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1 Interpolation of L’ spaces

1.1 The Riesz-Thorin Interpolation Theorem

We begin from the interpolation of LP norms. Let 1 <p <r < g <oo. If f € LP(X, F,u) N LIX, F, u), the
Hoélder’s inequality implies
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é. This estimate holds even when g = oo, since
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Therefore f € L"(X,.%,u), and || f]|L- can be bounded by LP and L7 norms. More generally, we have the
following interpolation theorem for linear operators.

Theorem 1.1 (Riesz-Thorin interpolation theorem). Let po,p1,qo,q1 € [1,00]. Let (X,.%,u) and (Y,9,v)

be measure spaces. If qo = q1 = oo, we further assume that v is semifinite. Let T be a linear operator

from LPo(X, % u) + LPY(X, F,pn) into L(Y,9,v) + L1(Y,9,v) such that |Tf|lpwo < Mo||fllzro for all

fe (X, Z,u), and | Tg|lan < Mi||gllze: for all g € LP*(X,.F, ). For each 0 <t < 1, define

1 1—-t t 1 1—-t t
= + = +

3
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Then | Tf|lra < MEMLY fl|Le for f € LP(X,.Z,p).
We begin by introducing an estimate of LP-norms using a dual space argument.

Lemma 1.2. Let (X,. %, u) be a measure space, and p,q € [1,00] conjugate exponents. If ¢ = oo, we further
assume that p is semifinite. For each f € LYX, %, u),

1l = sup{\ / fgdu‘ gl < 1, g ds sz'mpze} (1.1)
X

Proof. Let M be the right-hand side of (1.1). By Hélder’s inequality, we have || f||5q[|gllr > |fX fgdu|, and

I« > M. Then it suffices to show the other direction || f||« < M. We discuss two cases.

CaseI: 1 < p,q < co. Given f € L1(X,.7, u), we take a sequence (f,,) of simple functions such that | f,| 1 |f]
and f, — f a.e., and define

— |fn‘q71 i Sgnfn

In —
1fnllZa

Then [lgu 5, = 1, and

q—1 q
. |fn‘ < 2|f‘ GLl(X, ar

n - §2 1 — J, .
(= Dgl < ATt = e 4

By dominated convergence theorem,

lim [ (fy = f)gndp=0.
X

n—oo



We then use Fatou’s lemma to bound the L9 norm of f:

q q
[fllLe = i dp < lim inf Mczu:nmmf

x IFIEs oo Jx (1 fall g e

/ frgn du‘ : (1.2)
X

Passing to a suitable subsequence and applying (|1.2)), we obtain

[ fllze < lim ‘/ fngn du) = lim ‘/ fgndu‘ < M.
n—oo | [ n—oo | | x

Case II: p = 1 and ¢ = oo. Argue by contradiction. If ||f|p« > M, we choose € > 0 such that the set
E={x e X :|f(x)] > M + €} has positive measure. Since p is a semifinite measure, we can choose F' C E
with 0 < u(F) < co. Let g = xr - sgnf/u(F), and take a sequence of simple functions g, — g and |g,| T g.
Then lgllz =1, llgallzs < 1, and

£l Lo
u(F)

which is an integrable function. By dominated convergence theorem and definition of F,

1
szfwwﬂmjf%w:—f/msz+g
X n—oo [y M<F> F

a contradiction! Hence || f||p~ < M. O

L

|fgn| - /J(F)

xr|f] <

Lemma 1.3 (The three lines lemma). Let ¢ be a bounded continuous function on the strip 0 < Re(z) <1 that
is holomorphic in the interior of the strip. If |¢(z)| < Mo on Re(z) = 0 and |¢(z)] < My on Re(z) = 1, then
|p(2)] < My~ "M} on Re(z) =t, where 0 <t < 1.

Proof. We define the function
bul(2) = 9(2) My > M7~ e=e0-2),
which also satisfies the hypothesis of the lemma with My and M; replaced by 1, and
|G + )| = |o(x + iy)| My "My~ e rmm =" < pg=e M=ty

Hence ¢.(z) — 0 as |Im(z)| — oco. By our hypothesis, for sufficiently large A > 0, we have |¢.] < 1 on the
boundary of the region D = {z : 0 < Re(z) < 1,—A4 < Im(z) < A}. By the maximum modulus principle,
max,cap |Pe(2)| = max,ep |¢e(2)|. Hence |¢pc| < 1 on D, and hence on the strip 0 < Re(z) < 1. Letting € — 0,
we obtain |¢(2)| My ‘M~ <lim o |¢c(2)] < 1, where t = Re(z). O

Proof of Theorem[1.1 The proof has three steps.
Step I: We begin with the case py = p1 = p. Since the case gy = ¢ is clear, we may assume ¢y < ¢;. Then

a0(a1—9) 41(a—a0)

ITfllze < ITFlzee  NTAIER " = IT Lo ITf el < MgMy~" | f ]| o-

Step II. Now we assume py < p; < oo, and in particular p < oo for all 0 < ¢t < 1. We begin by taking a
simple function f =" a;xm, = Y7, laj|e"® xz, and show that | Tf||Le < My~ M{||f||Lr.
By homogeneity of || - || and linearity of T, it suffices to show the case ||f||L» = 1. We estimate ||Tf||p« by
taking g = Y 1 bixr, = Yopey |bjle®F xr, with [|g]| o =1 in (L.1). Define functions o and 3 as follows:
1=z =z 11—z

a(z) = +=, Bz) = +Z, 2€C, 0<Re(z) < 1.
Po D1 qo q1




Then a(t) = 1/p and B(t) = 1/q. We let

f-= i Ja; |4/ gibsy 9= = {Z?_l g |1 PN OB iy B(8) # 1,
z = J 3 z
9, Aty =1.

Jj=1

Finally, we define

- aG) o 1=BG) o
Z;L:I Zk::l |a]| a(t) |bk| 1-8(t) ¢ (97+£k) fY(TXEJ)XFk dy’ B(t) # 1

(=) = / (TF)g=dv =000 U046k
Y D e lagl e |bg et [ (T g, )X R, dv, Bt) = 1.

Then ®(z) is a bounded and continuous function on the strip 0 < Re(z) < 1 that is holomorphic in the strip.
We claim that ®(z) < My on Re(z) = 0 and ®(z) < M; on Re(z) = 1. We let z = iw, where w € R. Since
Ey,---, E, are disjoint, at most one xg; is nonzero, and

n
|fiwl = Y laglPPoxs, = | £/
j=1
A similar calculation yields
m
‘giw‘ = Z |bk‘q /qOXFk = ‘g|q /qo’
k=1
where ¢’ and ¢ are the conjugate exponents of g and g, respectively, and we set 2> = 1. By Holder’s inequality,
()] < T fuollzao lgiall oy < Mol fiallzmo lgiall g = Moll Fllzo gl por = Mo.
Similarly, we can show |®(1 + iw)| < M;. By three lines lemma [Lemma [1.3] and Lemma we have

I7flle < [B()] < My~ ME.

Step ITI. We have shown that ||Tf|z« < My~ *M}||f|» for all simple functions. For each f € LP(X,.Z,u)
with f > 0, we choose a sequence of simple functions such that |f,| 1 |f| and f, — f pointwise. We let
E={xe X :|f(z)] > 1}, and define

g:fXEa gn:anEv h:f_gv hn:fn_gn~

Since py < p < p1, we have g € LPO(X,.%,u) and h € LP*(X, %, ). By dominated convergence theorem,
I fn = fllze = 0, llgn — gllro — 0 and ||h — hy|lzer — 0. Hence | Tgn — Tgllzew < M|lgn — gllzre — 0 and
|IThy, — Thl|lpa < M||hy — h||er — 0. By passing to a suitable subsequence we may also assume Tg, — T'g
a.e. and Th, — Th a.e., and then T f,, — T f. By Fatou’s lemma,

ITfllzo < Wminf |7 follzo < lming Mg~ M| follzo = Mo~ Mi||f| 2.

Then we finish the proof. O



1.2 The Marcinkiewicz Interpolation Theorem

Distribution function and weak L? spaces. Let (X,.%, 1) be a measure space. For a measurable function
fon (X,.#,u), define its distribution function Ay : (0,00) — [0, c0] by

Ap(@) = p({z e X :[f(2)] > a}).

Some properties of the distribution function is clear:
e )\ is decreasing on (0, c0).
e )\; is right-continuous, since {|f| > a} = U,—{|f| > a +€,} for all ¢, > 0 with €, | 0.
Ar4g(2a) < Ap(a) + Ag(a). In addition, if |f] < |g|, then Ay < A,.
If the sequence (f,) satisfies |f,,| 1 |f], then Ay, — Aj pointwise, since {|f| > a} = U, _ {|fn] > a}.
Let 1 < p < co. For a measurable function f, define

o= (s apAfm))l/p.

a>0

The weak LP space is then defined to be the set of all measurable functions on (X..%, i) such that [f], < oc.
Note that [-], is not a norm, because it does not satisfy the triangle inequality. By Chebyshev’s inequality,
[flp < | fllee for all f € LP(X, #, u). Therefore the classical L? is contained in the weak L? space.

Lemma 1.4. If f is a measurable function on (X, #,pn) and 0 < p < oo, then

/ | fIP dp :p/ P~ ¢ (a) da.
p's 0

Proof. We may assume Af(a) < oo for all @ > 0, otherwise both integrals are infinite. We may also assume
f > 0 by replacing f with |f| if necessary. If f is simple, Af is a step function with jump discontinuities
O<a < - <a,. Welet ag =0. Then

n

p/o a? A () da—Z/ pa? " Ap(a)da =Y (sl — lag-1) Ag(a;-1)
Qj—1

j=1

= Z|aj|p (Ar(aj—1) = Aplay)) = Z|aj|p {f=a}) = / |fIP dp.

j=1

Since f, 1 f implies the pointwise convergence Ay — Af, the general result follows from simple function

approximation and monotone convergence theorem. L]

Definition 1.5 (Sublinear operators of strong and weak types). Let T' be an operator on the some vector
space V of measurable functions from (X, %, u) to the space of all measurable functions on (Y, ¥, v).
(i) T is said to be sublinear, if |T(f + g)| <|Tf|+ |Tg| and |T'(cf)| = ¢|Tf| for all f,g € V and ¢ > 0.
(ii) Let 1 < p,q < oo. The operator T is said to be of strong type (p,q), if LP(X,.%,u) C V and there exists
a constant C), , > 0 such that for all f € LP(X,.Z, p),

ITfllza < Cpgllfllzr-

(iii) Let 1 <p < ooand 1 < ¢ < co. The operator T is said to be of weak type (p,q), if LP(X, %, ) CV and
there exists a constant C, ; > 0 such that for all f € LP(X,.Z, u),

[Tflg < Cpqll fllze-

Clearly, a sublinear operator T' of strong type (p, ¢) is also of weak type (p, q). Also, we say T is of weak
type (p,o0) if and only if it is of strong type (p, ).



Theorem 1.6 (Marcinkiewicz interpolation theorem). Let 1 < pg < qp < 00, 1 < p; < q1 < 00 and qo # q1-
Let T be a sublinear operator from LP°(X, % u) + LPY(X,. %, u) into the space of measurable functions on
(Y,¥9,v). For each 0 < v < 1, define

L _1-v L _1-v 7

== +--, —= + -
p P P ¢ ® @

If T is a sublinear operator of weak types (po,qo) and (p1,q1), then T is of strong type (p,q).
The proof Marcinkiewicz interpolation theorem requires the following lemma.

Lemma 1.7 (Minkowski’s integral inequality). Let (X,.%,pu) and (Y,9,v) be two measure spaces and let
®: X xY — C be a measurable function on the produce space. If p > 1, we have

(X/Y¢(x,y)du(y)pdu( ) /(/ |6z, y)|P dpu( )> du(y).

Proof. Let ®(x) = [, ¢(x,y) dv(y). Similar to the proof of Minkowski’s inequality, we estimate ||®|[7, by

/X B dp < /X () /Y 16(z, )| dv(y) ds(z)

_ / / 1@ ()P~ (. )| dp(x) dv(y)
Y JX

< [ ([ w17 duta ) (/ 6z, )P d >) au(y)
—tei" [ (] |¢<x,y>|f’du<x>) an(y),

where we interchange the integrals by Fubini’s theorem and use Holder’s inequality to the inner integral. [

Lemma 1.8. If f is a measurable function and o > 0, define

ha = fX{Ifl<a} + (80 f)X{ | f|>a}, nd  Ga = f —ha = (sgn f)(|f] — O)x{f|>a}-
Then

Ap(t), t<a,

Ago B) =Ap(t+ @), and A, (t) = {0 o

Proof. By definition, h,, is in fact the a-truncation of f, i.e. hy, = f when |f| < «, and h, = a(sgn f) when
|f| > «. Hence {|h| >t} = {|f| > t} when ¢t < «, and {|h| > t} = {|f] > t} = 0 when ¢ > «. On the other
hand, note that g, = 0 on {|f| < a}. For any t > 0, we have {|go| >t} ={|f| —a >t} ={|f|>t+a}. O

Now we prove the Marcinkiewicz interpolation theorem.

Proof of Theorem[I.6f For notation simplicity we also write [-]ooc = || - || Since T is of weak types (po,qo)
and (p1,q1), there exist constants Cy and C; such that

C C
aa) < (L) s amd Ayt < ()" ol

for all f € LP(X, %, u), g € LP (X, %, u) and all @ > 0. There are several cases to consider.
e Case I: pg = p1 = p. We may assume ¢y < ¢q; by switching subscripts 0 and 1 when necessary.

e Case II: pg # p1. We may assume py < p; by switching subscripts 0 and 1 when necessary.



Now we prove the theorem case by case.

Case I(1): pop=p1=pand ¢o < q1 <oo. If f e LP(X, ZF,u),

0 Ifllze oo
ITf] 1= q/ ozq_l)\Tf(a) da < q/ aq_l)\Tf(a) do + q/”fl aq_l)\Tf(a) do
0 0 P

I flle o0
<q [ e fg datg /| Q1O | 1%, da
0

(P53

cho ch1

- (2 2
q — 4o q1 —

Case I(2): po =pr =pand ¢ < ¢1 = oo. If f € LP(X,.#,u), we have |Tf|ra < Cil||f|zr- Then
Arp(a) =0 when o > Cy| f|| z», and

CillfllLe Cillfllcr
ITf] = g / 0T App(a)da < g / QT 0 LT |10 oy
0 0

Cillfllce O (14—
<qf T areiop g do = S
0

1FIZs-

Case II(1): po < p1 < o0 and qo,q1 < co. For f € LP(X,.F, ), we take g, and h, as in Lemmal[L.8] where
a > 0 is to be determined. Then

a1

A2 (28) < Arg, (8) + Aan, (B) < (%) (/. |ga|p°du)gg+(%>“ (i)™ a9

Here we allow « to depend on 3. By Lemma, we have

/Igal”Odu p/ oy, ()dtpo/ PO\ (t + ) dt
0

= po/ (t — )Pty (t) dt < po/ tro N, (2) dt, (1.4)
(e} (03
and similarly,
/ | P du :pl/ PN, () dt :pl/ PN p(8) dt. (1.5)
X 0 0
We combine Lemma, the inequality (1.3) and the estimates (L.4))-(|1.5)):

ITAI%, =g / (28)0 Ar5(28) d(268) = g2 / B9 Ar (28) dB

<q2q/0°° (C”"Bq - 1(/ e I”Odu) o g 1(/ N du) 1)dﬁ

a0 o0 (oo} 2*0
< q21CF°py° / B! (/ X{t>a3t? I Ap () dt) dp
0 0

q1

(1.6)

+q2/C'p “/ pra 1(/ X{t<a}tp11>\f(t)dt> " ag.

Since this estimate holds for any « > 0, we choose a@ = 57, where

polg—gq) (1= (qlo *1> (1* T) il —q)

Tl -r)  (1-) (p%—l) _7(1_5) T alpi-p)




We also write Xo = X{r>a}s X1 = X{t<a}, and

di(t, B) = Ba TTET Dy P\ ()

where ¢ = 0,1. Then ([1.6) becomes

1 o
1719, < 3 gicrpl / (/ oilt dt) as. (1.7)

=0

We write ®(8) = fooo @i(t, B) dt. Since % > 1, by Minkowski’s inequality, in either case i = 0,1,
94

/ (/ oi(t, B) dt) " dp < (/ </ 164(t, 8) Zi’-dﬁ) dt) |
0 0 0 0
a (1.8)
= (/OO (/oo BI-e~ly, dﬂ) PN (¢ )dt) Z )
0 0
If 1 > qo, the exponents ¢ — qo and o are positive, and {t > 87} = {8 < t'/?}. Then (1.8) becomes
LT ([ otemra) as< | [ (/
0 0 0 0
_ 1 iy d)ZE_ 1 (1):33 ra0
—([Tenoa)” - 2 (D) g

On the other hand, ¢ — ¢; < 0, and {t < 37} = {# > t'/°}. Then (1.8) becomes

a0
P Do
—_ p
a0 0

Bq—qo—ld/ﬂ) 10U 4 ()t

/e

a1

/O </0 é1(t,8) dt) Tdp< </O ( » ﬂqqllcw) " tpll)\f(t)dt>

([T ron)” -2 ()
= PN (D) dE = — | - f .
Q1—C]<0 f() g1 —4q \p ” H

If 1 < qo, the exponents ¢ — go and o are negative, and {t > 7} = {# > t'/?}. Then (1.8) becomes

40

[ ([ o) oo ([ ([ oot v
_ L ([T )&_ 1 (1>
= A d = — .
L ([Tenoa)” = () i

/ (/ ot dt>pdﬁ< ! (1) T
q—q1 \PpP

In either case, we plug in (1.8]) to . ) to get

A similar calculation gives

95

52 ()

pq1




Therefore

1/q

Pi o
Di
up {7 o+ flio =1} < By 1= 20/ [Z ) ]
K2

By homogeneity of norms and sublinearity of T', we have | T'f||z¢|| < Bpql|fllz» for all f € LP(X, %, ). The
remaining cases follow by modifying this procedure.

Case II(2): po < p1 = o0 and ¢y < ¢1 = oo. We have pg = pt and g9 = qt. We take a = 8/C1, so
ITha|l < Cillhall < B, and App, (8) = 0. Then the second term in the estimate (1.3) vanishes, and ¢ = 0 in
the estimate (1.7). We then apply an analogue of (|1.8]) to get

40

it s [ (/m qso(t,mdt)gg 08 < (/m (/m 6o(t, B)] dﬁfgdt) :

a0
2o 20 4

oo Cit a0 ro 1 oo i Oq q0
- / / grreTtag) i | = (Of“’° / t“w)dt) = I

Case II(3): po < p1 < oo and gy < g1 = 00. Since | Thq| L~ < Cil||hallLes,

«
| Tha 2 < CP [halZh = CP'py / 1= (1) dt

<cppan [Co iy < op Bar o, (1.9)
0

We take a = (£)7, where & = C’l(%HfH’i,,)l/pl and o = 2L = 2old=h) - () The the estimate l) is BPL.
1.7)

pi—p — qo(p—po)
Since ||[Thq||L= < B, the second term in the estimate (1.3) vanishes, and ¢; = 0 in the estimate (1.7). Then

X0 = X{t>(8/r)7} = X{B<nt1/}, and we apply an analogue of (1.8) to get

o ([} o ([ ([ et o) )
_ /Ooo </0mf

Case IT(4): po < p1 < oo and ¢; < gg = 00. Since [Tl L < CollgallLro,

Po

1/o 20

Pao

q0 Po o0
1 P
ﬁqq°1d5> oI\ (t)dt | = pa— (;«ﬂqo/o tplAf(t)dt) "= Blfl

[e3
_ _ PO py—
ITgallz> < C3°llgallzey < Co°poc™ p/ tr 1>\f(t)dtSC§°;0<”° IS (1.10)
0

We take o« = (%)‘77 where Kk = C’O(P?O”inp)l/po and o = pf%p = % < 0, so the estimate (|1.10) is 5170.

Since ||Tgalln~ < B, the first term in the estimate (L.3)) vanishes, and ¢y = 0 in the estimate (1.7). Then
X1 = X{t<(8/r)} = X{B<nt'/=}, and we apply an analogue of (1.8 to get

a1

1 _ 0 . P1
G QI/ =\ (B)dt) = By
0

Then we complete the whole proof. O

fll%o

HTf”Lq ~ q—

Corollary 1.9 (Marcinkiewicz interpolation theorem). Let 1 < pg < p1 < 0o. If T is a sublinear operator of
weak types (pO7PO) and (p17p1>7 then T is of strong type (p7p) for each p € (po,p1)~



2 Radon Measures

2.1 Locally Compact Hausdorff (LCH) Spaces

Topology review. Throughout this section, we are mainly concerned with the Locally Compact Hausdorff
(LCH) space. To be specific, the topological space X of our interest has the following topological properties:
e X is Hausdorff, i.e. for each pair of distinct points  and y in X, there exists a neighborhood U, of z
and a neighborhood Uy, of y such that U and V are disjoint.
e X is locally compact, i.e. every point in X has a compact neighborhood.
The following proposition describes that, for any set K compactly included in an open set U, we can always
find a set V' between them in sense of compact inclusion.

Proposition 2.1. If X is an LCH space and K C U C X, where K is compact and U is open, there exists a
precompact open set V such that K CV CcV CU.

Proof. Our proof are divided into three steps.

Step I. We first show that, in a Hausdorff space X, we can separate a compact set K and a single point x ¢ K
outside the set with disjoint neighborhoods. Formally, we find two disjoint open sets U D K and V > x.

For each y € K, by Hausdorff property, we can find two disjoint neighborhoods U, of y and V} of x. By
compactness of K, it is possible to cover K by finitely many such neighborhoods Uy, ,---,U, . We then set
U= ﬂ;;l Uy, and V = ﬂ?:l Vy,, which has the desired properties.

Step II. Next, we assume X is LCH and show that any open neighborhood U of a point « contains a compact

neighborhood of z. We may assume that U is compact, otherwise we may replace U by its intersection with

the interior of a compact neighborhood of . Then OU is also a compact set, and we can separate x and U
by two disjoint open sets V > o and W D 9U in U. Hence V satisfies V. C (W¢NU) C U, and since U is
precompact, V is a compact subset of U. Therefore V is a compact neighborhood of z.

Step III. Finally we come to the original proposition. By Step II, we find a precompact open neighborhood V,
for each € K such that x C V, C V, C U. By compactness of K, we take finitely many such neighborhoods
Vayy ooy Vi, to cover K. Setting V = U?:1 Vi,;, we have K C V' C V C U, and V is compact. O

Now we discuss the generalized version of Urysohn’s lemma and Tietze extension theorem in LCH spaces.
Recall that every compact Hausdorff is normal, to which the original version of these theorems applies.

Theorem 2.2 (Urysohn’s lemma in LCH spaces). Let X be an LCH space and K C U C X, where K is
compact and U is open. There exists f € C(X,[0,1]) such that f =1 on K and f = 0 outside a compact
subset of U.

Proof. We take a precompact open set V such that K ¢ V C V C U, as in Proposition so V is normal.
By Urysohn’s lemma for normal spaces, there exists f € C(V,[0,1]) such that f =1 on K and f =0 on 9V.
We extend f to X by setting f = 0 on V°. It remains to show that f € C(X).

Let E be a closed subset of [0,1]. If 0 ¢ E, we have f~Y(E) = (fly) '(E), and if 0 € E, we have
7HUE) = (fly) " YE) UV’ = (fli7)"H(E) U Ve since (flz) ' (E) D V. In either case, f~'(E) is closed.
Therefore f is continuous. O

The following theorem can be proved in a similar approach.

Theorem 2.3 (Tietze extension theorem in LCH spaces). Let X be an LCH space and K C X, where K is
compact. If f € C(K), there exists F € C(X) such that F|g = f. Moreover, F' may be taken to vanish outside
a compact set, i.e. F' € Ce(X).

Proof. We take a precompact set V such that K ¢ V C V C X, so V is normal. By Tietze extension
theorem for normal spaces, we can extend f to a function g € C(V) with g|x = f. We also take a function
¢ € C(V,][0,1]) such that ¢ =1 on K and ¢ = 0 on V by Urysohn’s lemma. Then g¢ € C(V) agrees with f
on K. We take F = gp on V and F =0in V. Then F € C.(X) and F|x = f. O
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Alexandroff compactification. If X is a noncompact LCH space, it is possible to make X into a compact
Hausdorff space by adding a single point at the “infinity”. Let us take some object that is not a point of X,
denoted by the symbol co for convenience, and adjoin it to X, forming the set X* = X U {co}. We topologize
X* by defining the collection * of open sets of X* to consist of
(i) all sets U that are open in X, and
(ii) all sets of the form X*\ K, where K is a compact subset of X.
We first check that such collection is indeed a topology on X*.
e The empty set ) and X* are open sets of type (i) and (ii), respectively.
e Let U; and U, be open sets in X, and let K; and K5 be compact sets in X. Then
— Uy NUy is of type (i),
— (X*\Kp) N (X*\K2) = X*\(K; U K3) is of type (ii), and
— UN(X*"\K)=UnN(X\K) is of type (i).
Hence .7* is closed under the finite intersection operation.
e Let {Uy} be a collection of open sets of X, and let {Kg} be a collection of compact sets in X. Then
— U, Ua = U is of type (i),
= Ug(X"\Kp) = X"\ (N5 Kpg = X*\K is of type (ii), and
— UU(X*\K) = X*\(K\U) is of type (ii) since K\U is a compact subset of X.
Hence 7* is closed under the union operation.
Then we need to verify that X is a subspace of X*:

e Given any open set in X*, its intersection with X is open in X. If the open set is of type (i), it is clearly
open in X. If it is of type (ii), then (X*\K) N X = X\K is open in Hausdorff space X.

e Conversely, given any open set in X, it is a type (i) open set in X*.

Next we verify that X™ is a compact topological space.

e If o/ is an open cover of X*, it must contain at least one open set X*\ K of type (ii), to contain oo.

e Taking all members in &7 but X*\K and intersect them with X, we obtain a cover of X. Since K
is a compact subset of X, finitely many of them cover K. Then the corresponding finite collection of
elements of & along with X*\ K form a cover of X*.

Finally we verify that X* is a Hausdorff space. Let x and y be two distinct points of X™*:

e The case that both x and y lies in X is clear since X is Hausdorff.

e If y = oo, we choose a compact set K in X that contains a neighborhood U of z, then U and X*\ K are
disjoint neighborhoods of z and oo, respectively, in X*.

The comapact Hausdorff space X* is called the one point compactification/Alexandroff compactification of X.

Functions vanishing at infinity. Let X be a topological space. A continuous function f € C(X) is said
to vanish at infinity if the set {x € X : |f(x)| > €} is compact for every € > 0. We define Cy(X) to be the
space of functions vanishing at infinity.

Proposition 2.4. Let X be an LCH space, and f € C(X). The function f extends continuously to the
Alexandroff compactification X* of X if and only if there exists function g € Cy(X) and z € C such that
f =g+ c, in which case the continuous extension is given by f(co) = c.

Proof. Assume f = g+ ¢, where g € Cy(X) and ¢ € C. Replacing f by f — ¢, we may further assume ¢ = 0.
We extend f to X* by setting f(oco) = 0, and show that f is continuous. Let U be an open subset of C.
o If0 ¢ U, then f~1(U) = (f|x)(U), which is open by continuity of f|x.
e If 0 € U, there exists € > 0 such that |z| > € for all 2 € U¢. Since f|x € Co(X), (f|x)1(U°) is a closed
subset of the compact set {z € X : |f(z)] > €} in X. Hence f~1(U) = X*\(f|x) 1(U®) is open.
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Conversely, if f € C(X) extends continuously to X*, we let ¢ = f(c0) and g = f — ¢. For each ¢ > 0,
the set g=1(B(0,¢)) = {x € X* : |g(x)| < €} is open in X* and contains co. Consequently, the complement
{z € X* :|g(x)| > €} is a compact set in X. Therefore g € Cy(X). O

Topologies on CX. Let X be a topological space. There are various ways to topologize the space CX of all
complex-valued functions on X:

e The topology of pointwise convergence/the product topology is generated by the sets

Uaécl,m,acm(f) = {g € (CX : ‘f(x]) _g(x])| <€, ]: 172a"' 7m}7

where f € CX, ¢ >0 and 21,--- ,2,, € X. In this topology, a sequence (f,,) of functions converges to f
when f,, — f pointwise.

e The topology of compact convergence is generated by the sets

Uicth) = {o e € sup |7(0) - gl <}
zeEK
where f € CX, ¢ > 0 and K is a compact subset of X. In this topology, a sequence (f,,) of functions
converges to f when f,, — f uniformly on every compact subset K of X.

e The topology of uniform convergence is generated by the sets

U(f) = {6 € s sup () ~ g(a)l < e},
zeX
where f € CX and ¢ > 0. In this topology, a sequence (f,) of functions converges to f when f, — f
uniformly on X.
Basic analysis shows that the space C(X) of continuous functions on X is not a closed subspace of CX
in the topology of pointwise convergence, but when we switch to the uniform topology, it is. The following
theorem asserts that C'(X) is also closed in the topology of compact convergence when X is an LCH space.

Proposition 2.5. If X is an LCH space, C(X) is closed in CX in the topology of compact convergence.

Proof. We claim that, a subset E of X is closed if and only if EN K is closed for each compact set K C X.
In fact, if ' is closed, EN K must be closed since it is the intersection of two closed sets. On the other hand,
if E is not closed, we choose a point € E\F and let K be a compact neighborhood of 2. Then z is a limit
point of £ N K, however it is not in £ N K.

Now we prove the desired result. If f is in the closure of C'(X), then for each compact subset K of X, the
restriction f|x, being a uniform limit of continuous functions on K, is continuous. Then for any closed set
E C X, the intersection f~1(E)NK = (f|x) *(FE) is closed for all compact subset K of X, and hence f~1(E)
is closed. Therefore f is also in C(X). O

Proposition 2.6. If X is an LCH space, Cy(X) = C.(X) in the uniform topology.

Proof. If f is in the closure of C.(X), for every € > 0, we can take some g € C.(X) such that ||f — g|lec < €.
Then {z € X : |f(x)| > €} C suppg, which are compact sets.

Conversely, if f € Co(X), we show how to find a function g € C(X) with || f — g|lcc < € for any € > 0. We
take the compact set K = {x € X : |f(x)| > €}, and take ¢ € C.(X,[0,1]) such that ¢ =1 on K by Urysohn’s
lemma [Theorem . Setting g = f¢ completes the proof. O

Proposition 2.7 (Partition of unity). Let X be an LCH space, K a compact subset of X, and (U;)7_; an
open cover of K. There exists a family of functions ¢; € C.(Uj;;[0,1]) such that E?Zl ¢j(x) =1 forallz e K.
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Proof. By Proposition for each = € X, we take a precompact open neighborhood V,, of z contained in
some U;. Then by compactness of K, there exist finitely many V, ,---,V,, that form a cover of K. We
denote by K; the union of neighborhoods V,, contained in U;. By Urysohn’s lemma, for each j =1,2,--- ,n
we can find a function g; € C.(U;;[0,1]) such that g; = 1 on K. Furthermore, there also exists a function
[ € Co(X;[0,1]) such that f =1 on K and supp(f) C {z € X : 377, gr(z) > 0}. Let goy1 =1~ f, so that
Z;:ll gj > 0 everywhere. Taking ¢; = g,/ ZZI; gk, we have ¢; € C.(Uj;;[0,1]) and Z;Lzl ¢p;j=1lon K. O

o-compactness. A topological space is said to be o-compact if it is a countable union of compact sets.
Formally, if X is o-compact, there exists compact subsets K,, C X such that X = UZO:1 K,. Replacing K,
by the union of itself and all preceding members, we may assume that (K,,) is an increasing sequence.

A second countable LCH space is o-compact. To see this, we take a precompact open neighborhood U,
for each z € X. Consequently, we can find a base set B, € & such that « € B, C U,, and B, is compact.
We choose %, C %A to be the collection of all precompact base sets. Then B, € %, for all z € X, and
X =Uge 3, B is a countable union of compact sets. Therefore, X is a o-compact topological space.

Proposition 2.8. Let X be a o-compact LCH space. There exists a sequence (U,)S2, of precompact open
sets such that Uy CUL C Uy Cc Uy CcUs C ---U, C U, C Upy1 C -+ and X = UZOZI U,. Furthermore, for
all compact set K C X, there exists n € N such that U, D K.

Proof. By o-compactness of X, there exists a sequence (K,)22 ; of compact sets increasing to X. We start by
taking a precompact open neighborhood U, for each z € X and setting Uy = . With U,,_; constructed, the
union U,,_; UK, is compact, and there exists finitely many x1,--- ,z; € X such that (Un,l UK,) C Ule U,

We construct U,, = Uf:l Uy;, which is also precompact open. Then we have Up_1 C Up,. Moreover,

o0 [ee]
Uuv.o K. =X
n=1 n=1

Hence the sequence (U,,) has the desired property. Moreover, for any compact subset K of X, {U,}52, is an
open cover of K, hence there exists U,, such that K C U,,. O

Proposition 2.9. Let X be a o-compact LCH space, and let (U,)$2, be a sequence of precompact sets as in
Proposition . Then for each f € CX, the sets

{gE(CX: sup |g(z) — f(z)] < 7711}7 m,n € N (2.1)

zelU,

form a meighborhood base for f in the topology of compact convergence. Hence this topology is first countable,
and fr, = f uniformly on compact sets if and only if f,, — f uniformly on each U,,.

Proof. For f € C¥X, any neighborhood of f in the topology of compact convergence contains a set of the form
Uicth) = {o e € sup loto) = ) <}
S

where K is a compact subset of X and € > 0. We choose n, m € N such that K C U,, and % < €. Then

Uk(f) > {g €T+ sup [g(e) — f(2)] < ;}

IGUn

Therefore the sets of the form (2.1]) form a neighborhood base for f. O

13



2.2 Positive Linear Functionals on C.(X) and Radon Measures

Throughout this section, we assume that X is an LCH space. One of the vector spaces we are interested in is
the space C.(X) of continuous functions on X with compact support.

Definition 2.10 (Positive linear functionals). Let X be an LCH space. A positive linear functional on C.(X)
is a linear functional T : C.(X) — C such that T'f > 0 for all f € C.(X) with f > 0.

The positivity condition implies a continuity property of T'.

Proposition 2.11. If T is a positive linear functional on C.(X), for each compact set K C X, there exists
a constant Cx > 0 such that |Tf| < Ck||flleo for all f € Ce(X) with supp(f) C K.

Proof. By dividing f € C.(X) into real and imaginary parts, it suffices to consider real-valued functions f. By
Urysohn’s lemma, for any compact K C X, there is a function ¢ € C.(U, [0,1]) such that ¢ = 1 on K. Then
if supp(f) C K, we have | f| < || f|lco®- Hence both || flleoc® — f and || f|lcc® + f are nonnegative, and

T flle =Tf >0, To|flloc+Tf >0

Therefore |Tf| < T¢|| f|loo, which concludes the proof by setting Cx = T'¢. O

Remark. If we replace C.(X) by C*(X), this proposition still holds, because we can make ¢ € C°(U, [0, 1])
in our proof by C'*°-Urysohn Lemma.

The positive linear functionals on C.(X) is closely related to a family of Borel measures on X with some
regular properties. Intuitively, we let u be a Borel measure on X such that u(K) < oo for all compact K C U.
Then the map f +— [, fdpu is a positive linear functional on C.(X), since f € Ce(X) C L' (p).

Definition 2.12 (Radon measures). Let X be a topological space, £ the Borel o-algebra on X, and p a
measure on (X, ). Let E be a Borel subset of X.
(i) p is said to be outer regular on E, if

w(E)=inf {u(U):U D E, U is open}.
(ii) w is said to be inner regular on E, if
w(E) =inf {u(K): K C E, K is compact} .

(iii) p is said to be regular, if it is outer and inner regular on all Borel sets.
(iv) p is called a Radon measure, if it is finite on all compact sets, outer regular on all Borel sets, and inner
regular on all open sets.

The following theorem relates every positive linear functional on C.(X) with a Radon measure on X.

Theorem 2.13 (Riesz representation theorem). Let X be a LCH space. If T is a positive linear functional
on C.(X), there exists a unique Radon measure p on X such that

Tf = /dem vf € CuX).
Furthermore, for all open sets U C X, u satisfies
u(U) =sup{Tf: feC(U), 0<f<1},
and for all compact sets K C X,
p(K) =inf{Tf: f € Ce(X), f=xK}.
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We begin by constructing a Radon measure from a positive linear functional on C.(X).

Lemma 2.14. Let T be a positive linear functional on C.(X). For each open U C X, define
u(U) =sup{Tf: f € Cc(U;[0,1])},
and for each subset E € 2%, define
p*(E) =inf{u(U) : U D E, U is open}. (2.2)
Then p* is an outer measure on X, and every open set U C X is u*-measurable, i.e.
p (E) = p* (ENU) +p*(E\U) for all E € 2%, (2.3)

Proof. By definition of p, we have p(0) = 0, and u(U) < u(V') for any open sets U C V. Hence p*(E) < u*(F)
forall EC FFC X, and pu*(U) = p(U) for all open U. We then show that for a sequence of open sets (U,)5,
and U = |J,—, Uy, it holds u(U) < >°>° | u(Uy). For any f € C.(U;[0,1]), let K = supp(f). By compactness
of K, we have K cU” =1 11(U;) for some finite n € N. By Proposition there exists a family of functions

g5 € C.(Uj; [0, 1])suchthatz _19n=1o0n K. Then f = Z 1fgj,and

Tf=> T(fg;) <> wU;) <> wl
n=1

j=1 j=1

By taking the supremum over f € C.(U;[0,1]), we have p(U) < >0 | u(U,). More generally, if (E,)22; is a

n=1

sequence of subsets of X and E = UZO:1 E,,, we take an open set U,, D E, for each F, and get
Sz o) = uie

By taking the infimum over (U, )32, we have > >~ u(E,) > p(E). Hence p* is an outer measure on X.

Now we verify the condition We first assume that E is open, so that ENU is open. For any € > 0, we
can find f € C.(ENU;[0,1]) such that Tf > u(E NU) — e. Similarly, we can find g € C.(E\ supp(f);[0,1])
such that T'g > p(E\ supp(f)) —e. Then f + g € C.(F;[0,1]), and

W(E)>Tf+Tg>pu(ENU)+ p(E\supp(f)) — 2¢ > p*(ENTU) + p*(E\U) — 2e.

Letting € — 0, we obtain the desired inequality. For the general case E € 2%, we may assume p*(FE) < oo and
find an open V' O E such that p*(V) < p*(E) + ¢, and hence

W(E) +e> 1t (V) 2 @' (VAU) + 1" (V\U) 2 @ (BN U) + ' (B\D).

Letting € — 0, we are done. O

Remark. By Carathéodory’s extension theorem, the family of p*-measurable sets is a o-algebra on X, which
contains the Borel o-algebra #. By taking the restriction p = p*|4, we obtain a Borel measure on X.

Lemma 2.15. The restriction u = u*|g of the outer measure p* in Lemma on the Borel algebra %
defines a Radon measure on X. Furthermore, for each compact set K C X,

pw(K)=nf{Tf: feCX), f>xxk}- (2.4)

Proof. By (12.2)), the Borel measure p is outer regular on all Borel sets in X. If K is compact, f € C.(X)
and f > xg, we define U, = {z € X : f(z) > 1 — €}, which is an open set. If g € C.(Ue;|0,1]), we have
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f—(0—-¢€g>0,and Tf > (1 —¢)Tg. Hence

rf
1—¢€

u(K) < p(U) = inf{Tg : g € C.(U.,[0,1))} <

Letting € — 0, we have u(K) < Tf, and hence pu(K) < co. On the other hand, for any open U D K, by
Urysohn’s lemma, there exists f € C.(U;[0,1]) such that f > xx, and we have Tf < pu(U) by definition of p
in Lemma Since p is outer regular, the result follows.

To verify that p is a Radon measure, it remains to show that it is inner regular on all open sets. If U is
open and € > 0, we choose f € C.(U;[0,1]) such that Tf > u(U) — € and let K = supp(f). If g € C.(X) and
9> XK, wehave g— f>0and Tg > Tf > u(U) —e. Then pu(K) > u(U) —¢, and p is inner regular on U. O

Proof of Theorem[2.13. We start by establishing the uniqueness. Assume g is a Radon measure such that
Jx fdp=Tf forall f e Co(X). If U C X is open, we have T'f = [, fdu < p(U) for all f € C.(U;[0,1]).
On the other hand, if K C U is a compact set, we take f € C.(U;[0,1]) such that f =1 on K by Urysohn’s
lemma, so that p(K) < [, fdu=Tf. Since p is inner regular on U, we have

p(U) =sup{Tf: f € C.(U;[0,1])}.

Thus p is determined by 7" on all open sets, hence on all Borel sets by outer regularity.

To prove the existence, we take the Radon measure constructed in Lemmata and It remains
to show that Tf = fX fdu for all f € C.(X). We may assume 0 < f < 1, since f is a linear combination
of functions in C.(X;[0,1]). Fix N € N. We define K; = {x eX: f(x) > %} for each j = 1,2,--- ;N and
Ky = supp(f). Also, we divide f by f = Zjvzl fj, where f1,---, fn € Cc(X) are defined as the truncation of

f on the interval [%, %]
— 1 1
fj:min{max{f—JN,O},N}.

Then N~ 'xk, < fj < N~'x;_1, and

H(Jf\fj) S/ij iy < u(lf\?—l).

If U D K;_ is an open set, we have N f; € C.(U;[0,1]), and T'f; < % Hence by 1) and outer regularity,

U(K) ) 1, . M(K‘_l)
Tj < Tf < Nmf{,u(U) :UDK,_1, Uisopen} = TJ
Using [ = Z;\Ll fj, we have
| N e 1N L Nl
N ZN(KJ’) < fdp < N n(K;), and N ZN(KJ‘) <Tf< N Z n(K;).
=1 X §=0 j=1 j=0
Hence
p(Ko) — p(Kn) _ p(supp(f))
Tf— du| < < .
77~ [ ga| < HED TN < o
Since p(supp(f)) < oo, we let N — oo and conclude that T'f = [ f dpu. O

Remark. For any f € C.(X) supported on K, we can take a mollification sequence f¢ = ¢ x f € C°(X)
that converges to f uniformly. Therefore, if T' is a positive linear functional on C2°(X), by the remark under
Proposition we can extend 7' to a linear functional on C.(X). Through this procedure, we can also relate
each positive linear functional on a subspace of C.(X) containing C'2°(X) to a unique Radon measure on X.
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2.3 Regularity and Approximation of Radon Measures
In this section we discuss more properties of Radon measures.
Proposition 2.16. FEvery Radon measure is inner reqular on all of its o-finite sets.

Proof. Let pu be a Radon measure on X and E C X a o-finite set. If u(F) < oo, for any € > 0, we take
an open set U D E with u(U) < u(E) + € and a compact set F C U such that u(F) > p(U) — €. Since
w(U\E) < €, we can also take an open set V O U\E such that u(V) < e. Let K = F\V, which is compact.
Then K C U\V C E, and

w(K) = p(F) = p(FNV) > pU) — e — p(V) > p(E) — 2e.

Hence p is inner regular on E. On the other hand, if u(E) = oo, E is the limit of an increasing sequence
(En)S of p-finite sets such that u(E,) — oco. Hence for any N > 0 there exists n € N such that u(E,) > N.
By the preceding argument, one can take a compact K C F,, with p(K) > N. Hence the supremum of p(K)
over compact K C F is oo, and p is inner regular on F. O

We have some immediate corollaries of this proposition.

Corollary 2.17. FEwvery o-finite Radon measure is regular. Particularly, if X is a o-compact space, every
Radon measure on X is regqular.

Proposition 2.18. Let pu be a o-finite Radon measure on X and E a Borel set in X.
(i) For every e > 0, there exists an open U and a closed F with F C E C U and u(U\F) < e.
(ii) There exists an Fy set A and a Gs set B such that AC E C B and p(B\A) = 0.

Proof. We write E = |J,_, E,, where the E;’s are disjoint and have finite measure. For each E,, choose an
open U, D E, with u(U,) < w(E,)+ 271 "¢ and let U = |J._, U,. Then U is an open set containing F
and p(U\E) < >0°  w(Up\E,) < €/2. Applying the same approach to E°, we get an open V O E¢ with
w(V\E®) < ¢/2. Let F = V€. Then F is a closed set contained in F, and

WUNF) = p(U\E) + u(E\F) = p(U\E) + p(VAE®) <e.

Now for each k € N, by the preceding argument, we choose an open Uy and a closed Fy with Fy, C E C Uy
and p(Up\Fr) < 1/k. We may also assume Uy C U,_1 by taking U N Uy_; if necessary. Similarly we assume
Fy D Fj_1. Let B ={,—, U, which is a G5 set, and A = {J,—, F, which is an F, set. Then

p(B\A) = p <ﬂ (Uk\Fk)> = lim p(Ux\Fk) =0,
b1 k—o0
and A C E C B, which concludes the proof. O

The following theorem discusses the regularity of Borel measures in LCH spaces.

Theorem 2.19. Let p be a Borel measure on an LCH space X in which every open set is o-compact (which
is the case, for example, if X is second countable). If u is finite on compact sets, it is regqular.

Proof. Since p is finite on compact sets, we have fX fdp < oo forall feCo(X), and T, f = fX fdp defines
a positive linear functional T}, on C.(X). Let v be the associated Radon measure according to Theorem
If U C X is open, let (K,,)22; be a sequence of compact sets increasing to U. We take f; € C.(U; [0, 1]) such
that f =1 on Kj, and inductively take f,, € C.(U;[0,1]) such that f =1 on K, Usupp(f,—1). Then f, T xv
pointwise, and by monotone convergence theorem,

w(U) = lim fndp = lim fndv =v(U).
X n—oo X

n—oo
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Next, if E is any Borel set and € > 0, by Proposition there exists open U D F and closed F C F
with »(U\F) < e. Since U\F is open, u(U\F) = v(U\F) < e. In particular, u(U) < u(E) + €, and p is
outer regular. Also, we have u(F) > u(E) —e. Since X is o-compact, there exist compact sets K,, C F' with
w(K,) = u(F), and p is inner regular. Therefore p is regular on X. O

Remark. By the uniqueness part of Theorem since p is Radon, we have p = v.
Proposition 2.20. If u a Radon measure on an LCH space X, C.(X) is dense in LP(u) for 1 < p < co.

Proof. Since the simple functions are dense in LP(u), it suffices to approximate each simple function yg in
LP-norm, where £ C X is a Borel set with u(E) < co. For any € > 0, we pick an open set U and a compact
set K such that K C E C U and u(U\K) < e. By Urysohn’s lemma, there exists f € C.(X) such that
Xk < f < xu. Then |[xg — fl|} < p(U\K) < ¢, and we are done. O

Theorem 2.21 (Lusin). Let p be a Radon measure on an LCH space X, and f : X — C a measurable function
that vanishes outside a u-finite set. Then for any € > 0, there exists ¢ € Co(X) such that u({¢p # f}) < e.
Moreover, if f is bounded, we may take ||¢]co < || f]oo-

Proof. We assume first that f is bounded, so f € L'(u). Let E = {z € X : f(x) # 0}. By Proposition m
there exists a sequence (g,,) in C. that converges to f in L!. We take a subsequence that converges to f a.e.
and still denote it by (g,,) for simplicity. By Egoroff’s theorem, there exists A C E with u(EF\A) < €/3 and
gn — [ uniformly on A, and there exists a compact B C A and an open U D E such that u(A\B) < ¢/3
and p(U\FE) < ¢/3. Since g, — f uniformly on B, f|p is continuous, and by Tietze extension theorem, there

exists ¢ € C.(U) such that ¢ = f on B. Since {¢ # f} C U\B and u(U\B) < ¢, we have pu({¢p # f}) < e
Furthermore, if |¢(z)| > || f|lco, Wwe may truncate ¢(z) to ||f||oo%, which does not change ¢|p and does not
impact the continuity of ¢. Therefore we mat take ||¢]|co < ||f oo

On the other hand, if f is unbounded, we make A, = {0 < |f| < n}, which increases to £ = {f # 0}
as n — oo. Then there exists sufficient large n such that u(FE\A,) < €/2. By the preceding argument, there

exists ¢ € C.(X) such that ¢ = fixa, except on a set of measure less than €/2. Hence u({¢ # f}) < e. O
Finally we discuss how to construct a Radon measure from another one.

Proposition 2.22. Let i be a Radon measure on a topological space X. If ¢ € L'(1) and ¢ > 0, we define

V(E):/E<;5d,u7 EecA.

Then v is also a Radon measure on X.

Proof. One can easily verify that v is a Borel measure on X, and v < p. Then for each € > 0, there exists
d > 0 such that v(F) < e for all u(E) < ¢. Now we verify that v is a Radon measure on X.
o If K C X is a compact set, v(K) = [, ¢du < [y ¢dp < oc.
e For any Borel set £ C X and any € > 0, there exists an open U D E such that u(U\E) < 4§, and
v(U\E) < e. Hence v is outer regular on E.
e For any open set U C X and any € > 0, there exists a compact K C U such that u(U\K) < 4, and
v(U\K) < e. Hence v is inner regular on U.

To summarize, v is a Radon measure on X. O]
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2.4 Riesz-Markov-Kakutani Representation of Cy(X)*

Positive bounded linear functionals on Cy(X). Let X be an LCH space. Proposition states that
Co(X) is the uniform closure of Cc(X). If p is a Radon measure on X, the functional T, f = [ f du extends
continuously to Co(X) if and only if it is bounded with respect to the uniform norm || - ||oo, i-€. there exists a
constant vy > 0 such that [T}, f| < || f|le for all f € C.(X). In view of the equality

M(X)=Sup{/xfdu:f€Cc(X), OSfél}zsup{Tuf:fGCc(X), 0<f<1},

we know that T}, : C.(X) — C is bounded with respect to || - ||oc if and only if u(X) < oo, in which case p(X)
is the operator norm of T),. Therefore, we have identified the positive bounded linear functionals on Cy(X),
which are given by integration against finite Radon measures.

In this section, we identify the dual space of Cy(X), denoted by Co(X)*, which consists of all bounded
linear functionals on Cy(X).

Definition 2.23 (Signed Radon measures and complex Radon measures). Let X be a topological space.
(i) A signed Radon measure on X is a signed Borel measure on X whose positive and negative variations
are Radon measures.
(ii) A complex Radon measure on X is a complex Borel measure on X whose real and imaginary parts are
signed Radon measures. We denote the space of complex Radon measures on X by M (X), and define
||l = || (X), where |u| is the total variation of .

Remark. Since a complex measure is always finite, every complex Radon measure is regular. Furthermore,
every complex Borel measure is Radon in an LCH space in which every open set is o-compact (for example,
a second countable LCH space).

Theorem 2.24. If p is a complex Borel measure on X, then u is Radon if and only in |u| is Radon. Fur-
thermore, M(X) is a vector space and p v ||| is a norm on it.

Proof. By Proposition we note that a finite positive Borel measure p is Radon if and only if for every
Borel set E and every € > 0, there exists compact K C F and open U D FE such that u(U\K) < e.

If p = (1 — po) +i(ps — pa) and |p|(U\K) < €, we have pu;(U\K) < € for j = 1,2,3,4. Conversely, if
1;(U\K;) < €/4 for all j, we have |u|(U\K) < € for U = ();_, U; and K; = {J;_, K;. Hence yu is Radon if
and only if its total variation |u| is Radon.

For the second assertion, a similar argument shows that M (X) is closed under addition and scalar multi-
plication. Finally, to show p — ||u|| is a norm on X, let pq, e € M(X) and v = |p1 + 2, and take the Radon
Nikodym derivative f; = duy/dv and fo = po/dv. Then

\u+u|<x>s/X|f1+f2\dus/X|f1|du+/x|f2|dus|u1|<X>+|u2|<X>.

Hence the triangle inequality holds, and |||l = |u|(X) is a norm. O
We now discuss how to identify each T € C(X)* with a complex Radon measure on X.

Theorem 2.25 (Riesz-Markov-Kakutani). Let X be an LCH space. For each p € M(X), define

Tuf:/xfdm f € Co(X).

Then the map p+— T, defines an isometric isomorphism of M(X) onto the dual space Co(X)*.

We begin from the real case. While studying a possibly non-positive linear functional on Cy(X,R), the
following decomposition is extremely useful.
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Theorem 2.26 (Jordan decomposition). If T € Co(X;R)*, there exists positive bounded linear functionals
T* € Co(X;R)* such that T =T+ —T~.

Proof. For f € Co(X;R) with f > 0, we define
THf=sup{Tg:g€ Co(X;R), 0<g< f}

We claim that 7" is the restriction to Co(X;[0,00)) of a positive bounded linear functional on Co(X;R).
e For A > 0, we have

T(Af)=sup{Th:heCo(X;R), 0<h<Af}=sup{A\Tg:g€ Co(X;R), 0<g< f}=ATf.

e If0<g; < fiand 0 < gy < fa, we have 0 < g1 + go2 < f1 + f2, so that TT(f1 + f2) > Tg1 + Tgs, and
hence TT(f1 + f2) > TV fi + TT fo. On the other hand, if 0 < g < f; + fa, let g1 = min{f;, g} and
g2 =g — g1 = max{0,g — f1}, so that 0 < g1 < f; and 0 < g2 < fo. Then

Tg=Tag +Tgo <TTf1 +TT fa,

and T (f1 + fo) < TV f1 + T+ fo. Therefore T (f1 + fo) =TT f1 + T fo.
o Since [Tg| < [T lgllo. < I} £l for 0< g < f and T0 = 0, we have 0 < T+ < [T} |f]l
Now for any f € Co(X;R), both its positive fT = max{f,0} and negative parts f~ = max{—f,0} are in
Co(X;[0,00)), and we define Tt f =T+ f+ — T+ f~. If f = g— h, where g,h > 0, we have fT +h =g+ f~,
and Tf=Tf* —Tf~ =Tg—Th. It follows easily that T is a linear functional in Cy(X;R), and

T fl < max {TTfF, 77} < || T max {|| £ [loo, 1~ lloo } = 1T/l -
Hence T is bounded, and [|T| < || T

Finally, we define T~ =TT — T € Co(X;R)*. By definition of TT, we have T f > Tf for f € Co(X;R)
with f > 0, hence T~ is a positive linear functional. Thus we concludes the proof. O

Remark. For any T € Cy(X)*, consider its restriction T = U + iV to Co(X;R), where U,V € Co(X;R)*.
If f=u+ive Cy(X), where u,v € Cy(X;R), by C-linearity,

Tf=Tu+iTv=Tru+iTpv = (U +iV)u+i(U +iV)v = (Uu—Vv) +i(Uv + Vu).

It is seen T is uniquely determined by Tr. We then decompose U = Ut — U~ and V = V* — V~, where
U*,V*E € Cy(X,R)* are positive. By Riesz representation theorem, we can find finite positive Radon measures
/fl'é and uli associated with U* and V*, respectively. We define the complex Radon measure

p=(1h —pg) +i(u; —ur).

Then

/deuz(/deug—/xfduR>+z’</deu?—/deu1>
—(/Xudu;—/xudulz—/xvd,u;+/deul>+i</deug—/deuR+/Xudu}r—/XUdﬂj)

= (U+u7U7u7V+v+V7v) +i(U+v7U7v+V+us*u)
=Uu—-Vv)+i(Uv+Vu)=TF.

Therefore, every T € Cy(X)* is associated with a complex Radon measure p € M(X) such that T'f = [ f dp.
Furthermore, since ME, Hr, u}', p; are unique determined by 7', the complex Radon measure p is unique.
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Proof of Theorem[2.25, We have already shown that every T' € Cy(X)* is of the form T},. On the other hand,
if p e M(X), we have

‘/ fdu‘é/ Fldil < Iflwellel, £ € Co(X).
X X

Hence T, € Co(X)*, and ||T,|| < ||p||. Furthermore, we take h = du/d|p|, so that |h| =1 |ul|-a.e.. By Lusin’s
theorem [Theorem [2.21], for each ¢ > 0, there exists ¢ € C.(X) such that ||¢] = 1 and ¢ = h except on a
set E with |p|(E) < €/2. Then

||u||=/X|h2dlu|=/thu§‘/X¢du’+‘/x(¢—h)du‘

- ]/ ¢>du‘ T \/ (6—T) du‘ < Tl 18l + 16 — Flloclitl (B) < T ] + <.
X E

Letting € — 0, we have ||u|| < [|T},|. Hence ||u|| = ||7,]|, and the proof is complete. O

Remark. If we consider the real case, the mapping p — T}, is an isometric isomorphism from the space of
finite signed Radon measures to Cp(X;R)*.

Corollary 2.27. Let X be a compact Hausdorff space, C(X)* is isometrically isomorphic to the space M(X)
of complex Radon measures on X.

Remark. If in addition, X is metrizable, then X is second countable, and we know that every finite Borel
measure on X is Radon by Theorem Since complex measures are always finite, M (X) is indeed the space
of complex Borel measures on X, and C(X)* ~ M(X).

Corollary 2.28. Let yi be a Radon measure on an LCH space X. For each f € L*(u), define
vi(E) :/ fdu, FE €2
E

The mapping f — vy is an isometric embedding of L' (u) into M(X) whose range consists precisely of those
v e M(X) such that v < p.

Proof. By Proposition the complex measure vy on X is Radon and satisfies vy < p1. Moreover,

gl = w](X) = /X Fldu = fll.

Finally, if v € M(X) and v < p, taking f to be the Radon-Nikodym derivative dv/du yields vy = v. O
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2.5 Lebesgue Decomposition for Radon Measures on R"

In this section, we work in the Euclidean space (R™,m), which is a locally compact, Hausdorff and second
countable space. According to Theorem [2.19] if a Borel measure p on R"™ is finite on compact sets, it is a
Radon measure. By Lebesgue decomposition theorem, p has a unique decomposition

p=p+v,

where
e pis absolutely continuous with respect to the Lebesgue measure m, written p < m, i.e. p(E) = 0 for all
Borel sets E with m(E) = 0.
e v and the Lebesgue measure m are mutually singular, written v L m, i.e. there is a Borel set A such
that m(R™\A) = v(A) = 0.
Clearly, both p and v are Radon measures on R™. The following theorem gives a further decomposition of u.

Theorem 2.29 (Lebesgue decomposition for Radon measure on R™). If v is a Radon measure on R™, there

1

R™) and a Radon measure v 1. m such that
loc

exists a locally integrable function f € L
w(E) = / fdm+v(E), E e BR"). (2.5)
E

Furthermore, for almost every x € R,

L nBa,)
r—o+ m(B(x,r))

= f(=). (2.6)

The proof of this theorem requires a finite version of Vitali covering theorem.

Lemma 2.30 (Vitali covering lemma). For any finite collection F of open balls By, B, - -+ , By in an arbitrary
metric space X, there exists a subcollection G C F of disjoint balls such that

N
UBic 3B,
j=1

Beg

where 3B denotes the ball with the same center as B but with 3 times the radius.

Proof. We choose balls in G by the greedy algorithm. First take B{ to be the largest ball among F. Having
chosen {Bj{, B5,- -, B} }, repeat the inductive step:

e if the remaining balls each have nonempty intersection with Ule B, stop;

e otherwise, take B;_ , to be the largest among F\{Bj, By, --- , B};} that are disjoint from Ule Bi.
This algorithm must stop after less than N rounds, with the chosen balls B, BS,--- , B/, disjoint. Then it
remains to show that B, C F := U;L:1 SB;- for every i = 1,--- ,N. We claim B; N E # (), otherwise the
algorithm would not have stopped at By, By, --- , B;,. We let jo be the minimal j such that B; N B; # (). Then
B; does not intersect Uf(:ll B;, and the radius of B; is no greater than Bj , since Bj, is maximal at step jo.
Recalling that Bj N B; # (), by triangle inequality, 3B} O B;. O

Lemma 2.31. If v is a Radon measure on R™, and v 1. m, then for almost every x € R™,

lim v(B(xz,1))

A By 27)

Proof. We take the Borel set A such that m(R™\A) = v(A) =0, and define

. v(B(z,r)) 1
E), = Al ot Sk St VP E=1,2,--
¢ {xe P m(B,r) K o
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By outer regularity of v, for any ¢ > 0, we can find an open set U D A with v(U) < e. By definition of Fy, for
each z € E}, we can take a ball B(z,r,) C such that

(2.8)

We take a compact subset K C Ej, then K is covered by finitely many such balls. By Vitali covering lemma
[Lemma , we can further take finitely many disjoint balls B(z1,71), -+, B(xnx,rn) such that

N
K c | B(xj,3r)).

j=1

Applying the estimate (2.8]), we have
N N N
m(K) <Y m(B(x;,3r;) = 3" m(B(x;,r;)) < 3"k Y v(Bxj,r)) < 3"kv(U) < 3"ke.
j=1 j=1 j=1

Since the compact K C Ej, is arbitrary, by inner regularity of the Lebesgue measure, m(Fy) < 3"ke. Also,
since € > 0 is arbitrary, m(F)) = 0 for all k € N. Hence

{xGA:limsupl/(B(aM))))>0}—k©1Ek

oot m(B(z,r

has Lebesgue measure zero. Since m(R™\A) = 0, the limit (2.7) holds for m-a.e. x € R™. O

Proof of Theorem[2.29. We take the Lebesgue decomposition = p + v, where p < m and v L. m. By Radon
Nikodym theorem, there exists f € L{ (R") such that

loc

p(E) :/Efdm, VE € B(R").

Then f satisfies the identity (2.5). The second result (2.6) is an immediate consequence of the Lebesgue
differentiation theorem [Theorem and Lemma m O

Remark. The locally integrable function f satisfying (2.6]) is also called the derivative or density of the Radon
measure p with respect to the Lebesgue measure m.
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3 The Hardy-Littlewood Maximal Inequality and Differentiation

3.1 The Hardy-Littlewood Maximal Inequality

In this section, we work in the Euclidean space R™ with the Lebesgue measure m. For a locally integrable
function f € L _(R"), we define the local average

loc
Ahe) = [ fwdy. cern
m(B(x, 7‘)) B(z,r)
To obtain a uniform estimate for A, f, we define the Hardy-Littlewood mazimal operator by

(M f) () :iglg(Arlfl)(l’) = sup [f(y)ldy, xeR™

o)
r>0 m(B(‘r7 T)) B(z,r)
Clearly M is sublinear. The function M f is also called the Hardy-Littlewood maximal function of f.

Theorem 3.1 (Hardy-Littlewood maximal inequality, weak type). The Hardy-Littlewood operator M is of
weak type (1,1). In other words, there exists a constant C,, > 0 such that for all f € L*(R™) and all X\ > 0,

Cn
m{Mf=A}) < =l fle (3.1)
Remark. The inequality (3.1)) may look a bit stricter than the condition [M f]; < Cp||M f||L1rn) of weak

type (1,1). But, as we will see, the two assertions are indeed equivalent.

Proof of Hardy-Littlewood mazimal inequality [Theorem , We will show that for all f € L'(R"),
3n
m({Mf > 3D < il A> 0,

Noticing that m({Mf > A}) <m({Mf > X —e€}) <3"(X —€)71||f|lz: for sufficiently small € > 0, the desired
inequality follows by perturbing € | 0.

Using the inner regularity of the Lebesgue measure, it suffices to show that m(K) < 3"A\71||f||: for each
compact subset K C {M f > A}. For each « € K, we take r, > 0 such that

e
- fldm > .
(B2 S

The collection of balls B(x,r,) forms an open cover of K, and we may take by compactness of K a finite
subcollection that covers K. By Vitali covering lemma [Lemma , we take a further collection of disjoint
balls By, Bg, - -+, By, such that K C U§:1 B;. Consequently,

3"1
‘f|dm§7||f||L1~ O
B;

j=1

k k
3" 3"
< 3" )< _
mK) <3 Yy < T3 / Afldm =" /U k

Using the Marcinkiewicz interpolation theorem, we immediately obtain the following result.

Theorem 3.2 (Hardy-Littlewood maximal inequality, strong type). Let 1 < p < co. The Hardy-Littlewood
operator M is of strong type p. That is, there exists a constant C,, ,, > 0 such that for all f € LP(R"),

1M fllze < Cpnll fllze-

Proof. The Hardy-Littlewood operator M is sublinear and of weak type 1. By definition of M f, we also have
|M fllpe < || fllLoe when f is a.e. bounded. Hence M is of strong type oo, and is of strong type (p, p) for each
1 < p < 0o by Marcinkiewicz interpolation theorem [Corollary O
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3.2 The Lebesgue Differentiation Theorem and a.e. Differentiability
In this section we apply the Hardy-Littlewood maximal inequality to prove some differentiation theorems.

Theorem 3.3 (Lebesgue differentiation theorem). Let f € Li (R™). For almost every x € R™,

1
Iim —— — f(x)|dy = 0. 3.2
A@Jﬂw f(2)|dy (3.2)

r—o0+ m(B(x,r))

Consequently, the local average function A, f converges almost everywhere to f, i.e.

for almost every x € R™.

Remark. Let f be a measurable function on R™. A point z € R" is said to be a Lebesgue point of f if the
identity (3.2) holds. The Lebesgue differentiation theorem implies that if f € L{ (R™), then almost every
point in R™ is a Lebesgue point of f.

Proof. We first prove the result for g € C.(R™). If x € R™ and € > 0, by uniform continuity of g, there exists
d > 0 such that |g(y) — g(z)| < € for all y € B(x,d). Then for all r < 4,

1
m(B(z,m)) /B(w) l9(y) — g(z)| dy <.

Hence (3.2)) holds for all continuous functions with compact support.
Now we prove the general case. Since differentiation is a local property, we may assume that f € L!(R").
For € > 0, choose g € C.(R™) such that ||f — g|]|z1 <e. We put h = f — g. By the triangle inequality,

[(Arf)(2) = f(2)] < [(Arg)(2) = g(2)] + [(Arh)(z) = h(z)] < |(Arg)(z) — g(2)| + (Ar[R])(2) + [A(2)].

Let A > 0. Then

({xER” limsup A, f — f|(z }

r—0+

<m |4z €R": limsup|A,g— g|(z) > A +m (g2 €R": limsup (A, |h])(z) > é +m | |h| > A
r—0+ 3 r—0+ 3 3

<m({zer @@ = 3}) +m(in=3).

By weak L! Hardy-Littlewood maximal inequality [Theorem [3.1] and Markov inequality,

3C On 1
m ({z € R" : limsup |A,.f — f|(z) > /\}) < —HhHLl + f||h||L1 < ﬂ

r—0+ A

Since € > 0 is arbitrary, the left-hand side of the last display is zero. The result then follows by taking the
union on the sequence \,, = % 1 0. O

Following is a particular case of Lebesgue differentiation theorem.

Theorem 3.4 (Lebesgue density theorem). Let E C R™ be a Lebesque measurable set. For almost every point
x € R", the density

1, ifzekFE,

0, ifr¢E. (34

. m<EﬂB(W>>:{

r—o0t  m(B(z,r))
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Remark. Let £ C R™. A point x € R" is said to be a density point of E if the

lim m(E N B(xz,r))

A By ¢

The Lebesgue density theorem implies that almost every point of a measurable set is a density point, and
almost every point outside the measurable set is not a density point.

Proof. The identity (3.4) is a special case of (3.3) when f = xg. O
We can employ the Lebesgue differentiation theorem to prove the Fundamental theorem of calculus.

Theorem 3.5 (Fundamental Theorem of Calculus). Let F' : R — C be an absolutely continuous function.
Then F is almost everywhere differentiable, and the derivative f = F' satisfies f € Li (R), and

loc
F(x):F(a)—i—/mf(t)dt, —00 < a<x<o0.

Proof. Since the differentiability is a local property, it suffices to deal with the restriction of F' on a compact
interval [a,b]. Let pp be the Lebesgue-Stieltjes measure generated by f on [a, b].

Step I. We claim that pp is absolutely continuous with respect to the Lebesgue measure m.

We fix € > 0, and choose § > 0 such that Zjvzl |F(b;) — F(a;)| < € for all disjoint intervals {(a;,b;)}Y

j=1
with total length less than 6. If E is a Borel set with m(E) = 0, by outer regularity of m, we take an open
U D E with m(U) < 4. Then U is a disjoint union of at most countably many intervals {(a;,b;)}52,, and

> ur((ag,b;)) <7 (F(by) — Flay)) <e.

N N
j=1 j=1

Letting N — oo, we have pup(U) < €, and pp(E) < e. Since € > 0 is arbitrary, up(E) = 0.

Step II. By Radon-Nikodym theorem, we take f € L'([a,b]) such that up(E) = [, fdm. We may further
globalize this result and assert that there exists a locally integrable function f € Li (R) such that

loc
uF((x,y}):F(y)—F(x):/yf(t)dt forall —oco <z <y < o0.

Step III. If = € R is a Lebesgue point of f, by Lebesgue differentiation theorem,

T+
lim — / ) - f@)|dy =0,

r—0+ 2r T

We split the integral to [x — r,z] and [z, 2 4 ] to get

Hence the right derivative of F' at x is

. F(x+4+r)—F(x) ) 1/“5'”
lim ————————~ = lim - — dy =
. . Jm s [f(y) = f(2)ldy = [(x),
and the same for the left derivative. Therefore F is differentiable almost everywhere, and F’ = f. O

Remark. A special case of this theorem is the one-dimensional Rademacher’s theorem. If we further assume
that F': R — C is Lipschitz continuous, then F is almost everywhere differentiable and F’ € L>°(R). Indeed,
the essential supremum of F’ is bounded by the Lipschitz constant.
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Theorem 3.6 (Rademacher’s Theorem). If f : R™ — C is a locally Lipschitz continuous function, then f is
almost everywhere differentiable.

Proof. Since the differentiability is a local property, we may assume that f is Lipschitz continuous on R”™.

From the one-dimensional case, we know that for each unit vector |v| = 1, the directional derivative f, = %
exists almost everywhere In particular, the partial derivatives (%) _, exist almost everywhere. We write
G= (%, %, BN aT ) We show that for almost every x € R",
h) — —G-h
L fat ) - f@)-Gh
|h|—0 Id

This implies that f is almost everywhere differentiable, and the gradient Vf = G.

Step I. For each |v] = 1, we claim that f, = G - v almost everywhere. We take a test function ¢ € C°(R").
Since f is Lipschitz, by Lebesgue dominated convergence theorem,

fim flz+tv) — f(x)
t—0 Jpn t

o(x) dv = A fo(@)¢(x) da.
Since ¢ is smooth, ¢, = V¢ - v. Applying integration by parts, we have

f(x +tv) — f(x)

o fo(@)p(z) dr = lim é(z) dz = lim f(x)¢(x —tv) — ¢() da

t—=0 Jpn t t—=0 Jpn t
[ @, /gf o /ga ) dr.
Therefore [, (fo — G -v)pdm =0 for all ¢ € CP(R"), and f, = G - v a.e.. For each |v] = 1, we write

A, ={z e R": G(x) and f,(z) exists, and f,(z) = G(x) - v}.

Step II. We take a countable dense subset (vx) of the unit sphere {|v| = 1}. By Step I, u(Ag, ) = 0 for all
k € N, and pu(A°) = 0, where we take A = (,—; A,,. We claim that f is differentiable at all z € A. Since
f is Lipschitz continuous, there exists a constant K > 0 such that |f(z) — f(y)| < K|z — y|, and all partial
derivatives are bounded by K. We take i # 0 in R™. Then for all £ € N,

|f(z+h)— f(z) -G Al

I
_ et [hlv) = fa+ |hlow)l | |f (@A Rlow) = f@) = G- Jhloe] |G- [Bl(ok — v)]
1] R 1]
e ) o )l |t W) =) i oy
< Klv—wvg| + f(I+|h=ZT)f(z) — G|+ K/n- v, — vl

where v = h/|h| is a unit vector. By density of (vg) in the unit sphere, for each € > 0, we take vy such that
|vgp —v| < €. Then for all x € A,

o @R = f@) = G

S i < Klv—wg|+|fo — G vp| + Kv/n-|vg —v| < K(1+/n)e,
o

where the last inequality follows from = € A,,. Since € > 0 is arbitrary, the above limit is zero. Therefore f
is differentiable at =, and the gradient Vf = G. O

Remark. Since each component of V£ is the limit of bounded measurable functions, |V f| € Ll _(R™).
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Finally we record some technical facts we will use later.

Theorem 3.7 (Differentiability on Level Sets). The following statements hold:
(i) Let f: R™ — R™ be a locally Lipschitz continuous function, and

Z ={xeR": f(z) =0}.

Then Df(x) =0 for m-a.e. x € Z.
(ii) Let f,g: R™ — R"™ be locally Lipschitz continuous functions, and

V={zeR":g(f(z)) ==z},
Then Dg(f(x))Df(z) =1d for m-a.e. x €Y.

Proof. (i) We may assume m = 1. Choose x € Z so that Vf(x) exists, and

m(Z N B(z,r))

lim (B, 1) =1 for m-a.e x € Z. (3.5)

If Vf(z) #0, we put V ={£ € 0B(0,1): Vf(z) &> 1|V f(x)[}. Then for all { € V,

0 =lim

[+ 1)~ 1VI@TE . (ferte) 1
in t — i - 5Ivr@).

t
Since | f(z)| > 0, there exists to > 0 such that f(z +t£) > 0 for all ¢t € (0,%9) and £ € V. Then

. m(ZNB(x,r))
o By

which contradicts (3.5). Hence m{z € Z : |V f(z)| # 0} = 0.

(i) We define A = {z € R" : Df(x) exists}, B = {z € R" : Dg(z) exists}, and X = Y N AN f~}(B). Since
z € Y\f71(B) implies f(z) € R"\B, and = = g(f(z)) € g(R"\B), we have Y\X C (R"\A) U g(R"\B). By
Rademacher’s theorem, we have m(Y\X) = 0.

Finally, for each « € X, both D f(z) and Dg(x) exist, and

D(go f)(x) = Dg(f(x))Df(x)

exists. Since (go f)(z) —x =0 a.e. on Y, and assertion (i) implies D(go f)(z) =Id a.e. on Y. O
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3.3 Second Differentiability of Convex Functions

In this section, we discuss the differentiation of convex functions on Euclidean spaces. Recall that a function
f:R™ = R is called convez if for all z,y € R” and 0 < A < 1,

fAz+ 1 =Ny) <Af(2)+ (1 =N f(y).

Proposition 3.8. Every convex function on R™ is locally Lipschitz continuous.

Proof. Let f:R™ — R be a convex function.

Step I. We first prove that f is locally bounded. We consider the compact hypercube @Q = [—N, N|™, with
vertices (r3)7_,. Then every x € Q is a convex combination x = Zzzl Ay of the vertices, and

on

fla) < ;)\kf(xk) < M= max (o) < oc.

Then sup,¢q f(z) < M. To derive a lower bound, note that for every = € Q,

£(0) £ 3F@)+ 30(=2) < 37(@) + 5 M.

N =

Hence inf,cq f(z) > 2f(0) — M.

Step II. Now we prove the local Lipschitz continuity of f. Fix x,y € B(0, N) with z # y, where N > 0 and
B(0,N) is the closed ball of radius N centered at 0. We choose p > 0 such that z = z + p(y — x) satisfies
2| = 3N. Then p = =% > 1, and

ly—z|

T A VA W T I S A S
ﬂw—fQL+(1l) )<ﬂ>+lt<ﬂ>+u&mﬁmu&»

Since |z — x| > 2N, we obtain

) - f@ <2 s @)=Y= (sl

M £€B(0,3N) N £eB(0,3N)

Interchanging x and y, the same estimate holds for f(z) — f(y). Hence f is locally Lipschitz continuous. [

Remark. According to Proposition and Rademacher’s theorem [Theorem , every convex function is
almost everywhere differentiable. In this section, we step further and deal with the second differentiability.
We begin by discussing some properties of derivatives of convex functions.

Lemma 3.9. Let f: R™ — R be a convex function.
(i) If [ is differentiable at x, then

fy) = f(@)+ Vi) (y — ). (3.6)
(ii) If, in addition, f € C*(R™), then V2f = 0 on R™.
Proof. (i) For each y € R™ and 0 < X\ < 1, by convexity of f, we have

[+ My —2)) — (=)
A

< fly) — f@).
Letting A — 0, we have

fy) = f(z) + V(@) (y — ).
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(ii) By Taylor’s theorem,

f) = F@) + Vi) —2)+ @y —2)T / (1= V2 f(x + t(y —2)) dt - (y — )

Then the estimate [3.6] implies

1
(y—o)7 / (1= )V2f( + tly — 2)) dt - (y — 7) > 0,

Hence given any & € R™, we set y = x + s§ with s > 0. Then the above inequality becomes

'3 /01(1 — V2 f(x + st&) dt - € > 0.
Letting s — 0, we have
¢V f(x)-€>0.
This proves assertion (ii). O

Indeed, for any convex function, we can find its second derivatives in the distributional sense.

Theorem 3.10 (Second derivatives of convex functions as measures). Let f : R™ — R to a convex function.
Then there exist signed Radon measures u = i such that for all functions ¢ € C?(R"),

f@mdx:/ pdu, i j=1,2,--- n.
R™ n

Proof. We define f€ =, - f € C°(R"), where 7, is the standard mollifier. For any v € R™ with |v| = 1,

> / F w005 da = / ¢ > fravivide >0, ¢€CZ(R") and ¢ > 0.
R™ R™

ij=1 i,j=1

Letting € | 0, we have

Ty = Z [z, viv5 d.

ij=1 R"

Thus we define a positive linear functional T}, on C2(R™). According to the Remark under the Theorem m
there exists a Radon measure p” on R™ such that

T,p= | ¢du’, forall ¢ € C*(R™).
]Rn

For each i = 1,2,--- ,n, we define u® = u%. If i # j, we set v = eijg-j. Then

_ Gii + Gj; N 1 1
- f¢mzm] dx = /n f (QJj + d)l]) dx 2 Jan fQSIle dx 9 /Rn fﬁbx_,»mj dx

n

1 1
= E forivkv do — B / JPui; dx — 3 / JPuju; dx
R‘IL Rn

ki=1YR"
1 3 y y
= [ ¢du’— 5 | ¢dp" — | dp = [ ¢du?,
R"’L 2 R?L 2 R’!L R’!L
where we set p¥ = p¥ — 2% — 149, Then we complete the proof. O
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Remark. According to the Lebesgue decomposition theorem, every signed Radon measure ;% has a unique
decomposition y¥ = pid + p where pid < m and p¥ 1 m. We write

M= (Mij)?,j:h M = (M;Z:)Zj:lv M = (N?):‘L,j:r

By Radon-Nikodym theorem, we define f¥ = du%./dm to be the density of the absolute continuous part of
1 with respect to the Lebesgue measure m. Then

fll f12 . fln
D2f _ f21 f22 .. an
fnl fn2 .. fnn

is a matrix valued function, and every element f¥ is locally integrable. According to the Theorem we
have the decomposition

M(E) = / D?fdm + M(E).
E
In fact, a convex function has not only distributional second derivatives as Radon measures, but also classical

derivatives almost everywhere. The main result of this section is presented below.

Theorem 3.11 (Alexandrov Theorem). Let f : R™ — R to a convex function. Then f is almost everywhere
twice differentiable. More precisely, there exists V2 f : R™ — R™ ™ such that for almost every x € R™,

iy s (1) = @) = V(@) (0= 2) = 500 - 0 Py - ) =0, (37)

vou fy —af?
To prove this theorem, we need some maximal inequalities concerning convex functions in a ball.

Lemma 3.12. If f : R™ — R is convex, there exists a constant Cp, > 0 such that for each ball B(x,r) C R",

Chn
d 3.8
WIS i /| LWl (3.5)
and
Ch
yeesg(sxg)‘vf(yﬂ < W /B(w)r) |f(y)] dy. (3.9)

Proof. Step I. We first prove (3.8) for f € C*(R™). Given B(x,r) C R", we fix z € B(x, §). Then

)= f(2)+ V() (y—2).

We integrate this inequality with respect to y over B(z, 5) to obtain

1 A
IO S By S J OB gy [ 1wl (3.10)

’2

Next, we choose ¢ € C°(R™) such that 0 < ¢ <1 on R"”, ¢ =1 on B(0, %) and ¢ = 0 outside B(0,1), and
write My = supy,<; [Vé(y)|. Then the function ¢, .(y) = (%) satisfies

r

0< ar <1, |Vg,| <2,
¢=1on B(z,5), ¢=0onR"\B(z,r).
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We multiply by ¢, (y) the estimate f(z) > f(y) + Vf(y) - (# — y) and integrate with respect to y on B(z,r):

f(z) /B - bz (y) dy > /B - F(Y)¢ur(y) dy + /B - G2V I(Y) - (2 —y)dy
— [ ) Garl) = Vs ) - dy = -0 [ )]y,
B(xz,r) B(x,r)
This inequality implies
M
f(z) > *m /B(w’r) |f(y)| dy. (3.11)

Since z € B(x, ) is arbitrary, we combine (3.10) and (3.11)) to obtain the estimate (3.8).

Step II. More generally, for a convex function f : R®™ — R, we define f¢ = n. x f, where ¢ > 0 and
ne(y) = e "n(e~1y) is the standard mollifier. Clearly f¢ € C°°(R"), and f€ is convex, since

PO+ (=N < [ FOw (L= Ny - nz) d=

<A flr—2me(z)dz+ (1 =A) [ fly—2)n(2)dz < Af(z) + (L= N f(y)-

R™ Rn

Applying the assertion (i) for C? functions, we have

¢ _ G e
eBog) 7@l < m(B(z,r)) /Bw) Sy

for each ball B(z,r) C R™. Since f is locally Lipschitz continuous, f¢ — f uniformly on B(z,r) as € — 0,
which gives the same estimate (3.8 for f.

Step III. For each z € B(x, §) such that V f(z) exists, define

<ly—2[ <

e~ =
N3

1
5.~ {yer: VI =2 2 5V - 41}
Then m(S,) > Ar™, where A > 0 is a constant only depending on n. Using the estimate (3.6)), we have
T
F) > f(2) + £V ()]

Integrating with respect to y over S(z) gives

8 1 8
< 2. — dy < —— - dy.
VIS T ey [ W SOl S g [ 1w~ sl
This estimate and (3.8]) complete the proof of assertion (i) for convex functions f. O

Proof of Theorem[3.11] The proof has four steps.

Step I. According to the Lebesgue differentiation theorem [T heorem and Rademacher’s theorem [Theorem
[3.6), for almost every z € R™, the gradient V f(z) exists and satisfies

. 1 -
)H{)h (B, 1) /B(w) IV f(y) = Vf(z)|dy =0, (3.12)

and

. 1 2 2 _
Jim s | 1P = D@l dy =0 (3.13)

32



By singularity of g% and Lemma for almost every x € R", the measures (u/) satisfy

Lo (B, )

=0, .7=1.2--- .m. 3.14
rhor m(Bla,r)) 0 DT ool (3.14)

We fix such a point x, and we also assume xz = 0 for simplicity, since our proof is adapted to the convex
function (7. f)(y) = f(y — x). We choose r > 0 and let f¢ = * f. For y € B(0,r), by Taylor’s theorem,

1
£ = PO+ VIO g+ [ (0= 0yT VR s
= PO+ V) -+ 5y DO+ [ (1= g7V () = D20 .

Step II. For any function ¢ € C?(B(0,r)) with |¢| < 1, we multiply the equation above by ¢ and take the
average over B(0,r). Then

: () = F5(0) = V1(0) -y — LyT D2

BT o (740 = O = 970) - = 507010l )y
= # ! _ T 2 re N2
~ (B0, /Bm,r)*b(y) (/ =0y V7 (w) Df@”ydf) dy (3.15)
- [ - o T[VEfe(ty) - D? ini’s theorem
—/0 (1-1) (m(B(O,r)) /B(O,r) ¢y [V f(ty) - D f(O)]ydy> dt (By Fubini’s th )

Y1t 1 2 . .
= /0 3 (m(B(O, ) /B(O,tr) 0] (;) 2T [V2f¢(2) — D2f(0)] zdz) dt. (Change the vairable z = ty)

To estimate the inner integral, we use integration by parts:

ge(t) = /B(o,tr) ¢ (%) 2 V2 f(2)zdz = /B(o,tr) (=) Zi 8;?;2] ((25 (%) zl—zj) dz.

Letting € — 0T, we obtain

51—1>I(I)1+g€( )= /B(O ) Z azlazj ( ( )ZZZ]) dz

=3 [ (%) iy i (3.10

i,j=1
Z/O fzj¢ zzzj dz + Z/ lej d,us
ij=1 tr) ij=1 B(0, t’r‘)

Furthermore, we have the following estimate:

TQ/ \|V2f(z)||Fdz:r2/
B(0,tr) B(0,tr)

= 7"2/ / ne(z —y) dM (y)
B(0,tr) B(z,e€)

n

<2 / / Ine(z — 9)| dJu|(y) dz
B(0,tr) i,jzzl B(z,e€)

ge(t)
t2

IN

dz
F

Vne(z —y)f(y) dy

dz
F
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By Fubini’s theorem, we have

n

gelt ;
(2) <7t Z/ / Ine(z — y)ldz | d|pu|(y)
! i,j=17 BOstr+e) \/ B(y,e)nB(0,tr)
<52 / dz | dlu|(y).
€ ij=1 B(0,tr+e) B(y,e)NB(0,tr)

Since (%) are Radon measures, we have szzl || (B(0,7 + 1)) < 00

ge(t) _ r?min{e™, t"rm}
<
2~ €n

S (B, tr +€)) < chmin{L - }s o,

ij=1

where C is a constant only depending on f, » and n. Hence we applying dominated convergence theorem to

let ¢ — 07 in (3.15)), and plug-in (3.16]):

: 0~ V) y— LyTD?
ST o, 20 (70 =10 = V10 = 57 D00 ) dy

= 11_t 1 E ZT 2 zZ)— 2 zaz
- | = (m(B(W))/B(O,m‘f’(t) [D*f(2) - Df(0) d)dt

n 14 )
+ Z /0 1t2t <m(B(107tr)) /B(O’tr)(;s (;) 225 d#?) dt

ij=1

1 1
2 1 2¢(,) _ D2 P r2 max |M;|(B(0,tr))
<o | (m(B(O,tr)) /Bm,m IP°5(2) = D" f(O)lled ) a0t s [ G

where C is a constant depending on f,r and n only. According to the properties (3.13)) and (3.14), and taking
the supremum over all ¢ € C2(B(0,7)) with |¢| < 1, we have

o o
BT Sy, 0 = 00, (317)

where
h(y) = f(y) — F(0) — VF(0) -y — ~y T D2f(0)y. (3.18)

2

Step III. We claim that there exists a constant C' depending on f and n only, such that

C
esssup |Vh(z)| < 7/ h(y)|dy + Cr 3.19
xeB(o,g)I ) r-m(B(0,7)) B(O,r)| )l (3.19)

for all 7 > 0. This estimate follows by applying (3.9) on the convex function g(y) = h(y) + 3||Df(0)||2|y|?.
Step IV. We fix 0 < ¢, < 1. By (3.17)), for some o > 0 depending on 7 and €, we have

m({z € BO.1) : ()] > o)) < =5 / [h(2)] dz < 5 m(B(0,r))
€r= JB(o,r)

for all 0 < r < ro. Thus for each point y € B(0, %), there exists z € B(0,r) with |y — z| < n*/"r such that
|h(2)| < er?. If not, a contradiction arises from

m({z € B(0,r) : [h(z)] = er®}) = m(B(y,n"/"r)) = n-m(B(0,r)).
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By the estimate (3.19), for all 0 < r < 1 and all y € B(0, 5),

_ 1/n
)| _ B+ = hE]
r? r? T BOr)
ceronn (s [ e+ 1) < ek Ot e )
re m(B(Oa ’I")) B(0,r)

Since 0 < €,1 < 1 are arbitrary, we have

1
lim — sup |h(y)| =0.
T 0T T yeB(0.5)

Recalling the definition (3.18) of h, we have

. 1 1
lim —  sup fly)— f(0)=Vf(0) -y— *yTDQf(O)y =0,
r—0t+t T y€B(0,%) 2

which implies (3.7) for z = 0. The same estimate holds for every = € R" satisfying (3.12)), (3.13)) and (3.14]),
which concludes the proof. O
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4 FErgodic Theory

Setting. Let (X,.%,u) be a o-finite measure space. We consider a mapping 7' : X — X such that

(i) T is measurable, i.e. T~Y(E) € F for each E € .Z;

(ii) T is measure-preserving, i.e. u(T~*(E)) = u(E) for each E € Z.

(iii) We call the quadruple (X, %, u,T) a measure-preserving system.
If in addition for such a transformation T' we have that T is a bijection and T~ is also a measure-preserving
transformation, then T is called a measure-preserving isomorphism.

If f: X — Cis a measurable function and T is a measure-preserving transformation, the composition foT

is measurable. Furthermore, if f is integrable, so is f o T, and

/deu:/xfonu.

The setting described above is of interest, in part, because it abstracts the idea of a dynamical system, one
whose totality of states is represented by the space X, with each point x € X giving a particular state of the
system. The mapping T : X — X describes the transformation of the system after a unit of time has elapsed.
The iterates, T" = ToT o---oT (n times) describe the evolution of the system after n units of time. In many
scenarios, we are interested in the average behavior of the system as the time n — oo. To be specific, given a
measurable function f on (X, %, u), we aim to study the ergodic averages

Z_j f(T z)
k=0

3=

(Anf)(z) =
and their limit as n — oo.

4.1 The Mean Ergodic Theorem

We first discuss a general ergodic result for Banach spaces.

Theorem 4.1 (Mean ergodic theorem). Let T : X — X be a bounded linear operator on a Banach space X,
and assume that sup, ¢y ||T"|| < co. Forn € N, define the ergodic average

1 n—1
k=0
(i) If x € X, the sequence (A,x)22; converges if and only if it has a weakly convergent subsequence;
(i) The set
L ={x € X : the sequence (A,x)s>; converges}

n=1

is a closed T-invariant subspace of X, and L = ker(Id —=T) @ R(1d -T).
(iii) If X reflexive, then L = X.
(iv) Define the operator A: L — L by A(zo + x1) = zo for o € ker(Id —T') and z1 € R(Id—T). Then
lim A,z = Az
n—oo

for all x € L, and A satisfies

AT =TA=A%>=A, and |A| <sup|T"|.
neN
The proof of this theorem requires some lemmata.
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Lemma 4.2. Assume ¢ = sup,,cy |[|[T"] < oco.
(i) For eachn €N, ||A,| < c and ||A,(Id-T)|| < <.
(i) If x € ker(Id —=T), then for each n € N, we have Apxz = x and ||z|| < c||z + (Id =T)&|| for all { € X.
(i) If x € ker(Id =T) and y € R(Id =T, then ||z|| < cl|z + .
(i) ker(Id —T) NR(Id —T) = 0, and L := ker(Id =T) ® R(Id —T) is a closed subspace of X.
(v) T(L) C L.
(vi) If y € R(Id =T), then lim, o Apy = 0.

Proof. (i) Since A,, = L(Id+T + T? 4+ --- + T"), we have

n—1
1 1 1 ™ 1
[An]l < =Y IT* < sup [T = ¢, and [|A,(1d=T)| = — [|1d =T"| < I  1te
n = neN n n n

(ii) If = € ker(Id —T'), we have Tz = x and by induction 7"z = z for all n € N and hence A,z = z. Moreover,
by (i) we have A, (Id —T)¢ — 0 as n — oo for all £ € X, and

lall = tim [l + Au(ld~T)E] = lim |4, (x + (d-T)O)]| < ez + (1d~T)e]|.

(iii) If y € R(Id —T), there exists a sequence &, € X such that (Id —T)&, — y. We take £ = &, in (ii) and
take the limit n — oo to obtain ||z|| < ||z + y|.

(iv) We let z € ker(Id —=T) N R(Id —T'). Then —z € R(Id —T), and by (iii) we have ||z| < ¢||lx + (—x)|| = 0.
Next we show that ker(Id —T") @ 9R(Id —T) is closed. Let z, € ker(Id —T') and y,, € R(Id —T') be sequences
whose sum z, = y, + 2, converges to some element z € X. Then (z,) is a Cauchy sequence in X, and by (iii)
the sequence () is also Cauchy, and hence y,, = z,, — x,, is also Cauchy. Since ker(Id —7T") and R(Id —T') are
closed subspaces of X, the Cauchy sequences (z,,) and (y,) converge to = € ker(Id —T) and y € R(Id -T),
respectively, and z = x + y € ker(Id —T') & R(Id -T).

(v) We take = € ker(Id —T") and y € R(Id —T'), and take a sequence &, € X such that (Id —=7)¢,, — y. Then
Tx+y) =cz+Ty=x+ lim T(Ad-T)&, =z + lim (Id -T)(T¢,) € ker(Id -T") ® R(Id -T).
n—oo n—oo

(vi) For any € > 0, we take £ € X such that clly — (Id =T)¢|| < §. By (i), we have [|A,(Id =T)¢| < LE[i¢],
which tends to 0 as n — oo. Then there exists N such that [|(A, — A,,)(Id =T)¢|| < § for all n,m > N, and

HAny - Amy” < ||Any - An(Id _T)£H + ”(An - Am)(ld —T)€|| + HAm(Id _T)§ - Amy”
< Anllly = Id =T)E] + [|(An — Ap)(Id =T)E]| + [| A || [|(Td =T)E — 3|
< 2¢|ly - (1A -T)¢l| + 5 <

Hence (A,y) is a Cauchy sequence, and
. . . €
Jim f[Anyll = lim [[An(y — (Id =T + lim [ An(1d =T)E] < 3,

which implies A,y — 0 as n — oco. O

Lemma 4.3. Let x,xq € X. The following are equivalent:
(a) zg € ker(Id —T) and x — xg € RAd -T).
(b) limy, o0 [[Anx — 20]| = 0.
(c) There exists a subsequence ny, such that for all f € X*,
lim f(An,z) = f(zo)-

k—oc0
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Proof. The Lemma [4.2] (vi) implies (a) = (b), and obviously (a) = (c). Then it remains to prove (c) = (a).
If (c) holds, we take f € X*. Then T*f = foT : X — C is a bounded linear functional, and

Flawo — Tao) = (f = T* )(wo) = Jim (f = T*f)(An,2) = lim f((1d~T)Ap,.2) =0,

where the last equality follows from Lemma (i), and we have T'zy = x¢ by Hahn-Banach theorem.

Now we assume that =z — 29 € R(Id—T). By Hahn-Banach theorem, there exists f € X* such that
f(xr —z0) =1 and f(¢é —T¢) =0 for all £ € X. This implies that f(T*+1¢ — T*¢) =0 for all ¢ € X and all
k € Ny. By induction, we have f(T*¢) = f(¢). Hence

I
-

n

F(T*x0) = f(x0)

0

f(Apz) =

1
n

ol
Il

for all n € Ny. According to (c), we have f(z) = f(zo), and f(x —x0) = 0, which is a contradiction. Therefore

x — 29 € R(Id —T), and we complete the proof. O
Now we prove the main theorem.

Proof of Theorem[{.1 By Lemma the sequence (A, )22 ; converges in norm if and only if it has a weakly
convergent subsequence, if and only if v € L = ker(Id —T)@%(Id —T'). By Lemma (iv) and (v), the subspace
L is closed and T-invariant. Furthermore, since ||A, || < ¢ for all n € N, for every « € X, the sequence (A,x)
is bounded. If X is reflexive, by Banach-Alaoglu theorem, every (A,x) has a weakly convergent subsequence
(Ap,x), which implies € L, and hence L = X.

Finally we consider the operator A defined in (iv). Then A? = A by definition. By Lemma (iii), we have
| A|l < ¢, and by Lemma [4.2] (vi), lim,,—,00 A(2o + 1) = Azg. Since A commutes with T'|1,, and A vanishes on
the range of operator Id —T', we have TA = AT = A. O

Since Hilbert spaces are reflexive, we have the following mean ergodic theorem for Hilbert spaces.

Corollary 4.4 (Mean ergodic theorem). Let T be a bounded linear operator on the Hilbert space H such that
sup, ey [T"|| < oo, and let Pr be the projection operator onto the subspace

ker(Id-T)={z € H : Tz = x}.

Then for every x € H, the ergodic average

n—1
1
A,z = — Z TkEz — Prx in norm as n — oo.
n
k=0
In particular, we take the Hilbert space to be L?(X,.%, u). If T is a measure-preserving operator on X, we
regard T as a linear operator on L?(X,.%, ) by writing Tf = f o T. Then T is an isometry on L?(X,.Z, u),
ie. |Tfllzz = ||fllge for all f € L*(X, %, u), and |T| = 1. Consequently, we have ||T"| < 1 for all n € N,

and we can apply the mean ergodic theorem on this system.

Corollary 4.5 (Mean ergodic theorem). Let (X,.%,u,T) be a measure-preserving system, and let Pr be the
projection operator onto the subspace

Gz{gELQ(X7§7u):gOT:g}

Then for every f € L*(X,.%, 1), the ergodic average

n—1

1
ZfoTk — Prf in L*(X,Z,p) as n — oo.
k=0

n

Anf =
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In finite measure spaces, the ergodic average A, f also converges in L'. This conclusion follows from the
convergence result in L? and the density of L? in L.

Corollary 4.6. Let (X,.7,u, T) be a measure-preserving system such that i is finite. For each f € LY(X,.Z, i),
the ergodic average A, f = EZ;S foT* converges in L' to a T-invariant function f € LY(X,.%, u

NN

Proof. Since y is finite, we know by Cauchy-Schwartz inequality that L?(X,.%,u) C LY (X, %, pu
g € L*(X,.Z, ), by Cauchy’s inequality and Corollary

For any

14ng = Prgller < \/IlAng = Prg|z2 1]l z> = Vu(X) [ Ang — Prglz> — 0.

Hence (A,9) is a Cauchy sequence in L'. If f € L}(X,.%, ) and € > 0, we choose g € L?(X,.%, 1) such that
If =gl < €/3. Since |T(f — g)llzr = |If — gllz1, we have ||[An(f — @)l < |If — gllzr < €/3 for all n € N.
Furthermore, there exists N such that ||A,g — Amgllrr < €/3 for all n,m > N, and

”Anf - Amf||L1 < ”Anf - AngHL1 + ”Ang - AmgHL1 + ”Amg - Amf”Ll < €.

Hence (A, f) is also a Cauchy sequence in L', which converges to a function f € L'(X,.Z,u) by L'-
completeness. To show that f is T-invariant, note that

4foT = duflis = | L (ro1" = D) < 2l

L1

which converges to 0 as n — co. Hence foT = f a.e., and f is T-invariant. O

4.2 The Maximal Ergodic Theorem

We now turn to the question of almost everywhere convergence of the ergodic averages. As in the case of the
averages that occur in the Lebesgue differentiation theorem, the key to dealing with such pointwise limits lies
in estimate for the corresponding maximal function:

1<n<oco 1<n<co N —_

n—1
1

ff= sup A,f= sup foOTk.
k=0

We first state our main result below.

Theorem 4.7 (Maximal ergodic theorem). Let (X, %, u,T) be a measure-preserving system, and fixr o € R.
For each f € LY (X, %, 1), define

1<n<oo T _

1 n—1
E({:{xeX: sup Zf(Tkx)>a}.
k=0
Then
on(E) < [ Faus |l
Remark. If o > 0, the result can be written as
¥ 1 1
wEL) < — | fdp < —[[fllL (4.1)
« E, (6%

This result is a corollary of the following maximal inequality.
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Lemma 4.8 (Maximal inequality). Let U : LY(X,.%, u) — LY(X,.%, 1) be a positive linear operator such that
Ul <1. For g € LY(X,.Z, 1), define the functions

gn=g+Ug+U’g+---U" g

forn € N, with go = 0. Let Gy(x) = maxo<n<n gn(x) for all x € X. Then for every N > 1,

/ gdp > 0.
{GN>O}

Proof. Since U is a positive linear operator, for 0 <n < N, we have UGy + g > Ug,, + g = gn4+1. Hence

UG >  max > max
Ntg= <n<N+1g" ~ 1<n <Ng"

Since go = 0, on the set £ = {Gx > 0}, we have
UGN+g> X gn = max gn = GN.

0<n<N

Therefore g > Gy — UGN on E. Since Gy > 0, we have UGy > 0, and
/gduz/GNdu—/UGNd,u:/ GNdu—/UGNdu
E E E X E
Z/ GNd/.L—/ UGNd,U:”GN”Ll_HUGNHLl ZO,
b'e b'e

where the last inequality follows from ||U]| < 1. Then we complete the proof. O
Now we prove the main theorem.

Proof of Theorem[{.7 Define g = f — «a and Ug = g o T' in Proposition [£.8] Then

Ef—{:cEX sup — "z:ka }—[j{xeX:GN(x)>O}.

n
neN N—=0

By Proposition and Lebesgue dominated convergence theorem,
/ fdu—oz,u(E(’;):/ gdu > 0.
Ef B

Thus we complete the proof. O

Remark. When o« > 0, we apply the same result on the negation —f € L(X,.%, i), we have

1
k
< — .
o(dar Ao <o) < i
n—1
1 > foT*
k=0

Combining this with (4.1]), we get the two-sided bound:
2
p| sup |Anfl>a)=p| sup |— >a| <= flle
1<n<oo 1<n<co | T «

We later use this conclusion in the proof of pointwise convergence result.
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4.3 The Birkhoff Ergodic Theorem

In this section, we focus on the pointwise convergence theorem of ergodic averages. Our result is established
on finite measure spaces, and it is convenient to assume that the measure-preserving system (X, %, u,T) is
on a probability space. Before we proceed, we first introduce the definition of ergodicity.

Definition 4.9 (Ergodic transformation). Let 7' : X — X be a measure-preserving transformation on a
measure space (X,.Z, u). Define the invariant o-algebra of T by

Ip={Ee€ZF:T Y (E)=E}.
The mapping T is said to be p-ergodic if Sy is trivial, i.e. for each E € Zp, either u(F) =0 or u(X\E) = 0.
Following are some alternate characterizations of ergodicity.

Proposition 4.10. Let (X, %, u,T) be a measure-preserving system. The following are equivalent:
(i) T is u-ergodiC'
(ii) For any E € %, if T"Y(E) and E only differ by a p-null set, i.e. u(T~*(E)\E)+ p(E\T~Y(E)) =0,
then p(E) =0 or u(X\E) = 0;
(iii) For any measurable function f: X — C, if foT = f a.e., then f is constant a.e..

Proof. (i) = (ii). Let E be a set such that u(T~Y(E)\E) + u(E\T~'(E)) = 0. Then

E)N\E C U TN ENTHE) = [ THTH(B)\P),
k=0 k=0
n—1
E\T™(E) c | T™MENT1(B) = | THE\TH(E)).
k=0
Since T is measure-preserving, we have u(T~"(E)\E) + u(E\T~"(E)) = 0. We define

||
ﬁDé@

U

Then T71(F) = F, and we have either u(F) =0 or u(X\F) = 0 by ergodicity of u. Moreover,

F\E—ﬁ(L_JT >\E ﬂUT

N= N=1n=N
E\F = U E\ < U T‘"(E)) = N B\T(®)
N=1 n=N N=1n=N

Hence u(E\F) = p(F\E) = 0, and we have either y(F) =0 or u(X\E) = 0.

(ii) = (iii). For f given in (iii), by considering Ref and Imjf separately, we may assume f : X — R and
foT = f ae. Foranyt € R, the sets B, = {f <t} and T~ 1(E;) = {f o T <t} only differ by a pu-null set.
By (ii), we have p({f <t}) =0or p({f > t}) = 0. We take

c=sup{t e R: p({f <t}) =0} =inf{t e R: pu({f > t}) = 0}.

Since {f > ¢} = U, endf > c+n '} and {f < ¢} = U, en{f < c+n7 '}, we have u({f > ¢}) = u({f < c}) =0.
Hence f =c a.e..

(iii) = (i). If £ is a T-invariant set, i.e. E =T 1(E), we take f = xp in (iii). Then xg oT = xp-1(g), which
equals x g a.e.. By (iii), xg = ¢ a.e., where ¢ € {0,1}. Hence either p(E) =0 or u(X\E) =0. O
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Proposition 4.11. A measurable function f on (X, F) is T-invatiant if and only if [ is Sp-measurable.

Proof. If f is T-invariant, then for all a € R,
{reX : fx)>al={recX: f(Tx)>a}=T"YHorc X: f(z) >a} € I
If f is #p-measurable, then for each z € X,

sefyeX:fly=f@)}=T"HyeX: fly)=Ff@)}={yeX: f(Ty) = f(z)}.
Hence f(z) = f(Tz), and we complete the proof. O

Now we are ready to introduce the main result.

Theorem 4.12 (Birkhoff’s theorem). Let (X, %, u,T) be a measure-preserving system on a probability space.
(i) For each f € LY(X,.Z,u), the ergodic average

n—1
1
Anf == T*
f=- kzofo

converges almost everywhere to a T-invariant function f € LN(X,. 7, ), where f = E[f|.#1].
(it) In addition, if T is p-ergodic, f = [y fdp.

Proof. (i) We may assume f = 0, otherwise we replace f by f — f. Consider g = limsup,, ., A,f. Note that

n+1

(Ani f)(&) = (A, )(T2) + T2,

Letting n — oo and take the supremum, we see that g(Tx) = g(z), and g is #r-measureable. Then we take
D = {g > ¢} € S, define f* = (f — €)1p, and choose F,, = {sup; <4<, Axf* > 0}. Then

F= U F, = {supAnf* >0}.
n=1

n>1

Since D is T-invariant, f*oT = (foT — €)1 p, and A, f* = (A,f — €)1 p. Hence

F—Dﬂ{supAkf>e} =D.
k>1

Since f + f o T is norm-preserving in L', we apply maximal ergodic lemma [Lemma and the dominated
convergence theorem on 1r, 1 1r = 1p to obtain

OS/ f*du—>/f*du.
F, D

To proceed, note that

o< [ fraus [G-du= [ (F-odn=—ann).

Hence (D) = 0. Since € > 0 is arbitrary, we know that ¢ < 0 a.s., and limsup,,_, . A, f < 0. We apply the
same result on — f to conclude liminf,,_,., A, f > 0. Therefore lim,, ., A,f =0 a.s..

(ii) If T is p-ergodic, then S is trivial, and f = E[f|97] =Ef = [, f dp. O

Remark. For a measure-preserving system (X,.%, u, T') on a probability space and a function f € L'(X,.Z, u),
we define the time average at x € X to be (Anf)(z) = %ZZ;S f(T*z) and the space average [ fdpu.
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A brief interpretation for Birkhoff theorem is that, if T' is y-ergodic, then for almost every x € X, the time
average converges to the space average as the time n goes to infinity.

We can obtain a stronger mean ergodic theorem as a consequence of Birkhoff’s theorem.

Theorem 4.13 (Mean ergodic theorem). Let (X,.%,u,T) be a measure-preserving system on a probability
space, and let 1 < p < co. If f € LP(X, F, ), the ergodic average A, f = %Zz;é foT* converges in LP to a
T-invariant function f € LP(X,.7,p), i.e.

n—1
| -
nhﬂn;<> EZfOT —f =0.
k=0 Lp
Proof. Let gnr = fX|f1<m and by = f — g = fXf>m- Then
1 n—1
- ZgM oT* = Elgm|I7] ace.,
k=0

and the convergence also holds in LP by dominated convergence theorem. Meanwhile,

1 n—1 1 n—1
w2 o< U3 o T4y, = ol
k=0 Lr k=0

Also,
/ [Elfoe] I7][P dyt < / Ellha | 57] dp = o |-
X X

By triangle inequality,

1 n—1
limsup | = > " har o TF = Elhar| 7] || < 2| o
n—o0o n
k=0 Lp
As M — oo, we have ||ha]|}, — 0 by dominated convergence theorem, which completes the proof. O

Remark. To summarize, if 1 < p < oo and f € LP(X,.Z, u), the ergodic average sequence (4, f) admits a
limit f € LP(X,.%, i) such that

lim |A,f — fllr =0, and lim (A, f)(z) = f(z) for ae. z € X.
n—oo

n—oo

In a nutshell, A4, f — f both a.e. and in L”.

4.4 The Krein-Milman Theorem

In this section we introduce a general result about compact convex subsets of a locally convex Hausdorff
topological vector space, which is used in the proof of unique ergodicity.

Definition 4.14 (Extreme point and face). Let X be a vector space and K C X a nonempty convex subset.
(i) A point z of K is called an extreme point of K if there do not exist y,z € K and 0 < A < 1 such that
Ay + (1 — A)z = 2. We denote by ext(K) the set of extreme points of K.
(ii) A nonempty convex subset F' C K is called a face of K if for all z,y € K and 0 < A\ < 1 such that
A+ (1 — ANy € F, we have z,y € F.

Remark. A point z € K is an extreme point of K if and only if the singleton {z} is a face of K.

43



Lemma 4.15. Let X be a vector space, and let A, B,C be convex subsets of K. If B is a face of A and C is
a face of B, then C is a face of A.

Proof. Let z,y € Aand 0 < A< 1. If Az + (1 — N)y € C, since C C B and B is a face of A, we have z,y € B.
Again, since C is a face of B, we have x,y € C. Therefore C is a face of A. O

Lemma 4.16. Let X be a locally convex Hausdorff topological space. If K € J# is a compact convex set and

{: X — R is a continuous linear functional, the set

Fy = {x € K : {(z) = sup E(@/)}

yeK
is a nonempty compact convex subset of K, and Fy is a face of K.

Proof. We abbreviate ¢ = sup, ¢ x £(y).
e Since K is compact and ¢ is continuous, there exists © € K such that ¢{(z) = ¢, and F' is nonempty.
e Since X is Hausdorff and £ is continuous, both K and £=*({c}) is closed. Hence F} is closed and compact.
e Since K is convex and f is linear, £=1({c}) is convex, and so is F.
To summarize, F' is nonempty, compact and convex. To prove that F' is a face of K, we fix z,y € K and
0 < X < 1suchthat Ax+ (1 =Xy € F. Then M(z) + (1 — M\)l(y) = £{(Ax+ (1 — X\)y) = c. Since both ¢(z) and
{(y) are no greater than ¢, we have ¢(x) = ¢(y) = ¢, and z,y € F. Hence Fy is a face of K. O

Lemma 4.17 (Existence). Let X be a locally convex Hausdorff topological vector space, and let K C X be a
nonempty compact convex set. Then the set of extreme points of K is nonempty.

Proof. The proof is divided to three steps.

Step I. Let J# be the set of all nonempty compact convex subset of X, and define the relation < on J¢ by
F < K if and only if F is a face of K. By Lemma[4.15] (K, <) is a partially ordered set. Since X is Hausdorff,
every nonempty chain 4 C %" has a infimum Cy = (e C € .

Step II. We claim that every minimal element of % is a singleton.

If K C 2 is not a singleton, we take z,y € K such that = # y and take a convex open neighborhood
U of x that does not contain y. Using the hyperplane separation theorem, there exists a continuous linear
functional £ : X — R such that £(y) < {(z) for all z € U. By Lemma[4.16] the set Fy € . is a face of K and
y € K\F. Hence K is not a minimal element of J¢".

Step IV. By Step I and Zorn’s lemma, there exists a minimal element £ C J#. By Step III, the minimal
element E is a singleton {x}. Then z € ext(K). O

Now we introduce the Krein-Milman theorem.

Theorem 4.18 (Krein-Milman theorem). Let X be a locally convex Hausdorff topological vector space, and
let K C X be a nonempty compact convexr set. Then K 1is the closed convex hull of its extreme points, i.e.

K = conv(ext(K)).

Proof. Following the proof of Lemma we have K € . To prove the desired result, it suffices to
show K C conv(ext(K)). We argue by contradiction. If z € K\conv(ext(K)), there exists an open convex
neighborhood U C X of z such that U N conv(ext(K)) = (. Since ext(K) is nonempty by Lemma
there exists a continuous linear functional £ such that £(z) > sup,ceamv(ext(x)) {(¥). By Lemma set
Fp={z e K: f(xr) =sup f(K)} is a face of K and F; Next(K) = (. On the other hand, by Lemma the
compact convex set Fy has an extreme point x, which is also an extreme point of K by Lemma This
contradicts the fact that Fy Next(K) = 0. Thus we complete the proof. O
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4.5 Ergodic Measures and Unique Ergodicity

Invariant measures. For convenience, we focus on a compact metrizable space X equipped with the Borel
o-algebra 2. Then X is a second countable space, and the space C'(X) of all continuous functions f : X — C
with the supremum norm || ||« is a separable Banach space. Furthermore, by Corollary the dual space of
C(X) is isomorphic to the space M (X) of complex Borel measures on X. Let T : X — X is a homeomorphism
on X. A Borel probability measure p on X is said to be T-invariant if

/fonu:/fdu, for all f € C(X).
b's b'e

We denote by My (X) the set of all T-invariant Borel probability measures on X.

Lemma 4.19. Let X be a compact metrizable space, and T : X — X a homeomorphism.
(i) Mrp(X) is a weak* compact convex subset of the unit sphere in M (X).

(ii) Mp(X) is nonempty.

(iii) If u € My (X), then (X, B, u,T) is a measure-preserving system, i.e. u(E) = p(T~1(E)) for all E € A.
Proof. (i) By definition M7 (X) is a convex subset of the unit sphere in M (X). By Banach-Alaoglu theorem,
the closed unit ball is compact in the weak* topology on M (X). Then it suffices to show that Mz (X) is
weak™® closed. We note that a sequence of complex Borel measures p,, — u in the weak* topology on M (X)
if and only if [y fdu, — [y fdp for all f € C(X). If p, € Mp(X), by setting f = 1 we know that
w(X) = lim, 00 (X)) = 1. Furthermore,

/fonu: lim foTdu, = lim fdunz/ fdu, Vfel(X).
X n—oo n—oo X

Therefore u € Mrp(X), and Mr(X) is closed and hence compact in the weak* topology on M (X).
(ii) Fix g € X. For each n € N, define the Borel probability measure p,, : & — [0, 1] by

1 n—1
/. fin= 3 3 ST), f€ CX)

By Banach-Alaoglu theorem, the sequence has a weak® convergent subsequence (i,,;). We denote by u its
weak* limit in M (X). Then u(X) = [, 1dp = limp o [y 1dp, =1, and for all f € C(X),

n; n;—1

1 & 1
Tdy= lim — T*z) = lim — T :/ du.
JoF o= 5 ) = i - 0% = [

Therefore u € Mp(X), and Mp(X) is nonempty.

(iii) We defined by v(E) = (Tuu)(E) = p(T~1(E)) the pushforward of i, which is also a measure on % by
continuity of T'. By the change-of-variable formula, it suffices to show that v = 1 on 4.

For a closed subset F' C X, define f,(z) = max{l —nd(z, F),0}. Then f,, € C(X) and f, | xr as n — oo.
By monotone convergence theorem,

v(F)= lim fndv = lim fnoTdu= lim / frdu = p(F).
X n—oo X

n—oo X n— oo

Thus v(F) = pu(F) for all closed subset F' C X, and u(U) = v(U) for all open subset U C X. By outer-
regularity of p, we have y = v everywhere on 4. O

Remark. Since T : X — X is an homeomorphism, both T and T~! are measurable. For all E € %, we have
w(B) = p(T~YT(E))) = u(T(E)). Hence the inverse T~ is also a measure-preserving transformation.
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Ergodic measures. A T-invariant probability measure y is said to be T-ergodic if T is p-ergodic, i.e.
TYE)=E = uE)c{0,1}.
We have the following characterization of T-ergodic measures.

Theorem 4.20 (Ergodicity and Extremity). Let X be a compact metrizable space, and let T : X — X be a
homeomorphism. If u € Mp(X), the following are equivalent:

(i) w is T-ergodic;

(#) w is an extreme point of Mp(X).

Proof. The proof has three steps.

Step I. Let pq, u2 be T-ergodic measures such that p;(E) = po(FE) for every T-invariant Borel set E C X.
We claim that [y fduy = [ fdus for each f € C(X), hence p11 = g by Riesz representation theorem.

By Corollary the sequence A, f converges to f « Jdpjin L', and hence a subsequence A, f converges
a.e. to [y fdp;, where j =1,2. Hence there exists A; C X such that p(4;) =1 and

n;—1
L
/ fdu; = lim — Z f(TFz) for all 2 € A;.
X 1—> 00 k=0

Uz

For j = 1,2, define E; = [, T"(A;), so that Ej; is a T-invariant set with u;(£;) = 1. By assumption,
w1 (E1) = po(Er) = p1(E2) = pa(F2) = 1. Then the T-invariant set E := E; N Es is nonempty, because
W(E) = pu(Er) + p(Es) — p(E1 U Ep) = 1. Since E C Ay N Ay, we fix © € E and obtain

n;—1
L
dpy = lim — T%:/ dus.
/Xfm i_)oonikzzof( ) Xfuz

Step II. If u € Mr(X) is ergodic, we claim that p is an extreme point of Mr(X). Take u1, us € M7 (X) and
0 < X< 1suchthat p=(1—MNpus + Ape. If E € B is a T-invariant set, we have u(E) € {0,1}. Then

o If u(E) =0, we have (1 — N1 (E) + Ape(E) =0 and pq(E) = p2(E) = 0.

o Similarly, if u(E) =1, we have p; (F) = po(F) = 1.
In either case, we have u1(F) = pa(F) = u(E) € {0,1}. Hence py and pso are T-ergodic measures that agree
on all T-invariant Borel sets. By Step I, we have u1 = po = p, and hence p is an extreme point of My (X).

Step III. Conversely, if 4 € Mp(X) is not ergodic, we can find two probability measures p1, us € Mr(X)
with 1 # pe and 0 < A < 1 such that (1 — A)u1 + Aue = p, and hence p is not an extreme point of My (X).

By non-ergodicity of (i, T), there exists a Borel set B C X such that T-!(B) = B and 0 < u(B) < 1. We
then define Borel probability measures

u(E N B)

B
pi(B) = =200 and  pa(E) = B

E e B,

gy - HTTNE)NB) W ENB) _ p(ENB) _
ST T

Hence ps is T-invariant, and similarly p; is T-invariant. Furthermore, (1 — A)u1 + Ao = u, as desired. O
Corollary 4.21. FEvery homeomorphism of a compact metrizable space admits an ergodic measure.

Proof. Since M7(X) is a nonempty compact convex subset of M (X) by Lemma it has an extreme point
by Krein-Milman theorem. According to Theorem w is a T-ergodic measure. O
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Aside from existence, we also wonder whether the ergodic measure of a homeomorphism 7' is unique.

Definition 4.22 (Unique ergodicity). A homeomorphism T of a compact metrizable space X is said to be
uniquely ergodic, if there is only one Borel probability measure p that is T-invariant, i.e. |Mp(X)| = 1.

Remark. Since Mr(X) is the closed convex hull of the T-ergodic measures (extreme points), T is uniquely
ergodic if and only if there is only one Borel probability measure p that is T-ergodic.

Theorem 4.23 (Birkhoft’s theorem). Let T : X — X be a homeomorphism of a compact metrizable space X .
The following are equivalent.

(i) T is uniquely ergodic.

(i1) There exists p € Mrp(X) such that for all f € C(X),

n—1

1
lim — Tkz) = d 1l X. 4.2
ngrolongzof( x) /Xf po forallx € (4.2)

(iwi) For all f € C(X), the sequence of functions A, f = %E:;é foT* converges pointwise to a constant.
(iv) For oll f € C(X), the sequence of functions A, f = %ZZ;& foT* converges uniformly to a constant.

Proof. (i) = (iv): If T is uniquely ergodic, we take for each 2 € X the sequence

1n—1
anﬁngkm7 n:1727""

By Banach-Alaoglu theorem, and since |M7(X)| = 1, every subsequence of (p,,) has a further subsequence
converging in the weak* topology to the unique element p € My (X), which is ergodic. We claim that (u,)
converges to p in the weak* topology. If there exists a neighborhood U of i in the weak™ topology such that
for each k € N, there exists ny, > k with p,, ¢ U, which gives a subsequence (u,, ) outside U. Therefore,

n—1

. 1 w*
nll_{%oﬁ kZ_O(STkm = [

Integrating both sides with f € C(X) gives (4.2). Argue (iv) by contradiction. If (A, f) does not converge
uniformly to fX f du, there exists € > 0 such that for each m > 1, there exists n,, > m and z,, € X such that

1 Nm—1
> f(TFa) - / fdu| > e (4.3)
Nm =0
We consider the sequence v, = nlm iy ! Ok, , which also converges to u € My (X) in weak™ topology, by

passing to a subsequence if necessary. Then the left-hand side of (4.3]) goes to 0 as m — oo, a contradiction.
(iv) = (iii) is clear.

(iii) = (ii): Define the positive linear functional Af = lim, %ZZ;; foTk. Then |Af| < ||f]loo, and
A :C(X) — C is continuous. By Riesz representation theorem, there is a Borel measure y € M(X) such that
Af = [y fdp. Since p(X) = Al =1 and A(foT) = Af, the measure u € Mp(X).

(ii) = (i): Let p,v € Mp(X), where p is the measure such that the hypothesis holds. For any f € C(X), by

T-invariance of v and dominated convergence theorem,

/)(fdvznlgn;o XAnde:/ani_)n;OAnfdu:/X(/deu>dz/=/xfdu. (4.4)

By Riesz representation theorem, we have = v, and |Mrp(X)| = 1. O
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4.6 The Recurrence Theorems

In many scenarios, we are also interested in the recurrence property of a dynamical system (X,.7,u,T).
Beginning from a state x¢ € X, we wonder if the system will return to a state arbitrarily closed to, or exactly
the same as, the initial state xg.

Definition 4.24 (Recurrence). Let (X,.%#,u,T) be a measure-preserving system. For a subset A C X, the
first return time of A is the map defined for almost every = € A by

na(z)=inf{n>1:T"z € A}.
We write n4 = nY. For each integer k > 2, we define the k™ return time by
k s k—1 . n
ny(z) =inf{n >ny " (z) : T"z € A}.

We say that a point @ € A is infinitely recurrent to A, or returns infinitely to A, if (T™x)22, contains a
subsequence (T™+x)%°, C A, or equivalently, n% (z) < oo for every k € N.

Theorem 4.25 (Poincaré recurrence theorem). Let (X, %, u,T) be a measure-preserving system where p is
a probability measure. For each set A C %, almost every x € A is infinitely recurrent to A. That is,

pw({xz e A: Tz € A for infinitely many n € N}) = u(A).
Proof. Welet B={x € A:T"x € A for infinitely many n € N}. Then

B={zxe€ A:T"z € A for infinitely many n € N}
= {x € A : for every n € N, there exists k > n such that T%z € A}

= ﬁ fj ANT*(A)=AnN ﬁ G T%(A).

n=1k=n n=1k=n

For every n € Ny, let A,, = Uy, T"*(A). Then T~"(Ao) = A,, C Ap. Since A\A,, C Ao\ A, = Ao\T"(Ao),
0 < u(A\An) < p(Ao\T™"(Ao)) = u(Ao) — (T™"(Ao)) =0,

where the last inequality follows from the facts that T' is measure-preserving and p is finite. Then

(oo} (oo} oo
w(B) = p (Aﬂ N An> =p <A\ U (A\An)> =pu(A) —p < (A\An)> = n(A).
n=1 n=1 n=1
Then we complete the proof. O
Asymptotic relative frequency. The Poincaré recurrence theorem implies that, for almost every = € A,

the trajectory (T"x)S2, hits A infinitely many times. However, it does not predict the frequency of the visits
that 2 makes to the set A. The relative number of elements of {z, Tx, T?z,--- , 7" *x} in A is

1 1=
~{Tr*zeA:k=0,1,--- ,n—1} =~ T* ).
TL’{ S k 07 ) ) TV }‘ nZXA( .17)
k=0
By Birkhoff’s theorem, if T" is u-ergodic, for almost all x € X, the asymptotic relative frequency is

n—1

lim Y xa(The) = /X xadp = p(A).
k=0
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The Poincaré recurrence theorem asserts that almost every point in a positive measure set returns to the
set after a sufficiently long but finite time, but does not give an estimate of the return time. The Kac’s lemma
states that, in an ergodic system, the points in a positive measure set return to the set within an average time
inversely proportional to the measure of the set.

Theorem 4.26 (Kac’s lemma). Let (X,.#,u,T) be an ergodic system on a probability space. For each set
A € .F with u(A) > 0, the first return time na satisfies

/nAduzl.
A

Proof. Let A, = {xz € A:ns(xz) =n} be the set of points in A that return to A after exactly n times. Then
n—1
={zcA:TrocAandTe ¢ A, T?x ¢ A,-- T o ¢ A} = ANT"(A) N [ THX\A).
k=1

Similarly, we define

n—1
B, ={x ¢ A:x enters A at time n} =T~ "(A) N [| T7F(X\A).
k=0

Since T is p-ergodic, and p(A) > 0, almost every « € X enters A after a sufficiently long time, and the set
Ny T "(X\A) has measure zero. Hence both u(A,) and u(B,) goes to zero as n — oo. Furthermore,
(A, B,)22 , are disjoint sets that almost cover X. Also note that

T=YB,) =T} ﬂ F(X\A) = Api1 UBpgy.
k=1

Since T is measure preserving, iu(B,,) = u(T~(B,)) = u(An+1) + #(Bns1), and by induction we have

w(By) = kZHu(Ak) + lim p(By) = kZHu(Ak), neN.

By Poincaré recurrence theorem, A = UZO:1 A,,. Therefore

k=1 k=1" 4%k A
Thus we complete the proof. O]

Remark. The Kac’s lemma can also be stated as

1 1
M/A”Ad“M’

where the left-hand side of the equation is the mean return time to A.
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5 Semigroup Theory

5.1 Calculus of Continuous Banach Space Valued Functions

In this subsection, we discuss the integration and differentiation of continuous functions on a compact interval
with values in a Banach space. We first study the integral.

Lemma 5.1 (Integral of a continuous function). Let X be a real or complex Banach space, and let x : [a,b] — X
be a continuous function. Then there exists a unique & € X such that

b
(z*, &) :/ (x*,x(t)) dt, for allz* € X™. (5.1)
Proof. For each n € N, define &, € X and ¢, > 0 by
Ry b—a
&n = x(a—i—k), and €, = sup z(s) — x(t)||.
> . L el 0]

Since z is uniformly continuous on [a, b], we have ¢, | 0 as n — co. Furthermore,
”gn—i-m - fn“ < (b - a)en for all n,m € N.

Hence (&,) is Cauchy sequence in X, which converges to some point £ € X. Then for all * € X*, we have
2" —1 b
N . b—a / . b—a _ N
(x*, &) —nhﬁ\rrgo kz_o 5 <x , X (a+k2n)> —/a (x*,z(t)) dt

by the convergence theorem for Riemann sums, which proves the existence. Next, we let £ and 1 be two vectors
satisfying (5.1]). Then (z*,n — &) =0 for all z* € X, and by the Hahn-Banach theorem,

n—=¢l= sup  (a",n—¢&) =0.
zreX*:||x*||<1

Therefore n = £, which proves the uniqueness. O

Definition 5.2. Let X be a real or complex Banach space, and let = : [a,b] — X be a continuous function.
The vector £ € X in Lemma (5.1) is called the integral of x over [a,b] and denoted by f; z(t) dt ;== £. That is,
the integral of = over [a, ] is the unique vector fab x(t) dt € X satisfying

b b
<x*7/ x(t) dt> :/ (x*,z(t)) dt, for all z* € X™. (5.2)

Following are some properties of the integral of Banach space-valued functions.

Proposition 5.3. Let X be a real or complex Banach space, and let z,y : [a,b] — X be continuous functions.
Then the following holds.
(i) The integral is a linear operator C([a,b]; X) — X. In particular,

/ab (azx(t) 4 By(t)) dt = a/abx(t) dt + g/aby(t) .

(i) Let a < ¢ <b. Then

/abx(t)dt/acx(t)dtJr/cbx(t)dt.
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(i4i) Let' Y be another Banach space and T : X —Y a bounded linear operator. Then

T/ab:n(t) dt = /ab Tx(t) dt.

(iv) (Absolute integrability).

b
< [ (o) at.

‘ /abac(t) dt

(v) (Dominated convergence). Let z,, : [a,b] = X be a sequence of continuous functions that converges to x
pointwise, and assume there exists M > 0 such that ||z, (¢)|| < M for alln € N and t € [a,b]. Then

b b
/ z(t)dt = lim x, (1) dt.

n—oo a

Proof. Properties (i) and (ii) follow from definitions, additivity of Riemann integral and the Hahn-Banach
Theorem. We next give a proof of (iii). Let £ = f: z(t) dt. Then for each y* € Y*, we have T*y* € X*, and

b b
(" TE) = (T"y",€) = / (T (1)) dt = / (y*, Tx(t)) dt.

(iv) For each z* € X*,

‘<x*,/:x(t) dt>‘ =

Again, by the Hahn-Banach theorem,

| /abx(t) dt

(v) We have ||z|| < M, and ||z — 2, || < 2M. We apply (iv) and the dominated convergence theorem to obtain

/ab:rn(t) dt — /abx(t) dt

Thus we finish the proof. O

/ (o, (1)) dt| < / (& ()] b < [l / (o)) de.

“ by
< sup Wg/ﬂbﬂx(t)ndt.

z*eX*\{0}

lim
n— oo

b
< lim/ n(t) — 2(t)]| dt = 0.
n—oo a

Next, we introduce the differentiation of Banach space valued functions.

Definition 5.4 (Differentiability). Let X be a real or complex Banach space, and let x : [a,b] — X be a
continuous function. For each ¢ € [a, b], the right derivative of x at t is given by
d x(t+ h) — x(t)

g =) = lim h

For each t € [a,b), the left derivative of x at t is given by

L z(t) —x(t —h)
=) = fimy h

For t € (a,b), we say x is differentiable at t if the left and right derivatives of = both exist at ¢ and are equal.
If z is differentiable at each t € (a,b), and J4x(a) and Sz (b) exists, we say  is differentiable on [a,b], and
write & : [a,b] — X for its derivative. We say x is continuously differentiable if in addition & is continuous.
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Theorem 5.5 (Fundamental theorem of calculus). Let X be a Banach space, and —oco < a < b < 00.
(i) If x : [a,b] — X is a continuously differentiable function, then

2(t) — 2(a) = / i(s)ds, for allt € [a,b] (5.3)

(ii) Lety :[a,b] = X be a continuous function, xg € X, and define

t
z(t) = zo +/ y(s)ds, for allt € [a,b]. (5.4)
Then z : [a,b] — X is continuously differentiable, and z(t) = y(t) fort € [a,b)].
Proof. (i) For each z* € X*, by the fundamental theorem of calculus for real-valued functions,

<x*,x(t)—x(a)>=/ %(m*,x(s))dSZ/ (2", () ds.

a

By the Hahn-Banach theorem, we complete the proof of (5.3)).
(ii) Let a <t < b, and take h > 0 with t <t + h < b. Then

t+h
<t [ e vl sw s -l

t<s<t+h

t+h
v [ s

Since y : [a,b] — X is continuous, the above bound tends to 0 as h | 0. This implies

1t x(t+h)—x(t) d
o) =timp [ u(s)ds = i T a(t)
Likewise we have —%-x(t) = y(t) for all t € (a,b]. This proves (5.4). O

Proposition 5.6. Let X be a Banach space, and —oo < a < b < 0.
(i) (Change of variables). Let —oco < a < < o0. If ¢ : [a, B] — [a,b] is a diffeomorphism, then

B . b
/ x(o(8))o(s) ds :/ x(t) dt. (5.5)

(i) (Differentiation of integrals). Let ¢ : [a,b] X [¢,d] — X be a Lipschitz continuous function. If for each
t € [a,b], the function ©(t,-) : [c,d] = X is continuously differentiable, then

b b
d d
/aaap(t,/\)dt—a/a St N dt, for allt € [a,b]. (5.6)

Proof. (i) For each z* € X*, we apply the change of variables formula to obtain

[e3

b B . B .
/ (1)) dt = / <x*,x<¢<s>>>¢<s>ds=<x*, / x<¢<s>>¢<s>ds>.

By the Hahn-Banach theorem, we finish the proof of (5.5)).

() —=¢(s)

(ii) Since ¢ is Lipschitz continuous on [a, b] X [c, d], the family of functions <¢ — ) - is bounded. By
h s,t€|a,

the dominated convergence theorem in Proposition for all A € [e,d),

o ) p(t, ) dt = l,gg/a A dt = /a lhlf& - dt = /a et A dt,
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and for all A € (¢, d],

b b _ _ b _ _ b
ga(t,)\)dtzlgﬁ}/ it ) z(“ h)dt:/ Jim P62 = ot A h)dt:/ 4o\ dt.

T i - —o

Hence we finish the proof of ([5.6]). O

Ordinary differential equations in a Banach space. The classical existence-uniqueness theory for ODEs
with Lipschitz continuous coefficients can be extended to Banach spaces without any substantial change. We
let F': X — X be a Lipschitz continuous map, i.e. there exists constant L > 0 such that

|F@) - Fy)|| < L|z—yl, for every z,y € X. (5.7)
Given an initial point g € X, consider the Cauchy problem
i(t) = F(a(t), (0) =z, (5.3)

Theorem 5.7 (Existence-uniqueness of solutions to a Cauchy problem). Let X be a Banach space and let
F : X — X be a Lipschitz continuous map satisfying (5.7). Then for every xo € X, the Cauchy problem (5.8)
has a unique solution t — x(t), defined for all t € R.

Proof. We fix T' > 0 and consider the Banach space C([0,T]; X) for all continuous mappings v : [0,7] — X,
with the equivalent norm

Jull = ma e (o).

A function z : [0,7] — X is a solution to the Cauchy problem (5.8) if and only if x(-) is a fixed point of the
Picard operator
t
D (u)(t) := g —|—/ F(u(s))ds, te][0,T].
0
Clearly ® is a map on C([0,T]; X). We claim that ® is a strict contraction. For any u,v € C([0,T]; X),
[u(s) = v(s)]| < € F|lu—wvl., Vse[0,T).

Then we have

|®() — B(v)]. = max e~

= — F(v(s s
s < max [ P(u() - Fo()] d

~ telo,T)

/ [F(u(s)) — F(u(s))] ds

0

¢ ¢
< max e_2tL/ Lju(s) —v(s)]| ds < max]/ e 2= lu —v]|, ds
0 0

t€[0,T telo,T
1— et 1
< max ——— v =l < gllu—vl..

Hence ® is a strict contraction on C([0,T]; X), which, by Banach fixed point theorem, admits a unique fixed
point x € C([0,T]; X), i.e.

x(t) = xo +/O F(z(s))ds, tel0,T].

This function provides the unique solution to the Cauchy problem (5.8)). By reversing time we can also extend
this solution to the domain ¢t < 0. O
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5.2 Strongly Continuous Semigroups

Motivation. We consider a linear operator A : R™ — R". For every xg € R", the linear Cauchy problem
x(t) = Ax(t), x(0)==xg

has the solution t — ez, where the matrix exponential

This series is absolutely convergent for all ¢ € R. Furthermore, the exponential map ¢ — e* satisfies
e (Semigroup property). e®4 =1Id, e*4et4 = elst0)A4,

tA

e (Path continuity). for every xzo € R™, the map ¢ — e*“x( is continuous.

Generally, we consider a linear evolution equation in a Banach space X, say

d

Zu(t) = Au(t), u(0) = uo € X, (5.9)

where A : X — X is a linear operator. Inspired by the matrix case, we would like to express the solution as

tA

u(t) = et4ug for some family of linear operators (e!*);>o.

Definition 5.8 (Semigroup). Let X be a Banach space. A strongly continuous semigroup of linear operators
on X is a family of bounded linear operators (S)¢>0 on X such that

(ii) (Semigroup property). Sp = Id, and S;Ss = Si4s for all ¢,5 > 0;

(iii) (Continuity at the origin). limy o ||S;u — u|| = 0 for each u € X.

In addition, we say (S;)¢>0 is a contraction semigroup if ||S¢|| <1 for all ¢ > 0.
Next we study the norm property for semigroups.

Lemma 5.9. Let X be a Banach space, and (S;)i>0 a strongly continuous semigroup.

(i) (Local finiteness). For all T > 0, sup,cio. 1y |5t < 005

(i) (Strong continuity). For each uw € X, the mapping t — Siu is continuous from [0,00) into X ;
(iii) (Growth rate). The function t — 1 log||S;| converges in RU{—oc} as t 1 oo, and

o1 o1
tlggoglogHStH _%r>1£¥10g‘|5t” =1 Wo; (5.10)
Furthermore, for each w > wq, there exists M > 1 such that for allt > 0,
[1Se|| < Me“". (5.11)

Proof. (i) We first show that there exist some constants § > 0 and M > 1 such that ||S;|| < M forall 0 <t < 4.
We argue by contradiction and suppose that supg<,<; ||St|| = oo for all § > 0. Then there exists a sequence
t, 4 0 such that ||.S;, || is unbounded. By Banach-Steinhaus theorem, there exists u € X such that ||S, ul| is
unbounded, which contradicts the continuity property lim; g ||Siul| = 0.

Next, we fix T' > 0 and take N such that N6 > T, so for each t € [0,T], there exists k € {0,1,--- ,N — 1}
such that kd <t < (k4 1)d. By the semigroup property,

ISell < 118511 1Se—rsll < M*FH < MY < cc.
(ii) is a corollary of (i), since

St — Seull < 1Selll1Snu—ull 10, and  [|1Spu— Se—pull < [Se—nlllShw —ull L0, as h L o0.
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(iii) We may assume S; # 0 for all ¢ > 0, otherwise the property holds with wy = —oo. For fixed ¢ > 0, there
exists u € X with S;u # 0, and by the semigroup property Ssu # 0 for all 0 < s < ¢. According to (ii),
t — ||Stu|| is a continuous map. Then supg<,<, [|[Stul| > 0, and so supg<s<; [|St]] > 0. Hence we can take a
constant ¢ > 1 such that ¢= < ||S,|| < ¢ for all s € [0,1]. o

Then we define a function g(¢) = log ||S¢|| on [0, 00), which is locally bounded and subadditive:

g(0) =0, g(s+1t)<g(s)+g(t), M(t):= S lg(s)| < oc.

The remaining part follows most from Fekete’s lemma. Fix ty > 0. For any ¢t > 0, take k € Ny such that
t = kto + s, where s € [0,%p). Then

ot) _ holte) +9(5) _ glte) _sglte) | gls) _ glts) | 2M(to)
t t to tot t — it t
Hence for all ty > 0,
limsup@ < g(to).
tToo t to

To prove (5.10)), just note that

t t
lim sup @ < inf @
ttoo t t>0 ¢

Finally, we fix w > wo. Then there exists 7 > 0 such that 1 log ||S;|| < w for all t > T. Consequently,

||st||Smax{em, sup ||ss||}s sup 1S, e
0<s<T 0<s<T

for all £ > 0, which completes the proof. O
We also see that some properties of one member of a semigroup can be extended to the whole semigroup.

Lemma 5.10. Let (S;)i>0 be a strongly continuous semigroup on a Banach space X. Then
(i) The operator S is injective for some t > 0 if and only if it is injective for all t > 0.
(i) The operator Sy is surjective for some t > 0 if and only if it is injective for all t > 0.
(iii) The operator Sy has a dense range for some t > 0 if and only if it has a dense range for all t > 0.
(iv) Assume Sy is injective for all t > 0. The operator S has a closed range for some t > 0 if and only if it
has a closed range for all t > 0.

Proof. We fix ty > 0 and assume Sy, has the desired property. For each ¢ > 0, we take k € N with kty > t.
(i) If Sy, is injective and Syu = 0, we have Stkou = Skto—tStu = 0 and u = 0. Hence S; is injective.
(ii) If Sy, is surjective, so is Sf , and R(S;) D R(SiSkte—1) = R(SE) = X.

(iii) By continuity of Sy, we have Sy, (A) D Sy, (A) for all A C X. If Sy, has dense range in X, so does S,
and

R(St) D R(S;Skeo—t) = NR(SE) = X.

(iv) Assume S; is injective for all ¢ > 0. If S;, has closed range, then 2(S,) is a complete subspace of X,
and St, : X — P(S;,) has bounded inverse. Hence there exists ¢ > 0 such that ||S¢,u|| > clju|| for all u € X.
Consequently,

1Skto—ell | Seull > [[Sueoull = c*[lull.

By injectivity of Sy, for any sequence (v,) C 9R(S;) converging to v in X, we take u,, = S; ‘v, € X. Then
|1t —wml|l < ¢ || Sktg—tll [[vm — vnll, and (u,,) is a Cauchy sequence in X, which converges to some u € X. By
continuity of Sy, we have Syu = lim, oo Sttty = limy, 00 v, = v, and v € R(S;). Hence R(S;) is closed. O
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5.3 The Infinitesimal Generator

Definition 5.11 (Infinitesimal generator). Let (S¢):>0 be a strongly continuous semigroup on a Banach space
X. We define

D(A) = {u € X : lim Seu — u exists} ,
tl0 t

and g
Au = lim 2% u’ u € D(A).
t10 t

We call A:D(A) — X the (infinitesimal) generator of the semigroup (S;);>0, and D(A) is the domain of A.
The infinitesimal generator is related to the differential properties of semigroups.

Proposition 5.12 (Differential properties of semigroups). Let A be the generator of a strongly continuous
semigroup (S;)i>0 on a Banach space X, and w € X. The following are equivalent:
(i) ueD(A);
(i) The function t — Siu is continuously differentiable on [0,00), takes values in the domain of A, and
satisfies the differential equation

%Stu = ASyu = SiAu  for all t > 0.

Proof. By definition (ii) implies (i). To prove (i) = (ii), we fix u € ©(A). For each ¢t > 0, by the semigroup
property and continuity of S, we have

. Su(Siu) — Siu . Spu—u\ . Spu—u
E%T_lﬁ?&& )T lﬁfolT = Sidu.

Hence S;u € D(A), and ASyu = S;Au. For each t > 0,

lim (Snte = Spu) = lim Si(Shu —u) =5 (lim Shu—u) = S; Au.
hl0 h h10 h

Also, for each ¢t > 0,

tim [| S0 =5 gl < {5 (2R ) ||+ 15— s04u
110 h h10 h
< lim ‘ Sin <S"““ - Au) H 4 lim [|Sy—p Au — Sy Aul|
R0 h hl0
Sy —
< sup ||Ss] lim Hhuu — Aul| + lim || S¢—p Au — Sy Aul| = 0.
0<s<t h R0
By path continuity, the derivative S;Aw is continuous. Then we finish the proof. O

Remark. By this proposition, the function ¢ — S;ug solve the linear evolution equation (5.9)) about w(-).

Lemma 5.13 (Variation of constants). Let A be the generator of a strongly continuous semigroup (Si)i>0 on
a Banach space X, and f : [0,00) = X a continuously differentiable function. Define

:z:(t):/O Si—sf(s)ds

Then x : [0,00) — X is continuously differentiable, x(t) € D(A) for allt >0, and
t .
(0 = Aclt) + 1) = SO + [ Siof(5)ds. (5.12)
0
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Proof. We fix t > 0. For each h > 0,

Sp(t) — S, —1d [* t t
hl“(f)h x(t) _ th /Osz(t—s)ds:%/oSs+hf(t—8)d5_%/0sz(t—s)ds

1 t+h 1 t
:f/ sz(t—&—h—s)ds—f/sz(t—s)ds
h Jh h Jo

t h—s)— _ 1 [tth 1 [
/OSSf(tJr s}i It s)d5+h/t sz(tJrh—s)dsfﬁ/O Ssf(t+h—s)ds.

By the dominated convergence theorem, we let ¢ | 0 in the above display to obtain

Aalt) = [ .= ) ds+5.7(0) - 100

This proves the second identity in (5.12)). Next, for all ¢ > 0,

_ t+h t
lim W = lim lflz /0 Stin-sf(s)ds — % /0 Se—sf(s) ds}

p B t+h
M + ]}gr&% Stin—sf(s)ds = Az(t) + f(t).

t

t t—h
1}751(’)1 l‘(t) - i(t —h) _ ]}5101 l; ; St_sf(s) ds — %/0 St_h_sf(S) dS]
¢ 1 [t
:1}31& [/0 St_gf(s)dsfﬁ/h St_gf(sh)ds}

Hence z(-) is differentiable on [0, c0) and the derivative is given by (5.12)). O

Proposition 5.14 (Properties of the generator). Let A be the generator of a strongly continuous semigroup
(St)t>0 on a Banach space X. Write D(A') = D(A), and for n > 2 define the linear subspace D(A™) of X
recursively:
DA™ = {zx € D(A) : Az € D(A"H}.

Then D(AY) D D(A?) D -, and

(i) the linear subspace

D(A®) =[] D(A™)
neN
is dense in X ; and
(i) A is a closed operator, i.e. the graph {(u, Au):u € D(A)} of A is closed in X x X.

Proof. We let v € X and let ¢ : R — R, be a compactly supported smooth function. We take 0 < e < 1
with supp ¢ C [¢,€e!]. By plugging in f(s) = ¢(t — s)u for t > ¢! to Lemma we have

¢ ¢
A/ ot — 8)Si—sudt + ¢p(0)u = ¢(t)Seu — / ot — 5)Si—sudt.
0 0

Since ¢ is supported on [e, e 1],

A /O (1) Spudt = — /0 (1) Sy dt.
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By induction, for every n € N, we have fooo (t)Spudt € D(A™), and

A"/O B(t)Syu dt = (—1)"/0 o™ (t)Syu dt.

(i) Take a smooth function ¢ : R — R supported on [%,1] with [, ¢(t) dt = 1. For each u € X, let

Uy = n/ o(nt)Syudt, n=1,2---
0
By the previous conclusion, z, € ©(A*>), and

o
[, — ull gn/ o(nt)]|Spu — ul|dt < sup ||Spu—ul| 40, n— oo
0 0<t<t

Hence u, — u in X, and D(A>) is dense in X.

(ii) We take a sequence u, € X and u,v € X such that ||u,, — u|| = 0 and ||Au, — v|| = 0 as n — oo. Then

t t
Siu —u = lim (Siu, —u,) = lim SAx, ds = / Ssvds, t>0.
0

n—oo n—oo 0

Letting t | 0, we have Au = v and u € A. Then we finish the proof. O

Next we discuss the property of closed densely defined partial operator. For a closed densely defined partial
operator A:® — X, define on D(A) the graph norm

[ullea) = llull + [[Aull,  weD(A).

If (un) C D(A) is a Cauchy sequence in || - || (a), both (uy,) and (Au,) are Cauchy sequences in X. We let u
and v be the limit of sequences (u,,) and (Au,), respectively. Then the Cartesian product (u,, Au,) converges
to (u,v) in X x X. Since the graph &(A) of A is closed in X x X, we have (u,v) € (A4), i.e. u € D(A) and
v = Au. Therefore, ®(A) becomes a Banach space under the graph norm |lullg4y. Since [ul|ea) < [|Aul,
the operator A can be viewed as a bounded linear operator from D(A) into X.

Proposition 5.15. Let (S;)i>0 be a strongly continuous semigroup on a Banach space X, and let A : D(A) —
X be a closed linear operator with a dense domain ©(A) C X. Then the following are equivalent:
(i) The operator A is the infinitesimal generator of (Si)i>o;
(i1) For each u € ®(A) and t > 0, we have Syu € D(A), SyAu = ASyu, and Syu —u = fot SsAuds.
(#ii) For each u € ®(A), the function [0,00) = X : t +— x(t) := Spu is continuously differentiable, takes values
in D(A), and satisfies the differential equation ©(t) = Ax(t) for allt > 0.

Proof. Tt is clear that (i) = (ii) = (iii). Now we prove (iii) = (i).

Step I. Assume A satisfies (iii). Let u € ©(A) and ¢t > 0. By (iii), the function £ : [0,¢] — X defined
by £(s) = Ssu takes values in ©(A), and A = £ [0,t] — X is continuous. Consequently the function
§:[0,t] = D(A) is continuous with respect to the graph norm || - [|g(4). Hence fotf(s) ds € ©(A), and

A/OtSsuds_A/otf(s)ds_/OtAﬁ(s)ds_§(t)5(0)_Stuu.

Step II. We let ©w € X and ¢t > 0, and take a sequence (u,) C D(A) that converges to u in X. By Step I,
& = [y Ssun ds € D(A) and A&, = Syu, —u,. Since A has closed graph, &, — [i Squds and A&, — Syu—u,

t t
/ Ssuds € D(A), and A/ Ssuds = Syu — u.
0 0
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Step III. Finally, we prove that A is the infinitesimal generator of (S;);>0, i.e. for any u,v € X,

< ueD(A), and v = Au.

If u € D(A) and v = Au, we have limp o h~ (Spu — u) = Au = v by (iii). Conversely, we suppose that
limy,yo h™" (Spu — u) = v. For each h > 0, by Step II, A" [ Squds € D(A), and

1 [ Spu —u
Al - = .
<h/0 Ssu ds) n

Since h~! foh Ssuds — u in X, and A has closed graph, we have u € ©(A) and Au = v. O

Proposition 5.16. Let A : D(A) — X be the infinitesimal generator of a strongly continuous semigroup
(St)i>0 on a Banach space X. The following are equivalent:

(i) D(A) = X;

(i) A is bounded on X ;
(i11) the mapping [0,00) = B(X) : t = S} is continuous in the norm topology on B(X) (the space of bounded

linear operators on X ).

Proof. (i) = (ii). By the closed graph theorem, if a linear operator A : ®(A4) — X is defined on a closed
subspace D(A) of X, then A is bounded if and only if it has a closed graph.

(ii) = (iii). By Proposition and the bound (5.11]), there exists M > 0 and w € R so that for all u € D(A),

t
/ S, Audr

Since D(A) is dense in X,

! ! wr M‘ewt 7ews|
[Siu — Sul| = ‘ < / 1S IA[ flull dr < [[All IIUH/ Me*" dr = BT — (A ]

M|ewt _ ews‘
B — AL el

for all u € X. Hence ||S; — S, < & |evt — ||| A||, which converges to 0 as [t — s| — 0.

Jwl

||Stu — Ssu|| S

(iii) = (i). By continuity of ¢ — S; in the norm topology, we have lim; o ||S; — Id || = 0. We take § > 0 such
that supg<;<s [|S; — Id || <1 — ¢ for some € € (0, 1), and define

e -1 n—1
Qtzz%(stfld)", 0<t<6.
n=1

Then t — Q) is continuous in the topology, since for all ¢, s € [0, 4],

n—1

SIS —1d|FISs —Td " F < > (1= &)"|1S, — S|l =
k=0 n=1

Sk S — S,
HQt_Qs” SZﬁHSt_SS” M
n=1

Note that the power series f(z) = > oo, %(z— 1) satisfies ef(*) = z for all [z —1| < 1 and f(2*) = kf(z2)
whenever |2/ — 1| < 1 for j = 1,--- k. Then e?* = S, for ¢t € [0,4], and Qu; = kQ; for t € [0,k™15]. By
continuity of ¢t — @y, we have Q,; = r@Q; for all reals r € [0,4/t] by approximating r with rationals. Hence

Q¢ =t571Qs for all t € [0,6]. Welet A =6"1Qs € B(X). Then S; = e? = et for t € [0, 6], and

lim Siu—u = lim t* ARy = Au, =€ X.
L0 t 10
k=1
Hence A is the infinitesimal generator of (S;);>0, and ©(A4) = X. O

59



5.4 The Resolvent

Definition 5.17 (Resolvent set and operator). Let A : ©(A) — X be a closed linear operator on a complex
Banach space X with domain ©(A) C X. We define

p(A) = {\ € C|the operator A\Id —A : D(A) — X is bijective}
to be the resolvent set of A. If A € p(A), the resolvent operator Ry : X — X is defined by
Ryu=(Ad—A)"tu.

Remark. Since A has a closed graph, so does Ry : X — ©(A) C X. By the closed graph theorem, R) is a
bounded linear operator on X. Furthermore,

RyAu = ARyu = ARyu —u, u€ D(A).

The following resolvent identity is clear by definition.

Proposition 5.18 (Resolvent identity). Let A : D(A) — X be a closed linear operator on a Banach space X .
Then for every p, A € p(A4),
Ry — Ru = (,U - )‘)R)\Rua

and

Ry\R, = R)\R,,.
Proof. Let w € X. Then for every A, pu € p(A4),
Rau = Ry(pld —A)(pId —A) 'u = AId —A) " ((p — A) Id +A1d —A) (pId —A4) 'u
=(u—-ANAId-A4) " (pld—A)ru+ (uId —A)'u = (u — M) RyR,u + R,u.
The second identity is clear if A = u. If A # pu, by switching the positions of A and p we have

Rx—R, R, —R,

PRy = = =

= R,Ry.

Then we finish the proof. [
Next, we study the smoothness of the resolvent mapping p(A) — B(X) : X — (AId—A)~L.

Proposition 5.19 (Holomorphy). Let A : ®(A) — X be a closed linear operator with domain ®(A) C X on
a complex Banach space X. Let p € p(A) and A € C such that

1
The X € p(A) and
Ad=A) 7' = (p— N (pId—4) 7
k=0

Proof. Define the bounded linear operator Ty € B(X) by
Tvu=u—(u—N)(pld—A) " u, ueX.

By (5.13)), T is invertible and

T = (=N (uld-A)*.
k=0

60



For all u € D(A), we have T (pId —A)u = (uId —A)u — (up — N)u = (A\Id —A)u. Hence \Id—A : D(A) —» X

is bijective, and
(oo}

A d=A) = (pId=A) "' Ty =D (n— )" (pld—A)F!
k=0

This finish the proof. O

Remark. According to this proposition, the resolvent set p(A) is open, and

o (A4 WIA=A) T — A=) Y (DA - A)

—(AId—A)~2 A).
h—0 h o0 h (AId—A)7%, X e p(4)

Therefore the mapping p(A4) — B(X) : A — (AId —A4)~! is holomorphic. Furthermore, we can compute the
higher-order derivatives by induction:

d r o (A R)Id-A)F — (A Id-A)7F
g Md=A)7 = lim h
i (A +R)Id—A) [(A + h)Id—A)~F+D) — (AId —A)=*+D] + p(AId —A4)~F+D)
= l1m
h—0 h

= (A\ld—4)—+ ()\Id —A)"FEFD L (ATd—A4)"*FD |k eN.

Theref
erefore d

(A —A)F = —k(AId—A)"* Dk eN,

and o
d)\k(AId A7 = (1) NI —A) "D ke N,
Next we study the resolvent of the infinitesimal generator.
Proposition 5.20 (Resolvent identity for semigroups). Let A : D(A) — X be the infinitesimal generator of a

strongly continuous semigroup (Si)t>0 on a complex Banach space X. Let X € C satisfy

log ||.S
Re )\ > wg := tlim M.

—00 t

Then X\ € p(A), and the resolvent (\Id —A)~! of A satisfies

1 o0
(ATd—A)~* / thle ™ MSudt, uwe X, keN. (5.14)

RSN

Proof. We first prove the case k = 1. We take w € (wp, Re\). By Lemma there exists a constant M > 1
such that ||S¢|| < Me** for all t > 0. Hence ||e ™ Syul| < Me@~ReN|ly| for all uw € X and all ¢+ > 0. Hence

oo T
Ryu := / e MSudt = hm e MSudt, reX
0

—)(X)O

defines a bounded linear operator Ry on X, since ||Ryul| < L.

Step I. For any u € X and T > 0, we set f(¢) = e MUy andt =T in Lemmamm obtain
T T T
/ e MSudt € D(A), A/ e MSudt = e M Spu —u+ /\/ e MS,udt.
0 0 0

Note that foT e MSudt — Ryu as T T 00, and both sides of the above identity converges. Since A has a
closed graph, we have Ryu € A and AR \u = AR)u — u. In other words, (AId —A)Ryu = u for all u € X.
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Step II. For any u € ©(A) and T > 0, we use integration by parts on %Stu = S;Au to obtain
T T
/ e MS, Audt = e M Spu — u+ )\/ e MS,u dt.
0 0

Again we let T 1 oo to conclude that RyAu = ARau — u. That is, Ry\(AId—A)u = u for all u € D(A).
Combining Step I, we know that AId —A : D(A4) — X is bijective and (A\Id —A)~! = R,. Hence

(AId—A)"'u = Ryu = / e MSudt.
0
For the general case, note that

_1)k71 dlcfl (_1)k71 dkfl oo
ALd—A)Fy = L ——(A\Id—-A)™! :77/ MG dt
( )= o = A
1 % k-1t
= — t" e M Spu dt.
=
Hence we prove (|5.14) for all k£ € N. O

Remark. According to this proposition, the spectrum of A satisfies

1
sup ReA <wp = lim M.
A€o (A) tooo ¢

5.5 The Hille-Yosida-Phillips Theorem

In this subsection, we discuss how to generate a semigroup with its infinitesimal generator. First, we note that
a strongly continuous semigroup is uniquely determined by its infinitesimal generator.

Lemma 5.21 (Uniqueness). A linear operator A on a Banach space X is the infinitesimal generator of at
most one strongly continuous semigroup.

Proof. We let A : ®(A) — X be the generators of two strongly continuous semigroups (S:)¢>0 and (73)i>0,
and fix ug € D(A). By Proposition [5.12] u(t) = Tyug is a solution of the Cauchy problem

u(t) = Au(t), u(0) = ug.
We then fix ¢ > 0, and prove that [0,¢] = X : s +— S;_su(s) is constant. Note that u(s) € D(A4), and

Si—su(s) — Si—s—pu(s)

i = < s <
tfs,hzrgao N Si—sAu(s), 0<s<t.
This implies
d o Siesopu(s+h) = Si_su(s)
st = i S
— lim S,_._,, (“(34'}1)_“(3) _ Au(s)) + lim (St_s—hu(s) — Si_su(s) n St_sAu(s))
h—0 h h—0 h

+ lim (Si—sAu(s) — Si—s—nAu(s))
h—0
=0.
Hence the function [0,¢] = X : s — S,_su(s) is everywhere differentiable and its derivative vanishes, and so it

is a constant. Thus Tyug = u(t) = Siug, which holds for all vy € ©(A) and ¢ > 0. Since ®(A) is dense in X,
it follows that T,u = Syu for all v € X and t > 0. Then we finish the proof. O
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Theorem 5.22 (Hille-Yosida-Phillips). Let A : ©(A) — X be a closed linear operator with a dense domain
D(A) C X on a real Banach space X. Fiz w € R and M > 1. Then the following are equivalent:

(1) A is the infinitesimal generator of a strong continuous semigroup (Si)i>o0 that satisfies
1S:]| < Me** for all t > 0. (5.15)

(i) For every real number X\ > w, the operator A\Id —A : D(A) — X is bijective, and

M

L

for all A\ > w and k € N. (5.16)

Proof. (i) = (ii). Since ||S¢|| < Me“t, we have w > wp := limy_,o, t 1 log || S¢||. We fix A > w and k € N. Since
A > wp, we have X\ € p(A). By Proposition for all u € X,

- 1 oo ]\j”u” L MHU”
Id— ko || < k—1_—Xt < / k=1,—(A-w)t gp NN
[[AId—A) " u|| < (=] 1)!/0 t" e M| Spul| dt < =) t" e dt D= w)f

(ii) = (i). Let A : ®(A) — X be a densely defined closed linear operator such that A\Id—A : ®(A) — X is
bijective and satisfies (5.16|) for each A > w.

Step I. We prove that u = limytoo A(AId —A) tu for every u € X. If u € D(A), we have
AAd—A) "ty —u=(AId—A) " hu — (AId —A) ' (ATd —A)u = AId —A) L Au, A > w.

Then
M| Aul|

(A —w)*

We also note that [|[A(AId—A)71|| < /\)‘wa < 2M for all A > 2w, . Hence for each u € X, we find a sequence
(un) C D(A) converging to u. Then

[AAId—A) ' —u|| = ||[(A\Id—A) " Au|| < =0 as A1 oc.

[IANId —A) "t — uf| < AT —A) 7 |[Jun — ul] + AT —A)  uy, — up || + |l —ul =0 as A1 oo.
Step II. For A > w and ¢ > 0, define operators

Ay = MOAId—A)", and S} = et = i (tA))*
. ’ T B

k=0

Then (S7');>0 is a strongly continuous semigroup with bounded infinitesimal generator Ay on X. Furthermore,
since Ay = A2(AId —A)~! — \1d, we have

o 4k y2k o Lky2k
A A M trw
A —tA —k —tA _ A
ISHE < e 1y [ Id=A)7F[ <e [ o (’\_“’)k] = MeXs, (5.17)
k=0 k=0
As a result,
SN < M(e*™ v 1), forall A > 2w,. (5.18)
We claim that for all u € X, A > > w and ¢t > 0,
| u — Sful| < MQe%tHA,\u—AMuH. (5.19)

By the resolvent identity R\R,, = R, R\, we have AyA, = A, A\, and A)S}" = S{'Ay. Then

t ¢
St)‘u—Sfu:/o szf_sSi‘udSZ/o St SMAyu— Au)ds, u€X.
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Consequently,
t
A A
157 u — Stull < /0 ST IS AN — Ayull ds
t S LW SAW w
< M2ei™s |lAxu — A ull / eSS s < M2ent Sy [|[Axu — A ull,

0
where we use M_Lw > ﬁ, which proves (5.19)).
Step IIL. We claim that for all ¢ > 0 and v € X, the limit Siu := limyjoo St’\u exists, and S; : X — X is a
bounded linear operator. Furthermore, (S;);>0 is a strongly continuous semigroup satisfying ([5.15]).

We first assume u € ©(A). By Step I, we have limytoo Axu = Au. By the estimate (5.19), the limit

St := limy4oo S} exists for all ¢ > 0, and the convergence is uniform on every compact interval [0, 7], where
0 < T < oo. For each u € X, we take a sequence (u,) C ®(A) such that v, - v in X. By (5.18),

limsup [[52u — Sful| < msup (S (w — wa) | + 1521 — Sl + 1150 (u — u,)])

A,putoo A,ptoo
< limsup ||SPu, — Stun|| +2 sup [|SP(u — uy)|| < 2M (2 V 1)|ju — uy,|,  (5.20)
A, putoo A>2w

Letting n — oo, we see that (S’t)‘u)>\>2w4r is a Cauchy net, which converges in X. Furthermore, by estimate

(5.17), Siu := limypoo SPu satisfies

1Spull = lim [|[SPull < Hm MeX5 |jul| < Me™|ul|, ue X.
Moo 't Moo

Hence S; is a bounded linear operator on X with ||.Sy|| < Me!>.

Similarly, we fix T" > 0 consider the bounded linear operator family ¢y : X — C([0,7],X) defined by
o (ujt) = Spu. For each u € D(A), ¢x(u;-) converges uniformly to a continuous function ¢y (u;-) : t — Syu
on [0,7]. Using a similar control to (5.20), we conclude that ¢ — Syu is continuous on [0, 7] for all u € X and
all T'> 0. Also, SsSiu = lim oo S;\St)‘u = limy oo S;\Hu = Ssqu for all s, >0, and Spu = limypee Sé\u = u.

Step IV. Finally we prove that A is the infinitesimal operator of (S;)¢>o.
We fix u € ©(A) and h > 0. Then for each ¢ € [0, ], by (5.17) and (5.20]),

157 Avu — S, Aul| < |5 Axu — Aul| + |7 Au — S, Au|
< M (e v 1)||Ayu — Aul| + Mze%hHA)\u — Aull, A>2w,.

By Step I, we know that the function ¢ — S} Ayu converges uniformly to t — S; Au on [0, h] as A 1 co. Then

h h
/ SiAudt = lim St)‘AAu dt = Alim S,)L‘u —u = Spu — u,
0 — 00

Atoo Jg
and so
Spu — 1 ("
lim Shu T lim — / SiAudt = Au.
hl0 h rlo h J,

We let B be the infinitesimal generator of (S¢)¢>0. Then D(A) C D(B) and Blpa) = A. Next we fix v € D(B)
and A > w. Define u := (A\Id —A)~}(A1d —B)v € D(A) C D(B). Then

(AId =B)u = (A\Id —A)u = (AId —B)u.

By Proposition A € p(B), and so AId—B : ®(B) — X is bijective. Hence v = u € ©®(A). This implies
D(B) =9D(A) and B = A, which completes the proof. O
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Remark. This theorem also tells us how to generate a semigroup from its infinitesimal generator. Let
A : D(A) = X be a densely defined closed linear operator satisfying (ii). Then the strongly continuous
semigroup (S¢)¢>0 generated by A is given by the strong operator limit

> tk})\Qk
Syu = lim e~ Z T (Ad—A)Fu, weX, t>0.
Moo = k!

Corollary 5.23. Let A: D(A) — X be a closed complex linear operator with a dense domain ©(A) C X on
a complex Banach space X. Fix w € R and M > 1. Then the following are equivalent:

(i) A is the infinitesimal generator of a strong continuous semigroup (Si)i>o that satisfies

(ii) For every real number X\ > w, the operator \Id —A : D(A) — X is bijective and satisfies (5.16)).
(iii) For every A € C with Re A > w, the operator \1d —A : ©(A) — X is bijective, and

M

A<
(M4 =4) ¥ £ st

for all k € N. (5.21)

Proof. By Proposition and the same argument in the proof of Theorem we have (i) = (iii). Clearly
(iii) = (ii). Finally, (ii) = (i) follows from the proof of Theorem and the fact that the operators S in
the proof of Theorem [5.22] are complex linear whenever A is complex linear. O

Next, we discuss the generation of contraction semigroups.

Definition 5.24 (Dissipative operators). Let X be a complex Banach space. A complex linear operator
A:D(A) —» X with a dense domain ©(A) C X is said to be dissipative if, for every u € ©(A), there exists
u* € X* such that

|u*]|? = |Jull* = (u*,u), Re{u*,Au) <0. (5.22)

When X = H is a complex Hilbert space, A is dissipative if and only if
Re(u, Au) <0 for all u € D(A).

The following theorem characterizes the infinitesimal generators of contraction semigroups.

Theorem 5.25 (Lumer-Phillips). Let A : ©(A) — X be a closed complex linear operator with a dense domain
D(A) C X on a complex Banach space X. Then the following are equivalent:

(i) A is the infinitesimal generator of a contraction semigroup (Si)t>o.

(ii) For every real number A > 0, the operator \Id —A : ©(A) — X is bijective, and

1
J(A1d =) < 1. (5.23)
(iii) For every A € C with Re A > 0, the operator \1d —A : ©(A) — X is bijective, and
1A Td—A) 1| < ——. (5.24)
~ ReA

(iv) The operator A : ®(A) — X is dissipative and there exists A > 0 such that the operator A\Id—A :
D(A) = X has a dense range.

Proof. The equivalence of (i), (ii) and (iii) follows from Corollary with M =0 and w = 0.
Step I. We claim that if A is dissipative then

|Au— Auf| = Re Alul.

for all u € ®(A) and all A € C with Re A > 0.
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Note that A is dissipative, there exists u* € X* such that (5.22). Then
llul| | M — Aul| = [|u*|| | A — Aul| > Re(u™, \u — Au) > Re \Mu*, u) = Re A||u|?,

which proves Step 1.
Step II. We prove that (iv) = (iii). Assume A satisfies (iv) and define

A={X e C:ReX >0 and AId —A has a dense range},

which is nonempty by (iv). By Step I, for every A € C with Re A > 0, the operator A\Id —A4 : D(4) — X is
injective. Furthermore, for every sequence (v,) C R(AId —A) with v, — v € X, we let u,, € D(A) be such

that A\u,, — Au,, = v,. Then )

Re A
and (uy,) is a Cauchy sequence, which converges to some u € X. Since A has a closed graph, we have u € D(A)
and v = Au. Hence A\Id —A has a closed range ©(AId —A) for every A € C with Re A > 0. By definition of A,
we know that A C p(4), and

”un - Um” < ”vn - Um”v

1
[T =)} < g forall € A (5.25)

Next, if A € A and |A — | < Re A, then Rep > 0, and by Proposition we have 1 € p(A). Hence p € A.
Consequently, with A € A fixed, we have {u € C: 0 < Rep < 2Re A, Imp = Im A} C A. By induction, we have

{peC:Repu>0, Imp=ImA} CA.

Similarly, for each p in the above set, the line {¥ € C: Rev = Reu} C A. The union of these lines is the entire
positive half-plane in C. Hence {A € C: Re X > 0} C p(A), and (iii) follows from the estimate ([5.25]).

Step III. We prove that (i) = (iv). We assume (i) holds and fix © € ©(A). By Hahn-Banach theorem, there
exists u* € X* such that ||z*||? = ||z||?> = (z*, z). Since (Sh)n>0 is a contraction group, we have

Re (u*, Spu — u) < ||u*||[|Spull — |lul|> <0, h>o0.
We let h | 0 to conclude that

Re (u*, Au) = lim Se 05 Shtt = W)

< 0.
hl0 h <0

Hence A is dissipative. Furthermore, for all A > wg := limyj ot~ !log||S:|, we have A € p(A), and so the
operator A\Id —A : ®(A) — X has range X, which proves (iv). O
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6 Hausdorff Measures, Area and Coarea Formulae

In this section, we study measures that estimate the “low-dimensional” volume of “very small” subset of R™,
which are obtained by considering the size of coverings.

6.1 Definitions and Fundamental Properties

Definition 6.1 (Hausdorff measures). Let X be a metric space, E C X, 0 < s < 0o and 0 < 6 < oo. Define

> diam E. \ ° > 75/2
H;5(F) = inf Zas (2J> ’EC UEj,diamEj <46, where aszm.
Jj=1 j=1 2
Based on this notation, we define the s-dimensional Hausdorff measure on X by
HP(E) :=limH;(FE) = sup H3(E). (6.1)
610 6>0

Remark. If s is an integer, the constant oy is the volume of the unit ball in s-dimensional Euclidean space.
Also, the set on which we take infimum is decreasing as ¢ | 0, hence the limit (6.1]) is well-defined. We can
view this definition as evaluating the “volume” of a set by convering it with finer and finer balls.

To establish some fundamental results about Hausdorff criterions, we first introduce a criterion to verify
that an outer measure in R™ is Borel.

Theorem 6.2 (Caratheodory’s criterion). Let p be an outer measure on a metric space X. If for all sets
A,B C X with d(A, B) > 0, we have u(AU B) = pu(A) + u(B), then p is a Borel measure.

Proof. Step I. Assume E, F C X and F' is closed. We claim that
W(E) = u(E\F) + u(E N F). (6.2)
Without loss of generality we assume u(E) < oo, otherwise the inequality (6.2) is obvious. Define

1
sz{xeR":d(m,F)<}, m=1,2,---
m

Then d(E\F,,, ENF) > = >0, and

1
m

W(E\E,) + p(ENF) = p(EN(FUFS)) < p(E). (6.3)

}, k=1,2,---.

Step II. We then set

??‘M—t

1
A, = EF:— F
k {xE k+1<d($ )

Since F is closed, E\F = (E\Fy,) U (Up—,, Ak), and
W(E\Fy) < p(E\F) < p(E\Fn) + 3 (A (6.4)
k=m

If j > i+ 2, we have d(A;, A;) > 0. By induction, for all m € N,

ZM (Agp—1) <U Agp 1> < u(E), and ZM(Azk) =p <U A2k> < u(E).
k=1

k=1 k=1 k=1
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Combining these results and letting m — oo, we have Y r- | u(Ax) < 2u(E) < oco. Recalling (6.4)), we have
w(E\Fy,) = u(E\F) as m — co. We plug in this limit to (6.3]) to get (6.2).

Step I1I. Since the outer measure is subadditive, the opposite of (6.2) holds, and we have for all closed sets
F C X the Carathéodory condition

w(E) = u(E\F)+u(ENF), forall EC X.

Hence p is a measure on the o-algebra generated by all closed subsets of X, which is the Borel o-algebra. [

Theorem 6.3. Let n € N. For each 0 < s < oo, the Hausdorff measure H*® on a metric space X satisfies:
(i) H® is a Borel measure on X;
(i) (Borel Regularity). For each E C X, there exists a Borel set B D E such that H*(B) = H*(E).

Proof. Step I. We claim that H® is an outer measure. Let Ay, As,--- C X. For any § > 0, let Ay C U;’il EF
with diam Ef < §. Then {E}}%,_, covers U, A, and

o(0)£5- (527

k=1

Taking the infima over {E]’?}j"-szl, we have

(U/@)gi 5(Ax) si *(A).

Finally, we take 0 | 0 to conclude the proof of our claim.

Step II. Let A, B C X be two sets with d(A, B) > 0. By Caratheodory’s criterion, we can conclude that H?* is
a Borel measure if H°(AU B) = H*(A) + H*(B). Below we prove this identity.

We take 0 < § < d(A, B), and assume that AU B C Uj=, Ej with diam E; < ¢ for all j € N. We define
A={E;: ANE; # 0} and B={E; : BNE; #0}. Then A C Up,c 4 Ej and B C Ug,¢p Ej- Furthermore, if
E, € Aand E; € B, we have d(E;, E;) > 20 by the fact diam E;, diam E; < 4. Hence

= dlamEk diam £\ * diam E; \* _ _ , .

=1 E;cA E;eB

Taking the infimum over all such sets (E;)52;, we conclude that H3(A U B) > H5(A) + Hs(B) for 0 < 6 <

1d(A, B). Letting 6 | 0, we have H*(A U B) > H*(A) + H*(B). The opposite holds by subadditivity of 4.

Step II1. To verify the assertion (ii), we assume F C X and H*(F) < oo (otherwise just take B = X). For
each k € N, take E{“,Eé, .-+ C X such that F C Ujoil X, diamEJ]?c < % for all j € N, and

i dlamE’c . 1
o (P55) <wue

We can further assume Ef’s are closed, since the cover property and set diameters do not change when we
take closures. We pick B = (,—, U;’il E;‘?, which is a Borel set that contains F. Then for each k € N,

dlamEk 1
Hijw(B) < Hi)p(B) < H° UEk <Zas<> S HipE) T

Letting £ — oo concludes the proof. O
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We next study some properties of Hausdorff measures on Euclidean spaces.

Proposition 6.4. Let 0 < s < oo and let H® be the s-diemnsional Hausdorff measure on R™.
(i) (Scaling). Let A € R and E C R"™. Then H*(AE) = |\[*H*(E).
(ii) (Affine Invariance). Let T : R™ — R™ be an affine isometry, and E C R™. Then H*(TE) = H*(E).
(1ii) Let E CR™. If H3(E) =0 for some 0 < ¢ < oo, then H*(E) = 0.
(iv) If s >n, then H* =0 on R".

Proof. The properties (i) and (ii) is clear by definition.

(iii) The conclusion is clear for s = 0, so we may assume s > 0. For any € > 0, there exists Fy, Fy,--- C R"
such that £ C |J;2, E; and

oo

(dlam Ej ) s
Zas < €.

j=

1/s
Then for each j, we have diam E; < §, := 2 (ai) ;and H3 (E) < e. Since o | 0 as e | 0, we have H*(E) = 0.

(iv) For each m € N, the unit cube @ € R™ can be divided into m™ cubes with side -1 and diameter % Then
m" \/ﬁ s \/ﬁ s -
S < — n—s .
Hm(Q) < ;as <2m as (5| m

When s > n, the last term goes to zero as m — oo. Then H*(Q) = 0, and H*(R") = 0. O

Now we focus on Hausdorff measures of low dimensions.
Proposition 6.5. (i) HC is the counting measure. (ii) H' on R coincides the Lebesgue measure m.

Proof. (i) By definition, for each € R™, we have HJ({z}) =1 for all § > 0, and H°({z}) = 1.
(ii) Note that ay = 2. Let E C R and ¢ > 0. Since the Lebesgue measure as an outer measure on R,
m(E) = inf Z diam E;

UE >E) <infl diamE; | | JE; D E, diam E; <6 3 = Hi(E).

j=1 Jj=1 Jj=1 Jj=1
On the other hand, set I, = [(k — 1)0, k6] for k € Z. Then
m(E) =inf ¢ > diamE; | | JE; D Ep >inf ¢ > Y diam(I, N E;) | | JE; D E § > H(E).
j=1 j=1 j=1keZ j=1
Hence H} = m for all § > 0, and H! = m on R. O

We next study what happens to the Hausdorff measure H*® of a £ C R™ when we change the dimension s,
and introduce the Hausdorff dimension.

Proposition 6.6. Let X be a metric space, E C X and 0 < s <t < o0.
(i) If H*(E) < oo, then H'(E) = 0.
(ii) If H'(E) > 0, then H*(E) = cc.

Proof. We take 6 > 0, and J;2, F; D E with diam Ej < . Then

o0 . E S
3 a, (dm; ’) < HY(E)+ 1< HYE) + 1.

Jj=1
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Note that diam F/; < §. Hence

> diam E;\' a0t~ & diam F;\°  au6t~*
t = J t J t s

j=1
If H*(E) < oo, we send 6 J. 0 to conclude H!(E) = 0. Note that (ii) is the contrapositive of (i). O
The above proposition justifies the following definition of Hausdordff dimension.
Definition 6.7 (Hausdorfl dimension). Let X be a metric space. The Hausdorff dimension of a set E C X is
dimy (F) = inf{0 < s < 0o : H*(F) = 0}.

Remark. By Proposition
00, 0<s<dimy(F),
HS(E) _ ’H( )
0, s> dimy(E).

Hence we have following equivalent characterization of Hausdorff dimension:

dimy (F) =inf{0 < s < 0o : H*(E) < 0o} =sup{0 < s < o0 : H*(E) > 0}
=sup{0 < s <oo:H(E)=o00} =inf{0 < s < oo:H(E) =0}

The Hausdorff dimension of a set in a general metric space can be infinity. But in the Euclidean space R™, it
is clear that dimy(E) < n for all E C R™.

Theorem 6.8 (Countable stability). Let X be a metric space and Ey, Fs,--- C X. Then

dimy U E; | =supdimy(E}).
i1 jEN

Proof. If s < sup;cy dimy (E;), there exists j € N such that s < dimy (E;), and H*(E;) = oo. Then
1 JE; | =H(E)) = oo (6.5)
j=1
Hence s < dimy (U2, Ej). Since s < sup;ey dimy (E}) is arbitrary, we let s 1 dimy(E};) to obtain
sup dimy (F;) < dimy U E;

jEN =1

Also, if s > sup, ¢y dimy (E;), then H*(E;) = 0 for all j € N, and
w | JE | <D H(E)=o.
j=1 j=1
Hence s > dimy (U;Z, E;), and we can similarly obtain

sup dimy (E;) > dimy
JEN

E;|,

—

j=1

which is the opposite of (6.5)). O
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Example 6.9 (Hausdorff dimension of Cantor sets). Let 0 < v < 3. Beginning from the unit interval [0, 1], the
~v-ary Cantor set is obtained by repeatedly removing the middle open 1 — 2 from the interval. To elaborate,
we first remove the open interval (y,1 —+) from Iy; = [0,1] and get

Li=10,y], La2=[1-77]

Next, we remove the middle open interval of length v(1 — 2) of each of the above intervals and get

L1=100,7%, Lo=[N-7%7 Ls=[1-v1-v+7%, La=[1-9%1].

Continuing this process, after the n'" step there are 2" closed intervals Ini1,1n2, -, Inon of length 4", and
we remove the middle open interval of length 4™ (1 — 27) from each intervals at the next step. We define the
~v-ary Cantor set as the decreasing intersection

oo 27

=N UL

n=1j=1

Since for each n € N, we can cover C., by 2" intervals of length v". Hence

n

s Qs s\ '7
< —_— = —,
Hi (C) S 52", du=

If we choose s = (2%/27) we have

HH(Cy) = lim HE (Cy) < == < oo

n—oo 28

We also give a lower bound of the s-dimensional Hausdorff measure of C,:

H(Cy) >

Qs
5 >0 (6.6)
log 2

According to the two estimates, we conclude that the Hausdorff dimension of C,, is s = Tog(1/7)"

Proof of . Let _Z be a collection of open intervals that cover C,. We prove that

> (L) >

Jie 7

(6.7)

N

We assume that J; contains some interval [; ;, from the I*h stage, and let k be the smallest integer such that
J; contains some interval I, ;, from the kth stage. Clearly k < I. Furthermore, following our construction of

C, we know that no more than 4 intervals from the k™ stage can intersect J; for otherwise J; must contain

th

some interval Ij_q ;. , from the (k —1)"" stage. Thus

dm(J;)° > Z m(J;)® > Z m(Ig,;)° = Z Z m(l;)° = Z m(1y,;)°.

Iy, ;N J; #0 I, ;NJ; #0 I ;NJi#0 1) jr Cli,j I ;CJ;

By compactness of C,, and the Lebesgue number lemma, for sufficiently large [, every interval I; ; is contained
in some J; € _#. Hence

43 m() = > Y mhy)” >melj =2'(y")* =1,

JiEF JieZ 1, ;CJ;

which establishes (6.7). Now if the estimate did not hold, there would exist F1, Fs,--- C R such that
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U2, E; D Cy, and for some € > 0,

- 1
iam F;)® < ——.
;(dlam )¥ < IEEL

We then replace each E; by an open interval J; of length (1 + ¢) diam E; with J; D E;. This implies

>, 1
> m) <
=1
which contradicts (6.7]). Hence we complete the proof. O

6.2 Vitali’s Covering Theorem

In this subsection, we study how to fill an open set in R™ with countably many balls and introduce Vitali’s
covering theorem. We first discuss an analogue of the finite result discussed in Lemma [2.30

Theorem 6.10 (Vitali’s covering theorem). For any collection F of non-degenerate closed balls in R™ with

sup diam B < co.
BEF

Then there exists a countable subcollection G C F of disjoint balls such that

U Bc 5B,

BeF Beg
where 5B denotes the closed ball with the same center as B but with 5 times the radius.

Proof. We write M = supp, rdiam B and set

M . M
}"kz{Be]::%<d1amB§2kl}, k=1,2,---

We define G, C Fj. as follows:

e Let G; be any maximal disjoint subcollection of balls in 7, which is clearly countable;

e With Gy, -+ ,Gi_1 selected, we choose Gy to be any maximal disjoint subcollection of
k-1
BeFy:BNB =0forall B € ]
j=1

Finally, we define G = |J;—; G, which is clearly a subcollection of disjoint balls in F. To conclude the proof,
we claim that, for each ball B € F, there exists B’ € G such that BN B’ # () and B C 5B’.

Fix B € F. There then exists an index k such that B € Fi. By maximality of Gy, there exists a ball
B e U§:1 G, with BN B’ # (). Since diam B’ > 2=kM and diam B < 2'=*M, we have diam B < 2diam B’
and so B C 5B’ by the triangle inequality. O

Theorem 6.11 (Filling open sets with balls). Let U C R™ be open, and § > 0. Then there exists a countable
collection G of disjoint closed balls contained in U such that diam B < ¢ for all B € G and

m<U\UB>=o,

Beg

where m is the Lebesgue measure on R™.
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Proof. Step I. We first assume m(U) < oo, and fix 1 — 2= < 6 < 1. We claim that there exists finitely many
disjoint balls By,--- , By, C U such that

To prove this, we let
Fi={B CU: Bisaclosed ball, diam B < ¢}.

By Vitali’s covering theorem [Theorem [6.10], there exists a countable subcollection G; C F; of disjoint balls
contained in U such that

U sBow
Beg:
Hence
m(U)gm< U 5B> <> m(5B)=5" Y m(B)zS"m( U B).
Beg: BegG: BegG: Beg:
As a result,

1
m (U\ U B> < (1 - 571) m(U).
Beg:
Since m(U) < oo and 6 > 1 — £, there exists finitely many balls By, -, By, € G1 satisfying (6.8).
Step II. Define

Uy =U\ U B,
Beg:
and
Fo={B CUy: Bisaclosed ball, diam B < §}.
As above, we may find finitely many disjoint balls By, 41, - , By, € Fa such that
M2 Af2
m|U\|JB|=m|\ |J B| <om@:)<6*mU).
j=1 J=M;+1
Step III. Continuing this procedure, for each k, there exist finitely many balls By, --- , By, C U with diameter
less than § such that
My,
m | U\|JB| <6*mU), k=12
j=1

Since #¥ — 0 as k — oo, we complete the proof for the case m(U) < oo.

Step IV. If m(U) = oo, we apply the above construction to each of the open sets
Up={zecU m<|z|<m+1}, m=12,.--

Then we conclude the proof. O
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6.3 The Isodiametric Inequality

From now on, to distinguish between Lebesgue measures on Euclidean spaces of different dimensions, we use
L" to denote the Lebesgue measure on R™. This is obtained by applying Carathéodory’s extension on R" to
a pre-measure on the semi-ring comprised of cells of the form H?zl(ai, b;]. To be specific, one define

En <H(al)bl]> = H(b7, - ai) fOr all a; é b’i? Z = 1,27 s un,

i=1 =1

and for £ C R"”, define

(Qj)72, are cells of the form H(ai, b;], and U Q;iDE ;. (6.9)
i=1 j=1

LY(E) =inf{ Y " L™(Q))

Jj=1

In this subsection, we are going to establish that L™ = H" on R™ by the isodiametric inequality. To proceed,
we first introduce the Steiner symmetrization.

Definition 6.12 (Steiner symmetrization). Let £ € R™ with |{] = 1, and b € R™. Denote by
Le(b) ={b+t£:t e R}

the line through b in the direction &, and
Pe={zxeR": T2 =0}

by the plane through the origin perpendicular to £. Given E € R”, we define the Steiner symmetrization of
E with respect to the plane P to be the set

1
Se(E) = U {b—!—ta | < 2H1(E0L§(b))}
bePes, ENL¢ (b)#0

Proposition 6.13 (Properties of the Steiner symmetrization). Let & € R™ with |{| = 1, and E C R™. Then
(1) diam S¢(F) < diam E.
(it) If E is L™-measurable, so is S¢(E), and L"(S¢(E)) = L™(E).

Proof. (i) We may assume that diam £ < co and E is closed. We fix ¢ > 0 and choose =,y € S¢(E) with
diam S¢(E) < |z —y|+e Set b=a — ((T2){ € Pe and c =y — (£Ty)€ € P, and

r=inf{t:b+t{ € E}, s=sup{t:b+t{cE}, u=inf{t:c+t{ € E}, v=sup{t:c+t{cE}.
Without loss of generality, we may assume v —r > s — u. Then

HA(E N L) + 5 (B0 Le(c)).

DN | =

v—r> %(U—r)—i—%(s—u):%(s—r)—&—%(v—u) >
Also, by definition of S¢(E), we have [z 7¢| < 3H(E N Le(b)) and |y "¢| < 3H(E N Le(c)). Hence
v—r>lzE +y'E =z —y) el
Therefore,
(diam Sg(E) — €)® < |z =y = b — cf* + |(z — y) "¢
<lbm o + (0= = |(b+ rE) — (c+vE)? < (diam B,
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where the last inequality holds because F is closed and so b+ r€, ¢+ v€ € E. Since € > 0 is arbitrary, we have
diam S¢(F) < diam E.

(ii) Since L™ is rotation invariant, we may assume ¢ = e, = (0,---,0,1)7. Note that £' = H' on R. By
Tonelli-Fubini theorem, the map f : R*~! — R defined by

£6) = HH(E N Le(b.0) = £1(EN Le(b,0) = [ 150.0)
R
is £7~! measurable, and L™(E) = [;,_, f(b) db. We use the following lemma.
Lemma 6.14. Let f : R"1 — [0,00] be an L™ '-measurable function. Then the hypograph of f, defined by

Hy = {(z,y):xGR”fl,yGR and ygf(:c)},

1s L™-measurable.

Proof. Note that Hy is the level set {g > 0} of the £""!-measurable function g(z,y) = f(z) — y. O

Proof of Proposition [6.13 (Continued). We note that
<t< f(Qb)}\{(b,O) tbeR" 1 ENLe(b,0) =0}
By Lemma the symmetrized set S¢(E) is £~! measurable, and
L(Se(E)) = f(b)ydb=L"(E). O

Rn

Remark. In fact, throughout our subsequent proof of £ = H", we only use the statement (ii) above in the
special case that £ is a standard coordinate vector e;, i = 1,2,--- ;n. Since L™ is obviously rotation invariant,
we therefore indeed prove that L£,, is rotation invariant.

We next introduce the isodiametric inequality, which gives an estimate of £L™(E) in terms of diam E.

Theorem 6.15 (Isodiametric inequality). For all sets E C R™,

LM(E) < an ( :

diam F ) "
Proof. We may assume diam E < oco. We take the standard basis e; = (0,--- ,0, 1h,0, <++,0) of R", and
it
consider the Steiner symmetrizations F1 = S,, (E), Ea = Se,(E1), -+ , Ep = Se, (En—1). Write E* = E,,.
Step I. We claim that E* is symmetric with respect to the origin, i.e. for every x € E, we have —x € E.
To prove this claim, we note that Ej is clearly symmetric with respect to P.,. We hence assume 1 <k <n

and Ej, is symmetric with respect to Pe,,---, P, . Then Ey, = Se, ., (E}) is symmetric with respect to P, .
We fix 1 < j <k, and let R; : R™ — R" be the reflection through P,;. For any b € P, since R;(Ey) = Ey,

k10
IHI(E’C N L€k+1 (b)) = Hl(R](Ek) N L8k+1 (ij)) = Hl(Ek N L€k+1(ij))'
As a result,

{t eER:b+ ter+1 € Ek+1} = {t eR: Rﬂ)—‘r tep+1 € Ek+1}, beP

€k+1)

and R;(Egy1) = Egq1. Therefore Ey 1 is symmetric with respect to P, j = 1,2,--- , k. By induction, E* is
symmetric with respect to P, ,--- , P, , and hence with respect to the origin.
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Step II. If x € E*, we have —x € E* by Step I, and so diam E* > 2|x|. Therefore E* C B(O,%diamE*), and

Lr(EY) < L (B (07 dm;E» = an <dm;E) . (6.10)

Since E is L£"-measurable, by Proposition
L'((E))=L"(E), and diam(E)* < diam FE.

We then apply (6.10) on (E)* to obtain

£(B) < £(B) = £"(B)") < an <“12(E)) <an (d;“E) ~a (d;“E)

Thus we complete the proof. O

Remark. Generally, when the dimension n > 2, we cannot contain a set £ C R™ in a ball with diameter
diam E. For example, consider an equilateral triangle in R2.

Using the isodiametric inequality, we can establish the equivalence of Lebesgue and Hausdorff measures in
multidimensional Euclidean spaces.

Theorem 6.16 (n-dimensional Hausdorff and Lebesgue measures). We have
H'=L" onR"™

Proof. Note that we can write each cell of the form []?_,(a;, b;] as the union of countably many (equilateral)
cubes. According to (6.9), for each § > 0, we have

(Qj)52, are cubes, diam Q; <4, and U Qi >DFE,;, ECR"

Jj=1

LM(E) =inf{ Y L™(Q;)
j=1

Step I. We claim that H"™ is absolutely continuous with respect to £". For each cube Q; C R",
n diamQ;\" a, [diamQ;\" NS
Therefore we have
n : = diam Qj " 0o : = n
H3(E) < inf Zan —_— (Qj)72, are cubes, diam Q; <4, and U Q; D E ) <C.L™"Q)).

2

Jj=1 J=1

Letting § | 0, we conclude that H™ is absolutely continuous with respect to £™.

Step II. We fix €,0 > 0 and take cubes (@;)52; such that £ C UJO';I Qj, diam @, < ¢ for all j € N, and

> LMQ)) < L™(E) +e.

Jj=1

By Theorem for each j € N, there exist disjoint closed balls (Bi)zil contained in the interior of @); such
that diam B}, < ¢ for all k and

o (Qj\ 0 Bz) s (@j\ 0 Bz) _o.
k=1 k=1
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By Step I, we have

k=1
Therefore
oo oo oo oo o0 o0 oo J
H3(E) <D HR(Qy) =D M (U B;) <SS NHFBH) YD om (dla§3k>
j=1 j=1 k=1 j=1 k=1 j=1k=1
=D > LBl =)_L" ( Bi) =D LMQ)) < L(B)+e
j=1k=1 j=1 k=1 7j=1

Letting 4, ¢ | 0, we conclude that H"(E) < L™(E).
Step III. We fix 6 > 0, and choose (F;)32; such that U;il E; D E and diam E; < § for all j. By the
isodiametric inequality [Theorem ,

i_": i_": (dlamE )

Taking the infima, we have L™(E) < HF(E). Letting ¢ | 0, we conclude that £L*(E) < H"(E). O

6.4 Hausdorff Measure under Holder and Lipschitz Continuous Mappings

In this subsection, we study Holder and Lipschitz continuous mappings. Generally, we fix 0 < v < 1, and let
A CR"™. A function f: A — R™ is called Hélder continuous with exponent +, provided
[f(x) = fy)l”

[flcor(ay == sup —————"— <oo0.
vyed oty [T =Yl

This is a seminorm on the vector space C%7(A) of v-Hélder continuous functions on A.

Theorem 6.17 (Hausdorff measure under Holder mappings). Let v € (0,1], ACR", and f : A — R™ be a
~v-Hélder continuous function. Then for every 0 < s < 00,

Qs [f]séo,w(A)
2(1—7)s

He(f(A)) < H5(A). (6.11)

Olys

Proof. We fix § >0 and choose subsets (E;)2; of R" with A C U2, E; and diam(E}) < ¢ for each j. Then

diam f(E;) = sup |f(z) — f(W)| < [fleoray sup |z —yl? < [flooa(a(diam E;)7 < 87[f]cor(a)-

z,YyEE; z,yel;
Hence
s = dlamf ) ‘ =, diam E; \ °
Hm[f]co,lm) Z ( ) < [f]SCUJ(A) Zl o(1—)s ( B)
- o
Taking the infima over all (E;)32;, we have H3, Fleoa ) (f(A) < aoj [Jf];fgw%?) HJ°(A). Send 6 | 0. O

Remark. (I) By estimate (6.11]), for all s > dim%w, we have H*(f(A)) = 0. Then

N (6.12)

dimy (f(A)) <
By countable stability of Hausdorff dimension, (6.12]) also holds for locally y-Holder continuous functions.
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(IT) In particular, for a Lipschitz continuous function f: A — R™, we have
H(f(A)) < [f1Eor 4" (A).

One typical example is the projection map. If P : R™ — R" is a projection, i.e. Pz 1 z — Pz for all x € R™,
then [P]co1gny = 1, and H*(P(A)) < H*(A) for all A C R™.

Next we study the Hausdorff dimension of function graphs. Given A C R™ and a function f : R™ — R™,
we write the graph of f over A by

Gry(A) = {(z, f(z)) : 2 € A} C R"™™.

Theorem 6.18 (Hausdorff dimension of graphs). Let A C R™ with L™(A) >0, and f : R™ — R™.
(i) dimy(Grs(4)) > n;
(i) If f is locally v-Holder continuous for some exponent v > 0, then

dimy (Grp(A)) <n+(1-7) (m A i) .

Proof. (i) Consider the standard projection P : R"™™™ — R™ (z1, -+, Tn, Tni1, s Tntm) — (@1, Tp).
Then [P]co.1gnim) = 1, and H"(Gry(A)) > H"(P(Grs(A))) = H"(A) > 0. Hence dimy Gry(4) > n.

(ii) We let @ denote any cube in R™ of side length 1, and divide @ into k™ subcubes Q1,Q2, -+ , Qi~ of side
length % Then diam @Q; = % for each j. Define

i —  ipf f? b = i =1 .- =1 k™
aj weglmij(fv), ; Iesxmp@f(w), i=1m, j=1,---,

By y-Hélder continuity,

.
b§ _ a; < [fleor (@) diam(Q; N A)T < [fleoq () ({f) ’

Then the image of f over AN Q; satisfies f(ANQ;) = [TiZ, [a%, b].

(ii.1) By our estiamte of b; — aé, each the image f(ANQ;) can be covered by CE™1=7) cubes in R™ of side
length %, where C' is a constant depending on f,n,m and . Consequently, the graph

o
Grp(AnQ)c |JQ; x f(ANQ))

Jj=1

is covered by a constant multiple of k(1= cubes in Rt of side length % Then

n+(1—vy)m
n - n —y)m n+m "
W™ Gy (AN Q) < R (V5

Vi m\
< C1an+(17'y)m T .

Letting k 1 oo, we obtain H*(Gry(ANQ)) < oo, and
dimy (Gry(ANQ)) <n+ (1 —v)m,

which holds for all cubes Q C R™. By countable stability of Hausdorff dimension, we can subdivide R™ into
countably many cubes and conclude that dimy (Gry(A)) <n+ (1 —~)m.
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(ii.2) Welet E; = Q; x f(ANQ;), j =1,2,--- , k™, which together cover Gry(AN Q). Then

) n L . 1 C
diam B; <, | 75 + > (b —ai)? < = n+mn[fl20 o) = =
=1

Consequently,
k™ . n/y n/y
n diam F; C
HkKZC(A N Q) < Zan/'y (2]) < Ay )y (2> .
j=1
Letting k 1 0o, we obtain H"*(1=)™(Gr;(ANQ)) < oo, and dimy(Grs(ANQ)) < n/y. Again by countable
stability of Hausdorff dimension, we have dimy (Gry(A4)) < 2, which complete the proof. O

Remark. In particular, if f : R® — R™ is Lipschitz continuous on A, then dimy (Grs(A4)) = n.

Aside: Kirszbraun’s Extension Theorem. In some scenarios, we may concerns if a Lipschitz continuous
function on a subset A C R™ can be extended to the whole space. We can indeed prove the possibility of
extension in a more general setting. Let X,Y be two Hilbert spaces, A C X, and f : A — Y be a Lipschitz
continuous function. We write the global Lipschitz constant by

[f]CO‘l(A) = sup M

z,yeX, x#y Hl'_yH
The formal statament is presented below.

Theorem 6.19 (Kirszbraun). Let X,Y be two Hilbert spaces, A C X, and f: A — Y a Lipschitz continuous
function. Then there exists an extension f : X — Y such that
(i) f=f on A, and
(ii) [fleorx) = [fleoa(ay-
To begin with, we first prove a weaker result.

Lemma 6.20. Let I,J C X be two finite sets, K >0, and let f: I — Y be a function such that

1f(x) = FW)ll < Kllx =yl

for all x,y € I. Then there exists a function g : IUJ — Y such that g(x) = f(x) for all x € I, and
lg(@) = gl < K|z —yl| for all z,y € TUJ.

Proof. By induction on the number of points in J, it suffices to show the case J = {a} with a € X\I. We
claim that there exists b € Y such that || f(z) — b|| < K||x — al| for each x € I. If K = 0, then f is constant
on I, and we take b to be the constant value of f. If K > 0, we may assume K = 1 by replacing f with f/K.

Step I. We write I = {x1, -+ ,2,,} and set D = Conv(f(I)). Then D is a compact set for the norm topology
since it is the image of the continuous mapping

(>\17 e 7>\m) — Alf(xl) +eet Amf(xm)
over the compact set {\ € [0,1]™ : A\y,--+ , Ay, >0, 1TA = 1}.

Step II. For each x € I, the function z — % from K to [0,00) is continuous. Since [ is finite,

— e 2= @]
MR Tl

is also a continuous function, which attains its infimum over D.
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Step III. We let b € K be such that h(b) < h(z) for all z € D. Define

I*:{xel 1o = F@)Il _h(b)}7

la—al

which is a nonempty subset of I. We claim that b € Conv(f(I*)) and argue this by contradiction.
Note that Conv(f(I*)) is a compact convex set. If b ¢ Conv(f(I*)), we take zg € Conv(f(I*)) such that
lb — 20|l = inf.cconv(s(r+)) [Ib — z||. Then for all z € Conv(f(I*)),

1
(b— 20,2 — 20) < —§Hz —z|*<o.

In particular, (b — 2o, f(x) — 29) <0 for every x € I*. Then we fix 0 < € <1 and take b =b+€(z0 —b) € D.
For every xz € I*,

(be = b, f(x) = b) = (be — b, f(x) — z0) + (be — b, 20 — b) > €]|z0 — b||>.
Consequently,

1 (@) = bell® = [If(x) = blI* = 2(be = b, f(x) = b) + [|be — b]|
< I (@) = bl* = (2e = €)]|z0 — bII* < [|f(2) - bI|*.

Recalling the definition of I*, we have

£ (@) = bell _ [1f(x) — bl

|l = all I = all

= h(b), wel.

On the other hand,
o @) —bell _ [If (=) — b < h(b), eI\l
ew |z — all |z — al

Since I\I* is a finite set, we can find €; > 0 such that for each € € (0,¢;),

115 (@) = bell < h(b), forallzel.
lz = all

This implies h(b.) < h(b), contradicting the fact that h(b) < h(z) for all z € D.

Step IV. We assume h(b) > 1, which implies that ||f(z) — b|| = h(b)||x — a|]| > ||z — a]| for all z € I'*. Note
that || f(z) — f(y)]| < ||z — y|| for all z,y € I*. Then we have

(w—ay = a) = 5 (e = ol + Iy — all* ~ o - )
< % (If (@) = bl + 11£ () = 0lI* = £ (=) = F@I?) = (f(z) = b, f(y) = b).
Since b € Conv(f(I*)), we write b = > ;. Az f(x), where A\, >0 for all z € I* and ) ;. Ay = 1. Then
0= <Z Aef @)~ b, 3 A ) b> = 3 AN — b S -
xel* yeT* x,yel*
> Z/\)\ (x —a,y—a) <Z)\x—a Z)\yy—a> 0,
T, yel* rel* rel*

again a contradiction. Therefore h(b) < 1, that is, || f(z) — b|| < ||z — al| for all z € I.

Step VI. Finally, we set g(x) = f(z) for all x € I, and g(a) = b. Then g has the desired property. O
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To prove Kirszbraun’s Theorem, we need extend the above result from finite to infinite sets. A key tool is
the product topology and Tychonoff’s theorem.

Proof of Theorem[6.19. We may assume A is nonempty, otherwise we just make f = 0. Fix a € A.
Step I. For each x € X, let

B, ={yeY:ly— 1@l < [flooscalle —al },

which is a compact subset Y under the weak topology. By Tychonoft’s Theorem, F' = [] B, is also compact

zeX
in the product topology. Next, for any finite set I C X, set

Fr={geF:g()=f() forall 2 € TN A, g(x) — 9(0)]| < [fleos aylle — yll for all 2,y € T},

Clearly I = Fy,y D F for any finite subset I C X. Furthermore, by Lemma [6.20} we can find an extension
go of f on I'U{a} such that go(x) = f(z) for all z € (I N A) U {a} and [|g(z) — g()l| < [flcorayllz — yl| for
all z,y € IU{a}. We let g(z) = go(x) for x € I U{a} and g(z) = f(a) for z € X\(I U{a}). Then

|z —all, xe€lU{a},

lo@) = F@1 < llgo(z) = go(a)] = {o, v ¢ 1U{a}.

Therefore g € F', and consequently F7 is nonempty.

Step II. Now we check that each set F7 is closed. To show this, we note that:
e For each z € (INA)U{a}, the projection map g — g(z) : X — B, is continuous, and the set {f(x)} C Y
is closed in the weak topology. Then {g € F': g(z) = f(x)} is closed.
e For all z,y € I U{a}, the maps g — g(z) and g — g¢(y) from F to Y given its weak topology are
continuous. Also, the function z — (z,w) : ¥ — R is continuous for each w € Y. Then the functions
g+ {g(z) — g(y),w) from F to R are continuous. Therefore

{g € F:{g(x) — g(y), w) < [floor(allz —yll}

is closed in F' given the product weak topology. Also,

{g€ F:lgl@) =gl < [fleoallz —ylly = (] {9 € F:{9(x) = g9(y),w) < [fleoacallz -y}
llwll<1

is an intersection of closed subsets of F', hence is also closed.

e Finally, the intersection

Ir= < (| {geF:glx)= f(x)}> n < N {geF:lglx) -9 < [f]CO’I(A)|x_y”}>

zelNA z,yel

is also closed.

Step III. We define .# = {F; : I C X is finite}, which is a collection of closed subsets of F. Also, .# has the
finite intersection property. For finite subset Iy, -, I, of X, then I = U;"Zl I; is also a finite subset of X,
and

m m
ﬂ by = ﬂ Frnay O Fingay = Fr # 0.
Jj=1 j=1
Step IV. By compactness of F', the intersection of all members of .# is nonempty, and we take an element

fe (icxis finite £7- In particular, for all x € A, we have fe Fiy 0y and f(z) = f(z). Also, for all 2,y € X,
we have f € Fi, 0y and || f(z) — f(y)]| < [flcor(a)llz — y||. Hence f is the desired extension. O
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6.5 Hausdorfl Measure under Linear Transformations

Review: Linear maps. Let L : R™ — R™ be a linear map. If we equip both R™ and R™ the standard
orthonormal bases, we can identify L with a m x n matrix L = (Lij)i1<i<m,i<j<n. We can establish the
equivalence of a series of concepts and properties between linear maps and matrices:

e (Adjoint). L* is the conjugate transpose matrix of L. < (Lx,y) = (z, L*y).

e (Symmetry). S* =5 & (Sz,y) = (z, Sy).

e (Orthogonality). Q*Q =1d & (Qz,Qy) = (x,y).
We then introduce the polar decomposition of linear maps. Given a linear map L : R" — R™, we take its
singular value decomposition

k

T

L= E O'Z"U,i'Uj,
Jj=1

where rank(L) = dim R(L) = k, the singular values o1, ,0, > 0, {u1, -+ ,u,} C R™ is some orthonormal
basis of R™, and {v1,--- ,v,} C R" is some orthonormal basis of R".
(i) If m > n, there exists a symmetric map S : R" — R™ and an orthogonal map @ : R™ — R™ such that
L=Q5s.
To see this, we take the singular value decomposition @ = > ;" | u;v;/ and S = Ele o,

(ii) If m < n, there exists a symmetric map S : R™ — R™ and an orthogonal map @ : R™ — R"™ such that
L =5Q".

To see this, we take the singular value decomposition Q@ = Y ", viu;r and S = Zle aiuiu;r.

We define the Jacobian of L as the determinant of the symmetric matrix S in the polar decomposition:

det(L*L), m >n,
v/det(LL*), m <n.

Lemma 6.21. Let L : R™ — R"™ be a linear map, and A C R"™.
(i) If n <m, then

[L] = [L7] = det S = {

H"(L(A)) = [L] £ (A).

(ii) If n > m and A C R"™ is L"-measurable, then y — H" ™ (AN L~ {y}) is L™-measurable, and
[ mant by = [21£7(A).

Proof. (i) We take the polar decomposition L = QS as above.
Case i.1. If [L] = det S = 0, then dim S(R") < n — 1, and dim L(R™) < n — 1, hence H"(L(A)) = 0.
Case i.2. If [L] = det S > 0, by Theorem [6.17] for any ball B(x,r) C R™, we have

H"(L(B(z,r) _ HYQ"L(B(x,7))) _ L"(S(B(x,r))) _ L*(S(B(0,1)))

1
Lr(B(x,r) — Lr(B(xr)  L(B(x,r)) £7(B(0,1))

=det S = [L].

Next, we define v(A) = H"(L(A)) for all A C R™. Then v is a Radon measure on R with v < L™, and by

Theorem [2.29
dv . v(B(z,r)
g @) = gy~

Hence for all Borel sets B C R™, we have H"(L(B)) = v(B) = [L] L™*(B). the same formula holds for all
subsets A C R™ by Borel regularity of Hausdorff measures.
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(ii) We take the polar decomposition L = SQ* as above.

Case ii.1. If dim(L(R")) < m, we have AN L™y} = 0 for L"-a.e. y € R™, and L ™(AN L Yy}) = 0.
Also, since S = LQ, we have S(R™) = L(R™), which implies dim(S(R™)) < m and [L] = det S = 0.

Case ii.2. If L = P is the projection map (21, " , Tm, Tm+1,"** ,Tn) > (L1, , Tm), then for each y € R™,
P~Hy} = P~Y0} + P*y is an (n — m)-dimensional affine subspace of R and a translation of P~1{0}. By
Fubini’s theorem, y — H"~™ (AN P~{y}) is L™-measurable, and

/ Hm (AN P {y)) dy—/ / ) M dy—/ / 2+ P*y) dH™™(z) dy
ooy oy

// o L‘( )dﬁn "(x )dﬁm(y):/" 1adL" = L"(A).

Case ii.3. For the general case of dim(L(R"™)) = m, we write Q* = PU, where U : R® — R" is an
orthogonal map. Then L = SPU. Similar to the Case ii.2, L=!{0} is an (n — m)-dimensional subspace
of R" and L=y} = L7H{0} + QS 'y is a translation of L=1{0} for each y € R™. By Fubini’s theorem,
y = H™(AN L™ Hy}) is L™-measurable. Using the conclusion in Case ii.2, we have

L) =) = [ HTmU@n P hdy = [ AN U e P g)) dy

m

We set z = Sy. By the change of variables formula,

1 1
LMA) = —— H AN U toP oS H2)))de = — H (AN (L7H2)))dz
()= qorg) L AN edz = [ W @an @ a)
Then we finish the proof. O

Remark. In the remain of this section, we will apply (i) to establish the area formula and (ii) to establish the
coarea formula. Note that in the proof of (ii), we use the change of variables formula, which is an immediate
corollary of the area formula.

6.6 The Area Formula

Throughout this subsection, we assume n < m and study the area formula. For a locally Lipschitz map
fF=0Y 12 f™) :R® = R™, we define its Jacobian

1 1 ... 1
T T2 Ty
2 2 ) 2
Jf(x) = [Df(x)], where Df(zx)=|"""

The area formula points out that, for every A C R™, the n-dimensional measure of the image f(A) C R™,
counting multiplicity, can be computed by integrating the Jacobian Jf over A.

Definition 6.22. Let f : R™ — R™ be a Lipschitz continuous function, n < m, and A C R™. The mapping
y = HO(AN f~1(y)) is the multiplicity function of f.

Remark. The multiplicity function counts the number of points of A that are taken to the point y € R™ by
function f. We shall see that f~!{y} is at most countable for H"-a.e. y € R™.

Theorem 6.23 (Area formula). Let f: R™ — R™ be a Lipschitz continuous function, n < m. Then for each
L"-measurable subset A C R™,

/ Jf@)de = [ HOANFHy)) dH ().
A R™
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From now on, we fix a Lipschitz continuous function f : R™ — R™, n < m. To prove the are formula, we
need to introduce some technical lemmata.

Lemma 6.24. Let A C R" be L™-measurable. Then
(i) f(A) is H™-measurable,
(ii) the multiplicity function y— HO(AN f~1(y)) is H"-measurable, and

HO(AN [ (y) dH™ < [f]Eon L7 (A).
Rm
Proof. We may assume that A is bounded by taking the intersections with countably many cubes covering R™.

Step I. By the inner regularity of £, there exist compact sets K,, C A such that L"(A\K,,) < m, m € N.
By compactness of K, and continuity of f, the images f(K,,) are compact and H"-measurable. Also, the

image f(U>_; Km) = Up_; f(K,) is H™-measurable, and by Theorem

Q) e (1 B e (O ) -

Therefore f(A) is H™-measurable, which proves (i).

Step II. We subdivide R" into cubes of side length 27%, and write

U Q, e@k{ﬁ(;,s;]:ai,biGZ,i1,“',71}.

QeBy, i=1

Then the function

g =Y lpane)
QEPBy,

is ‘H"-measurable by (i). Furthermore, for each point y € R™, gx(y) is the number of cubes @ € Ay such
that f~H{y} N (ANQ) # 0. As k — oo, we have gi(y) T H°(AN f~1{y}) for each y € R™. Therefore
y— HO(AN f~H{y}) is H"-measurable. By monoton convergence theorem,

HOAN F~(y)) dH" = hm/ > Lyung " = lm 3 H(f(ANQ))

R™ k—o0 O Q2
< lim sup Z 10 L (AN Q) < [flEo LT (A)

k— oo Qe
Then we complete the proof. O

Lemma 6.25. Lett > 1, and define
P={zeR":Df(z) exists, Jf(x) > 0}.

Then there is a countable collection (Ey)32., of Borel subsets of R™ such that

(Z) UZo:1 Er = P,
(i1) flg, is injective (k=1,2,---); and

(iii) For each k =1,2,---, there exists a nonsingular symmetric linear map Ty : R™ — R™ such that
[(flz) o Ty eon <ty [Tro (flm) eon <t and ¢ "|det Ty| < Jflp, <t"|detTy|.

Proof. We fix € > 0 such that t~! +¢ < 1 <t —e. Let Q be a countable dense subset of P, and let S be a

countable dense subset of nonsingular symmetric linear map on R"™.
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Step I. For each g € ), T € S and | € N, define
E(q,T,1) = {x €QNB(q17Y) : (7' +€) [T2| < |Df(x)2] < (t — €)|T2| for all z € R,
and |f(y) — f(x) = Df(z)(y — )| < e T(x—y)| for all y € B (w,207") }
Since Df is Borel measurable, E(q,T,1) is a Borel set. Also, for all x € E(q,T,1) and y € B(x, %)7
Ty — @) < [fy) = f(@)] < tT(y - 2)]. (6.13)
We claim that for each « € E(q,T,1),
(7' +€)" |det T| < Jf(x) < (t —e)"|det T|. (6.14)
Consider the polar decomposition D f(z) = L(z) = Q(x)S(x), so J f(z) = [L(z)] = | det S(z)|. For all z € R",
(71 + )" [T2] < [Q)S(@)2] = [S(@)2] < (¢~ O|T]

and hence
(7 +€)" |2 < [S(@)T 7 2| < (t—e)|2].

Consequently, we have (S(x) o T=1)B(0,1) C B(0,t — ¢€), and
an|det(S(2)T™H)| < an(t —e)™.

Hence J f(x) = det |S(z)| < (t — €)™|det T'|. The proof of the other inequality in (6.14) is similar.

Step II. We relabel the countable collection {E(q,T,1) : ¢ € Q,T € S,l € N} as {Ey}32,. For each z € P,
we write the polar decomposition D f(z) = Q(z)S(z) as above. Choose T' € S with ||T'— S(x)|| so small that

178 ()~ | = (T = S(2))S(2) " +1d | < ﬁ and  [[S(@)T7H = [I(S(z) - DT~ +1d|| <t —e
Then |Df(x)z| = |Q(x)S(x)z| = |S(x)z| satisfies

T
(tfl —|—e) |Tz| < | Z|_1 <|8(x)z| < ||S(2)TY||T2| < (t—€)|Tz|, VzeR™

IT5()

Next, we choose m € N and ¢ € @ such that ¢ € B(«, %), and
€
|f(y) = f(z) = Df(x)(y —2)| < le —z| < €elT(y — )|

for all y € B(x, 2). Then x € E(q,T,1), which proves (i).
Step III. We fix any E, = FE(q,T,1), and let T, = T. By (6.13)), for all z € E}, and y € B(x, %),

7Ty — 2)| < |f(y) = f(2)] < tTa(y — @)

Since Ey C B(q, %) C B(x, %), the above estimate in fact holds for all z,y € Ej. Therefore f|g, is injective,
and

[(fl) 0 Ty Heon <t [T o (flp) " eor <t

The estimate (6.14)) implies
tin‘ detTk| < Jf|Ek < tn| detTk|.

Thus we complete the proof of (ii) and (iii). O
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Proof of Theorem[6.23 By Rademacher’s Theorem, we may assume D f(x) and J f(z) exist for all z € A. We
may also assume L"(A) < 0.

Case I: A C {Jf > 0}. We fix t > 1 and choose (E;);2; as in Lemma [6.25] We may assume that (Ep)72,
are disjoint by sequentially removing the intersection. Also, we take the disjoint cubes 4, as in Lemma
We then set

Fl,=E,NQ;NA Qj€B jk=12-.

J

Then (Fjlk)‘;"k:1 are disjoint, and A = U;Ok:l FJlk We define
a= > Ty,
Jik=1

Then for each y € R™, g;(y) is the number of sets F},k such that F;k N f~Hy} # 0. Consequently, g;(y) 1
HO(AN f~{y}), and we use the monotone convergence theorem to conclude that

o0

[oweans whane) = tim [ at) ) = in S5 1) (615)

Rm l—o00 Py}
By estimate (6.13]) and Theorem
H(F(Fj ) = H"(fl, o Ty o Tu(F] 1)) < "L (Ti(Fj 1),

and

LYTe(F i) = H (T o (fl5,) " o fl (k) < t"H"(F(F] ).
Next, we repeatedly use estimate (6.13)) and Lemma to obtain

tEH(f(F ) < 6L (T3(F ) = " det Tl £7(F] )

§/ JfdL"
F

t
J.k

<" det T L"(F} ) = t"L™(Ti(F} 1)) = 21" (£(F] 1))

We sum on j and k to conclude

2 S (L)) < /A Jfder < S W (F(EL,)

jk=1 jk=1

Recalling ([6.15)), we can send [ T oo and ¢ | lin the above estimate to obtain
[asac = [ w0t ane).
A R™

Case II: A C {Jf =0}. We fix 0 < € < 1, and define g : R® — R™" as g(z) = (f(z),ex). Then f = Pog,
where P : R™T" — R™ is the standard projection P(y1, " , Ym,Yms1, " »Yn) = (Y1, ,Ym). By definition,

Dg(x) = (ﬁdf(?) ,

and

Jg(a) = \fdet (Df(@) D (@) +1duen) = | [[(05(2)2 + ),

1

n

J
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where ot(z) > -+ > 02(x) = 0 are singular values of D f(z) in decreasing order. By Lipschitz continuity of f
over R", we have o1(z) = ||Df(x)||1 < [f]cor. Also, since Jf = 0, we have o,,(x) = 0. Therefore

0<e” <Jg(z) < (1+ [f}?;o,l)% e, x€A.

Since P : R™*" — R™ is the standard projection, we apply Theorem and the Case I above to obtain

HA(F(A)) < M (g(A)) = / Ty (y, 2) dH" (3, 2)

Rn+m

< [ g ) dn ) = [ Jgdet < (14 [f2es) T L)
Rntm A
Sending € | 0, we have H"(f(A)) = 0. Since y — H°(AN f~{y}) is supported on f(A), we have
HOANFHy)dH" =0 = / JfdLr.
R A

Finally, for the general case A C R™, we just apply Cases I and II above to AN {Jf > 0} and AN{Jf =0},
respectively. Then we conclude the proof. O

Remark. The area formula also implies that f=1{y} is at most countable for H"-a.e. y € R™. Since f is a
Lipschitz function, the Jacobian Jf is bounded on R™. Then for each cube Q C R,

HOQN f {y}) dH" = / JfdLm™ < oo,
Q

R™

and H"{y € R™ : HO(Q N f~Hy}) = oo} = 0. We take R™ = |J;—; Qk, where Qy’s are lattice cubes. Then
HO(Qr N f~H{y}) < 0o on each cube Qy for H"-a.e. y € R™, and f~'{y} is at most countable.

One most important corollary of the area formula is the change of variables formula.

Theorem 6.26 (Change of variables). Let f : R® — R™ be Lipschitz continuous, n < m. Then for each
L"-integrable function g : R™ — R,

[omisaa= [ | ¥ | awew)

zef~H{y}

Proof. 1f g > 0 is measurable, we may write g = Y-, +1.4,, where we define A; = {z € R" : f(z) > 1}, and

k—
1 1
A, — R" - > 14, k=2
k HARS f(x)—k+g] Aj ) 733
Then
o] 1 & 1 _ "
| o =Zg/ wydr =37 [ HAn S ) AR ()
n P P m
1[0 Y wwarw=[ % L, (2) | dH" ()
k Rm™ R™ k
k=1 zef~{y} zef~Hy}

- /Rm S @) | aHry).

zef~{y}

For the general case that g is an £"-integrable function, write g = g™ — ¢~ and apply the above conclusion. [J
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Remark. In particular, if f : R® — R™ is Lipschitz continuous and injective, then for each L"-integrable
function g : R — R,

[o@iseie= [ o w)a

Now we see some applications of the area formula.

Example 6.27 (Length of a curve). Let f = (f!,---, f") : R — R™ be Lipschitz continuous and injective.
We write for f the derivative of f:

f= (dt dt’ dt)

For —oo < a < b < 0o, we define the curve I' = { f(t) }a<i<p C R™. By the area formula,

b
W) = [ teant = [ w0 nanie) = [ aract = [liold

Rm™ [a,b]

Hence the length of the curve I' is given by

b
'r) = / Fo)dr.

Example 6.28 (Surface area of a graph). Let g : R — R be Lipschitz continuous. We define f(x) = (z, g(x)).
Then f is injective, and

Df(@—(;jg;;), and  Jf(z) = \/det(ld,xn +Vg(2)Vg(@)T) = I+ V(@)

Given an open set U C R", the graph of g over U is
G =Gry(U) ={(z,9(x)) :z € U} = {f(x) : v € U}.
By the area formula,

HY(G) = /n 1gdH™ = - HO(UN fH(y) dH  (y) = /U JfdL" = /U V1+|Vyg(x)|? de.

Hence the n-dimensional surface area of G is given by
G) = / V1+1|Vg(z)|? d.
U

Example 6.29 (Surface area of a patametric hypersurface). Let f : R™ — R"*! be Lipschitz continuous and
injective. By the Binet-Cauchy formula,
_ 2
:i a(flv afk 17fk+17"' 7f7L+1)
k=1 8(1?1,"' 73377,)

By the area formula, the n-dimensional surface area of S = f(U) C R**! is given by

SR>

k=1

a(fr,-- ,fk 1 f’““ S ) P

(Eh : 7xn)

dx.
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6.7 The Coarea Formula

Throughout this subsection, we assume n > m and study the coarea formula. Given a Lipschitz function
f : R™ — R™, the coarea states that the integral of (n — m)-dimensional measure of level sets of f can be
obtained by integrating the Jacobian. This is a kind of “curvilinear” generalization of Fubini’s theorem.

Theorem 6.30 (Coarea formula). Let f : R™ — R™ be a Lipschitz continuous function, n > m. Then for
each L™-measurable set A C R"™,

[ ar@de= [ ooy

Like in Section [6.6] we fix a Lipschitz continuous function f : R™ — R™, n > m and introduce some
technical lemmata.

Lemma 6.31. Let A C R™ be L™-measurable. Then
(i) AN f~Hy} is H" ™-measurable for L™-a.e. y € R™,
(ii) the function y — H""™(AN f~Hy}) is L™ measurable, and

HP (AN [y} dy < = fm L £7(A).

R™ O

Proof. Step 1. For each k € N, there exists closed balls (B ) 32, such that

Ac|J B}, diamBj} % Z (BF) < £™(A) + =

We define

5 diamB;-§ e )
g] = Qp—m T ]lf(Bf)a ]ak:172a"'7

which is £™-measurable. Then for all y € R™, we have AN f~{y} C UJ 1, ye f(BY) Bk nd

ANy <) gi W)

Jj=1

Thus, using Fatou’s Lemma and the isodiametric inequality,

*

H ANy} dy = / lim 5" (AN f~Hy}) dy < / liminf ) ¥ (y) dy
Rm k—oo % Rm k—o0 =

]Rm
k—o0
o diam BE\ """ diam(f(B¥)) "
(=)
=

Oy —m Oy m . = n Ap—mQm m n
< Qo g i inf 3 £7(B5) < SO g o 4),

- [o% k—oo o
n k‘:l n

diam BF\ "
Sliminf/ Zgj dy—hmlanan m (mm) Em(f(B;C))

where [ * is the upper integral. This automatically establishes (iii) once we prove (ii).

Remark. The very same procedure also establish that

QsQmy

AN f ) dy <

R™ s+m

[flEo H T (A), 0<s<n-—m. (6.16)
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Step II. We first assume that A is compact. Fix ¢ > 0, and for each k € N, define

!
Up = {y € R™ : there exists finitely many open sets Sy, --- ,S; such that AN f~'{y} C U Si,
j=1

1 l diam S, \ """ 1
diamSjgéforeachjzl,ou,l, and jzlozn_m< 5 J) §t+k}.
For each y € Uy, assume AN f~{y} C U;:l S; as above. Then by continuity of f and compactness of A,
the image f(A\ Uézl S;) is a compact set not containing {y}, and for z € R™ sufficiently close to y, we have
z ¢ f(A\ ngl S;),and AN f71(z) C ngl S;. Hence Uy, is an open set.
Step III. We claim that
{yeR™ : H" ™ANfFy}) <t} =) Uk (6.17)

k=1
To establish this, we note that if H"~™ (AN f~*{y}) < t, then H} " (AN f~'{y}) <t for each § > 0. For any
k € N, choose 0 < § < +. Then there exists sets (55)72 such that U;; S; > An Yy}, diam S; <6 < +
for all j € N and

ia diam S; nim<t+l
nem 2 k

j=1

We may assume .S;’s are open by replacing S; with Uzesj B(z, €;) with sufficiently small €;’s. Since AN f~{y}

is compact, a finite subcollection {S, -+ ,S;} covers AN f~1{y}, and hence y € Sy for all k € N.
On the other hand, if y € (N, Uy, one have H'1~" (AN f~{y}) < t+ 4 for each k € N. Letting k — oo
k

gives H""™(A N f~*{y}) < t. Thus we finish the proof of (6.17). Consequently, the set on the left side is
Borel, and y — H" "™ (AN f~'{y}) is a Borel measurable function.

Step IV. If A C R" is open, there exist increasing compact sets K1 C Ky C --- C A such that A = U;)il K;.
Then for each y € R™,
H AN fHy)) = lim 7R 0 f ).
Jj—o0

Hence y — H" ™ (AN f~'{y}) is a Borel measurable function for every open subset A C R™.

Step V. If A C R" is L™measurable and £L"(A) < oo, by Borel regularity and outer regularity, there exists
open sets V3 D Vo D -+ D A such that £(V;\A) — 0 and £"(V7) < co. Then

HT(V N Ty S H AN ST HY ) A HTT(VAA) N ).

Consequently,

lim sup /m [H (V0 ) —H AN )| dy

j—o0
<tmsup [ H(VAA) O ) dy < limsup 22O g en(v\4) = 0.
j—o0 R™ Jj—o00 Qp
Hence for L™-a.e. y € R, we have H" ™ ((V;\A) N f~{y}) 1 0, and so A\ f~*{y} is H"~™-measurable. Also,
H (VN fHy)) = H AN T y))  for LM-ae. y € R™.

By Step IV, it follows that y — H" ™ (AN f~{y}) is L"-measurable.

Step VI. Finally, if A C R™ is L™-measurable and £"(A) = oo, we just write A as an increasing union of
bounded £"-measurable sets and apply Steps I and V to estabilish (i) and (ii). O
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Lemma 6.32. Lett > 1, and assume h : R™ — R"™ is Lipschitz continuous. Set
P ={z eR": Dh(x) emists, Jh(z) > 0}.

Then there is a countable collection (Fy)32., of Borel subsets of R™ such that
(i) L"(P\UpZ Fi) =0,

(i) h|F, is injective for each k =1,2,---; and

(iii) For each k =1,2,---, there exists a nonsingular symmetric linear map Sy : R — R™ such that
[(hlpk)_l o Sk]co,1 S t, [Slzl o (h|Fk)]co,1 § t, and t_n| det Sk| S Jh|p,C S tn| det Sk‘

Proof. Step I. We first select Borel sets (Ex)7, and symmetric automorphisms (T;)72; as in Lemma [6.25}
(a) P Uyl B,
(b) h|g, is injective for each k =1,2,---; and
(c) Foreach k =1,2,---,

[(h|Ek) o Tk_l]CO,l <t, [Tk o (h|Ek)_1]Co,1 <t, and t_n| detTk| < Jh|Ek < tn| det Tk|.

According to the properties (b) and (c), the inverse map (h|g,)~! is also Lipschitz continuous. By Theorem
there exists a Lipschitz continuous mapping Ay : R® — R™ such that hy = (h|g,)~! on h(E}).

Since hy o h(x) = x for x € Ej, by Theorem we have Dhy(h(x))Dh(z) = 1d for L"-a.e. © € Ej. Hence
Jhi(h(x))Jh(x) = 1 for L™a.e. x € Ey. By property (c), we know that Jhg(h(z)) > 0 for L™-a.e. x € E},
and by Lipschitz continuity of h, it holds Jhg(z) > 0 for L™-a.e. x € h(FEk).

Step II. For each k € N, we apply Lemma on hy and h(Ey) to select Borel sets (G%)52 and symmetric
non-singular linear maps (R¥)52, such that

(d) £r (h(Ek) C Uj’;l G?) =0,
(e) hi|gx is injective for each k =1,2,---; and
(f) For each k =1,2,---,

[(h]g) o (R¥)Meor <t, [R)o (hk|G§)*1]Co,1 <t, and t"|detRY| < Thi|gr < t"| det RY|.

We take
Ff=E,nh™NGY), S;j=(R)™", jk=12--.

Note that

hi [ R(E\J G =n7" [ B\ G | = B\ FY
j=1 j=1 j=1

by Lipschitz continuity of hy, we have L™(Ej\ U;’;l Ff) = 0. Recalling property (a), we establish (i). Also,
property (b) implies that h| F¥ is injective, which establishes (ii). Finally, note that

(i)™ 0 S)cms = ()™ 0 (RE)Jonn < (el ) o (RE) Mems <1,

and
(S5 o (lpe)lons = (R o (Al ps)loos < [RE o (helgr) eos <.

Since Jhy(h(z))Jh(x) =1 for L™-ae. © € Ff, the property (f) implies
t7"|det S| =t " det R}| 7" < Th|gr < t"|det R¥|~" = "] det S}|.

Thus we establish (iii) and complete the proof. O
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Now we are prepared to proof the coarea formula. We define
Aln,n—m)={N:{1,2,--- ,n—m} = {1,2,--- ,n} |\ is strictly increasing}.
It is clear that there are () elements in the set. For each A € A(n,n —m), we define Py : R — R"™™ by

Px(x) = (x1), Ta2), " > TA(n—m))-

Proof of Theorem[6.30 In the view of Lemma we may assume that Df and Jf exist for all x € A and
that £"(A) < cc.
Case I: A C {Jf > 0}. For each A\ € A(n,n —m), we write f = po hy, where hy : R — R" is defined by
h(z) = (f(x), PA(x)), and p : R® — R™ is the standard projection p(x1,: -+, Tm, Tmt1,Tn) = (T1,-" , Tm).
We set

Ax={r € A:det Dhy(x) #0} = {x € A: Px|pj(a)-1{0} is injective}.

Then A = U)\EA(n,nfm
Step I.1. We fix t > 1 and apply Lemma to h = hy to obtain disjoint Borel sets {F} }32 ; and nonsingular
symmetric linear maps {Sy}72; satisfying properties (i)-(iii) in Lemma We set G, = AN F},, and claim
that

) Ax. Hence for simplicity we may assme A = A, for some A € A(n,n —m).

t™"[po Skl < Jfle. < t"[po Si]. (6.18)

Since f =poh,
Df =poDh=poS,0S, o Dh=(poSy)oD(S; " oh).

By Lemma [6.32] (iii),

[(h|Gk)_1 o Sk]eor <t [Slzl o (hlg,)]cor <t (6.19)
Then for all z,y € G,
1o |55t o h(z) = S; ! o hy)| _[Sitoh@) — Stk _
" I(hle) Tt o Sk(S ! o h(x)) = (hle,) ™t o Sk(Sp T o h(y)) |z —y] -
Hence
t71 < Amin(D(S 0 b)) < Amax(D(Sg ' o)) <t on G. (6.20)

Now we fix x € G}, and take the polar decomposition Df = SoU* and po Sy, =T o V*, where S,T € R"™*™
are symmetric and U,V € R™*™ are orthogonal. Then S = ToV* OD(S,:1 oh)oU. Since G, C A C {Jf > 0},
we have det S # 0, and so det T # 0. Then for all z € R™, by (6.20)),

T 0Sz|=|V*oD(S, ' oh)oUz| < |D(S; ' oh)oUz| < t|Uz| =t|2|.
Therefore | TS| < t, and
Jf = |det S| = |det T| |det(T'S)| < " |det T .
On the other hand, by ,
ST o Tzl = |U* o D(S; ' oh) Lo Vz| < |D(S; o h) Lo Ve <t[Vz| =tz
Therefore ||S™IT|| < t, and

B 1 ~|detT|
" |det S—Y T |det(S—IT))|

Jf >t~ |det T|.

Then we finish the proof of (6.3).
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Step I.2. We repeatedly apply (6.18)), (6.19) and Lemma (ii) to obtain

m

e [ @ ) dy = [ () (G 0 )y

m

<t / TS BG) N ) dy = 1 / H (S 0 h(Gr) N (po k)T u)) dy
=t [po S| L™(S; " 0 h(Gy)) <t [po Sk £L"(Gr)

< JfdL"
Gy,

<t"[po Skl £"(Gr) = t"[po Si] L™((hle,) ™" 0 Sk(Sy ' o h(Gr))) < t7[po Sk L™(S;; " o h(Gr))

— ¢ /m H (S o h(Gr) N (po Sk)™Hy)) dy = " /Rm H (S (MGr) Np~ ) dy

< t%m/m H ™ ((hla,) " (W(Gr) Np~Hy})) dy = t3”*’”/ H (G N fHy)) dy

m

Since L™(A\Ure; G) = 0, we sum on k, use Lemma and let ¢ | 1 to conclude
/ JfdLr = H (AN FHy)) dy.
A R™

Case II: AC {Jf =0}. Wefix 0 < e <1 and define

g(z,y) = f(z) +ey, plw,y)=y, xcR" yecR™

Then Dg = (Df, eld,xm), and similar to our proof of Theorem €™ < Jg < Oy me for some constant
Ct,m depending on f and m only. We observe that

Hm (AN F 1 y)) dy = / Hm(AN f Yy — cw))dy for all w € R™
R”L R”L

1
= — / H (AN fFHy — ew}) dy dw. (6.21)
Qm JB(0,1) JR™

We set D = A x B(0,1) C R*™™. For any y € R™ and w € B(0,1), we have (z,2) € DNg~ Yy} np~{w} if
and only if x € A,z € B(0,1), f(xr)+e=yand z =w, ifand only if x € A,z =w € B(0,1) and f(x) = y— ew.
Hence

(AN f~Hy — ew}) x {w}, w € B(0,1)

-1 -1 wl =
Dng~y}np~Huw} {@7 w ¢ B(0,1).

Then (6.21]) becomes

Loammans o= o= [ gy op b dudy

< [ on(DngT g dy = / JgdLrm
n D

(7% R™ (7

< mﬁner(D)Cfmﬁ _ an_aﬂﬁn(A)Cf,mﬂ

a’ﬂ n

where we use (6.16) and our conclusion in Case I on g in the second line. Letting € | 0, we conclude that

/m Hm(AN F ) dy = 0 = /Adec".

Finally, in the general case, we just split A into AN{Jf > 0} and AN{Jf = 0}, and apply Cases I and II. [
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The coarea formula implies another form of change of variables formula.

Theorem 6.33 (Changing variables). Let f : R™ — R™ be a Lipschitz continuous function, n > m. Then for
each L"-integrable function g : R™ — R, glg-1¢,y is H" " -integrable for L™ -a.e. y € R™, and

/n g(x)Jf(x)dx = /m /fl{y}gd/}-["_ml dy (6.22)

Proof. We first assume g > 0. We may also assume g is Borel measurable by modifying its value on a £™-null
set. Similar to our proof of Theorem , we can write g = Y ;- %IlAk for appropriate Borel sets (A)52 ;.
By continuity of f, the set f~!{y} is closed. Then gly-1{yy is H"~™-measurable. By monotone convergence,

/" g(@) I f@)dr =3 %/A Jf(x)dz = Z% Hm (A A ) dy
k=1 ke

b—1 Rm™

i/ ) )i
SN 14, dH" mdy:/ / ( nAk> dH™™™ dy
;k m Jf-1(y) m Jf-1{y) ;’f

:/ [/ gd?—l"m] dy.
oy

For the general case that g is a £"-integrable function, write g = g7 — g~ and apply the above conclusion. By
Lipschitz continuity of f on R™, Jf is bounded and the left side of (6.22)) is finite. Then for £L™-a.e. y € R™,
ff,l{y} gT dH"™™ < o0, and gly-1qyy is H"™™ integrable. O

Corollary 6.34 (Polar coordinates). For each L™-integrable function g : R — R,

oo
/ gdmz/ / gdH™ 1| dr.
n 0 oB(0,r)

In particular, for L'-a.e. v > 0,

4 gdx = / gdH" 1.
dr JB(o,r 8B(0,r)
Proof. We let f(z) = |z| in (6.22). Then Df(z) = Ty and Jf(xz) =0 for every z # 0. O

Corollary 6.35 (Integration over level sets). Let f : R™ — R be a Lipschitz continuous function. Then

vl = [ =

If esssup |V f| > 0, then for any L™-integrable function g : R™ — R,

/{fm g(z) du = /too (/{f_s} IVLfI dH”‘1> ds.

d g -1
— g(x)dx = —/ = dH"
dt i =ty IVf]

Proof. The assertion (i) follows from the coarea formula, since Jf = |V f|. To prove (ii) and (iii), note that

]1 IL o0

n {r>t19 n {r>t}9 n—1 g n—1
gdLl :/ JfdL :/ / dH ds :/ / ——dH ds
/{f>t} n [Vf] r \Jr1psp IV ¢ sy VS

by Theorem [6.33] Then we complete the proof. O

In particular,
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6.8 The Gauss-Green Theorem

In this subsection, we fix a bounded open set U C R" and study how the boundary integral of a C* function
is related to the interior integral of its gradient.

Definition 6.36 (C! boundary). We say the boundary U is C!, if for each point 2° € QU there exist r > 0
and a C'! function v : R"~! — R such that — upon relabeling and reorientating the coordinates axes if necessary
— we have

UNnB(®r)={x e B’ r):x,>y(@1, - ,2n1)}.

Remark. In fact, for each 6 > 0, we can define a cylinder
C(2°,0) = {x € R" : |Px — P2°| < 6, |z, — 22| < &},

where P : (21, -+ ,%p_1,2Zn) — (71, -+ ,2,_1) is the standard projection from R™ into R*~!. For sufficiently
small § > 0, we have C(2°,6) C B(z%r), and

UNC(x®,8) = {zxcC(2°06): xn > y(x1, - ,201)}. (6.23)
By continuity of v, we know that
oUNC(z®0) c{xecC@®d):z, =1, ,Tn1)} (6.24)

To summarize, a bounded open domain U has a C! boundary means that for each 20 € QU there is a
neighborhood B(z',6) such that U N B(z°,d) can written as the graph of a C! function with U N B(z?,d)
lying on one side of this graph.

Definition 6.37 (Unit normal). Let U C R™ be a bounded open set with C'' boundary OU. For each point
20 € 9U, choose 7 > 0 and v : R*~! — R as above. Then the (outward pointing) unit normal at 2° € U is

(V'Y(IO), 71)

vy (mg) = ——=———
V1 V(o) ?
The function vy : OU — 0B(0,1) is called the unit normal field.

Lemma 6.38 (Integration by parts). Let U C R™ be a bounded open set. Let g : R™ — R be Lipschitz
continuous, and ¢ € CL(U). Then

/chgdac:—/ngodx.
U U

Proof. We write u = gp. For each 0 < |h| < %dist(supp »,U°), we have B(x,h) C U for every x € supp ¢.
Then for each i =1,--- ,n,

lu(@ + hei) —u(@)| _ |g(z + hei) — g(@)| |p(x + hei)| n l9(2)| lp(z + hei) — p(z)]
h - h h
< [glcoallelloo + [@lcor (|g(zo)| + [g]con diam U) < oo,

where xg € U is fixed. By the dominated convergence theorem,

0 he;) — .1
Y dz = / lim wz + hei) = u(z) dx = lim — (u(x + he;) —u(x)) dz
U 0z, supp o h—0 h h—0 supp @
.1
= }lzg% 7 /U (u(z + he;) —u(z))dx = 0.
Therefore fU Vudx = 0. Since Vu = Vg + gV a.e. on U, we complete the proof. O
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Theorem 6.39 (Gauss-Green Theorem). Let U C R™ be a bounded open set with C' boundary and unit
normal field vy : OU — 0B(0,1). Then for each ¢ € C}(R™),

/V(pdx:/ vy dH™ L
U log

Proof. Step I. We fix 2° € U, and take a Lipschitz function v : R®~! — R and a cylinder C(2°,d) satisfying
(6.23) and (6.24). For each € > 0, we define g, : C(z°,8) — R by

1, if yn, >7(Py)+€’
9e() = 5= (yn — ¥ (Py) +€), if [yn —(Py)| <,
0, if y, <v(Py) —e.

Then g, is a Lipschitz continuous function with [gc]cor < e 1[y]co1, and g — Livnc(es)y L"-a.e.. For any
p € CHC(2,6)), by the dominated convergence theorem and Lemmam

/ Veody = / Vedy = lim g Vpdy = —lim Vg, dy. (6.25)
U Unc(z0,8) 0 Jo(20,6) 0 Jo(29,6)

Next, we write
Fo={yeC@®6):|yn —v(Py)| < e} ={y € C(a",6) : Vge(y) # 0}.

We note that Vg.(y) = i(—V’y(Py), 1) for y € F.. By Fubini’s theorem,

v 1 R)Fe
/ »Vg. dy=/ @Vgedy=/ ( Wz)) (/ o(z,t)dt | dz.
C(z,9) Fe {|z—Pzo|<d} 1 2¢ v(z)—¢

By continuity of ¢ we have

1 v(2z)+e
ln o / L SN =g (), e R
vy(z)—e

We then fix the Lipschitz mapping f : z — (z,7(z)). By the dominated convergence theorem and the change
of variables formula [Theorem ,

—lim ©Vgedy =
0 Je(0,6)

o(27(2)) (WZ)> 0z

o(z,7(2)) vu(z,7(2)V1+ |Vy(2)|? dz

z—Pz0|<d}

.

{

z—Pzx%|<d}

Il
.

{

I
T

1 Lz paoj<syp(z,7(2)) vu(2,7(2)) T f(2) dz

n—

L] S therocasta@) )| e o)

zef~Hy}
=/ Tovnc(20.5)(y)e(y) vu(y) dHn_l(y):/a vy dH" !,
R™ U

where the last line holds because U N C(2°,6) = {y € R" : |P(y — 2°)| < 6, y» = 7(Py)}. Recalling (6.25),
/ Vi dy :/ vy dH™ (6.26)
U ouU
This also holds for all ¢ € C(B(2°,4)), where § > 0 is appropriately chosen as above.
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Step II. By compactness of OU, one can find finitely many balls B(xzy,d;) C U (k = 1,--- , N) such that
oU C Uivﬂ B(x, k), where each ), > 0 is selected so that holds for all ¢ € CL(B(z,d%)). We also
take an open set Vg such that Vo C U and VU ngl B(xy,0,) D U. Then there exists a smooth partition
of unity 0 < ¢ < 1(k =0,1,--- ,N) such that (o € C(Vp) and ( € C°(B(zk,d)) for k=1,--- N, and
> reoC =1onU. Then for any ¢ € CL(R"™),

N n
/dey=2/ V(Ckso)dy=/v(<ow)dy+2/ Ck‘PVUdHn_IZ/ vy dH™ 1
U 0’ U U k1 /0U U

Then we complete the proof. O

Remark. For each component ¢ = 1,2, --- ,n, the Gauss-Green Theorem asserts that

(9(,0 i n— n
/8xldx_/ ovi dH™Y, e CHR™M).

Corollary 6.40 (Divergence theorem). Let U C R™ be a bounded open set with almost C* boundary and unit
normal field vy : OU — 0B(0,1). Then for each f € CL(R™;R"),

/ V.fdr= [ f-vgdH"
U ou

Proof. According to the Gauss-Green theorem, for each i =1,--- | n,

fl _/ i, 0 n—1

We then sum over ¢ to establish the desired result. O
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