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1 Preliminaries

1.1 Convolution

In this section we study the convolution operation on R™. If a function f is defined on U C R", we can replace
it by its natural zero extension f : R™ — R which assigns f(z) =0 for z ¢ U.

Definition 1.1 (Convolution). Let f,g: R™ — R be Lebesgue measurable functions. Define the bad set as

B(f.g) = {w e R [ 11 nat] dn =0}
The convolution of f and g is the function f * g : R™ — R defined by

(F 9)() = {fRn flx—y)g(y)dy, = ¢ E(f,9),
0, x € E(f,9).

Remark. Define F : R — R, (z,y) — f(z) and G : R*™ — R, (x,y) — g(y). Then both F and G are
measurable functions on R*", as well as their product F - G : (x,y) + f(x)g(y). Given linear transformation
T(x,y) = (x —y,y), the composition H = (F -G)oT : (z,y) — f(r —y)g(y) is measurable. By Tonelli’s
theorem, the function z +— f]R" |H (z,y)| dy is measurable, and E(f, g) is a Lebesgue measurable set.

Clearly, the convolution operation is both commutative and associative, i.e. fxg=gx* f, and (fxg)xh =
f * (g * h). Furthermore, the distributivity of convolution with respect to functional addition immediately
follows, i.e. f*(g+h)=fxg+ f=*h.

Proposition 1.2 (Properties of convolution). Let f,g: R™ — R be Lebesque measurable functions.
(i) If f,g € L*(R™), then the bad set E(f,g) is of measure zero. Moreover, f x g € L*(R™), and

/m(f*g)dm:/wfdm Rngdm. (1.1)

(ii) If f € C,(R™) and g € LY(R™), then f x g € C,(R™).
(iii) If f € LP(R™) and g € L*(R™), then f * g € LP(R™), and

1 *glle <[l fllzellgllzr-

Proof. (i) Define the measurable function H(z,y) — f(z — y)g(y) on R?". By Tonelli’s theorem,

/R% | H| dm = / (/ |f(x =)l lg(y) dw) dy = || fllz:llgllze-

Hence H : R*™ — R is integrable. By Fubini’s theorem, for a.e. * € R", y — H(z,y) is integrable, hence
m(E(f,g)) = 0. Furthermore, the function fxg : x — [;, H(x,y)dy is also integrable, that is, fxg € LY(R™).
The equation (L.1)) follows from Fubini’s theorem.

(ii) Given € > 0. By uniform continuity of f, there exists n > 0 such that |f(x) — f(2')| < €/||g||p: for all
|z — 2’| <n,. As a result, for all z,z’ € R™ such that |x — 2’| < 1, we have

[(f xg)(x) = (f*g)(a")] < / |f(x —y) — f(@" —y)llg(y)ldy < e

n

(iii) is a special case of the following proposition. O



Proposition 1.3 (Young’s convolution inequality). Given r € [1,00] and Hélder r-conjugates p,q € [1, 0],
i.e. % + % =141 If f € LP(R") and g € LY(R"), then the bad set E(f,g) is of measure zero, and we have

1 gller < [1Fllzellgllze-

_ pq _pPq_
Remark. Note that r = P w—— >1 & Py >
q

andr<oco & p+qg>pg & p<q%1 &

q P
<:>p22q_1 A

SN

<

Proof. We first bound f % g. By applying generalized Holder’s inequality on % + T;—Tp + Z;Tq =1, we have

I(f*g)(fv)lé/R (@ — )l l9()] dy
- / (17 = 9)Pla@ID 1 — )] lg(w)

< (/Rn |f(z— y)l”lg(y)lqdy>m (/Rn |f(x —y)l”dy)w (/n Ig(y)lqdy)?q
(

1/r rp req
[ If(x—y)l”lg(y)lqdy> Tl

= dy

Consequently, we have

L ([ ve-aiswlar) as< ([ [ iste-wPlawirasds ) 15157 ol

<5 ol [ ([ 1o =l de ) lote dy = 171 Dol

R

where we use Fubini’s theorem in the second inequality. From the last display, we have m(E(f,g)) = 0, and
If gl < fllLellgllLa- O

Remark. If f € L (R"), and g € LY(R") is compactly supported, then f x g € LI (R™).

loc

Proposition 1.4 (Convolution of compactly supported functions). Let f,g: R™ — R.

(i) If f,g € LY(R™), then supp(f * g) C supp f +suppg := {x +y: x € supp f,y € suppg}. Furthermore,
if both f and g are compactly supported on R, then [ x g is also compactly supported. In this case,
supp(f * g) C supp f + suppg.

(ii) Let 1 < p < oo, and let k € Ng. If f € C¥(R") and g € LP(R"), then f x g € CX(R™). Furthermore,
differentiation commutes with convolution, i.e.,

O(f*g)=0"f*g, V]a| < k,

(iti) Let 1 < p < oo. If f € CPR") and g € LP(R™), then f*g € C(R™). Similarly, differentiation
commutes with convolution, i.e., 3%(f x g) = 0% f = g for multi-indices «.

Remark. Here is a slight modification of assertions (ii) and (iii):
(i’) Let 1 < p < oo, and let k € Ng. If f € C¥(R") and g € LP(R"), then f x g € CF(R"). Furthermore,
differentiation commutes with convolution, i.e.,

O (frg)=0"Fxg,  Vla| <k,

(') Let 1 < p < oo. If f € CX(R™) and g € LP(R™), then fxg € CP(R™). Similarly, differentiation
commutes with convolution, i.e., 0*(f * g) = 0% f * g for multi-indices a.



Proof. (i) Let f,g € L*(R™), and take any = € R™. Then
(Fe9)@ = [ fa-vowds= [ f(@ —y)g(y) dy.
R™ (z—supp f)Nsupp g

For x ¢ supp f + supp g, we have (x — supp f) Nsupp g = @, which implies (f * g)(x) = 0. Hence

(f*g)(x) #0 = x €supp f +suppg = supp(f *g) C supp f + suppg.

If f,g € C.(R™), then supp f and supp g are compact in R™. Define ¢(x,y) = x + y, which is a continuous
map on R™ x R™. Then supp f + supp g = ¢(supp f x supp g) is also compact. Consequently, supp f + supp g
is closed, and its closed subset supp(f * g) is also compact. which implies f x g € C.(R"™).

(ii) Step I: We first show the case k = 0. Let ¢ = p/(p — 1). Note that f is continuous and compact
supported, then m(supp f) < oo, f is uniformly continuous, and || f||cc = maxzesupp s |f(x)| < co. By Holder’s
inequality, for all z € R™, we have

[ 1 = )llo@) dy < 17 1eellgler < m(supp £)'7) gl < .

Then f * g is well-defined on R™. To show uniform continuity of f % g, we fix € > 0 and let n be such that
|z — 2’| < n implies |f(z) — f(2')] < e. Then
[(f * g)(x) = (f *g) ()| = ‘/R [f(z—y) = &’ —y)]g(y)dy
1
< 2m(supp )" gl €.

Step II: We prove the case kK = 1. It suffices to show the interchangeability of derivative and integral.
Given any quantity h > 0, we have

(f *g) (= + he}i) —(fxg)@) _ [ [flz+he— Z) =@ =) 0y ay, (1.2)
R

Since f € C}(R™), by Lagrange’s mean value theorem, there exists £ € [0, 1] such that

f(x+hei—y)—f(l‘_y)’:|amif(x+§hei—y), (13)

h

Note that 9, f is also continuous and compactly supported on R™, the RHS of (1.3)) is bounded by |0, f]lcos
and the integrand in (1.2)) is dominated by an integrable function |0, f|lccg. Using Lebesgue’s dominate

convergence theorem, we have

lim f(w+hei—}yl)—f(w—y)g(y)dy: N ggi

o [ (z —y)g(y) dy.

Therefore 0., (f * g) = Ox, f * g. Since 9, f € C.(R™), we have 9,,(f * g) € C,(R"), and f x g € CL(R").
Step III: Use induction. Suppose our conclusion holds for C¥~1(R™). For each f € C*(R") c CF~1(R"),
oF=1f c CL(R™). By Step II, for any |a| =k — 1,

aoz-f—ef;(f*g) _ ami(aa(f*g)) _ azl(aaf*g) = (8a+eif) * g,

which is uniformly continuous on R™. Hence f * g € CX(R"™).
(iii) Note that C2°(R™) = Ny, CH(R™), we have 0%(f x g) = 0°f * g for all « € Nj. Following Step II,
9°f € C.(R™) implies 9*(f * g) € C,,(R™) for all a € Nj. Hence f x g € e, CE(R™) = C°(R"). O



Translation operators. Let X be a vector space, let YX be the set of functions f: X — Y, and let s be a
vector in X. The translation operator 7o : YX — Y X is defined as

(1 f)(z) = f(z — 5), Vf e VX,
The following proposition gives a description of the continuity of (75)sex in C. and L? spaces.

Proposition 1.5. Let 1 < p < co.
(i) For any f € C.(R™), 7sf — f uniformly and in LP-norm as s — 0.
(ii) For any f € LP(R™), 7sf — f in LP-norm as s — 0.
Proof. Let f € C.(R™), and let By = {x € R™ : |z| < 1} be the compact unit ball in R™. The collection of

functions {7sf : |s| <1} has a common support

K = | J supp(rof) =supp f+ By ={x +y:x €suppf,y € B }.
|s|<1

Since the addition operation is continuous, K is also a compact subset of R™.
By uniform continuity of f, given € > 0, there exists ¢ > 0 such that |f(z) — f(y)| < e for all |z — y| < 4.
Hence 75 f — f uniformly as s — 0. Moreover, for any s with |s| < |min(d, 1)|, we have

It — I, = /K (@ 5) — f(@)Pdz < p(K) €.

Since p(K) < oo, and € is arbitrary, we conclude that ||75f — f|[» — 0 as s — 0.
Now we assume f € LP(R™), and fix € > 0. Since C.(R") is dense in LP(R"), there exists g € C.(R™) such
that || f — g|lcc < €/3. Choose § such that |79 — g||» < €/3 for all |s| < 6. Then for all |s| < 4,

I7sf = fller < N7sf = 7sglle + Imsg = gllee +llg = fllze = 21f = gll + 759 — gllzr <e.

Therefore, lims_o || 75 f — f|lz» = 0 for all f € LP(R™). O

Proposition 1.6 (Mollification). Let ¢ € L*(R™), with [;, ¢ dz = a. Given t > 0, define

1
on@) = 0 (7). (1.4)
(i) If f € LP(R™), f* ¢y — af in LP(R™) ast — 0.
(i) If f is bounded and uniformly continuous, f x ¢ — af uniformly ast — 0.

Proof. Using the decomposition ¢ = ¢ — ¢~, we may assume ¢ > 0 on R"”. We further assume a = 1 by
replacing ¢ by ¢/a if necessary. Then

(f * b)) — f(z) = /

ly|<t

(F@—y) — F(2))bely) dy = / (ryf — £)(@)r(y) d.

ly|<t

By Jensen’s inequality and Fubini’s theorem,

| e - fapin= [

= /" /|y|<t |Tyf(l') - f($)|p d)t(y) dy dx < sup ”Tyf — f”LP-

lyl<t

p

/| S~ Do) dy| e

By continuity of the translation operator, the first result follows. For the second result, use the same estimate
for f x ¢; — f and the uniform continuity of f. O



When we establish the density arguments of Cg° functions, the above result is very useful.
Proposition 1.7. For 1 <p < oo, C°(R") is dense in LP(R™).

Proof. By the first assertion in Proposition C°(R™) is dense in C.(R) in || - || norm. Since C.(R™) is
dense in LP(R"™), the result follows. O

Proposition 1.8. For 1 <p < oo, CX(R") is dense in Co(R™).

Proof. By the second assertion in Proposition C°(R™) is dense in C.(R) in || - ||oo norm. Since Co(R™) is
the closure of C.(R™) in || - ||oo norm, the result follows. O

Aside from the convergence in LP-norm discussed in Proposition we are also interested in the pointwise
convergence property of mollification f * ¢..

Proposition 1.9 (Mollification). Assume ¢ € L*(R™) satisfies |¢p(z)| < C(1 + |z|)~"=7 for some C,vy > 0,
and [g, ¢dx = a. Define ¢c as in . Let1 <p<oo. If f € LP(R"™), then (f * ¢.)(z) = af(z) ase = 0
for every Lebesgue point x of f.

Proof. If z is a Lebesgue point of f, we have
tw - [ 1) - fe)ldy =0,
B(z,r)

For any € > 0, we choose § > 0 such that fB(x’T) [f(y) — f(x)| dy < r™e for all r < ¢, and set
L= [ a9 - @lewld, L= [ |-y~ @] d
lyl<d ly|>6

We claim that I is bounded by Ae, where A is independent of ¢, and I — 0 as ¢ — 0. Since

[(f + @) (x) — af(z)] < I + I,

we will have

limsup |(f * ¢¢)(x) — af(x)] < Ae,
t—0+
Since € > 0 is arbitrary, the proof will be completed.
To estimate I, let N be the integer such that 2V < §/t < 2¥*1 if 6/t > 1, and N = 0 if §/t < 1. We
view the ball |y| < § as the union of the annuli 27%§ < |y| < 2!7%§, 1 < k < N and the ball |y| < 27V§. On
the k' annulus we use the estimate

1

)] = :

e N ]
(e (57)
t t

and in the ball |y| < 277§, we use the estimate |¢;(y)| < Ct~™. Thus

(B <r

a 2-kg\ "
I ct " _ _ d ct " _ _ d
<o (B0 L e swlaenn [ e - @l

N 2-kg\ "7 A 2-Ng\"
< Ced (27 Fo)ymm ( - ) + Ce(27N8)"t™™ = 2"Ce <t> D 2" 4 Ce < )
k=1

t
1
8\ 7 oW+ _ 9y 2-N5\" 27
_9n ¢ _ - ) <o .
2C’e<t) o7 1 -I-Ce( ; ) <2 C(Q’Y_1+1)€

=:A




As for I, if ¢ is the conjugate exponent to p and x is the characteristic function of the set {y € R" : |y| > d},

I < / ([fy— )| = [f(@)]) o) dy < | f e [IxPell Lo + [f(@)] ([ XDt 13-
ly|>d

If ¢ = o0,

S\ "7 Ct? Cct?
< -n — = <
||X¢t||Loo <Ct (1 + t) (t+ &6)nty = gnty’

which converges to 0 as ¢t — 0. If 1 < ¢ < 0o, we switch to the sphere coordinates:

ol = [ e
ly|=6
< Cptni=a) / IO + 1)~ g
6

¢ (%) \q dy = /ZZM 70-9) |4 (2)|" dz

/t
< C,Ctni=9 /OO PN gy
N 5/t
_ ¢, cmi-9) (6/t)n—(nt1a _ C,,C6"—(mtagva
(n+7y)g—n (n+7y)g—n
which also converges to 0 as ¢ — 0. Therefore I — 0 as t — 0, and we are done. O

Finally we see an application of the mollification.

Proposition 1.10 (C*°-Urysohn lemma). Let U C R™ be an open set, and let K C U be a compact set. There
exists f € CX(U) such that 0 < f <1, and f =1 on K.

Proof. Since K is compact and U is open, we take 0 < € < d(K,U¢). Define

V:{xGU:d(z,K)gg}, and W—{zEU:d(x,K)<236},

Then V is a compact set, W is an open set, and K C V° C V. C¢ W ¢ W C U. By Urysohn’s lemma, there
exists g € C.(W) such that 0 < g <1 and g =1 on V. Now we choose ¢ € C>°(R") such that ¢ is supported
on the closed ball B(0, £) and [;, ¢(x) dx = 1. Then f = g * ¢ is the desired function. O

1.2 The Schwartz Space

Definition 1.11 (Schwartz space). The Schwartz space consists of all C*°-functions, which, together with
their derivatives, vanishes at infinity faster than any power of |x|. More precisely, for any f € C°(R"), any
nonnegative integer N and any multi-index o € N}, define the norm

1l v,y = sup (1+ [z f(z)].
TER™
The Schwartz space is
S(R™) = {f € C[R™) : [[fll(n,a) <00 forall N € Ny, a € Ng}.
Remark. For any ¢ € C°(R"), all its derivatives are also C2°, and

¢l v,y < sup (14 [2[)V (0%l < oo
TESUpPD ¢

Therefore, we have C2°(R™) C S(R™).



Proposition 1.12. The Schwartz space S(R™) is a Fréchet space under the topology induced by norms ||-|| (n,q)-

Proof. Tt suffices to show the completeness of S(R™). Let (fx) be a Cauchy sequence in S(R™), which implies
that || fx — fmll(nv,a) — 0 as k,m — oo for all N € Ny and all multi-indices o € Njj. In particular, for each a,

the sequence (0° fy) converges uniformly to a function g,. We denote by e; = (0, - -, 41“ ,0,-+-,0). Then
j-th
h
3]
fru(x + hey) — fr(x) = Ofk (x +tej) dt.
o Oz,

Letting k — oo and apply dominated convergence theorem, we obtain go(z + he;) — go(z) = foh Ge; (x +tej) dt,
which implies that d,;g0 = ge, by the fundamental theorem of calculus. An inductive argument on |a| implies
D%go = go. Then || fx — gol|(n,a) — 0 for all N € Ny and all o € Nj. O

Proposition 1.13 (Characterization of Schwartz space). Let f € C*°(R™). The following are equivalent:
(i) f € SR™;
(i) For all multi-indices o, 3 € Ny, the function P9 f is bounded;

(i4i) For all multi-indices v, 3 € NJ, the function 0“(2® f) is bounded.

Proof. To show (i) = (ii), note that |z|# < (1 + |z|)V for || < N. On the other hand, if (ii) holds, we fix an
order N € N and a multi-index a € N{j, and take

n n
dn = min Z 2|V 2 Jz)? = Z |zl =13 >0.
j=1 j=1
By homogeneity, we have >°7_, |z;|N > on|z|Y for all z € R™, and
N _ 5N N N 1 ¢ N 2N 8
Qb <2 el <2 (10 2 Sl | < 50 3 1o

Hence (ii) = (i). The equivalence of (ii) and (iii) follows from the fact that each 9%(z# f) is a linear combination
of terms of the form xz?d" f and vice versa, by the product rule. O

Proposition 1.14. Let f,g € S(R™). Then fxg € S(R™).

Proof. By Proposition (iii”), we have f* g € C*(R"™). Furthermore, since
L+z| <1+ |z —yl+lyl <A+ ]z —yl) A+ yl),

we have for all order N € Ny and multi-index o € Nj that

(1 + |2 0°(f * ) (@)] < /R (14 Jz =)™ 0%z = )| (1 + [u)" g v)] dy

—n—1
< v 9l vams 1. / (L+ g™ dy

n

) C%
< « n « d < ?
< losaloliovmse [ poigdr <o

where C), is some constant depends only on the dimension n. O
Proposition 1.15. S(R"™) is dense in LP(R™) (1 < p < 00) and in Co(R™).

Proof. Since S(R™) D C°(R™), the result follows from Propositions and O



2 Fourier Transform

2.1 Fourier Series

In this part, we study the periodic functions on R™. A function f : R™ — C is said to be 2w-periodic, if

f(a +2mr) = f(x)

for all z € R™ and all k € Z™. According to periodicity, every 2m-periodic function f is completely determined
by its values on the cube [0, 27)™. Hence we may regard f as a function on the quotient space

T" =R"/27Z" = {x + 27Z" : x € R"}.

We call T™ the n-dimensional torus. For measure-theoretic purposes, we identify T™ with the cube Q = [0, 2m)™,
and the Lebesgue measure on T" is induced by Lebesgue measure on Q. In particular, m(T"™) = m(Q) = (27)™.
Functions on T™ maybe considered as periodic functions on R™ or as functions @, depending on the context.

Theorem 2.1. The functions (%) ,.czn form an orthogonal basis of L?(T™).

Proof. Let A be the set of all finite linear combinations of e?**. Then A is a self-adjoint algebra that separates
points and vanishes at no points of T™. Since T™ is compact, by Stone-Weierstrass theorem, A4 is dense in
C(T™) in the supremum norm, and hence in L?-norm. Since C(T") is dense in L?(T"), the result follows. [

The Fourier series of a periodic function is then defined by its expansion under the orthogonal basis.

Definition 2.2. If f € L?(T"), we define its Fourier transform f: 7" — C by

R B <f7 em-w>L2 _ 1
f(ﬁ) - <€in~x,eif€'$>L2 a (27’(’

— / f(z)e™ ™ dx, (2.1)
)™ Jg
and we call the series » ;. f(/@)ei""x the Fourier series of f.

Remark I. According to Theorem the Fourier series of a function f € L?(T") converges to f in L.
Consequently, we have the Parseval’s equality:

1712 = S IFm) = (#an%z-

KREZL™ 27()”

Hence the Fourier transform F maps L?(T") onto ¢%(Z").

~

Remark IL. In fact, the definition (2.1)) of Fourier transform makes sense if L*(T™), and | f(x)| < (27) ™| f|| 1.
Hence the Fourier transform F is a bounded linear map from L!(T™) to £>°(Z™).

Theorem 2.3 (Convolution Theorem). Let f,g € L*(R™). Then
frg=02m)"fg.
Proof. By Young’s convolution inequality [Proposition , f*g € L*(T"). By Fubini’s theorem,

0w = oy [ [ e =atwe==ayas = [ (s [ e == o) gty

~

— fw) /Q gy dy = (2m)" F(x) ().

Thus we finish the proof. O



2.2  Fourier Transform on L'(R")
Definition 2.4 (Fourier transform). For f € L'(R"), we define its Fourier transform by

~

(FHW) = flw) = (@2m) "2 - flx)e ™ dz, weR",

and its inverse Fourier transform by

(F1P))() = flx) = (2m) "2 s (W)™ dw, x€R"

Remark. By definition, both F and F~! are linear operators. That is, for all f,g € L!(R") and «, 3 € C,

Flaf +Bg) = aF f+BFg, F '(af+Bg)=aF 'f+BF 'g.

~

Also, we have f(x) = f(—z) In the sequel, we first consider the Fourier transform.
Theorem 2.5 (Riemann-Lebesgue lemma). The Fourier transform F maps L*(R™) into Co(R™).
Proof. Fix f € LY(R"). By definition, for all w € R",

1F(w)| < (277)*”/2/n |f(x)| da.

Hence fis bounded, and

~

1Flse < @m) 72 fl11. (2.2)

To show continuity of f, use dominated convergence theorem:

Jim £+ ) = £(w) = (2m) " i [ fl@)e 7 (00— 1) do

dominated by 2|f|€L1(R™)

= (27r)7”/2/f(x)e*”'“ lim (e*i"”'h —1) dz =0.

h—0

Hence f is a bounded continuous function. It remains to show that f(w) — 0 as |w| — oco. Note that

fo)=en ™ [ jweds=en e [ ( ; ‘”) ilerm) e g

- jwl?

—n wm —iT-w
=—(2n) /2/nf<x—|—|w|2)e dz.

By averaging,

N (27T>_n/2 wm —iT-w
‘f(w)‘:T . f(x) = f $+W e dx
(2m)—"/2 wT
< — 5 | f@)—flz+ W dx
2 —n/2
:%”]ﬂ—ﬂlfﬂp7 where h:—‘(:—‘z.
By translation continuity, the last display converges to 0 as |w| — oo. O

Remark. By (2.2), the Fourier transform F : L'(R") — Cy(R") is a bounded linear operator.

10



Proposition 2.6 (Properties of Fourier transform). Let f,g € L'(R").

(i) fRn z)de = [, f(x)g(z)dz.

(i) T = f, and f 7 - -
(i4i) (Translation/Modulation) Let &€ € R™. Then (1¢f)(w) = e~ f(w), and e f = 1¢f.
(iv) (Linear transformation) If T : R™ — R™ is an invertible linear transformation, and S = (T*)~! is its

inverse transpose, then

FoT =|detT| ' foS.

In particular, if T is a rotation matriz, i.e. T*T = TT* = 1d, then f/o\T = ]?o T;ifTx =tz is a
dilation, then (f o T)(w) = t" f (tw).

Proof. (i) By Fubini’s theorem,

| Fw)gte)dr = /R n ( [ s dw) o) do
= /n - f(w)g(z)e ™ de dw = /n F(0)5(w) dw.

(ii) We only prove the first identity (the second is similar):

Me*“”” dx = f(z)ew=dx = Tx)
Rn Rn

(iii) By definition,

— 1

T H(w) = -

G /R Ja= e de = mommemE | o - eV do = S flw),

and

— 1

- T —jw-T 1 —t(w=&)-x Iy
(e f)(w) = W /Rn e’ f(x)e dr = (QTFW/W f(z)e W gy = flw=9).

(iv) By definition,

o —

(foT)(w) = @ L F(T2)e™ ™ da
(275” |deiT\ - Flye= T dy
(27;”/2 |deiT\ S we Py = d iT| (Sw).
Thus we finish the proof. O

Remark. Let € > 0. Recall our notation that ¢.(z) = & ¢(%), we have

Moreover, if we let g(z) = f(—x), then

Next we discuss the relation between Fourier transform and differentiation.
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Proposition 2.7 (Differentiation). Let k € Ny and f € L*(R").
(i) If z*f € LY(R™) for all multi-indices |a| < k, then fe C*(R™), and

o F = (=) f1°

(ii) If f € CF(R"™), 0*f € L*(R™) for all multi-indices |a| < k, and 0“f € Co(R™) for all || < k — 1, then

~

0 f(w) = (i) f(w).

Proof. (i) Let F(z,w) = f(z)e”*®. Then
T%(wi) ijf( ) 7“”:” j:1727"'7n'

Fix j € {1,2,--- ,n}. Note that when h is near 0, we have

F(x,w+ he;) — F(z,w) e*mxf -1
: - 17(@)] < 2le; (@),
Since z; f € L*(R™), by dominated convergence theorem,
g L4100 ) _ Ly [ Flosthe) — P,
h—0 h (27)"/2 b0 Jgn
1 / . F(x, w—i—he]) F(z,w)
dx
(27T)n/ R h—)o h

1 - —iw-T 7
(27‘_)”/ / —iz; f(z)e de = —iz; f.

(ii) Consider |a| = 1. Since 9°f € L*(R™) and f € Cy(R™), use Fubini’s theorem and integrate by parts:

5\7!][ _ 1 af —tw-x _ 1 / > 8f 7zwj:vj . —iW_ T
a2, ) = @7 Jon Bz, BT = g ( o, @) dw])e dw-

1 —tw,x; | L= . > — Wi T — W T
(27r)"/2/ (f(x)e Y J|wj:_m+zwj[ flx)e ™ dej> e el

Zw —iw-x Y
= ( )n/2 R f( ) d$ = 'LUJJf(W)
Hence we prove the case k = |a| = 1 for (i) and (ii). The general case follows from induction on |«|. O

Theorem 2.8 (Convolution Theorem). Let f,g € L*(R™). Then
frg=0m"2]g

Proof. By Young’s convolution inequality [Proposition , f*g € L*(R™). By Fubini’s theorem,

(P00 = Goyra | [ F@=vawe = dydr = oo [ ] e = ypereg@e o ayde

R"'L
/R ( o n/z/ fla—y)e o) dm) g(y)e ™V dy

= Fw) [ gtwem = dy = )2 ) 5w,

Thus we finish the proof. O

12



We compute the Fourier transform of a function.
Lemma 2.9. Define the function ® : R" - R by ®(z) =e~ 2 . Then ® = P = 9.

Proof. For all w € R™,

- 1 = 1 % 22/ iz,
(D(w) - (271')"/2 /]Rn c e do = H ( 27 [oo ‘ ]/26 o dz])

2

= H /2 = e

Hence ® = ®. The case ® = & is similar.

Now we discuss how to recover a function f from its Fourier transform f.

~

Theorem 2.10 (Fourier inversion theorem). Let f € LY(R"). If f € LY(R™), then (f)”

fa
Proof. We take the function ® in Lemma[2.9] Consider the function

1 -~ )
t _ Tw-T ZW (z—y)
I (x) @n2 /" O (tw) f(w)e™ ™ dw = @ /n /n (tw) f dy dw.

Since 0 < ® < 1 is bounded, |®(tw)f(w)| < f(w). Since f € L*(R™), by dominated convergence theorem,

~ ~ ~

1 ,
t . 1w-T —
tlgr(l)f( z) = (2m)n/2 /Rn tlgr(l)@(tw) (w)et duw (2m)"/2 Jpn

f(w)e™*dw = (f)(x), VYzeR"™

On the other hand, if we show that ff — f in L' as t — 0, the result follows. By Fubini’s theorem,

271r)" /R / O(tw) F)e™ V) dy duw
- 275”/2 /R < on n/z/ P (tw)e ) dw) f(y)dy
27r1)n/2 /R ( 2wy / B(&) f(y)e't 7Y dg) dy
- T /nt%( ;y) 1)y = ooz [ (=) ) .

By Proposition ®, * f — (2m)™2f in L. Thus we complete the proof.

Remark. We also have Ff = f a.e. under the same assumption. To show this, let g(x) = f(—

@) (@) = (F ) = (F(-a).
Since (§)" = g a.e. and g(z) = f(—x), the result follows.

Corollary 2.11. If f € L*(R") and f: 0 a.e., then f =0 a.e..

~

Proof. Clearly f =0 € L'(R™). Then f = (f)” = 0. Here all equalities hold in a.e. sense.

Remark. Also, if f € L*(R") and f: 0 a.e., then f =0 a.e..
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2.3 Fourier Transform on L*(R")

Theorem 2.12. The Fourier transform F is an isomorphism of the Schwartz space S(R™) onto itself.

Proof. Take f € S(R™). By Proposition m (i), #P0%f € LY(R™) N Cy(R™) for all multi-indices a, 3 € Np.

~

By Proposition (i), f € C*(R™), and
2P f = P98 (@af) = ilal+18198 (o 7).

Since #°0°f € LY(R™), we have 8%(w®f) € Co(R™), which is bounded. By Proposition (i), f € S(R™).
Furthermore, since [, (1+ |z|)7" ! dz < oo, by Holder’s inequality,

07 Pl = [#95°F ], < [2%9°F] . < 1+ el 12507 ] < CNflarsnra

Following the proof of Proposition we have HJ?H(N,a) < CNoa 2y <o) 1 fl(N4+nt1,4). Hence the Fourier
transform F maps S(R") continuously into itself. On the other hand, since f(z) = f(—z), the inverse Fourier
transform F~! also maps the Schwartz space S(R") into itself. By Fourier inversion theorem [Theorem ,
these maps are inverse to each other on S(R™). Hence we complete the proof. O

Theorem 2.13 (Plancherel). F extends from L'(R™) N L?*(R™) to a unitary isomorphism on L*(R™).
Proof. Let f,g € S(R™), and let h = g. Then

W) = ey [T e = i | Glages e = )

By Fourier inversion theorem, we have h =g. Hence

e = [ @@ e = [ @) e = oo [ ] p@n)e e dods
1

- G /R d ( [ e dw) h(w) dw (By Fubini’s theorem)
= [ Femw)aw= [ Ffi)do= (F.ge

Hence F|s(gn) preserves the L? inner product. Now for each f € L?(R"), since S(R™) is dense in L*(R™), we
can take a sequence f € S(R") with fx — f in L?. Then (fz) is a Cauchy sequence in L?(R"):

pdm Ifk = fillLz = pdm I fk = fillz = pdm Ife = fjllL2 = 0.
This sequence converges to a limit f: Ff e L?(R"). If g, € S(R™) with g, — f in L?, we have
19 = fllze = Hm gk — fellzz = lim [|gp — fllz < lm |gx — fllz= + Hm |[f = fellz2 = 0.
k—o0 k—o0 k—o0 k—o0

Hence the limit does not depend on the choice of the sequence (fx), and the transform f: Ff is well-defined.
Furthermore, for all f,g € L?(R"), we have

{(f:9)2 = {f,9)L>-

Hence F is a unitary isomorphism on L?(R"). O

Remark. Likewise, 7! also extends from L'(R™) N L?(R") to a unitary isomorphism on L?(R™).
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Corollary 2.14. Let f € L2(R"). Then (f)” = f.
Proof. Take a sequence fi € S(R"™) with fx — f in L?. Then fk — fin L?, and f; = (fk)v—> (A)V in L2. O
Also, we have an explicit formula for Fourier transform in L2.

Corollary 2.15. Let f € L?>(R"). Then

7 1 : —iw-x
flw) = 2 A}gnoo Ang f(z)e dx,

where the limit is in L? sense.

Proof. We choose fn = fx{|z|<n}, Which is in L'(R"™) N L?(R"™) by Cauchy-Schwarz mequahty, and converges
in L2 to f as N — oo, by monotone convergence theorem. By Plancherel theorem, fy — f in L2. O

Finally we introduce the convolution theorem for L?-functions.
Proposition 2.16. If f,g € L2(R"), then (f§)" = (27)""/2(f * g).

Proof. By Plancherel’s theorem and Hoélder’s inequality, we have J?,’g\ € L*(R"), and fﬁ € LY(R"). We fix
x € R™, and set h;(y) = g(z —y). Then

- 1 - 1 _ A _
= — — Wy S _ —iw-(z—y) iw-r — 7 —iw-z
() = Gy L a@ =0y = o gl — et dyerss < e

Since F is unitary in L?(R"),

(f*9)@) = | fWha(y)dy= / Flw)ha(w) dw = / F@)g(w)e™ dw = (2m)"*(f §)(x).
R™ Rn n

Thus we complete the proof. O]

By Fourier inversion theorem and linearity of Laplacian operator,

_ .]/C\((.J) eiww o = fA( ) 'Lwa: 1 w2Aweiw-w n
Af(z) *A/n (2m)n/2 d */n (2 )'n,/QA dw ( )/ /Rn| "f(w) d

By taking the Fourier transform on both sides, we have

Af(w) = —|w* f(w).
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2.4 Fourier Transform of Radial Functions and Hankel Transform

Bessel functions. Consider the Bessel’s differential equation about function y(z):
2y 2y 4+ (22— vy =0. (2.3)

The Bessel function of the first kind of order v € C solves this equation:

B > (_1)7” 2\ 2m+v
i) *W;r(mﬂ)r(wm“) (5) - zecvon

where the power in this definition is given by z¥ = e!°8% where log z is chosen to be the principal branch of
the logarithm, i.e. —7 < arg(z) <. The Bessel function J,(z) is holomorphic in C\(—o0, 0] for every v € C.

e When v ¢ Z, the Bessel functions J,(z) and J_,(z) are linearly independent, and the general solution
of the Bessel’s equation is

y(z) =ndu(2) + 2J-v(2), 71,72 €C.

e When v = n € Z, the Bessel function J, has an analytic extension to C. Furthermore, using the property
that 1/T'(—n) = 0 for nonnegative integers n = 0,1,2,---, we have

J_n(z) = (=1)"Ju(2), n € Ny.

e To get a solution of (2.3)) when v = n € Z that is linearly independent of from J.,, we introduce
theBessel function of the second kind of order v € C, which is defined as

Jo(Z)eosvm) —J-u(@) L0z and V()= lim Yi(z), nel

sin(v) V@7, v—n

Y., (z) =

The Bessel function Y;,(z) solves (2.3) when v =n € Z.
Proposition 2.17. Let v € C, and let J,(z) be the Bessel function of the first kind.

(i) The following recursive formulae hold:

_dJ,
T dz

Jija(z) = \/Zsin(z), and  J_y/(2) = \/Zcos(z).

Remark. Combining the two assertions, one can recurrently derive Bessel functions of half integer orders.

dJ,
+ ZJV (2).

dz z

Juo—1(2) + ng,(z)7 and J,41(2) = —

(ii) In particular,

Proof. (i) The first formula follows from the following identity:

22m+2u—1

d ., == (-Dm@m42v)  P2mtwol & (-1)m
e [Z Ju(z)} = Z L(m+ D)Ly +m+1) 22mtv - Z T'(m+ 1)(v +m) 22m+v-1

m=0 m=0

=z2"Jy_1(2).

Similarly, the second formula follows from the following identity:

oo

d -V — - (_1)m(2m) z2m—1 _ (_1)m L2m—1
dz [Z JV(Z)] = Z T(m+ D)y 4+ m+ 1) 22mtv - mzd T(m)T(v +m + 1) 22m+v—1

> (—1)m+1 H2m+1
= _ _VJV .
Z T'(m+ 1)0(v + m + 2) 22mtv+l z +1(2)
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(i) Note that I' (1) = /7. Then

S GV 22t 3 (=1 )"
7= r(m+1>1r<m+§) 6" :\/zzm! (m+3) (m1 2) ol () 6"

m=0 m=0 2 2
= \/?HZ_O (2n§+1i)1\/7?22m+1 - \/;Sm(z)’
and
- —-1)m 2m—3% 2 — —1)m 2m
1103 s (3 SV S e ey )
_ i O (2%')# 2m \/Z cos(z)
Therefore we complete the proof. O

The Bessel functions are related to the integral of plane wave functions on the sphere.

Proposition 2.18 (Sphere integral form of the Bessel functions of the first kind). Let n > 2, and denote by
Sl = {x € R": || = 1} the unit sphere in R™. Then

/S ¢ dS(w) = (2m) Fla]' "% Ty (j2]). (2.4)

The proof of this result requires some technical lemmata. We first introduce a type of special integrals.

Lemma 2.19. For each n,m € Ny,

T 1 n+tl
/ Sin”@coszmﬂder(m+2)r(l2) )
0

I'(m+ 2%+

In particular,

Proof. (i) We begin from the second integral. Let I, = foﬂ sin” 8df. To begin with, we have Iy = 7 and
I, = 2. For n > 2, compute I,, recurrently:

I, = —/ sin" '@ dcosf = / (n—1)sin"20cos?0df = (n —1)(I,_o — I,).
0 0

Hence I,, = ”T_lln,g. By induction, for any n € Ny,

Lo 2% 22 2 _Tk+)Vr

T2k 41 2k -1 370 T(k+3)
and

g _2k—1 2k-3 EI_I‘(kH—%)\/E

T o T2k —2 2 T T Tk+1)

The first result is obtained by summarizing the last two identities.
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(i) Let I, m = [y sin™ @ cos®™ 6 df. Then

Inm = / sin” 0 cos>™ 1 9 dsinh = — / sin@d (sin" 6 cog>m 1 9)
0 0

= —n/ sin” @ cos®™ 0 df + (2m — 1) / €in™2 0 cos2™ 2 0 df
0 0

=—nly;m+C2m—1)Tym-1—Inm) =1 —2m—n)lym+ (2m—1)1, m_1.

Hence I, , = %In,m_l. By induction,
2m —1 2m — 3 1
Ly = . R o
’ 2m+n 2m+n—2 n+2 ’
_ 2 T(mty)/VE T(E)Vr  T(m+5)T (")
2D (m+241)/T(24+1) T(2+1)  T(m+2+1)
Therefore the first result holds. O
Lemma 2.20. Let n > 2. The surface area of unit sphere S" ' = {x € R" : |x| =1} is 0,1 = IEZTTTL//QZ)
Proof. Using the spherical coordinates, and by Lemma [2.19] we have
™ r(r=t
Op_1= / dS(x) = / On_osin” 20do = (2773\/%0”_2.
sn1 0 (%)
Since o1 = 2w and I'(1) = 1, the result follows by induction. O

Proof of Proposition[2.18, Let r = |z|. Since [g,_, " dS(w) is radial about x, we take 2 = (r,0,---,0):

/ e“rdS(w) = / et dS(w). (2.5)
Sn—1 Sn—1

For w € S"~ 1 let 6 = arccos((w, e1)), where e; = (1,0,---,0). Then cosf = wy, and sin@ = /w3 + -+ + w2.

Switching to the spherical coordinates, we have

/ e T dS(w) = / e dS(w) = / eresly osin™20df
Sn-1 Sn-1 0

= 2772)/ e s f5in"=2 9 dp. (2.6)
0

e

We compute the last integral by expanding the exponent and integrating term by term:
oo 4. oo 1 —1 .
/ﬂ-ezrcose n— 29d :Z / coskﬂsin"_20d9: Z F(m+§)r(n7) (IT)2m
0 2 r(m+@) 2m)!

-y Qm—l”\ff(" 1) i )"Vl (%51) ¢

2m
2mT (m + 2) m!T (m+2) 5) ’ 27)

O

=0 m=0

where the odd terms vanishes by symmetry on [0, 7], and the even terms follow from Lemma Combining

(2.6) and (2.7), we obtain

Thus we complete the proof. O
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We now turn to the Laplace transforms of some specific functions involving Bessel functions.

Proposition 2.21. For every v > —1 and r > 0,

2u+1r 3
/ J,(2)z" e dy = ﬂ (2.8)
NI

Proof. For 0 < r < 1 and p > 0, the Taylor series of (1 + ) # is

— (=)™ ( u+m) m
Z IT(u)
— m
Replacing r by 1/r2, we have
21 & m
F /’L+m) —2m
1+r2 z:o—m'F T , r>1

Hence the right hand side of (2.8)) is
v+ (V + %) T v+ (1/ + %) r2vm2 SN (-1)™T (v + % +m)
VAl +r2)rts NG T (v + 3)
— i (71)77121/“’1]_" (V + % + m) T—Qm—QV—Q
= L(m+1)y/7

— Z D™ (2v +2m +2) p—2m—2v—2
22m+VI‘ (m+1)C(v+m+1)

—2m

) (2.9)

where the last equality follows from Legendre’s duplication formula. Now we turn to the integral. By Sterling’s
formula, there exists a constant ¢, depending only on v > —1 such that T' (v + m + 1) > T—' Then

e 2 2v+1 ,— oo 2
Z gmrAtleTre < Clx2u+167rz Z ="
22m+tvT(m 4+ 1D (v+m+1) = 2¥ (2mml!)?
m=1 m=1
Cv _opt1 Zoo z?m 2041 ,—(r—1)
v —TrT v —\r— fl:'
S 271' e S ?.’E

(2m)!

m=1

which is absolutely integrable. Using dominated convergence theorem, we can interchange infinite summation
and integral in the left hand side of (2.8):

oo
Jl/ v+1 7r:vd — ( / 2m—+2v+1 7rxd
[ e as > s G, e da

0 (71)m —2m—2v—2 o)
_ Z / y72m72l/7167y dy
—= 22m+”F(m+1)F v+m+1) J,

_ i D™ (2v +2m + 2) p—2m—2u=2
~ 2m+vr m+ O (v +m+ 1)

)

which is consistent with (2.9). Hence the identity (2.8 holds for » > 1. Finally, since both sides of (2.9)) is
analytic in the region Re(r) > 0 and [Im(r)| < 1, the case 0 < r < 1 follows from analytic continuation. O

Now we study the Fourier transform of radial functions on R™. A function F' : R™ — C is said to be radial,
if there exists a function f such that F(z) = f(|x|) for all z € R™.
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Definition 2.22 (Hankel transform). Let v > —%. We define the Hankel transform of order v of a function
f € L*((0,00),rdr) by

(H, F)() = /0 ST dr, A > 0.

-
Theorem 2.23. Let F € LY(R") N C(R™) be a radial function, i.e. F(x) = f(|z|) for x € R™. Then the
Fourier transform F is also radial, i.e. F(w) = ¢(|wl|), with

The Hankel transform of order 1 is related to the Fourier transform of radial functions in R™.

o) =X [Tty ) ar

In other words, |w|3 = F(w) coincides the Hankel transform of order 2—1ofrz='f(r)

Proof. For the case n = 1, we have J_;/5(z) = ,/% cos(z) by Proposition [2.17} Since F': R — C is even,

~ 1 e . 1 o0
Flw)=— F(z)e ""de = — F(z) (cos(wzx) — isin(wzx)) dx
=== F@ = | F(@) (cos(n) = isina)
2 o0 oo
= \f | ey costiry e = el [ V)T (el dr
T Jo 0
For the case n > 2, we switch to sphere coordinates and use Proposition [2.18
Flw) = (27)-% / Flz)e— dg = (27)~% / pn1 / Frla])e= ™ dS(z) dr
n 0 Sn—1
= (271')7%/ "L E(r) </ e e dS(I)) dr
0 gn—1
= (2m)~ % / P () - (2m) 2 (rfw])! T E Ty (rfwl]) dr
0
— 6l [ )Ty Gl i
Then we conclude the proof. O

Remark. In particular, taking n = 2, we know that the Hankel transform of order 0 coincides the Fourier
transformation of radial function in R2.
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2.5 Application in Partial Differential Equations

Fourier transform and differential operators. Consider the Laplacian operator:
A: C*R") = C(R"), Af =

For the plane wave function f(z) = e™*, we have

n
Aeiv® — Z(iwj)Qeiw‘a: — _‘W‘Qeiww.

Jj=1

In other words, the function €™ is an eigenfunction of A, with eigenvalue —|w|?. Furthermore, under
regularity conditions [See Proposition , we have

— n ~ ~

Afw) =) (i)’ f(w) = ~lwfw).

Jj=1

This identity shows that the Fourier transform diagonalizes the Laplacian A. In other words, the Laplacian
is nothing more than an explicit multiplier when viewed using the Fourier transform.

Example 2.24 (Heat equation with Dirichlet boundary condition). Consider the heat equation about the

time-varying function u(x,t), which is defined on R™ x R, :

up = Agu in R x (0, 00),
u(z,0) = f(z) on R™ x {t = 0}, (2.10)
lim o0 u(z,t) =0 for t € [0, 00),

where the initial function f € L*(R™) N Co(R™).

Solution. We let u(w,t) = [p. u(x,t)e”™ % dr be the Fourier transform of u with respect to x. Applying
Fourier transform on both the heat equation and the initial condition, we get the initial value problem:

{at = —|w]*g,

U(w,0) = f(w).

The solution of this problem is given by u(w,t) = A(w)e*““'%. To recover u, we employ the inverse Fourier
transform and convolution theorem [Theorem [2.8]:

u(z,t) = F (J?(w)e’|“‘2t) = (27) 2 f x F(em W%,

. . . lwl?
It remains to compute the inverse Fourier transform of e~ «I"#:

1 5 . n oo 1 2 .
f_l e—\w‘Qt z) = 7/ e—\w| tezw»w dw = / 76—wjt+lemj dw.
( )( ) (2’”)”/2 n E —oo V2T J

To-d [T 1 (wviig) Tl e 1 Eik
= e ——e \77 2Vt dw; = —e q = e A,
0% & 1 = b
Hence the solution of problem (2.10)) is given by

1 y—=|?
u(w,t) = (47775)"/2/ e ME f(y) dy. O
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Remark. We write the heat kernel by

o(x), t=0,
1=

Py (z) =
(4mt) /2=

t>0.

Then the solution of problem (2.10]) can be represented as u = ®; * f.

Example 2.25 (Heat equation with a source). Consider the heat equation about the time-varying function
u(x,t), which is defined on R™ x R, :

ur = Agu+ S(z,t)  in R™ x (0, 00),

u(z,0) = f(x) on R™ x {t = 0}, (2.11)

lim| ;o0 u(z,t) =0 for t € [0, 00),

where the source S(z,t) € L'(R™) N Co(R™) for every ¢, and the initial function f € L'(R™) N Co(R™).

Solution. Similar to the case without the source S(z,t), we apply Fourier transform on both the equation and
the initial condition to get an initial value problem:

~

{at = —|w|?T + S(w, ),
u(w,0) = f(w).

We solve this problem by multiplying by a factor elwl’t,

% (e|”|2tﬁ) = elolt (U + w|?1) = el“’lzté\(w,t),
t
P 1(w, t) = Flw) + / el S(w, ) dr,
0

¢
U(w,t) = e_lwlztf(w) +/ e_|“‘2(t_7)3’(w77') dr.
0

Applying inverse Fourier transform, we obtain the solution of (2.11)):

wat) = [ wle—nfeas [ [ o @-nsedyen 0

Example 2.26 (Laplace equation in the upper half space). Consider the Laplace equation about the function
u(zx,y) in the upper half space R™ x R;:

Au =0 in R x (0, 00),
u(z,0) = f(x) on R™ x {t = 0}, (2.12)

limy, oo w(z,y) =0 and limy_o u(z,y) =0,

where the function f € L*(R™) N Co(R™).

Solution. We write the Laplace equation as uyy, = Azu, and apply Fourier transform on the variable . Then
we get the following initial value problem:



Since u is vanishing as y — co, the solution to this problem is

U(w,y) = e W f(w).
Hence the solution to (2.12)) is

) = ¢ L Fle ey f,

27-(-)n/2
We compute inverse Fourier transform of e~ «!¥:

1 ) 1 > )
F eIl = / e~ llveie g, — 7/ / e~ Iwlveiw® 48 (w) dr
(2m)"/2 Jgn @mn2 Jo JoBar) @)

1 > —ry ir§-z, n—1
_(27'()n/2/0 /STL71€ ye 3 T dS(f)dT

:/ rEe Vo1 % Ty _y (r|a]) dr (By Proposition B.18)

0
® ., 221 (2t
= \x|_”/ pze PTTJn _(p)dp = (%3 )ynﬂ. (By Proposition [2.21))
0 VT (lz[* +9?%) 2

Then

_ntl 1 Yy
o) =m0 () () de. 0
2 /n {

Remark. We define the Poisson kernel by

n 1
P(xay)zcn%, where ¢, =7~ ;11“(”4— )
(J2f2 +52) 2

Then the solution of problem ([2.10]) can be represented as u(-,y) = P(-,y) * f.

Example 2.27 (Wave equation with Dirichlet boundary condition). Consider the wave equation about the
time-varying function u(x,t), which is defined on R™ x R, :

Uy = Agu in R™ x (0, 00),
u(z,0) = f(x), w(x,0) =g(x) on R" x {y =0}, (2.13)
lim| ;o0 u(,2) =0 for t € [0, 00).

where the functions f,g € L'(R"™) N Co(R™).

Solution. Applying Fourier transform with respect to the variable x € R™, we get the initial value problem

{att = —|w|2ﬁ,
U(w,0) = f(w), T(w,0) = Gw).

The solution of this initial value problem is

. ~ ., sin(Jw|t
) = Pl cos() + 3(6) =1
We write R(z,t) = (%;n/z Fi (Sinl(bl:‘rlt)) . By convolution theorem, the solution to problem [2.13|is
0
u(t) = 2 (RO1) 5 )+ R(1) o) 0
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Example 2.28 (Transport equation). Consider the following transport equation with constant coefficients:

u—b-Vyu=0 in R x (0, 00),
u(z,0) = f(x) on R"™ x {t = 0}, (2.14)
lim o0 u(z,t) =0 for t € [0,00),

where the velocity b € R™ is a constant vector, and f € L'(R™) N Co(R™).

Solution. We apply Fourier transform with respect to the variable x:

{at = ib- wil,
i(w,0) = f(w).
Then @i(w,t) = ' f(w), and the solution to problem (2.14) is

1

(2m)n/2 Flw)e =t dy = f(a + tb). O
RTI,

u(e,t) = F1 e flw)] =
Example 2.29 (Linearized Korteweg-De Vries equation). Consider the equation about u : R x Ry — C.

Up + Upze = 0 in R x (0, 00),
u(z,0) = f(x) on R x {t = 0}, (2.15)
lim| o0 u(z,t) =0 for t e [0,00).

Solution. We apply Fourier transform with respect to the variable x:

{at — w3 = 0,

U(w,0) = f(w).

Then t(w,t) = ei‘*’atf(w), and u is recovered by taking the inverse Fourier transform of u. By convolution
theorem, u = G(-,t) * f, where G(-,t) is the inverse Fourier transform of it up to a factor 1/+/27:

1 oo )
Gla,t) = o / et gy

We compute the function G by constructing an ordinary differential equation for it. Fix ¢ = %, and consider
the function g(z) = G(x, ). Then

By Proposition [2.7]

1 - 1 )
g// _ J—_-—l(_w2jq\) — J—_-—l (w261w3/3) , and g = _if—l(/g\l) _ ]:—1 <w2ezw3/3) )

V2m V2r

Hence the function g satisfies the Airy equation g"’ — xg = 0. Since our solution should vanish at infinity, we
take the solution g(x) = Ai(x). For general ¢t > 0, applying change of variable gives

1 > 1. 3 . 1
G(x,t) = %/ (V) i g, _ e <x3t> |

The solution to the problem (2.15) is u(-,t) = G(-,t) * f.
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3 Distribution Theory

3.1 Topology on C*(U)

The Fréchet space D(K). Let K be a compact set of R”. The space C°(K) is defined to be the set of
C* functions on R™ whose support is compact and contained in K. This space is a Fréchet space with the
topology Jx defined by the norms

[¢lxn=sup [0%@(z)], N €No.
zeK,|a|<N

That is, a local base for this topology at ¢ € C2°(K) is the family of sets
Uk, n(9) ={¢ € CZ(K) : [ = ¢llx v <€},
where N € Ny and € > 0. Indeed, we only need to define the base sets
Ugn={v e CZ(K) : [[Yllkn <€}, N €Ny, >0

at 0, and take ¢ + Uj  to be the base sets at ¢. The Fréchet space C2°(K) is metrizable by setting

1 lo—vlxN
di(p, 1) = — —— ¢, € CF(K).
We denote by D(K) the space C°(K) endowed with the topology . In D(K), every sequence (¢y)
converges to ¢ if and only if 0%¢; — 0%¢ uniformly for all multi-indices «.

Construct a base for a topology on C°(U). For an open set U C R™, the space C°(U) is defined to be
the set of C°° functions whose support is compact and contained in U. Indeed, C2°(U) can be viewed as the
union of spaces C°(K) as K ranges over all compact subsets of U.

To construct a topology on C°(U), let A, be the family of all balancedﬂ convex sets V' C C2°(U) such
that VN C*(K) € Ik for all compact K C U. We can show that %, is nonempty. For example, let

zeU,Ja|<N

Vy = {1/} eCXU): sup [0%Y(z)| < 6} . (3.1)

Then Vy is balanced, convex, and V§ N C°(K) = Uy y € . We then define
B={6+V:decCU),Ve B}

The sets in A gives an appropriate topology on C°(U).

Theorem 3.1. The family A is a base for a locally convex Hausdorff topology & on C°(U) that turns C°(U)

into a topological vector space.

Remark. We write for D(U) the topological space (C°(U), 7). Its elements are called testing functions.

Proof. Step I. We first verify that 2 is a base for a topology on CS°(U). It suffices to verify the following
two conditions:
(i) For each ¢ € C2°(U) there exists U € 4 such that ¢ € U;
(ii) For each Uy,Us € £ with Uy NUs # 0 and each ¢ € Uy N Uy, there exists V € £ such that V 3 ¢ and
V C U; NUs,. In other words, & is closed under finite intersection operation.

1A subset E of a vector space X is balanced if tx € E for all z € E and |¢| < 1.
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o For (i), we let ¢ € C°(U), N € Ny and € > 0. The set Vj defined in (3.1 is in Ay, and ¢ + Vi € Z.

e For (ii), we let ¢1,¢92 € C°(U) and Vy,Va € %y be such that (¢ + Vi) N (¢2 + Vo) # 0. We fix any
¢ € (1 + Vi) N (P2 + Va), and take a compact set K C U such that K contains the supports of ¢1, ¢2 and ¢.

Then for j = 1,2, we have
p—¢; € V,NCF(K) € Tk.

Using the continuity of scalar multiplication in C'$°(K), we may find 0 < a < 1, such that
¢—¢j e (1-a)(V;NCE(K)) C(1-a)Vj, j=12
By convexity of the sets V}, we have
p—¢j+aV;=(1-a)V;+aV;=V;, j=1,2

so that ¢ +aV; € ¢; +V; for j = 1,2, and ¢ + a(Vi N V2) C (¢1 + Vi) N (¢2 + V2). Hence A is a base for a
topology .7 given by all unions of members of £.
Step II. Next we verify that C°(U) is a topological vector space under 7.

e To prove the continuity of scalar multiplication at a point (tg,dg) € C x C°(U), we notice that each
neighborhood of ty¢y contains some tgpg + V, where V € Hy. Let K = supp(¢g). Then ¢y € D(K). By
continuity of scalar multiplication in D(K), we may find v > 0 so small that

100 € (VN CR(K)) € 3V,

Let s = Then for every |t — to| < v and ¢ € ¢ + sV,

1
2(Ito[+7)
1 1 1
to — togo :t(¢—¢o)+(t—t0)¢etsV—&—§Vc §V+ 5‘/:‘/,

where we use the fact that V' is convex and balanced. Therefore t¢ € tgdg + V for every |t — to] < 7 and
¢ € ¢o + sV, which proves the continuity of scalar multiplication.

e To prove the continuity of addition at a point (¢1, ¢2) € C°(U)xC°(U), consider a neighborhood ¢1+¢2+V
of ¢1 + ¢, where V € %By. The convexity of V' implies that

1 1
(¢1+2V> + (¢2+2V) =¢p1+p2+ V.
Since VN D(K) € Tk for all compact K C U, and since the scalar multiplication is continuous in D(K), we

have %V ND(K) € Ik for all compact K C U, and %V € ABy. Hence both ¢ + %V and ¢o + %V are in 4,
and the addition operation is continuous.

Step III. Finally, to prove that (C2°(U), .7) is a Hausdorff space, we take ¢1 # ¢o from C°(U) and define
1
v={vecx) vl < g swploro) - a(o)l}.
zeU zeU
In view of (3.1]), we have V € %By. If ¢ € (¢p1 + V) N (¢ + V), we have
sup [¢1(z) — d2(z)| < sup |p(z) — d1(2)| + sup [p(x) — ¢2(2)]
zeU zeU zeU
1 1
< 5 sup |¢1(2) = g2()| + 5 sup [Pr(x) — ga()] = sup [¢1 () — 2(2)],
2 zeU 2 zeU zeU

a contradiction! Hence (¢1 + V) N (¢2 + V) = 0, and we finish the proof. O
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We now show that the topology 7, when restricted to D(K), for some compact set K C U, does not
produce more open sets than the ones in Jk.

Proposition 3.2. Let U C R™ be an open set. For every compact set K C U, the topology on D(K) coincide
with the relative topology of D(K) as a subspace of D(U).

Proof. Fix a compact set K C U and let W € 7. We claim W ND(K) € Jx. We may assume W N D(K)
is nonempty, otherwise the claim is clear. Let ¢ € W ND(K). Since &£ is a base for 7, we take V € %,
such that ¢ +V C W. Then ¢ + (VND(K)) C WNDgk, and ¢ + (VND(K)) € Tk since ¢ € D(K) and
VND(K) € k. Hence every point of W ND(K) is in the interior with respect to Tk, and WND(K) € Jxk.

Conversely, let W C Jx. We claim that W = V N D(K) for some open V € . Since the family of
sets Uj x is a local base for the topology J, for each ¢ € W, we may find Ny, € Ny and €4 > 0 such that
o+ U;‘”Nd) C W. Let V]f;; be defined as in . Then

@+ Vi) ND(K) = ¢+ Ug y, CW.

and ¢ + V;,‘j) € #. Therefore V =,y (¢ + V]ffj)) is a set in 7 with the desired property. O

Proposition 3.3. Let U C R™ be an open set. If W C D(U) is topologically bounded, there exists a compact
set K C U such that W C D(K).

Proof. Assume that W is not contained in D(K) for any compact K C U. We take an increasing sequence
(K;) of compact sets such that K; C K4, for all j € N and U = U;=, Kj. Then we may find for each j € N
a function ¢; € W and a point x; € K;;\K; such that ¢;(x;) # 0. Define

v = {6 D) lote)] < Slos(e)] for atl j € .

Since each compact set K C U contains only finitely many z;, we have VND(K) € Tk, and so V C 7. Since
W is topologically bounded, there exists ¢ > 0 such that W C tV. If an integer N > ¢, we have ¢ (zn) # 0,
and t~ Yoy (zn)| > N7t én(zn)|. Hence t~topn ¢ V, and ¢n ¢ tV. However ¢ € W C tV, which yields a
contradiction. Hence there exists a compact K C U with D(K) D W. O

The topology on D(U) is complete, and convergent sequence in D(U) can be explicitly characterized.

Proposition 3.4. Let U C R™. The space D(U) is complete. Furthermore, a sequence (¢;) in D(U) converges
to ¢ € D(U) if and only if
(1) there exists a compact set K C U such that (¢;) C D(K), and

(1t) limj_, o 0%¢; = 0“¢ uniformly on K for each multi-index o € Njj.

Proof. Let (¢;) be a Cauchy sequence in D(U). Then (¢,) is topologically bounded, and by Proposition
there exists a compact set K C U such that (¢;) C D(K). By Proposition we obtain a Cauchy sequence
(¢;) in D(K). Therefore, for every N € Ny and every € > 0, there exists M such that

sup [p;(x) — gr(2)] <€

ze€K,|a|<N

for all j,k > M. Consequently, for every multi-index o € Nj with |a| < N, the Cauchy sequence {0%¢;}
converges uniformly in K to a continuous function ¢, € C.(K). An inductive argument using the fundamental
theorem of calculus shows that 0%y = 1), for every multi-index o € Nfj with || < N. Given the arbitrariness
of N € Ny, we conclude that 1y € D(K) and that the sequence (¢;) converges to 1y with respect to 7. Hence
the space D(U) is complete.

Conversely, if a sequence (¢;) in D(U) satisfies conditions (i) and (ii), it converges to ¢ in D(K). By
Proposition it also converges to ¢ in D(U). O
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Now we discuss the continuous mappings on D(U).

Proposition 3.5. Let U C R™ be an open set, X a locally convex topological vector space, and T : D(U) — X
a linear operator. The following properties are equivalent:

(i) T is continuous.

(i) T is bounded, i.e. it sends topologically bounded sets of D(U) into topologically bounded sets of X.

(i11) If (¢;) converges to ¢ in D(U), then lim;_o Tp; = T¢.

(iv) The restriction of T to D(K) is continuous for every compact set K C U.
If X = C, the following statement is also equivalent to above all:

(v) For every compact set K C U, there exists an integer N € Ny and a constant cx > 0 such that

ITo| < cklpllk,N for all p € D(K).

Proof. We prove that (i) = (ii) = (iii) = (iv) = (i).
e (i) = (ii). Suppose that T : D — X is continuous, and W C D(U) is a topologically bounded set. If V'
is a neighborhood of 0 in X, then T~!(V) is a neighborhood of 0 in D(X), and there exists ¢ > 0 such that
W C tT~Y(V). Consequently T(W) C tV. Hence T(W) is also topologically bounded.
o (ii) = (iii). We may assume (¢;) — 0 by replacing (¢;) with (¢; — ¢). By Proposition there exists a
compact set K such that (¢;) C D(K), and dx(¢;,0) = 0 as j — oo.

Let B={¢ € D(K) : dx(¢,0) < 1} be the unit ball in D(K) centered at 0. If T" is bounded, the set T'(B)
is topologically bounded. Then for any neighborhood V of 0 in X, there exists ¢ > 0 such that T'(B) C tV,
so T(t7*B) C V. Since dk(¢,0) — 0 as j — 0, there exists N such that ¢; € t~*(B) for all j > N. Hence
(T'¢;) is eventually in V', and T'¢; converges to 0.

o (iii) = (iv). Fix a compact set K C U. If (¢;) is a sequence in D(K) such that dx(¢;,0) — 0 as j — oo,
by Proposition we have ¢; — 0 in D(U), and T¢ = lim;_,o, T'¢; by property (iii). Hence the restriction
of T to D(K) is continuous at 0. By linearity, the restriction is continuous.

e (iv) = (i). For every neighborhood V of 0 in X and every compact set K C U, the restriction of T to
D(K) is continuous at zero, and T~H(V) N D(K) € k. Since K is arbitrary, T=1(V) € 7. Therefore, T is
continuous at 0 and, by linearity, everywhere in D(U).

e (iv) & (v). Let X = C. Assume that (iv) holds and fix a compact K C U. By continuity of T'|p k) at the
origin, there exists N € Ny and € > 0 such that Uf y € T~'({|z| < 1}), that is, [T¢| < 1 for all ¢ € D(K)
with |||k, v < €. If ¢ € D(K) and ¢ # 0, then ||¢||x,n # 0, and by linearity of T, we have [T'¢| < 2||¢||x,n-
Conversely, if (v) holds, for any § > 0, by taking e > 0 sufficiently small, we have |T'¢| < ¢ for all ¢ € Uk n-
Hence the restriction T\D( K) is continuous. O]

Proposition 3.6. Let U and U’ be open subsets of R™, and T : D(U) — D(U’) a linear operator. The
following properties are equivalent:
(i) T is continuous if and only if
(i) for each compact set K C U, there exists a compact set K' C U’ such that T(D(K)) C D(K'), and the
restriction T : D(K) — D(K') is continuous.

Proof. (ii) = (i) is a special case of the implication (iv) = (i) in Proposition To prove (i) = (ii), we
let T : D(U) — D(U’) be a continuous linear operator and fix a compact set K C U. According to the
implication (i) = (iv) in Proposition the restriction of T' to D(K) is continuous. If we can show that
T(D(K)) C D(K') for some compact K’ C U’, the proof will be completed by Proposition

Assume that T(D(K)) is not contained in D(K’) for any compact K’ C U’. Take an increasing sequence
(K}) of compact sets such that K C I%;_H for all j € N and U" = |J;Z, K. Then we may find for each j € N
a function ¢; € D(U’) and a point z; € K} ;\K} such that dx(¢;,0) = 1 and (T'¢;)(z;) # 0. Since (¢;)
is topologically bounded in D(U), by Proposition (ii), (T'¢;) is topologically bounded in D(U’), and by
Proposition there exists K’ C U’ such that (¢;) C D(K'), which is contradiction! O
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3.2 Distributions

Motivation. Let f € LP(R™), where 1 < p < co. For ¢ = #, we define Ty : L9(R™) — C by

Trg = - f(x)g(x)dx, g€ LI(R™).

The Riesz representation theorem states that the map f — T} is an isometric isomorphism of LP(R™) onto
the dual space LI(R™)* of L(R™). In other words, f € LP(R™) is completely determined by its action as a
bounded linear functional on L7(R™). On the other hand, by Lebesgue differentiation theorem,

1
A B ) /Bwf W)dy=f(z), forac =R,

where B(x,r) is the (open) ball of radius r about x, and m is the Lebesgue measure. Hence if we take
g = m(B(x, T))_1X3($’T)7 we can recover the pointwise value of f for almost every z € R™ as r — 0. Thus, we
lose nothing by thinking of f as a linear mapping from L%(R™) to C rather than a map from R” to C.

The idea of distribution follows by allowing f € Ll (R™) and requiring ¢ € D(R™). The map T defines

a linear functional on D(R™), and the pointwise values of f can be recovered a.e. by a similar approach of
Theorem Nevertheless, there are also linear functionals on D(R") that are not of the form T.

Definition 3.7 (Distribution). Let U be an open subset of R"™. A distribution on U is a continuous linear
functional on D(U). The space of all distributions on U is denoted by D’'(U). We equip D’'(U) with the weak*
topology, i.e. the neighborhoods of Ty € D'(U) is generated by the sets

Us .. 1 (To) ={T e D'(U):|Tf; —Tofsl <€ j=1,2,---,m},

where € >0, m € Nand fi,---, f, € C2°(U). Furthermore, a sequence T; — T in the weak™ topology if and
only if T; f — T'f for all f € C*(U).

Notations. If F' € D'(U) and ¢ € C°(U), we use the pairing notation (F, ¢) for the value of F evaluated
at the point ¢. Sometimes it is helpful to pretend that a distribution F € D’(U) is a function on U even when
it really is not, and to write [, F(z)¢(x) dx instead of (F, ).

We shall use a tilde to denote the reflection of a function in the origin: ¢(z) = ¢(—x).

Example 3.8. Following are some examples of distribution on an open set U C R™:
e Every function f € L{ (U) defines a distribution on U, namely, the functional ¢ — [ f¢dx. Clearly,

loc
two functions that are equal a.e. define the same distribution, since they are identified in L (U).
e Every Radon measure p on U defines a distribution ¢ — f o du.
e For a point 29 € U and a multi-index o € N, the map ¢ — 9%¢(xg) defines a distribution that does
not arise from a function.
e In particular, when U = R™, a = 0 and = = 0, this distribution arise from a measure p which is the

point mass at the origin 0. We call this distribution the Dirac J-function, denoted by d:
(0,0) = 6(0), ¢ € CZ(R").

It can be represented heuristically as

and we write [p, d(z)¢(z) dz = ¢(0).
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We have the following approximation for Dirac §-function.

Proposition 3.9. Assume f € L'(R") and [, f(x)dz = 1. Define

@y =1 (), t>0

Then fy — 0 in D'(R") ast — 0.
Proof. If ¢ € C®°(R"),

(f,0) = | fi(@)p(x)dr = . fi(@)g(—) dx = (f; = )(0),

R™

which converges to ¢(0) = ¢(0) = (4, ¢) as t — 0 by Proposition O

Let F' € D'(U) be a distribution on an open set U C R™. For an open set V C U, we say F' =0 on V if
(F,¢) =0 for all $ € C2°(V) (for example, if F € L{ _(U), it means that F' =0 a.e. on V). Since a function

in C°(V4 U V,) need not to be supported in either V; or V4, it is not so clear that F = 0 on both V; and V3
implies F' = 0 on V7 U V5. Nevertheless, it is true:

Proposition 3.10. Let (Vo)aca be a collection of open subsets of U, and V = Uy g Voo If F € D'(U) and
F =0 oneachV,, then F=0o0onV.

Proof. If ¢ € C2°(V), by compactness, there exist finitely many aq, - - - , a,, € A such that supp(¢) C U;n:l Va, -
Take a smooth partition of unity (¢;)7;, i.e. supp(¢);) C V,,; for each j and Z;”:l 1; =1 on supp(¢). Then

m

(F.0) =Y (F,¢h;) = 0.

Jj=1

Hence FF =0on V. O

Remark I. According to this proposition, we can take a maximal open set W on which F' = 0, namely the
union of all open sets on which F' = 0. Its complement U\W is called the support of F.

Remark IT. More generally, we say two distributions F,G € D’(V') agree on an openset V C U if F—G =0
on V. According to this proposition, if two distributions agree on each member of a collection of open sets,
they also agree on the union of those open sets.

Operations on distributions. Let U C R™ be an open set, and F' € D'(U).
(i) (Product). If ¢ € C*°(U), we define the product ¥ F to be

(VF, ¢) = (F,¢¢), ¢ € D).

For any compact K C U and any sequence ¢; € C°(K) that converges to ¢ in D(K), since ¢¢; — ¢
and F|p(k) is continuous, we have (F,¢¢;) — (F,v¢). Hence v F' € D'(U).
(ii) (Translation). If y € R™ and F € L] (U),

loc

/ Fla — y)o(x) do / F2)é(z +y)dz, ¢ DU +y).
U+y

U

Similarly, for F' € D'(U), we define the translated distribution 1,F to be
<TyFa ¢> = <Fv T—y¢>a XS D(U + y)

Then 7, F € D'(U + y). In particular, the point mass at y is 7,0.
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(iii) (Composition with linear map). If 7' : R" — R" is an invertible linear transformation and F € L} (U),
| oo s = e [ ety o eprto).
T=1(U)

Similarly, for F' € D'(U), we define the composition F o T to be
(FoT,¢) = |det(T)| " (F,poT™Y), ¢e DT HU)).
Then FoT =D'(T~(U)). In particular, if Tx = —z, we define the reflection of F in the origin by
(F.¢) =(F,¢), ¢€D>(-U).

(iv) (Convolution). Given ¢ € C(R"), let V ={x: 2 —y € U for all y € supp(¢)}. If F € L (U),
(Pr)w) = [ Fopwe—ndy= [ Fo)ndwdy, eV
U

and by Fubini’s theorem, if ¢ € C°(V),

/V(F*w dm—// y)p(x) dy dx
// ¢HM@—AHMM%@@

For F € D/'(U), we have two approaches to define the convolution F x :
— Analogous to the first identity, define F' x v be the function

(Fx)(z) = (F,7.0), z€V.
— Analogous to the second identity, define F' % 1) be the mapping
(Fx1p,0) = (F.p*v), ¢€DV).
If K C V is compact and (¢;) € C2°(K) is a sequence converging to ¢ in D(K), we have
0% (¢ %) = (0°¢;) % — (9°¢) b = 0 (¢ )

uniformly for all multi-indices v € Nij. Hence (F * v)|p (k) is continuous, and F' x ) € D'(V).

The following proposition shows that the two definitions of the convolution F * v coincide. Furthermore,

the distribution as a function on U is infinitely differentiable.

Proposition 3.11. Let U C R™ be open. Given ip € CP(R™), let V ={x:x—y €U for ally € supp(y))}.
For F € D'(U), define (F xv)(x) = (F,7,¢) for allz € V. Then

(i) Fx1p e C>®(V), and 0*(F x 1) = F % (0%¢) for all multi-indices o € Nj;

(i1) For all ¢ € C*(V), we have [,,(F *)(x)¢(x)dz = (F, ¢ V).
Proof. If x € V, by Proposition we have TI_;,_éw — TuLiﬁ uniformly as s — 0, and the same holds for all

partial derivatives. Then 7,40 — 75 in D(U) as s — 0. By continuity of F' on D(U) we have that (F, Tw’L/)>
is continuous in x. Furthermore, for any 7 =1,2,--- ,n, we have

Y(x+hey —y) —P(x —y)
h

@wEwk sup  [8(x + te; — ) — Bylz — ).

teR:|t|<|h|
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For any € > 0, by uniform continuity of 0;1, there exists a constant n > 0 independent of z and y such that
the last bound is less than € whenever |h| < 1. Hence the difference quotient

w s (3.2)

uniformly as h — 0. Since the same conclusion of difference quotient holds for all partial derivatives, the
convergence (3.2) also holds in D(U). Therefore

0, (F x p)(a) = lim \FoTrthes ) — (et

) h = (F,m.050) = (F  0;)(x).

By induction on |a|, we have F' x ¢ € C*(V), and 0%(F x 1) = F % 9*. To prove the second result, we note
that ¢, ¢ € C$°(R™). Then we approximate the convolution ¢ * 1) by Riemann sums:

(@xd)@)= | bla—yeu)dy= m S(x):= lim & 3 (e - en)g(en),

where there are finitely many nonzero terms when k runs over Z". The Riemann sums S, are supported in
a common compact subset of U, and converges to ¢ * 1 uniformly as e — 0. Also, for all multi-indices «,
0%Se = €" ), cun 0%Y(x — €r)d(ek) converges uniformly to 9%(¢ * ¢»). Hence S, — ¢ x 9 in D(U), and

(Fyéx ) = lim (F,8) = lim & 3 g(ew)(F, et} = /V $(@)(F, 7)) do = /V (F + )(2)6(x) da.

e—0t e—0t
KEL™

Hence the two definitions of F' x v are equivalent. O

Next we show that although distributions can be highly singular objects, they can always be approximated
by compactly supported smooth functions in the weak™ topology.

Theorem 3.12. For any open set U C R™, the space C(U) is dense in D' (U) in the weak™ topology.
To prove this theorem we need some technical lemma.

Lemma 3.13. Assume that ¢,¢ € C°(R™) and [g, ¥(x)dx = 1. Let ipy(z) =t "t~ a) fort > 0.
(i) Given any neighborhood U of supp(¢), we have supp(¢ * 1) C U for t > 0 sufficiently small.
(i) ¢ * 1y — 0 in D(R™) ast — 0.

Proof. If supp(¢) C {x € R" : |z| < R}, then supp(¢ 1) is contained in the set
V ={x € R" : d(z,supp(¢)) < tR}.

When t < R~1d(supp(¢), U¢), the support of ¢ 1), is contained in U. Moreover, by Propositions and
0% (¢ x ) = (0%¢) * by — 0¥t uniformly as ¢t — 0, and the second result follows. O

Proof of Theorem[3.12. Assume F € D'(U). We first approximate F' by distributions supported on compact
subsets of U, then approximate the latter by functions in C°(U).

o Let (V) be a sequence of precompact open subsets of U increasing to U. For each j, by C*°-Urysohn lemma
[Proposition [1.10], we take ¢; € C2°(U) such that ¢; = 1 on V. Given ¢ € C=°(U), for j sufficiently large we
have supp(¢) C V;, and (F, ¢) = (F,(;¢) = ((;F, ¢). Hence (;F' — F in the weak™® topology as j — cc.

e Let ¢ and (v) be defined as in Lemma Then ¢ * TZt — ¢ in D(R™) as t — 0. On the other hand,
by Proposition B.11] we have (¢;F) # ¢ € C*®(R") and (((;F) * v, @) = ((F, ¢ * ) — ((F,0) as t — 0.
Hence ((jF) * ¢y — (;F in D'(R™). Observing that supp(¢;) C Vj for some k, if supp(¢) NV = 0, we have
supp(¢ * {/;t) NV = 0 for t > 0 sufficiently small, by Lemma and (((GF) * 1y, ¢) = (F, (¢ * 'JJ;» =0.
Hence supp(((;F) x ;) C Vi, C U, and ((;F) x4, € C2°(U) for j large enough and ¢ small enough. O
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Derivatives of distributions. Let U be an open subset of R™. If f € C°(U), for any multi-index o € Njj,

/ (0°F) (2)b(x) dz = (—1)I° / F@)@°6) (@) de, &€ C(U).
U

This is the integration by parts formula, where the boundary term vanishes since f is compactly supported.
Generally, for F' € D'(U), we can define a linear functional 9*F on C°(U) by

(0°F, ¢) = (—1)I*l(F,0°¢), ¢€C>(U).

For any compact K C U and any sequence (¢;) C C2°(K) that converges to ¢ in D(K), by continuity of F,
we have (F,0%¢;) — (F,0%¢) as j — co. Hence 0°F|p(k) is continuous, and 9*F € D'(U).

The distribution 9*F is called the o' derivative of F. Moreover, if F; — F in D'(U), we have (0“Fj, ¢) =
(F;,0%¢) — (F,0%¢) = (0“F, ¢) for each ¢ € C°(U), and 90*F; — 0*F in D'(U). Therefore, the differentia-
tion operator 9% : D'(U) — D'(U) is a continuous linear map with respect to the weak* topology.

In particular, for any locally integrable function ¢ € L (U), we can define its derivatives of arbitrary
order even if it is not differentiable in the classical sense. To be specific, we define (T, ¢) = fU x) dz.
The derivative 92Ty, of the distribution T, is called the o' distributional derivative of 1, denoted by (’90‘1/1.
Following are some examples of distributional derivatives.

Jump discontinuity. For simplicity, we first consider the functions on R. Differentiating functions with
jump discontinuities leads to J-singularities. The simplest example is the Heaviside step function H = X[0,cc),
for which we have

(' 6) = —(H, /) = —/OOO ¢'(z)dr = $(0) = (6.6), ¢ C=(R).

Hence the first distributional derivative of H is the Dirac function §. More generally, for any « € R, the
distributional derivative of the step function 7, H = X[; &) is 7.0, which is the point mass at z.
If f is piecewise continuously differentiable on R, f only has jump discontinuities at 1 < 29 < -+ < Ty,

and its pointwise derivative 4 is in L{ _(R). Then

loc

(f',6) = 2 / 7 ) () d
Z[ w0l ) = Farf)oes) - / g <>¢<y>dy]

=/OO Zf dy+z¢ () [f(z]) = f(a7)]

Therefore, the distributional derivative of f is given by
df _
= p + 2 @) = f@7)] 7y,

Jj=1

Generalized Heaviside step function.
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3.3 Compactly Supported Distributions

The C* topology. Let U C R"™ be an open set. The C* topology on the space C*°(U) of all smooth
functions on U is the topology of uniform convergence of functions, together with all their derivatives, on
compact subsets of U. This topology can be defined by a countable family of seminorms as follows. Let (V)
be an increasing sequence of precompact open subsets of U whose union is U. For each m € N and each
multi-index « € Njj, define the seminorm

[l = sup |07 f(x)]- (3:3)
Qfvel

With the topology induced by the family of these seminorms, the space C*°(U) is a Fréchet space. Furthermore,
a sequence (f;) converges to f in C*°(U) if and only if || f; — f[(m,o) — O for all m € N, o € N, if and only if
0% f; = 0 f uniformly on compact sets for all & € Ng.

Proposition 3.14. Let U C R™ be an open set. The space C°(U) is dense in C=(U).

Proof. We take the sequence (V,,,) as in (3.3). By C'*°-Urysohn lemma [Theorem [1.10], for each m, we take
VYm € C(U) with ¢, =1 on V. If ¢ € C°°(U), for all multi-indices o € Ny., we have |16 — ¢|[mg,a) = 0
for all indices m > my. Hence 1,,¢ € C°(U) converges to ¢ in the C* topology. O

If U is an open subset of R™, we denote by £'(U) the space of all distributions on U whose support is a
compact subset of U.

Theorem 3.15. Let U C R™ be an open set.
(i) If F € £'(U), then F extends uniquely to a continuous linear functional on C*°(U)
(i) If G is a continuous linear functional on C*(U), then Glce ) € E'(U).

To summarize, E'(U) equals the dual space of C*(U).

Proof. It F € &'(U), take ¢ € C2°(U) such that ¢» = 1 on supp(F), and define the linear functional G on
C>®(U) by G¢ = (F,9¢). Since F is continuous on D(supp(?)), and the topology of the latter is defined by
the norms ¢ +— [|0%¢||s, there exists C' > 0 and N € N such that [(G, ¢)| = [(F,9¢)| < C 32, <y 10%(¥9)[
for all ¢ € C*°(U). By the product rule, if we choose m large enough so that V,, D supp(¢),

(Go)<C > sup [09(@)[ < C" Y ([9llpma-

la|<N TESUPP(Y) la|<N

Hence G is continuous on C*°(U). By Proposition the continuous extension G of F' is unique.

On the other hand, if G is a continuous linear functional on C*°(U), there exists constants C,m and N
such that (G, ¢)] < C3 <y [9llpm,a for all ¢ € C(U). Since [|¢][m,a) < [[0%@]lo0, the functional G is
continuous on D(K) for each compact K C U, and G|g~y € D'(U). Moreover, if supp(¢) NV, = 0, we
have (G, ¢) = 0, and supp(G) C V. Hence Glee 1y € E'(U). O

Remark. In fact, one can easily check that the operations of multiplication by C°° functions, translation,

composition by invertible linear maps and differentiation, as is discussed in the last section, all preserves the
class of £'(U). The case of convolution is a bit more complicated.
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3.4 Tempered Distributions and Fourier Transform

Definition 3.16 (Tempered distributions). A tempered distribution (on R™) is a continuous linear functional
on the Schwartz space S(R™). The space of tempered distribution is denoted by S&'(R™). Usually, we equip
S'(R™) with the weak* topology.

The following proposition helps to understand the relation of distributions and tempered distributions.
Proposition 3.17. The space C°(R™) is dense in S(R™).

Proof. We fix ¢ € S(R™), which is to be approximated. We take ¢p € C°(R™,[0,1]) such that ¢(0) = 1,
and let ¢'(z) = (tx) for t > 0. Given any N € N and € > 0, we can choose a compact K C R™ such that
(14 |z[)V|¢(z)| < € for all z ¢ K. Then ¢*(x) — 1 uniformly on K as t — 0, and

lim [[1'¢ — ¢l v,y < sup (1 + |z)) V]! (2)¢ () — d(x)| <e.
- c¢ K

By arbitrariness of N and e, we have [|¢)'¢ — @||(vo) — 0 as t — 0 for all N € Ny. For the terms involving
derivatives, by the product rule,

(L +[a)¥o%(w'd — ¢) = (L + |2V (¥'9%¢ — 97¢) + Ry(x),
where the remainder R; is a sum of terms involving derivatives of ¥*. Since
]85¢t(w)| — ¢18l |861/1(tx)| < Cgtlﬁl,

we have ||R¢[|oc < Ct — 0 ast— 07. An analogue of the preceding argument shows that [[1)'¢ — ¢[|(n.a) — 0
as t — 0. Hence ¢'¢ € C2°(R™) converges to ¢ in S(R™), which completes the proof. O

Remark. Since the convergence in D(R™) implies the convergence in S(R"), if F € S’'(R") is a tempered
distribution, the restriction of F' to C2°(R™) is also continuous. Hence F|¢e (rn) is a distribution. Furthermore,
by Proposition the restriction F'|geo(rn) determines F' € §'(R™) uniquely. Thus we may identify S'(R")
with the sets of all distributions on R™ that extends continuously from C°(R™) to S(R™).

Example 3.18. Following are some examples of tempered distributions on R".
e Every compactly supported distribution is tempered.
If fe Ll (R") and [5,(1+ |z[)~V|f(z)| dz < oo for some N € Ny, then f is tempered, since

loc

- f@)¢(@) dz| < [|(1+[)) ™M f]| 0 |+ 2DV 0|, < Cllgllvoy, & € SER™).

e Given w € R”, the plane wave function f(r) = €“'* on R" is a tempered distribution on R™. This
distribution is related to the Fourier transform: if ¢ € S(R™), we have (f, ¢) = ¢(—w).

e In fact, the exponential function f(z) = ¢ on R™ is tempered if and only if 8 is purely imaginary.
We assume [ = v + iw with d,w € R"™. If y # 0, we take ¢ € C°(R") with [;, 1 (z)dz = 1 and let
¢m(z) = e P p(z — my). Then ¢, — 0 in S(R™) as m — o0, but [p, fom dv = [p, vdz = 1.

o If I € S’'(R"), the derivative 9*F is also a tempered distribution. Indeed, ¢; — ¢ in S(R™) implies

(0°F, ¢;) = (F,0%;) = (F,0%¢) = (0°F, ¢).

e A function ¢ € C*°(R") is called slowly increasing, if ¢ and all its derivatives have at most polynomial
growth at infinity, i.e. for every multi-index « there exists N, € Ny such that [0%(x)| < Ca (1 + |z|)Ne.
If F € §'(R™), the product ¢ F with a slowly increasing C'*° function is also a tempered distribution.

o Let F' € S'(R™). If y € R”, the translated distribution 7, F is also tempered; If T is an invertible linear
mapping on R”, the composition F' o T with an invertible linear map is also tempered.
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Proposition 3.19. If F € 8'(R") and ¢ € S(R"), the function (F = )(z) = (F,7,4) is a slowly increasing
C® function, and we have

(F, ) = / (F*)(2)p(a) dr, & € S(R™)..

n

Proof. O
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