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1 Preliminaries

1.1 Convolution

In this section we study the convolution operation on Rn. If a function f is defined on U ⊂ Rn, we can replace

it by its natural zero extension f : Rn → R which assigns f(x) = 0 for x /∈ U .

Definition 1.1 (Convolution). Let f, g : Rn → R be Lebesgue measurable functions. Define the bad set as

E(f, g) :=

{
x ∈ Rn :

∫
Rn
|f(x− y)g(y)| dy =∞

}
.

The convolution of f and g is the function f ∗ g : Rn → R defined by

(f ∗ g)(x) =

{∫
Rn f(x− y)g(y) dy, x /∈ E(f, g),

0, x ∈ E(f, g).

Remark. Define F : R2n → R, (x, y) 7→ f(x) and G : R2n → R, (x, y) 7→ g(y). Then both F and G are

measurable functions on R2n, as well as their product F ·G : (x, y) 7→ f(x)g(y). Given linear transformation

T (x, y) = (x − y, y), the composition H = (F · G) ◦ T : (x, y) 7→ f(x − y)g(y) is measurable. By Tonelli’s

theorem, the function x 7→
∫
Rn |H(x, y)| dy is measurable, and E(f, g) is a Lebesgue measurable set.

Clearly, the convolution operation is both commutative and associative, i.e. f ∗ g = g ∗ f , and (f ∗ g) ∗ h =

f ∗ (g ∗ h). Furthermore, the distributivity of convolution with respect to functional addition immediately

follows, i.e. f ∗ (g + h) = f ∗ g + f ∗ h.

Proposition 1.2 (Properties of convolution). Let f, g : Rn → R be Lebesgue measurable functions.

(i) If f, g ∈ L1(Rn), then the bad set E(f, g) is of measure zero. Moreover, f ∗ g ∈ L1(Rn), and∫
Rm

(f ∗ g) dm =

∫
Rn
f dm

∫
Rn
g dm. (1.1)

(ii) If f ∈ Cu(Rn) and g ∈ L1(Rn), then f ∗ g ∈ Cu(Rn).

(iii) If f ∈ Lp(Rn) and g ∈ L1(Rn), then f ∗ g ∈ Lp(Rn), and

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 .

Proof. (i) Define the measurable function H(x, y) 7→ f(x− y)g(y) on R2n. By Tonelli’s theorem,∫
R2n

|H| dm =

∫
Rn

(∫
Rn
|f(x− y)| |g(y)| dx

)
dy = ‖f‖L1‖g‖L1 .

Hence H : R2n → R is integrable. By Fubini’s theorem, for a.e. x ∈ Rn, y 7→ H(x, y) is integrable, hence

m(E(f, g)) = 0. Furthermore, the function f ∗g : x 7→
∫
Rn H(x, y) dy is also integrable, that is, f ∗g ∈ L1(Rn).

The equation (1.1) follows from Fubini’s theorem.

(ii) Given ε > 0. By uniform continuity of f , there exists η > 0 such that |f(x)− f(x′)| < ε/‖g‖L1 for all

|x− x′| < η, . As a result, for all x, x′ ∈ Rn such that |x− x′| < η, we have

|(f ∗ g)(x)− (f ∗ g)(x′)| ≤
∫
Rn
|f(x− y)− f(x′ − y)| |g(y)| dy < ε.

(iii) is a special case of the following proposition.
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Proposition 1.3 (Young’s convolution inequality). Given r ∈ [1,∞] and Hölder r-conjugates p, q ∈ [1,∞],

i.e. 1
p + 1

q = 1 + 1
r . If f ∈ Lp(Rn) and g ∈ Lq(Rn), then the bad set E(f, g) is of measure zero, and we have

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Remark. Note that r = pq
p+q−pq ≥ 1 ⇔ pq

p+q ≥
1
2 ⇔ p ≥ q

2q−1 ⇔ q ≥ p
2p−1 ,

and r <∞ ⇔ p+ q > pq ⇔ p < q
q−1 ⇔ q < p

p−1 .

Proof. We first bound f ∗ g. By applying generalized Hölder’s inequality on 1
r + r−p

pr + r−q
qr = 1, we have

|(f ∗ g)(x)| ≤
∫
Rn
|f(x− y)| |g(y)| dy

=

∫
Rn

(|f(x− y)|p|g(y)|q)1/r |f(x− y)|
r−p
r |g(y)|

r−q
r dy

≤
(∫

Rn
|f(x− y)|p|g(y)|q dy

)1/r (∫
Rn
|f(x− y)|p dy

) r−p
pr
(∫

Rn
|g(y)|q dy

) r−q
qr

=

(∫
Rn
|f(x− y)|p|g(y)|q dy

)1/r

‖f‖
r−p
r

Lp ‖g‖
r−q
r

Lq .

Consequently, we have∫
Rn

(∫
Rn
|f(x− y)| |g(y)| dy

)r
dx ≤

(∫
Rn

∫
Rn
|f(x− y)|p|g(y)|q dy dx

)
‖f‖r−pLp ‖g‖

r−q
Lq

≤ ‖f‖r−pLp ‖g‖
r−q
Lq

∫
Rn

(∫
Rn
|f(x− y)|p dx

)
|g(y)|q dy = ‖f‖rLp ‖g‖

r
Lq ,

where we use Fubini’s theorem in the second inequality. From the last display, we have m(E(f, g)) = 0, and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Remark. If f ∈ Lploc(Rn), and g ∈ Lq(Rn) is compactly supported, then f ∗ g ∈ Lrloc(Rn).

Proposition 1.4 (Convolution of compactly supported functions). Let f, g : Rn → R.

(i) If f, g ∈ L1(Rn), then supp(f ∗ g) ⊂ supp f + supp g := {x+ y : x ∈ supp f, y ∈ supp g}. Furthermore,

if both f and g are compactly supported on R, then f ∗ g is also compactly supported. In this case,

supp(f ∗ g) ⊂ supp f + supp g.

(ii) Let 1 ≤ p ≤ ∞, and let k ∈ N0. If f ∈ Ckc (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ Cku(Rn). Furthermore,

differentiation commutes with convolution, i.e.,

∂α(f ∗ g) = ∂αf ∗ g, ∀|α| ≤ k,

(iii) Let 1 ≤ p ≤ ∞. If f ∈ C∞c (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ C∞u (Rn). Similarly, differentiation

commutes with convolution, i.e., ∂α(f ∗ g) = ∂αf ∗ g for multi-indices α.

Remark. Here is a slight modification of assertions (ii) and (iii):

(ii’) Let 1 ≤ p ≤ ∞, and let k ∈ N0. If f ∈ Ckc (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ Cku(Rn). Furthermore,

differentiation commutes with convolution, i.e.,

∂α(f ∗ g) = ∂αf ∗ g, ∀|α| ≤ k,

(iii’) Let 1 ≤ p ≤ ∞. If f ∈ C∞c (Rn) and g ∈ Lp(Rn), then f ∗ g ∈ C∞u (Rn). Similarly, differentiation

commutes with convolution, i.e., ∂α(f ∗ g) = ∂αf ∗ g for multi-indices α.
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Proof. (i) Let f, g ∈ L1(Rn), and take any x ∈ Rn. Then

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy =

∫
(x−supp f)∩supp g

f(x− y)g(y) dy.

For x /∈ supp f + supp g, we have (x− supp f) ∩ supp g = ∅, which implies (f ∗ g)(x) = 0. Hence

(f ∗ g)(x) 6= 0 ⇒ x ∈ supp f + supp g ⇒ supp(f ∗ g) ⊂ supp f + supp g.

If f, g ∈ Cc(Rn), then supp f and supp g are compact in Rn. Define φ(x, y) = x + y, which is a continuous

map on Rn ×Rn. Then supp f + supp g = φ(supp f × supp g) is also compact. Consequently, supp f + supp g

is closed, and its closed subset supp(f ∗ g) is also compact. which implies f ∗ g ∈ Cc(Rn).

(ii) Step I: We first show the case k = 0. Let q = p/(p − 1). Note that f is continuous and compact

supported, then m(supp f) <∞, f is uniformly continuous, and ‖f‖∞ = maxx∈supp f |f(x)| <∞. By Hölder’s

inequality, for all x ∈ Rn, we have∫
Rn
|f(x− y)| |g(y)| dy ≤ ‖f‖Lq‖g‖Lp ≤ m

(
supp f

)1/q‖f‖∞‖g‖Lp <∞.
Then f ∗ g is well-defined on Rn. To show uniform continuity of f ∗ g, we fix ε > 0 and let η be such that

|x− x′| < η implies |f(x)− f(x′)| < ε. Then

|(f ∗ g)(x)− (f ∗ g)(x′)| =
∣∣∣∣∫

Rn
[f(x− y)− f(x′ − y)] g(y) dy

∣∣∣∣
≤ 2m

(
supp f

)1/q ‖g‖Lp ε.
Step II: We prove the case k = 1. It suffices to show the interchangeability of derivative and integral.

Given any quantity h > 0, we have

(f ∗ g)(x+ hei)− (f ∗ g)(x)

h
=

∫
Rn

f(x+ hei − y)− f(x− y)

h
g(y) dy. (1.2)

Since f ∈ C1
c (Rn), by Lagrange’s mean value theorem, there exists ξ ∈ [0, 1] such that∣∣∣∣f(x+ hei − y)− f(x− y)

h

∣∣∣∣ = |∂xif(x+ ξhei − y)| , (1.3)

Note that ∂xif is also continuous and compactly supported on Rn, the RHS of (1.3) is bounded by ‖∂xif‖∞,

and the integrand in (1.2) is dominated by an integrable function ‖∂xif‖∞g. Using Lebesgue’s dominate

convergence theorem, we have

lim
h→0

∫
Rn

f(x+ hei − y)− f(x− y)

h
g(y) dy =

∫
Rn

∂f

∂xi
(x− y)g(y) dy.

Therefore ∂xi(f ∗ g) = ∂xif ∗ g. Since ∂xif ∈ Cc(Rn), we have ∂xi(f ∗ g) ∈ Cu(Rn), and f ∗ g ∈ C1
u(Rn).

Step III: Use induction. Suppose our conclusion holds for Ck−1
c (Rn). For each f ∈ Ckc (Rn) ⊂ Ck−1

c (Rn),

∂k−1f ⊂ C1
c (Rn). By Step II, for any |α| = k − 1,

∂α+ei(f ∗ g) = ∂xi(∂
α(f ∗ g)) = ∂xi(∂

αf ∗ g) = (∂α+eif) ∗ g,

which is uniformly continuous on Rn. Hence f ∗ g ∈ Cku(Rn).

(iii) Note that C∞c (Rn) =
⋂∞
k=0 C

k
c (Rn), we have ∂α(f ∗ g) = ∂αf ∗ g for all α ∈ Nn0 . Following Step II,

∂αf ∈ Cc(Rn) implies ∂α(f ∗ g) ∈ Cu(Rn) for all α ∈ Nn0 . Hence f ∗ g ∈
⋂∞
k=0 C

k
u(Rn) = C∞u (Rn).
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Translation operators. Let X be a vector space, let Y X be the set of functions f : X → Y , and let s be a

vector in X. The translation operator τs : Y X → Y X is defined as

(τsf)(x) = f(x− s), ∀f ∈ Y X .

The following proposition gives a description of the continuity of (τs)s∈X in Cc and Lp spaces.

Proposition 1.5. Let 1 ≤ p <∞.

(i) For any f ∈ Cc(Rn), τsf → f uniformly and in Lp-norm as s→ 0.

(ii) For any f ∈ Lp(Rn), τsf → f in Lp-norm as s→ 0.

Proof. Let f ∈ Cc(Rn), and let B1 = {x ∈ Rn : |x| ≤ 1} be the compact unit ball in Rn. The collection of

functions {τsf : |s| ≤ 1} has a common support

K =
⋃
|s|≤1

supp(τsf) = supp f +B1 = {x+ y : x ∈ supp f, y ∈ B1}.

Since the addition operation is continuous, K is also a compact subset of Rn.

By uniform continuity of f , given ε > 0, there exists δ > 0 such that |f(x)− f(y)| < ε for all |x− y| < δ.

Hence τsf → f uniformly as s→ 0. Moreover, for any s with |s| < |min(δ, 1)|, we have

‖τsf − f‖pLp =

∫
K

|f(x− s)− f(x)|pdx ≤ µ(K) εp.

Since µ(K) <∞, and ε is arbitrary, we conclude that ‖τsf − f‖Lp → 0 as s→ 0.

Now we assume f ∈ Lp(Rn), and fix ε > 0. Since Cc(Rn) is dense in Lp(Rn), there exists g ∈ Cc(Rn) such

that ‖f − g‖∞ < ε/3. Choose δ such that ‖τsg − g‖Lp < ε/3 for all |s| < δ. Then for all |s| < δ,

‖τsf − f‖Lp ≤ ‖τsf − τsg‖Lp + ‖τsg − g‖Lp + ‖g − f‖Lp = 2‖f − g‖+ ‖τsg − g‖Lp < ε.

Therefore, lims→0 ‖τsf − f‖Lp = 0 for all f ∈ Lp(Rn).

Proposition 1.6 (Mollification). Let φ ∈ L1(Rn), with
∫
Rn φdx = a. Given t > 0, define

φt(x) =
1

tn
φ
(x
t

)
. (1.4)

(i) If f ∈ Lp(Rn), f ∗ φt → af in Lp(Rn) as t→ 0.

(ii) If f is bounded and uniformly continuous, f ∗ φt → af uniformly as t→ 0.

Proof. Using the decomposition φ = φ+ − φ−, we may assume φ ≥ 0 on Rn. We further assume a = 1 by

replacing φ by φ/a if necessary. Then

(f ∗ φt)(x)− f(x) =

∫
|y|≤t

(f(x− y)− f(x))φt(y) dy =

∫
|y|≤t

(τyf − f)(x)φt(y) dy.

By Jensen’s inequality and Fubini’s theorem,

∫
Rn
|(f ∗ φt)(x)− f(x)|p dx =

∫
Rn

∣∣∣∣∣
∫
|y|≤t

(τyf − f)(x)φt(y) dy

∣∣∣∣∣
p

dx

≤
∫
Rn

∫
|y|≤t

|τyf(x)− f(x)|p φt(y) dy dx ≤ sup
|y|<t
‖τyf − f‖Lp .

By continuity of the translation operator, the first result follows. For the second result, use the same estimate

for f ∗ φt − f and the uniform continuity of f .
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When we establish the density arguments of C∞c functions, the above result is very useful.

Proposition 1.7. For 1 ≤ p <∞, C∞c (Rn) is dense in Lp(Rn).

Proof. By the first assertion in Proposition 1.6, C∞c (Rn) is dense in Cc(R) in ‖ · ‖1 norm. Since Cc(Rn) is

dense in Lp(Rn), the result follows.

Proposition 1.8. For 1 ≤ p <∞, C∞c (Rn) is dense in C0(Rn).

Proof. By the second assertion in Proposition 1.6, C∞c (Rn) is dense in Cc(R) in ‖ · ‖∞ norm. Since C0(Rn) is

the closure of Cc(Rn) in ‖ · ‖∞ norm, the result follows.

Aside from the convergence in Lp-norm discussed in Proposition 1.6, we are also interested in the pointwise

convergence property of mollification f ∗ φε.

Proposition 1.9 (Mollification). Assume φ ∈ L1(Rn) satisfies |φ(x)| ≤ C(1 + |x|)−n−γ for some C, γ > 0,

and
∫
Rn φdx = a. Define φε as in (1.4). Let 1 ≤ p ≤ ∞. If f ∈ Lp(Rn), then (f ∗ φε)(x) → af(x) as ε → 0

for every Lebesgue point x of f .

Proof. If x is a Lebesgue point of f , we have

lim
r→0+

1

rn

∫
B(x,r)

|f(y)− f(x)| dy = 0.

For any ε > 0, we choose δ > 0 such that
∫
B(x,r)

|f(y)− f(x)| dy < rnε for all r ≤ δ, and set

I1 =

∫
|y|<δ

|f(x− y)− f(x)| |φt(y)| dy, I2 =

∫
|y|≥δ

|f(x− y)− f(x)| |φt(y)| dy.

We claim that I1 is bounded by Aε, where A is independent of t, and I2 → 0 as t→ 0. Since

|(f ∗ φt)(x)− af(x)| ≤ I1 + I2,

we will have

lim sup
t→0+

|(f ∗ φt)(x)− af(x)| ≤ Aε,

Since ε > 0 is arbitrary, the proof will be completed.

To estimate I1, let N be the integer such that 2N ≤ δ/t < 2N+1, if δ/t ≥ 1, and N = 0 if δ/t < 1. We

view the ball |y| < δ as the union of the annuli 2−kδ ≤ |y| < 21−kδ, 1 ≤ k ≤ N and the ball |y| < 2−Nδ. On

the kth annulus we use the estimate

|φt(y)| = 1

tn

∣∣∣φ(y
t

)∣∣∣ ≤ Ct−n ∣∣∣y
t

∣∣∣−n−γ ≤ Ct−n(2−kδ

t

)−n−γ
and in the ball |y| < 2−Nδ, we use the estimate |φt(y)| ≤ Ct−n. Thus

I1 ≤
N∑
k=1

Ct−n
(

2−kδ

t

)−n−γ ∫
2−kδ≤|y|<21−kδ

|f(x− y)− f(x)| dy + Ct−n
∫
|y|<2−Nδ

|f(x− y)− f(x)| dy

≤ Cε
N∑
k=1

(21−kδ)nt−n
(

2−kδ

t

)−n−γ
+ Cε(2−Nδ)nt−n = 2nCε

(
δ

t

)−γ N∑
k=1

2kγ + Cε

(
2−Nδ

t

)n
= 2nCε

(
δ

t

)−γ
2(N+1)γ − 2γ

2γ − 1
+ Cε

(
2−Nδ

t

)n
≤ 2nC

(
2γ

2γ − 1
+ 1

)
︸ ︷︷ ︸

=:A

ε.
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As for I2, if q is the conjugate exponent to p and χ is the characteristic function of the set {y ∈ Rn : |y| ≥ δ},

I2 ≤
∫
|y|≥δ

(|f(y − x)| − |f(x)|) |φt(y)| dy ≤ ‖f‖Lp ‖χφt‖Lq + |f(x)| ‖χφt‖L1 .

If q =∞,

‖χφt‖L∞ ≤ Ct
−n
(

1 +
δ

t

)−n−γ
=

Ctδ

(t+ δ)n+γ
≤ Ctδ

δn+γ
,

which converges to 0 as t→ 0. If 1 ≤ q <∞, we switch to the sphere coordinates:

‖χφt‖Lq =

∫
|y|≥δ

t−nq
∣∣∣φ(y

t

)∣∣∣q dy =

∫
|z|≥δ/t

tn(1−q) |φ (z)|q dz

≤ Cntn(1−q)
∫ ∞
δ/t

rn−1C(1 + r)−(n+γ)q dr

≤ CnCtn(1−q)
∫ ∞
δ/t

rn−1−(n+γ)q dr

= CnCt
n(1−q) (δ/t)n−(n+γ)q

(n+ γ)q − n
=
CnCδ

n−(n+γ)qtγq

(n+ γ)q − n
,

which also converges to 0 as t→ 0. Therefore I2 → 0 as t→ 0, and we are done.

Finally we see an application of the mollification.

Proposition 1.10 (C∞-Urysohn lemma). Let U ⊂ Rn be an open set, and let K ⊂ U be a compact set. There

exists f ∈ C∞c (U) such that 0 ≤ f ≤ 1, and f = 1 on K.

Proof. Since K is compact and U is open, we take 0 < ε < d(K,U c). Define

V =
{
x ∈ U : d(x,K) ≤ ε

3

}
, and W =

{
x ∈ U : d(x,K) <

2ε

3

}
.

Then V is a compact set, W is an open set, and K ⊂ V ◦ ⊂ V ⊂ W ⊂ W ⊂ U . By Urysohn’s lemma, there

exists g ∈ Cc(W ) such that 0 ≤ g ≤ 1 and g = 1 on V . Now we choose φ ∈ C∞c (Rn) such that φ is supported

on the closed ball B(0, ε3 ) and
∫
Rn φ(x) dx = 1. Then f = g ∗ φ is the desired function.

1.2 The Schwartz Space

Definition 1.11 (Schwartz space). The Schwartz space consists of all C∞-functions, which, together with

their derivatives, vanishes at infinity faster than any power of |x|. More precisely, for any f ∈ C∞(Rn), any

nonnegative integer N and any multi-index α ∈ Nn0 , define the norm

‖f‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf(x)|.

The Schwartz space is

S(Rn) =
{
f ∈ C∞(Rn) : ‖f‖(N,α) <∞ for all N ∈ N0, α ∈ Nn0

}
.

Remark. For any φ ∈ C∞c (Rn), all its derivatives are also C∞c , and

‖φ‖(N,α) ≤ sup
x∈suppφ

(1 + |x|)N‖∂αφ‖∞ <∞.

Therefore, we have C∞c (Rn) ⊂ S(Rn).
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Proposition 1.12. The Schwartz space S(Rn) is a Fréchet space under the topology induced by norms ‖·‖(N,α).

Proof. It suffices to show the completeness of S(Rn). Let (fk) be a Cauchy sequence in S(Rn), which implies

that ‖fk − fm‖(N,α) → 0 as k,m→∞ for all N ∈ N0 and all multi-indices α ∈ Nn0 . In particular, for each α,

the sequence (∂αfk) converges uniformly to a function gα. We denote by ej = (0, · · · , 1
j-th

, 0, · · · , 0). Then

fk(x+ hej)− fk(x) =

∫ h

0

∂fk
∂xj

(x+ tej) dt.

Letting k →∞ and apply dominated convergence theorem, we obtain g0(x+hej)− g0(x) =
∫ h

0
gej (x+ tej) dt,

which implies that ∂xjg0 = gej by the fundamental theorem of calculus. An inductive argument on |α| implies

Dαg0 = gα. Then ‖fk − g0‖(N,α) → 0 for all N ∈ N0 and all α ∈ Nn0 .

Proposition 1.13 (Characterization of Schwartz space). Let f ∈ C∞(Rn). The following are equivalent:

(i) f ∈ S(Rn);

(ii) For all multi-indices α, β ∈ Nn0 , the function xβ∂αf is bounded;

(iii) For all multi-indices α, β ∈ Nn0 , the function ∂α(xβf) is bounded.

Proof. To show (i) ⇒ (ii), note that |x|β ≤ (1 + |x|)N for |β| ≤ N . On the other hand, if (ii) holds, we fix an

order N ∈ N and a multi-index α ∈ Nn0 , and take

δN = min


n∑
j=1

|xj |N : |x|2 =

n∑
j=1

|xj |2 = 1

 > 0.

By homogeneity, we have
∑n
j=1 |xj |N ≥ δN |x|N for all x ∈ Rn, and

(1 + |x|)N ≤ 2N
(
1 + |x|N

)
≤ 2N

1 +
1

δN

n∑
j=1

|xj |N
 ≤ 2N

δN

∑
|β|≤N

|xβ |.

Hence (ii)⇒ (i). The equivalence of (ii) and (iii) follows from the fact that each ∂α(xβf) is a linear combination

of terms of the form xδ∂γf and vice versa, by the product rule.

Proposition 1.14. Let f, g ∈ S(Rn). Then f ∗ g ∈ S(Rn).

Proof. By Proposition 1.4 (iii’), we have f ∗ g ∈ C∞(Rn). Furthermore, since

1 + |x| ≤ 1 + |x− y|+ |y| ≤ (1 + |x− y|) (1 + |y|) ,

we have for all order N ∈ N0 and multi-index α ∈ Nn0 that

(1 + |x|)N |∂α(f ∗ g)(x)| ≤
∫
Rn

(1 + |x− y|)N |∂α(x− y)| (1 + |y|)N |g(y)| dy

≤ ‖f‖(N,α)‖g‖(N+n+1,α)

∫
Rn

(1 + |y|)−n−1
dy

≤ ‖f‖(N,α)‖g‖(N+n+1,α)

∫ ∞
0

Cn
1 + r2

dr <∞,

where Cn is some constant depends only on the dimension n.

Proposition 1.15. S(Rn) is dense in Lp(Rn) (1 ≤ p <∞) and in C0(Rn).

Proof. Since S(Rn) ⊃ C∞c (Rn), the result follows from Propositions 1.7 and 1.8.
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2 Fourier Transform

2.1 Fourier Series

In this part, we study the periodic functions on Rn. A function f : Rn → C is said to be 2π-periodic, if

f(x+ 2πκ) = f(x)

for all x ∈ Rn and all κ ∈ Zn. According to periodicity, every 2π-periodic function f is completely determined

by its values on the cube [0, 2π)n. Hence we may regard f as a function on the quotient space

Tn = Rn/2πZn = {x+ 2πZn : x ∈ Rn}.

We call Tn the n-dimensional torus. For measure-theoretic purposes, we identify Tn with the cube Q = [0, 2π)n,

and the Lebesgue measure on Tn is induced by Lebesgue measure on Q. In particular, m(Tn) = m(Q) = (2π)n.

Functions on Tn maybe considered as periodic functions on Rn or as functions Q, depending on the context.

Theorem 2.1. The functions (eiκ·x)κ∈Zn form an orthogonal basis of L2(Tn).

Proof. Let A be the set of all finite linear combinations of eiκ·x. Then A is a self-adjoint algebra that separates

points and vanishes at no points of Tn. Since Tn is compact, by Stone-Weierstrass theorem, A is dense in

C(Tn) in the supremum norm, and hence in L2-norm. Since C(Tn) is dense in L2(Tn), the result follows.

The Fourier series of a periodic function is then defined by its expansion under the orthogonal basis.

Definition 2.2. If f ∈ L2(Tn), we define its Fourier transform f̂ : Zn → C by

f̂(κ) =
〈f, eiκ·x〉L2

〈eiκ·x, eiκ·x〉L2

=
1

(2π)n

∫
Q

f(x)e−iκ·x dx, (2.1)

and we call the series
∑
κ∈Zn f̂(κ)eiκ·x the Fourier series of f .

Remark I. According to Theorem 2.1, the Fourier series of a function f ∈ L2(Tn) converges to f in L2.

Consequently, we have the Parseval’s equality:

‖f̂‖2`2 :=
∑
κ∈Zn

|f̂(κ)|2 =
1

(2π)n
‖f‖2L2 .

Hence the Fourier transform F maps L2(Tn) onto `2(Zn).

Remark II. In fact, the definition (2.1) of Fourier transform makes sense if L1(Tn), and |f̂(κ)| ≤ (2π)−n‖f‖L1 .

Hence the Fourier transform F is a bounded linear map from L1(Tn) to `∞(Zn).

Theorem 2.3 (Convolution Theorem). Let f, g ∈ L1(Rn). Then

f̂ ∗ g = (2π)nf̂ ĝ.

Proof. By Young’s convolution inequality [Proposition 1.3], f ∗ g ∈ L1(Tn). By Fubini’s theorem,

(̂f ∗ g)(κ) =
1

(2π)n

∫
Q

∫
Q

f(x− y)g(y)e−iκ·x dy dx =

∫
Q

(
1

(2π)n

∫
Q

f(x− y)e−iκ·(x−y) dx

)
g(y)e−iκ·y dy

= f̂(κ)

∫
Q

g(y)e−iκ·y dy = (2π)nf̂(κ) ĝ(κ).

Thus we finish the proof.
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2.2 Fourier Transform on L1(Rn)

Definition 2.4 (Fourier transform). For f ∈ L1(Rn), we define its Fourier transform by

(Ff)(ω) = f̂(ω) = (2π)−n/2
∫
Rn
f(x)e−iω·x dx, ω ∈ Rn,

and its inverse Fourier transform by

(F−1f)(x) = qf(x) = (2π)−n/2
∫
Rn
f(ω)eiω·x dω, x ∈ Rn.

Remark. By definition, both F and F−1 are linear operators. That is, for all f, g ∈ L1(Rn) and α, β ∈ C,

F(αf + βg) = αFf + βFg, F−1(αf + βg) = αF−1f + βF−1g.

Also, we have qf(x) = f̂(−x). In the sequel, we first consider the Fourier transform.

Theorem 2.5 (Riemann-Lebesgue lemma). The Fourier transform F maps L1(Rn) into C0(Rn).

Proof. Fix f ∈ L1(Rn). By definition, for all ω ∈ Rn,

|f̂(ω)| ≤ (2π)−n/2
∫
Rn
|f(x)| dx.

Hence f̂ is bounded, and

‖f̂‖∞ ≤ (2π)−n/2‖f‖L1 . (2.2)

To show continuity of f̂ , use dominated convergence theorem:

lim
h→0

f(ω + h)− f(ω) = (2π)−n/2 lim
h→0

∫
f(x)e−ix·ω

(
e−ix·h − 1

)︸ ︷︷ ︸
dominated by 2|f |∈L1(Rn)

dx

= (2π)−n/2
∫
f(x)e−ix·ω lim

h→0

(
e−ix·h − 1

)
dx = 0.

Hence f̂ is a bounded continuous function. It remains to show that f̂(ω)→ 0 as |ω| → ∞. Note that

f̂(ω) = (2π)−n/2
∫
Rn
f(x)e−ix·ω dx = (2π)−n/2

∫
Rn
f

(
x+

ωπ

|ω|2

)
e
−i
(
x+ ωπ
|ω|2

)
·ω
dx

= −(2π)−n/2
∫
Rn
f

(
x+

ωπ

|ω|2

)
e−ix·ω dx.

By averaging,

|f̂(ω)| = (2π)−n/2

2

∣∣∣∣∫
Rn

(
f(x)− f

(
x+

ωπ

|ω|2

))
e−ix·ω dx

∣∣∣∣
≤ (2π)−n/2

2

∫
Rn

∣∣∣∣f(x)− f
(
x+

ωπ

|ω|2

)∣∣∣∣ dx
=

(2π)−n/2

2
‖f − τhf‖L1 , where h = − ωπ

|ω|2
.

By translation continuity, the last display converges to 0 as |ω| → ∞.

Remark. By (2.2), the Fourier transform F : L1(Rn)→ C0(Rn) is a bounded linear operator.
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Proposition 2.6 (Properties of Fourier transform). Let f, g ∈ L1(Rn).

(i)
∫
Rn f̂(x)g(x) dx =

∫
Rn f(x)ĝ(x) dx.

(ii) f̂ = qf , and qf = f̂ .

(iii) (Translation/Modulation) Let ξ ∈ Rn. Then (̂τξf)(ω) = e−iω·ξ f̂(ω), and êiξ·xf = τξ f̂ .

(iv) (Linear transformation) If T : Rn → Rn is an invertible linear transformation, and S = (T ∗)−1 is its

inverse transpose, then

f̂ ◦ T = |detT |−1
f̂ ◦ S.

In particular, if T is a rotation matrix, i.e. T ∗T = TT ∗ = Id, then f̂ ◦ T = f̂ ◦ T ; if Tx = t−1x is a

dilation, then ̂(f ◦ T )(ω) = tnf̂(tω).

Proof. (i) By Fubini’s theorem,∫
Rn
f̂(x)g(x) dx =

∫
Rn

(∫
Rn
f(ω)e−iω·x dω

)
g(x) dx

=

∫
Rn

∫
Rn
f(ω)g(x)e−iω·x dx dω =

∫
Rn
f(ω)ĝ(ω) dω.

(ii) We only prove the first identity (the second is similar):∫
Rn
f(x)e−iω·x dx =

∫
Rn
f(x)eiω·x dx = qf(x).

(iii) By definition,

(̂τξf)(ω) =
1

(2π)n/2

∫
Rn
f(x− ξ)e−iω·x dx =

1

(2π)n/2
e−iω·ξ

∫
Rn
f(x− ξ)e−iω·(x−ξ) dx = eiω·ξ f̂(ω),

and

̂(eiξ·xf)(ω) =
1

(2π)n/2

∫
Rn
eiξ·xf(x)e−iω·x dx =

1

(2π)n/2

∫
Rn
f(x)e−i(ω−ξ)·x dx = f̂(ω − ξ).

(iv) By definition,

̂(f ◦ T )(ω) =
1

(2π)n/2

∫
Rn
f(Tx)eiω·x dx

=
1

(2π)n/2
1

|detT |

∫
Rn
f(y)eiω·T

−1y dy

=
1

(2π)n/2
1

|detT |

∫
Rn
f(y)eiSω·y dy =

1

|detT |
f̂(Sω).

Thus we finish the proof.

Remark. Let ε > 0. Recall our notation that φε(x) = 1
εnφ(xε ), we have

φ̂ε(ω) = φ̂(εω).

Moreover, if we let g(x) = f(−x), then

ĝ(x) = f̂(−x) = qf(x).

Next we discuss the relation between Fourier transform and differentiation.
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Proposition 2.7 (Differentiation). Let k ∈ N0 and f ∈ L1(Rn).

(i) If xαf ∈ L1(Rn) for all multi-indices |α| ≤ k, then f̂ ∈ Ck(Rn), and

∂αf̂ = [(−ix)αf ]̂
(ii) If f ∈ Ck(Rn), ∂αf ∈ L1(Rn) for all multi-indices |α| ≤ k, and ∂αf ∈ C0(Rn) for all |α| ≤ k − 1, then

∂̂αf(ω) = (iω)αf̂(ω).

Proof. (i) Let F (x, ω) = f(x)e−iω·x. Then

∂F

∂ωj
(x, ω) = −ixjf(x)e−iω·x, j = 1, 2, · · · , n.

Fix j ∈ {1, 2, · · · , n}. Note that when h is near 0, we have∣∣∣∣F (x, ω + hej)− F (x, ω)

h

∣∣∣∣ =

∣∣∣∣e−ihxj − 1

h

∣∣∣∣ |f(x)| ≤ 2|xjf(x)|.

Since xjf ∈ L1(Rn), by dominated convergence theorem,

lim
h→0

f̂(ω + hej)− f̂(ω)

h
=

1

(2π)n/2
lim
h→0

∫
Rn

F (x, ω + hej)− F (x, ω)

h
dx

=
1

(2π)n/2

∫
Rn

lim
h→0

F (x, ω + hej)− F (x, ω)

h
dx

=
1

(2π)n/2

∫
Rn
−ixjf(x)e−iω·x dx = −̂ixjf.

(ii) Consider |α| = 1. Since ∂αf ∈ L1(Rn) and f ∈ C0(Rn), use Fubini’s theorem and integrate by parts:

∂̂f

∂xj
(ω) =

1

(2π)n/2

∫
Rn

∂f

∂xj
(x)e−iω·x dx =

1

(2π)n/2

∫
Rn

(∫ ∞
−∞

∂f

∂xj
(x)e−iωjxj dxj

)
e−iω−j ·x−j dx−j

=
1

(2π)n/2

∫
Rn

(
f(x)e−iωjxj

∣∣xj=∞
xj=−∞

+ iωj

∫ ∞
−∞

f(x)e−iωjxj dxj

)
e−iω−j ·x−j dx−j

=
iωj

(2π)n/2

∫
Rn
f(x)e−iω·x dx = iωj f̂(ω).

Hence we prove the case k = |α| = 1 for (i) and (ii). The general case follows from induction on |α|.

Theorem 2.8 (Convolution Theorem). Let f, g ∈ L1(Rn). Then

f̂ ∗ g = (2π)n/2f̂ ĝ.

Proof. By Young’s convolution inequality [Proposition 1.3], f ∗ g ∈ L1(Rn). By Fubini’s theorem,

(̂f ∗ g)(ω) =
1

(2π)n/2

∫
Rn

∫
Rn
f(x− y)g(y)e−iω·x dy dx =

1

(2π)n/2

∫
Rn

∫
Rn
f(x− y)e−iω·(x−y)g(y)e−iω·y dy dx

=

∫
Rn

(
1

(2π)n/2

∫
Rn
f(x− y)e−iω·(x−y) dx

)
g(y)e−iω·y dy

= f̂(ω)

∫
Rn
g(y)e−iω·y dy = (2π)n/2f̂(ω) ĝ(ω).

Thus we finish the proof.
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We compute the Fourier transform of a function.

Lemma 2.9. Define the function Φ : Rn → R by Φ(x) = e−
|x|2
2 . Then Φ = Φ̂ = qΦ.

Proof. For all ω ∈ Rn,

Φ̂(ω) =
1

(2π)n/2

∫
Rn
e−
|x|2
2 e−ix·ω dx =

n∏
j=1

(
1√
2π

∫ ∞
−∞

e−x
2
j/2e−ixjωj dxj

)

=

n∏
j=1

(
e−ω

2
j/2

√
2π

∫ ∞
−∞

e−(xj+iωj)
2/2 dxj

)
=

n∏
j=1

(
e−ω

2
j/2

√
2π

∫ ∞
−∞

e−x
2
j/2 dxj

)

=

n∏
j=1

e−ω
2
j/2 = e−

|ω|2
2 .

Hence Φ̂ = Φ. The case qΦ = Φ is similar.

Now we discuss how to recover a function f from its Fourier transform f̂ .

Theorem 2.10 (Fourier inversion theorem). Let f ∈ L1(Rn). If f̂ ∈ L1(Rn), then (f̂)q = f a.e..

Proof. We take the function Φ in Lemma 2.9. Consider the function

f t(x) =
1

(2π)n/2

∫
Rn

Φ(tω)f̂(ω)eiω·x dω =
1

(2π)n

∫
Rn

∫
Rn

Φ(tω)f(y)eiω·(x−y) dy dω.

Since 0 ≤ Φ ≤ 1 is bounded, |Φ(tω)f̂(ω)| ≤ f̂(ω). Since f̂ ∈ L1(Rn), by dominated convergence theorem,

lim
t→0

f t(x) =
1

(2π)n/2

∫
Rn

lim
t→0

Φ(tω)f̂(ω)eiω·x dω =
1

(2π)n/2

∫
Rn
f̂(ω)eiω·x dω = (f̂)q(x), ∀x ∈ Rn.

On the other hand, if we show that f t → f in L1 as t→ 0, the result follows. By Fubini’s theorem,

f t(x) =
1

(2π)n

∫
Rn

∫
Rn

Φ(tω)f(y)eiω·(x−y) dy dω

=
1

(2π)n/2

∫
Rn

(
1

(2π)n/2

∫
Rn

Φ(tω)eiω·(x−y) dω

)
f(y) dy

=
1

(2π)n/2

∫
Rn

(
t−d

(2π)n/2

∫
Rn

Φ(ξ)f(y)ei
ξ
t ·(x−y) dξ

)
dy

=
1

(2π)n/2

∫
Rn
t−dΦ

(
x− y
t

)
f(y) dy =

1

(2π)n/2

∫
Rn

Φt (x− y) f(y) dy.

By Proposition 1.6, Φt ∗ f → (2π)n/2f in L1. Thus we complete the proof.

Remark. We also have F qf = f a.e. under the same assumption. To show this, let g(x) = f(−x). Then

(ĝ)q(x) = (F−1
qf)(x) = (F qf)(−x).

Since (ĝ)q = g a.e. and g(x) = f(−x), the result follows.

Corollary 2.11. If f ∈ L1(Rn) and f̂ = 0 a.e., then f = 0 a.e..

Proof. Clearly f̂ = 0 ∈ L1(Rn). Then f = (f̂)q = 0. Here all equalities hold in a.e. sense.

Remark. Also, if f ∈ L1(Rn) and qf = 0 a.e., then f = 0 a.e..
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2.3 Fourier Transform on L2(Rn)

Theorem 2.12. The Fourier transform F is an isomorphism of the Schwartz space S(Rn) onto itself.

Proof. Take f ∈ S(Rn). By Proposition 1.13 (i), xβ∂αf ∈ L1(Rn) ∩ C0(Rn) for all multi-indices α, β ∈ Nn0 .

By Proposition 2.7 (i), f̂ ∈ C∞(Rn), and

x̂β∂αf = i|β|∂β (̂∂αf) = i|α|+|β|∂β(ωαf̂).

Since xβ∂αf ∈ L1(Rn), we have ∂β(ωαf̂) ∈ C0(Rn), which is bounded. By Proposition 1.13 (ii), f̂ ∈ S(Rn).

Furthermore, since
∫
Rn(1 + |x|)−n−1 dx <∞, by Hölder’s inequality,

∥∥∂β(ωαf̂)
∥∥
∞ =

∥∥x̂β∂αf∥∥∞ ≤ ∥∥xβ∂αf∥∥L1 ≤ C
∥∥(1 + |x|)n+1xβ∂αf

∥∥
∞ ≤ C‖f‖(|β|+n+1,α).

Following the proof of Proposition 1.13, we have ‖f̂‖(N,α) ≤ CN,α
∑
|γ|≤|α| ‖f‖(N+n+1,γ). Hence the Fourier

transform F maps S(Rn) continuously into itself. On the other hand, since qf(x) = f̂(−x), the inverse Fourier

transform F−1 also maps the Schwartz space S(Rn) into itself. By Fourier inversion theorem [Theorem 2.10],

these maps are inverse to each other on S(Rn). Hence we complete the proof.

Theorem 2.13 (Plancherel). F extends from L1(Rn) ∩ L2(Rn) to a unitary isomorphism on L2(Rn).

Proof. Let f, g ∈ S(Rn), and let h = ĝ. Then

ĥ(ω) =
1

(2π)n/2

∫
Rd
ĝ(x)e−iω·x dx =

1

(2π)n/2

∫
Rd
ĝ(x)eiω·x dx = (ĝ)q(ω)

By Fourier inversion theorem, we have ĥ = g. Hence

〈f, g〉L2 =

∫
Rd
f(x)g(x) dx =

∫
Rd
f(x)ĥ(x) dx =

1

(2π)n/2

∫
Rd

∫
Rd
f(x)h(ω)e−iω·x dω dx

=
1

(2π)n/2

∫
Rd

(∫
Rd
f(x)e−iω·x dx

)
h(ω) dω (By Fubini’s theorem)

=

∫
Rd
f̂(ω)h(ω) dω =

∫
Rd
f̂(ω)ĝ(ω) dω = 〈f̂ , ĝ〉L2 .

Hence F|S(Rn) preserves the L2 inner product. Now for each f ∈ L2(Rn), since S(Rn) is dense in L2(Rn), we

can take a sequence fk ∈ S(Rn) with fk → f in L2. Then (f̂k) is a Cauchy sequence in L2(Rn):

lim
k,j→∞

‖f̂k − f̂j‖L2 = lim
k,j→∞

‖f̂k − fj‖L2 = lim
k,j→∞

‖fk − fj‖L2 = 0.

This sequence converges to a limit f̂ = Ff ∈ L2(Rn). If gk ∈ S(Rn) with gk → f in L2, we have

‖ĝ − f̂‖L2 = lim
k→∞

‖ĝk − f̂k‖L2 = lim
k→∞

‖gk − fk‖L2 ≤ lim
k→∞

‖gk − f‖L2 + lim
k→∞

‖f − fk‖L2 = 0.

Hence the limit does not depend on the choice of the sequence (fk), and the transform f̂ = Ff is well-defined.

Furthermore, for all f, g ∈ L2(Rn), we have

〈f, g〉L2 = 〈f̂ , ĝ〉L2 .

Hence F is a unitary isomorphism on L2(Rn).

Remark. Likewise, F−1 also extends from L1(Rn) ∩ L2(Rn) to a unitary isomorphism on L2(Rn).
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Corollary 2.14. Let f ∈ L2(Rn). Then (f̂)q = f .

Proof. Take a sequence fk ∈ S(Rn) with fk → f in L2. Then f̂k → f̂ in L2, and fk = (f̂k)q→ (f̂)q in L2.

Also, we have an explicit formula for Fourier transform in L2.

Corollary 2.15. Let f ∈ L2(Rn). Then

f̂(ω) =
1

(2π)n/2
lim
N→∞

∫
|x|≤N

f(x)e−iω·x dx,

where the limit is in L2 sense.

Proof. We choose fN = fχ{|x|≤N}, which is in L1(Rn)∩L2(Rn) by Cauchy-Schwarz inequality, and converges

in L2 to f as N →∞, by monotone convergence theorem. By Plancherel theorem, f̂N → f̂ in L2.

Finally we introduce the convolution theorem for L2-functions.

Proposition 2.16. If f, g ∈ L2(Rn), then (f̂ ĝ)q = (2π)−n/2(f ∗ g).

Proof. By Plancherel’s theorem and Hölder’s inequality, we have f̂ , ĝ ∈ L2(Rn), and f̂ ĝ ∈ L1(Rn). We fix

x ∈ Rn, and set hx(y) = g(x− y). Then

ĥx(ω) =
1

(2π)n/2

∫
Rn
g(x− y)e−iω·y dy =

1

(2π)n/2

∫
Rn
g(x− y)e−iω·(x−y) dy eiω·x = ĝ(ω)e−iω·x.

Since F is unitary in L2(Rn),

(f ∗ g)(x) =

∫
Rn
f(y)hx(y) dy =

∫
Rn
f̂(ω)ĥx(ω) dω =

∫
Rn
f̂(ω)ĝ(ω)eiωx dω = (2π)n/2(f̂ ĝ)q(x).

Thus we complete the proof.

By Fourier inversion theorem and linearity of Laplacian operator,

∆f(x) = ∆

∫
Rn

f̂(ω)

(2π)n/2
eiω·x dω =

∫
Rn

f̂(ω)

(2π)n/2
∆eiω·x dω = − 1

(2π)n/2

∫
Rn
|ω|2f̂(ω)eiω·x dω

By taking the Fourier transform on both sides, we have

∆̂f(ω) = −|ω|2f̂(ω).

15



2.4 Fourier Transform of Radial Functions and Hankel Transform

Bessel functions. Consider the Bessel’s differential equation about function y(z):

z2y′′ + zy′ + (z2 − ν2)y = 0. (2.3)

The Bessel function of the first kind of order ν ∈ C solves this equation:

Jν(z) =

∞∑
m=0

(−1)m

Γ(m+ 1)Γ(ν +m+ 1)

(z
2

)2m+ν

, z ∈ C\{0},

where the power in this definition is given by zν = eν log z, where log z is chosen to be the principal branch of

the logarithm, i.e. −π < arg(z) ≤ π. The Bessel function Jν(z) is holomorphic in C\(−∞, 0] for every ν ∈ C.

• When ν /∈ Z, the Bessel functions Jν(z) and J−ν(z) are linearly independent, and the general solution

of the Bessel’s equation is

y(z) = γ1Jν(z) + γ2J−ν(z), γ1, γ2 ∈ C.

• When ν = n ∈ Z, the Bessel function Jn has an analytic extension to C. Furthermore, using the property

that 1/Γ(−n) = 0 for nonnegative integers n = 0, 1, 2, · · · , we have

J−n(z) = (−1)nJn(z), n ∈ N0.

• To get a solution of (2.3) when ν = n ∈ Z that is linearly independent of from J±ν , we introduce

theBessel function of the second kind of order ν ∈ C, which is defined as

Yν(z) =
Jν(z) cos(νπ)− J−ν(x)

sin(νπ)
, ν /∈ Z, and Yn(z) = lim

ν /∈Z, ν→n
Yν(z), n ∈ Z.

The Bessel function Yn(z) solves (2.3) when ν = n ∈ Z.

Proposition 2.17. Let ν ∈ C, and let Jν(z) be the Bessel function of the first kind.

(i) The following recursive formulae hold:

Jν−1(z) =
dJν
dz

+
ν

z
Jν(z), and Jν+1(z) = −dJν

dz
+
ν

z
Jν(z).

(ii) In particular,

J1/2(z) =

√
2

πz
sin(z), and J−1/2(z) =

√
2

πz
cos(z).

Remark. Combining the two assertions, one can recurrently derive Bessel functions of half integer orders.

Proof. (i) The first formula follows from the following identity:

d

dz
[zνJν(z)] =

∞∑
m=0

(−1)m(2m+ 2ν)

Γ(m+ 1)Γ(ν +m+ 1)

z2m+2ν−1

22m+ν
=

∞∑
m=0

(−1)m

Γ(m+ 1)Γ(ν +m)

z2m+2ν−1

22m+ν−1
= zνJν−1(z).

Similarly, the second formula follows from the following identity:

d

dz

[
z−νJν(z)

]
=

∞∑
m=0

(−1)m(2m)

Γ(m+ 1)Γ(ν +m+ 1)

z2m−1

22m+ν
=

∞∑
m=1

(−1)m

Γ(m)Γ(ν +m+ 1)

z2m−1

22m+ν−1

=

∞∑
m=0

(−1)m+1

Γ(m+ 1)Γ(ν +m+ 2)

z2m+1

22m+ν+1
= −z−νJν+1(z).
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(ii) Note that Γ
(

1
2

)
=
√
π. Then

J 1
2
(z) =

∞∑
m=0

(−1)m

Γ(m+ 1)Γ(m+ 3
2 )

(z
2

)2m+ 1
2

=

√
2

z

∞∑
m=0

(−1)m

m!
(
m+ 1

2

) (
m− 1

2

)
· · · 1

2Γ
(

1
2

) (z
2

)2m+1

=

√
2

z

∞∑
m=0

(−1)m

(2m+ 1)!
√
π
z2m+1 =

√
2

πz
sin(z),

and

J− 1
2
(z) =

∞∑
m=0

(−1)m

Γ(m+ 1)Γ(m+ 1
2 )

(z
2

)2m− 1
2

=

√
2

z

∞∑
m=0

(−1)m

m!
(
m− 1

2

) (
m− 3

2

)
· · · 1

2Γ
(

1
2

) (z
2

)2m

=

√
2

z

∞∑
m=0

(−1)m

(2m)!
√
π
z2m =

√
2

πz
cos(z).

Therefore we complete the proof.

The Bessel functions are related to the integral of plane wave functions on the sphere.

Proposition 2.18 (Sphere integral form of the Bessel functions of the first kind). Let n ≥ 2, and denote by

Sn−1 = {x ∈ Rn : |x| = 1} the unit sphere in Rn. Then∫
Sn−1

eiω·x dS(ω) = (2π)
n
2 |x|1−n2 Jn

2−1(|x|). (2.4)

The proof of this result requires some technical lemmata. We first introduce a type of special integrals.

Lemma 2.19. For each n,m ∈ N0,∫ π

0

sinn θ cos2m θ dθ =
Γ
(
m+ 1

2

)
Γ
(
n+1

2

)
Γ
(
m+ n

2 + 1
) .

In particular, ∫ π

0

sinn θ dθ =
Γ
(
n+1

2

)√
π

Γ
(
n
2 + 1

) .

Proof. (i) We begin from the second integral. Let In =
∫ π

0
sinn θ dθ. To begin with, we have I0 = π and

I1 = 2. For n ≥ 2, compute In recurrently:

In = −
∫ π

0

sinn−1 θ d cos θ =

∫ π

0

(n− 1) sinn−2 θ cos2 θ dθ = (n− 1)(In−2 − In).

Hence In = n−1
n In−2. By induction, for any n ∈ N0,

I2k+1 =
2k

2k + 1
· 2k − 2

2k − 1
· · · · · 2

3
· I1 =

Γ (k + 1)
√
π

Γ
(
k + 3

2

) ,

and

I2k =
2k − 1

2k
· 2k − 3

2k − 2
· · · · · 1

2
· I0 =

Γ
(
k + 1

2

)√
π

Γ (k + 1)
.

The first result is obtained by summarizing the last two identities.
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(ii) Let In,m =
∫ π

0
sinn θ cos2m θ dθ. Then

In,m =

∫ π

0

sinn θ cos2m−1 θ d sin θ = −
∫ π

0

sin θ d
(
sinn θ cos2m−1 θ

)
= −n

∫ π

0

sinn θ cos2m θ dθ + (2m− 1)

∫ π

0

sinn+2 θ cos2m−2 θ dθ

= −nIn,m + (2m− 1)(In,m−1 − In,m) = (1− 2m− n)In,m + (2m− 1)In,m−1.

Hence In,m = 2m−1
2m+nIn,m−1. By induction,

In,m =
2m− 1

2m+ n
· 2m− 3

2m+ n− 2
· · · · · 1

n+ 2
· In,0

=
2mΓ

(
m+ 1

2

)
/
√
π

2mΓ
(
m+ n

2 + 1
)
/Γ
(
n
2 + 1

) Γ
(
n+1

2

)√
π

Γ
(
n
2 + 1

) =
Γ
(
m+ 1

2

)
Γ
(
n+1

2

)
Γ
(
m+ n

2 + 1
) .

Therefore the first result holds.

Lemma 2.20. Let n ≥ 2. The surface area of unit sphere Sn−1 = {x ∈ Rn : |x| = 1} is σn−1 = 2πn/2

Γ(n/2) .

Proof. Using the spherical coordinates, and by Lemma 2.19, we have

σn−1 =

∫
Sn−1

dS(x) =

∫ π

0

σn−2 sinn−2 θ dθ =
Γ
(
n−1

2

)√
π

Γ
(
n
2

) σn−2.

Since σ1 = 2π and Γ(1) = 1, the result follows by induction.

Proof of Proposition 2.18. Let r = |x|. Since
∫
Sn−1 e

iω·x dS(ω) is radial about x, we take x = (r, 0, · · · , 0):∫
Sn−1

eiω·x dS(ω) =

∫
Sn−1

eirω1 dS(ω). (2.5)

For ω ∈ Sn−1, let θ = arccos(〈ω, e1〉), where e1 = (1, 0, · · · , 0). Then cos θ = ω1, and sin θ =
√
ω2

2 + · · ·+ ω2
n.

Switching to the spherical coordinates, we have∫
Sn−1

eiω·x dS(ω) =

∫
Sn−1

eirω1 dS(ω) =

∫ π

0

eir cos θσn−2 sinn−2 θ dθ

=
2π

n−1
2

Γ
(
n−1

2

) ∫ π

0

eir cos θ sinn−2 θ dθ. (2.6)

We compute the last integral by expanding the exponent and integrating term by term:∫ π

0

eir cos θ sinn−2 θ dθ =

∞∑
k=0

(ir)k

k!

∫ π

0

cosk θ sinn−2 θ dθ =

∞∑
m=0

Γ
(
m+ 1

2

)
Γ
(
n−1

2

)
Γ
(
m+ n

2

) (ir)2m

(2m)!

=

∞∑
m=0

(2m− 1)!!
√
π Γ
(
n−1

2

)
2mΓ

(
m+ n

2

) (ir)2m

(2m)!
=

∞∑
m=0

(−1)m
√
π Γ
(
n−1

2

)
m! Γ

(
m+ n

2

) (r
2

)2m

, (2.7)

where the odd terms vanishes by symmetry on [0, π], and the even terms follow from Lemma 2.19. Combining

(2.6) and (2.7), we obtain∫
Sn−1

eiω·x dS(ω) = 2π
n
2

∞∑
m=0

(−1)m

m! Γ
(
m+ n

2

) (r
2

)2m

= (2π)
n
2 r1−n2 Jn

2−1(r).

Thus we complete the proof.
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We now turn to the Laplace transforms of some specific functions involving Bessel functions.

Proposition 2.21. For every ν > −1 and r > 0,∫ ∞
0

Jν(x)xν+1e−rx dx =
2ν+1Γ

(
ν + 3

2

)
r

√
π(1 + r2)ν+ 3

2

. (2.8)

Proof. For 0 < r < 1 and µ > 0, the Taylor series of (1 + r)−µ is

(1 + r)−µ =

∞∑
m=0

(−1)mΓ(µ+m)

m! Γ(µ)
rm.

Replacing r by 1/r2, we have

r2µ

(1 + r2)µ
=

∞∑
m=0

(−1)mΓ(µ+m)

m! Γ(µ)
r−2m, r > 1.

Hence the right hand side of (2.8) is

2ν+1Γ
(
ν + 3

2

)
r

√
π(1 + r2)ν+ 3

2

=
2ν+1Γ

(
ν + 3

2

)
r−2ν−2

√
π

∞∑
m=0

(−1)mΓ(ν + 3
2 +m)

m! Γ
(
ν + 3

2

) r−2m

=

∞∑
m=0

(−1)m2ν+1Γ
(
ν + 3

2 +m
)

Γ(m+ 1)
√
π

r−2m−2ν−2

=

∞∑
m=0

(−1)mΓ (2ν + 2m+ 2)

22m+νΓ(m+ 1)Γ (ν +m+ 1)
r−2m−2ν−2, (2.9)

where the last equality follows from Legendre’s duplication formula. Now we turn to the integral. By Sterling’s

formula, there exists a constant cν depending only on ν > −1 such that Γ (ν +m+ 1) ≥ m!
cν

. Then

∞∑
m=1

x2m+2ν+1e−rx

22m+νΓ(m+ 1)Γ (ν +m+ 1)
≤ cν

2ν
x2ν+1e−rx

∞∑
m=1

x2m

(2mm!)2

≤ cν
2ν
x2ν+1e−rx

∞∑
m=1

x2m

(2m)!
≤ cν

2ν
x2ν+1e−(r−1)x,

which is absolutely integrable. Using dominated convergence theorem, we can interchange infinite summation

and integral in the left hand side of (2.8):∫ ∞
0

Jν(x)xν+1e−rx dx =

∞∑
m=1

(−1)m

22m+νΓ(m+ 1)Γ (ν +m+ 1)

∫ ∞
0

x2m+2ν+1e−rx dx

=

∞∑
m=1

(−1)mr−2m−2ν−2

22m+νΓ(m+ 1)Γ (ν +m+ 1)

∫ ∞
0

y−2m−2ν−1e−y dy

=

∞∑
m=0

(−1)mΓ (2ν + 2m+ 2)

22m+νΓ(m+ 1)Γ (ν +m+ 1)
r−2m−2ν−2,

which is consistent with (2.9). Hence the identity (2.8) holds for r > 1. Finally, since both sides of (2.9) is

analytic in the region Re(r) > 0 and |Im(r)| < 1, the case 0 < r ≤ 1 follows from analytic continuation.

Now we study the Fourier transform of radial functions on Rn. A function F : Rn → C is said to be radial,

if there exists a function f such that F (x) = f(|x|) for all x ∈ Rn.
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Definition 2.22 (Hankel transform). Let ν ≥ − 1
2 . We define the Hankel transform of order ν of a function

f ∈ L2((0,∞), r dr) by

(Hνf)(λ) =

∫ ∞
0

rf(r)Jν(λr) dr, λ > 0.

The Hankel transform of order n
2 − 1 is related to the Fourier transform of radial functions in Rn.

Theorem 2.23. Let F ∈ L1(Rn) ∩ C(Rn) be a radial function, i.e. F (x) = f(|x|) for x ∈ Rn. Then the

Fourier transform F̂ is also radial, i.e. F̂ (ω) = φ(|ω|), with

φ(λ) = λ1−n2
∫ ∞

0

r
n
2 f(r)Jn

2−1(λr) dr

In other words, |ω|n2−1F̂ (ω) coincides the Hankel transform of order n
2 − 1 of r

n
2−1f(r)

Proof. For the case n = 1, we have J−1/2(z) =
√

2
πz cos(z) by Proposition 2.17. Since F : R→ C is even,

F̂ (ω) =
1√
2π

∫ ∞
−∞

F (x)e−iωx dx =
1√
2π

∫ ∞
−∞

F (x) (cos(ωx)− i sin(ωx)) dx

=

√
2

π

∫ ∞
0

f(r) cos(|ω|r) dr = |ω| 12
∫ ∞

0

√
rf(r)J− 1

2
(|ω|r) dr.

For the case n ≥ 2, we switch to sphere coordinates and use Proposition 2.18:

F̂ (ω) = (2π)−
n
2

∫
Rn
F (x)e−iω·x dx = (2π)−

n
2

∫ ∞
0

rn−1

∫
Sn−1

f(r|x|)e−irω·x dS(x) dr

= (2π)−
n
2

∫ ∞
0

rn−1f(r)

(∫
Sn−1

e−irω·x dS(x)

)
dr

= (2π)−
n
2

∫ ∞
0

rn−1f(r) · (2π)
n
2 (r|ω|)1−n2 Jn

2−1(r|ω|) dr

= |ω|1−n2
∫ ∞

0

r
n
2 f(r)Jn

2−1(r|ω|) dr.

Then we conclude the proof.

Remark. In particular, taking n = 2, we know that the Hankel transform of order 0 coincides the Fourier

transformation of radial function in R2.
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2.5 Application in Partial Differential Equations

Fourier transform and differential operators. Consider the Laplacian operator:

∆ : C2(Rn)→ C(Rn), ∆f =

n∑
j=1

∂2f

∂x2
j

.

For the plane wave function f(x) = eiω·x, we have

∆eiω·x =

n∑
j=1

(iωj)
2eiω·x = −|ω|2eiω·x.

In other words, the function eiω·x is an eigenfunction of ∆, with eigenvalue −|ω|2. Furthermore, under

regularity conditions [See Proposition 2.7], we have

∆̂f(ω) =

n∑
j=1

(iωj)
2f̂(ω) = −|ω|2f̂(ω).

This identity shows that the Fourier transform diagonalizes the Laplacian ∆. In other words, the Laplacian

is nothing more than an explicit multiplier when viewed using the Fourier transform.

Example 2.24 (Heat equation with Dirichlet boundary condition). Consider the heat equation about the

time-varying function u(x, t), which is defined on Rn × R+:
ut = ∆xu in Rn × (0,∞),

u(x, 0) = f(x) on Rn × {t = 0},
lim|x|→∞ u(x, t) = 0 for t ∈ [0,∞),

(2.10)

where the initial function f ∈ L1(Rn) ∩ C0(Rn).

Solution. We let û(ω, t) =
∫
Rn u(x, t)e−iω·x dx be the Fourier transform of u with respect to x. Applying

Fourier transform on both the heat equation and the initial condition, we get the initial value problem:{
ût = −|ω|2û,
û(ω, 0) = f̂(ω).

The solution of this problem is given by û(ω, t) = f̂(ω)e−|ω|
2t. To recover u, we employ the inverse Fourier

transform and convolution theorem [Theorem 2.8]:

u(x, t) = F−1
(
f̂(ω)e−|ω|

2t
)

= (2π)−n/2f ∗ F−1(e−|ω|
2t).

It remains to compute the inverse Fourier transform of e−|ω|
2x:

F−1(e−|ω|
2t)(x) =

1

(2π)n/2

∫
Rn
e−|ω|

2teiω·x dω =

n∏
j=1

∫ ∞
−∞

1√
2π
e−ω

2
j t+iωjxj dωj

=

n∏
j=1

e−
x2j
4t

∫ ∞
−∞

1√
2π
e
−
(
ωj
√
t−

ixj

2
√
t

)2

dωj =

n∏
j=1

1√
2t
e−

x2j
4t =

1

(2t)n/2
e−
|x|2
4t .

Hence the solution of problem (2.10) is given by

u(x, t) =
1

(4πt)n/2

∫
Rn
e−
|y−x|2

4t f(y) dy.
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Remark. We write the heat kernel by

Φt(x) =

δ(x), t = 0,

(4πt)−n/2e−
|x|2
4t , t > 0.

Then the solution of problem (2.10) can be represented as u = Φt ∗ f .

Example 2.25 (Heat equation with a source). Consider the heat equation about the time-varying function

u(x, t), which is defined on Rn × R+:
ut = ∆xu+ S(x, t) in Rn × (0,∞),

u(x, 0) = f(x) on Rn × {t = 0},
lim|x|→∞ u(x, t) = 0 for t ∈ [0,∞),

(2.11)

where the source S(x, t) ∈ L1(Rn) ∩ C0(Rn) for every t, and the initial function f ∈ L1(Rn) ∩ C0(Rn).

Solution. Similar to the case without the source S(x, t), we apply Fourier transform on both the equation and

the initial condition to get an initial value problem:{
ût = −|ω|2û+ Ŝ(ω, t),

û(ω, 0) = f̂(ω).

We solve this problem by multiplying by a factor e|ω|
2t:

∂

∂t

(
e|ω|

2tû
)

= e|ω|
2t
(
ût + |ω|2û

)
= e|ω|

2tŜ(ω, t),

e|ω|
2tû(ω, t) = f̂(ω) +

∫ t

0

e|ω|
2τ Ŝ(ω, τ) dτ,

û(ω, t) = e−|ω|
2tf̂(ω) +

∫ t

0

e−|ω|
2(t−τ)Ŝ(ω, τ) dτ.

Applying inverse Fourier transform, we obtain the solution of (2.11):

u(x, t) =

∫
Rn

Φt(x− y)f(y) dt+

∫ t

0

∫
Rn

Φt−τ (x− y)S(y, t) dy dτ.

Example 2.26 (Laplace equation in the upper half space). Consider the Laplace equation about the function

u(x, y) in the upper half space Rn × R+:
∆u = 0 in Rn × (0,∞),

u(x, 0) = f(x) on Rn × {t = 0},
lim|x|→∞ u(x, y) = 0 and limy→∞ u(x, y) = 0,

(2.12)

where the function f ∈ L1(Rn) ∩ C0(Rn).

Solution. We write the Laplace equation as uyy = ∆xu, and apply Fourier transform on the variable x. Then

we get the following initial value problem: 
ûyy = |ω|2û,
û(ω, 0) = f̂(ω),

limy→∞ û(ω, y) = 0
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Since u is vanishing as y →∞, the solution to this problem is

û(ω, y) = e−|ω|y f̂(ω).

Hence the solution to (2.12) is

u(x, y) =
1

(2π)n/2
· F−1(e−|ω|y) ∗ f.

We compute inverse Fourier transform of e−|ω|y:

F−1(e−|ω|y) =
1

(2π)n/2

∫
Rn
e−|ω|yeiω·x dω =

1

(2π)n/2

∫ ∞
0

∫
∂B(x,r)

e−|ω|yeiω·x dS(ω) dr

=
1

(2π)n/2

∫ ∞
0

∫
Sn−1

e−ryeirξ·xrn−1 dS(ξ) dr

=

∫ ∞
0

r
n
2 e−ry|x|1−n2 Jn

2−1(r|x|) dr (By Proposition 2.18)

= |x|−n
∫ ∞

0

ρ
n
2 e−ρ

y
|x| Jn

2−1(ρ) dρ =
2
n
2 Γ
(
n+1

2

)
y

√
π (|x|2 + y2)

n+1
2

. (By Proposition 2.21)

Then

u(x, y) = π−
n+1
2 Γ

(
n+ 1

2

)∫
Rn

y

(|x− z|2 + y2)
n+1
2

f(z) dz.

Remark. We define the Poisson kernel by

P (x, y) = cn
y

(|x|2 + y2)
n+1
2

, where cn = π−
n+1
2 Γ

(
n+ 1

2

)
.

Then the solution of problem (2.10) can be represented as u(·, y) = P (·, y) ∗ f .

Example 2.27 (Wave equation with Dirichlet boundary condition). Consider the wave equation about the

time-varying function u(x, t), which is defined on Rn × R+:
utt = ∆xu in Rn × (0,∞),

u(x, 0) = f(x), ut(x, 0) = g(x) on Rn × {y = 0},
lim|x|→∞ u(x, t) = 0 for t ∈ [0,∞).

(2.13)

where the functions f, g ∈ L1(Rn) ∩ C0(Rn).

Solution. Applying Fourier transform with respect to the variable x ∈ Rn, we get the initial value problem{
ûtt = −|ω|2û,
û(ω, 0) = f̂(ω), ût(ω, 0) = ĝ(ω).

The solution of this initial value problem is

û(ω, t) = f̂(ω) cos(|ω|t) + ĝ(ω)
sin(|ω|t)
|ω|

.

We write R(x, t) = 1
(2π)n/2

F−1
(

sin(|ω|t)
|ω|

)
. By convolution theorem, the solution to problem 2.13 is

u(·, t) =
∂

∂t
(R(·, t) ∗ f) +R(·, t) ∗ g.
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Example 2.28 (Transport equation). Consider the following transport equation with constant coefficients:
ut − b · ∇xu = 0 in Rn × (0,∞),

u(x, 0) = f(x) on Rn × {t = 0},
lim|x|→∞ u(x, t) = 0 for t ∈ [0,∞),

(2.14)

where the velocity b ∈ Rn is a constant vector, and f ∈ L1(Rn) ∩ C0(Rn).

Solution. We apply Fourier transform with respect to the variable x:{
ût = ib · ωû,
û(ω, 0) = f̂(ω).

Then û(ω, t) = eitb·ω f̂(ω), and the solution to problem (2.14) is

u(x, t) = F−1
[
eitb·ω f̂(ω)

]
=

1

(2π)n/2

∫
Rn
f̂(ω)ei(x+tb)·ω dω = f(x+ tb).

Example 2.29 (Linearized Korteweg-De Vries equation). Consider the equation about u : R× R+ → C.
ut + uxxx = 0 in R× (0,∞),

u(x, 0) = f(x) on R× {t = 0},
lim|x|→∞ u(x, t) = 0 for t ∈ [0,∞).

(2.15)

Solution. We apply Fourier transform with respect to the variable x:{
ût − iω3û = 0,

û(ω, 0) = f̂(ω).

Then û(ω, t) = eiω
3tf̂(ω), and u is recovered by taking the inverse Fourier transform of û. By convolution

theorem, u = G(·, t) ∗ f , where G(·, t) is the inverse Fourier transform of eiω
3t up to a factor 1/

√
2π:

G(x, t) =
1

2π

∫ ∞
−∞

eiω
3teiωx dω.

We compute the function G by constructing an ordinary differential equation for it. Fix t = 1
3 , and consider

the function g(x) = G(x, 1
3 ). Then

ĝ(ω) =
1√
2π
eiω

3/3.

By Proposition 2.7,

g′′ = F−1(−ω2ĝ) = − 1√
2π
F−1

(
ω2eiω

3/3
)
, and xg = −iF−1(ĝ′) =

1√
2π
F−1

(
ω2eiω

3/3
)
.

Hence the function g satisfies the Airy equation g′′ − xg = 0. Since our solution should vanish at infinity, we

take the solution g(x) = Ai(x). For general t > 0, applying change of variable gives

G(x, t) =
1

2π

∫ ∞
−∞

e
1
3 i(

3√3tω)
3

eiωx dω =
1

3
√

3t
Ai

(
x

3
√

3t

)
.

The solution to the problem (2.15) is u(·, t) = G(·, t) ∗ f .
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3 Distribution Theory

3.1 Topology on C∞c (U)

The Fréchet space D(K). Let K be a compact set of Rn. The space C∞c (K) is defined to be the set of

C∞ functions on Rn whose support is compact and contained in K. This space is a Fréchet space with the

topology TK defined by the norms

‖φ‖K,N = sup
x∈K,|α|≤N

|∂αφ(x)|, N ∈ N0.

That is, a local base for this topology at φ ∈ C∞c (K) is the family of sets

U εK,N (φ) = {ψ ∈ C∞c (K) : ‖ψ − φ‖K,N < ε} ,

where N ∈ N0 and ε > 0. Indeed, we only need to define the base sets

U εK,N = {ψ ∈ C∞c (K) : ‖ψ‖K,N < ε} , N ∈ N0, ε > 0

at 0, and take φ+ U εK,N to be the base sets at φ. The Fréchet space C∞c (K) is metrizable by setting

dK(φ, ψ) =
∞∑
N=1

1

2N
‖φ− ψ‖K,N

1 + ‖φ− ψ‖K,N
, φ, ψ ∈ C∞c (K).

We denote by D(K) the space C∞c (K) endowed with the topology TK . In D(K), every sequence (φk)

converges to φ if and only if ∂αφk → ∂αφ uniformly for all multi-indices α.

Construct a base for a topology on C∞c (U). For an open set U ⊂ Rn, the space C∞c (U) is defined to be

the set of C∞ functions whose support is compact and contained in U . Indeed, C∞c (U) can be viewed as the

union of spaces C∞c (K) as K ranges over all compact subsets of U .

To construct a topology on C∞c (U), let B0 be the family of all balanced1, convex sets V ⊂ C∞c (U) such

that V ∩ C∞c (K) ∈ TK for all compact K ⊂ U . We can show that B0 is nonempty. For example, let

V εN =

{
ψ ∈ C∞c (U) : sup

x∈U,|α|≤N
|∂αψ(x)| < ε

}
. (3.1)

Then V εN is balanced, convex, and V εN ∩ C∞c (K) = U εK,N ∈ TK . We then define

B = {φ+ V : φ ∈ C∞c (U), V ∈ B0} .

The sets in B gives an appropriate topology on C∞c (U).

Theorem 3.1. The family B is a base for a locally convex Hausdorff topology T on C∞c (U) that turns C∞c (U)

into a topological vector space.

Remark. We write for D(U) the topological space (C∞c (U),T ). Its elements are called testing functions.

Proof. Step I. We first verify that B is a base for a topology on C∞c (U). It suffices to verify the following

two conditions:

(i) For each φ ∈ C∞c (U) there exists U ∈ B such that φ ∈ U ;

(ii) For each U1, U2 ∈ B with U1 ∩ U2 6= ∅ and each φ ∈ U1 ∩ U2, there exists V ∈ B such that V 3 φ and

V ⊂ U1 ∩ U2. In other words, B is closed under finite intersection operation.
1A subset E of a vector space X is balanced if tx ∈ E for all x ∈ E and |t| ≤ 1.
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• For (i), we let φ ∈ C∞c (U), N ∈ N0 and ε > 0. The set V εN defined in (3.1) is in B0, and φ+ V εN ∈ B.

• For (ii), we let φ1, φ2 ∈ C∞c (U) and V1, V2 ∈ B0 be such that (φ1 + V1) ∩ (φ2 + V2) 6= ∅. We fix any

φ ∈ (φ1 + V1) ∩ (φ2 + V2), and take a compact set K ⊂ U such that K contains the supports of φ1, φ2 and φ.

Then for j = 1, 2, we have

φ− φj ∈ Vj ∩ C∞c (K) ∈ TK .

Using the continuity of scalar multiplication in C∞c (K), we may find 0 < α < 1, such that

φ− φj ∈ (1− α)(Vj ∩ C∞c (K)) ⊂ (1− α)Vj , j = 1, 2.

By convexity of the sets Vj , we have

φ− φj + αVj = (1− α)Vj + αVj = Vj , j = 1, 2,

so that φ + αVj ∈ φj + Vj for j = 1, 2, and φ + α(V1 ∩ V2) ⊂ (φ1 + V1) ∩ (φ2 + V2). Hence B is a base for a

topology T given by all unions of members of B.

Step II. Next we verify that C∞c (U) is a topological vector space under T .

• To prove the continuity of scalar multiplication at a point (t0, φ0) ∈ C × C∞c (U), we notice that each

neighborhood of t0φ0 contains some t0φ0 + V , where V ∈ B0. Let K = supp(φ0). Then φ0 ∈ D(K). By

continuity of scalar multiplication in D(K), we may find γ > 0 so small that

γφ0 ∈
1

2
(V ∩ C∞c (K)) ⊂ 1

2
V.

Let s = 1
2(|t0|+γ) . Then for every |t− t0| < γ and φ ∈ φ0 + sV ,

tφ− t0φ0 = t(φ− φ0) + (t− t0)φ ∈ tsV +
1

2
V ⊂ 1

2
V +

1

2
V = V,

where we use the fact that V is convex and balanced. Therefore tφ ∈ t0φ0 + V for every |t − t0| < γ and

φ ∈ φ0 + sV , which proves the continuity of scalar multiplication.

• To prove the continuity of addition at a point (φ1, φ2) ∈ C∞c (U)×C∞c (U), consider a neighborhood φ1+φ2+V

of φ1 + φ2, where V ∈ B0. The convexity of V implies that(
φ1 +

1

2
V

)
+

(
φ2 +

1

2
V

)
= φ1 + φ2 + V.

Since V ∩ D(K) ∈ TK for all compact K ⊂ U , and since the scalar multiplication is continuous in D(K), we

have 1
2V ∩ D(K) ∈ TK for all compact K ⊂ U , and 1

2V ∈ B0. Hence both φ1 + 1
2V and φ2 + 1

2V are in B,

and the addition operation is continuous.

Step III. Finally, to prove that (C∞c (U),T ) is a Hausdorff space, we take φ1 6= φ2 from C∞c (U) and define

V =

{
ψ ∈ C∞c (U) : sup

x∈U
|ψ(x)| < 1

2
sup
x∈U
|φ1(x)− φ2(x)|

}
.

In view of (3.1), we have V ∈ B0. If φ ∈ (φ1 + V ) ∩ (φ2 + V ), we have

sup
x∈U
|φ1(x)− φ2(x)| ≤ sup

x∈U
|φ(x)− φ1(x)|+ sup

x∈U
|φ(x)− φ2(x)|

<
1

2
sup
x∈U
|φ1(x)− φ2(x)|+ 1

2
sup
x∈U
|φ1(x)− φ2(x)| = sup

x∈U
|φ1(x)− φ2(x)|,

a contradiction! Hence (φ1 + V ) ∩ (φ2 + V ) = ∅, and we finish the proof.
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We now show that the topology T , when restricted to D(K), for some compact set K ⊂ U , does not

produce more open sets than the ones in TK .

Proposition 3.2. Let U ⊂ Rn be an open set. For every compact set K ⊂ U , the topology on D(K) coincide

with the relative topology of D(K) as a subspace of D(U).

Proof. Fix a compact set K ⊂ U and let W ∈ T . We claim W ∩ D(K) ∈ TK . We may assume W ∩ D(K)

is nonempty, otherwise the claim is clear. Let φ ∈ W ∩ D(K). Since B is a base for T , we take V ∈ B0

such that φ + V ⊂ W . Then φ + (V ∩ D(K)) ⊂ W ∩ DK , and φ + (V ∩ D(K)) ∈ TK since φ ∈ D(K) and

V ∩D(K) ∈ TK . Hence every point of W ∩D(K) is in the interior with respect to TK , and W ∩D(K) ∈ TK .

Conversely, let W ⊂ TK . We claim that W = V ∩ D(K) for some open V ∈ T . Since the family of

sets U εK,N is a local base for the topology TK , for each φ ∈ W , we may find Nφ ∈ N0 and εφ > 0 such that

φ+ U
εφ
K,Nφ

⊂W . Let V
εφ
Nφ

be defined as in (3.1). Then

(φ+ V
εφ
Nφ

) ∩ D(K) = φ+ U
εφ
K,Nφ

⊂W,

and φ+ V
εφ
Nφ
∈ B. Therefore V =

⋃
φ∈W (φ+ V

εφ
Nφ

) is a set in T with the desired property.

Proposition 3.3. Let U ⊂ Rn be an open set. If W ⊂ D(U) is topologically bounded, there exists a compact

set K ⊂ U such that W ⊂ D(K).

Proof. Assume that W is not contained in D(K) for any compact K ⊂ U . We take an increasing sequence

(Kj) of compact sets such that Kj ⊂ K̊j+1 for all j ∈ N and U =
⋃∞
j=1Kj . Then we may find for each j ∈ N

a function φj ∈W and a point xj ∈ Kj+1\Kj such that φj(xj) 6= 0. Define

V =

{
φ ∈ D(U) : |φ(xj)| <

1

j
|φj(xj)| for all j ∈ N

}
.

Since each compact set K ⊂ U contains only finitely many xj , we have V ∩D(K) ∈ TK , and so V ⊂ T . Since

W is topologically bounded, there exists t > 0 such that W ⊂ tV . If an integer N ≥ t, we have φN (xN ) 6= 0,

and t−1|φN (xN )| ≥ N−1|φN (xN )|. Hence t−1φN /∈ V , and φN /∈ tV . However φN ∈ W ⊂ tV , which yields a

contradiction. Hence there exists a compact K ⊂ U with D(K) ⊃W .

The topology on D(U) is complete, and convergent sequence in D(U) can be explicitly characterized.

Proposition 3.4. Let U ⊂ Rn. The space D(U) is complete. Furthermore, a sequence (φj) in D(U) converges

to φ ∈ D(U) if and only if

(i) there exists a compact set K ⊂ U such that (φj) ⊂ D(K), and

(ii) limj→∞ ∂αφj = ∂αφ uniformly on K for each multi-index α ∈ Nn0 .

Proof. Let (φj) be a Cauchy sequence in D(U). Then (φj) is topologically bounded, and by Proposition 3.3,

there exists a compact set K ⊂ U such that (φj) ⊂ D(K). By Proposition 3.2, we obtain a Cauchy sequence

(φj) in D(K). Therefore, for every N ∈ N0 and every ε > 0, there exists M such that

sup
x∈K,|α|≤N

|φj(x)− φk(x)| < ε

for all j, k ≥ M . Consequently, for every multi-index α ∈ Nn0 with |α| ≤ N , the Cauchy sequence {∂αφj}
converges uniformly in K to a continuous function ψα ∈ Cc(K). An inductive argument using the fundamental

theorem of calculus shows that ∂αψ0 = ψα for every multi-index α ∈ Nn0 with |α| ≤ N . Given the arbitrariness

of N ∈ N0, we conclude that ψ0 ∈ D(K) and that the sequence (φj) converges to ψ0 with respect to T . Hence

the space D(U) is complete.

Conversely, if a sequence (φj) in D(U) satisfies conditions (i) and (ii), it converges to φ in D(K). By

Proposition 3.3, it also converges to φ in D(U).
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Now we discuss the continuous mappings on D(U).

Proposition 3.5. Let U ⊂ Rn be an open set, X a locally convex topological vector space, and T : D(U)→ X

a linear operator. The following properties are equivalent:

(i) T is continuous.

(ii) T is bounded, i.e. it sends topologically bounded sets of D(U) into topologically bounded sets of X.

(iii) If (φj) converges to φ in D(U), then limj→∞ Tφj = Tφ.

(iv) The restriction of T to D(K) is continuous for every compact set K ⊂ U .

If X = C, the following statement is also equivalent to above all:

(v) For every compact set K ⊂ U , there exists an integer N ∈ N0 and a constant cK > 0 such that

|Tφ| ≤ cK‖φ‖K,N for all φ ∈ D(K).

Proof. We prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

• (i) ⇒ (ii). Suppose that T : D → X is continuous, and W ⊂ D(U) is a topologically bounded set. If V

is a neighborhood of 0 in X, then T−1(V ) is a neighborhood of 0 in D(X), and there exists t > 0 such that

W ⊂ tT−1(V ). Consequently T (W ) ⊂ tV . Hence T (W ) is also topologically bounded.

• (ii) ⇒ (iii). We may assume (φj) → 0 by replacing (φj) with (φj − φ). By Proposition 3.4, there exists a

compact set K such that (φj) ⊂ D(K), and dK(φj , 0)→ 0 as j →∞.

Let B = {φ ∈ D(K) : dK(φ, 0) < 1} be the unit ball in D(K) centered at 0. If T is bounded, the set T (B)

is topologically bounded. Then for any neighborhood V of 0 in X, there exists t > 0 such that T (B) ⊂ tV ,

so T (t−1B) ⊂ V . Since dK(φj , 0) → 0 as j → 0, there exists N such that φj ∈ t−1(B) for all j ≥ N . Hence

(Tφj) is eventually in V , and Tφj converges to 0.

• (iii) ⇒ (iv). Fix a compact set K ⊂ U . If (φj) is a sequence in D(K) such that dK(φj , 0) → 0 as j → ∞,

by Proposition 3.4, we have φj → 0 in D(U), and Tφ = limj→∞ Tφj by property (iii). Hence the restriction

of T to D(K) is continuous at 0. By linearity, the restriction is continuous.

• (iv) ⇒ (i). For every neighborhood V of 0 in X and every compact set K ⊂ U , the restriction of T to

D(K) is continuous at zero, and T−1(V ) ∩ D(K) ∈ TK . Since K is arbitrary, T−1(V ) ∈ T . Therefore, T is

continuous at 0 and, by linearity, everywhere in D(U).

• (iv) ⇔ (v). Let X = C. Assume that (iv) holds and fix a compact K ⊂ U . By continuity of T |D(K) at the

origin, there exists N ∈ N0 and ε > 0 such that U εK,N ⊂ T−1({|z| < 1}), that is, |Tφ| < 1 for all φ ∈ D(K)

with ‖φ‖K,N < ε. If φ ∈ D(K) and φ 6= 0, then ‖φ‖K,N 6= 0, and by linearity of T , we have |Tφ| ≤ 2
ε ‖φ‖K,N .

Conversely, if (v) holds, for any δ > 0, by taking ε > 0 sufficiently small, we have |Tφ| < δ for all φ ∈ U εK,N .

Hence the restriction T |D(K) is continuous.

Proposition 3.6. Let U and U ′ be open subsets of Rn, and T : D(U) → D(U ′) a linear operator. The

following properties are equivalent:

(i) T is continuous if and only if

(ii) for each compact set K ⊂ U , there exists a compact set K ′ ⊂ U ′ such that T (D(K)) ⊂ D(K ′), and the

restriction T : D(K)→ D(K ′) is continuous.

Proof. (ii) ⇒ (i) is a special case of the implication (iv) ⇒ (i) in Proposition 3.5. To prove (i) ⇒ (ii), we

let T : D(U) → D(U ′) be a continuous linear operator and fix a compact set K ⊂ U . According to the

implication (i) ⇒ (iv) in Proposition 3.5, the restriction of T to D(K) is continuous. If we can show that

T (D(K)) ⊂ D(K ′) for some compact K ′ ⊂ U ′, the proof will be completed by Proposition 3.2.

Assume that T (D(K)) is not contained in D(K ′) for any compact K ′ ⊂ U ′. Take an increasing sequence

(K ′j) of compact sets such that K ′j ⊂ K̊ ′j+1 for all j ∈ N and U ′ =
⋃∞
j=1K

′
j . Then we may find for each j ∈ N

a function φj ∈ D(U ′) and a point xj ∈ K ′j+1\K ′j such that dK(φj , 0) = 1 and (Tφj)(xj) 6= 0. Since (φj)

is topologically bounded in D(U), by Proposition 3.5 (ii), (Tφj) is topologically bounded in D(U ′), and by

Proposition 3.3, there exists K ′ ⊂ U ′ such that (φj) ⊂ D(K ′), which is contradiction!
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3.2 Distributions

Motivation. Let f ∈ Lp(Rn), where 1 < p ≤ ∞. For q = p
p−1 , we define Tf : Lq(Rn)→ C by

Tfg =

∫
Rn
f(x)g(x) dx, g ∈ Lq(Rn).

The Riesz representation theorem states that the map f 7→ Tf is an isometric isomorphism of Lp(Rn) onto

the dual space Lq(Rn)∗ of Lq(Rn). In other words, f ∈ Lp(Rn) is completely determined by its action as a

bounded linear functional on Lq(Rn). On the other hand, by Lebesgue differentiation theorem,

lim
r→0+

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x), for a.e. x ∈ Rn,

where B(x, r) is the (open) ball of radius r about x, and m is the Lebesgue measure. Hence if we take

g = m(B(x, r))−1χB(x,r), we can recover the pointwise value of f for almost every x ∈ Rn as r → 0. Thus, we

lose nothing by thinking of f as a linear mapping from Lq(Rn) to C rather than a map from Rn to C.

The idea of distribution follows by allowing f ∈ L1
loc(Rn) and requiring φ ∈ D(Rn). The map Tf defines

a linear functional on D(Rn), and the pointwise values of f can be recovered a.e. by a similar approach of

Theorem 1.9. Nevertheless, there are also linear functionals on D(Rn) that are not of the form Tf .

Definition 3.7 (Distribution). Let U be an open subset of Rn. A distribution on U is a continuous linear

functional on D(U). The space of all distributions on U is denoted by D′(U). We equip D′(U) with the weak*

topology, i.e. the neighborhoods of T0 ∈ D′(U) is generated by the sets

U εf1,··· ,fm(T0) = {T ∈ D′(U) : |Tfj − T0fj | < ε, j = 1, 2, · · · ,m} ,

where ε > 0, m ∈ N and f1, · · · , fm ∈ C∞c (U). Furthermore, a sequence Tj → T in the weak* topology if and

only if Tjf → Tf for all f ∈ C∞c (U).

Notations. If F ∈ D′(U) and φ ∈ C∞c (U), we use the pairing notation 〈F, φ〉 for the value of F evaluated

at the point φ. Sometimes it is helpful to pretend that a distribution F ∈ D′(U) is a function on U even when

it really is not, and to write
∫
U
F (x)φ(x) dx instead of 〈F, φ〉.

We shall use a tilde to denote the reflection of a function in the origin: φ̃(x) = φ(−x).

Example 3.8. Following are some examples of distribution on an open set U ⊂ Rn:

• Every function f ∈ L1
loc(U) defines a distribution on U , namely, the functional φ 7→

∫
fφ dx. Clearly,

two functions that are equal a.e. define the same distribution, since they are identified in L1
loc(U).

• Every Radon measure µ on U defines a distribution φ 7→
∫
φdµ.

• For a point x0 ∈ U and a multi-index α ∈ Nn0 , the map φ 7→ ∂αφ(x0) defines a distribution that does

not arise from a function.

• In particular, when U = Rn, α = 0 and x = 0, this distribution arise from a measure µ which is the

point mass at the origin 0. We call this distribution the Dirac δ-function, denoted by δ:

〈δ, φ〉 = φ(0), φ ∈ C∞c (Rn).

It can be represented heuristically as

δ(x) =

{
∞, x = 0,

0, x 6= 0,

and we write
∫
Rn δ(x)φ(x) dx = φ(0).
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We have the following approximation for Dirac δ-function.

Proposition 3.9. Assume f ∈ L1(Rn) and
∫
Rn f(x) dx = 1. Define

ft(x) =
1

tn
f
(x
t

)
, t > 0.

Then ft → δ in D′(Rn) as t→ 0.

Proof. If φ ∈ C∞c (Rn),

〈ft, φ〉 =

∫
Rn
ft(x)φ(x) dx =

∫
Rn
ft(x)φ̃(−x) dx = (ft ∗ φ̃)(0),

which converges to φ̃(0) = φ(0) = 〈δ, φ〉 as t→ 0 by Proposition 1.6.

Let F ∈ D′(U) be a distribution on an open set U ⊂ Rn. For an open set V ⊂ U , we say F = 0 on V if

〈F, φ〉 = 0 for all φ ∈ C∞c (V ) (for example, if F ∈ L1
loc(U), it means that F = 0 a.e. on V ). Since a function

in C∞c (V1 ∪ V2) need not to be supported in either V1 or V2, it is not so clear that F = 0 on both V1 and V2

implies F = 0 on V1 ∪ V2. Nevertheless, it is true:

Proposition 3.10. Let (Vα)α∈A be a collection of open subsets of U , and V =
⋃
α∈A Vα. If F ∈ D′(U) and

F = 0 on each Vα, then F = 0 on V .

Proof. If φ ∈ C∞c (V ), by compactness, there exist finitely many α1, · · · , αm ∈ A such that supp(φ) ⊂
⋃m
j=1 Vαj .

Take a smooth partition of unity (ψj)
m
j=1, i.e. supp(ψj) ⊂ Vαj for each j and

∑m
j=1 ψj = 1 on supp(φ). Then

〈F, φ〉 =

m∑
j=1

〈F, φψj〉 = 0.

Hence F = 0 on V .

Remark I. According to this proposition, we can take a maximal open set W on which F = 0, namely the

union of all open sets on which F = 0. Its complement U\W is called the support of F .

Remark II. More generally, we say two distributions F,G ∈ D′(V ) agree on an open set V ⊂ U if F −G = 0

on V . According to this proposition, if two distributions agree on each member of a collection of open sets,

they also agree on the union of those open sets.

Operations on distributions. Let U ⊂ Rn be an open set, and F ∈ D′(U).

(i) (Product). If ψ ∈ C∞(U), we define the product ψF to be

〈ψF, φ〉 = 〈F,ψφ〉, φ ∈ D(U).

For any compact K ⊂ U and any sequence φj ∈ C∞c (K) that converges to φ in D(K), since ψφj → ψφ

and F |D(K) is continuous, we have 〈F,ψφj〉 → 〈F,ψφ〉. Hence ψF ∈ D′(U).

(ii) (Translation). If y ∈ Rn and F ∈ L1
loc(U),∫

U+y

F (x− y)φ(x) dx =

∫
U

F (x)φ(x+ y) dx, φ ∈ D(U + y).

Similarly, for F ∈ D′(U), we define the translated distribution τyF to be

〈τyF, φ〉 = 〈F, τ−yφ〉, φ ∈ D(U + y).

Then τyF ∈ D′(U + y). In particular, the point mass at y is τyδ.
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(iii) (Composition with linear map). If T : Rn → Rn is an invertible linear transformation and F ∈ L1
loc(U),∫

U

F (Tx)φ(x) dx = |det(T )|−1
∫
T−1(U)

F (y)φ(T−1y) dy, φ ∈ D(T−1(U)).

Similarly, for F ∈ D′(U), we define the composition F ◦ T to be

〈F ◦ T, φ〉 = |det(T )|−1 〈F, φ ◦ T−1〉, φ ∈ D(T−1(U)).

Then F ◦ T = D′(T−1(U)). In particular, if Tx = −x, we define the reflection of F in the origin by

〈F̃ , φ〉 = 〈F, φ̃〉, φ ∈ D∞(−U).

(iv) (Convolution). Given ψ ∈ C∞c (Rn), let V = {x : x− y ∈ U for all y ∈ supp(ψ)}. If F ∈ L1
loc(U),

(F ∗ ψ)(x) =

∫
U

F (y)ψ(x− y) dy =

∫
U

F (y)(τxψ̃)(y) dy, x ∈ V,

and by Fubini’s theorem, if φ ∈ C∞c (V ),∫
V

(F ∗ ψ)(x)φ(x) dx =

∫
V

∫
U

F (y)ψ(x− y)φ(x) dy dx

=

∫
U

∫
V

F (y)ψ̃(y − x)φ(x) dx dy =

∫
U

F (y)(φ ∗ ψ̃)(y) dy.

For F ∈ D′(U), we have two approaches to define the convolution F ∗ ψ:

– Analogous to the first identity, define F ∗ ψ be the function

(F ∗ ψ)(x) = 〈F, τxψ̃〉, x ∈ V.

– Analogous to the second identity, define F ∗ ψ be the mapping

〈F ∗ ψ, φ〉 = 〈F, φ ∗ ψ̃〉, φ ∈ D(V ).

If K ⊂ V is compact and (φj) ⊂ C∞c (K) is a sequence converging to φ in D(K), we have

∂α(φj ∗ ψ̃) = (∂αφj) ∗ ψ̃ → (∂αφ) ∗ ψ̃ = ∂α(φ ∗ ψ̃)

uniformly for all multi-indices α ∈ Nn0 . Hence (F ∗ ψ)|D(K) is continuous, and F ∗ ψ ∈ D′(V ).

The following proposition shows that the two definitions of the convolution F ∗ ψ coincide. Furthermore,

the distribution as a function on U is infinitely differentiable.

Proposition 3.11. Let U ⊂ Rn be open. Given ψ ∈ C∞c (Rn), let V = {x : x− y ∈ U for all y ∈ supp(ψ)}.
For F ∈ D′(U), define (F ∗ ψ)(x) = 〈F, τxψ̃〉 for all x ∈ V . Then

(i) F ∗ ψ ∈ C∞(V ), and ∂α(F ∗ ψ) = F ∗ (∂αψ) for all multi-indices α ∈ Nn0 ;

(ii) For all φ ∈ C∞c (V ), we have
∫
V

(F ∗ ψ)(x)φ(x) dx = 〈F, φ ∗ ψ̃〉.

Proof. If x ∈ V , by Proposition 1.5, we have τx+sψ̃ → τxψ̃ uniformly as s → 0, and the same holds for all

partial derivatives. Then τx+sψ̃ → τxψ̃ in D(U) as s→ 0. By continuity of F on D(U) we have that 〈F, τxψ̃〉
is continuous in x. Furthermore, for any j = 1, 2, · · · , n, we have∣∣∣∣ψ(x+ hej − y)− ψ(x− y)

h
− ∂jψ(x− y)

∣∣∣∣ ≤ sup
t∈R:|t|<|h|

|∂jψ(x+ tej − y)− ∂jψ(x− y)| .
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For any ε > 0, by uniform continuity of ∂jψ, there exists a constant η > 0 independent of x and y such that

the last bound is less than ε whenever |h| < η. Hence the difference quotient

τx+hej ψ̃ − τxψ̃
h

→ τx∂̃jψ (3.2)

uniformly as h → 0. Since the same conclusion of difference quotient holds for all partial derivatives, the

convergence (3.2) also holds in D(U). Therefore

∂j(F ∗ ψ)(x) = lim
h→0

〈F, τx+hej ψ̃〉 − 〈F, τxψ̃〉
h

= 〈F, τx∂̃jψ〉 = (F ∗ ∂jψ)(x).

By induction on |α|, we have F ∗ ψ ∈ C∞(V ), and ∂α(F ∗ ψ) = F ∗ ∂αψ. To prove the second result, we note

that ψ, φ ∈ C∞c (Rn). Then we approximate the convolution φ ∗ ψ̃ by Riemann sums:

(φ ∗ ψ̃)(x) =

∫
Rn
ψ̃(x− y)φ(y) dy = lim

ε→0+
Sε(x) := lim

ε→0+
εn
∑
κ∈Zn

ψ̃(x− εκ)φ(εκ),

where there are finitely many nonzero terms when κ runs over Zn. The Riemann sums Sε are supported in

a common compact subset of U , and converges to φ ∗ ψ̃ uniformly as ε → 0. Also, for all multi-indices α,

∂αSε = εn
∑
κ∈Zn ∂

αψ̃(x− εκ)φ(εκ) converges uniformly to ∂α(φ ∗ ψ̃). Hence Sε → φ ∗ ψ̃ in D(U), and

〈F, φ ∗ ψ̃〉 = lim
ε→0+

〈F, Sε〉 = lim
ε→0+

εn
∑
κ∈Zn

φ(εκ)〈F, τεκψ̃〉 =

∫
V

φ(x)〈F, τxψ̃〉 dx =

∫
V

(F ∗ ψ)(x)φ(x) dx.

Hence the two definitions of F ∗ ψ are equivalent.

Next we show that although distributions can be highly singular objects, they can always be approximated

by compactly supported smooth functions in the weak* topology.

Theorem 3.12. For any open set U ⊂ Rn, the space C∞c (U) is dense in D′(U) in the weak* topology.

To prove this theorem we need some technical lemma.

Lemma 3.13. Assume that φ, ψ ∈ C∞c (Rn) and
∫
Rn ψ(x) dx = 1. Let ψt(x) = t−nψ(t−1x) for t > 0.

(i) Given any neighborhood U of supp(φ), we have supp(φ ∗ ψt) ⊂ U for t > 0 sufficiently small.

(ii) φ ∗ ψt → 0 in D(Rn) as t→ 0.

Proof. If supp(ψ) ⊂ {x ∈ Rn : |x| < R}, then supp(φ ∗ ψt) is contained in the set

V = {x ∈ Rn : d(x, supp(φ)) < tR} .

When t < R−1d(supp(φ), U c), the support of φ ∗ψt is contained in U . Moreover, by Propositions 1.3 and 1.6,

∂α(φ ∗ ψt) = (∂αφ) ∗ ψt → ∂αt uniformly as t→ 0, and the second result follows.

Proof of Theorem 3.12. Assume F ∈ D′(U). We first approximate F by distributions supported on compact

subsets of U , then approximate the latter by functions in C∞c (U).

• Let (Vj) be a sequence of precompact open subsets of U increasing to U . For each j, by C∞-Urysohn lemma

[Proposition 1.10], we take ζj ∈ C∞c (U) such that ζj = 1 on V j . Given φ ∈ C∞c (U), for j sufficiently large we

have supp(φ) ⊂ Vj , and 〈F, φ〉 = 〈F, ζjφ〉 = 〈ζjF, φ〉. Hence ζjF → F in the weak* topology as j →∞.

• Let ψ and (ψt) be defined as in Lemma 3.13. Then φ ∗ ψ̃t → φ in D(Rn) as t → 0. On the other hand,

by Proposition 3.11, we have (ζjF ) ∗ ψt ∈ C∞(Rn) and 〈(ζjF ) ∗ ψt, φ〉 = 〈ζjF, φ ∗ ψ̃t〉 → 〈ζjF, φ〉 as t → 0.

Hence (ζjF ) ∗ ψt → ζjF in D′(Rn). Observing that supp(ζj) ⊂ Vk for some k, if supp(φ) ∩ V k = ∅, we have

supp(φ ∗ ψ̃t) ∩ V k = ∅ for t > 0 sufficiently small, by Lemma 3.13, and 〈(ζjF ) ∗ ψt, φ〉 = 〈F, ζj(φ ∗ ψ̃t)〉 = 0.

Hence supp((ζjF ) ∗ ψt) ⊂ V k ⊂ U , and (ζjF ) ∗ ψt ∈ C∞c (U) for j large enough and t small enough.
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Derivatives of distributions. Let U be an open subset of Rn. If f ∈ C∞c (U), for any multi-index α ∈ Nn0 ,∫
U

(∂αf)(x)φ(x) dx = (−1)|α|
∫
U

f(x)(∂αφ)(x) dx, φ ∈ C∞c (U).

This is the integration by parts formula, where the boundary term vanishes since f is compactly supported.

Generally, for F ∈ D′(U), we can define a linear functional ∂αF on C∞c (U) by

〈∂αF, φ〉 = (−1)|α|〈F, ∂αφ〉, φ ∈ C∞c (U).

For any compact K ⊂ U and any sequence (φj) ⊂ C∞c (K) that converges to φ in D(K), by continuity of F ,

we have 〈F, ∂αφj〉 → 〈F, ∂αφ〉 as j →∞. Hence ∂αF |D(K) is continuous, and ∂αF ∈ D′(U).

The distribution ∂αF is called the αth derivative of F . Moreover, if Fj → F in D′(U), we have 〈∂αFj , φ〉 =

〈Fj , ∂αφ〉 → 〈F, ∂αφ〉 = 〈∂αF, φ〉 for each φ ∈ C∞c (U), and ∂αFj → ∂αF in D′(U). Therefore, the differentia-

tion operator ∂α : D′(U)→ D′(U) is a continuous linear map with respect to the weak* topology.

In particular, for any locally integrable function ψ ∈ L1
loc(U), we can define its derivatives of arbitrary

order even if it is not differentiable in the classical sense. To be specific, we define 〈Tψ, φ〉 =
∫
U
ψ(x)φ(x) dx.

The derivative ∂αTψ of the distribution Tψ is called the αth distributional derivative of ψ, denoted by ∂αψ.

Following are some examples of distributional derivatives.

Jump discontinuity. For simplicity, we first consider the functions on R. Differentiating functions with

jump discontinuities leads to δ-singularities. The simplest example is the Heaviside step function H = χ[0,∞),

for which we have

〈H ′, φ〉 = −〈H,φ′〉 = −
∫ ∞

0

φ′(x) dx = φ(0) = 〈δ, φ〉, φ ∈ C∞c (R).

Hence the first distributional derivative of H is the Dirac function δ. More generally, for any x ∈ R, the

distributional derivative of the step function τxH = χ[x,∞) is τxδ, which is the point mass at x.

If f is piecewise continuously differentiable on R, f only has jump discontinuities at x1 < x2 < · · · < xm,

and its pointwise derivative df
dx is in L1

loc(R). Then

〈f ′, φ〉 = −〈f, φ′〉 = −
m∑
j=0

∫ xj+1

xj

f(x)φ′(x) dx

= −
m∑
j=0

[
f(x−j+1)φ(xj+1)− f(x+

j )φ(xj)−
∫ xj+1

xj

df

dx
(y)φ(y) dy

]

=

∫ ∞
−∞

df

dx
(y)φ(y) dy +

m∑
j=1

φ(xj)
[
f(x+

j )− f(x−j )
]

Therefore, the distributional derivative of f is given by

f ′ =
df

dx
+

m∑
j=1

[
f(x+

j )− f(x−j )
]
τxjδ.

Generalized Heaviside step function.
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3.3 Compactly Supported Distributions

The C∞ topology. Let U ⊂ Rn be an open set. The C∞ topology on the space C∞(U) of all smooth

functions on U is the topology of uniform convergence of functions, together with all their derivatives, on

compact subsets of U . This topology can be defined by a countable family of seminorms as follows. Let (Vm)

be an increasing sequence of precompact open subsets of U whose union is U . For each m ∈ N and each

multi-index α ∈ Nn0 , define the seminorm

‖f‖[m,α] = sup
x∈Vm

|∂αf(x)|. (3.3)

With the topology induced by the family of these seminorms, the space C∞(U) is a Fréchet space. Furthermore,

a sequence (fj) converges to f in C∞(U) if and only if ‖fj − f‖[m,α] → 0 for all m ∈ N, α ∈ Nn0 , if and only if

∂αfj → ∂αf uniformly on compact sets for all α ∈ Nn0 .

Proposition 3.14. Let U ⊂ Rn be an open set. The space C∞c (U) is dense in C∞(U).

Proof. We take the sequence (Vm) as in (3.3). By C∞-Urysohn lemma [Theorem 1.10], for each m, we take

ψm ∈ C∞c (U) with ψm = 1 on V m. If φ ∈ C∞(U), for all multi-indices α ∈ N0., we have ‖ψmφ− φ‖[m0,α] = 0

for all indices m ≥ m0. Hence ψmφ ∈ C∞c (U) converges to φ in the C∞ topology.

If U is an open subset of Rn, we denote by E ′(U) the space of all distributions on U whose support is a

compact subset of U .

Theorem 3.15. Let U ⊂ Rn be an open set.

(i) If F ∈ E ′(U), then F extends uniquely to a continuous linear functional on C∞(U)

(ii) If G is a continuous linear functional on C∞(U), then G|C∞c (U) ∈ E ′(U).

To summarize, E ′(U) equals the dual space of C∞(U).

Proof. If F ∈ E ′(U), take ψ ∈ C∞c (U) such that ψ = 1 on supp(F ), and define the linear functional G on

C∞(U) by Gφ = 〈F,ψφ〉. Since F is continuous on D(supp(ψ)), and the topology of the latter is defined by

the norms φ 7→ ‖∂αφ‖∞, there exists C > 0 and N ∈ N such that |〈G,φ〉| = |〈F,ψφ〉| ≤ C
∑
|α|≤N ‖∂α(ψφ)‖∞

for all φ ∈ C∞(U). By the product rule, if we choose m large enough so that V m ⊃ supp(ψ),

|〈G,φ〉| ≤ C ′
∑
|α|≤N

sup
x∈supp(ψ)

|∂αφ(x)| ≤ C ′
∑
|α|≤N

‖φ‖[m,α].

Hence G is continuous on C∞(U). By Proposition 3.14, the continuous extension G of F is unique.

On the other hand, if G is a continuous linear functional on C∞(U), there exists constants C,m and N

such that |〈G,φ〉| ≤ C
∑
|α|≤N ‖φ‖[m,α] for all φ ∈ C∞(U). Since ‖φ‖[m,α] ≤ ‖∂αφ‖∞, the functional G is

continuous on D(K) for each compact K ⊂ U , and G|C∞c (U) ∈ D′(U). Moreover, if supp(φ) ∩ V m = ∅, we

have 〈G,φ〉 = 0, and supp(G) ⊂ V m. Hence G|C∞c (U) ∈ E ′(U).

Remark. In fact, one can easily check that the operations of multiplication by C∞ functions, translation,

composition by invertible linear maps and differentiation, as is discussed in the last section, all preserves the

class of E ′(U). The case of convolution is a bit more complicated.
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3.4 Tempered Distributions and Fourier Transform

Definition 3.16 (Tempered distributions). A tempered distribution (on Rn) is a continuous linear functional

on the Schwartz space S(Rn). The space of tempered distribution is denoted by S ′(Rn). Usually, we equip

S ′(Rn) with the weak* topology.

The following proposition helps to understand the relation of distributions and tempered distributions.

Proposition 3.17. The space C∞c (Rn) is dense in S(Rn).

Proof. We fix φ ∈ S(Rn), which is to be approximated. We take ψ ∈ C∞c (Rn, [0, 1]) such that ψ(0) = 1,

and let ψt(x) = ψ(tx) for t > 0. Given any N ∈ N and ε > 0, we can choose a compact K ⊂ Rn such that

(1 + |x|)N |φ(x)| < ε for all x /∈ K. Then ψt(x)→ 1 uniformly on K as t→ 0, and

lim
t→0
‖ψtφ− φ‖(N,0) ≤ sup

x/∈K
(1 + |x|)N |ψt(x)φ(x)− φ(x)| < ε.

By arbitrariness of N and ε, we have ‖ψtφ − φ‖(N,0) → 0 as t → 0 for all N ∈ N0. For the terms involving

derivatives, by the product rule,

(1 + |x|)N∂α(ψtφ− φ) = (1 + |x|)N (ψt∂αφ− ∂αφ) +Rt(x),

where the remainder Rt is a sum of terms involving derivatives of ψt. Since∣∣∂βψt(x)
∣∣ = t|β|

∣∣∂βψ(tx)
∣∣ ≤ Cβt|β|,

we have ‖Rt‖∞ ≤ Ct→ 0 as t→ 0+. An analogue of the preceding argument shows that ‖ψtφ− φ‖(N,α) → 0

as t→ 0. Hence ψtφ ∈ C∞c (Rn) converges to φ in S(Rn), which completes the proof.

Remark. Since the convergence in D(Rn) implies the convergence in S(Rn), if F ∈ S ′(Rn) is a tempered

distribution, the restriction of F to C∞c (Rn) is also continuous. Hence F |C∞c (Rn) is a distribution. Furthermore,

by Proposition 3.17, the restriction F |C∞c (Rn) determines F ∈ S ′(Rn) uniquely. Thus we may identify S ′(Rn)

with the sets of all distributions on Rn that extends continuously from C∞c (Rn) to S(Rn).

Example 3.18. Following are some examples of tempered distributions on Rn.

• Every compactly supported distribution is tempered.

• If f ∈ L1
loc(Rn) and

∫
Rn(1 + |x|)−N |f(x)| dx <∞ for some N ∈ N0, then f is tempered, since∣∣∣∣∫

Rn
f(x)φ(x) dx

∣∣∣∣ ≤ ∥∥(1 + |x|)−Nf
∥∥
L1

∥∥(1 + |x|)Nφ
∥∥
∞ ≤ C‖φ‖(N,0), φ ∈ S(Rn).

• Given ω ∈ Rn, the plane wave function f(x) = eiω·x on Rn is a tempered distribution on Rn. This

distribution is related to the Fourier transform: if φ ∈ S(Rn), we have 〈f, φ〉 = φ̂(−ω).

• In fact, the exponential function f(x) = eβ·x on Rn is tempered if and only if β is purely imaginary.

We assume β = γ + iω with δ, ω ∈ Rn. If γ 6= 0, we take ψ ∈ C∞c (Rn) with
∫
Rn ψ(x) dx = 1 and let

φm(x) = e−β·xψ(x−mγ). Then φm → 0 in S(Rn) as m→∞, but
∫
Rn fφm dx =

∫
Rn ψ dx = 1.

• If F ∈ S ′(Rn), the derivative ∂αF is also a tempered distribution. Indeed, φj → φ in S(Rn) implies

〈∂αF, φj〉 = 〈F, ∂αφj〉 → 〈F, ∂αφ〉 = 〈∂αF, φ〉.

• A function ψ ∈ C∞(Rn) is called slowly increasing, if ψ and all its derivatives have at most polynomial

growth at infinity, i.e. for every multi-index α there exists Nα ∈ N0 such that |∂αψ(x)| ≤ Cα(1 + |x|)Nα .

If F ∈ S ′(Rn), the product ψF with a slowly increasing C∞ function is also a tempered distribution.

• Let F ∈ S ′(Rn). If y ∈ Rn, the translated distribution τyF is also tempered; If T is an invertible linear

mapping on Rn, the composition F ◦ T with an invertible linear map is also tempered.

35



Proposition 3.19. If F ∈ S ′(Rn) and ψ ∈ S(Rn), the function (F ∗ ψ)(x) = 〈F, τxψ̃〉 is a slowly increasing

C∞ function, and we have

〈F, φ ∗ ψ̃〉 =

∫
Rn

(F ∗ ψ)(x)φ(x) dx, φ ∈ S(Rn)..

Proof.
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