) \supset C_c^{\infty}(\mathbb{R}^n)$, the result follows from Propositions 1.7 and 1.8.

2 Fourier Transform

2.1 Fourier Series

In this part, we study the periodic functions on \mathbb{R}^n . A function $f: \mathbb{R}^n \to \mathbb{C}$ is said to be 2π -periodic, if

$$f(x + 2\pi\kappa) = f(x)$$

for all $x \in \mathbb{R}^n$ and all $\kappa \in \mathbb{Z}^n$. According to periodicity, every 2π -periodic function f is completely determined by its values on the cube $[0, 2\pi)^n$. Hence we may regard f as a function on the quotient space

$$\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n = \{ x + 2\pi \mathbb{Z}^n : x \in \mathbb{R}^n \}$$

We call \mathbb{T}^n the *n*-dimensional torus. For measure-theoretic purposes, we identify \mathbb{T}^n with the cube $Q = [0, 2\pi)^n$, and the Lebesgue measure on \mathbb{T}^n is induced by Lebesgue measure on Q. In particular, $m(\mathbb{T}^n) = m(Q) = (2\pi)^n$. Functions on \mathbb{T}^n maybe considered as periodic functions on \mathbb{R}^n or as functions Q, depending on the context.

Theorem 2.1. The functions $(e^{i\kappa \cdot x})_{\kappa \in \mathbb{Z}^n}$ form an orthogonal basis of $L^2(\mathbb{T}^n)$.

Proof. Let \mathcal{A} be the set of all finite linear combinations of $e^{i\kappa \cdot x}$. Then \mathcal{A} is a self-adjoint algebra that separates points and vanishes at no points of \mathbb{T}^n . Since \mathbb{T}^n is compact, by Stone-Weierstrass theorem, \mathcal{A} is dense in $C(\mathbb{T}^n)$ in the supremum norm, and hence in L^2 -norm. Since $C(\mathbb{T}^n)$ is dense in $L^2(\mathbb{T}^n)$, the result follows. \Box

The Fourier series of a periodic function is then defined by its expansion under the orthogonal basis.

Definition 2.2. If $f \in L^2(\mathbb{T}^n)$, we define its Fourier transform $\widehat{f} : \mathbb{Z}^n \to \mathbb{C}$ by

$$\widehat{f}(\kappa) = \frac{\langle f, e^{i\kappa \cdot x} \rangle_{L^2}}{\langle e^{i\kappa \cdot x}, e^{i\kappa \cdot x} \rangle_{L^2}} = \frac{1}{(2\pi)^n} \int_Q f(x) e^{-i\kappa \cdot x} \, dx,$$
(2.1)

and we call the series $\sum_{\kappa \in \mathbb{Z}^n} \widehat{f}(\kappa) e^{i \kappa \cdot x}$ the Fourier series of f.

Remark I. According to Theorem 2.1, the Fourier series of a function $f \in L^2(\mathbb{T}^n)$ converges to f in L^2 . Consequently, we have the Parseval's equality:

$$\|\widehat{f}\|_{\ell^2}^2 := \sum_{\kappa \in \mathbb{Z}^n} |\widehat{f}(\kappa)|^2 = \frac{1}{(2\pi)^n} \|f\|_{L^2}^2.$$

Hence the Fourier transform \mathcal{F} maps $L^2(\mathbb{T}^n)$ onto $\ell^2(\mathbb{Z}^n)$.

Remark II. In fact, the definition (2.1) of Fourier transform makes sense if $L^1(\mathbb{T}^n)$, and $|\hat{f}(\kappa)| \leq (2\pi)^{-n} ||f||_{L^1}$. Hence the Fourier transform \mathcal{F} is a bounded linear map from $L^1(\mathbb{T}^n)$ to $\ell^{\infty}(\mathbb{Z}^n)$.

Theorem 2.3 (Convolution Theorem). Let $f, g \in L^1(\mathbb{R}^n)$. Then

$$\widehat{f \ast g} = (2\pi)^n \widehat{f} \,\widehat{g}$$

Proof. By Young's convolution inequality [Proposition 1.3], $f * g \in L^1(\mathbb{T}^n)$. By Fubini's theorem,

$$\begin{split} \widehat{(f*g)}(\kappa) &= \frac{1}{(2\pi)^n} \int_Q \int_Q f(x-y) g(y) e^{-i\kappa \cdot x} \, dy \, dx = \int_Q \left(\frac{1}{(2\pi)^n} \int_Q f(x-y) e^{-i\kappa \cdot (x-y)} \, dx \right) g(y) e^{-i\kappa \cdot y} \, dy \\ &= \widehat{f}(\kappa) \int_Q g(y) e^{-i\kappa \cdot y} \, dy = (2\pi)^n \widehat{f}(\kappa) \, \widehat{g}(\kappa). \end{split}$$

Thus we finish the proof.

2.2 Fourier Transform on $L^1(\mathbb{R}^n)$

Definition 2.4 (Fourier transform). For $f \in L^1(\mathbb{R}^n)$, we define its *Fourier transform* by

$$(\mathcal{F}f)(\omega) = \widehat{f}(\omega) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-i\omega \cdot x} \, dx, \quad \omega \in \mathbb{R}^n,$$

and its inverse Fourier transform by

$$(\mathcal{F}^{-1}f)(x) = \check{f}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(\omega) e^{i\omega \cdot x} \, d\omega, \quad x \in \mathbb{R}^n.$$

Remark. By definition, both \mathcal{F} and \mathcal{F}^{-1} are linear operators. That is, for all $f, g \in L^1(\mathbb{R}^n)$ and $\alpha, \beta \in \mathbb{C}$,

$$\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F}f + \beta \mathcal{F}g, \quad \mathcal{F}^{-1}(\alpha f + \beta g) = \alpha \mathcal{F}^{-1}f + \beta \mathcal{F}^{-1}g$$

Also, we have $\check{f}(x) = \widehat{f}(-x)$. In the sequel, we first consider the Fourier transform. **Theorem 2.5** (Riemann-Lebesgue lemma). The Fourier transform \mathcal{F} maps $L^1(\mathbb{R}^n)$ into $C_0(\mathbb{R}^n)$. *Proof.* Fix $f \in L^1(\mathbb{R}^n)$. By definition, for all $\omega \in \mathbb{R}^n$,

$$|\widehat{f}(\omega)| \le (2\pi)^{-n/2} \int_{\mathbb{R}^n} |f(x)| \, dx$$

Hence \widehat{f} is bounded, and

$$\|\widehat{f}\|_{\infty} \le (2\pi)^{-n/2} \|f\|_{L^1}.$$
(2.2)

To show continuity of \widehat{f} , use dominated convergence theorem:

$$\lim_{h \to 0} f(\omega + h) - f(\omega) = (2\pi)^{-n/2} \lim_{h \to 0} \int \underbrace{f(x)e^{-ix \cdot \omega} \left(e^{-ix \cdot h} - 1\right)}_{dominated \ by \ 2|f| \in L^1(\mathbb{R}^n)} dx$$
$$= (2\pi)^{-n/2} \int f(x)e^{-ix \cdot \omega} \lim_{h \to 0} \left(e^{-ix \cdot h} - 1\right) \ dx = 0.$$

Hence \hat{f} is a bounded continuous function. It remains to show that $\hat{f}(\omega) \to 0$ as $|\omega| \to \infty$. Note that

$$\widehat{f}(\omega) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \omega} dx = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f\left(x + \frac{\omega\pi}{|\omega|^2}\right) e^{-i\left(x + \frac{\omega\pi}{|\omega|^2}\right) \cdot \omega} dx$$
$$= -(2\pi)^{-n/2} \int_{\mathbb{R}^n} f\left(x + \frac{\omega\pi}{|\omega|^2}\right) e^{-ix \cdot \omega} dx.$$

By averaging,

$$\begin{split} |\widehat{f}(\omega)| &= \frac{(2\pi)^{-n/2}}{2} \left| \int_{\mathbb{R}^n} \left(f(x) - f\left(x + \frac{\omega\pi}{|\omega|^2}\right) \right) e^{-ix \cdot \omega} \, dx \right| \\ &\leq \frac{(2\pi)^{-n/2}}{2} \int_{\mathbb{R}^n} \left| f(x) - f\left(x + \frac{\omega\pi}{|\omega|^2}\right) \right| \, dx \\ &= \frac{(2\pi)^{-n/2}}{2} \| f - \tau_h f \|_{L^1}, \quad where \quad h = -\frac{\omega\pi}{|\omega|^2}. \end{split}$$

By translation continuity, the last display converges to 0 as $|\omega| \to \infty$.

Remark. By (2.2), the Fourier transform $\mathcal{F}: L^1(\mathbb{R}^n) \to C_0(\mathbb{R}^n)$ is a bounded linear operator.

Proposition 2.6 (Properties of Fourier transform). Let $f, g \in L^1(\mathbb{R}^n)$.

(i) $\int_{\mathbb{R}^n} \widehat{f}(x)g(x) dx = \int_{\mathbb{R}^n} f(x)\widehat{g}(x) dx.$ (ii) $\overline{\widehat{f}} = \overline{\widetilde{f}}, and \ \overline{\widetilde{f}} = \overline{\widehat{f}}.$

- (iii) (Translation/Modulation) Let $\xi \in \mathbb{R}^n$. Then $\widehat{(\tau_{\xi}f)}(\omega) = e^{-i\omega \cdot \xi} \widehat{f}(\omega)$, and $\widehat{e^{i\xi \cdot x}f} = \tau_{\xi}\widehat{f}$.
- (iv) (Linear transformation) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation, and $S = (T^*)^{-1}$ is its inverse transpose, then

$$\widehat{f \circ T} = \left|\det T\right|^{-1} \widehat{f} \circ S$$

In particular, if T is a rotation matrix, i.e. $T^*T = TT^* = \text{Id}$, then $\widehat{f \circ T} = \widehat{f} \circ T$; if $Tx = t^{-1}x$ is a dilation, then $(\widehat{f \circ T})(\omega) = t^n \widehat{f}(t\omega)$.

Proof. (i) By Fubini's theorem,

$$\int_{\mathbb{R}^n} \widehat{f}(x)g(x) \, dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(\omega)e^{-i\omega \cdot x} \, d\omega \right) g(x) \, dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(\omega)g(x)e^{-i\omega \cdot x} \, dx \, d\omega = \int_{\mathbb{R}^n} f(\omega)\widehat{g}(\omega) \, d\omega$$

(ii) We only prove the first identity (the second is similar):

$$\int_{\mathbb{R}^n} \overline{f(x)} e^{-i\omega \cdot x} \, dx = \overline{\int_{\mathbb{R}^n} f(x) e^{i\omega \cdot x} \, dx} = \overline{\check{f}(x)}.$$

(iii) By definition,

$$\widehat{(\tau_{\xi}f)}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x-\xi) e^{-i\omega \cdot x} \, dx = \frac{1}{(2\pi)^{n/2}} e^{-i\omega \cdot \xi} \int_{\mathbb{R}^n} f(x-\xi) e^{-i\omega \cdot (x-\xi)} \, dx = e^{i\omega \cdot \xi} \widehat{f}(\omega),$$

and

$$(\widehat{e^{i\xi\cdot x}f})(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i\xi\cdot x} f(x) e^{-i\omega\cdot x} \, dx = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i(\omega-\xi)\cdot x} \, dx = \widehat{f}(\omega-\xi).$$

(iv) By definition,

$$\begin{split} \widehat{(f \circ T)}(\omega) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(Tx) e^{i\omega \cdot x} \, dx \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{|\det T|} \int_{\mathbb{R}^n} f(y) e^{i\omega \cdot T^{-1}y} \, dy \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{|\det T|} \int_{\mathbb{R}^n} f(y) e^{iS\omega \cdot y} \, dy = \frac{1}{|\det T|} \widehat{f}(S\omega). \end{split}$$

Thus we finish the proof.

Remark. Let $\epsilon > 0$. Recall our notation that $\phi_{\epsilon}(x) = \frac{1}{\epsilon^n} \phi(\frac{x}{\epsilon})$, we have

$$\widehat{\phi_{\epsilon}}(\omega) = \widehat{\phi}(\epsilon\omega)$$

Moreover, if we let g(x) = f(-x), then

$$\widehat{g}(x) = \widehat{f}(-x) = \widecheck{f}(x).$$

Next we discuss the relation between Fourier transform and differentiation.

Proposition 2.7 (Differentiation). Let $k \in \mathbb{N}_0$ and $f \in L^1(\mathbb{R}^n)$. (i) If $x^{\alpha}f \in L^1(\mathbb{R}^n)$ for all multi-indices $|\alpha| \leq k$, then $\widehat{f} \in C^k(\mathbb{R}^n)$, and

$$\partial^{\alpha}\widehat{f} = \left[(-ix)^{\alpha}f\right]\widehat{}$$

(ii) If $f \in C^k(\mathbb{R}^n)$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ for all multi-indices $|\alpha| \leq k$, and $\partial^{\alpha} f \in C_0(\mathbb{R}^n)$ for all $|\alpha| \leq k-1$, then

$$\widehat{\partial^{\alpha} f}(\omega) = (i\omega)^{\alpha} \widehat{f}(\omega)$$

Proof. (i) Let $F(x, \omega) = f(x)e^{-i\omega \cdot x}$. Then

$$\frac{\partial F}{\partial \omega_j}(x,\omega) = -ix_j f(x) e^{-i\omega \cdot x}, \quad j = 1, 2, \cdots, n.$$

Fix $j \in \{1, 2, \dots, n\}$. Note that when h is near 0, we have

$$\left|\frac{F(x,\omega+he_j)-F(x,\omega)}{h}\right| = \left|\frac{\mathrm{e}^{-ihx_j}-1}{h}\right||f(x)| \le 2|x_jf(x)|.$$

Since $x_j f \in L^1(\mathbb{R}^n)$, by dominated convergence theorem,

$$\lim_{h \to 0} \frac{\widehat{f}(\omega + he_j) - \widehat{f}(\omega)}{h} = \frac{1}{(2\pi)^{n/2}} \lim_{h \to 0} \int_{\mathbb{R}^n} \frac{F(x, \omega + he_j) - F(x, \omega)}{h} dx$$
$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \lim_{h \to 0} \frac{F(x, \omega + he_j) - F(x, \omega)}{h} dx$$
$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} -ix_j f(x) e^{-i\omega \cdot x} dx = \widehat{-ix_j f}.$$

(ii) Consider $|\alpha| = 1$. Since $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ and $f \in C_0(\mathbb{R}^n)$, use Fubini's theorem and integrate by parts:

$$\begin{split} \widehat{\frac{\partial f}{\partial x_j}}(\omega) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_j}(x) e^{-i\omega \cdot x} \, dx = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \left(\int_{-\infty}^{\infty} \frac{\partial f}{\partial x_j}(x) e^{-i\omega_j x_j} \, dx_j \right) e^{-i\omega_{-j} \cdot x_{-j}} \, dx_{-j} \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \left(f(x) e^{-i\omega_j x_j} \Big|_{x_j = -\infty}^{x_j = -\infty} + i\omega_j \int_{-\infty}^{\infty} f(x) e^{-i\omega_j x_j} \, dx_j \right) e^{-i\omega_{-j} \cdot x_{-j}} \, dx_{-j} \\ &= \frac{i\omega_j}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\omega \cdot x} \, dx = i\omega_j \widehat{f}(\omega). \end{split}$$

Hence we prove the case $k = |\alpha| = 1$ for (i) and (ii). The general case follows from induction on $|\alpha|$. **Theorem 2.8** (Convolution Theorem). Let $f, g \in L^1(\mathbb{R}^n)$. Then

$$\widehat{f \ast g} = (2\pi)^{n/2} \widehat{f} \,\widehat{g}.$$

Proof. By Young's convolution inequality [Proposition 1.3], $f * g \in L^1(\mathbb{R}^n)$. By Fubini's theorem,

$$\begin{split} \widehat{(f*g)}(\omega) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x-y) g(y) e^{-i\omega \cdot x} \, dy \, dx = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x-y) e^{-i\omega \cdot (x-y)} g(y) e^{-i\omega \cdot y} \, dy \, dx \\ &= \int_{\mathbb{R}^n} \left(\frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x-y) e^{-i\omega \cdot (x-y)} \, dx \right) g(y) e^{-i\omega \cdot y} \, dy \\ &= \widehat{f}(\omega) \int_{\mathbb{R}^n} g(y) e^{-i\omega \cdot y} \, dy = (2\pi)^{n/2} \widehat{f}(\omega) \, \widehat{g}(\omega). \end{split}$$

Thus we finish the proof.

We compute the Fourier transform of a function.

Lemma 2.9. Define the function $\Phi : \mathbb{R}^n \to \mathbb{R}$ by $\Phi(x) = e^{-\frac{|x|^2}{2}}$. Then $\Phi = \widehat{\Phi} = \check{\Phi}$. *Proof.* For all $\omega \in \mathbb{R}^n$,

$$\begin{split} \widehat{\Phi}(\omega) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x|^2}{2}} e^{-ix \cdot \omega} \, dx = \prod_{j=1}^n \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-x_j^2/2} e^{-ix_j \omega_j} \, dx_j \right) \\ &= \prod_{j=1}^n \left(\frac{e^{-\omega_j^2/2}}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-(x_j + \mathrm{i}\omega_j)^2/2} \, dx_j \right) = \prod_{j=1}^n \left(\frac{e^{-\omega_j^2/2}}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-x_j^2/2} \, dx_j \right) \\ &= \prod_{j=1}^n e^{-\omega_j^2/2} = e^{-\frac{|\omega|^2}{2}}. \end{split}$$

Hence $\widehat{\Phi} = \Phi$. The case $\widecheck{\Phi} = \Phi$ is similar.

Now we discuss how to recover a function f from its Fourier transform \hat{f} .

Theorem 2.10 (Fourier inversion theorem). Let $f \in L^1(\mathbb{R}^n)$. If $\hat{f} \in L^1(\mathbb{R}^n)$, then $(\hat{f})^{\check{}} = f$ a.e.. *Proof.* We take the function Φ in Lemma 2.9. Consider the function

$$f^{t}(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \Phi(t\omega) \widehat{f}(\omega) e^{i\omega \cdot x} \, d\omega = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Phi(t\omega) f(y) e^{i\omega \cdot (x-y)} \, dy \, d\omega.$$

Since $0 \le \Phi \le 1$ is bounded, $|\Phi(t\omega)\widehat{f}(\omega)| \le \widehat{f}(\omega)$. Since $\widehat{f} \in L^1(\mathbb{R}^n)$, by dominated convergence theorem,

$$\lim_{t \to 0} f^t(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \lim_{t \to 0} \Phi(t\omega) \widehat{f}(\omega) e^{i\omega \cdot x} \, d\omega = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \widehat{f}(\omega) e^{i\omega \cdot x} \, d\omega = (\widehat{f})\check{}(x), \quad \forall x \in \mathbb{R}^n.$$

On the other hand, if we show that $f^t \to f$ in L^1 as $t \to 0$, the result follows. By Fubini's theorem,

$$\begin{split} f^{t}(x) &= \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Phi(t\omega) f(y) e^{i\omega \cdot (x-y)} \, dy \, d\omega \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \left(\frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \Phi(t\omega) e^{i\omega \cdot (x-y)} \, d\omega \right) f(y) \, dy \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \left(\frac{t^{-d}}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \Phi(\xi) f(y) e^{i\frac{\xi}{t} \cdot (x-y)} \, d\xi \right) \, dy \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} t^{-d} \Phi\left(\frac{x-y}{t} \right) f(y) \, dy = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \Phi_{t} \left(x-y \right) f(y) \, dy. \end{split}$$

By Proposition 1.6, $\Phi_t * f \to (2\pi)^{n/2} f$ in L^1 . Thus we complete the proof.

Remark. We also have $\mathcal{F}\check{f} = f$ a.e. under the same assumption. To show this, let g(x) = f(-x). Then

$$(\widehat{g})\check{}(x) = (\mathcal{F}^{-1}\check{f})(x) = (\mathcal{F}\check{f})(-x).$$

Since $(\widehat{g}) = g$ a.e. and g(x) = f(-x), the result follows.

Corollary 2.11. If $f \in L^1(\mathbb{R}^n)$ and $\widehat{f} = 0$ a.e., then f = 0 a.e..

Proof. Clearly $\widehat{f} = 0 \in L^1(\mathbb{R}^n)$. Then $f = (\widehat{f})^{\check{}} = 0$. Here all equalities hold in a.e. sense.

Remark. Also, if $f \in L^1(\mathbb{R}^n)$ and $\check{f} = 0$ a.e., then f = 0 a.e..

2.3 Fourier Transform on $L^2(\mathbb{R}^n)$

Theorem 2.12. The Fourier transform \mathcal{F} is an isomorphism of the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ onto itself.

Proof. Take $f \in \mathcal{S}(\mathbb{R}^n)$. By Proposition 1.13 (i), $x^{\beta}\partial^{\alpha}f \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$ for all multi-indices $\alpha, \beta \in \mathbb{N}_0^n$. By Proposition 2.7 (i), $\hat{f} \in C^{\infty}(\mathbb{R}^n)$, and

$$\widehat{x^{\beta}\partial^{\alpha}f} = i^{|\beta|}\partial^{\beta}\widehat{(\partial^{\alpha}f)} = i^{|\alpha|+|\beta|}\partial^{\beta}(\omega^{\alpha}\widehat{f}).$$

Since $x^{\beta}\partial^{\alpha}f \in L^{1}(\mathbb{R}^{n})$, we have $\partial^{\beta}(\omega^{\alpha}\widehat{f}) \in C_{0}(\mathbb{R}^{n})$, which is bounded. By Proposition 1.13 (ii), $\widehat{f} \in \mathcal{S}(\mathbb{R}^{n})$. Furthermore, since $\int_{\mathbb{R}^{n}} (1+|x|)^{-n-1} dx < \infty$, by Hölder's inequality,

$$\left\|\partial^{\beta}(\omega^{\alpha}\widehat{f})\right\|_{\infty} = \left\|\widehat{x^{\beta}\partial^{\alpha}f}\right\|_{\infty} \le \left\|x^{\beta}\partial^{\alpha}f\right\|_{L^{1}} \le C\left\|(1+|x|)^{n+1}x^{\beta}\partial^{\alpha}f\right\|_{\infty} \le C\|f\|_{(|\beta|+n+1,\alpha)}$$

Following the proof of Proposition 1.13, we have $\|\widehat{f}\|_{(N,\alpha)} \leq C_{N,\alpha} \sum_{|\gamma| \leq |\alpha|} \|f\|_{(N+n+1,\gamma)}$. Hence the Fourier transform \mathcal{F} maps $\mathcal{S}(\mathbb{R}^n)$ continuously into itself. On the other hand, since $\check{f}(x) = \widehat{f}(-x)$, the inverse Fourier transform \mathcal{F}^{-1} also maps the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ into itself. By Fourier inversion theorem [Theorem 2.10], these maps are inverse to each other on $\mathcal{S}(\mathbb{R}^n)$. Hence we complete the proof.

Theorem 2.13 (Plancherel). \mathcal{F} extends from $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ to a unitary isomorphism on $L^2(\mathbb{R}^n)$.

Proof. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$, and let $h = \overline{\widehat{g}}$. Then

$$\widehat{h}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^d} \overline{\widehat{g}(x)} e^{-i\omega \cdot x} \, dx = \frac{1}{(2\pi)^{n/2}} \overline{\int_{\mathbb{R}^d} \widehat{g}(x) e^{i\omega \cdot x} \, dx} = \overline{(\widehat{g})\check{}(\omega)}$$

By Fourier inversion theorem, we have $\hat{h} = \overline{g}$. Hence

$$\begin{split} \langle f,g\rangle_{L^2} &= \int_{\mathbb{R}^d} f(x)\overline{g(x)} \, dx = \int_{\mathbb{R}^d} f(x)\widehat{h}(x) \, dx = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x)h(\omega)e^{-i\omega\cdot x} \, d\omega \, dx \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x)e^{-i\omega\cdot x} \, dx \right) h(\omega) \, d\omega \qquad \text{(By Fubini's theorem)} \\ &= \int_{\mathbb{R}^d} \widehat{f}(\omega)h(\omega) \, d\omega = \int_{\mathbb{R}^d} \widehat{f}(\omega)\overline{\widehat{g}(\omega)} \, d\omega = \langle \widehat{f}, \widehat{g} \rangle_{L^2}. \end{split}$$

Hence $\mathcal{F}|_{\mathcal{S}(\mathbb{R}^n)}$ preserves the L^2 inner product. Now for each $f \in L^2(\mathbb{R}^n)$, since $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$, we can take a sequence $f_k \in \mathcal{S}(\mathbb{R}^n)$ with $f_k \to f$ in L^2 . Then (\widehat{f}_k) is a Cauchy sequence in $L^2(\mathbb{R}^n)$:

$$\lim_{k,j\to\infty} \|\widehat{f}_k - \widehat{f}_j\|_{L^2} = \lim_{k,j\to\infty} \|\widehat{f}_k - \widehat{f}_j\|_{L^2} = \lim_{k,j\to\infty} \|f_k - f_j\|_{L^2} = 0.$$

This sequence converges to a limit $\widehat{f} = \mathcal{F}f \in L^2(\mathbb{R}^n)$. If $g_k \in \mathcal{S}(\mathbb{R}^n)$ with $g_k \to f$ in L^2 , we have

$$\|\widehat{g} - \widehat{f}\|_{L^2} = \lim_{k \to \infty} \|\widehat{g}_k - \widehat{f}_k\|_{L^2} = \lim_{k \to \infty} \|g_k - f_k\|_{L^2} \le \lim_{k \to \infty} \|g_k - f\|_{L^2} + \lim_{k \to \infty} \|f - f_k\|_{L^2} = 0.$$

Hence the limit does not depend on the choice of the sequence (f_k) , and the transform $\hat{f} = \mathcal{F}f$ is well-defined. Furthermore, for all $f, g \in L^2(\mathbb{R}^n)$, we have

$$\langle f,g\rangle_{L^2} = \langle f,\widehat{g}\rangle_{L^2}.$$

Hence \mathcal{F} is a unitary isomorphism on $L^2(\mathbb{R}^n)$.

Remark. Likewise, \mathcal{F}^{-1} also extends from $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ to a unitary isomorphism on $L^2(\mathbb{R}^n)$.

Corollary 2.14. Let $f \in L^2(\mathbb{R}^n)$. Then $(\widehat{f})^{\sim} = f$.

Proof. Take a sequence $f_k \in \mathcal{S}(\mathbb{R}^n)$ with $f_k \to f$ in L^2 . Then $\widehat{f_k} \to \widehat{f}$ in L^2 , and $f_k = (\widehat{f_k}) \stackrel{\sim}{\to} (\widehat{f}) \stackrel{\sim}{\to} (\widehat{f}) \stackrel{\sim}{\to} (L^2)$. \Box

Also, we have an explicit formula for Fourier transform in L^2 .

Corollary 2.15. Let $f \in L^2(\mathbb{R}^n)$. Then

$$\widehat{f}(\omega) = \frac{1}{(2\pi)^{n/2}} \lim_{N \to \infty} \int_{|x| \le N} f(x) e^{-i\omega \cdot x} \, dx$$

where the limit is in L^2 sense.

Proof. We choose $f_N = f\chi_{\{|x| \le N\}}$, which is in $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ by Cauchy-Schwarz inequality, and converges in L^2 to f as $N \to \infty$, by monotone convergence theorem. By Plancherel theorem, $\widehat{f}_N \to \widehat{f}$ in L^2 .

Finally we introduce the convolution theorem for L^2 -functions.

Proposition 2.16. If $f, g \in L^2(\mathbb{R}^n)$, then $(\widehat{f} \ \widehat{g}) \ = (2\pi)^{-n/2} (f * g)$.

Proof. By Plancherel's theorem and Hölder's inequality, we have $\widehat{f}, \widehat{g} \in L^2(\mathbb{R}^n)$, and $\widehat{f}\,\widehat{g} \in L^1(\mathbb{R}^n)$. We fix $x \in \mathbb{R}^n$, and set $h_x(y) = \overline{g(x-y)}$. Then

$$\widehat{h_x}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \overline{g(x-y)} e^{-i\omega \cdot y} \, dy = \frac{1}{(2\pi)^{n/2}} \overline{\int_{\mathbb{R}^n} g(x-y) e^{-i\omega \cdot (x-y)} \, dy \, e^{i\omega \cdot x}} = \overline{\widehat{g}(\omega)} e^{-i\omega \cdot x}.$$

Since \mathcal{F} is unitary in $L^2(\mathbb{R}^n)$,

$$(f*g)(x) = \int_{\mathbb{R}^n} f(y)\overline{h_x(y)} \, dy = \int_{\mathbb{R}^n} \widehat{f}(\omega)\overline{\widehat{h_x}(\omega)} \, d\omega = \int_{\mathbb{R}^n} \widehat{f}(\omega)\widehat{g}(\omega)e^{i\omega x} \, d\omega = (2\pi)^{n/2}(\widehat{f}\,\widehat{g})\check{}(x).$$

Thus we complete the proof.

By Fourier inversion theorem and linearity of Laplacian operator,

$$\Delta f(x) = \Delta \int_{\mathbb{R}^n} \frac{\widehat{f}(\omega)}{(2\pi)^{n/2}} e^{i\omega \cdot x} \, d\omega = \int_{\mathbb{R}^n} \frac{\widehat{f}(\omega)}{(2\pi)^{n/2}} \Delta e^{i\omega \cdot x} \, d\omega = -\frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} |\omega|^2 \widehat{f}(\omega) e^{i\omega \cdot x} \, d\omega$$

By taking the Fourier transform on both sides, we have

$$\widehat{\Delta f}(\omega) = -|\omega|^2 \widehat{f}(\omega).$$

2.4 Fourier Transform of Radial Functions and Hankel Transform

Bessel functions. Consider the Bessel's differential equation about function y(z):

$$z^{2}y'' + zy' + (z^{2} - \nu^{2})y = 0.$$
(2.3)

The Bessel function of the first kind of order $\nu \in \mathbb{C}$ solves this equation:

$$J_{\nu}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m}{\Gamma(m+1)\Gamma(\nu+m+1)} \left(\frac{z}{2}\right)^{2m+\nu}, \quad z \in \mathbb{C} \setminus \{0\},$$

where the power in this definition is given by $z^{\nu} = e^{\nu \log z}$, where $\log z$ is chosen to be the principal branch of the logarithm, i.e. $-\pi < \arg(z) \le \pi$. The Bessel function $J_{\nu}(z)$ is holomorphic in $\mathbb{C} \setminus (-\infty, 0]$ for every $\nu \in \mathbb{C}$.

• When $\nu \notin \mathbb{Z}$, the Bessel functions $J_{\nu}(z)$ and $J_{-\nu}(z)$ are linearly independent, and the general solution of the Bessel's equation is

$$y(z) = \gamma_1 J_{\nu}(z) + \gamma_2 J_{-\nu}(z), \quad \gamma_1, \gamma_2 \in \mathbb{C}.$$

• When $\nu = n \in \mathbb{Z}$, the Bessel function J_n has an analytic extension to \mathbb{C} . Furthermore, using the property that $1/\Gamma(-n) = 0$ for nonnegative integers $n = 0, 1, 2, \cdots$, we have

$$J_{-n}(z) = (-1)^n J_n(z), \quad n \in \mathbb{N}_0$$

• To get a solution of (2.3) when $\nu = n \in \mathbb{Z}$ that is linearly independent of from $J_{\pm\nu}$, we introduce the Bessel function of the second kind of order $\nu \in \mathbb{C}$, which is defined as

$$Y_{\nu}(z) = \frac{J_{\nu}(z)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}, \quad \nu \notin \mathbb{Z}, \quad and \quad Y_n(z) = \lim_{\nu \notin \mathbb{Z}, \ \nu \to n} Y_{\nu}(z), \quad n \in \mathbb{Z}$$

The Bessel function $Y_n(z)$ solves (2.3) when $\nu = n \in \mathbb{Z}$.

Proposition 2.17. Let $\nu \in \mathbb{C}$, and let $J_{\nu}(z)$ be the Bessel function of the first kind.

(i) The following recursive formulae hold:

$$J_{\nu-1}(z) = \frac{dJ_{\nu}}{dz} + \frac{\nu}{z}J_{\nu}(z), \text{ and } J_{\nu+1}(z) = -\frac{dJ_{\nu}}{dz} + \frac{\nu}{z}J_{\nu}(z).$$

(ii) In particular,

$$J_{1/2}(z) = \sqrt{\frac{2}{\pi z}} \sin(z)$$
, and $J_{-1/2}(z) = \sqrt{\frac{2}{\pi z}} \cos(z)$.

Remark. Combining the two assertions, one can recurrently derive Bessel functions of half integer orders. *Proof.* (i) The first formula follows from the following identity:

$$\frac{d}{dz}\left[z^{\nu}J_{\nu}(z)\right] = \sum_{m=0}^{\infty} \frac{(-1)^{m}(2m+2\nu)}{\Gamma(m+1)\Gamma(\nu+m+1)} \frac{z^{2m+2\nu-1}}{2^{2m+\nu}} = \sum_{m=0}^{\infty} \frac{(-1)^{m}}{\Gamma(m+1)\Gamma(\nu+m)} \frac{z^{2m+2\nu-1}}{2^{2m+\nu-1}} = z^{\nu}J_{\nu-1}(z)$$

Similarly, the second formula follows from the following identity:

$$\frac{d}{dz} \left[z^{-\nu} J_{\nu}(z) \right] = \sum_{m=0}^{\infty} \frac{(-1)^m (2m)}{\Gamma(m+1)\Gamma(\nu+m+1)} \frac{z^{2m-1}}{2^{2m+\nu}} = \sum_{m=1}^{\infty} \frac{(-1)^m}{\Gamma(m)\Gamma(\nu+m+1)} \frac{z^{2m-1}}{2^{2m+\nu-1}}$$
$$= \sum_{m=0}^{\infty} \frac{(-1)^{m+1}}{\Gamma(m+1)\Gamma(\nu+m+2)} \frac{z^{2m+1}}{2^{2m+\nu+1}} = -z^{-\nu} J_{\nu+1}(z).$$

(ii) Note that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Then

$$J_{\frac{1}{2}}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m}{\Gamma(m+1)\Gamma(m+\frac{3}{2})} \left(\frac{z}{2}\right)^{2m+\frac{1}{2}} = \sqrt{\frac{2}{z}} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \left(m+\frac{1}{2}\right) \left(m-\frac{1}{2}\right) \cdots \frac{1}{2} \Gamma\left(\frac{1}{2}\right)} \left(\frac{z}{2}\right)^{2m+1} = \sqrt{\frac{2}{z}} \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)! \sqrt{\pi}} z^{2m+1} = \sqrt{\frac{2}{\pi z}} \sin(z),$$

and

$$\begin{split} J_{-\frac{1}{2}}(z) &= \sum_{m=0}^{\infty} \frac{(-1)^m}{\Gamma(m+1)\Gamma(m+\frac{1}{2})} \left(\frac{z}{2}\right)^{2m-\frac{1}{2}} = \sqrt{\frac{2}{z}} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \left(m-\frac{1}{2}\right) \left(m-\frac{3}{2}\right) \cdots \frac{1}{2} \Gamma\left(\frac{1}{2}\right)} \left(\frac{z}{2}\right)^{2m} \\ &= \sqrt{\frac{2}{z}} \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m)! \sqrt{\pi}} z^{2m} = \sqrt{\frac{2}{\pi z}} \cos(z). \end{split}$$

Therefore we complete the proof.

The Bessel functions are related to the integral of plane wave functions on the sphere.

Proposition 2.18 (Sphere integral form of the Bessel functions of the first kind). Let $n \ge 2$, and denote by $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ the unit sphere in \mathbb{R}^n . Then

$$\int_{S^{n-1}} e^{i\omega \cdot x} \, dS(\omega) = (2\pi)^{\frac{n}{2}} |x|^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(|x|). \tag{2.4}$$

The proof of this result requires some technical lemmata. We first introduce a type of special integrals.

Lemma 2.19. For each $n, m \in \mathbb{N}_0$,

$$\int_0^{\pi} \sin^n \theta \cos^{2m} \theta \, d\theta = \frac{\Gamma\left(m + \frac{1}{2}\right)\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(m + \frac{n}{2} + 1\right)}.$$

In particular,

$$\int_0^{\pi} \sin^n \theta \, d\theta = \frac{\Gamma\left(\frac{n+1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n}{2}+1\right)}.$$

Proof. (i) We begin from the second integral. Let $I_n = \int_0^{\pi} \sin^n \theta \, d\theta$. To begin with, we have $I_0 = \pi$ and $I_1 = 2$. For $n \ge 2$, compute I_n recurrently:

$$I_n = -\int_0^\pi \sin^{n-1}\theta \, d\cos\theta = \int_0^\pi (n-1)\sin^{n-2}\theta \cos^2\theta \, d\theta = (n-1)(I_{n-2} - I_n).$$

Hence $I_n = \frac{n-1}{n} I_{n-2}$. By induction, for any $n \in \mathbb{N}_0$,

$$I_{2k+1} = \frac{2k}{2k+1} \cdot \frac{2k-2}{2k-1} \cdot \dots \cdot \frac{2}{3} \cdot I_1 = \frac{\Gamma(k+1)\sqrt{\pi}}{\Gamma(k+\frac{3}{2})},$$

and

$$I_{2k} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{1}{2} \cdot I_0 = \frac{\Gamma(k+\frac{1}{2})\sqrt{\pi}}{\Gamma(k+1)}.$$

The first result is obtained by summarizing the last two identities.

(ii) Let $I_{n,m} = \int_0^{\pi} \sin^n \theta \cos^{2m} \theta \, d\theta$. Then

$$I_{n,m} = \int_0^\pi \sin^n \theta \cos^{2m-1} \theta \, d\sin\theta = -\int_0^\pi \sin\theta \, d\left(\sin^n \theta \cos^{2m-1} \theta\right)$$

= $-n \int_0^\pi \sin^n \theta \cos^{2m} \theta \, d\theta + (2m-1) \int_0^\pi \sin^{n+2} \theta \cos^{2m-2} \theta \, d\theta$
= $-nI_{n,m} + (2m-1)(I_{n,m-1} - I_{n,m}) = (1 - 2m - n)I_{n,m} + (2m - 1)I_{n,m-1}.$

Hence $I_{n,m} = \frac{2m-1}{2m+n}I_{n,m-1}$. By induction,

$$I_{n,m} = \frac{2m-1}{2m+n} \cdot \frac{2m-3}{2m+n-2} \cdots \cdot \frac{1}{n+2} \cdot I_{n,0}$$

= $\frac{2^m \Gamma(m+\frac{1}{2}) / \sqrt{\pi}}{2^m \Gamma(m+\frac{n}{2}+1) / \Gamma(\frac{n}{2}+1)} \frac{\Gamma(\frac{n+1}{2}) \sqrt{\pi}}{\Gamma(\frac{n}{2}+1)} = \frac{\Gamma(m+\frac{1}{2}) \Gamma(\frac{n+1}{2})}{\Gamma(m+\frac{n}{2}+1)}.$

Therefore the first result holds.

Lemma 2.20. Let $n \ge 2$. The surface area of unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ is $\sigma_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)}$.

 $\it Proof.$ Using the spherical coordinates, and by Lemma 2.19, we have

$$\sigma_{n-1} = \int_{S^{n-1}} dS(x) = \int_0^\pi \sigma_{n-2} \sin^{n-2}\theta \, d\theta = \frac{\Gamma\left(\frac{n-1}{2}\right)\sqrt{\pi}}{\Gamma\left(\frac{n}{2}\right)} \sigma_{n-2}$$

Since $\sigma_1 = 2\pi$ and $\Gamma(1) = 1$, the result follows by induction.

Proof of Proposition 2.18. Let r = |x|. Since $\int_{S^{n-1}} e^{i\omega \cdot x} dS(\omega)$ is radial about x, we take $x = (r, 0, \dots, 0)$:

$$\int_{S^{n-1}} e^{i\omega \cdot x} \, dS(\omega) = \int_{S^{n-1}} e^{ir\omega_1} \, dS(\omega). \tag{2.5}$$

For $\omega \in S^{n-1}$, let $\theta = \arccos(\langle \omega, e_1 \rangle)$, where $e_1 = (1, 0, \dots, 0)$. Then $\cos \theta = \omega_1$, and $\sin \theta = \sqrt{\omega_2^2 + \dots + \omega_n^2}$. Switching to the spherical coordinates, we have

$$\int_{S^{n-1}} e^{i\omega \cdot x} dS(\omega) = \int_{S^{n-1}} e^{ir\omega_1} dS(\omega) = \int_0^\pi e^{ir\cos\theta} \sigma_{n-2} \sin^{n-2}\theta d\theta$$
$$= \frac{2\pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \int_0^\pi e^{ir\cos\theta} \sin^{n-2}\theta d\theta.$$
(2.6)

We compute the last integral by expanding the exponent and integrating term by term:

$$\int_{0}^{\pi} e^{ir\cos\theta} \sin^{n-2}\theta \, d\theta = \sum_{k=0}^{\infty} \frac{(ir)^{k}}{k!} \int_{0}^{\pi} \cos^{k}\theta \sin^{n-2}\theta \, d\theta = \sum_{m=0}^{\infty} \frac{\Gamma\left(m+\frac{1}{2}\right)\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(m+\frac{n}{2}\right)} \frac{(ir)^{2m}}{(2m)!}$$
$$= \sum_{m=0}^{\infty} \frac{(2m-1)!!\sqrt{\pi}\Gamma\left(\frac{n-1}{2}\right)}{2^{m}\Gamma\left(m+\frac{n}{2}\right)} \frac{(ir)^{2m}}{(2m)!} = \sum_{m=0}^{\infty} \frac{(-1)^{m}\sqrt{\pi}\Gamma\left(\frac{n-1}{2}\right)}{m!\Gamma\left(m+\frac{n}{2}\right)} \left(\frac{r}{2}\right)^{2m}, \qquad (2.7)$$

where the odd terms vanishes by symmetry on $[0, \pi]$, and the even terms follow from Lemma 2.19. Combining (2.6) and (2.7), we obtain

$$\int_{S^{n-1}} e^{i\omega \cdot x} \, dS(\omega) = 2\pi^{\frac{n}{2}} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \,\Gamma\left(m+\frac{n}{2}\right)} \left(\frac{r}{2}\right)^{2m} = (2\pi)^{\frac{n}{2}} r^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(r).$$

Thus we complete the proof.

We now turn to the Laplace transforms of some specific functions involving Bessel functions.

Proposition 2.21. For every $\nu > -1$ and r > 0,

$$\int_0^\infty J_\nu(x) x^{\nu+1} e^{-rx} \, dx = \frac{2^{\nu+1} \Gamma\left(\nu + \frac{3}{2}\right) r}{\sqrt{\pi} (1+r^2)^{\nu+\frac{3}{2}}}.$$
(2.8)

Proof. For 0 < r < 1 and $\mu > 0$, the Taylor series of $(1 + r)^{-\mu}$ is

$$(1+r)^{-\mu} = \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(\mu+m)}{m! \Gamma(\mu)} r^m$$

Replacing r by $1/r^2$, we have

$$\frac{r^{2\mu}}{(1+r^2)^{\mu}} = \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(\mu+m)}{m! \, \Gamma(\mu)} r^{-2m}, \quad r>1.$$

Hence the right hand side of (2.8) is

$$\frac{2^{\nu+1}\Gamma\left(\nu+\frac{3}{2}\right)r}{\sqrt{\pi}(1+r^2)^{\nu+\frac{3}{2}}} = \frac{2^{\nu+1}\Gamma\left(\nu+\frac{3}{2}\right)r^{-2\nu-2}}{\sqrt{\pi}}\sum_{m=0}^{\infty}\frac{(-1)^m\Gamma\left(\nu+\frac{3}{2}+m\right)}{m!\,\Gamma\left(\nu+\frac{3}{2}\right)}r^{-2m}$$
$$= \sum_{m=0}^{\infty}\frac{(-1)^m2^{\nu+1}\Gamma\left(\nu+\frac{3}{2}+m\right)}{\Gamma(m+1)\sqrt{\pi}}r^{-2m-2\nu-2}$$
$$= \sum_{m=0}^{\infty}\frac{(-1)^m\Gamma\left(2\nu+2m+2\right)}{2^{2m+\nu}\Gamma(m+1)\Gamma\left(\nu+m+1\right)}r^{-2m-2\nu-2},$$
(2.9)

where the last equality follows from Legendre's duplication formula. Now we turn to the integral. By Sterling's formula, there exists a constant c_{ν} depending only on $\nu > -1$ such that $\Gamma(\nu + m + 1) \geq \frac{m!}{c_{\nu}}$. Then

$$\begin{split} \sum_{m=1}^{\infty} \frac{x^{2m+2\nu+1}e^{-rx}}{2^{2m+\nu}\Gamma(m+1)\Gamma\left(\nu+m+1\right)} &\leq \frac{c_{\nu}}{2^{\nu}}x^{2\nu+1}e^{-rx}\sum_{m=1}^{\infty}\frac{x^{2m}}{(2^mm!)^2} \\ &\leq \frac{c_{\nu}}{2^{\nu}}x^{2\nu+1}e^{-rx}\sum_{m=1}^{\infty}\frac{x^{2m}}{(2m)!} \leq \frac{c_{\nu}}{2^{\nu}}x^{2\nu+1}e^{-(r-1)x}, \end{split}$$

which is absolutely integrable. Using dominated convergence theorem, we can interchange infinite summation and integral in the left hand side of (2.8):

$$\int_0^\infty J_\nu(x) x^{\nu+1} e^{-rx} \, dx = \sum_{m=1}^\infty \frac{(-1)^m}{2^{2m+\nu} \Gamma(m+1)\Gamma(\nu+m+1)} \int_0^\infty x^{2m+2\nu+1} e^{-rx} \, dx$$
$$= \sum_{m=1}^\infty \frac{(-1)^m r^{-2m-2\nu-2}}{2^{2m+\nu} \Gamma(m+1)\Gamma(\nu+m+1)} \int_0^\infty y^{-2m-2\nu-1} e^{-y} \, dy$$
$$= \sum_{m=0}^\infty \frac{(-1)^m \Gamma(2\nu+2m+2)}{2^{2m+\nu} \Gamma(m+1)\Gamma(\nu+m+1)} r^{-2m-2\nu-2},$$

which is consistent with (2.9). Hence the identity (2.8) holds for r > 1. Finally, since both sides of (2.9) is analytic in the region Re(r) > 0 and |Im(r)| < 1, the case $0 < r \le 1$ follows from analytic continuation.

Now we study the Fourier transform of radial functions on \mathbb{R}^n . A function $F : \mathbb{R}^n \to \mathbb{C}$ is said to be radial, if there exists a function f such that F(x) = f(|x|) for all $x \in \mathbb{R}^n$.

Definition 2.22 (Hankel transform). Let $\nu \ge -\frac{1}{2}$. We define the Hankel transform of order ν of a function $f \in L^2((0,\infty), r \, dr)$ by

$$(H_{\nu}f)(\lambda) = \int_0^\infty rf(r)J_{\nu}(\lambda r)\,dr, \quad \lambda > 0.$$

The Hankel transform of order $\frac{n}{2} - 1$ is related to the Fourier transform of radial functions in \mathbb{R}^n .

Theorem 2.23. Let $F \in L^1(\mathbb{R}^n) \cap C(\mathbb{R}^n)$ be a radial function, i.e. F(x) = f(|x|) for $x \in \mathbb{R}^n$. Then the Fourier transform \widehat{F} is also radial, i.e. $\widehat{F}(\omega) = \phi(|\omega|)$, with

$$\phi(\lambda) = \lambda^{1-\frac{n}{2}} \int_0^\infty r^{\frac{n}{2}} f(r) J_{\frac{n}{2}-1}(\lambda r) dr$$

In other words, $|\omega|^{\frac{n}{2}-1}\widehat{F}(\omega)$ coincides the Hankel transform of order $\frac{n}{2}-1$ of $r^{\frac{n}{2}-1}f(r)$

Proof. For the case n = 1, we have $J_{-1/2}(z) = \sqrt{\frac{2}{\pi z}} \cos(z)$ by Proposition 2.17. Since $F : \mathbb{R} \to \mathbb{C}$ is even,

$$\widehat{F}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) \left(\cos(\omega x) - i\sin(\omega x)\right) dx$$
$$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(r) \cos(|\omega|r) dr = |\omega|^{\frac{1}{2}} \int_{0}^{\infty} \sqrt{r} f(r) J_{-\frac{1}{2}}(|\omega|r) dr.$$

For the case $n \ge 2$, we switch to sphere coordinates and use Proposition 2.18:

$$\begin{split} \widehat{F}(\omega) &= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} F(x) e^{-i\omega \cdot x} \, dx = (2\pi)^{-\frac{n}{2}} \int_0^\infty r^{n-1} \int_{S^{n-1}} f(r|x|) e^{-ir\omega \cdot x} \, dS(x) \, dr \\ &= (2\pi)^{-\frac{n}{2}} \int_0^\infty r^{n-1} f(r) \left(\int_{S^{n-1}} e^{-ir\omega \cdot x} \, dS(x) \right) \, dr \\ &= (2\pi)^{-\frac{n}{2}} \int_0^\infty r^{n-1} f(r) \cdot (2\pi)^{\frac{n}{2}} (r|\omega|)^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(r|\omega|) \, dr \\ &= |\omega|^{1-\frac{n}{2}} \int_0^\infty r^{\frac{n}{2}} f(r) J_{\frac{n}{2}-1}(r|\omega|) \, dr. \end{split}$$

Then we conclude the proof.

Remark. In particular, taking n = 2, we know that the Hankel transform of order 0 coincides the Fourier transformation of radial function in \mathbb{R}^2 .

2.5 Application in Partial Differential Equations

Fourier transform and differential operators. Consider the Laplacian operator:

$$\Delta: C^2(\mathbb{R}^n) \to C(\mathbb{R}^n), \qquad \Delta f = \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j^2}$$

For the plane wave function $f(x) = e^{i\omega \cdot x}$, we have

$$\Delta e^{i\omega \cdot x} = \sum_{j=1}^{n} (i\omega_j)^2 e^{i\omega \cdot x} = -|\omega|^2 e^{i\omega \cdot x}.$$

In other words, the function $e^{i\omega \cdot x}$ is an eigenfunction of Δ , with eigenvalue $-|\omega|^2$. Furthermore, under regularity conditions [See Proposition 2.7], we have

$$\widehat{\Delta f}(\omega) = \sum_{j=1}^{n} (i\omega_j)^2 \widehat{f}(\omega) = -|\omega|^2 \widehat{f}(\omega).$$

This identity shows that the Fourier transform diagonalizes the Laplacian Δ . In other words, the Laplacian is nothing more than an explicit multiplier when viewed using the Fourier transform.

Example 2.24 (Heat equation with Dirichlet boundary condition). Consider the heat equation about the time-varying function u(x,t), which is defined on $\mathbb{R}^n \times \mathbb{R}_+$:

$$\begin{cases} u_t = \Delta_x u & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = f(x) & \text{on } \mathbb{R}^n \times \{t = 0\}, \\ \lim_{|x| \to \infty} u(x, t) = 0 & \text{for } t \in [0, \infty), \end{cases}$$
(2.10)

where the initial function $f \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$.

Solution. We let $\hat{u}(\omega, t) = \int_{\mathbb{R}^n} u(x, t) e^{-i\omega \cdot x} dx$ be the Fourier transform of u with respect to x. Applying Fourier transform on both the heat equation and the initial condition, we get the initial value problem:

$$\begin{cases} \widehat{u}_t = -|\omega|^2 \widehat{u}, \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega) \end{cases}$$

The solution of this problem is given by $\hat{u}(\omega, t) = \hat{f}(\omega)e^{-|\omega|^2 t}$. To recover u, we employ the inverse Fourier transform and convolution theorem [Theorem 2.8]:

$$u(x,t) = \mathcal{F}^{-1}\left(\widehat{f}(\omega)e^{-|\omega|^{2}t}\right) = (2\pi)^{-n/2}f * \mathcal{F}^{-1}(e^{-|\omega|^{2}t}).$$

It remains to compute the inverse Fourier transform of $e^{-|\omega|^2 x}$:

$$\mathcal{F}^{-1}(e^{-|\omega|^2 t})(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|\omega|^2 t} e^{i\omega \cdot x} \, d\omega = \prod_{j=1}^n \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{-\omega_j^2 t + i\omega_j x_j} \, d\omega_j$$
$$= \prod_{j=1}^n e^{-\frac{x_j^2}{4t}} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{-\left(\omega_j \sqrt{t} - \frac{ix_j}{2\sqrt{t}}\right)^2} \, d\omega_j = \prod_{j=1}^n \frac{1}{\sqrt{2t}} e^{-\frac{x_j^2}{4t}} = \frac{1}{(2t)^{n/2}} e^{-\frac{|x|^2}{4t}}$$

Hence the solution of problem (2.10) is given by

$$u(x,t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|y-x|^2}{4t}} f(y) \, dy.$$

Remark. We write the heat kernel by

$$\Phi_t(x) = \begin{cases} \delta(x), & t = 0, \\ (4\pi t)^{-n/2} e^{-\frac{|x|^2}{4t}}, & t > 0. \end{cases}$$

Then the solution of problem (2.10) can be represented as $u = \Phi_t * f$.

Example 2.25 (Heat equation with a source). Consider the heat equation about the time-varying function u(x,t), which is defined on $\mathbb{R}^n \times \mathbb{R}_+$:

$$\begin{cases} u_t = \Delta_x u + S(x,t) & \text{in } \mathbb{R}^n \times (0,\infty), \\ u(x,0) = f(x) & \text{on } \mathbb{R}^n \times \{t=0\}, \\ \lim_{|x| \to \infty} u(x,t) = 0 & \text{for } t \in [0,\infty), \end{cases}$$
(2.11)

where the source $S(x,t) \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$ for every t, and the initial function $f \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$.

Solution. Similar to the case without the source S(x, t), we apply Fourier transform on both the equation and the initial condition to get an initial value problem:

$$\begin{cases} \widehat{u}_t = -|\omega|^2 \widehat{u} + \widehat{S}(\omega, t), \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega). \end{cases}$$

We solve this problem by multiplying by a factor $e^{|\omega|^2 t}$:

$$\begin{split} \frac{\partial}{\partial t} \left(e^{|\omega|^2 t} \widehat{u} \right) &= e^{|\omega|^2 t} \left(\widehat{u}_t + |\omega|^2 \widehat{u} \right) = e^{|\omega|^2 t} \widehat{S}(\omega, t), \\ e^{|\omega|^2 t} \widehat{u}(\omega, t) &= \widehat{f}(\omega) + \int_0^t e^{|\omega|^2 \tau} \widehat{S}(\omega, \tau) \, d\tau, \\ \widehat{u}(\omega, t) &= e^{-|\omega|^2 t} \widehat{f}(\omega) + \int_0^t e^{-|\omega|^2 (t-\tau)} \widehat{S}(\omega, \tau) \, d\tau. \end{split}$$

Applying inverse Fourier transform, we obtain the solution of (2.11):

$$u(x,t) = \int_{\mathbb{R}^n} \Phi_t(x-y) f(y) \, dt + \int_0^t \int_{\mathbb{R}^n} \Phi_{t-\tau}(x-y) S(y,t) \, dy \, d\tau.$$

Example 2.26 (Laplace equation in the upper half space). Consider the Laplace equation about the function u(x, y) in the upper half space $\mathbb{R}^n \times \mathbb{R}_+$:

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x,0) = f(x) & \text{on } \mathbb{R}^n \times \{t = 0\}, \\ \lim_{|x| \to \infty} u(x,y) = 0 & \text{and } \lim_{y \to \infty} u(x,y) = 0, \end{cases}$$
(2.12)

where the function $f \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$.

Solution. We write the Laplace equation as $u_{yy} = \Delta_x u$, and apply Fourier transform on the variable x. Then we get the following initial value problem:

$$\begin{cases} \widehat{u}_{yy} = |\omega|^2 \widehat{u}, \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega), \\ \lim_{y \to \infty} \widehat{u}(\omega, y) = 0 \end{cases}$$

.

Since u is vanishing as $y \to \infty$, the solution to this problem is

$$\widehat{u}(\omega, y) = e^{-|\omega|y} \widehat{f}(\omega).$$

Hence the solution to (2.12) is

$$u(x,y) = \frac{1}{(2\pi)^{n/2}} \cdot \mathcal{F}^{-1}(e^{-|\omega|y}) * f.$$

We compute inverse Fourier transform of $e^{-|\omega|y}$:

$$\mathcal{F}^{-1}(e^{-|\omega|y}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|\omega|y} e^{i\omega \cdot x} \, d\omega = \frac{1}{(2\pi)^{n/2}} \int_0^\infty \int_{\partial B(x,r)} e^{-|\omega|y} e^{i\omega \cdot x} \, dS(\omega) \, dr$$

$$= \frac{1}{(2\pi)^{n/2}} \int_0^\infty \int_{S^{n-1}} e^{-ry} e^{ir\xi \cdot x} r^{n-1} \, dS(\xi) \, dr$$

$$= \int_0^\infty r^{\frac{n}{2}} e^{-ry} |x|^{1-\frac{n}{2}} J_{\frac{n}{2}-1}(r|x|) \, dr \qquad (By \text{ Proposition 2.18})$$

$$= |x|^{-n} \int_0^\infty \rho^{\frac{n}{2}} e^{-\rho \frac{y}{|x|}} J_{\frac{n}{2}-1}(\rho) \, d\rho = \frac{2^{\frac{n}{2}} \Gamma\left(\frac{n+1}{2}\right) y}{\sqrt{\pi} \left(|x|^2 + y^2\right)^{\frac{n+1}{2}}}. \qquad (By \text{ Proposition 2.21})$$

Then

$$u(x,y) = \pi^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right) \int_{\mathbb{R}^n} \frac{y}{\left(|x-z|^2+y^2\right)^{\frac{n+1}{2}}} f(z) \, dz.$$

Remark. We define the *Poisson kernel* by

$$P(x,y) = c_n \frac{y}{\left(|x|^2 + y^2\right)^{\frac{n+1}{2}}}, \text{ where } c_n = \pi^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right).$$

Then the solution of problem (2.10) can be represented as $u(\cdot, y) = P(\cdot, y) * f$.

Example 2.27 (Wave equation with Dirichlet boundary condition). Consider the wave equation about the time-varying function u(x,t), which is defined on $\mathbb{R}^n \times \mathbb{R}_+$:

$$\begin{cases} u_{tt} = \Delta_x u & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = f(x), \ u_t(x, 0) = g(x) & \text{on } \mathbb{R}^n \times \{y = 0\}, \\ \lim_{|x| \to \infty} u(x, t) = 0 & \text{for } t \in [0, \infty). \end{cases}$$
(2.13)

where the functions $f, g \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$.

Solution. Applying Fourier transform with respect to the variable $x \in \mathbb{R}^n$, we get the initial value problem

$$\begin{cases} \widehat{u}_{tt} = -|\omega|^2 \widehat{u}, \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega), \quad \widehat{u}_t(\omega, 0) = \widehat{g}(\omega). \end{cases}$$

The solution of this initial value problem is

$$\widehat{u}(\omega, t) = \widehat{f}(\omega) \cos(|\omega|t) + \widehat{g}(\omega) \frac{\sin(|\omega|t)}{|\omega|}.$$

We write $R(x,t) = \frac{1}{(2\pi)^{n/2}} \mathcal{F}^{-1}\left(\frac{\sin(|\omega|t)}{|\omega|}\right)$. By convolution theorem, the solution to problem 2.13 is

$$u(\cdot,t) = \frac{\partial}{\partial t} \left(R(\cdot,t) * f \right) + R(\cdot,t) * g.$$

Example 2.28 (Transport equation). Consider the following transport equation with constant coefficients:

$$\begin{cases} u_t - b \cdot \nabla_x u = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = f(x) & \text{on } \mathbb{R}^n \times \{t = 0\}, \\ \lim_{|x| \to \infty} u(x, t) = 0 & \text{for } t \in [0, \infty), \end{cases}$$
(2.14)

where the velocity $b \in \mathbb{R}^n$ is a constant vector, and $f \in L^1(\mathbb{R}^n) \cap C_0(\mathbb{R}^n)$.

Solution. We apply Fourier transform with respect to the variable x:

$$\begin{cases} \widehat{u}_t = ib \cdot \omega \widehat{u}, \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega) \end{cases}$$

Then $\widehat{u}(\omega, t) = e^{itb \cdot \omega} \widehat{f}(\omega)$, and the solution to problem (2.14) is

$$u(x,t) = \mathcal{F}^{-1}\left[e^{itb\cdot\omega}\widehat{f}(\omega)\right] = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \widehat{f}(\omega)e^{i(x+tb)\cdot\omega} \, d\omega = f(x+tb).$$

Example 2.29 (Linearized Korteweg-De Vries equation). Consider the equation about $u : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{C}$.

$$\begin{cases} u_t + u_{xxx} = 0 & \text{in } \mathbb{R} \times (0, \infty), \\ u(x, 0) = f(x) & \text{on } \mathbb{R} \times \{t = 0\}, \\ \lim_{|x| \to \infty} u(x, t) = 0 & \text{for } t \in [0, \infty). \end{cases}$$
(2.15)

Solution. We apply Fourier transform with respect to the variable x:

$$\begin{cases} \widehat{u}_t - i\omega^3 \widehat{u} = 0, \\ \widehat{u}(\omega, 0) = \widehat{f}(\omega). \end{cases}$$

Then $\hat{u}(\omega,t) = e^{i\omega^3 t} \hat{f}(\omega)$, and u is recovered by taking the inverse Fourier transform of \hat{u} . By convolution theorem, $u = G(\cdot, t) * f$, where $G(\cdot, t)$ is the inverse Fourier transform of $e^{i\omega^3 t}$ up to a factor $1/\sqrt{2\pi}$:

$$G(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega^3 t} e^{i\omega x} \, d\omega.$$

We compute the function G by constructing an ordinary differential equation for it. Fix $t = \frac{1}{3}$, and consider the function $g(x) = G(x, \frac{1}{3})$. Then

$$\widehat{g}(\omega) = \frac{1}{\sqrt{2\pi}} e^{i\omega^3/3}.$$

By Proposition 2.7,

$$g'' = \mathcal{F}^{-1}(-\omega^2 \widehat{g}) = -\frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1}\left(\omega^2 e^{i\omega^3/3}\right), \quad \text{and} \quad xg = -i\mathcal{F}^{-1}(\widehat{g}') = \frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1}\left(\omega^2 e^{i\omega^3/3}\right).$$

Hence the function g satisfies the Airy equation g'' - xg = 0. Since our solution should vanish at infinity, we take the solution $g(x) = \operatorname{Ai}(x)$. For general t > 0, applying change of variable gives

$$G(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\frac{1}{3}i\left(\sqrt[3]{3t}\omega\right)^3} e^{i\omega x} d\omega = \frac{1}{\sqrt[3]{3t}} \operatorname{Ai}\left(\frac{x}{\sqrt[3]{3t}}\right).$$

The solution to the problem (2.15) is $u(\cdot, t) = G(\cdot, t) * f$.

3 Distribution Theory

3.1 Topology on $C_c^{\infty}(U)$

The Fréchet space $\mathcal{D}(K)$. Let K be a compact set of \mathbb{R}^n . The space $C_c^{\infty}(K)$ is defined to be the set of C^{∞} functions on \mathbb{R}^n whose support is compact and contained in K. This space is a Fréchet space with the topology \mathscr{T}_K defined by the norms

$$\|\phi\|_{K,N} = \sup_{x \in K, |\alpha| \le N} |\partial^{\alpha} \phi(x)|, \quad N \in \mathbb{N}_0.$$

That is, a local base for this topology at $\phi \in C_c^{\infty}(K)$ is the family of sets

$$U_{K,N}^{\epsilon}(\phi) = \left\{ \psi \in C_c^{\infty}(K) : \|\psi - \phi\|_{K,N} < \epsilon \right\},\$$

where $N \in \mathbb{N}_0$ and $\epsilon > 0$. Indeed, we only need to define the base sets

$$U^{\epsilon}_{K,N} = \left\{ \psi \in C^{\infty}_{c}(K) : \|\psi\|_{K,N} < \epsilon \right\}, \quad N \in \mathbb{N}_{0}, \ \epsilon > 0$$

at 0, and take $\phi + U_{K,N}^{\epsilon}$ to be the base sets at ϕ . The Fréchet space $C_c^{\infty}(K)$ is metrizable by setting

$$d_{K}(\phi,\psi) = \sum_{N=1}^{\infty} \frac{1}{2^{N}} \frac{\|\phi-\psi\|_{K,N}}{1+\|\phi-\psi\|_{K,N}}, \quad \phi,\psi \in C_{c}^{\infty}(K).$$

We denote by $\mathcal{D}(K)$ the space $C_c^{\infty}(K)$ endowed with the topology \mathscr{T}_K . In $\mathcal{D}(K)$, every sequence (ϕ_k) converges to ϕ if and only if $\partial^{\alpha} \phi_k \to \partial^{\alpha} \phi$ uniformly for all multi-indices α .

Construct a base for a topology on $C_c^{\infty}(U)$. For an open set $U \subset \mathbb{R}^n$, the space $C_c^{\infty}(U)$ is defined to be the set of C^{∞} functions whose support is compact and contained in U. Indeed, $C_c^{\infty}(U)$ can be viewed as the union of spaces $C_c^{\infty}(K)$ as K ranges over all compact subsets of U.

To construct a topology on $C_c^{\infty}(U)$, let \mathscr{B}_0 be the family of all balanced¹, convex sets $V \subset C_c^{\infty}(U)$ such that $V \cap C_c^{\infty}(K) \in \mathscr{T}_K$ for all compact $K \subset U$. We can show that \mathscr{B}_0 is nonempty. For example, let

$$V_N^{\epsilon} = \left\{ \psi \in C_c^{\infty}(U) : \sup_{x \in U, |\alpha| \le N} |\partial^{\alpha} \psi(x)| < \epsilon \right\}.$$
(3.1)

Then V_N^{ϵ} is balanced, convex, and $V_N^{\epsilon} \cap C_c^{\infty}(K) = U_{K,N}^{\epsilon} \in \mathscr{T}_K$. We then define

$$\mathscr{B} = \{\phi + V : \phi \in C^{\infty}_{c}(U), V \in \mathscr{B}_{0}\}.$$

The sets in \mathscr{B} gives an appropriate topology on $C_c^{\infty}(U)$.

Theorem 3.1. The family \mathscr{B} is a base for a locally convex Hausdorff topology \mathscr{T} on $C_c^{\infty}(U)$ that turns $C_c^{\infty}(U)$ into a topological vector space.

Remark. We write for $\mathcal{D}(U)$ the topological space $(C_c^{\infty}(U), \mathscr{T})$. Its elements are called *testing functions*.

Proof. Step I. We first verify that \mathscr{B} is a base for a topology on $C_c^{\infty}(U)$. It suffices to verify the following two conditions:

- (i) For each $\phi \in C_c^{\infty}(U)$ there exists $U \in \mathscr{B}$ such that $\phi \in U$;
- (ii) For each $U_1, U_2 \in \mathscr{B}$ with $U_1 \cap U_2 \neq \emptyset$ and each $\phi \in U_1 \cap U_2$, there exists $V \in \mathscr{B}$ such that $V \ni \phi$ and $V \subset U_1 \cap U_2$. In other words, \mathscr{B} is closed under finite intersection operation.

¹A subset E of a vector space X is balanced if $tx \in E$ for all $x \in E$ and $|t| \leq 1$.

• For (i), we let $\phi \in C_c^{\infty}(U)$, $N \in \mathbb{N}_0$ and $\epsilon > 0$. The set V_N^{ϵ} defined in (3.1) is in \mathscr{B}_0 , and $\phi + V_N^{\epsilon} \in \mathscr{B}$.

• For (ii), we let $\phi_1, \phi_2 \in C_c^{\infty}(U)$ and $V_1, V_2 \in \mathscr{B}_0$ be such that $(\phi_1 + V_1) \cap (\phi_2 + V_2) \neq \emptyset$. We fix any $\phi \in (\phi_1 + V_1) \cap (\phi_2 + V_2)$, and take a compact set $K \subset U$ such that K contains the supports of ϕ_1, ϕ_2 and ϕ . Then for j = 1, 2, we have

$$\phi - \phi_j \in V_j \cap C_c^\infty(K) \in \mathscr{T}_K$$

Using the continuity of scalar multiplication in $C_c^{\infty}(K)$, we may find $0 < \alpha < 1$, such that

$$\phi - \phi_j \in (1 - \alpha)(V_j \cap C_c^{\infty}(K)) \subset (1 - \alpha)V_j, \quad j = 1, 2.$$

By convexity of the sets V_i , we have

$$\phi - \phi_j + \alpha V_j = (1 - \alpha)V_j + \alpha V_j = V_j, \quad j = 1, 2,$$

so that $\phi + \alpha V_j \in \phi_j + V_j$ for j = 1, 2, and $\phi + \alpha (V_1 \cap V_2) \subset (\phi_1 + V_1) \cap (\phi_2 + V_2)$. Hence \mathscr{B} is a base for a topology \mathscr{T} given by all unions of members of \mathscr{B} .

Step II. Next we verify that $C_c^{\infty}(U)$ is a topological vector space under \mathscr{T} .

• To prove the continuity of scalar multiplication at a point $(t_0, \phi_0) \in \mathbb{C} \times C_c^{\infty}(U)$, we notice that each neighborhood of $t_0\phi_0$ contains some $t_0\phi_0 + V$, where $V \in \mathscr{B}_0$. Let $K = \operatorname{supp}(\phi_0)$. Then $\phi_0 \in \mathcal{D}(K)$. By continuity of scalar multiplication in $\mathcal{D}(K)$, we may find $\gamma > 0$ so small that

$$\gamma \phi_0 \in \frac{1}{2} \left(V \cap C_c^{\infty}(K) \right) \subset \frac{1}{2} V.$$

Let $s = \frac{1}{2(|t_0|+\gamma)}$. Then for every $|t - t_0| < \gamma$ and $\phi \in \phi_0 + sV$,

$$t\phi - t_0\phi_0 = t(\phi - \phi_0) + (t - t_0)\phi \in tsV + \frac{1}{2}V \subset \frac{1}{2}V + \frac{1}{2}V = V,$$

where we use the fact that V is convex and balanced. Therefore $t\phi \in t_0\phi_0 + V$ for every $|t - t_0| < \gamma$ and $\phi \in \phi_0 + sV$, which proves the continuity of scalar multiplication.

• To prove the continuity of addition at a point $(\phi_1, \phi_2) \in C_c^{\infty}(U) \times C_c^{\infty}(U)$, consider a neighborhood $\phi_1 + \phi_2 + V$ of $\phi_1 + \phi_2$, where $V \in \mathscr{B}_0$. The convexity of V implies that

$$\left(\phi_1 + \frac{1}{2}V\right) + \left(\phi_2 + \frac{1}{2}V\right) = \phi_1 + \phi_2 + V.$$

Since $V \cap \mathcal{D}(K) \in \mathscr{T}_K$ for all compact $K \subset U$, and since the scalar multiplication is continuous in $\mathcal{D}(K)$, we have $\frac{1}{2}V \cap \mathcal{D}(K) \in \mathscr{T}_K$ for all compact $K \subset U$, and $\frac{1}{2}V \in \mathscr{B}_0$. Hence both $\phi_1 + \frac{1}{2}V$ and $\phi_2 + \frac{1}{2}V$ are in \mathscr{B} , and the addition operation is continuous.

Step III. Finally, to prove that $(C_c^{\infty}(U), \mathscr{T})$ is a Hausdorff space, we take $\phi_1 \neq \phi_2$ from $C_c^{\infty}(U)$ and define

$$V = \left\{ \psi \in C_c^{\infty}(U) : \sup_{x \in U} |\psi(x)| < \frac{1}{2} \sup_{x \in U} |\phi_1(x) - \phi_2(x)| \right\}.$$

In view of (3.1), we have $V \in \mathscr{B}_0$. If $\phi \in (\phi_1 + V) \cap (\phi_2 + V)$, we have

$$\begin{split} \sup_{x \in U} |\phi_1(x) - \phi_2(x)| &\leq \sup_{x \in U} |\phi(x) - \phi_1(x)| + \sup_{x \in U} |\phi(x) - \phi_2(x)| \\ &< \frac{1}{2} \sup_{x \in U} |\phi_1(x) - \phi_2(x)| + \frac{1}{2} \sup_{x \in U} |\phi_1(x) - \phi_2(x)| = \sup_{x \in U} |\phi_1(x) - \phi_2(x)|, \end{split}$$

a contradiction! Hence $(\phi_1 + V) \cap (\phi_2 + V) = \emptyset$, and we finish the proof.

We now show that the topology \mathscr{T} , when restricted to $\mathcal{D}(K)$, for some compact set $K \subset U$, does not produce more open sets than the ones in \mathscr{T}_K .

Proposition 3.2. Let $U \subset \mathbb{R}^n$ be an open set. For every compact set $K \subset U$, the topology on $\mathcal{D}(K)$ coincide with the relative topology of $\mathcal{D}(K)$ as a subspace of $\mathcal{D}(U)$.

Proof. Fix a compact set $K \subset U$ and let $W \in \mathscr{T}$. We claim $W \cap \mathcal{D}(K) \in \mathscr{T}_K$. We may assume $W \cap \mathcal{D}(K)$ is nonempty, otherwise the claim is clear. Let $\phi \in W \cap \mathcal{D}(K)$. Since \mathscr{B} is a base for \mathscr{T} , we take $V \in \mathscr{B}_0$ such that $\phi + V \subset W$. Then $\phi + (V \cap \mathcal{D}(K)) \subset W \cap \mathcal{D}_K$, and $\phi + (V \cap \mathcal{D}(K)) \in \mathscr{T}_K$ since $\phi \in \mathcal{D}(K)$ and $V \cap \mathcal{D}(K) \in \mathscr{T}_K$. Hence every point of $W \cap \mathcal{D}(K)$ is in the interior with respect to \mathscr{T}_K , and $W \cap \mathcal{D}(K) \in \mathscr{T}_K$.

Conversely, let $W \subset \mathscr{T}_K$. We claim that $W = V \cap \mathcal{D}(K)$ for some open $V \in \mathscr{T}$. Since the family of sets $U_{K,N}^{\epsilon}$ is a local base for the topology \mathscr{T}_K , for each $\phi \in W$, we may find $N_{\phi} \in \mathbb{N}_0$ and $\epsilon_{\phi} > 0$ such that $\phi + U_{K,N_{\phi}}^{\epsilon_{\phi}} \subset W$. Let $V_{N_{\phi}}^{\epsilon_{\phi}}$ be defined as in (3.1). Then

$$(\phi + V_{N_{\phi}}^{\epsilon_{\phi}}) \cap \mathcal{D}(K) = \phi + U_{K,N_{\phi}}^{\epsilon_{\phi}} \subset W,$$

and $\phi + V_{N_{\phi}}^{\epsilon_{\phi}} \in \mathscr{B}$. Therefore $V = \bigcup_{\phi \in W} (\phi + V_{N_{\phi}}^{\epsilon_{\phi}})$ is a set in \mathscr{T} with the desired property.

Proposition 3.3. Let $U \subset \mathbb{R}^n$ be an open set. If $W \subset \mathcal{D}(U)$ is topologically bounded, there exists a compact set $K \subset U$ such that $W \subset \mathcal{D}(K)$.

Proof. Assume that W is not contained in $\mathcal{D}(K)$ for any compact $K \subset U$. We take an increasing sequence (K_j) of compact sets such that $K_j \subset \mathring{K}_{j+1}$ for all $j \in \mathbb{N}$ and $U = \bigcup_{j=1}^{\infty} K_j$. Then we may find for each $j \in \mathbb{N}$ a function $\phi_j \in W$ and a point $x_j \in K_{j+1} \setminus K_j$ such that $\phi_j(x_j) \neq 0$. Define

$$V = \left\{ \phi \in \mathcal{D}(U) : |\phi(x_j)| < \frac{1}{j} |\phi_j(x_j)| \text{ for all } j \in \mathbb{N} \right\}.$$

Since each compact set $K \subset U$ contains only finitely many x_j , we have $V \cap \mathcal{D}(K) \in \mathscr{T}_K$, and so $V \subset \mathscr{T}$. Since W is topologically bounded, there exists t > 0 such that $W \subset tV$. If an integer $N \ge t$, we have $\phi_N(x_N) \ne 0$, and $t^{-1}|\phi_N(x_N)| \ge N^{-1}|\phi_N(x_N)|$. Hence $t^{-1}\phi_N \notin V$, and $\phi_N \notin tV$. However $\phi_N \in W \subset tV$, which yields a contradiction. Hence there exists a compact $K \subset U$ with $\mathcal{D}(K) \supset W$.

The topology on $\mathcal{D}(U)$ is complete, and convergent sequence in $\mathcal{D}(U)$ can be explicitly characterized.

Proposition 3.4. Let $U \subset \mathbb{R}^n$. The space $\mathcal{D}(U)$ is complete. Furthermore, a sequence (ϕ_j) in $\mathcal{D}(U)$ converges to $\phi \in \mathcal{D}(U)$ if and only if

(i) there exists a compact set $K \subset U$ such that $(\phi_j) \subset \mathcal{D}(K)$, and

(ii) $\lim_{j\to\infty} \partial^{\alpha} \phi_j = \partial^{\alpha} \phi$ uniformly on K for each multi-index $\alpha \in \mathbb{N}_0^n$.

Proof. Let (ϕ_j) be a Cauchy sequence in $\mathcal{D}(U)$. Then (ϕ_j) is topologically bounded, and by Proposition 3.3, there exists a compact set $K \subset U$ such that $(\phi_j) \subset \mathcal{D}(K)$. By Proposition 3.2, we obtain a Cauchy sequence (ϕ_j) in $\mathcal{D}(K)$. Therefore, for every $N \in \mathbb{N}_0$ and every $\epsilon > 0$, there exists M such that

$$\sup_{x \in K, |\alpha| \le N} |\phi_j(x) - \phi_k(x)| < \epsilon$$

for all $j, k \geq M$. Consequently, for every multi-index $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq N$, the Cauchy sequence $\{\partial^{\alpha}\phi_j\}$ converges uniformly in K to a continuous function $\psi_{\alpha} \in C_c(K)$. An inductive argument using the fundamental theorem of calculus shows that $\partial^{\alpha}\psi_0 = \psi_{\alpha}$ for every multi-index $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq N$. Given the arbitrariness of $N \in \mathbb{N}_0$, we conclude that $\psi_0 \in \mathcal{D}(K)$ and that the sequence (ϕ_j) converges to ψ_0 with respect to \mathscr{T} . Hence the space $\mathcal{D}(U)$ is complete.

Conversely, if a sequence (ϕ_j) in $\mathcal{D}(U)$ satisfies conditions (i) and (ii), it converges to ϕ in $\mathcal{D}(K)$. By Proposition 3.3, it also converges to ϕ in $\mathcal{D}(U)$. Now we discuss the continuous mappings on $\mathcal{D}(U)$.

Proposition 3.5. Let $U \subset \mathbb{R}^n$ be an open set, X a locally convex topological vector space, and $T : \mathcal{D}(U) \to X$ a linear operator. The following properties are equivalent:

- (i) T is continuous.
- (ii) T is bounded, i.e. it sends topologically bounded sets of $\mathcal{D}(U)$ into topologically bounded sets of X.
- (iii) If (ϕ_j) converges to ϕ in $\mathcal{D}(U)$, then $\lim_{j\to\infty} T\phi_j = T\phi$.
- (iv) The restriction of T to $\mathcal{D}(K)$ is continuous for every compact set $K \subset U$.
- If $X = \mathbb{C}$, the following statement is also equivalent to above all:
 - (v) For every compact set $K \subset U$, there exists an integer $N \in \mathbb{N}_0$ and a constant $c_K > 0$ such that $|T\phi| \leq c_K \|\phi\|_{K,N}$ for all $\phi \in \mathcal{D}(K)$.

Proof. We prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i).

• (i) \Rightarrow (ii). Suppose that $T : \mathcal{D} \to X$ is continuous, and $W \subset \mathcal{D}(U)$ is a topologically bounded set. If V is a neighborhood of 0 in X, then $T^{-1}(V)$ is a neighborhood of 0 in $\mathcal{D}(X)$, and there exists t > 0 such that $W \subset tT^{-1}(V)$. Consequently $T(W) \subset tV$. Hence T(W) is also topologically bounded.

• (ii) \Rightarrow (iii). We may assume $(\phi_j) \to 0$ by replacing (ϕ_j) with $(\phi_j - \phi)$. By Proposition 3.4, there exists a compact set K such that $(\phi_j) \subset \mathcal{D}(K)$, and $d_K(\phi_j, 0) \to 0$ as $j \to \infty$.

Let $B = \{\phi \in \mathcal{D}(K) : d_K(\phi, 0) < 1\}$ be the unit ball in $\mathcal{D}(K)$ centered at 0. If T is bounded, the set T(B) is topologically bounded. Then for any neighborhood V of 0 in X, there exists t > 0 such that $T(B) \subset tV$, so $T(t^{-1}B) \subset V$. Since $d_K(\phi_j, 0) \to 0$ as $j \to 0$, there exists N such that $\phi_j \in t^{-1}(B)$ for all $j \ge N$. Hence $(T\phi_j)$ is eventually in V, and $T\phi_j$ converges to 0.

• (iii) \Rightarrow (iv). Fix a compact set $K \subset U$. If (ϕ_j) is a sequence in $\mathcal{D}(K)$ such that $d_K(\phi_j, 0) \to 0$ as $j \to \infty$, by Proposition 3.4, we have $\phi_j \to 0$ in $\mathcal{D}(U)$, and $T\phi = \lim_{j\to\infty} T\phi_j$ by property (iii). Hence the restriction of T to $\mathcal{D}(K)$ is continuous at 0. By linearity, the restriction is continuous.

• (iv) \Rightarrow (i). For every neighborhood V of 0 in X and every compact set $K \subset U$, the restriction of T to $\mathcal{D}(K)$ is continuous at zero, and $T^{-1}(V) \cap \mathcal{D}(K) \in \mathscr{T}_K$. Since K is arbitrary, $T^{-1}(V) \in \mathscr{T}$. Therefore, T is continuous at 0 and, by linearity, everywhere in $\mathcal{D}(U)$.

• (iv) \Leftrightarrow (v). Let $X = \mathbb{C}$. Assume that (iv) holds and fix a compact $K \subset U$. By continuity of $T|_{\mathcal{D}(K)}$ at the origin, there exists $N \in \mathbb{N}_0$ and $\epsilon > 0$ such that $U_{K,N}^{\epsilon} \subset T^{-1}(\{|z| < 1\})$, that is, $|T\phi| < 1$ for all $\phi \in \mathcal{D}(K)$ with $\|\phi\|_{K,N} < \epsilon$. If $\phi \in \mathcal{D}(K)$ and $\phi \neq 0$, then $\|\phi\|_{K,N} \neq 0$, and by linearity of T, we have $|T\phi| \leq \frac{2}{\epsilon} \|\phi\|_{K,N}$. Conversely, if (v) holds, for any $\delta > 0$, by taking $\epsilon > 0$ sufficiently small, we have $|T\phi| < \delta$ for all $\phi \in U_{K,N}^{\epsilon}$. Hence the restriction $T|_{\mathcal{D}(K)}$ is continuous.

Proposition 3.6. Let U and U' be open subsets of \mathbb{R}^n , and $T : \mathcal{D}(U) \to \mathcal{D}(U')$ a linear operator. The following properties are equivalent:

- (i) T is continuous if and only if
- (ii) for each compact set $K \subset U$, there exists a compact set $K' \subset U'$ such that $T(\mathcal{D}(K)) \subset \mathcal{D}(K')$, and the restriction $T : \mathcal{D}(K) \to \mathcal{D}(K')$ is continuous.

Proof. (ii) \Rightarrow (i) is a special case of the implication (iv) \Rightarrow (i) in Proposition 3.5. To prove (i) \Rightarrow (ii), we let $T : \mathcal{D}(U) \to \mathcal{D}(U')$ be a continuous linear operator and fix a compact set $K \subset U$. According to the implication (i) \Rightarrow (iv) in Proposition 3.5, the restriction of T to $\mathcal{D}(K)$ is continuous. If we can show that $T(\mathcal{D}(K)) \subset \mathcal{D}(K')$ for some compact $K' \subset U'$, the proof will be completed by Proposition 3.2.

Assume that $T(\mathcal{D}(K))$ is not contained in $\mathcal{D}(K')$ for any compact $K' \subset U'$. Take an increasing sequence (K'_j) of compact sets such that $K'_j \subset \mathring{K}'_{j+1}$ for all $j \in \mathbb{N}$ and $U' = \bigcup_{j=1}^{\infty} K'_j$. Then we may find for each $j \in \mathbb{N}$ a function $\phi_j \in \mathcal{D}(U')$ and a point $x_j \in K'_{j+1} \setminus K'_j$ such that $d_K(\phi_j, 0) = 1$ and $(T\phi_j)(x_j) \neq 0$. Since (ϕ_j) is topologically bounded in $\mathcal{D}(U)$, by Proposition 3.5 (ii), $(T\phi_j)$ is topologically bounded in $\mathcal{D}(U')$, and by Proposition 3.3, there exists $K' \subset U'$ such that $(\phi_j) \subset \mathcal{D}(K')$, which is contradiction!

3.2 Distributions

Motivation. Let $f \in L^p(\mathbb{R}^n)$, where $1 . For <math>q = \frac{p}{p-1}$, we define $T_f : L^q(\mathbb{R}^n) \to \mathbb{C}$ by

$$T_f g = \int_{\mathbb{R}^n} f(x)g(x) \, dx, \quad g \in L^q(\mathbb{R}^n).$$

The Riesz representation theorem states that the map $f \mapsto T_f$ is an isometric isomorphism of $L^p(\mathbb{R}^n)$ onto the dual space $L^q(\mathbb{R}^n)^*$ of $L^q(\mathbb{R}^n)$. In other words, $f \in L^p(\mathbb{R}^n)$ is completely determined by its action as a bounded linear functional on $L^q(\mathbb{R}^n)$. On the other hand, by Lebesgue differentiation theorem,

$$\lim_{r \to 0^+} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, dy = f(x), \quad \text{for } a.e. \ x \in \mathbb{R}^n,$$

where B(x,r) is the (open) ball of radius r about x, and m is the Lebesgue measure. Hence if we take $g = m(B(x,r))^{-1}\chi_{B(x,r)}$, we can recover the pointwise value of f for almost every $x \in \mathbb{R}^n$ as $r \to 0$. Thus, we lose nothing by thinking of f as a linear mapping from $L^q(\mathbb{R}^n)$ to \mathbb{C} rather than a map from \mathbb{R}^n to \mathbb{C} .

The idea of distribution follows by allowing $f \in L^1_{loc}(\mathbb{R}^n)$ and requiring $\phi \in \mathcal{D}(\mathbb{R}^n)$. The map T_f defines a linear functional on $\mathcal{D}(\mathbb{R}^n)$, and the pointwise values of f can be recovered a.e. by a similar approach of Theorem 1.9. Nevertheless, there are also linear functionals on $\mathcal{D}(\mathbb{R}^n)$ that are not of the form T_f .

Definition 3.7 (Distribution). Let U be an open subset of \mathbb{R}^n . A *distribution* on U is a continuous linear functional on $\mathcal{D}(U)$. The space of all distributions on U is denoted by $\mathcal{D}'(U)$. We equip $\mathcal{D}'(U)$ with the weak* topology, i.e. the neighborhoods of $T_0 \in \mathcal{D}'(U)$ is generated by the sets

$$U_{f_1,\cdots,f_m}^{\epsilon}(T_0) = \{T \in \mathcal{D}'(U) : |Tf_j - T_0f_j| < \epsilon, \ j = 1, 2, \cdots, m\},\$$

where $\epsilon > 0$, $m \in \mathbb{N}$ and $f_1, \dots, f_m \in C_c^{\infty}(U)$. Furthermore, a sequence $T_j \to T$ in the weak* topology if and only if $T_j f \to Tf$ for all $f \in C_c^{\infty}(U)$.

Notations. If $F \in \mathcal{D}'(U)$ and $\phi \in C_c^{\infty}(U)$, we use the pairing notation $\langle F, \phi \rangle$ for the value of F evaluated at the point ϕ . Sometimes it is helpful to pretend that a distribution $F \in \mathcal{D}'(U)$ is a function on U even when it really is not, and to write $\int_U F(x)\phi(x) dx$ instead of $\langle F, \phi \rangle$.

We shall use a tilde to denote the reflection of a function in the origin: $\phi(x) = \phi(-x)$.

Example 3.8. Following are some examples of distribution on an open set $U \subset \mathbb{R}^n$:

- Every function $f \in L^1_{loc}(U)$ defines a distribution on U, namely, the functional $\phi \mapsto \int f \phi \, dx$. Clearly, two functions that are equal a.e. define the same distribution, since they are identified in $L^1_{loc}(U)$.
- Every Radon measure μ on U defines a distribution $\phi \mapsto \int \phi \, d\mu$.
- For a point $x_0 \in U$ and a multi-index $\alpha \in \mathbb{N}_0^n$, the map $\phi \mapsto \partial^{\alpha} \phi(x_0)$ defines a distribution that does not arise from a function.
- In particular, when $U = \mathbb{R}^n$, $\alpha = 0$ and x = 0, this distribution arise from a measure μ which is the point mass at the origin 0. We call this distribution the *Dirac* δ -function, denoted by δ :

$$\langle \delta, \phi \rangle = \phi(0), \quad \phi \in C^{\infty}_{c}(\mathbb{R}^{n}).$$

It can be represented heuristically as

$$\delta(x) = \begin{cases} \infty, & x = 0, \\ 0, & x \neq 0, \end{cases}$$

and we write $\int_{\mathbb{R}^n} \delta(x) \phi(x) \, dx = \phi(0).$

We have the following approximation for Dirac δ -function.

Proposition 3.9. Assume $f \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} f(x) dx = 1$. Define

$$f_t(x) = \frac{1}{t^n} f\left(\frac{x}{t}\right), \quad t > 0.$$

Then $f_t \to \delta$ in $\mathcal{D}'(\mathbb{R}^n)$ as $t \to 0$. *Proof.* If $\phi \in C_c^{\infty}(\mathbb{R}^n)$,

$$\langle f_t, \phi \rangle = \int_{\mathbb{R}^n} f_t(x)\phi(x) \, dx = \int_{\mathbb{R}^n} f_t(x)\widetilde{\phi}(-x) \, dx = (f_t * \widetilde{\phi})(0),$$

which converges to $\widetilde{\phi}(0) = \phi(0) = \langle \delta, \phi \rangle$ as $t \to 0$ by Proposition 1.6.

Let $F \in \mathcal{D}'(U)$ be a distribution on an open set $U \subset \mathbb{R}^n$. For an open set $V \subset U$, we say F = 0 on V if $\langle F, \phi \rangle = 0$ for all $\phi \in C_c^{\infty}(V)$ (for example, if $F \in L^1_{loc}(U)$, it means that F = 0 a.e. on V). Since a function in $C_c^{\infty}(V_1 \cup V_2)$ need not to be supported in either V_1 or V_2 , it is not so clear that F = 0 on both V_1 and V_2 implies F = 0 on $V_1 \cup V_2$. Nevertheless, it is true:

Proposition 3.10. Let $(V_{\alpha})_{\alpha \in A}$ be a collection of open subsets of U, and $V = \bigcup_{\alpha \in A} V_{\alpha}$. If $F \in \mathcal{D}'(U)$ and F = 0 on each V_{α} , then F = 0 on V.

Proof. If $\phi \in C_c^{\infty}(V)$, by compactness, there exist finitely many $\alpha_1, \dots, \alpha_m \in A$ such that $\operatorname{supp}(\phi) \subset \bigcup_{j=1}^m V_{\alpha_j}$. Take a smooth partition of unity $(\psi_j)_{j=1}^m$, i.e. $\operatorname{supp}(\psi_j) \subset V_{\alpha_j}$ for each j and $\sum_{j=1}^m \psi_j = 1$ on $\operatorname{supp}(\phi)$. Then

$$\langle F, \phi \rangle = \sum_{j=1}^{m} \langle F, \phi \psi_j \rangle = 0.$$

Hence F = 0 on V.

Remark I. According to this proposition, we can take a maximal open set W on which F = 0, namely the union of all open sets on which F = 0. Its complement $U \setminus W$ is called the *support of* F.

Remark II. More generally, we say two distributions $F, G \in \mathcal{D}'(V)$ agree on an open set $V \subset U$ if F - G = 0 on V. According to this proposition, if two distributions agree on each member of a collection of open sets, they also agree on the union of those open sets.

Operations on distributions. Let $U \subset \mathbb{R}^n$ be an open set, and $F \in \mathcal{D}'(U)$.

(i) (Product). If $\psi \in C^{\infty}(U)$, we define the product ψF to be

$$\langle \psi F, \phi \rangle = \langle F, \psi \phi \rangle, \quad \phi \in \mathcal{D}(U).$$

For any compact $K \subset U$ and any sequence $\phi_j \in C_c^{\infty}(K)$ that converges to ϕ in $\mathcal{D}(K)$, since $\psi \phi_j \to \psi \phi$ and $F|_{\mathcal{D}(K)}$ is continuous, we have $\langle F, \psi \phi_j \rangle \to \langle F, \psi \phi \rangle$. Hence $\psi F \in \mathcal{D}'(U)$.

(ii) (Translation). If $y \in \mathbb{R}^n$ and $F \in L^1_{\text{loc}}(U)$,

$$\int_{U+y} F(x-y)\phi(x) \, dx = \int_U F(x)\phi(x+y) \, dx, \quad \phi \in \mathcal{D}(U+y).$$

Similarly, for $F \in \mathcal{D}'(U)$, we define the translated distribution $\tau_y F$ to be

$$\langle \tau_y F, \phi \rangle = \langle F, \tau_{-y} \phi \rangle, \quad \phi \in \mathcal{D}(U+y).$$

Then $\tau_y F \in \mathcal{D}'(U+y)$. In particular, the point mass at y is $\tau_y \delta$.

(iii) (Composition with linear map). If $T : \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation and $F \in L^1_{loc}(U)$,

$$\int_{U} F(Tx)\phi(x) \, dx = \left|\det(T)\right|^{-1} \int_{T^{-1}(U)} F(y)\phi(T^{-1}y) \, dy, \quad \phi \in \mathcal{D}(T^{-1}(U)).$$

Similarly, for $F \in \mathcal{D}'(U)$, we define the *composition* $F \circ T$ to be

$$\langle F \circ T, \phi \rangle = |\det(T)|^{-1} \langle F, \phi \circ T^{-1} \rangle, \quad \phi \in \mathcal{D}(T^{-1}(U)).$$

Then $F \circ T = \mathcal{D}'(T^{-1}(U))$. In particular, if Tx = -x, we define the reflection of F in the origin by

$$\langle \widetilde{F}, \phi \rangle = \langle F, \widetilde{\phi} \rangle, \quad \phi \in \mathcal{D}^{\infty}(-U).$$

(iv) (Convolution). Given $\psi \in C_c^{\infty}(\mathbb{R}^n)$, let $V = \{x : x - y \in U \text{ for all } y \in \operatorname{supp}(\psi)\}$. If $F \in L^1_{\operatorname{loc}}(U)$,

$$(F * \psi)(x) = \int_U F(y)\psi(x - y) \, dy = \int_U F(y)(\tau_x \widetilde{\psi})(y) \, dy, \quad x \in V$$

and by Fubini's theorem, if $\phi \in C_c^{\infty}(V)$,

$$\begin{split} \int_{V} (F * \psi)(x)\phi(x) \, dx &= \int_{V} \int_{U} F(y)\psi(x - y)\phi(x) \, dy \, dx \\ &= \int_{U} \int_{V} F(y)\widetilde{\psi}(y - x)\phi(x) \, dx \, dy = \int_{U} F(y)(\phi * \widetilde{\psi})(y) \, dy. \end{split}$$

For $F \in \mathcal{D}'(U)$, we have two approaches to define the *convolution* $F * \psi$:

– Analogous to the first identity, define $F * \psi$ be the function

$$(F * \psi)(x) = \langle F, \tau_x \psi \rangle, \quad x \in V.$$

- Analogous to the second identity, define $F * \psi$ be the mapping

$$\langle F * \psi, \phi \rangle = \langle F, \phi * \widetilde{\psi} \rangle, \quad \phi \in \mathcal{D}(V).$$

If $K \subset V$ is compact and $(\phi_j) \subset C_c^{\infty}(K)$ is a sequence converging to ϕ in $\mathcal{D}(K)$, we have

$$\partial^{\alpha}(\phi_{j} * \widetilde{\psi}) = (\partial^{\alpha}\phi_{j}) * \widetilde{\psi} \to (\partial^{\alpha}\phi) * \widetilde{\psi} = \partial^{\alpha}(\phi * \widetilde{\psi})$$

uniformly for all multi-indices $\alpha \in \mathbb{N}_0^n$. Hence $(F * \psi)|_{\mathcal{D}(K)}$ is continuous, and $F * \psi \in \mathcal{D}'(V)$.

The following proposition shows that the two definitions of the convolution $F * \psi$ coincide. Furthermore, the distribution as a function on U is infinitely differentiable.

Proposition 3.11. Let $U \subset \mathbb{R}^n$ be open. Given $\psi \in C_c^{\infty}(\mathbb{R}^n)$, let $V = \{x : x - y \in U \text{ for all } y \in \operatorname{supp}(\psi)\}$. For $F \in \mathcal{D}'(U)$, define $(F * \psi)(x) = \langle F, \tau_x \widetilde{\psi} \rangle$ for all $x \in V$. Then

- (i) $F * \psi \in C^{\infty}(V)$, and $\partial^{\alpha}(F * \psi) = F * (\partial^{\alpha}\psi)$ for all multi-indices $\alpha \in \mathbb{N}_{0}^{n}$;
- (ii) For all $\phi \in C_c^{\infty}(V)$, we have $\int_V (F * \psi)(x)\phi(x) dx = \langle F, \phi * \widetilde{\psi} \rangle$.

Proof. If $x \in V$, by Proposition 1.5, we have $\tau_{x+s}\widetilde{\psi} \to \tau_x\widetilde{\psi}$ uniformly as $s \to 0$, and the same holds for all partial derivatives. Then $\tau_{x+s}\widetilde{\psi} \to \tau_x\widetilde{\psi}$ in $\mathcal{D}(U)$ as $s \to 0$. By continuity of F on $\mathcal{D}(U)$ we have that $\langle F, \tau_x\widetilde{\psi} \rangle$ is continuous in x. Furthermore, for any $j = 1, 2, \cdots, n$, we have

$$\left|\frac{\psi(x+he_j-y)-\psi(x-y)}{h}-\partial_j\psi(x-y)\right| \le \sup_{t\in\mathbb{R}:|t|<|h|}\left|\partial_j\psi(x+te_j-y)-\partial_j\psi(x-y)\right|.$$

For any $\epsilon > 0$, by uniform continuity of $\partial_j \psi$, there exists a constant $\eta > 0$ independent of x and y such that the last bound is less than ϵ whenever $|h| < \eta$. Hence the difference quotient

$$\frac{\tau_{x+he_j}\widetilde{\psi} - \tau_x\widetilde{\psi}}{h} \to \tau_x\widetilde{\partial_j\psi}$$
(3.2)

uniformly as $h \to 0$. Since the same conclusion of difference quotient holds for all partial derivatives, the convergence (3.2) also holds in $\mathcal{D}(U)$. Therefore

$$\partial_j (F * \psi)(x) = \lim_{h \to 0} \frac{\langle F, \tau_{x+he_j} \widetilde{\psi} \rangle - \langle F, \tau_x \widetilde{\psi} \rangle}{h} = \langle F, \tau_x \widetilde{\partial_j \psi} \rangle = (F * \partial_j \psi)(x).$$

By induction on $|\alpha|$, we have $F * \psi \in C^{\infty}(V)$, and $\partial^{\alpha}(F * \psi) = F * \partial^{\alpha}\psi$. To prove the second result, we note that $\psi, \phi \in C_{c}^{\infty}(\mathbb{R}^{n})$. Then we approximate the convolution $\phi * \tilde{\psi}$ by Riemann sums:

$$(\phi * \widetilde{\psi})(x) = \int_{\mathbb{R}^n} \widetilde{\psi}(x-y)\phi(y) \, dy = \lim_{\epsilon \to 0^+} S_\epsilon(x) := \lim_{\epsilon \to 0^+} \epsilon^n \sum_{\kappa \in \mathbb{Z}^n} \widetilde{\psi}(x-\epsilon\kappa)\phi(\epsilon\kappa),$$

where there are finitely many nonzero terms when κ runs over \mathbb{Z}^n . The Riemann sums S_{ϵ} are supported in a common compact subset of U, and converges to $\phi * \widetilde{\psi}$ uniformly as $\epsilon \to 0$. Also, for all multi-indices α , $\partial^{\alpha}S_{\epsilon} = \epsilon^n \sum_{\kappa \in \mathbb{Z}^n} \partial^{\alpha}\widetilde{\psi}(x - \epsilon\kappa)\phi(\epsilon\kappa)$ converges uniformly to $\partial^{\alpha}(\phi * \widetilde{\psi})$. Hence $S_{\epsilon} \to \phi * \widetilde{\psi}$ in $\mathcal{D}(U)$, and

$$\langle F, \phi * \widetilde{\psi} \rangle = \lim_{\epsilon \to 0^+} \langle F, S_\epsilon \rangle = \lim_{\epsilon \to 0^+} \epsilon^n \sum_{\kappa \in \mathbb{Z}^n} \phi(\epsilon \kappa) \langle F, \tau_{\epsilon \kappa} \widetilde{\psi} \rangle = \int_V \phi(x) \langle F, \tau_x \widetilde{\psi} \rangle \, dx = \int_V (F * \psi)(x) \phi(x) \, dx.$$

Hence the two definitions of $F * \psi$ are equivalent.

Next we show that although distributions can be highly singular objects, they can always be approximated by compactly supported smooth functions in the weak^{*} topology.

Theorem 3.12. For any open set $U \subset \mathbb{R}^n$, the space $C_c^{\infty}(U)$ is dense in $\mathcal{D}'(U)$ in the weak* topology.

To prove this theorem we need some technical lemma.

Lemma 3.13. Assume that $\phi, \psi \in C_c^{\infty}(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \psi(x) dx = 1$. Let $\psi_t(x) = t^{-n} \psi(t^{-1}x)$ for t > 0.

- (i) Given any neighborhood U of $supp(\phi)$, we have $supp(\phi * \psi_t) \subset U$ for t > 0 sufficiently small.
- (ii) $\phi * \psi_t \to 0$ in $\mathcal{D}(\mathbb{R}^n)$ as $t \to 0$.

Proof. If $\operatorname{supp}(\psi) \subset \{x \in \mathbb{R}^n : |x| < R\}$, then $\operatorname{supp}(\phi * \psi_t)$ is contained in the set

$$V = \{ x \in \mathbb{R}^n : d(x, \operatorname{supp}(\phi)) < tR \}.$$

When $t < R^{-1}d(\operatorname{supp}(\phi), U^c)$, the support of $\phi * \psi_t$ is contained in U. Moreover, by Propositions 1.3 and 1.6, $\partial^{\alpha}(\phi * \psi_t) = (\partial^{\alpha}\phi) * \psi_t \to \partial^{\alpha}t$ uniformly as $t \to 0$, and the second result follows.

Proof of Theorem 3.12. Assume $F \in \mathcal{D}'(U)$. We first approximate F by distributions supported on compact subsets of U, then approximate the latter by functions in $C_c^{\infty}(U)$.

• Let (V_j) be a sequence of precompact open subsets of U increasing to U. For each j, by C^{∞} -Urysohn lemma [Proposition 1.10], we take $\zeta_j \in C_c^{\infty}(U)$ such that $\zeta_j = 1$ on \overline{V}_j . Given $\phi \in C_c^{\infty}(U)$, for j sufficiently large we have $\operatorname{supp}(\phi) \subset V_j$, and $\langle F, \phi \rangle = \langle F, \zeta_j \phi \rangle = \langle \zeta_j F, \phi \rangle$. Hence $\zeta_j F \to F$ in the weak* topology as $j \to \infty$.

• Let ψ and (ψ_t) be defined as in Lemma 3.13. Then $\phi * \widetilde{\psi}_t \to \phi$ in $\mathcal{D}(\mathbb{R}^n)$ as $t \to 0$. On the other hand, by Proposition 3.11, we have $(\zeta_j F) * \psi_t \in C^{\infty}(\mathbb{R}^n)$ and $\langle (\zeta_j F) * \psi_t, \phi \rangle = \langle \zeta_j F, \phi * \widetilde{\psi}_t \rangle \to \langle \zeta_j F, \phi \rangle$ as $t \to 0$. Hence $(\zeta_j F) * \psi_t \to \zeta_j F$ in $\mathcal{D}'(\mathbb{R}^n)$. Observing that $\operatorname{supp}(\zeta_j) \subset V_k$ for some k, if $\operatorname{supp}(\phi) \cap \overline{V}_k = \emptyset$, we have $\operatorname{supp}(\phi * \widetilde{\psi}_t) \cap \overline{V}_k = \emptyset$ for t > 0 sufficiently small, by Lemma 3.13, and $\langle (\zeta_j F) * \psi_t, \phi \rangle = \langle F, \zeta_j(\phi * \widetilde{\psi}_t) \rangle = 0$. Hence $\operatorname{supp}((\zeta_j F) * \psi_t) \subset \overline{V}_k \subset U$, and $(\zeta_j F) * \psi_t \in C_c^{\infty}(U)$ for j large enough and t small enough.

Derivatives of distributions. Let U be an open subset of \mathbb{R}^n . If $f \in C_c^{\infty}(U)$, for any multi-index $\alpha \in \mathbb{N}_0^n$,

$$\int_{U} (\partial^{\alpha} f)(x)\phi(x) \, dx = (-1)^{|\alpha|} \int_{U} f(x)(\partial^{\alpha} \phi)(x) \, dx, \quad \phi \in C_{c}^{\infty}(U).$$

This is the integration by parts formula, where the boundary term vanishes since f is compactly supported. Generally, for $F \in \mathcal{D}'(U)$, we can define a linear functional $\partial^{\alpha} F$ on $C_c^{\infty}(U)$ by

$$\langle \partial^{\alpha} F, \phi \rangle = (-1)^{|\alpha|} \langle F, \partial^{\alpha} \phi \rangle, \quad \phi \in C_{c}^{\infty}(U).$$

For any compact $K \subset U$ and any sequence $(\phi_j) \subset C_c^{\infty}(K)$ that converges to ϕ in $\mathcal{D}(K)$, by continuity of F, we have $\langle F, \partial^{\alpha} \phi_j \rangle \to \langle F, \partial^{\alpha} \phi \rangle$ as $j \to \infty$. Hence $\partial^{\alpha} F|_{\mathcal{D}(K)}$ is continuous, and $\partial^{\alpha} F \in \mathcal{D}'(U)$.

The distribution $\partial^{\alpha} F$ is called the α^{th} derivative of F. Moreover, if $F_j \to F$ in $\mathcal{D}'(U)$, we have $\langle \partial^{\alpha} F_j, \phi \rangle = \langle F_j, \partial^{\alpha} \phi \rangle \to \langle F, \partial^{\alpha} \phi \rangle = \langle \partial^{\alpha} F, \phi \rangle$ for each $\phi \in C_c^{\infty}(U)$, and $\partial^{\alpha} F_j \to \partial^{\alpha} F$ in $\mathcal{D}'(U)$. Therefore, the differentiation operator $\partial^{\alpha} : \mathcal{D}'(U) \to \mathcal{D}'(U)$ is a continuous linear map with respect to the weak* topology.

In particular, for any locally integrable function $\psi \in L^1_{loc}(U)$, we can define its derivatives of arbitrary order even if it is not differentiable in the classical sense. To be specific, we define $\langle T_{\psi}, \phi \rangle = \int_U \psi(x)\phi(x) dx$. The derivative $\partial^{\alpha}T_{\psi}$ of the distribution T_{ψ} is called the α^{th} distributional derivative of ψ , denoted by $\partial^{\alpha}\psi$. Following are some examples of distributional derivatives.

Jump discontinuity. For simplicity, we first consider the functions on \mathbb{R} . Differentiating functions with jump discontinuities leads to δ -singularities. The simplest example is the *Heaviside step function* $H = \chi_{[0,\infty)}$, for which we have

$$\langle H', \phi \rangle = -\langle H, \phi' \rangle = -\int_0^\infty \phi'(x) \, dx = \phi(0) = \langle \delta, \phi \rangle, \quad \phi \in C_c^\infty(\mathbb{R}).$$

Hence the first distributional derivative of H is the Dirac function δ . More generally, for any $x \in \mathbb{R}$, the distributional derivative of the step function $\tau_x H = \chi_{[x,\infty)}$ is $\tau_x \delta$, which is the point mass at x.

If f is piecewise continuously differentiable on \mathbb{R} , f only has jump discontinuities at $x_1 < x_2 < \cdots < x_m$, and its pointwise derivative $\frac{df}{dx}$ is in $L^1_{\text{loc}}(\mathbb{R})$. Then

$$\begin{aligned} \langle f', \phi \rangle &= -\langle f, \phi' \rangle = -\sum_{j=0}^{m} \int_{x_j}^{x_{j+1}} f(x) \phi'(x) \, dx \\ &= -\sum_{j=0}^{m} \left[f(x_{j+1}^-) \phi(x_{j+1}) - f(x_j^+) \phi(x_j) - \int_{x_j}^{x_{j+1}} \frac{df}{dx}(y) \phi(y) \, dy \right] \\ &= \int_{-\infty}^{\infty} \frac{df}{dx}(y) \phi(y) \, dy + \sum_{j=1}^{m} \phi(x_j) \left[f(x_j^+) - f(x_j^-) \right] \end{aligned}$$

Therefore, the distributional derivative of f is given by

$$f' = \frac{df}{dx} + \sum_{j=1}^{m} \left[f(x_j^+) - f(x_j^-) \right] \tau_{x_j} \delta.$$

Generalized Heaviside step function.

3.3 Compactly Supported Distributions

The C^{∞} topology. Let $U \subset \mathbb{R}^n$ be an open set. The C^{∞} topology on the space $C^{\infty}(U)$ of all smooth functions on U is the topology of uniform convergence of functions, together with all their derivatives, on compact subsets of U. This topology can be defined by a countable family of seminorms as follows. Let (V_m) be an increasing sequence of precompact open subsets of U whose union is U. For each $m \in \mathbb{N}$ and each multi-index $\alpha \in \mathbb{N}_0^n$, define the seminorm

$$||f||_{[m,\alpha]} = \sup_{x \in \overline{V}_m} |\partial^{\alpha} f(x)|.$$
(3.3)

With the topology induced by the family of these seminorms, the space $C^{\infty}(U)$ is a Fréchet space. Furthermore, a sequence (f_j) converges to f in $C^{\infty}(U)$ if and only if $||f_j - f||_{[m,\alpha]} \to 0$ for all $m \in \mathbb{N}, \alpha \in \mathbb{N}_0^n$, if and only if $\partial^{\alpha} f_j \to \partial^{\alpha} f$ uniformly on compact sets for all $\alpha \in \mathbb{N}_0^n$.

Proposition 3.14. Let $U \subset \mathbb{R}^n$ be an open set. The space $C_c^{\infty}(U)$ is dense in $C^{\infty}(U)$.

Proof. We take the sequence (V_m) as in (3.3). By C^{∞} -Urysohn lemma [Theorem 1.10], for each m, we take $\psi_m \in C_c^{\infty}(U)$ with $\psi_m = 1$ on \overline{V}_m . If $\phi \in C^{\infty}(U)$, for all multi-indices $\alpha \in \mathbb{N}_0$, we have $\|\psi_m \phi - \phi\|_{[m_0,\alpha]} = 0$ for all indices $m \ge m_0$. Hence $\psi_m \phi \in C_c^{\infty}(U)$ converges to ϕ in the C^{∞} topology.

If U is an open subset of \mathbb{R}^n , we denote by $\mathcal{E}'(U)$ the space of all distributions on U whose support is a compact subset of U.

Theorem 3.15. Let $U \subset \mathbb{R}^n$ be an open set.

(i) If $F \in \mathcal{E}'(U)$, then F extends uniquely to a continuous linear functional on $C^{\infty}(U)$

(ii) If G is a continuous linear functional on $C^{\infty}(U)$, then $G|_{C^{\infty}(U)} \in \mathcal{E}'(U)$.

To summarize, $\mathcal{E}'(U)$ equals the dual space of $C^{\infty}(U)$.

Proof. If $F \in \mathcal{E}'(U)$, take $\psi \in C_c^{\infty}(U)$ such that $\psi = 1$ on $\operatorname{supp}(F)$, and define the linear functional G on $C^{\infty}(U)$ by $G\phi = \langle F, \psi\phi \rangle$. Since F is continuous on $\mathcal{D}(\operatorname{supp}(\psi))$, and the topology of the latter is defined by the norms $\phi \mapsto \|\partial^{\alpha}\phi\|_{\infty}$, there exists C > 0 and $N \in \mathbb{N}$ such that $|\langle G, \phi \rangle| = |\langle F, \psi\phi \rangle| \leq C \sum_{|\alpha| \leq N} \|\partial^{\alpha}(\psi\phi)\|_{\infty}$ for all $\phi \in C^{\infty}(U)$. By the product rule, if we choose m large enough so that $\overline{V}_m \supset \operatorname{supp}(\psi)$,

$$|\langle G, \phi \rangle| \leq C' \sum_{|\alpha| \leq N} \sup_{x \in \mathrm{supp}(\psi)} |\partial^{\alpha} \phi(x)| \leq C' \sum_{|\alpha| \leq N} \|\phi\|_{[m,\alpha]}$$

Hence G is continuous on $C^{\infty}(U)$. By Proposition 3.14, the continuous extension G of F is unique.

On the other hand, if G is a continuous linear functional on $C^{\infty}(U)$, there exists constants C, m and Nsuch that $|\langle G, \phi \rangle| \leq C \sum_{|\alpha| \leq N} \|\phi\|_{[m,\alpha]}$ for all $\phi \in C^{\infty}(U)$. Since $\|\phi\|_{[m,\alpha]} \leq \|\partial^{\alpha}\phi\|_{\infty}$, the functional G is continuous on $\mathcal{D}(K)$ for each compact $K \subset U$, and $G|_{C^{\infty}_{c}(U)} \in \mathcal{D}'(U)$. Moreover, if $\operatorname{supp}(\phi) \cap \overline{V}_{m} = \emptyset$, we have $\langle G, \phi \rangle = 0$, and $\operatorname{supp}(G) \subset \overline{V}_{m}$. Hence $G|_{C^{\infty}_{c}(U)} \in \mathcal{E}'(U)$.

Remark. In fact, one can easily check that the operations of multiplication by C^{∞} functions, translation, composition by invertible linear maps and differentiation, as is discussed in the last section, all preserves the class of $\mathcal{E}'(U)$. The case of convolution is a bit more complicated.

3.4 Tempered Distributions and Fourier Transform

Definition 3.16 (Tempered distributions). A tempered distribution (on \mathbb{R}^n) is a continuous linear functional on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. The space of tempered distribution is denoted by $\mathcal{S}'(\mathbb{R}^n)$. Usually, we equip $\mathcal{S}'(\mathbb{R}^n)$ with the weak* topology.

The following proposition helps to understand the relation of distributions and tempered distributions.

Proposition 3.17. The space $C_c^{\infty}(\mathbb{R}^n)$ is dense in $\mathcal{S}(\mathbb{R}^n)$.

Proof. We fix $\phi \in \mathcal{S}(\mathbb{R}^n)$, which is to be approximated. We take $\psi \in C_c^{\infty}(\mathbb{R}^n, [0, 1])$ such that $\psi(0) = 1$, and let $\psi^t(x) = \psi(tx)$ for t > 0. Given any $N \in \mathbb{N}$ and $\epsilon > 0$, we can choose a compact $K \subset \mathbb{R}^n$ such that $(1 + |x|)^N |\phi(x)| < \epsilon$ for all $x \notin K$. Then $\psi^t(x) \to 1$ uniformly on K as $t \to 0$, and

$$\lim_{t \to 0} \|\psi^t \phi - \phi\|_{(N,0)} \le \sup_{x \notin K} (1 + |x|)^N |\psi^t(x)\phi(x) - \phi(x)| < \epsilon$$

By arbitrariness of N and ϵ , we have $\|\psi^t \phi - \phi\|_{(N,0)} \to 0$ as $t \to 0$ for all $N \in \mathbb{N}_0$. For the terms involving derivatives, by the product rule,

$$(1+|x|)^N \partial^\alpha (\psi^t \phi - \phi) = (1+|x|)^N (\psi^t \partial^\alpha \phi - \partial^\alpha \phi) + R_t(x),$$

where the remainder R_t is a sum of terms involving derivatives of ψ^t . Since

$$\left|\partial^{\beta}\psi^{t}(x)\right| = t^{|\beta|} \left|\partial^{\beta}\psi(tx)\right| \le C_{\beta}t^{|\beta|},$$

we have $||R_t||_{\infty} \leq Ct \to 0$ as $t \to 0^+$. An analogue of the preceding argument shows that $||\psi^t \phi - \phi||_{(N,\alpha)} \to 0$ as $t \to 0$. Hence $\psi^t \phi \in C_c^{\infty}(\mathbb{R}^n)$ converges to ϕ in $\mathcal{S}(\mathbb{R}^n)$, which completes the proof.

Remark. Since the convergence in $\mathcal{D}(\mathbb{R}^n)$ implies the convergence in $\mathcal{S}(\mathbb{R}^n)$, if $F \in \mathcal{S}'(\mathbb{R}^n)$ is a tempered distribution, the restriction of F to $C_c^{\infty}(\mathbb{R}^n)$ is also continuous. Hence $F|_{C_c^{\infty}(\mathbb{R}^n)}$ is a distribution. Furthermore, by Proposition 3.17, the restriction $F|_{C_c^{\infty}(\mathbb{R}^n)}$ determines $F \in \mathcal{S}'(\mathbb{R}^n)$ uniquely. Thus we may identify $\mathcal{S}'(\mathbb{R}^n)$ with the sets of all distributions on \mathbb{R}^n that extends continuously from $C_c^{\infty}(\mathbb{R}^n)$ to $\mathcal{S}(\mathbb{R}^n)$.

Example 3.18. Following are some examples of tempered distributions on \mathbb{R}^n .

- Every compactly supported distribution is tempered.
- If $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} (1+|x|)^{-N} |f(x)| \, dx < \infty$ for some $N \in \mathbb{N}_0$, then f is tempered, since

$$\left| \int_{\mathbb{R}^n} f(x)\phi(x) \, dx \right| \le \left\| (1+|x|)^{-N} f \right\|_{L^1} \left\| (1+|x|)^N \phi \right\|_{\infty} \le C \|\phi\|_{(N,0)}, \quad \phi \in \mathcal{S}(\mathbb{R}^n).$$

- Given $\omega \in \mathbb{R}^n$, the plane wave function $f(x) = e^{i\omega \cdot x}$ on \mathbb{R}^n is a tempered distribution on \mathbb{R}^n . This distribution is related to the Fourier transform: if $\phi \in \mathcal{S}(\mathbb{R}^n)$, we have $\langle f, \phi \rangle = \widehat{\phi}(-\omega)$.
- In fact, the exponential function $f(x) = e^{\beta \cdot x}$ on \mathbb{R}^n is tempered if and only if β is purely imaginary. We assume $\beta = \gamma + i\omega$ with $\delta, \omega \in \mathbb{R}^n$. If $\gamma \neq 0$, we take $\psi \in C_c^{\infty}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \psi(x) dx = 1$ and let $\phi_m(x) = e^{-\beta \cdot x}\psi(x - m\gamma)$. Then $\phi_m \to 0$ in $\mathcal{S}(\mathbb{R}^n)$ as $m \to \infty$, but $\int_{\mathbb{R}^n} f\phi_m dx = \int_{\mathbb{R}^n} \psi dx = 1$.
- If $F \in \mathcal{S}'(\mathbb{R}^n)$, the derivative $\partial^{\alpha} F$ is also a tempered distribution. Indeed, $\phi_j \to \phi$ in $\mathcal{S}(\mathbb{R}^n)$ implies

$$\langle \partial^{\alpha} F, \phi_j \rangle = \langle F, \partial^{\alpha} \phi_j \rangle \to \langle F, \partial^{\alpha} \phi \rangle = \langle \partial^{\alpha} F, \phi \rangle.$$

- A function $\psi \in C^{\infty}(\mathbb{R}^n)$ is called *slowly increasing*, if ψ and all its derivatives have at most polynomial growth at infinity, i.e. for every multi-index α there exists $N_{\alpha} \in \mathbb{N}_0$ such that $|\partial^{\alpha}\psi(x)| \leq C_{\alpha}(1+|x|)^{N_{\alpha}}$. If $F \in \mathcal{S}'(\mathbb{R}^n)$, the product ψF with a slowly increasing C^{∞} function is also a tempered distribution.
- Let $F \in \mathcal{S}'(\mathbb{R}^n)$. If $y \in \mathbb{R}^n$, the translated distribution $\tau_y F$ is also tempered; If T is an invertible linear mapping on \mathbb{R}^n , the composition $F \circ T$ with an invertible linear map is also tempered.

Proposition 3.19. If $F \in \mathcal{S}'(\mathbb{R}^n)$ and $\psi \in \mathcal{S}(\mathbb{R}^n)$, the function $(F * \psi)(x) = \langle F, \tau_x \widetilde{\psi} \rangle$ is a slowly increasing C^{∞} function, and we have

$$\langle F, \phi \ast \widetilde{\psi} \rangle = \int_{\mathbb{R}^n} (F \ast \psi)(x) \phi(x) \, dx, \quad \phi \in \mathcal{S}(\mathbb{R}^n).$$

Proof.

Г		1	