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1 Interpolation of Lp spaces

1.1 The Riesz-Thorin Interpolation Theorem

We begin from the interpolation of Lp norms. Let 1 ≤ p < r < q < ∞. If f ∈ Lp(X,F , µ) ∩ Lq(X,F , µ), the

Hölder’s inequality implies∫
X

|f |r dµ =

∫
X

|f |
p(q−r)
q−p |f |

q(r−p)
q−p dµ

≤
(∫

X

|f |p dµ
) q−r

q−p
(∫

X

|f |q dµ
) r−p

q−p

= ∥f∥1−t
Lp ∥f∥tLq ,

where t = q(r−p)
q−p satisfies 1

r = 1−t
p + t

q . This estimate holds even when q = ∞, since∫
X

|f |r dµ =

∫
X

|f |p|f |r−p dµ ≤
∫
X

|f |p∥f∥r−p
L∞ dµ = ∥f∥pLp∥f∥r−p

L∞ .

Therefore f ∈ Lr(X,F , µ), and ∥f∥Lr can be bounded by Lp and Lq norms. More generally, we have the

following interpolation theorem for linear operators.

Theorem 1.1 (Riesz-Thorin interpolation theorem). Let p0, p1, q0, q1 ∈ [1,∞]. Let (X,F , µ) and (Y,G , ν)

be measure spaces. If q0 = q1 = ∞, we further assume that ν is semifinite. Let T be a linear operator

from Lp0(X,F , µ) + Lp1(X,F , µ) into Lq0(Y,G , ν) + Lq1(Y,G , ν) such that ∥Tf∥Lq0 ≤ M0∥f∥Lp0 for all

f ∈ Lp0(X,F , µ), and ∥Tg∥Lq1 ≤ M1∥g∥Lp1 for all g ∈ Lp1(X,F , µ). For each 0 < t < 1, define

1

p
=

1− t

p0
+

t

p1
,

1

q
=

1− t

q0
+

t

q1
.

Then ∥Tf∥Lq ≤ M t
0M

1−t
1 ∥f∥Lp for f ∈ Lp(X,F , µ).

We begin by introducing an estimate of Lp-norms using a dual space argument.

Lemma 1.2. Let (X,F , µ) be a measure space, and p, q ∈ [1,∞] conjugate exponents. If q = ∞, we further

assume that µ is semifinite. For each f ∈ Lq(X,F , µ),

∥f∥Lq = sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ : ∥g∥Lp ≤ 1, g is simple

}
(1.1)

Proof. Let M be the right-hand side of (1.1). By Hölder’s inequality, we have ∥f∥Lq∥g∥Lp ≥
∣∣∫

X
fg dµ

∣∣, and
∥f∥Lq ≥ M . Then it suffices to show the other direction ∥f∥Lq ≤ M . We discuss two cases.

Case I: 1 < p, q < ∞. Given f ∈ Lq(X,F , µ), we take a sequence (fn) of simple functions such that |fn| ↑ |f |
and fn → f a.e., and define

gn =
|fn|q−1 · sgnfn

∥fn∥q−1
Lq

.

Then ∥gn∥pLp = 1, and

|(fn − f)g| ≤ 2|f | · |fn|q−1

∥f1∥q−1
Lq

≤ 2|f |q

∥f1∥q−1
Lq

∈ L1(X,F , µ).

By dominated convergence theorem,

lim
n→∞

∫
X

(fn − f)gn dµ = 0.
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We then use Fatou’s lemma to bound the Lq norm of f :

∥f∥Lq =

∫
X

|f |q

∥f∥q−1
Lq

dµ ≤ lim inf
n→∞

∫
X

|fn|q

∥fn∥q−1
Lq

dµ = lim inf
n→∞

∣∣∣∣∫
X

fngn dµ

∣∣∣∣ . (1.2)

Passing to a suitable subsequence and applying (1.2), we obtain

∥f∥Lq ≤ lim
n→∞

∣∣∣∣∫
X

fngn dµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
X

fgn dµ

∣∣∣∣ ≤ M.

Case II: p = 1 and q = ∞. Argue by contradiction. If ∥f∥L∞ > M , we choose ϵ > 0 such that the set

E = {x ∈ X : |f(x)| > M + ϵ} has positive measure. Since µ is a semifinite measure, we can choose F ⊂ E

with 0 < µ(F ) < ∞. Let g = χF · sgnf/µ(F ), and take a sequence of simple functions gn → g and |gn| ↑ g.

Then ∥g∥L1 = 1, ∥gn∥L1 ≤ 1, and

|fgn| =
1

µ(F )
χF |f | ≤

∥f∥L∞

µ(F )
χF ,

which is an integrable function. By dominated convergence theorem and definition of F ,

M ≥
∫
X

fg dµ = lim
n→∞

∫
X

fgn dµ =
1

µ(F )

∫
F

|f | dµ ≥ M + ϵ,

a contradiction! Hence ∥f∥L∞ ≤ M .

Lemma 1.3 (The three lines lemma). Let ϕ be a bounded continuous function on the strip 0 ≤ Re(z) ≤ 1 that

is holomorphic in the interior of the strip. If |ϕ(z)| ≤ M0 on Re(z) = 0 and |ϕ(z)| ≤ M1 on Re(z) = 1, then

|ϕ(z)| ≤ M1−t
0 M t

1 on Re(z) = t, where 0 < t < 1.

Proof. We define the function

ϕϵ(z) = ϕ(z)M−z
0 Mz−1

1 e−ϵz(1−z),

which also satisfies the hypothesis of the lemma with M0 and M1 replaced by 1, and

|ϕϵ(x+ iy)| = |ϕ(x+ iy)|M−x
0 Mx−1

1 e−ϵx(1−x)−ϵy2

≤ M1−x
0 Mx−1

1 e−ϵy2

.

Hence ϕϵ(z) → 0 as |Im(z)| → ∞. By our hypothesis, for sufficiently large A > 0, we have |ϕϵ| ≤ 1 on the

boundary of the region D = {z : 0 ≤ Re(z) ≤ 1,−A ≤ Im(z) ≤ A}. By the maximum modulus principle,

maxz∈∂D |ϕϵ(z)| = maxz∈D |ϕϵ(z)|. Hence |ϕϵ| ≤ 1 on D, and hence on the strip 0 ≤ Re(z) ≤ 1. Letting ϵ → 0,

we obtain |ϕ(z)|M−t
0 M t−1

1 ≤ limϵ→0 |ϕϵ(z)| ≤ 1, where t = Re(z).

Proof of Theorem 1.1. The proof has three steps.

Step I: We begin with the case p0 = p1 = p. Since the case q0 = q1 is clear, we may assume q0 < q1. Then

∥Tf∥Lq ≤ ∥Tf∥
q0(q1−q)

q(q1−q0)

Lq0 ∥Tf∥
q1(q−q0)

q(q1−q0)

Lq1 = ∥Tf∥tLq0 ∥Tf∥1−t
Lq1 ≤ M t

0M
1−t
1 ∥f∥Lp .

Step II. Now we assume p0 < p1 ≤ ∞, and in particular p < ∞ for all 0 < t < 1. We begin by taking a

simple function f =
∑n

j=1 ajχEj
=
∑n

j=1 |aj |eiθjχEj
and show that ∥Tf∥Lq ≤ M1−t

0 M t
1∥f∥Lp .

By homogeneity of ∥ · ∥ and linearity of T , it suffices to show the case ∥f∥Lp = 1. We estimate ∥Tf∥Lq by

taking g =
∑m

k=1 bjχFk
=
∑m

k=1 |bj |eiξkχFk
with ∥g∥Lq′ = 1 in (1.1). Define functions α and β as follows:

α(z) =
1− z

p0
+

z

p1
, β(z) =

1− z

q0
+

z

q1
, z ∈ C, 0 ≤ Re(z) ≤ 1.
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Then α(t) = 1/p and β(t) = 1/q. We let

fz =

n∑
j=1

|aj |α(z)/α(t)eiθjχEj , gz =

{∑m
k=1 |bk|(1−β(z))/(1−β(t))eiξkχFk

, β(t) ̸= 1,

g, β(t) = 1.

Finally, we define

Φ(z) =

∫
Y

(Tfz)gz dν =


∑n

j=1

∑m
k=1 |aj |

α(z)
α(t) |bk|

1−β(z)
1−β(t) ei(θj+ξk)

∫
Y
(TχEj

)χFk
dν, β(t) ̸= 1∑n

j=1

∑m
k=1 |aj |

α(z)
α(t) |bk|ei(θj+ξk)

∫
Y
(TχEj )χFk

dν, β(t) = 1.

Then Φ(z) is a bounded and continuous function on the strip 0 ≤ Re(z) ≤ 1 that is holomorphic in the strip.

We claim that Φ(z) ≤ M0 on Re(z) = 0 and Φ(z) ≤ M1 on Re(z) = 1. We let z = iω, where ω ∈ R. Since

E1, · · · , En are disjoint, at most one χEj
is nonzero, and

|fiω| =
n∑

j=1

|aj |p/p0χEj
= |f |p/p0 .

A similar calculation yields

|giω| =
m∑

k=1

|bk|q
′/q′0χFk

= |g|q
′/q′0 ,

where q′ and q′0 are the conjugate exponents of q and q0, respectively, and we set ∞
∞ = 1. By Hölder’s inequality,

|Φ(iω)| ≤ ∥Tfiω∥Lq0 ∥giω∥Lq′0
≤ M0∥fiω∥Lp0 ∥giω∥Lq′0

= M0∥f∥Lp∥g∥Lq′ = M0.

Similarly, we can show |Φ(1 + iω)| ≤ M1. By three lines lemma [Lemma 1.3] and Lemma 1.2, we have

∥Tf∥Lq ≤ |Φ(t)| ≤ M1−t
0 M t

1.

Step III. We have shown that ∥Tf∥Lq ≤ M1−t
0 M t

1∥f∥Lp for all simple functions. For each f ∈ Lp(X,F , µ)

with f ≥ 0, we choose a sequence of simple functions such that |fn| ↑ |f | and fn → f pointwise. We let

E = {x ∈ X : |f(x)| > 1}, and define

g = fχE , gn = fnχE , h = f − g, hn = fn − gn.

Since p0 < p < p1, we have g ∈ Lp0(X,F , µ) and h ∈ Lp1(X,F , µ). By dominated convergence theorem,

∥fn − f∥Lp → 0, ∥gn − g∥Lp0 → 0 and ∥h − hp∥Lp1 → 0. Hence ∥Tgn − Tg∥Lq0 ≤ M∥gn − g∥Lp0 → 0 and

∥Thn − Th∥Lq1 ≤ M∥hn − h∥Lp1 → 0. By passing to a suitable subsequence we may also assume Tgn → Tg

a.e. and Thn → Th a.e., and then Tfn → Tf . By Fatou’s lemma,

∥Tf∥Lq ≤ lim inf
n→∞

∥Tfn∥Lq ≤ lim inf
n→∞

M1−t
0 M t

1∥fn∥Lp = M1−t
0 M t

1∥f∥Lp .

Then we finish the proof.

4



1.2 The Marcinkiewicz Interpolation Theorem

Distribution function and weak Lp spaces. Let (X,F , µ) be a measure space. For a measurable function

f on (X,F , µ), define its distribution function λf : (0,∞) → [0,∞] by

λf (α) = µ ({x ∈ X : |f(x)| > α}) .

Some properties of the distribution function is clear:

• λf is decreasing on (0,∞).

• λf is right-continuous, since {|f | > α} =
⋃∞

n=1{|f | > α+ ϵn} for all ϵn > 0 with ϵn ↓ 0.

• λf+g(2α) ≤ λf (α) + λg(α). In addition, if |f | ≤ |g|, then λf ≤ λg.

• If the sequence (fn) satisfies |fn| ↑ |f |, then λfn → λf pointwise, since {|f | > α} =
⋃∞

n=1{|fn| > α}.
Let 1 ≤ p < ∞. For a measurable function f , define

[f ]p =

(
sup
α>0

αpλf (α)

)1/p

.

The weak Lp space is then defined to be the set of all measurable functions on (X.F , µ) such that [f ]p < ∞.

Note that [·]p is not a norm, because it does not satisfy the triangle inequality. By Chebyshev’s inequality,

[f ]p ≤ ∥f∥Lp for all f ∈ Lp(X,F , µ). Therefore the classical Lp is contained in the weak Lp space.

Lemma 1.4. If f is a measurable function on (X,F , µ) and 0 < p < ∞, then∫
X

|f |p dµ = p

∫ ∞

0

αp−1λf (α) dα.

Proof. We may assume λf (α) < ∞ for all α > 0, otherwise both integrals are infinite. We may also assume

f ≥ 0 by replacing f with |f | if necessary. If f is simple, λf is a step function with jump discontinuities

0 < α1 < · · · < αn. We let α0 = 0. Then

p

∫ ∞

0

αp−1λf (α) dα =

n∑
j=1

∫ αj

αj−1

pαp−1λf (α) dα =

n∑
j=1

(|αj |p − |αj−1|p)λf (αj−1)

=

n∑
j=1

|αj |p (λf (αj−1)− λf (αj)) =

n∑
j=1

|αj |pµ({f = αj}) =
∫
X

|f |p dµ.

Since fn ↑ f implies the pointwise convergence λfn → λf , the general result follows from simple function

approximation and monotone convergence theorem.

Definition 1.5 (Sublinear operators of strong and weak types). Let T be an operator on the some vector

space V of measurable functions from (X,F , µ) to the space of all measurable functions on (Y,G , ν).

(i) T is said to be sublinear, if |T (f + g)| ≤ |Tf |+ |Tg| and |T (cf)| = c|Tf | for all f, g ∈ V and c > 0.

(ii) Let 1 ≤ p, q ≤ ∞. The operator T is said to be of strong type (p, q), if Lp(X,F , µ) ⊂ V and there exists

a constant Cp,q > 0 such that for all f ∈ Lp(X,F , µ),

∥Tf∥Lq ≤ Cp,q∥f∥Lp .

(iii) Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. The operator T is said to be of weak type (p, q), if Lp(X,F , µ) ⊂ V and

there exists a constant Cp,q > 0 such that for all f ∈ Lp(X,F , µ),

[Tf ]q ≤ Cp,q∥f∥Lp .

Clearly, a sublinear operator T of strong type (p, q) is also of weak type (p, q). Also, we say T is of weak

type (p,∞) if and only if it is of strong type (p,∞).
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Theorem 1.6 (Marcinkiewicz interpolation theorem). Let 1 ≤ p0 ≤ q0 ≤ ∞, 1 ≤ p1 ≤ q1 ≤ ∞ and q0 ̸= q1.

Let T be a sublinear operator from Lp0(X,F , µ) + Lp1(X,F , µ) into the space of measurable functions on

(Y,G , ν). For each 0 < γ < 1, define

1

p
=

1− γ

p0
+

γ

p1
,

1

q
=

1− γ

q0
+

γ

q1
.

If T is a sublinear operator of weak types (p0, q0) and (p1, q1), then T is of strong type (p, q).

The proof Marcinkiewicz interpolation theorem requires the following lemma.

Lemma 1.7 (Minkowski’s integral inequality). Let (X,F , µ) and (Y,G , ν) be two measure spaces and let

Φ : X × Y → C be a measurable function on the produce space. If p ≥ 1, we have

(∫
X

∣∣∣∣∫
Y

ϕ(x, y) dν(y)

∣∣∣∣p dµ(x))
1
p

≤
∫
X

(∫
X

|ϕ(x, y)|p dµ(x)
) 1

p

dµ(y).

Proof. Let Φ(x) =
∫
Y
ϕ(x, y) dν(y). Similar to the proof of Minkowski’s inequality, we estimate ∥Φ∥pLp by∫

X

|Φ|p dµ ≤
∫
X

|Φ(x)|p−1

∫
Y

|ϕ(x, y)| dν(y) dµ(x)

=

∫
Y

∫
X

|Φ(x)|p−1 |ϕ(x, y)| dµ(x) dν(y)

≤
∫
Y

(∫
X

|Φ(x)|(p−1)· p
p−1 dµ(x)

) p−1
p
(∫

X

|ϕ(x, y)|p dµ(x)
) 1

p

dµ(y)

= ∥Φ∥p−1
Lp

∫
X

(∫
X

|ϕ(x, y)|p dµ(x)
) 1

p

dµ(y),

where we interchange the integrals by Fubini’s theorem and use Hölder’s inequality to the inner integral.

Lemma 1.8. If f is a measurable function and α > 0, define

hα = fχ{|f |≤α} + α(sgn f)χ{|f |>α}, and gα = f − hα = (sgn f)(|f | − α)χ{|f |>α}.

Then

λgα(t) = λf (t+ α), and λhα(t) =

{
λf (t), t < α,

0, t ≥ α.

Proof. By definition, hα is in fact the α-truncation of f , i.e. hα = f when |f | ≤ α, and hα = α(sgn f) when

|f | > α. Hence {|h| > t} = {|f | > t} when t < α, and {|h| > t} = {|f | > t} = ∅ when t ≥ α. On the other

hand, note that gα = 0 on {|f | < α}. For any t > 0, we have {|gα| > t} = {|f | − α > t} = {|f | > t+ α}.

Now we prove the Marcinkiewicz interpolation theorem.

Proof of Theorem 1.6. For notation simplicity we also write [·]∞ = ∥ · ∥L∞ . Since T is of weak types (p0, q0)

and (p1, q1), there exist constants C0 and C1 such that

λf (α) ≤
(
C0

α

)q0

∥f∥q0Lp0 and λg(α) ≤
(
C1

α

)q1

∥g∥q1Lp1

for all f ∈ Lp0(X,F , µ), g ∈ Lp1(X,F , µ) and all α > 0. There are several cases to consider.

• Case I: p0 = p1 = p. We may assume q0 < q1 by switching subscripts 0 and 1 when necessary.

• Case II: p0 ̸= p1. We may assume p0 < p1 by switching subscripts 0 and 1 when necessary.
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Now we prove the theorem case by case.

Case I (1): p0 = p1 = p and q0 < q1 < ∞. If f ∈ Lp(X,F , µ),

∥Tf∥qq = q

∫ ∞

0

αq−1λTf (α) dα ≤ q

∫ ∥f∥Lp

0

αq−1λTf (α) dα+ q

∫ ∞

∥f∥Lp

αq−1λTf (α) dα

≤ q

∫ ∥f∥Lp

0

αq−q0−1Cq0
0 ∥f∥q0Lp dα+ q

∫ ∞

∥f∥Lp

αq−q1−1Cq1
1 ∥f∥q1Lp dα

=

(
qCq0

0

q − q0
+

qCq1
1

q1 − q

)
∥f∥qLp

Case I (2): p0 = p1 = p and q0 < q1 = ∞. If f ∈ Lp(X,F , µ), we have ∥Tf∥Lq1 ≤ C1∥f∥Lp . Then

λTf (α) = 0 when α > C1∥f∥Lp , and

∥Tf∥qq = q

∫ C1∥f∥Lp

0

αq−1λTf (α) dα ≤ q

∫ C1∥f∥Lp

0

αq−q0−1[Tf ]q0q0 dα

≤ q

∫ C1∥f∥Lp

0

αq−q0−1Cq0
0 ∥f∥q0Lp dα =

qCq0
0 Cq−q0

1

q − q0
∥f∥qLp .

Case II (1): p0 < p1 < ∞ and q0, q1 < ∞. For f ∈ Lp(X,F , µ), we take gα and hα as in Lemma 1.8, where

α > 0 is to be determined. Then

λTf (2β) ≤ λTgα(β) + λThα
(β) ≤

(
C0

β

)q0 (∫
X

|gα|p0 dµ

) q0
p0

+

(
C1

β

)q1 (∫
X

|hα|p1 dµ

) q1
p1

. (1.3)

Here we allow α to depend on β. By Lemma 1.4, we have∫
X

|gα|p0 dµ = p

∫ ∞

0

tp0−1λgα(t) dt = p0

∫ ∞

0

tp0−1λf (t+ α) dt

= p0

∫ ∞

α

(t− α)p0−1λf (t) dt ≤ p0

∫ ∞

α

tp0−1λf (t) dt, (1.4)

and similarly, ∫
X

|hα|p1 dµ = p1

∫ ∞

0

tp1−1λhα
(t) dt = p1

∫ α

0

tp1−1λf (t) dt. (1.5)

We combine Lemma 1.4, the inequality (1.3) and the estimates (1.4)-(1.5):

∥Tf∥qLq = q

∫ ∞

0

(2β)q−1λTf (2β) d(2β) = q2q
∫ ∞

0

βq−1λTf (2β) dβ

≤ q2q
∫ ∞

0

(
Cp0

0 βq−q0−1

(∫
X

|gα|p0 dµ

) q0
p0

+ Cp1

1 βq−q1−1

(∫
X

|hα|p1 dµ

) q1
p1

)
dβ

≤ q2qCp0

0 p
q0
p0
0

∫ ∞

0

βq−q0−1

(∫ ∞

0

χ{t>α}t
p0−1λf (t) dt

) q0
p0

dβ

+ q2qCp1

1 p
q1
p1
1

∫ ∞

0

βq−q1−1

(∫ ∞

0

χ{t≤α}t
p1−1λf (t) dt

) q1
p1

dβ.

(1.6)

Since this estimate holds for any α > 0, we choose α = βσ, where

σ =
p0(q − q0)

q0(p− p0)
=

(1− γ)
(

q
q0

− 1
)

(1− γ)
(

p
p0

− 1
) =

γ
(
1− q

q1

)
γ
(
1− p

p1

) =
p1(q1 − q)

q1(p1 − p)
.
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We also write χ0 = χ{t>α}, χ1 = χ{t≤α}, and

ϕi(t, β) = β
pi
qi

(q−qi−1)
χit

pi−1λf (t),

where i = 0, 1. Then (1.6) becomes

∥Tf∥qLq ≤
1∑

i=0

q2qCpi

i p
qi
pi
i

∫ ∞

0

(∫ ∞

0

ϕi(t, β) dt

) qi
pi

dβ. (1.7)

We write Φ(β) =
∫∞
0

ϕi(t, β) dt. Since
qi
pi

≥ 1, by Minkowski’s inequality, in either case i = 0, 1,

∫ ∞

0

(∫ ∞

0

ϕi(t, β) dt

) qi
pi

dβ ≤

(∫ ∞

0

(∫ ∞

0

|ϕi(t, β)|
qi
pi dβ

) pi
qi

dt

) qi
pi

=

(∫ ∞

0

(∫ ∞

0

βq−qi−1χi dβ

) pi
qi

tpi−1λf (t)dt

) qi
pi

.

(1.8)

If q1 > q0, the exponents q − q0 and σ are positive, and {t > βσ} = {β < t1/σ}. Then (1.8) becomes

∫ ∞

0

(∫ ∞

0

ϕ0(t, β) dt

) q0
p0

dβ ≤

∫ ∞

0

(∫ t1/σ

0

βq−q0−1 dβ

) p0
q0

tp0−1λf (t)dt


q0
p0

=
1

q − q0

(∫ ∞

0

tp−1λf (t)dt

) q0
p0

=
1

q − q0

(
1

p

) q0
p0

∥f∥
pq0
p0

Lp .

On the other hand, q − q1 < 0, and {t ≤ βσ} = {β ≥ t1/σ}. Then (1.8) becomes

∫ ∞

0

(∫ ∞

0

ϕ1(t, β) dt

) q1
p1

dβ ≤

(∫ ∞

0

(∫ ∞

t1/σ
βq−q1−1 dβ

) p1
q1

tp1−1λf (t)dt

) q1
p1

=
1

q1 − q

(∫ ∞

0

tp−1λf (t)dt

) q1
p1

=
1

q1 − q

(
1

p

) q1
p1

∥f∥
pq1
p1

Lp .

If q1 < q0, the exponents q − q0 and σ are negative, and {t > βσ} = {β > t1/σ}. Then (1.8) becomes

∫ ∞

0

(∫ ∞

0

ϕ0(t, β) dt

) q0
p0

dβ ≤

(∫ ∞

0

(∫ ∞

t1/σ
βq−q0−1 dβ

) p0
q0

tp0−1λf (t)dt

) q0
p0

=
1

q0 − q

(∫ ∞

0

tp−1λf (t)dt

) q0
p0

=
1

q0 − q

(
1

p

) q0
p0

∥f∥
pq0
p0

Lp .

A similar calculation gives

∫ ∞

0

(∫ ∞

0

ϕ1(t, β) dt

) q1
p1

dβ ≤ 1

q − q1

(
1

p

) q1
p1

∥f∥
pq1
p1

Lp .

In either case, we plug in (1.8) to (1.7) to get

∥Tf∥qLq
≤

1∑
i=0

q2qCpi

i

|q − qi|

(
pi
p

) qi
pi

∥f∥
pqi
pi

Lp
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Therefore

sup {∥Tf∥Lq : ∥f∥Lp = 1} ≤ Bp,q := 2q1/q

[
1∑

i=0

Cpi

i

|q − qi|

(
pi
p

) qi
pi

]1/q
.

By homogeneity of norms and sublinearity of T , we have ∥Tf∥Lq∥ ≤ Bp,q∥f∥Lp for all f ∈ Lp(X,F , µ). The

remaining cases follow by modifying this procedure.

Case II (2): p0 < p1 = ∞ and q0 < q1 = ∞. We have p0 = pt and q0 = qt. We take α = β/C1, so

∥Thα∥ ≤ C1∥hα∥ ≤ β, and λThα
(β) = 0. Then the second term in the estimate (1.3) vanishes, and ϕ1 = 0 in

the estimate (1.7). We then apply an analogue of (1.8) to get

∥Tf∥qLq ≲
∫ ∞

0

(∫ ∞

0

ϕ0(t, β) dt

) q0
p0

dβ ≤

(∫ ∞

0

(∫ ∞

0

|ϕ0(t, β)|
q0
p0 dβ

) p0
q0

dt

) q0
p0

=

∫ ∞

0

(∫ C1t

0

βq−q0−1 dβ

) p0
q0

tp0−1λf (t)dt


q0
p0

=
1

|q − q0|

(
Cq−q0

1

∫ ∞

0

tp−1λf (t)dt

) q0
p0

=
Cq−q0

1

|q − q0|
∥f∥qLp .

Case II (3): p0 < p1 < ∞ and q0 < q1 = ∞. Since ∥Thα∥L∞ ≤ C1∥hα∥Lp1 ,

∥Thα∥p1

L∞ ≤ Cp1

1 ∥hα∥p1

Lp1 = Cp1

1 p1

∫ α

0

tp1−1λf (t) dt

≤ Cp1

1 p1α
p1−p

∫ α

0

tp−1λf (t) dt ≤ Cp1

1

p1
p
αp1−p∥f∥pLp . (1.9)

We take α = (βκ )
σ, where κ = C1(

p1

p ∥f∥pLp)1/p1 and σ = p1

p1−p = p0(q−q0)
q0(p−p0)

> 0. The the estimate (1.9) is βp1 .

Since ∥Thα∥L∞ ≤ β, the second term in the estimate (1.3) vanishes, and ϕ1 = 0 in the estimate (1.7). Then

χ0 = χ{t>(β/κ)σ} = χ{β<κt1/σ}, and we apply an analogue of (1.8) to get

∥Tf∥qLq ≲
∫ ∞

0

(∫ ∞

0

ϕ0(t, β) dt

) q0
p0

dβ ≤

(∫ ∞

0

(∫ ∞

0

|ϕ0(t, β)|
q0
p0 dβ

) p0
q0

dt

) q0
p0

=

∫ ∞

0

(∫ κt1/σ

0

βq−q0−1 dβ

) p0
q0

tp0−1λf (t)dt


q0
p0

=
1

q − q0

(
κq−q0

∫ ∞

0

tp−1λf (t)dt

) q0
p0

= Bp,q∥f∥
pq0
p0 .

Case II (4): p0 < p1 < ∞ and q1 < q0 = ∞. Since ∥Tgα∥L∞ ≤ C0∥gα∥Lp0 ,

∥Tgα∥p0

L∞ ≤ Cp0

0 ∥gα∥p0

Lp0 ≤ Cp0

0 p0α
p0−p

∫ α

0

tp−1λf (t) dt ≤ Cp0

0

p0
p
αp0−p∥f∥pLp . (1.10)

We take α = (βκ )
σ, where κ = C0(

p0

p ∥f∥pLp)1/p0 and σ = p0

p0−p = p1(q1−q)
q1(p1−p) < 0, so the estimate (1.10) is βp0 .

Since ∥Tgα∥L∞ ≤ β, the first term in the estimate (1.3) vanishes, and ϕ0 = 0 in the estimate (1.7). Then

χ1 = χ{t≤(β/κ)σ} = χ{β≤κt1/σ}, and we apply an analogue of (1.8) to get

∥Tf∥qLq ≲
1

q − q1

(
κq−q1

∫ ∞

0

tp−1λf (t)dt

) q1
p1

= Bp,q∥f∥
pq0
p0 .

Then we complete the whole proof.

Corollary 1.9 (Marcinkiewicz interpolation theorem). Let 1 ≤ p0 < p1 ≤ ∞. If T is a sublinear operator of

weak types (p0, p0) and (p1, p1), then T is of strong type (p, p) for each p ∈ (p0, p1).
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2 Radon Measures

2.1 Locally Compact Hausdorff (LCH) Spaces

Topology review. Throughout this section, we are mainly concerned with the Locally Compact Hausdorff

(LCH) space. To be specific, the topological space X of our interest has the following topological properties:

• X is Hausdorff, i.e. for each pair of distinct points x and y in X, there exists a neighborhood Ux of x

and a neighborhood Uy of y such that U and V are disjoint.

• X is locally compact, i.e. every point in X has a compact neighborhood.

The following proposition describes that, for any set K compactly included in an open set U , we can always

find a set V between them in sense of compact inclusion.

Proposition 2.1. If X is an LCH space and K ⊂ U ⊂ X, where K is compact and U is open, there exists a

precompact open set V such that K ⊂ V ⊂ V ⊂ U .

Proof. Our proof are divided into three steps.

Step I. We first show that, in a Hausdorff space X, we can separate a compact set K and a single point x /∈ K

outside the set with disjoint neighborhoods. Formally, we find two disjoint open sets U ⊃ K and V ∋ x.

For each y ∈ K, by Hausdorff property, we can find two disjoint neighborhoods Uy of y and Vy of x. By

compactness of K, it is possible to cover K by finitely many such neighborhoods Uy1
, · · · , Uyn

. We then set

U =
⋂n

j=1 Uyj
and V =

⋂n
j=1 Vyj

, which has the desired properties.

Step II. Next, we assume X is LCH and show that any open neighborhood U of a point x contains a compact

neighborhood of x. We may assume that U is compact, otherwise we may replace U by its intersection with

the interior of a compact neighborhood of x. Then ∂U is also a compact set, and we can separate x and ∂U

by two disjoint open sets V ∋ x and W ⊃ ∂U in U . Hence V satisfies V ⊂ (W c ∩ U) ⊂ U , and since U is

precompact, V is a compact subset of U . Therefore V is a compact neighborhood of x.

Step III. Finally we come to the original proposition. By Step II, we find a precompact open neighborhood Vx

for each x ∈ K such that x ⊂ Vx ⊂ V x ⊂ U . By compactness of K, we take finitely many such neighborhoods

Vx1
, · · · , Vxn

to cover K. Setting V =
⋃n

j=1 Vxj
, we have K ⊂ V ⊂ V ⊂ U , and V is compact.

Now we discuss the generalized version of Urysohn’s lemma and Tietze extension theorem in LCH spaces.

Recall that every compact Hausdorff is normal, to which the original version of these theorems applies.

Theorem 2.2 (Urysohn’s lemma in LCH spaces). Let X be an LCH space and K ⊂ U ⊂ X, where K is

compact and U is open. There exists f ∈ C(X, [0, 1]) such that f = 1 on K and f = 0 outside a compact

subset of U .

Proof. We take a precompact open set V such that K ⊂ V ⊂ V ⊂ U , as in Proposition 2.1, so V is normal.

By Urysohn’s lemma for normal spaces, there exists f ∈ C(V , [0, 1]) such that f = 1 on K and f = 0 on ∂V .

We extend f to X by setting f = 0 on V
c
. It remains to show that f ∈ C(X).

Let E be a closed subset of [0, 1]. If 0 /∈ E, we have f−1(E) = (f |V )−1(E), and if 0 ∈ E, we have

f−1(E) = (f |V )−1(E) ∪ V
c
= (f |V )−1(E) ∪ V c since (f |V )−1(E) ⊃ ∂V . In either case, f−1(E) is closed.

Therefore f is continuous.

The following theorem can be proved in a similar approach.

Theorem 2.3 (Tietze extension theorem in LCH spaces). Let X be an LCH space and K ⊂ X, where K is

compact. If f ∈ C(K), there exists F ∈ C(X) such that F |K = f . Moreover, F may be taken to vanish outside

a compact set, i.e. F ∈ Cc(X).

Proof. We take a precompact set V such that K ⊂ V ⊂ V ⊂ X, so V is normal. By Tietze extension

theorem for normal spaces, we can extend f to a function g ∈ C(V ) with g|K = f . We also take a function

ϕ ∈ C(V , [0, 1]) such that ϕ = 1 on K and ϕ = 0 on ∂V by Urysohn’s lemma. Then gϕ ∈ C(V ) agrees with f

on K. We take F = gϕ on V and F = 0 in V
c
. Then F ∈ Cc(X) and F |K = f .
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Alexandroff compactification. If X is a noncompact LCH space, it is possible to make X into a compact

Hausdorff space by adding a single point at the “infinity”. Let us take some object that is not a point of X,

denoted by the symbol ∞ for convenience, and adjoin it to X, forming the set X∗ = X ∪ {∞}. We topologize

X∗ by defining the collection T ∗ of open sets of X∗ to consist of

(i) all sets U that are open in X, and

(ii) all sets of the form X∗\K, where K is a compact subset of X.

We first check that such collection is indeed a topology on X∗.

• The empty set ∅ and X∗ are open sets of type (i) and (ii), respectively.

• Let U1 and U2 be open sets in X, and let K1 and K2 be compact sets in X. Then

– U1 ∩ U2 is of type (i),

– (X∗\K1) ∩ (X∗\K2) = X∗\(K1 ∪K2) is of type (ii), and

– U ∩ (X∗\K) = U ∩ (X\K) is of type (i).

Hence T ∗ is closed under the finite intersection operation.

• Let {Uα} be a collection of open sets of X, and let {Kβ} be a collection of compact sets in X. Then

–
⋃

α Uα = U is of type (i),

–
⋃

β(X
∗\Kβ) = X∗\

⋂
β Kβ = X∗\K is of type (ii), and

– U ∪ (X∗\K) = X∗\(K\U) is of type (ii) since K\U is a compact subset of X.

Hence T ∗ is closed under the union operation.

Then we need to verify that X is a subspace of X∗:

• Given any open set in X∗, its intersection with X is open in X. If the open set is of type (i), it is clearly

open in X. If it is of type (ii), then (X∗\K) ∩X = X\K is open in Hausdorff space X.

• Conversely, given any open set in X, it is a type (i) open set in X∗.

Next we verify that X∗ is a compact topological space.

• If A is an open cover of X∗, it must contain at least one open set X∗\K of type (ii), to contain ∞.

• Taking all members in A but X∗\K and intersect them with X, we obtain a cover of X. Since K

is a compact subset of X, finitely many of them cover K. Then the corresponding finite collection of

elements of A along with X∗\K form a cover of X∗.

Finally we verify that X∗ is a Hausdorff space. Let x and y be two distinct points of X∗:

• The case that both x and y lies in X is clear since X is Hausdorff.

• If y = ∞, we choose a compact set K in X that contains a neighborhood U of x, then U and X∗\K are

disjoint neighborhoods of x and ∞, respectively, in X∗.

The comapact Hausdorff space X∗ is called the one point compactification/Alexandroff compactification of X.

Functions vanishing at infinity. Let X be a topological space. A continuous function f ∈ C(X) is said

to vanish at infinity if the set {x ∈ X : |f(x)| ≥ ϵ} is compact for every ϵ > 0. We define C0(X) to be the

space of functions vanishing at infinity.

Proposition 2.4. Let X be an LCH space, and f ∈ C(X). The function f extends continuously to the

Alexandroff compactification X∗ of X if and only if there exists function g ∈ C0(X) and z ∈ C such that

f = g + c, in which case the continuous extension is given by f(∞) = c.

Proof. Assume f = g + c, where g ∈ C0(X) and c ∈ C. Replacing f by f − c, we may further assume c = 0.

We extend f to X∗ by setting f(∞) = 0, and show that f is continuous. Let U be an open subset of C.
• If 0 /∈ U , then f−1(U) = (f |X)−1(U), which is open by continuity of f |X .

• If 0 ∈ U , there exists ϵ > 0 such that |z| ≥ ϵ for all z ∈ U c. Since f |X ∈ C0(X), (f |X)−1(U c) is a closed

subset of the compact set {x ∈ X : |f(x)| ≥ ϵ} in X. Hence f−1(U) = X∗\(f |X)−1(U c) is open.
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Conversely, if f ∈ C(X) extends continuously to X∗, we let c = f(∞) and g = f − c. For each ϵ > 0,

the set g−1(B(0, ϵ)) = {x ∈ X∗ : |g(x)| < ϵ} is open in X∗ and contains ∞. Consequently, the complement

{x ∈ X∗ : |g(x)| ≥ ϵ} is a compact set in X. Therefore g ∈ C0(X).

Topologies on CX . Let X be a topological space. There are various ways to topologize the space CX of all

complex-valued functions on X:

• The topology of pointwise convergence/the product topology is generated by the sets

U ϵ
x1,··· ,xm

(f) =
{
g ∈ CX : |f(xj)− g(xj)| < ϵ, j = 1, 2, · · · ,m

}
,

where f ∈ CX , ϵ > 0 and x1, · · · , xm ∈ X. In this topology, a sequence (fn) of functions converges to f

when fn → f pointwise.

• The topology of compact convergence is generated by the sets

U ϵ
K(f) =

{
g ∈ CX : sup

x∈K
|f(x)− g(x)| < ϵ

}
,

where f ∈ CX , ϵ > 0 and K is a compact subset of X. In this topology, a sequence (fn) of functions

converges to f when fn → f uniformly on every compact subset K of X.

• The topology of uniform convergence is generated by the sets

U ϵ
∞(f) =

{
g ∈ CX : sup

x∈X
|f(x)− g(x)| < ϵ

}
,

where f ∈ CX and ϵ > 0. In this topology, a sequence (fn) of functions converges to f when fn → f

uniformly on X.

Basic analysis shows that the space C(X) of continuous functions on X is not a closed subspace of CX

in the topology of pointwise convergence, but when we switch to the uniform topology, it is. The following

theorem asserts that C(X) is also closed in the topology of compact convergence when X is an LCH space.

Proposition 2.5. If X is an LCH space, C(X) is closed in CX in the topology of compact convergence.

Proof. We claim that, a subset E of X is closed if and only if E ∩K is closed for each compact set K ⊂ X.

In fact, if E is closed, E ∩K must be closed since it is the intersection of two closed sets. On the other hand,

if E is not closed, we choose a point x ∈ E\E and let K be a compact neighborhood of x. Then x is a limit

point of E ∩K, however it is not in E ∩K.

Now we prove the desired result. If f is in the closure of C(X), then for each compact subset K of X, the

restriction f |K , being a uniform limit of continuous functions on K, is continuous. Then for any closed set

E ⊂ X, the intersection f−1(E)∩K = (f |K)−1(E) is closed for all compact subset K of X, and hence f−1(E)

is closed. Therefore f is also in C(X).

Proposition 2.6. If X is an LCH space, C0(X) = Cc(X) in the uniform topology.

Proof. If f is in the closure of Cc(X), for every ϵ > 0, we can take some g ∈ Cc(X) such that ∥f − g∥∞ < ϵ.

Then {x ∈ X : |f(x)| ≥ ϵ} ⊂ supp g, which are compact sets.

Conversely, if f ∈ C0(X), we show how to find a function g ∈ Cc(X) with ∥f − g∥∞ < ϵ for any ϵ > 0. We

take the compact set K = {x ∈ X : |f(x)| > ϵ}, and take ϕ ∈ Cc(X, [0, 1]) such that ϕ = 1 on K by Urysohn’s

lemma [Theorem 2.2]. Setting g = fϕ completes the proof.

Proposition 2.7 (Partition of unity). Let X be an LCH space, K a compact subset of X, and (Uj)
n
j=1 an

open cover of K. There exists a family of functions ϕj ∈ Cc(Uj ; [0, 1]) such that
∑n

j=1 ϕj(x) = 1 for all x ∈ K.
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Proof. By Proposition 2.1, for each x ∈ X, we take a precompact open neighborhood Vx of x contained in

some Uj . Then by compactness of K, there exist finitely many Vx1
, · · · , Vxm

that form a cover of K. We

denote by Kj the union of neighborhoods Vxk
contained in Uj . By Urysohn’s lemma, for each j = 1, 2, · · · , n

we can find a function gj ∈ Cc(Uj ; [0, 1]) such that gj = 1 on Kj . Furthermore, there also exists a function

f ∈ Cc(X; [0, 1]) such that f = 1 on K and supp(f) ⊂ {x ∈ X :
∑n

j=1 gk(x) > 0}. Let gn+1 = 1− f , so that∑n+1
j=1 gj > 0 everywhere. Taking ϕj = gj/

∑n+1
k=1 gk, we have ϕj ∈ Cc(Uj ; [0, 1]) and

∑n
j=1 ϕj = 1 on K.

σ-compactness. A topological space is said to be σ-compact if it is a countable union of compact sets.

Formally, if X is σ-compact, there exists compact subsets Kn ⊂ X such that X =
⋃∞

n=1 Kn. Replacing Kn

by the union of itself and all preceding members, we may assume that (Kn) is an increasing sequence.

A second countable LCH space is σ-compact. To see this, we take a precompact open neighborhood Ux

for each x ∈ X. Consequently, we can find a base set Bx ∈ B such that x ∈ Bx ⊂ Ux, and Bx is compact.

We choose Bc ⊂ B to be the collection of all precompact base sets. Then Bx ∈ Bc for all x ∈ X, and

X =
⋃

B∈Bc
B is a countable union of compact sets. Therefore, X is a σ-compact topological space.

Proposition 2.8. Let X be a σ-compact LCH space. There exists a sequence (Un)
∞
n=1 of precompact open

sets such that U1 ⊂ U1 ⊂ U2 ⊂ U2 ⊂ U3 ⊂ · · ·Un ⊂ Un ⊂ Un+1 ⊂ · · · and X =
⋃∞

n=1 Un. Furthermore, for

all compact set K ⊂ X, there exists n ∈ N such that Un ⊃ K.

Proof. By σ-compactness of X, there exists a sequence (Kn)
∞
n=1 of compact sets increasing to X. We start by

taking a precompact open neighborhood Ux for each x ∈ X and setting U0 = ∅. With Un−1 constructed, the

union Un−1∪Kn is compact, and there exists finitely many x1, · · · , xk ∈ X such that (Un−1∪Kn) ⊂
⋃k

j=1 Uxj .

We construct Un =
⋃k

j=1 Uxj
, which is also precompact open. Then we have Un−1 ⊂ Un. Moreover,

∞⋃
n=1

Un ⊃
∞⋃

n=1

Kn = X.

Hence the sequence (Un) has the desired property. Moreover, for any compact subset K of X, {Un}∞n=1 is an

open cover of K, hence there exists Un such that K ⊂ Un.

Proposition 2.9. Let X be a σ-compact LCH space, and let (Un)
∞
n=1 be a sequence of precompact sets as in

Proposition 2.8. Then for each f ∈ CX , the sets{
g ∈ CX : sup

x∈Un

|g(x)− f(x)| < 1

m

}
, m, n ∈ N (2.1)

form a neighborhood base for f in the topology of compact convergence. Hence this topology is first countable,

and fk → f uniformly on compact sets if and only if fn → f uniformly on each Un.

Proof. For f ∈ CX , any neighborhood of f in the topology of compact convergence contains a set of the form

U ϵ
K(f) =

{
g ∈ CX : sup

x∈K
|g(x)− f(x)| < ϵ

}
,

where K is a compact subset of X and ϵ > 0. We choose n,m ∈ N such that K ⊂ Un and 1
m < ϵ. Then

U ϵ
K(f) ⊃

{
g ∈ CX : sup

x∈Un

|g(x)− f(x)| < 1

m

}
.

Therefore the sets of the form (2.1) form a neighborhood base for f .
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2.2 Positive Linear Functionals on Cc(X) and Radon Measures

Throughout this section, we assume that X is an LCH space. One of the vector spaces we are interested in is

the space Cc(X) of continuous functions on X with compact support.

Definition 2.10 (Positive linear functionals). Let X be an LCH space. A positive linear functional on Cc(X)

is a linear functional T : Cc(X) → C such that Tf ≥ 0 for all f ∈ Cc(X) with f ≥ 0.

The positivity condition implies a continuity property of T .

Proposition 2.11. If T is a positive linear functional on Cc(X), for each compact set K ⊂ X, there exists

a constant CK > 0 such that |Tf | ≤ CK∥f∥∞ for all f ∈ Cc(X) with supp(f) ⊂ K.

Proof. By dividing f ∈ Cc(X) into real and imaginary parts, it suffices to consider real-valued functions f . By

Urysohn’s lemma, for any compact K ⊂ X, there is a function ϕ ∈ Cc(U, [0, 1]) such that ϕ = 1 on K. Then

if supp(f) ⊂ K, we have |f | ≤ ∥f∥∞ϕ. Hence both ∥f∥∞ϕ− f and ∥f∥∞ϕ+ f are nonnegative, and

Tϕ∥f∥∞ − Tf ≥ 0, Tϕ∥f∥∞ + Tf ≥ 0

Therefore |Tf | ≤ Tϕ∥f∥∞, which concludes the proof by setting CK = Tϕ.

Remark. If we replace Cc(X) by C∞(X), this proposition still holds, because we can make ϕ ∈ C∞
c (U, [0, 1])

in our proof by C∞-Urysohn Lemma.

The positive linear functionals on Cc(X) is closely related to a family of Borel measures on X with some

regular properties. Intuitively, we let µ be a Borel measure on X such that µ(K) < ∞ for all compact K ⊂ U .

Then the map f 7→
∫
X
f dµ is a positive linear functional on Cc(X), since f ∈ Cc(X) ⊂ L1(µ).

Definition 2.12 (Radon measures). Let X be a topological space, B the Borel σ-algebra on X, and µ a

measure on (X,B). Let E be a Borel subset of X.

(i) µ is said to be outer regular on E, if

µ(E) = inf {µ(U) : U ⊃ E, U is open} .

(ii) µ is said to be inner regular on E, if

µ(E) = inf {µ(K) : K ⊂ E, K is compact} .

(iii) µ is said to be regular, if it is outer and inner regular on all Borel sets.

(iv) µ is called a Radon measure, if it is finite on all compact sets, outer regular on all Borel sets, and inner

regular on all open sets.

The following theorem relates every positive linear functional on Cc(X) with a Radon measure on X.

Theorem 2.13 (Riesz representation theorem). Let X be a LCH space. If T is a positive linear functional

on Cc(X), there exists a unique Radon measure µ on X such that

Tf =

∫
X

f dµ, ∀f ∈ Cc(X).

Furthermore, for all open sets U ⊂ X, µ satisfies

µ(U) = sup {Tf : f ∈ Cc(U), 0 ≤ f ≤ 1} ,

and for all compact sets K ⊂ X,

µ(K) = inf {Tf : f ∈ Cc(X), f ≥ χK} .
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We begin by constructing a Radon measure from a positive linear functional on Cc(X).

Lemma 2.14. Let T be a positive linear functional on Cc(X). For each open U ⊂ X, define

µ(U) = sup {Tf : f ∈ Cc(U ; [0, 1])} ,

and for each subset E ∈ 2X , define

µ∗(E) = inf {µ(U) : U ⊃ E, U is open} . (2.2)

Then µ∗ is an outer measure on X, and every open set U ⊂ X is µ∗-measurable, i.e.

µ∗(E) = µ∗(E ∩ U) + µ∗(E\U) for all E ∈ 2X . (2.3)

Proof. By definition of µ, we have µ(∅) = 0, and µ(U) ≤ µ(V ) for any open sets U ⊂ V . Hence µ∗(E) ≤ µ∗(F )

for all E ⊂ F ⊂ X, and µ∗(U) = µ(U) for all open U . We then show that for a sequence of open sets (Un)
∞
n=1

and U =
⋃∞

n=1 Un, it holds µ(U) ≤
∑∞

n=1 µ(Un). For any f ∈ Cc(U ; [0, 1]), let K = supp(f). By compactness

of K, we have K ⊂
⋃n

j=1 µ(Uj) for some finite n ∈ N. By Proposition 2.7, there exists a family of functions

gj ∈ Cc(Uj ; [0, 1]) such that
∑n

j=1 gn = 1 on K. Then f =
∑n

j=1 fgj , and

Tf =

n∑
j=1

T (fgj) ≤
n∑

j=1

µ(Uj) ≤
∞∑

n=1

µ(Un).

By taking the supremum over f ∈ Cc(U ; [0, 1]), we have µ(U) ≤
∑∞

n=1 µ(Un). More generally, if (En)
∞
n=1 is a

sequence of subsets of X and E =
⋃∞

n=1 En, we take an open set Un ⊃ En for each En and get

∞∑
n=1

µ(Un) ≥ µ

( ∞⋃
n=1

Un

)
≥ µ(E).

By taking the infimum over (Un)
∞
n=1, we have

∑∞
n=1 µ(En) ≥ µ(E). Hence µ∗ is an outer measure on X.

Now we verify the condition 2.3. We first assume that E is open, so that E ∩U is open. For any ϵ > 0, we

can find f ∈ Cc(E ∩ U ; [0, 1]) such that Tf > µ(E ∩ U) − ϵ. Similarly, we can find g ∈ Cc(E\ supp(f); [0, 1])
such that Tg > µ(E\ supp(f))− ϵ. Then f + g ∈ Cc(E; [0, 1]), and

µ(E) ≥ Tf + Tg ≥ µ(E ∩ U) + µ(E\ supp(f))− 2ϵ ≥ µ∗(E ∩ U) + µ∗(E\U)− 2ϵ.

Letting ϵ → 0, we obtain the desired inequality. For the general case E ∈ 2X , we may assume µ∗(E) < ∞ and

find an open V ⊃ E such that µ∗(V ) < µ∗(E) + ϵ, and hence

µ∗(E) + ϵ > µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V \U) ≥ µ∗(E ∩ U) + µ∗(E\U).

Letting ϵ → 0, we are done.

Remark. By Carathéodory’s extension theorem, the family of µ∗-measurable sets is a σ-algebra on X, which

contains the Borel σ-algebra B. By taking the restriction µ = µ∗|B, we obtain a Borel measure on X.

Lemma 2.15. The restriction µ = µ∗|B of the outer measure µ∗ in Lemma 2.14 on the Borel algebra B

defines a Radon measure on X. Furthermore, for each compact set K ⊂ X,

µ(K) = inf {Tf : f ∈ Cc(X), f ≥ χK} . (2.4)

Proof. By (2.2), the Borel measure µ is outer regular on all Borel sets in X. If K is compact, f ∈ Cc(X)

and f ≥ χK , we define Uϵ = {x ∈ X : f(x) ≥ 1− ϵ}, which is an open set. If g ∈ Cc(Uϵ; [0, 1]), we have
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f − (1− ϵ)g ≥ 0, and Tf ≥ (1− ϵ)Tg. Hence

µ(K) ≤ µ(Uϵ) = inf{Tg : g ∈ Cc(Uϵ, [0, 1])} ≤ Tf

1− ϵ
.

Letting ϵ → 0, we have µ(K) ≤ Tf , and hence µ(K) < ∞. On the other hand, for any open U ⊃ K, by

Urysohn’s lemma, there exists f ∈ Cc(U ; [0, 1]) such that f ≥ χK , and we have Tf ≤ µ(U) by definition of µ

in Lemma 2.14. Since µ is outer regular, the result (2.4) follows.

To verify that µ is a Radon measure, it remains to show that it is inner regular on all open sets. If U is

open and ϵ > 0, we choose f ∈ Cc(U ; [0, 1]) such that Tf > µ(U)− ϵ and let K = supp(f). If g ∈ Cc(X) and

g ≥ χK , we have g− f ≥ 0 and Tg ≥ Tf > µ(U)− ϵ. Then µ(K) > µ(U)− ϵ, and µ is inner regular on U .

Proof of Theorem 2.13. We start by establishing the uniqueness. Assume µ is a Radon measure such that∫
X
f dµ = Tf for all f ∈ Cc(X). If U ⊂ X is open, we have Tf =

∫
X
f dµ ≤ µ(U) for all f ∈ Cc(U ; [0, 1]).

On the other hand, if K ⊂ U is a compact set, we take f ∈ Cc(U ; [0, 1]) such that f = 1 on K by Urysohn’s

lemma, so that µ(K) ≤
∫
X
f dµ = Tf . Since µ is inner regular on U , we have

µ(U) = sup {Tf : f ∈ Cc(U ; [0, 1])} .

Thus µ is determined by T on all open sets, hence on all Borel sets by outer regularity.

To prove the existence, we take the Radon measure constructed in Lemmata 2.14 and 2.15. It remains

to show that Tf =
∫
X
f dµ for all f ∈ Cc(X). We may assume 0 ≤ f ≤ 1, since f is a linear combination

of functions in Cc(X; [0, 1]). Fix N ∈ N. We define Kj =
{
x ∈ X : f(x) ≥ j

N

}
for each j = 1, 2, · · · , N and

K0 = supp(f). Also, we divide f by f =
∑N

j=1 fj , where f1, · · · , fN ∈ Cc(X) are defined as the truncation of

f on the interval
[
j−1
N , j

N

]
:

fj = min

{
max

{
f − j − 1

N
, 0

}
,
1

N

}
.

Then N−1χKj
≤ fj ≤ N−1χj−1, and

µ(Kj)

N
≤
∫
X

fj dµ ≤ µ(Kj−1)

N
.

If U ⊃ Kj−1 is an open set, we have Nfj ∈ Cc(U ; [0, 1]), and Tfj ≤ µ(U)
N . Hence by (2.4) and outer regularity,

µ(Kj)

N

(2.4)

≤ Tfj ≤
1

N
inf {µ(U) : U ⊃ Kj−1, U is open} =

µ(Kj−1)

N
.

Using f =
∑N

j=1 fj , we have

1

N

N∑
j=1

µ(Kj) ≤
∫
X

f dµ ≤ 1

N

N−1∑
j=0

µ(Kj), and
1

N

N∑
j=1

µ(Kj) ≤ Tf ≤ 1

N

N−1∑
j=0

µ(Kj).

Hence ∣∣∣∣Tf −
∫
X

f dµ

∣∣∣∣ ≤ µ(K0)− µ(KN )

N
≤ µ(supp(f))

N
.

Since µ(supp(f)) < ∞, we let N → ∞ and conclude that Tf =
∫
X
f dµ.

Remark. For any f ∈ Cc(X) supported on K, we can take a mollification sequence f ϵ = ϕϵ ∗ f ∈ C∞
c (X)

that converges to f uniformly. Therefore, if T is a positive linear functional on C∞
c (X), by the remark under

Proposition 2.11, we can extend T to a linear functional on Cc(X). Through this procedure, we can also relate

each positive linear functional on a subspace of Cc(X) containing C∞
c (X) to a unique Radon measure on X.
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2.3 Regularity and Approximation of Radon Measures

In this section we discuss more properties of Radon measures.

Proposition 2.16. Every Radon measure is inner regular on all of its σ-finite sets.

Proof. Let µ be a Radon measure on X and E ⊂ X a σ-finite set. If µ(E) < ∞, for any ϵ > 0, we take

an open set U ⊃ E with µ(U) < µ(E) + ϵ and a compact set F ⊂ U such that µ(F ) > µ(U) − ϵ. Since

µ(U\E) < ϵ, we can also take an open set V ⊃ U\E such that µ(V ) < ϵ. Let K = F\V , which is compact.

Then K ⊂ U\V ⊂ E, and

µ(K) = µ(F )− µ(F ∩ V ) > µ(U)− ϵ− µ(V ) > µ(E)− 2ϵ.

Hence µ is inner regular on E. On the other hand, if µ(E) = ∞, E is the limit of an increasing sequence

(En)
∞
n=1 of µ-finite sets such that µ(En) → ∞. Hence for any N > 0 there exists n ∈ N such that µ(En) > N .

By the preceding argument, one can take a compact K ⊂ En with µ(K) > N . Hence the supremum of µ(K)

over compact K ⊂ E is ∞, and µ is inner regular on E.

We have some immediate corollaries of this proposition.

Corollary 2.17. Every σ-finite Radon measure is regular. Particularly, if X is a σ-compact space, every

Radon measure on X is regular.

Proposition 2.18. Let µ be a σ-finite Radon measure on X and E a Borel set in X.

(i) For every ϵ > 0, there exists an open U and a closed F with F ⊂ E ⊂ U and µ(U\F ) < ϵ.

(ii) There exists an Fσ set A and a Gδ set B such that A ⊂ E ⊂ B and µ(B\A) = 0.

Proof. We write E =
⋃∞

n=1 En where the Ej ’s are disjoint and have finite measure. For each En, choose an

open Un ⊃ En with µ(Un) < µ(En) + 2−1−nϵ and let U =
⋃∞

n=1 Un. Then U is an open set containing E

and µ(U\E) ≤
∑∞

n=1 µ(Un\En) < ϵ/2. Applying the same approach to Ec, we get an open V ⊃ Ec with

µ(V \Ec) < ϵ/2. Let F = V c. Then F is a closed set contained in E, and

µ(U\F ) = µ(U\E) + µ(E\F ) = µ(U\E) + µ(V \Ec) < ϵ.

Now for each k ∈ N, by the preceding argument, we choose an open Uk and a closed Fk with Fk ⊂ E ⊂ Uk

and µ(Uk\Fk) < 1/k. We may also assume Uk ⊂ Uk−1 by taking Uk ∩ Uk−1 if necessary. Similarly we assume

Fk ⊃ Fk−1. Let B =
⋂∞

k=1 Uk, which is a Gδ set, and A =
⋃∞

k=1 Fk, which is an Fσ set. Then

µ(B\A) = µ

( ∞⋂
k=1

(Uk\Fk)

)
= lim

k→∞
µ(Uk\Fk) = 0,

and A ⊂ E ⊂ B, which concludes the proof.

The following theorem discusses the regularity of Borel measures in LCH spaces.

Theorem 2.19. Let µ be a Borel measure on an LCH space X in which every open set is σ-compact (which

is the case, for example, if X is second countable). If µ is finite on compact sets, it is regular.

Proof. Since µ is finite on compact sets, we have
∫
X
f dµ < ∞ for all f ∈ Cc(X), and Tµf =

∫
X
f dµ defines

a positive linear functional Tµ on Cc(X). Let ν be the associated Radon measure according to Theorem 2.13.

If U ⊂ X is open, let (Kn)
∞
n=1 be a sequence of compact sets increasing to U . We take f1 ∈ Cc(U ; [0, 1]) such

that f = 1 on K1, and inductively take fn ∈ Cc(U ; [0, 1]) such that f = 1 on Kn ∪ supp(fn−1). Then fn ↑ χU

pointwise, and by monotone convergence theorem,

µ(U) = lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
X

fn dν = ν(U).
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Next, if E is any Borel set and ϵ > 0, by Proposition 2.18, there exists open U ⊃ E and closed F ⊂ E

with ν(U\F ) < ϵ. Since U\F is open, µ(U\F ) = ν(U\F ) < ϵ. In particular, µ(U) < µ(E) + ϵ, and µ is

outer regular. Also, we have µ(F ) > µ(E)− ϵ. Since X is σ-compact, there exist compact sets Kn ⊂ F with

µ(Kn) → µ(F ), and µ is inner regular. Therefore µ is regular on X.

Remark. By the uniqueness part of Theorem 2.13, since µ is Radon, we have µ = ν.

Proposition 2.20. If µ a Radon measure on an LCH space X, Cc(X) is dense in Lp(µ) for 1 ≤ p < ∞.

Proof. Since the simple functions are dense in Lp(µ), it suffices to approximate each simple function χE in

Lp-norm, where E ⊂ X is a Borel set with µ(E) < ∞. For any ϵ > 0, we pick an open set U and a compact

set K such that K ⊂ E ⊂ U and µ(U\K) < ϵ. By Urysohn’s lemma, there exists f ∈ Cc(X) such that

χK ≤ f ≤ χU . Then ∥χE − f∥pp ≤ µ(U\K) ≤ ϵ, and we are done.

Theorem 2.21 (Lusin). Let µ be a Radon measure on an LCH space X, and f : X → C a measurable function

that vanishes outside a µ-finite set. Then for any ϵ > 0, there exists ϕ ∈ Cc(X) such that µ({ϕ ̸= f}) < ϵ.

Moreover, if f is bounded, we may take ∥ϕ∥∞ ≤ ∥f∥∞.

Proof. We assume first that f is bounded, so f ∈ L1(µ). Let E = {x ∈ X : f(x) ̸= 0}. By Proposition 2.20,

there exists a sequence (gn) in Cc that converges to f in L1. We take a subsequence that converges to f a.e.

and still denote it by (gn) for simplicity. By Egoroff’s theorem, there exists A ⊂ E with µ(E\A) < ϵ/3 and

gn → f uniformly on A, and there exists a compact B ⊂ A and an open U ⊃ E such that µ(A\B) < ϵ/3

and µ(U\E) < ϵ/3. Since gn → f uniformly on B, f |B is continuous, and by Tietze extension theorem, there

exists ϕ ∈ Cc(U) such that ϕ = f on B. Since {ϕ ̸= f} ⊂ U\B and µ(U\B) < ϵ, we have µ({ϕ ̸= f}) < ϵ.

Furthermore, if |ϕ(x)| > ∥f∥∞, we may truncate ϕ(x) to ∥f∥∞ ϕ(x)
|ϕ(x)| , which does not change ϕ|B and does not

impact the continuity of ϕ. Therefore we mat take ∥ϕ∥∞ < ∥f∥∞.

On the other hand, if f is unbounded, we make An = {0 ≤ |f | ≤ n}, which increases to E = {f ̸= 0}
as n → ∞. Then there exists sufficient large n such that µ(E\An) < ϵ/2. By the preceding argument, there

exists ϕ ∈ Cc(X) such that ϕ = fχAn
except on a set of measure less than ϵ/2. Hence µ({ϕ ̸= f}) < ϵ.

Finally we discuss how to construct a Radon measure from another one.

Proposition 2.22. Let µ be a Radon measure on a topological space X. If ϕ ∈ L1(µ) and ϕ ≥ 0, we define

ν(E) =

∫
E

ϕdµ, E ∈ B.

Then ν is also a Radon measure on X.

Proof. One can easily verify that ν is a Borel measure on X, and ν ≪ µ. Then for each ϵ > 0, there exists

δ > 0 such that ν(E) < ϵ for all µ(E) < δ. Now we verify that ν is a Radon measure on X.

• If K ⊂ X is a compact set, ν(K) =
∫
K
ϕdµ ≤

∫
X
ϕdµ < ∞.

• For any Borel set E ⊂ X and any ϵ > 0, there exists an open U ⊃ E such that µ(U\E) < δ, and

ν(U\E) < ϵ. Hence ν is outer regular on E.

• For any open set U ⊂ X and any ϵ > 0, there exists a compact K ⊂ U such that µ(U\K) < δ, and

ν(U\K) < ϵ. Hence ν is inner regular on U .

To summarize, ν is a Radon measure on X.
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2.4 Riesz-Markov-Kakutani Representation of C0(X)∗

Positive bounded linear functionals on C0(X). Let X be an LCH space. Proposition 2.6 states that

C0(X) is the uniform closure of Cc(X). If µ is a Radon measure on X, the functional Tµf =
∫
X
f dµ extends

continuously to C0(X) if and only if it is bounded with respect to the uniform norm ∥ · ∥∞, i.e. there exists a

constant γ > 0 such that |Tµf | ≤ γ∥f∥∞ for all f ∈ Cc(X). In view of the equality

µ(X) = sup

{∫
X

f dµ : f ∈ Cc(X), 0 ≤ f ≤ 1

}
= sup {Tµf : f ∈ Cc(X), 0 ≤ f ≤ 1} ,

we know that Tµ : Cc(X) → C is bounded with respect to ∥ · ∥∞ if and only if µ(X) < ∞, in which case µ(X)

is the operator norm of Tµ. Therefore, we have identified the positive bounded linear functionals on C0(X),

which are given by integration against finite Radon measures.

In this section, we identify the dual space of C0(X), denoted by C0(X)∗, which consists of all bounded

linear functionals on C0(X).

Definition 2.23 (Signed Radon measures and complex Radon measures). Let X be a topological space.

(i) A signed Radon measure on X is a signed Borel measure on X whose positive and negative variations

are Radon measures.

(ii) A complex Radon measure on X is a complex Borel measure on X whose real and imaginary parts are

signed Radon measures. We denote the space of complex Radon measures on X by M(X), and define

∥µ∥ = |µ|(X), where |µ| is the total variation of µ.

Remark. Since a complex measure is always finite, every complex Radon measure is regular. Furthermore,

every complex Borel measure is Radon in an LCH space in which every open set is σ-compact (for example,

a second countable LCH space).

Theorem 2.24. If µ is a complex Borel measure on X, then µ is Radon if and only in |µ| is Radon. Fur-

thermore, M(X) is a vector space and µ 7→ ∥µ∥ is a norm on it.

Proof. By Proposition 2.16, we note that a finite positive Borel measure µ is Radon if and only if for every

Borel set E and every ϵ > 0, there exists compact K ⊂ E and open U ⊃ E such that µ(U\K) < ϵ.

If µ = (µ1 − µ2) + i(µ3 − µ4) and |µ|(U\K) < ϵ, we have µj(U\K) < ϵ for j = 1, 2, 3, 4. Conversely, if

µj(Uj\Kj) < ϵ/4 for all j, we have |µ|(U\K) < ϵ for U =
⋂4

j=1 Uj and Kj =
⋃4

j=1 Kj . Hence µ is Radon if

and only if its total variation |µ| is Radon.
For the second assertion, a similar argument shows that M(X) is closed under addition and scalar multi-

plication. Finally, to show µ → ∥µ∥ is a norm on X, let µ1, µ2 ∈ M(X) and ν = |µ1+µ2|, and take the Radon

Nikodym derivative f1 = dµ1/dν and f2 = µ2/dν. Then

|µ+ ν|(X) ≤
∫
X

|f1 + f2|dν ≤
∫
X

|f1|dν +

∫
X

|f2|dν ≤ |µ1|(X) + |µ2|(X).

Hence the triangle inequality holds, and ∥µ∥ = |µ|(X) is a norm.

We now discuss how to identify each T ∈ C(X)∗ with a complex Radon measure on X.

Theorem 2.25 (Riesz-Markov-Kakutani). Let X be an LCH space. For each µ ∈ M(X), define

Tµf =

∫
X

f dµ, f ∈ C0(X).

Then the map µ 7→ Tµ defines an isometric isomorphism of M(X) onto the dual space C0(X)∗.

We begin from the real case. While studying a possibly non-positive linear functional on C0(X,R), the
following decomposition is extremely useful.
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Theorem 2.26 (Jordan decomposition). If T ∈ C0(X;R)∗, there exists positive bounded linear functionals

T± ∈ C0(X;R)∗ such that T = T+ − T−.

Proof. For f ∈ C0(X;R) with f ≥ 0, we define

T+f = sup {Tg : g ∈ C0(X;R), 0 ≤ g ≤ f}

We claim that T+ is the restriction to C0(X; [0,∞)) of a positive bounded linear functional on C0(X;R).
• For λ ≥ 0, we have

T (λf) = sup {Th : h ∈ C0(X;R), 0 ≤ h ≤ λf} = sup {λTg : g ∈ C0(X;R), 0 ≤ g ≤ f} = λTf.

• If 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2, we have 0 ≤ g1 + g2 ≤ f1 + f2, so that T+(f1 + f2) ≥ Tg1 + Tg2, and

hence T+(f1 + f2) ≥ T+f1 + T+f2. On the other hand, if 0 ≤ g ≤ f1 + f2, let g1 = min{f1, g} and

g2 = g − g1 = max{0, g − f1}, so that 0 ≤ g1 ≤ f1 and 0 ≤ g2 ≤ f2. Then

Tg = Tg1 + Tg2 ≤ T+f1 + T+f2,

and T+(f1 + f2) ≤ T+f1 + T+f2. Therefore T+(f1 + f2) = T+f1 + T+f2.

• Since |Tg| ≤ ∥T∥ ∥g∥∞ ≤ ∥T∥ ∥f∥∞ for 0 ≤ g ≤ f and T0 = 0, we have 0 ≤ T+f ≤ ∥T∥ ∥f∥∞
Now for any f ∈ C0(X;R), both its positive f+ = max{f, 0} and negative parts f− = max{−f, 0} are in

C0(X; [0,∞)), and we define T+f = T+f+ − T+f−. If f = g − h, where g, h ≥ 0, we have f+ + h = g + f−,

and Tf = Tf+ − Tf− = Tg − Th. It follows easily that T+ is a linear functional in C0(X;R), and

|T+f | ≤ max
{
T+f+, T+f−} ≤ ∥T∥max

{
∥f+∥∞, ∥f−∥∞

}
= ∥T∥ ∥f∥∞ .

Hence T+ is bounded, and ∥T+∥ ≤ ∥T∥.
Finally, we define T− = T+ − T ∈ C0(X;R)∗. By definition of T+, we have T+f ≥ Tf for f ∈ C0(X;R)

with f ≥ 0, hence T− is a positive linear functional. Thus we concludes the proof.

Remark. For any T ∈ C0(X)∗, consider its restriction TR = U + iV to C0(X;R), where U, V ∈ C0(X;R)∗.
If f = u+ iv ∈ C0(X), where u, v ∈ C0(X;R), by C-linearity,

Tf = Tu+ iTv = TRu+ iTRv = (U + iV )u+ i(U + iV )v = (Uu− V v) + i(Uv + V u).

It is seen T is uniquely determined by TR. We then decompose U = U+ − U− and V = V + − V −, where

U±, V ± ∈ C0(X,R)∗ are positive. By Riesz representation theorem, we can find finite positive Radon measures

µ±
R and µ±

I associated with U± and V ±, respectively. We define the complex Radon measure

µ =
(
µ+
R − µ−

R

)
+ i
(
µ+
I − µ−

I

)
.

Then∫
X

f dµ =

(∫
X

f dµ+
R −

∫
X

f dµ−
R

)
+ i

(∫
X

f dµ+
I −

∫
X

f dµ−
I

)
=

(∫
X

u dµ+
R −

∫
X

u dµ−
R −

∫
X

v dµ+
I +

∫
X

v dµ−
I

)
+ i

(∫
X

v dµ+
R −

∫
X

v dµ−
R +

∫
X

u dµ+
I −

∫
X

u dµ−
I

)
=
(
U+u− U−u− V +v + V −v

)
+ i
(
U+v − U−v + V +u− V −u

)
= (Uu− V v) + i(Uv + V u) = Tf.

Therefore, every T ∈ C0(X)∗ is associated with a complex Radon measure µ ∈ M(X) such that Tf =
∫
X
f dµ.

Furthermore, since µ+
R, µ

−
R, µ

+
I , µ

−
I are unique determined by T , the complex Radon measure µ is unique.
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Proof of Theorem 2.25. We have already shown that every T ∈ C0(X)∗ is of the form Tµ. On the other hand,

if µ ∈ M(X), we have ∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | d|µ| ≤ ∥f∥∞∥µ∥, f ∈ C0(X).

Hence Tµ ∈ C0(X)∗, and ∥Tµ∥ ≤ ∥µ∥. Furthermore, we take h = dµ/d|µ|, so that |h| = 1 |µ|-a.e.. By Lusin’s

theorem [Theorem 2.21], for each ϵ > 0, there exists ϕ ∈ Cc(X) such that ∥ϕ∥∞ = 1 and ϕ = h except on a

set E with |µ|(E) < ϵ/2. Then

∥µ∥ =

∫
X

|h|2 d|µ| =
∫
X

h dµ ≤
∣∣∣∣∫

X

ϕdµ

∣∣∣∣+ ∣∣∣∣∫
X

(ϕ− h) dµ

∣∣∣∣
=

∣∣∣∣∫
X

ϕdµ

∣∣∣∣+ ∣∣∣∣∫
E

(ϕ− h) dµ

∣∣∣∣ ≤ ∥Tµ∥ ∥ϕ∥∞ + ∥ϕ− h∥∞|µ|(E) ≤ ∥Tµ∥+ ϵ.

Letting ϵ → 0, we have ∥µ∥ ≤ ∥Tµ∥. Hence ∥µ∥ = ∥Tµ∥, and the proof is complete.

Remark. If we consider the real case, the mapping µ 7→ Tµ is an isometric isomorphism from the space of

finite signed Radon measures to C0(X;R)∗.

Corollary 2.27. Let X be a compact Hausdorff space, C(X)∗ is isometrically isomorphic to the space M(X)

of complex Radon measures on X.

Remark. If in addition, X is metrizable, then X is second countable, and we know that every finite Borel

measure on X is Radon by Theorem 2.19. Since complex measures are always finite, M(X) is indeed the space

of complex Borel measures on X, and C(X)∗ ≃ M(X).

Corollary 2.28. Let µ be a Radon measure on an LCH space X. For each f ∈ L1(µ), define

νf (E) =

∫
E

f dµ, E ∈ B.

The mapping f 7→ νf is an isometric embedding of L1(µ) into M(X) whose range consists precisely of those

ν ∈ M(X) such that ν ≪ µ.

Proof. By Proposition 2.22, the complex measure νf on X is Radon and satisfies νf ≪ µ. Moreover,

∥νf∥ = |ν|(X) =

∫
X

|f | dµ = ∥f∥L1 .

Finally, if ν ∈ M(X) and ν ≪ µ, taking f to be the Radon-Nikodym derivative dν/dµ yields νf = ν.

21



2.5 Lebesgue Decomposition for Radon Measures on Rn

In this section, we work in the Euclidean space (Rn,m), which is a locally compact, Hausdorff and second

countable space. According to Theorem 2.19, if a Borel measure µ on Rn is finite on compact sets, it is a

Radon measure. By Lebesgue decomposition theorem, µ has a unique decomposition

µ = ρ+ ν,

where

• ρ is absolutely continuous with respect to the Lebesgue measure m, written ρ ≪ m, i.e. ρ(E) = 0 for all

Borel sets E with m(E) = 0.

• ν and the Lebesgue measure m are mutually singular, written ν ⊥ m, i.e. there is a Borel set A such

that m(Rn\A) = ν(A) = 0.

Clearly, both ρ and ν are Radon measures on Rn. The following theorem gives a further decomposition of µ.

Theorem 2.29 (Lebesgue decomposition for Radon measure on Rn). If µ is a Radon measure on Rn, there

exists a locally integrable function f ∈ L1
loc(Rn) and a Radon measure ν ⊥ m such that

µ(E) =

∫
E

f dm+ ν(E), E ∈ B(Rn). (2.5)

Furthermore, for almost every x ∈ Rn,

lim
r→0+

µ(B(x, r))

m(B(x, r))
= f(x). (2.6)

The proof of this theorem requires a finite version of Vitali covering theorem.

Lemma 2.30 (Vitali covering lemma). For any finite collection F of open balls B1, B2, · · · , BN in an arbitrary

metric space X, there exists a subcollection G ⊂ F of disjoint balls such that

N⋃
j=1

Bj ⊂
⋃
B∈G

3B,

where 3B denotes the ball with the same center as B but with 3 times the radius.

Proof. We choose balls in G by the greedy algorithm. First take B′
1 to be the largest ball among F . Having

chosen {B′
1, B

′
2, · · · , B′

k}, repeat the inductive step:

• if the remaining balls each have nonempty intersection with
⋃k

i=1 B
′
i, stop;

• otherwise, take B′
k+1 to be the largest among F\{B′

1, B
′
2, · · · , B′

k} that are disjoint from
⋃k

i=1 B
′
i.

This algorithm must stop after less than N rounds, with the chosen balls B′
1, B

′
2, · · · , B′

n disjoint. Then it

remains to show that Bi ⊂ E :=
⋃n

j=1 3B
′
j for every i = 1, · · · , N . We claim Bi ∩ E ̸= ∅, otherwise the

algorithm would not have stopped at B′
1, B

′
2, · · · , B′

n. We let j0 be the minimal j such that B′
j ∩Bi ̸= ∅. Then

Bi does not intersect
⋃j0−1

i=1 B′
j , and the radius of Bi is no greater than Bj0 , since Bj0 is maximal at step j0.

Recalling that B′
j0
∩Bi ̸= ∅, by triangle inequality, 3B′

j0
⊃ Bi.

Lemma 2.31. If ν is a Radon measure on Rn, and ν ⊥ m, then for almost every x ∈ Rn,

lim
r→0+

ν(B(x, r))

m(B(x, r))
= 0. (2.7)

Proof. We take the Borel set A such that m(Rn\A) = ν(A) = 0, and define

Ek =

{
x ∈ A : lim sup

r→0+

ν(B(x, r))

m(B(x, r))
>

1

k

}
, k = 1, 2, · · · .
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By outer regularity of ν, for any ϵ > 0, we can find an open set U ⊃ A with ν(U) < ϵ. By definition of Ek, for

each x ∈ Ek, we can take a ball B(x, rx) ⊂ such that

ν(B(x, rx))

m(B(x, rx))
>

1

k
. (2.8)

We take a compact subset K ⊂ Ek, then K is covered by finitely many such balls. By Vitali covering lemma

[Lemma 2.30], we can further take finitely many disjoint balls B(x1, r1), · · · , B(xN , rN ) such that

K ⊂
N⋃
j=1

B(xj , 3rj).

Applying the estimate (2.8), we have

m(K) ≤
N∑
j=1

m(B(xj , 3rj)) = 3n
N∑
j=1

m(B(xj , rj)) < 3nk

N∑
j=1

ν(B(xj , rj)) ≤ 3nkν(U) ≤ 3nkϵ.

Since the compact K ⊂ Ek is arbitrary, by inner regularity of the Lebesgue measure, m(Fk) ≤ 3nkϵ. Also,

since ϵ > 0 is arbitrary, m(Fk) = 0 for all k ∈ N. Hence{
x ∈ A : lim sup

r→0+

ν(B(x, r))

m(B(x, r))
> 0

}
=

∞⋃
k=1

Ek

has Lebesgue measure zero. Since m(Rn\A) = 0, the limit (2.7) holds for m-a.e. x ∈ Rn.

Proof of Theorem 2.29. We take the Lebesgue decomposition µ = ρ+ ν, where ρ ≪ m and ν ⊥ m. By Radon

Nikodym theorem, there exists f ∈ L1
loc(Rn) such that

ρ(E) =

∫
E

f dm, ∀E ∈ B(Rn).

Then f satisfies the identity (2.5). The second result (2.6) is an immediate consequence of the Lebesgue

differentiation theorem [Theorem 3.3] and Lemma 2.31.

Remark. The locally integrable function f satisfying (2.6) is also called the derivative or density of the Radon

measure µ with respect to the Lebesgue measure m.
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3 The Hardy-Littlewood Maximal Inequality and Differentiation

3.1 The Hardy-Littlewood Maximal Inequality

In this section, we work in the Euclidean space Rn with the Lebesgue measure m. For a locally integrable

function f ∈ L1
loc(Rn), we define the local average

(Arf)(x) =
1

m(B(x, r))

∫
B(x,r)

f(y) dy, x ∈ Rn.

To obtain a uniform estimate for Arf , we define the Hardy-Littlewood maximal operator by

(Mf)(x) = sup
r>0

(Ar|f |)(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy, x ∈ Rn.

Clearly M is sublinear. The function Mf is also called the Hardy-Littlewood maximal function of f .

Theorem 3.1 (Hardy-Littlewood maximal inequality, weak type). The Hardy-Littlewood operator M is of

weak type (1, 1). In other words, there exists a constant Cn > 0 such that for all f ∈ L1(Rn) and all λ > 0,

m ({Mf ≥ λ}) ≤ Cn

λ
∥f∥L1 . (3.1)

Remark. The inequality (3.1) may look a bit stricter than the condition [Mf ]1 ≤ Cn∥Mf∥L1(Rn) of weak

type (1, 1). But, as we will see, the two assertions are indeed equivalent.

Proof of Hardy-Littlewood maximal inequality [Theorem 3.1]. We will show that for all f ∈ L1(Rn),

m({Mf > λ}) ≤ 3n

λ
∥f∥L1 , λ > 0.

Noticing that m({Mf ≥ λ}) ≤ m({Mf > λ− ϵ}) ≤ 3n(λ− ϵ)−1∥f∥L1 for sufficiently small ϵ > 0, the desired

inequality (3.1) follows by perturbing ϵ ↓ 0.

Using the inner regularity of the Lebesgue measure, it suffices to show that m(K) ≤ 3nλ−1∥f∥L1 for each

compact subset K ⊂ {Mf > λ}. For each x ∈ K, we take rx > 0 such that

1

m(B(x, rx))

∫
B(x,rx)

|f | dm > λ.

The collection of balls B(x, rx) forms an open cover of K, and we may take by compactness of K a finite

subcollection that covers K. By Vitali covering lemma [Lemma 2.30], we take a further collection of disjoint

balls B1, B2, · · · , Bk such that K ⊂
⋃k

j=1 Bj . Consequently,

m(K) ≤ 3n
k∑

j=1

m(Bj) ≤
3n

λ

k∑
j=1

∫
Bj

|f | dm =
3n

λ

∫
⋃k

j=1 Bj

|f | dm ≤ 3n

λ
∥f∥L1 .

Using the Marcinkiewicz interpolation theorem, we immediately obtain the following result.

Theorem 3.2 (Hardy-Littlewood maximal inequality, strong type). Let 1 < p ≤ ∞. The Hardy-Littlewood

operator M is of strong type p. That is, there exists a constant Cn,n > 0 such that for all f ∈ Lp(Rn),

∥Mf∥Lp ≤ Cp,n∥f∥Lp .

Proof. The Hardy-Littlewood operator M is sublinear and of weak type 1. By definition of Mf , we also have

∥Mf∥L∞ ≤ ∥f∥L∞ when f is a.e. bounded. Hence M is of strong type ∞, and is of strong type (p, p) for each

1 < p ≤ ∞ by Marcinkiewicz interpolation theorem [Corollary 1.9]
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3.2 The Lebesgue Differentiation Theorem and a.e. Differentiability

In this section we apply the Hardy-Littlewood maximal inequality to prove some differentiation theorems.

Theorem 3.3 (Lebesgue differentiation theorem). Let f ∈ L1
loc(Rn). For almost every x ∈ Rn,

lim
r→0+

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0. (3.2)

Consequently, the local average function Arf converges almost everywhere to f , i.e.

lim
r→0+

(Arf)(x) = lim
r→0+

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x) (3.3)

for almost every x ∈ Rn.

Remark. Let f be a measurable function on Rn. A point x ∈ Rn is said to be a Lebesgue point of f if the

identity (3.2) holds. The Lebesgue differentiation theorem implies that if f ∈ L1
loc(Rn), then almost every

point in Rn is a Lebesgue point of f .

Proof. We first prove the result for g ∈ Cc(Rn). If x ∈ Rn and ϵ > 0, by uniform continuity of g, there exists

δ > 0 such that |g(y)− g(x)| < ϵ for all y ∈ B(x, δ). Then for all r < δ,

1

m(B(x, r))

∫
B(x,r)

|g(y)− g(x)| dy < ϵ.

Hence (3.2) holds for all continuous functions with compact support.

Now we prove the general case. Since differentiation is a local property, we may assume that f ∈ L1(Rn).

For ϵ > 0, choose g ∈ Cc(Rn) such that ∥f − g∥L1 ≤ ϵ. We put h = f − g. By the triangle inequality,

|(Arf)(x)− f(x)| ≤ |(Arg)(x)− g(x)|+ |(Arh)(x)− h(x)| ≤ |(Arg)(x)− g(x)|+ (Ar|h|)(x) + |h(x)|.

Let λ > 0. Then

m

({
x ∈ Rn : lim sup

r→0+
|Arf − f |(x) ≥ λ

})
≤ m

({
x ∈ Rn : lim sup

r→0+
|Arg − g|(x) ≥ λ

3

})
+m

({
x ∈ Rn : lim sup

r→0+
(Ar|h|)(x) ≥

λ

3

})
+m

(
|h| ≥ λ

3

)
≤ m

({
x ∈ Rn : sup

r>0
(Ar|h|)(x) ≥

λ

3

})
+m

(
|h| ≥ λ

3

)
.

By weak L1 Hardy-Littlewood maximal inequality [Theorem 3.1] and Markov inequality,

m

({
x ∈ Rn : lim sup

r→0+
|Arf − f |(x) ≥ λ

})
≤ 3Cn

λ
∥h∥L1 +

3

λ
∥h∥L1 ≤ 3(Cn + 1)ϵ

λ
.

Since ϵ > 0 is arbitrary, the left-hand side of the last display is zero. The result then follows by taking the

union on the sequence λn = 1
n ↓ 0.

Following is a particular case of Lebesgue differentiation theorem.

Theorem 3.4 (Lebesgue density theorem). Let E ⊂ Rn be a Lebesgue measurable set. For almost every point

x ∈ Rn, the density

lim
r→0+

m(E ∩B(x, r))

m(B(x, r))
=

{
1, if x ∈ E,

0, if x /∈ E.
. (3.4)
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Remark. Let E ⊂ Rn. A point x ∈ Rn is said to be a density point of E if the

lim
r→0+

m(E ∩B(x, r))

m(B(x, r))
= 1.

The Lebesgue density theorem implies that almost every point of a measurable set is a density point, and

almost every point outside the measurable set is not a density point.

Proof. The identity (3.4) is a special case of (3.3) when f = χE .

We can employ the Lebesgue differentiation theorem to prove the Fundamental theorem of calculus.

Theorem 3.5 (Fundamental Theorem of Calculus). Let F : R → C be an absolutely continuous function.

Then F is almost everywhere differentiable, and the derivative f = F ′ satisfies f ∈ L1
loc(R), and

F (x) = F (a) +

∫ x

a

f(t) dt, −∞ < a < x < ∞.

Proof. Since the differentiability is a local property, it suffices to deal with the restriction of F on a compact

interval [a, b]. Let µF be the Lebesgue-Stieltjes measure generated by f on [a, b].

Step I. We claim that µF is absolutely continuous with respect to the Lebesgue measure m.

We fix ϵ > 0, and choose δ > 0 such that
∑N

j=1 |F (bj) − F (aj)| < ϵ for all disjoint intervals {(aj , bj)}Nj=1

with total length less than δ. If E is a Borel set with m(E) = 0, by outer regularity of m, we take an open

U ⊃ E with m(U) < δ. Then U is a disjoint union of at most countably many intervals {(aj , bj)}∞j=1, and

N∑
j=1

µF ((aj , bj)) ≤
N∑
j=1

(F (bj)− F (aj)) ≤ ϵ.

Letting N → ∞, we have µF (U) < ϵ, and µF (E) < ϵ. Since ϵ > 0 is arbitrary, µF (E) = 0.

Step II. By Radon-Nikodym theorem, we take f ∈ L1([a, b]) such that µF (E) =
∫
E
f dm. We may further

globalize this result and assert that there exists a locally integrable function f ∈ L1
loc(R) such that

µF ((x, y]) = F (y)− F (x) =

∫ y

x

f(t) dt for all −∞ < x < y < ∞.

Step III. If x ∈ R is a Lebesgue point of f , by Lebesgue differentiation theorem,

lim
r→0+

1

2r

∫ x+r

x−r

|f(y)− f(x)| dy = 0.

We split the integral to [x− r, x] and [x, x+ r] to get

lim
r→0+

1

r

∫ x+r

x

|f(y)− f(x)| dy = lim
r→0+

1

r

∫ x

x−r

|f(y)− f(x)| dy = 0.

Hence the right derivative of F at x is

lim
r→0+

F (x+ r)− F (x)

r
= lim

r→0+

1

r

∫ x+r

x

|f(y)− f(x)| dy = f(x),

and the same for the left derivative. Therefore F is differentiable almost everywhere, and F ′ = f .

Remark. A special case of this theorem is the one-dimensional Rademacher’s theorem. If we further assume

that F : R → C is Lipschitz continuous, then F is almost everywhere differentiable and F ′ ∈ L∞(R). Indeed,
the essential supremum of F ′ is bounded by the Lipschitz constant.
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Theorem 3.6 (Rademacher’s Theorem). If f : Rn → C is a locally Lipschitz continuous function, then f is

almost everywhere differentiable.

Proof. Since the differentiability is a local property, we may assume that f is Lipschitz continuous on Rn.

From the one-dimensional case, we know that for each unit vector |v| = 1, the directional derivative fv = ∂f
∂v

exists almost everywhere. In particular, the partial derivatives ( ∂f
∂xj

)nj=1 exist almost everywhere. We write

G =
(

∂f
∂x1

, ∂f
∂x2

, · · · , ∂f
∂xn

)
. We show that for almost every x ∈ Rn,

lim
|h|→0

f(x+ h)− f(x)−G · h
|h|

= 0.

This implies that f is almost everywhere differentiable, and the gradient ∇f = G.

Step I. For each |v| = 1, we claim that fv = G · v almost everywhere. We take a test function ϕ ∈ C∞
c (Rn).

Since f is Lipschitz, by Lebesgue dominated convergence theorem,

lim
t→0

∫
Rn

f(x+ tv)− f(x)

t
ϕ(x) dx =

∫
Rn

fv(x)ϕ(x) dx.

Since ϕ is smooth, ϕv = ∇ϕ · v. Applying integration by parts, we have∫
Rn

fv(x)ϕ(x) dx = lim
t→0

∫
Rn

f(x+ tv)− f(x)

t
ϕ(x) dx = lim

t→0

∫
Rn

f(x)
ϕ(x− tv)− ϕ(x)

t
dx

= −
∫
Rn

f(x)ϕv(x) dx = −
∫
Rn

n∑
j=1

f(x)vj
∂ϕ

∂xj
(x) dx =

∫
Rn

n∑
j=1

vj
∂f

∂xj
(x)ϕ(x) dx.

Therefore
∫
Rn(fv −G · v)ϕdm = 0 for all ϕ ∈ C∞

c (Rn), and fv = G · v a.e.. For each |v| = 1, we write

Av = {x ∈ Rn : G(x) and fv(x) exists, and fv(x) = G(x) · v} .

Step II. We take a countable dense subset (vk) of the unit sphere {|v| = 1}. By Step I, µ(Ac
vk
) = 0 for all

k ∈ N, and µ(Ac) = 0, where we take A =
⋂∞

k=1 Avk . We claim that f is differentiable at all x ∈ A. Since

f is Lipschitz continuous, there exists a constant K > 0 such that |f(x) − f(y)| ≤ K|x − y|, and all partial

derivatives are bounded by K. We take h ̸= 0 in Rn. Then for all k ∈ N,

|f(x+ h)− f(x)−G · h|
|h|

=
|f(x+ |h|v)− f(x+ |h|vk)|

|h|
+

|f(x+ |h|vk)− f(x)−G · |h|vk|
|h|

+
|G · |h|(vk − v)|

|h|

=
|f(x+ |h|v)− f(x+ |h|vk)|

|h|
+

∣∣∣∣f(x+ |h|vk)− f(x)

|h|
−G · vk

∣∣∣∣+ |G · (vk − v)|

≤ K|v − vk|+
∣∣∣∣f(x+ |h|vk)− f(x)

|h|
−G · vk

∣∣∣∣+K
√
n · |vk − v|

where v = h/|h| is a unit vector. By density of (vk) in the unit sphere, for each ϵ > 0, we take vk such that

|vk − v| < ϵ. Then for all x ∈ A,

lim
|h|→0

|f(x+ h)− f(x)−G · h|
|h|

≤ K|v − vk|+ |fv −G · vk|+K
√
n · |vk − v| ≤ K(1 +

√
n)ϵ,

where the last inequality follows from x ∈ Avk . Since ϵ > 0 is arbitrary, the above limit is zero. Therefore f

is differentiable at x, and the gradient ∇f = G.

Remark. Since each component of ∇f is the limit of bounded measurable functions, |∇f | ∈ L1
loc(Rn).
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Finally we record some technical facts we will use later.

Theorem 3.7 (Differentiability on Level Sets). The following statements hold:

(i) Let f : Rn → Rm be a locally Lipschitz continuous function, and

Z = {x ∈ Rn : f(x) = 0}.

Then Df(x) = 0 for m-a.e. x ∈ Z.

(ii) Let f, g : Rn → Rn be locally Lipschitz continuous functions, and

Y = {x ∈ Rn : g(f(x)) = x},

Then Dg(f(x))Df(x) = Id for m-a.e. x ∈ Y .

Proof. (i) We may assume m = 1. Choose x ∈ Z so that ∇f(x) exists, and

lim
r↓0

m(Z ∩B(x, r))

m(B(x, r))
= 1 for m-a.e. x ∈ Z. (3.5)

If ∇f(x) ̸= 0, we put V = {ξ ∈ ∂B(0, 1) : ∇f(x)⊤ξ ≥ 1
2 |∇f(x)|}. Then for all ξ ∈ V ,

0 = lim
t↓0

f(x+ tξ)− t∇f(x)⊤ξ

t
= lim

t↓0

(
f(x+ tξ)

t
− 1

2
|∇f(x)|

)
.

Since |f(x)| > 0, there exists t0 > 0 such that f(x+ tξ) > 0 for all t ∈ (0, t0) and ξ ∈ V . Then

lim
r↓0

m(Z ∩B(x, r))

m(B(x, r))
< 1,

which contradicts (3.5). Hence m {x ∈ Z : |∇f(x)| ≠ 0} = 0.

(ii) We define A = {x ∈ Rn : Df(x) exists}, B = {x ∈ Rn : Dg(x) exists}, and X = Y ∩ A ∩ f−1(B). Since

x ∈ Y \f−1(B) implies f(x) ∈ Rn\B, and x = g(f(x)) ∈ g(Rn\B), we have Y \X ⊂ (Rn\A) ∪ g(Rn\B). By

Rademacher’s theorem, we have m(Y \X) = 0.

Finally, for each x ∈ X, both Df(x) and Dg(x) exist, and

D(g ◦ f)(x) = Dg(f(x))Df(x)

exists. Since (g ◦ f)(x)− x = 0 a.e. on Y , and assertion (i) implies D(g ◦ f)(x) = Id a.e. on Y .
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3.3 Second Differentiability of Convex Functions

In this section, we discuss the differentiation of convex functions on Euclidean spaces. Recall that a function

f : Rn → R is called convex if for all x, y ∈ Rn and 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Proposition 3.8. Every convex function on Rn is locally Lipschitz continuous.

Proof. Let f : Rn → R be a convex function.

Step I. We first prove that f is locally bounded. We consider the compact hypercube Q = [−N,N ]n, with

vertices (xk)
2n

k=1. Then every x ∈ Q is a convex combination x =
∑2n

k=1 λkxk of the vertices, and

f(x) ≤
2n∑
k=1

λkf(xk) ≤ M := max
1≤k≤2n

f(xk) < ∞.

Then supx∈Q f(x) ≤ M . To derive a lower bound, note that for every x ∈ Q,

f(0) ≤ 1

2
f(x) +

1

2
f(−x) ≤ 1

2
f(x) +

1

2
M.

Hence infx∈Q f(x) ≥ 2f(0)−M .

Step II. Now we prove the local Lipschitz continuity of f . Fix x, y ∈ B(0, N) with x ̸= y, where N > 0 and

B(0, N) is the closed ball of radius N centered at 0. We choose µ > 0 such that z = x + µ(y − x) satisfies

|z| = 3N . Then µ = |z−x|
|y−x| ≥ 1, and

f(y) = f

(
1

µ
z +

(
1− 1

µ

)
x

)
≤ f(x) +

f(z)− f(x)

µ
≤ f(x) +

2

µ
sup

ξ∈B(0,3N)

|f(ξ)|.

Since |z − x| ≥ 2N , we obtain

f(y)− f(x) ≤ 2

µ
sup

ξ∈B(0,3N)

|f(ξ)| = |y − x|
N

sup
ξ∈B(0,3N)

|f(ξ)|.

Interchanging x and y, the same estimate holds for f(x)− f(y). Hence f is locally Lipschitz continuous.

Remark. According to Proposition 3.8 and Rademacher’s theorem [Theorem 3.6], every convex function is

almost everywhere differentiable. In this section, we step further and deal with the second differentiability.

We begin by discussing some properties of derivatives of convex functions.

Lemma 3.9. Let f : Rn → R be a convex function.

(i) If f is differentiable at x, then

f(y) ≥ f(x) +∇f(x) · (y − x). (3.6)

(ii) If, in addition, f ∈ C2(Rn), then ∇2f ⪰ 0 on Rn.

Proof. (i) For each y ∈ Rn and 0 < λ < 1, by convexity of f , we have

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

Letting λ → 0, we have

f(y) ≥ f(x) +∇f(x) · (y − x).
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(ii) By Taylor’s theorem,

f(y) = f(x) +∇f(x) · (y − x) + (y − x)⊤
∫ 1

0

(1− t)∇2f(x+ t(y − x)) dt · (y − x)

Then the estimate 3.6 implies

(y − x)⊤
∫ 1

0

(1− t)∇2f(x+ t(y − x)) dt · (y − x) ≥ 0.

Hence given any ξ ∈ Rn, we set y = x+ sξ with s > 0. Then the above inequality becomes

ξ⊤
∫ 1

0

(1− t)∇2f(x+ stξ) dt · ξ ≥ 0.

Letting s → 0, we have

ξ⊤∇2f(x) · ξ ≥ 0.

This proves assertion (ii).

Indeed, for any convex function, we can find its second derivatives in the distributional sense.

Theorem 3.10 (Second derivatives of convex functions as measures). Let f : Rn → R to a convex function.

Then there exist signed Radon measures µij = µji such that for all functions ϕ ∈ C2
c (Rn),∫

Rn

fϕxixj dx =

∫
Rn

ϕdµij , i, j = 1, 2, · · · , n.

Proof. We define f ϵ = ηϵ · f ∈ C∞(Rn), where ηϵ is the standard mollifier. For any v ∈ Rn with |v| = 1,

n∑
i,j=1

∫
Rn

f ϵϕxixj
vivj dx =

∫
Rn

ϕ

n∑
i,j=1

f ϵ
xixj

vivj dx ≥ 0, ϕ ∈ C2
c (Rn) and ϕ ≥ 0.

Letting ϵ ↓ 0, we have

Tvϕ :=

n∑
i,j=1

∫
Rn

fϕxixjvivj dx.

Thus we define a positive linear functional Tv on C2
c (Rn). According to the Remark under the Theorem 2.13,

there exists a Radon measure µv on Rn such that

Tvϕ =

∫
Rn

ϕdµv, for all ϕ ∈ C2(Rn).

For each i = 1, 2, · · · , n, we define µii = µei . If i ̸= j, we set v =
ei+ej√

2
. Then

∫
Rn

fϕxixj
dx =

∫
Rn

f

(
ϕii + ϕjj

2
+ ϕij

)
dx− 1

2

∫
Rn

fϕxixi
dx− 1

2

∫
Rn

fϕxjxj
dx

=

n∑
k,l=1

∫
Rn

fϕklvkvl dx− 1

2

∫
Rn

fϕxixi
dx− 1

2

∫
Rn

fϕxjxj
dx

=

∫
Rn

ϕdµv − 1

2

∫
Rn

ϕdµii − 1

2

∫
Rn

ϕdµjj =

∫
Rn

ϕdµij ,

where we set µij = µv − 1
2µ

ii − 1
2µ

ij . Then we complete the proof.
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Remark. According to the Lebesgue decomposition theorem, every signed Radon measure µij has a unique

decomposition µij = µij
ac + µij

s , where µij
ac ≪ m and µij

s ⊥ m. We write

M = (µij)ni,j=1, Mac = (µij
ac)

n
i,j=1, Ms = (µij

s )
n
i,j=1.

By Radon-Nikodym theorem, we define f ij = dµij
ac/dm to be the density of the absolute continuous part of

µij with respect to the Lebesgue measure m. Then

D2f =


f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn


is a matrix valued function, and every element f ij is locally integrable. According to the Theorem 2.29, we

have the decomposition

M(E) =

∫
E

D2f dm+Ms(E).

In fact, a convex function has not only distributional second derivatives as Radon measures, but also classical

derivatives almost everywhere. The main result of this section is presented below.

Theorem 3.11 (Alexandrov Theorem). Let f : Rn → R to a convex function. Then f is almost everywhere

twice differentiable. More precisely, there exists ∇2f : Rn → Rn×n such that for almost every x ∈ Rn,

lim
y→x

1

|y − x|2

(
f(y)− f(x)−∇f(x) · (y − x)− 1

2
(y − x)⊤∇2f(x)(y − x)

)
= 0. (3.7)

To prove this theorem, we need some maximal inequalities concerning convex functions in a ball.

Lemma 3.12. If f : Rn → R is convex, there exists a constant Cn > 0 such that for each ball B(x, r) ⊂ Rn,

sup
y∈B(x, r2 )

|f(y)| ≤ Cn

m(B(x, r))

∫
B(x,r)

|f(y)| dy, (3.8)

and

ess sup
y∈B(x, r2 )

|∇f(y)| ≤ Cn

r ·m(B(x, r))

∫
B(x,r)

|f(y)| dy. (3.9)

Proof. Step I. We first prove (3.8) for f ∈ C2(Rn). Given B(x, r) ⊂ Rn, we fix z ∈ B(x, r
2 ). Then

f(y) ≥ f(z) +∇f(z) · (y − z).

We integrate this inequality with respect to y over B(z, r
2 ) to obtain

f(z) ≤ 1

m(B(z, r
2 ))

∫
B(z, r2 )

f(y) dy ≤ 2n

m(B(x, r))

∫
B(x,r)

|f(y)| dy. (3.10)

Next, we choose ϕ ∈ C∞
c (Rn) such that 0 ≤ ϕ ≤ 1 on Rn, ϕ = 1 on B(0, 1

2 ) and ϕ = 0 outside B(0, 1), and

write M1 = sup|y|≤1 |∇ϕ(y)|. Then the function ϕx,r(y) = ϕ(y−x
r ) satisfies{

0 ≤ ϕx,r ≤ 1, |∇ϕx,r| ≤ M1

r ,

ϕ = 1 on B(x, r
2 ), ϕ = 0 on Rn\B(x, r).
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We multiply by ϕx,r(y) the estimate f(z) ≥ f(y) +∇f(y) · (z − y) and integrate with respect to y on B(x, r):

f(z)

∫
B(x,r)

ϕx,r(y) dy ≥
∫
B(x,r)

f(y)ϕx,r(y) dy +

∫
B(x,r)

ϕx,r(y)∇f(y) · (z − y) dy

=

∫
B(x,r)

f(y) (ϕx,r(y)−∇ · ϕx,r(y)(z − y)) dy ≥ −M1

∫
B(x,r)

|f(y)| dy.

This inequality implies

f(z) ≥ − M1

m(B(x, r))

∫
B(x,r)

|f(y)| dy. (3.11)

Since z ∈ B(x, r
2 ) is arbitrary, we combine (3.10) and (3.11) to obtain the estimate (3.8).

Step II. More generally, for a convex function f : Rn → R, we define f ϵ = ηϵ ∗ f , where ϵ > 0 and

ηϵ(y) = ϵ−nη(ϵ−1y) is the standard mollifier. Clearly f ϵ ∈ C∞(Rn), and f ϵ is convex, since

f ϵ(λx+ (1− λ)y) ≤
∫
Rn

f(λx+ (1− λ)y − z)ηϵ(z) dz

≤ λ

∫
Rn

f(x− z)ηϵ(z) dz + (1− λ)

∫
Rn

f(y − z)ηϵ(z) dz ≤ λf ϵ(x) + (1− λ)f ϵ(y).

Applying the assertion (i) for C2 functions, we have

sup
z∈B(x, r2 )

|f ϵ(z)| ≤ Cn

m(B(x, r))

∫
B(x,r)

|f ϵ(y)| dy

for each ball B(x, r) ⊂ Rn. Since f is locally Lipschitz continuous, f ϵ → f uniformly on B(x, r) as ϵ → 0,

which gives the same estimate (3.8) for f .

Step III. For each z ∈ B(x, r
2 ) such that ∇f(z) exists, define

Sz =

{
y ∈ Rn :

r

4
≤ |y − z| ≤ r

2
, ∇f(z) · (y − z) ≥ 1

2
|∇f(z)| |y − z|

}
.

Then m(Sz) ≥ Arn, where A > 0 is a constant only depending on n. Using the estimate (3.6), we have

f(y) ≥ f(z) +
r

8
|∇f(z)|.

Integrating with respect to y over S(z) gives

|∇f(z)| ≤ 8

r
· 1

m(Sz)

∫
Sz

|f(y)− f(z)| dy ≤ 8

Arn+1

∫
B(x,r)

|f(y)− f(z)| dy.

This estimate and (3.8) complete the proof of assertion (i) for convex functions f .

Proof of Theorem 3.11. The proof has four steps.

Step I. According to the Lebesgue differentiation theorem [Theorem 3.3] and Rademacher’s theorem [Theorem

3.6], for almost every x ∈ Rn, the gradient ∇f(x) exists and satisfies

lim
r→0+

1

m(B(x, r))

∫
B(x,r)

|∇f(y)−∇f(x)| dy = 0, (3.12)

and

lim
r→0+

1

m(B(x, r))

∫
B(x,r)

∥D2f(y)−D2f(x)∥F dy = 0. (3.13)
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By singularity of µij
s and Lemma 2.31, for almost every x ∈ Rn, the measures (µij

s ) satisfy

lim
r→0+

|µij
s |(B(x, r))

m(B(x, r))
= 0, i, j = 1, 2, · · · , n. (3.14)

We fix such a point x, and we also assume x = 0 for simplicity, since our proof is adapted to the convex

function (τxf)(y) = f(y − x). We choose r > 0 and let f ϵ = ηϵ ∗ f . For y ∈ B(0, r), by Taylor’s theorem,

f ϵ(y) = f ϵ(0) +∇f ϵ(0) · y +
∫ 1

0

(1− t)y⊤∇2f ϵ(ty)y dt

= f ϵ(0) +∇f ϵ(0) · y + 1

2
y⊤D2f(0)y +

∫ 1

0

(1− t)y⊤[∇2f ϵ(ty)−D2f(0)] y dt.

Step II. For any function ϕ ∈ C2
c (B(0, r)) with |ϕ| ≤ 1, we multiply the equation above by ϕ and take the

average over B(0, r). Then

1

m(B(0, r))

∫
B(0,r)

ϕ(y)

(
f ϵ(y)− f ϵ(0)−∇f ϵ(0) · y − 1

2
y⊤D2f(0)y

)
dy

=
1

m(B(0, r))

∫
B(0,r)

ϕ(y)

(∫ 1

0

(1− t)y⊤[∇2f ϵ(ty)−D2f(0)] y dt

)
dy (3.15)

=

∫ 1

0

(1− t)

(
1

m(B(0, r))

∫
B(0,r)

ϕ(y)y⊤[∇2f ϵ(ty)−D2f(0)] y dy

)
dt (By Fubini’s theorem)

=

∫ 1

0

1− t

t2

(
1

m(B(0, tr))

∫
B(0,tr)

ϕ
(z
t

)
z⊤[∇2f ϵ(z)−D2f(0)] z dz

)
dt. (Change the vairable z = ty)

To estimate the inner integral, we use integration by parts:

gϵ(t) =

∫
B(0,tr)

ϕ
(z
t

)
z⊤∇2f ϵ(z)z dz =

∫
B(0,tr)

f ϵ(z)

n∑
i,j=1

∂2

∂zi∂zj

(
ϕ
(z
t

)
zizj

)
dz.

Letting ϵ → 0+, we obtain

lim
ϵ→0+

gϵ(t) =

∫
B(0,tr)

f(z)

n∑
i,j=1

∂2

∂zi∂zj

(
ϕ
(z
t

)
zizj

)
dz

=

n∑
i,j=1

∫
B(0,tr)

ϕ
(z
t

)
zizj dµ

ij

=

n∑
i,j=1

∫
B(0,tr)

f ijϕ
(z
t

)
zizj dz +

n∑
i,j=1

∫
B(0,tr)

ϕ
(z
t

)
zizj dµ

ij
s .

(3.16)

Furthermore, we have the following estimate:

gϵ(t)

t2
≤ r2

∫
B(0,tr)

∥∇2f(z)∥F dz = r2
∫
B(0,tr)

∥∥∥∥∫
Rn

∇2ηϵ(z − y)f(y) dy

∥∥∥∥
F

dz

= r2
∫
B(0,tr)

∥∥∥∥∥
∫
B(z,ϵ)

ηϵ(z − y) dM(y)

∥∥∥∥∥
F

dz

≤ r2
∫
B(0,tr)

n∑
i,j=1

∫
B(z,ϵ)

|ηϵ(z − y)| d|µij |(y) dz.
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By Fubini’s theorem, we have

gϵ(t)

t2
≤ r2

n∑
i,j=1

∫
B(0,tr+ϵ)

(∫
B(y,ϵ)∩B(0,tr)

|ηϵ(z − y)| dz

)
d|µij |(y)

≤ r2

ϵn

n∑
i,j=1

∫
B(0,tr+ϵ)

(∫
B(y,ϵ)∩B(0,tr)

dz

)
d|µij |(y).

Since (µij) are Radon measures, we have
∑n

i,j=1 |µij |(B(0, r + 1)) < ∞

gϵ(t)

t2
≤ r2 min{ϵn, tnrn}

ϵn

n∑
i,j=1

|µij |(B(0, tr + ϵ)) ≤ Cr2 min

{
1,

tnrn

ϵn

}
≤ Cr2,

where C is a constant only depending on f , r and n. Hence we applying dominated convergence theorem to

let ϵ → 0+ in (3.15), and plug-in (3.16):

1

m(B(0, r))

∫
B(0,r)

ϕ(y)

(
f(y)− f(0)−∇f(0) · y − 1

2
y⊤D2f(0)y

)
dy

=

∫ 1

0

1− t

t2

(
1

m(B(0, tr))

∫
B(0,tr)

ϕ
(z
t

)
z⊤[D2f(z)−D2f(0)] z dz

)
dt

+

n∑
i,j=1

∫ 1

0

1− t

t2

(
1

m(B(0, tr))

∫
B(0,tr)

ϕ
(z
t

)
zizj dµ

ij
s

)
dt

≤ Cr2
∫ 1

0

(
1

m(B(0, tr))

∫
B(0,tr)

∥D2f(z)−D2f(0)∥F dz

)
dt+ Cr2 max

1≤i,j≤n

∫ 1

0

|Ms|(B(0, tr))

(tr)n
dt,

where C is a constant depending on f, r and n only. According to the properties (3.13) and (3.14), and taking

the supremum over all ϕ ∈ C2
c (B(0, r)) with |ϕ| ≤ 1, we have

1

m(B(0, r))

∫
B(0,r)

|h(y)|dy = o(r2), (3.17)

where

h(y) = f(y)− f(0)−∇f(0) · y − 1

2
y⊤D2f(0)y. (3.18)

Step III. We claim that there exists a constant C depending on f and n only, such that

ess sup
x∈B(0, r2 )

|∇h(x)| ≤ C

r ·m(B(0, r))

∫
B(0,r)

|h(y)| dy + Cr (3.19)

for all r > 0. This estimate follows by applying (3.9) on the convex function g(y) = h(y) + 1
2∥D

2f(0)∥2|y|2.

Step IV. We fix 0 < ϵ, η < 1. By (3.17), for some r0 > 0 depending on η and ϵ, we have

m({z ∈ B(0, r) : |h(z)| ≥ ϵr2}) ≤ 1

ϵr2

∫
B(0,r)

|h(z)| dz ≤ η ·m(B(0, r))

for all 0 < r < r0. Thus for each point y ∈ B(0, r
2 ), there exists z ∈ B(0, r) with |y − z| ≤ η1/nr such that

|h(z)| < ϵr2. If not, a contradiction arises from

m({z ∈ B(0, r) : |h(z)| ≥ ϵr2}) ≥ m(B(y, η1/nr)) = η ·m(B(0, r)).
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By the estimate (3.19), for all 0 < r < r0 and all y ∈ B(0, r
2 ),

|h(y)|
r2

≤ |h(z)|+ |h(y)− h(z)|
r2

≤ ϵ+
η1/n

r
ess sup
B(0,r)

|∇h|

≤ ϵ+ Cη1/n

(
1

r2 ·m(B(0, r))

∫
B(0,r)

|h(ξ)| dξ + 1

)
≤ ϵ+ Cη1/n (ηϵ+ 1)

Since 0 < ϵ, η < 1 are arbitrary, we have

lim
r→0+

1

r2
sup

y∈B(0, r2 )

|h(y)| = 0.

Recalling the definition (3.18) of h, we have

lim
r→0+

1

r2
sup

y∈B(0, r2 )

∣∣∣∣f(y)− f(0)−∇f(0) · y − 1

2
y⊤D2f(0)y

∣∣∣∣ = 0,

which implies (3.7) for x = 0. The same estimate holds for every x ∈ Rn satisfying (3.12), (3.13) and (3.14),

which concludes the proof.
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4 Ergodic Theory

Setting. Let (X,F , µ) be a σ-finite measure space. We consider a mapping T : X → X such that

(i) T is measurable, i.e. T−1(E) ∈ F for each E ∈ F ;

(ii) T is measure-preserving, i.e. µ(T−1(E)) = µ(E) for each E ∈ F .

(iii) We call the quadruple (X,F , µ, T ) a measure-preserving system.

If in addition for such a transformation T we have that T is a bijection and T−1 is also a measure-preserving

transformation, then T is called a measure-preserving isomorphism.

If f : X → C is a measurable function and T is a measure-preserving transformation, the composition f ◦T
is measurable. Furthermore, if f is integrable, so is f ◦ T , and∫

X

f dµ =

∫
X

f ◦ T dµ.

The setting described above is of interest, in part, because it abstracts the idea of a dynamical system, one

whose totality of states is represented by the space X, with each point x ∈ X giving a particular state of the

system. The mapping T : X → X describes the transformation of the system after a unit of time has elapsed.

The iterates, Tn = T ◦T ◦ · · · ◦T (n times) describe the evolution of the system after n units of time. In many

scenarios, we are interested in the average behavior of the system as the time n → ∞. To be specific, given a

measurable function f on (X,F , µ), we aim to study the ergodic averages

(Anf)(x) =
1

n

n−1∑
k=0

f(T kx)

and their limit as n → ∞.

4.1 The Mean Ergodic Theorem

We first discuss a general ergodic result for Banach spaces.

Theorem 4.1 (Mean ergodic theorem). Let T : X → X be a bounded linear operator on a Banach space X,

and assume that supn∈N ∥Tn∥ < ∞. For n ∈ N, define the ergodic average

An =
1

n

n−1∑
k=0

T k.

(i) If x ∈ X, the sequence (Anx)
∞
n=1 converges if and only if it has a weakly convergent subsequence;

(ii) The set

L = {x ∈ X : the sequence (Anx)
∞
n=1 converges}

is a closed T -invariant subspace of X, and L = ker(Id−T )⊕R(Id−T ).

(iii) If X reflexive, then L = X.

(iv) Define the operator A : L → L by A(x0 + x1) = x0 for x0 ∈ ker(Id−T ) and x1 ∈ R(Id−T ). Then

lim
n→∞

Anx = Ax

for all x ∈ L, and A satisfies

AT = TA = A2 = A, and ∥A∥ ≤ sup
n∈N

∥Tn∥.

The proof of this theorem requires some lemmata.
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Lemma 4.2. Assume c = supn∈N ∥Tn∥ < ∞.

(i) For each n ∈ N, ∥An∥ ≤ c and ∥An(Id−T )∥ ≤ 1+c
n .

(ii) If x ∈ ker(Id−T ), then for each n ∈ N, we have Anx = x and ∥x∥ ≤ c∥x+ (Id−T )ξ∥ for all ξ ∈ X.

(iii) If x ∈ ker(Id−T ) and y ∈ R(Id−T ), then ∥x∥ ≤ c∥x+ y∥.
(iv) ker(Id−T ) ∩R(Id−T ) = 0, and L := ker(Id−T )⊕R(Id−T ) is a closed subspace of X.

(v) T (L) ⊂ L.

(vi) If y ∈ R(Id−T ), then limn→∞ Any = 0.

Proof. (i) Since An = 1
n (Id+T + T 2 + · · ·+ Tn), we have

∥An∥ ≤ 1

n

n−1∑
k=0

∥T k∥ ≤ sup
n∈N

∥Tn∥ = c, and ∥An(Id−T )∥ =
1

n
∥Id−Tn∥ ≤ 1 + ∥Tn∥

n
≤ 1 + c

n
.

(ii) If x ∈ ker(Id−T ), we have Tx = x and by induction Tnx = x for all n ∈ N and hence Anx = x. Moreover,

by (i) we have An(Id−T )ξ → 0 as n → ∞ for all ξ ∈ X, and

∥x∥ = lim
n→∞

∥x+An(Id−T )ξ∥ = lim
n→∞

∥An(x+ (Id−T )ξ)∥ ≤ c∥x+ (Id−T )ξ∥.

(iii) If y ∈ R(Id−T ), there exists a sequence ξn ∈ X such that (Id−T )ξn → y. We take ξ = ξn in (ii) and

take the limit n → ∞ to obtain ∥x∥ ≤ c∥x+ y∥.

(iv) We let x ∈ ker(Id−T ) ∩R(Id−T ). Then −x ∈ R(Id−T ), and by (iii) we have ∥x∥ ≤ c∥x + (−x)∥ = 0.

Next we show that ker(Id−T ) ⊕ R(Id−T ) is closed. Let xn ∈ ker(Id−T ) and yn ∈ R(Id−T ) be sequences

whose sum zn = yn + zn converges to some element z ∈ X. Then (zn) is a Cauchy sequence in X, and by (iii)

the sequence (xn) is also Cauchy, and hence yn = zn − xn is also Cauchy. Since ker(Id−T ) and R(Id−T ) are

closed subspaces of X, the Cauchy sequences (xn) and (yn) converge to x ∈ ker(Id−T ) and y ∈ R(Id−T ),

respectively, and z = x+ y ∈ ker(Id−T )⊕R(Id−T ).

(v) We take x ∈ ker(Id−T ) and y ∈ R(Id−T ), and take a sequence ξn ∈ X such that (Id−T )ξn → y. Then

T (x+ y) = x+ Ty = x+ lim
n→∞

T (Id−T )ξn = x+ lim
n→∞

(Id−T )(Tξn) ∈ ker(Id−T )⊕R(Id−T ).

(vi) For any ϵ > 0, we take ξ ∈ X such that c∥y − (Id−T )ξ∥ < ϵ
3 . By (i), we have ∥An(Id−T )ξ∥ ≤ 1+c

n ∥ξ∥,
which tends to 0 as n → ∞. Then there exists N such that ∥(An −Am)(Id−T )ξ∥ ≤ ϵ

3 for all n,m ≥ N , and

∥Any −Amy∥ ≤ ∥Any −An(Id−T )ξ∥+ ∥(An −Am)(Id−T )ξ∥+ ∥Am(Id−T )ξ −Amy∥
≤ ∥An∥ ∥y − (Id−T )ξ∥+ ∥(An −Am)(Id−T )ξ∥+ ∥Am∥ ∥(Id−T )ξ − y∥

≤ 2c∥y − (Id−T )ξ∥+ ϵ

3
≤ ϵ.

Hence (Any) is a Cauchy sequence, and

lim
n→∞

∥Any∥ = lim
n→∞

∥An(y − (Id−T )ξ)∥+ lim
n→∞

∥An(Id−T )ξ∥ <
ϵ

3
,

which implies Any → 0 as n → ∞.

Lemma 4.3. Let x, x0 ∈ X. The following are equivalent:

(a) x0 ∈ ker(Id−T ) and x− x0 ∈ R(Id−T ).

(b) limn→∞ ∥Anx− x0∥ = 0.

(c) There exists a subsequence nk such that for all f ∈ X∗,

lim
k→∞

f(Ank
x) = f(x0).
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Proof. The Lemma 4.2 (vi) implies (a) ⇒ (b), and obviously (a) ⇒ (c). Then it remains to prove (c) ⇒ (a).

If (c) holds, we take f ∈ X∗. Then T ∗f = f ◦ T : X → C is a bounded linear functional, and

f(x0 − Tx0) = (f − T ∗f)(x0) = lim
k→∞

(f − T ∗f)(Ank
x) = lim

k→∞
f((Id−T )Ank

x) = 0,

where the last equality follows from Lemma 4.2 (i), and we have Tx0 = x0 by Hahn-Banach theorem.

Now we assume that x − x0 ∈ R(Id−T ). By Hahn-Banach theorem, there exists f ∈ X∗ such that

f(x − x0) = 1 and f(ξ − Tξ) = 0 for all ξ ∈ X. This implies that f(T k+1ξ − T kξ) = 0 for all ξ ∈ X and all

k ∈ N0. By induction, we have f(T kξ) = f(ξ). Hence

f(Anx) =
1

n

n−1∑
k=0

f(T kx0) = f(x0)

for all n ∈ N0. According to (c), we have f(x) = f(x0), and f(x−x0) = 0, which is a contradiction. Therefore

x− x0 ∈ R(Id−T ), and we complete the proof.

Now we prove the main theorem.

Proof of Theorem 4.1. By Lemma 4.3, the sequence (Anx)
∞
n=1 converges in norm if and only if it has a weakly

convergent subsequence, if and only if x ∈ L = ker(Id−T )⊕R(Id−T ). By Lemma 4.2 (iv) and (v), the subspace

L is closed and T -invariant. Furthermore, since ∥An∥ ≤ c for all n ∈ N, for every x ∈ X, the sequence (Anx)

is bounded. If X is reflexive, by Banach-Alaoglu theorem, every (Anx) has a weakly convergent subsequence

(Ank
x), which implies x ∈ L, and hence L = X.

Finally we consider the operator A defined in (iv). Then A2 = A by definition. By Lemma 4.2 (iii), we have

∥A∥ ≤ c, and by Lemma 4.2 (vi), limn→∞ A(x0 + x1) = Ax0. Since A commutes with T |L, and A vanishes on

the range of operator Id−T , we have TA = AT = A.

Since Hilbert spaces are reflexive, we have the following mean ergodic theorem for Hilbert spaces.

Corollary 4.4 (Mean ergodic theorem). Let T be a bounded linear operator on the Hilbert space H such that

supn∈N ∥Tn∥ < ∞, and let PT be the projection operator onto the subspace

ker(Id−T ) = {x ∈ H : Tx = x}.

Then for every x ∈ H, the ergodic average

Anx :=
1

n

n−1∑
k=0

T kx → PTx in norm as n → ∞.

In particular, we take the Hilbert space to be L2(X,F , µ). If T is a measure-preserving operator on X, we

regard T as a linear operator on L2(X,F , µ) by writing Tf = f ◦ T . Then T is an isometry on L2(X,F , µ),

i.e. ∥Tf∥L2 = ∥f∥L2 for all f ∈ L2(X,F , µ), and ∥T∥ = 1. Consequently, we have ∥Tn∥ ≤ 1 for all n ∈ N,
and we can apply the mean ergodic theorem on this system.

Corollary 4.5 (Mean ergodic theorem). Let (X,F , µ, T ) be a measure-preserving system, and let PT be the

projection operator onto the subspace

G =
{
g ∈ L2(X,F , µ) : g ◦ T = g

}
Then for every f ∈ L2(X,F , µ), the ergodic average

Anf :=
1

n

n−1∑
k=0

f ◦ T k → PT f in L2(X,F , µ) as n → ∞.
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In finite measure spaces, the ergodic average Anf also converges in L1. This conclusion follows from the

convergence result in L2 and the density of L2 in L1.

Corollary 4.6. Let (X,F , µ, T ) be a measure-preserving system such that µ is finite. For each f ∈ L1(X,F , µ),

the ergodic average Anf =
∑n−1

k=0 f ◦ T k converges in L1 to a T -invariant function f̄ ∈ L1(X,F , µ).

Proof. Since µ is finite, we know by Cauchy-Schwartz inequality that L2(X,F , µ) ⊂ L1(X,F , µ). For any

g ∈ L2(X,F , µ), by Cauchy’s inequality and Corollary 4.5,

∥Ang − PT g∥L1 ≤
√

∥Ang − PT g∥L2 ∥1∥L2 =
√

µ(X)∥Ang − PT g∥L2 → 0.

Hence (Ang) is a Cauchy sequence in L1. If f ∈ L1(X,F , µ) and ϵ > 0, we choose g ∈ L2(X,F , µ) such that

∥f − g∥L1 < ϵ/3. Since ∥T (f − g)∥L1 = ∥f − g∥L1 , we have ∥An(f − g)∥ ≤ ∥f − g∥L1 < ϵ/3 for all n ∈ N.
Furthermore, there exists N such that ∥Ang −Amg∥L1 < ϵ/3 for all n,m > N , and

∥Anf −Amf∥L1 ≤ ∥Anf −Ang∥L1 + ∥Ang −Amg∥L1 + ∥Amg −Amf∥L1 < ϵ.

Hence (Anf) is also a Cauchy sequence in L1, which converges to a function f̄ ∈ L1(X,F , µ) by L1-

completeness. To show that f̄ is T -invariant, note that

∥Anf ◦ T −Anf∥L1 =

∥∥∥∥ 1n (f ◦ Tn − f)

∥∥∥∥
L1

≤ 2

n
∥f∥L1 ,

which converges to 0 as n → ∞. Hence f̄ ◦ T = f̄ a.e., and f̄ is T -invariant.

4.2 The Maximal Ergodic Theorem

We now turn to the question of almost everywhere convergence of the ergodic averages. As in the case of the

averages that occur in the Lebesgue differentiation theorem, the key to dealing with such pointwise limits lies

in estimate for the corresponding maximal function:

f∗ = sup
1≤n<∞

Anf = sup
1≤n<∞

1

n

n−1∑
k=0

f ◦ T k.

We first state our main result below.

Theorem 4.7 (Maximal ergodic theorem). Let (X,F , µ, T ) be a measure-preserving system, and fix α ∈ R.
For each f ∈ L1(X,F , µ), define

Ef
α =

{
x ∈ X : sup

1≤n<∞

1

n

n−1∑
k=0

f(T kx) > α

}
.

Then

αµ(Ef
α) ≤

∫
Eα

f dµ ≤ ∥f∥L1 .

Remark. If α > 0, the result can be written as

µ(Ef
α) ≤

1

α

∫
Eα

f dµ ≤ 1

α
∥f∥L1 . (4.1)

This result is a corollary of the following maximal inequality.
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Lemma 4.8 (Maximal inequality). Let U : L1(X,F , µ) → L1(X,F , µ) be a positive linear operator such that

∥U∥ ≤ 1. For g ∈ L1(X,F , µ), define the functions

gn = g + Ug + U2g + · · ·Un−1g

for n ∈ N, with g0 = 0. Let GN (x) = max0≤n≤N gn(x) for all x ∈ X. Then for every N ≥ 1,∫
{GN>0}

g dµ ≥ 0.

Proof. Since U is a positive linear operator, for 0 ≤ n ≤ N , we have UGN + g ≥ Ugn + g = gn+1. Hence

UGN + g ≥ max
1≤n≤N+1

gn ≥ max
1≤n≤N

gn.

Since g0 = 0, on the set E = {GN > 0}, we have

UGN + g ≥ max
1≤n≤N

gn = max
0≤n≤N

gn = GN .

Therefore g ≥ GN − UGN on E. Since GN ≥ 0, we have UGN ≥ 0, and∫
E

g dµ ≥
∫
E

GN dµ−
∫
E

UGN dµ =

∫
X

GN dµ−
∫
E

UGN dµ

≥
∫
X

GN dµ−
∫
X

UGN dµ = ∥GN∥L1 − ∥UGN∥L1 ≥ 0,

where the last inequality follows from ∥U∥ ≤ 1. Then we complete the proof.

Now we prove the main theorem.

Proof of Theorem 4.7. Define g = f − α and Ug = g ◦ T in Proposition 4.8. Then

Ef
α =

{
x ∈ X : sup

n∈N

1

n

n−1∑
k=0

f(T kx) > α

}
=

∞⋃
N=0

{x ∈ X : GN (x) > 0} .

By Proposition 4.8 and Lebesgue dominated convergence theorem,∫
Ef

α

f dµ− αµ(Ef
α) =

∫
Ef

α

g dµ ≥ 0.

Thus we complete the proof.

Remark. When α > 0, we apply the same result on the negation −f ∈ L1(X,F , µ), we have

µ

(
inf

1≤n<∞

1

n

n−1∑
k=0

f ◦ T k < −α

)
≤ 1

α
∥f∥L1 .

Combining this with (4.1), we get the two-sided bound:

µ

(
sup

1≤n<∞
|Anf | > α

)
= µ

(
sup

1≤n<∞

∣∣∣∣∣ 1n
n−1∑
k=0

f ◦ T k

∣∣∣∣∣ > α

)
≤ 2

α
∥f∥L1 .

We later use this conclusion in the proof of pointwise convergence result.
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4.3 The Birkhoff Ergodic Theorem

In this section, we focus on the pointwise convergence theorem of ergodic averages. Our result is established

on finite measure spaces, and it is convenient to assume that the measure-preserving system (X,F , µ, T ) is

on a probability space. Before we proceed, we first introduce the definition of ergodicity.

Definition 4.9 (Ergodic transformation). Let T : X → X be a measure-preserving transformation on a

measure space (X,F , µ). Define the invariant σ-algebra of T by

IT =
{
E ∈ F : T−1(E) = E

}
.

The mapping T is said to be µ-ergodic if IT is trivial, i.e. for each E ∈ IT , either µ(E) = 0 or µ(X\E) = 0.

Following are some alternate characterizations of ergodicity.

Proposition 4.10. Let (X,F , µ, T ) be a measure-preserving system. The following are equivalent:

(i) T is µ-ergodic;

(ii) For any E ∈ F , if T−1(E) and E only differ by a µ-null set, i.e. µ(T−1(E)\E) + µ(E\T−1(E)) = 0,

then µ(E) = 0 or µ(X\E) = 0;

(iii) For any measurable function f : X → C, if f ◦ T = f a.e., then f is constant a.e..

Proof. (i) ⇒ (ii). Let E be a set such that µ(T−1(E)\E) + µ(E\T−1(E)) = 0. Then

T−n(E)\E ⊂
n−1⋃
k=0

T−k−1(E)\T−k(E) =

n−1⋃
k=0

T−k(T−1(E)\E),

E\T−n(E) ⊂
n−1⋃
k=0

T−k(E)\T−k−1(E) =

n−1⋃
k=0

T−k(E\T−1(E)).

Since T is measure-preserving, we have µ(T−n(E)\E) + µ(E\T−n(E)) = 0. We define

F =

∞⋂
N=1

∞⋃
n=N

T−n(E).

Then T−1(F ) = F , and we have either µ(F ) = 0 or µ(X\F ) = 0 by ergodicity of µ. Moreover,

F\E =

∞⋂
N=1

( ∞⋃
n=N

T−n(E)

)
\E =

∞⋂
N=1

∞⋃
n=N

T−n(E)\E,

E\F =

∞⋃
N=1

E\

( ∞⋃
n=N

T−n(E)

)
=

∞⋃
N=1

∞⋂
n=N

E\T−n(E).

Hence µ(E\F ) = µ(F\E) = 0, and we have either µ(E) = 0 or µ(X\E) = 0.

(ii) ⇒ (iii). For f given in (iii), by considering Ref and Imf separately, we may assume f : X → R and

f ◦ T = f a.e.. For any t ∈ R, the sets Et = {f ≤ t} and T−1(Et) = {f ◦ T ≤ t} only differ by a µ-null set.

By (ii), we have µ({f ≤ t}) = 0 or µ({f > t}) = 0. We take

c = sup{t ∈ R : µ({f ≤ t}) = 0} = inf{t ∈ R : µ({f > t}) = 0}.

Since {f > c} =
⋃

n∈N{f > c+n−1} and {f < c} =
⋃

n∈N{f < c+n−1}, we have µ({f > c}) = µ({f < c}) = 0.

Hence f = c a.e..

(iii) ⇒ (i). If E is a T -invariant set, i.e. E = T−1(E), we take f = χE in (iii). Then χE ◦ T = χT−1(E), which

equals χE a.e.. By (iii), χE = c a.e., where c ∈ {0, 1}. Hence either µ(E) = 0 or µ(X\E) = 0.
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Proposition 4.11. A measurable function f on (X,F ) is T -invatiant if and only if f is IT -measurable.

Proof. If f is T -invariant, then for all α ∈ R,

{x ∈ X : f(x) > α} = {x ∈ X : f(Tx) > α} = T−1{x ∈ X : f(x) > α} ∈ IT .

If f is IT -measurable, then for each x ∈ X,

x ∈ {y ∈ X : f(y) = f(x)} = T−1{y ∈ X : f(y) = f(x)} = {y ∈ X : f(Ty) = f(x)}.

Hence f(x) = f(Tx), and we complete the proof.

Now we are ready to introduce the main result.

Theorem 4.12 (Birkhoff’s theorem). Let (X,F , µ, T ) be a measure-preserving system on a probability space.

(i) For each f ∈ L1(X,F , µ), the ergodic average

Anf =
1

n

n−1∑
k=0

f ◦ T k

converges almost everywhere to a T -invariant function f̄ ∈ L1(X,F , µ), where f̄ = E[f |IT ].

(ii) In addition, if T is µ-ergodic, f̄ =
∫
X
f dµ.

Proof. (i) We may assume f̄ = 0, otherwise we replace f by f − f̄ . Consider g = lim supn→∞ Anf . Note that

n+ 1

n
(An+1f)(x) = (Anf)(Tx) +

f(x)

n
.

Letting n → ∞ and take the supremum, we see that g(Tx) = g(x), and g is IT -measureable. Then we take

D = {g > ϵ} ∈ IT , define f∗ = (f − ϵ)1D, and choose Fn = {sup1≤k≤n Akf
∗ > 0}. Then

F =

∞⋃
n=1

Fn =

{
sup
n≥1

Anf
∗ > 0

}
.

Since D is T -invariant, f∗ ◦ T = (f ◦ T − ϵ)1D, and Anf
∗ = (Anf − ϵ)1D. Hence

F = D ∩
{
sup
k≥1

Akf > ϵ

}
= D.

Since f 7→ f ◦ T is norm-preserving in L1, we apply maximal ergodic lemma [Lemma 4.8] and the dominated

convergence theorem on 1Fn
↑ 1F = 1D to obtain

0 ≤
∫
Fn

f∗ dµ →
∫
D

f∗ dµ.

To proceed, note that

0 ≤
∫
D

f∗ dµ ≤
∫
D

(f − ϵ) dµ =

∫
D

(f − ϵ) dµ = −ϵµ(D).

Hence µ(D) = 0. Since ϵ > 0 is arbitrary, we know that g ≤ 0 a.s., and lim supn→∞ Anf ≤ 0. We apply the

same result on −f to conclude lim infn→∞ Anf ≥ 0. Therefore limn→∞ Anf = 0 a.s..

(ii) If T is µ-ergodic, then IT is trivial, and f̄ = E[f |IT ] = Ef =
∫
X
f dµ.

Remark. For a measure-preserving system (X,F , µ, T ) on a probability space and a function f ∈ L1(X,F , µ),

we define the time average at x ∈ X to be (Anf)(x) =
1
n

∑n−1
k=0 f(T

kx) and the space average
∫
X
f dµ.
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A brief interpretation for Birkhoff theorem is that, if T is µ-ergodic, then for almost every x ∈ X, the time

average converges to the space average as the time n goes to infinity.

We can obtain a stronger mean ergodic theorem as a consequence of Birkhoff’s theorem.

Theorem 4.13 (Mean ergodic theorem). Let (X,F , µ, T ) be a measure-preserving system on a probability

space, and let 1 ≤ p < ∞. If f ∈ Lp(X,F , µ), the ergodic average Anf = 1
n

∑n−1
k=0 f ◦ T k converges in Lp to a

T -invariant function f̄ ∈ Lp(X,F , µ), i.e.

lim
n→∞

∥∥∥∥∥ 1n
n−1∑
k=0

f ◦ T k − f̄

∥∥∥∥∥
Lp

= 0.

Proof. Let gM = fχ|f |≤M and hM = f − gM = fχ|f |>M . Then

1

n

n−1∑
k=0

gM ◦ T k → E[gM |IT ] a.e.,

and the convergence also holds in Lp by dominated convergence theorem. Meanwhile,∥∥∥∥∥ 1n
n−1∑
k=0

hM ◦ T k

∥∥∥∥∥
Lp

≤ 1

n

n−1∑
k=0

∥∥hM ◦ T k
∥∥
Lp = ∥hM∥Lp .

Also, ∫
X

|E[hM |IT ]|p dµ ≤
∫
X

E[|hM |p|IT ] dµ = ∥hM∥pLp .

By triangle inequality,

lim sup
n→∞

∥∥∥∥∥ 1n
n−1∑
k=0

hM ◦ T k − E[hM |IT ]

∥∥∥∥∥
Lp

≤ 2∥hM∥Lp .

As M → ∞, we have ∥hM∥pLp → 0 by dominated convergence theorem, which completes the proof.

Remark. To summarize, if 1 ≤ p < ∞ and f ∈ Lp(X,F , µ), the ergodic average sequence (Anf) admits a

limit f̄ ∈ Lp(X,F , µ) such that

lim
n→∞

∥Anf − f̄∥Lp = 0, and lim
n→∞

(Anf)(x) = f̄(x) for a.e. x ∈ X.

In a nutshell, Anf → f̄ both a.e. and in Lp.

4.4 The Krein-Milman Theorem

In this section we introduce a general result about compact convex subsets of a locally convex Hausdorff

topological vector space, which is used in the proof of unique ergodicity.

Definition 4.14 (Extreme point and face). Let X be a vector space and K ⊂ X a nonempty convex subset.

(i) A point x of K is called an extreme point of K if there do not exist y, z ∈ K and 0 < λ < 1 such that

λy + (1− λ)z = x. We denote by ext(K) the set of extreme points of K.

(ii) A nonempty convex subset F ⊂ K is called a face of K if for all x, y ∈ K and 0 < λ < 1 such that

λx+ (1− λ)y ∈ F , we have x, y ∈ F .

Remark. A point x ∈ K is an extreme point of K if and only if the singleton {x} is a face of K.
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Lemma 4.15. Let X be a vector space, and let A,B,C be convex subsets of K. If B is a face of A and C is

a face of B, then C is a face of A.

Proof. Let x, y ∈ A and 0 < λ < 1. If λx+ (1− λ)y ∈ C, since C ⊂ B and B is a face of A, we have x, y ∈ B.

Again, since C is a face of B, we have x, y ∈ C. Therefore C is a face of A.

Lemma 4.16. Let X be a locally convex Hausdorff topological space. If K ∈ K is a compact convex set and

ℓ : X → R is a continuous linear functional, the set

Fℓ :=

{
x ∈ K : ℓ(x) = sup

y∈K
ℓ(y)

}
is a nonempty compact convex subset of K, and Fℓ is a face of K.

Proof. We abbreviate c = supy∈K ℓ(y).

• Since K is compact and ℓ is continuous, there exists x ∈ K such that ℓ(x) = c, and F is nonempty.

• Since X is Hausdorff and ℓ is continuous, both K and ℓ−1({c}) is closed. Hence Fℓ is closed and compact.

• Since K is convex and f is linear, ℓ−1({c}) is convex, and so is F .

To summarize, F is nonempty, compact and convex. To prove that F is a face of K, we fix x, y ∈ K and

0 < λ < 1 such that λx+ (1− λ)y ∈ F . Then λℓ(x) + (1− λ)ℓ(y) = ℓ(λx+ (1− λ)y) = c. Since both ℓ(x) and

ℓ(y) are no greater than c, we have ℓ(x) = ℓ(y) = c, and x, y ∈ F . Hence Fℓ is a face of K.

Lemma 4.17 (Existence). Let X be a locally convex Hausdorff topological vector space, and let K ⊂ X be a

nonempty compact convex set. Then the set of extreme points of K is nonempty.

Proof. The proof is divided to three steps.

Step I. Let K be the set of all nonempty compact convex subset of X, and define the relation ⪯ on K by

F ⪯ K if and only if F is a face of K. By Lemma 4.15, (K,⪯) is a partially ordered set. Since X is Hausdorff,

every nonempty chain C ⊂ K has a infimum C0 =
⋂

C∈C C ∈ K .

Step II. We claim that every minimal element of K is a singleton.

If K ⊂ K is not a singleton, we take x, y ∈ K such that x ̸= y and take a convex open neighborhood

U of x that does not contain y. Using the hyperplane separation theorem, there exists a continuous linear

functional ℓ : X → R such that ℓ(y) < ℓ(z) for all z ∈ U . By Lemma 4.16, the set Fℓ ∈ K is a face of K and

y ∈ K\F . Hence K is not a minimal element of K .

Step IV. By Step I and Zorn’s lemma, there exists a minimal element E ⊂ K . By Step III, the minimal

element E is a singleton {x}. Then x ∈ ext(K).

Now we introduce the Krein-Milman theorem.

Theorem 4.18 (Krein-Milman theorem). Let X be a locally convex Hausdorff topological vector space, and

let K ⊂ X be a nonempty compact convex set. Then K is the closed convex hull of its extreme points, i.e.

K = conv(ext(K)).

Proof. Following the proof of Lemma 4.17, we have K ∈ K . To prove the desired result, it suffices to

show K ⊂ conv(ext(K)). We argue by contradiction. If x ∈ K\conv(ext(K)), there exists an open convex

neighborhood U ⊂ X of x such that U ∩ conv(ext(K)) = ∅. Since ext(K) is nonempty by Lemma 4.17,

there exists a continuous linear functional ℓ such that ℓ(x) > supy∈conv(ext(K)) ℓ(y). By Lemma 4.16, the set

Fℓ = {x ∈ K : f(x) = sup f(K)} is a face of K and Fℓ ∩ ext(K) = ∅. On the other hand, by Lemma 4.17, the

compact convex set Fℓ has an extreme point x, which is also an extreme point of K by Lemma 4.15. This

contradicts the fact that Fℓ ∩ ext(K) = ∅. Thus we complete the proof.
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4.5 Ergodic Measures and Unique Ergodicity

Invariant measures. For convenience, we focus on a compact metrizable space X equipped with the Borel

σ-algebra B. Then X is a second countable space, and the space C(X) of all continuous functions f : X → C
with the supremum norm ∥·∥∞ is a separable Banach space. Furthermore, by Corollary 2.27, the dual space of

C(X) is isomorphic to the space M(X) of complex Borel measures on X. Let T : X → X is a homeomorphism

on X. A Borel probability measure µ on X is said to be T -invariant if∫
X

f ◦ T dµ =

∫
X

f dµ, for all f ∈ C(X).

We denote by MT (X) the set of all T -invariant Borel probability measures on X.

Lemma 4.19. Let X be a compact metrizable space, and T : X → X a homeomorphism.

(i) MT (X) is a weak* compact convex subset of the unit sphere in M(X).

(ii) MT (X) is nonempty.

(iii) If µ ∈ MT (X), then (X,B, µ, T ) is a measure-preserving system, i.e. µ(E) = µ(T−1(E)) for all E ∈ B.

Proof. (i) By definition MT (X) is a convex subset of the unit sphere in M(X). By Banach-Alaoglu theorem,

the closed unit ball is compact in the weak* topology on M(X). Then it suffices to show that MT (X) is

weak* closed. We note that a sequence of complex Borel measures µn → µ in the weak* topology on M(X)

if and only if
∫
X
f dµn →

∫
X
f dµ for all f ∈ C(X). If µn ∈ MT (X), by setting f = 1 we know that

µ(X) = limn→∞ µn(X) = 1. Furthermore,∫
X

f ◦ T dµ = lim
n→∞

f ◦ T dµn = lim
n→∞

f dµn =

∫
X

f dµ, ∀f ∈ C(X).

Therefore µ ∈ MT (X), and MT (X) is closed and hence compact in the weak* topology on M(X).

(ii) Fix x0 ∈ X. For each n ∈ N, define the Borel probability measure µn : B → [0, 1] by

∫
X

f dµ =
1

n

n−1∑
k=0

f(T kx0), f ∈ C(X).

By Banach-Alaoglu theorem, the sequence has a weak* convergent subsequence (µnj
). We denote by µ its

weak* limit in M(X). Then µ(X) =
∫
X
1 dµ = limn→∞

∫
X
1 dµn = 1, and for all f ∈ C(X),

∫
X

f ◦ T dµ = lim
j→∞

1

nj

nj∑
k=1

f(T kx0) = lim
j→∞

1

nj

nj−1∑
k=0

f(T kx0) =

∫
X

f dµ.

Therefore µ ∈ MT (X), and MT (X) is nonempty.

(iii) We defined by ν(E) = (T∗µ)(E) = µ(T−1(E)) the pushforward of µ, which is also a measure on B by

continuity of T . By the change-of-variable formula, it suffices to show that ν = µ on B.

For a closed subset F ⊂ X, define fn(x) = max{1−nd(x, F ), 0}. Then fn ∈ C(X) and fn ↓ χF as n → ∞.

By monotone convergence theorem,

ν(F ) = lim
n→∞

∫
X

fn dν = lim
n→∞

∫
X

fn ◦ T dµ = lim
n→∞

∫
X

fn dµ = µ(F ).

Thus ν(F ) = µ(F ) for all closed subset F ⊂ X, and µ(U) = ν(U) for all open subset U ⊂ X. By outer-

regularity of µ, we have µ = ν everywhere on B.

Remark. Since T : X → X is an homeomorphism, both T and T−1 are measurable. For all E ∈ B, we have

µ(E) = µ(T−1(T (E))) = µ(T (E)). Hence the inverse T−1 is also a measure-preserving transformation.
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Ergodic measures. A T -invariant probability measure µ is said to be T -ergodic if T is µ-ergodic, i.e.

T−1(E) = E ⇒ µ(E) ∈ {0, 1}.

We have the following characterization of T -ergodic measures.

Theorem 4.20 (Ergodicity and Extremity). Let X be a compact metrizable space, and let T : X → X be a

homeomorphism. If µ ∈ MT (X), the following are equivalent:

(i) µ is T -ergodic;

(ii) µ is an extreme point of MT (X).

Proof. The proof has three steps.

Step I. Let µ1, µ2 be T -ergodic measures such that µ1(E) = µ2(E) for every T -invariant Borel set E ⊂ X.

We claim that
∫
X
f dµ1 =

∫
X
f dµ2 for each f ∈ C(X), hence µ1 = µ2 by Riesz representation theorem.

By Corollary 4.6, the sequence Anf converges to
∫
X
f dµj in L1, and hence a subsequence Ani

f converges

a.e. to
∫
X
f dµj , where j = 1, 2. Hence there exists Aj ⊂ X such that µ(Aj) = 1 and

∫
X

f dµj = lim
i→∞

1

ni

ni−1∑
k=0

f(T kx) for all x ∈ Aj .

For j = 1, 2, define Ej =
⋂

n∈Z T
n(Aj), so that Ej is a T -invariant set with µj(Ej) = 1. By assumption,

µ1(E1) = µ2(E1) = µ1(E2) = µ2(E2) = 1. Then the T -invariant set E := E1 ∩ E2 is nonempty, because

µ(E) = µ(E1) + µ(E2)− µ(E1 ∪ E2) = 1. Since E ⊂ A1 ∩A2, we fix x ∈ E and obtain

∫
X

f dµ1 = lim
i→∞

1

ni

ni−1∑
k=0

f(T kx) =

∫
X

f dµ2.

Step II. If µ ∈ MT (X) is ergodic, we claim that µ is an extreme point of MT (X). Take µ1, µ2 ∈ MT (X) and

0 < λ < 1 such that µ = (1− λ)µ1 + λµ2. If E ∈ B is a T -invariant set, we have µ(E) ∈ {0, 1}. Then
• If µ(E) = 0, we have (1− λ)µ1(E) + λµ2(E) = 0 and µ1(E) = µ2(E) = 0.

• Similarly, if µ(E) = 1, we have µ1(F ) = µ2(F ) = 1.

In either case, we have µ1(E) = µ2(E) = µ(E) ∈ {0, 1}. Hence µ1 and µ2 are T -ergodic measures that agree

on all T -invariant Borel sets. By Step I, we have µ1 = µ2 = µ, and hence µ is an extreme point of MT (X).

Step III. Conversely, if µ ∈ MT (X) is not ergodic, we can find two probability measures µ1, µ2 ∈ MT (X)

with µ1 ̸= µ2 and 0 < λ < 1 such that (1− λ)µ1 + λµ2 = µ, and hence µ is not an extreme point of MY (X).

By non-ergodicity of (µ, T ), there exists a Borel set B ⊂ X such that T−1(B) = B and 0 < µ(B) < 1. We

then define Borel probability measures

µ1(E) :=
µ(E\B)

µ(X\B)
and µ2(E) :=

µ(E ∩B)

µ(B)
, E ∈ B,

and take λ = µ(B). For each E ∈ B,

µ2(T
−1(E)) =

µ(T−1(E) ∩B)

µ(B)
=

µ(T−1(E ∩B))

µ(B)
=

µ(E ∩B)

µ(B)
= µ2(E).

Hence µ2 is T -invariant, and similarly µ1 is T -invariant. Furthermore, (1− λ)µ1 + λµ2 = µ, as desired.

Corollary 4.21. Every homeomorphism of a compact metrizable space admits an ergodic measure.

Proof. Since MT (X) is a nonempty compact convex subset of M(X) by Lemma 4.19, it has an extreme point

µ by Krein-Milman theorem. According to Theorem 4.20, µ is a T -ergodic measure.
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Aside from existence, we also wonder whether the ergodic measure of a homeomorphism T is unique.

Definition 4.22 (Unique ergodicity). A homeomorphism T of a compact metrizable space X is said to be

uniquely ergodic, if there is only one Borel probability measure µ that is T -invariant, i.e. |MT (X)| = 1.

Remark. Since MT (X) is the closed convex hull of the T -ergodic measures (extreme points), T is uniquely

ergodic if and only if there is only one Borel probability measure µ that is T -ergodic.

Theorem 4.23 (Birkhoff’s theorem). Let T : X → X be a homeomorphism of a compact metrizable space X.

The following are equivalent.

(i) T is uniquely ergodic.

(ii) There exists µ ∈ MT (X) such that for all f ∈ C(X),

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X

f dµ for all x ∈ X. (4.2)

(iii) For all f ∈ C(X), the sequence of functions Anf = 1
n

∑n−1
k=0 f ◦ T k converges pointwise to a constant.

(iv) For all f ∈ C(X), the sequence of functions Anf = 1
n

∑n−1
k=0 f ◦ T k converges uniformly to a constant.

Proof. (i) ⇒ (iv): If T is uniquely ergodic, we take for each x ∈ X the sequence

µn =
1

n

n−1∑
k=0

δTkx, n = 1, 2, · · · .

By Banach-Alaoglu theorem, and since |MT (X)| = 1, every subsequence of (µn) has a further subsequence

converging in the weak* topology to the unique element µ ∈ MT (X), which is ergodic. We claim that (µn)

converges to µ in the weak* topology. If there exists a neighborhood U of µ in the weak* topology such that

for each k ∈ N, there exists nk > k with µnk
/∈ U , which gives a subsequence (µnk

) outside U . Therefore,

lim
n→∞

1

n

n−1∑
k=0

δTkx
w∗

= µ.

Integrating both sides with f ∈ C(X) gives (4.2). Argue (iv) by contradiction. If (Anf) does not converge

uniformly to
∫
X
f dµ, there exists ϵ > 0 such that for each m ≥ 1, there exists nm ≥ m and xm ∈ X such that∣∣∣∣∣ 1

nm

nm−1∑
k=0

f(T kxm)−
∫

f dµ

∣∣∣∣∣ ≥ ϵ. (4.3)

We consider the sequence νm = 1
nm

∑nm−1
k=0 δTkxm

, which also converges to µ ∈ MT (X) in weak* topology, by

passing to a subsequence if necessary. Then the left-hand side of (4.3) goes to 0 as m → ∞, a contradiction.

(iv) ⇒ (iii) is clear.

(iii) ⇒ (ii): Define the positive linear functional Af = limn→∞
1
n

∑n−1
k=0 f ◦ T k. Then |Af | ≤ ∥f∥∞, and

A : C(X) → C is continuous. By Riesz representation theorem, there is a Borel measure µ ∈ M(X) such that

Af =
∫
X
f dµ. Since µ(X) = A1 = 1 and A(f ◦ T ) = Af , the measure µ ∈ MT (X).

(ii) ⇒ (i): Let µ, ν ∈ MT (X), where µ is the measure such that the hypothesis holds. For any f ∈ C(X), by

T -invariance of ν and dominated convergence theorem,∫
X

f dν = lim
n→∞

∫
X

Anf dν =

∫
X

lim
n→∞

Anf dν =

∫
X

(∫
X

f dµ

)
dν =

∫
X

f dµ. (4.4)

By Riesz representation theorem, we have µ = ν, and |MT (X)| = 1.
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4.6 The Recurrence Theorems

In many scenarios, we are also interested in the recurrence property of a dynamical system (X,F , µ, T ).

Beginning from a state x0 ∈ X, we wonder if the system will return to a state arbitrarily closed to, or exactly

the same as, the initial state x0.

Definition 4.24 (Recurrence). Let (X,F , µ, T ) be a measure-preserving system. For a subset A ⊂ X, the

first return time of A is the map defined for almost every x ∈ A by

nA(x) = inf {n ≥ 1 : Tnx ∈ A} .

We write nA = n1
A. For each integer k ≥ 2, we define the kth return time by

nk
A(x) = inf{n > nk−1

A (x) : Tnx ∈ A}.

We say that a point x ∈ A is infinitely recurrent to A, or returns infinitely to A, if (Tnx)∞n=1 contains a

subsequence (Tnkx)∞k=1 ⊂ A, or equivalently, nk
A(x) < ∞ for every k ∈ N.

Theorem 4.25 (Poincaré recurrence theorem). Let (X,F , µ, T ) be a measure-preserving system where µ is

a probability measure. For each set A ⊂ F , almost every x ∈ A is infinitely recurrent to A. That is,

µ ({x ∈ A : Tnx ∈ A for infinitely many n ∈ N}) = µ(A).

Proof. We let B = {x ∈ A : Tnx ∈ A for infinitely many n ∈ N}. Then

B = {x ∈ A : Tnx ∈ A for infinitely many n ∈ N}
=
{
x ∈ A : for every n ∈ N, there exists k ≥ n such that T kx ∈ A

}
=

∞⋂
n=1

∞⋃
k=n

A ∩ T−k(A) = A ∩
∞⋂

n=1

∞⋃
k=n

T−k(A).

For every n ∈ N0, let An =
⋃∞

k=n T
−k(A). Then T−n(A0) = An ⊂ A0. Since A\An ⊂ A0\An = A0\T−n(A0),

0 ≤ µ(A\An) ≤ µ(A0\T−n(A0)) = µ(A0)− µ(T−n(A0)) = 0,

where the last inequality follows from the facts that T is measure-preserving and µ is finite. Then

µ(B) = µ

(
A ∩

∞⋂
n=1

An

)
= µ

(
A\

∞⋃
n=1

(A\An)

)
= µ(A)− µ

( ∞⋃
n=1

(A\An)

)
= µ(A).

Then we complete the proof.

Asymptotic relative frequency. The Poincaré recurrence theorem implies that, for almost every x ∈ A,

the trajectory (Tnx)∞n=0 hits A infinitely many times. However, it does not predict the frequency of the visits

that x makes to the set A. The relative number of elements of {x, Tx, T 2x, · · · , Tn−1x} in A is

1

n

∣∣{T kx ∈ A : k = 0, 1, · · · , n− 1
}∣∣ = 1

n

n−1∑
k=0

χA(T
kx).

By Birkhoff’s theorem, if T is µ-ergodic, for almost all x ∈ X, the asymptotic relative frequency is

lim
n→∞

n−1∑
k=0

χA(T
kx) =

∫
X

χA dµ = µ(A).
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The Poincaré recurrence theorem asserts that almost every point in a positive measure set returns to the

set after a sufficiently long but finite time, but does not give an estimate of the return time. The Kac’s lemma

states that, in an ergodic system, the points in a positive measure set return to the set within an average time

inversely proportional to the measure of the set.

Theorem 4.26 (Kac’s lemma). Let (X,F , µ, T ) be an ergodic system on a probability space. For each set

A ∈ F with µ(A) > 0, the first return time nA satisfies∫
A

nA dµ = 1.

Proof. Let An = {x ∈ A : nA(x) = n} be the set of points in A that return to A after exactly n times. Then

An =
{
x ∈ A : Tnx ∈ A and Tx /∈ A, T 2x /∈ A, · · · , Tn−1x /∈ A

}
= A ∩ T−n(A) ∩

n−1⋂
k=1

T−k(X\A).

Similarly, we define

Bn = {x /∈ A : x enters A at time n} = T−n(A) ∩
n−1⋂
k=0

T−k(X\A).

Since T is µ-ergodic, and µ(A) > 0, almost every x ∈ X enters A after a sufficiently long time, and the set⋂∞
n=0 T

−n(X\A) has measure zero. Hence both µ(An) and µ(Bn) goes to zero as n → ∞. Furthermore,

(An, Bn)
∞
n=1 are disjoint sets that almost cover X. Also note that

T−1(Bn) = T−n−1(A) ∩
n⋂

k=1

T−k(X\A) = An+1 ∪Bn+1.

Since T is measure preserving, µ(Bn) = µ(T−1(Bn)) = µ(An+1) + µ(Bn+1), and by induction we have

µ(Bn) =

∞∑
k=n+1

µ(Ak) + lim
k→∞

µ(Bk) =

∞∑
k=n+1

µ(Ak), n ∈ N.

By Poincaré recurrence theorem, A =
⋃∞

n=1 An. Therefore

1 = µ(X) =

∞∑
n=1

[µ(An) + µ(Bn)] =

∞∑
n=1

∞∑
k=n

µ(Ak) =

∞∑
k=1

k∑
n=1

µ(Ak)

=

∞∑
k=1

kµ(Ak) =

∞∑
k=1

∫
Ak

nA dµ =

∫
A

nA dµ.

Thus we complete the proof.

Remark. The Kac’s lemma can also be stated as

1

µ(A)

∫
A

nA dµ =
1

µ(A)
,

where the left-hand side of the equation is the mean return time to A.
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5 Semigroup Theory

5.1 Calculus of Continuous Banach Space Valued Functions

In this subsection, we discuss the integration and differentiation of continuous functions on a compact interval

with values in a Banach space. We first study the integral.

Lemma 5.1 (Integral of a continuous function). Let X be a real or complex Banach space, and let x : [a, b] → X

be a continuous function. Then there exists a unique ξ ∈ X such that

⟨x∗, ξ⟩ =
∫ b

a

⟨x∗, x(t)⟩ dt, for all x∗ ∈ X∗. (5.1)

Proof. For each n ∈ N, define ξn ∈ X and ϵn ≥ 0 by

ξn =

2n−1∑
k=0

b− a

2n
x

(
a+ k

b− a

2n

)
, and ϵn := sup

|t−s|≤2−n(b−a)

∥x(s)− x(t)∥.

Since x is uniformly continuous on [a, b], we have ϵn ↓ 0 as n → ∞. Furthermore,

∥ξn+m − ξn∥ ≤ (b− a)ϵn for all n,m ∈ N.

Hence (ξn) is Cauchy sequence in X, which converges to some point ξ ∈ X. Then for all x∗ ∈ X∗, we have

⟨x∗, ξ⟩ = lim
n→∞

2n−1∑
k=0

b− a

2n

〈
x∗, x

(
a+ k

b− a

2n

)〉
=

∫ b

a

⟨x∗, x(t)⟩ dt

by the convergence theorem for Riemann sums, which proves the existence. Next, we let ξ and η be two vectors

satisfying (5.1). Then ⟨x∗, η − ξ⟩ = 0 for all x∗ ∈ X, and by the Hahn-Banach theorem,

∥η − ξ∥ = sup
x∗∈X∗:∥x∗∥≤1

⟨x∗, η − ξ⟩ = 0.

Therefore η = ξ, which proves the uniqueness.

Definition 5.2. Let X be a real or complex Banach space, and let x : [a, b] → X be a continuous function.

The vector ξ ∈ X in Lemma (5.1) is called the integral of x over [a, b] and denoted by
∫ b

a
x(t) dt := ξ. That is,

the integral of x over [a, b] is the unique vector
∫ b

a
x(t) dt ∈ X satisfying〈

x∗,

∫ b

a

x(t) dt

〉
=

∫ b

a

⟨x∗, x(t)⟩ dt, for all x∗ ∈ X∗. (5.2)

Following are some properties of the integral of Banach space-valued functions.

Proposition 5.3. Let X be a real or complex Banach space, and let x, y : [a, b] → X be continuous functions.

Then the following holds.

(i) The integral is a linear operator C([a, b];X) → X. In particular,∫ b

a

(αx(t) + βy(t)) dt = α

∫ b

a

x(t) dt+ β

∫ b

a

y(t) dt.

(ii) Let a < c < b. Then ∫ b

a

x(t) dt =

∫ c

a

x(t) dt+

∫ b

c

x(t) dt.
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(iii) Let Y be another Banach space and T : X → Y a bounded linear operator. Then

T

∫ b

a

x(t) dt =

∫ b

a

Tx(t) dt.

(iv) (Absolute integrability). ∥∥∥∥∥
∫ b

a

x(t) dt

∥∥∥∥∥ ≤
∫ b

a

∥x(t)∥ dt.

(v) (Dominated convergence). Let xn : [a, b] → X be a sequence of continuous functions that converges to x

pointwise, and assume there exists M > 0 such that ∥xn(t)∥ ≤ M for all n ∈ N and t ∈ [a, b]. Then∫ b

a

x(t) dt = lim
n→∞

∫ b

a

xn(t) dt.

Proof. Properties (i) and (ii) follow from definitions, additivity of Riemann integral and the Hahn-Banach

Theorem. We next give a proof of (iii). Let ξ =
∫ b

a
x(t) dt. Then for each y∗ ∈ Y ∗, we have T ∗y∗ ∈ X∗, and

⟨y∗, T ξ⟩ = ⟨T ∗y∗, ξ⟩ =
∫ b

a

⟨T ∗y∗, x(t)⟩ dt =
∫ b

a

⟨y∗, Tx(t)⟩ dt.

(iv) For each x∗ ∈ X∗,∣∣∣∣∣
〈
x∗,

∫ b

a

x(t) dt

〉∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

⟨x∗, x(t)⟩ dt

∣∣∣∣∣ ≤
∫ b

a

|⟨x∗, x(t)⟩| dt ≤ ∥x∗∥
∫ b

a

∥x(t)∥ dt.

Again, by the Hahn-Banach theorem,

∥∥∥∥∥
∫ b

a

x(t) dt

∥∥∥∥∥ ≤ sup
x∗∈X∗\{0}

〈
x∗,
∫ b

a
x(t) dt

〉
∥x∗∥

≤
∫ b

a

∥x(t)∥ dt.

(v) We have ∥x∥ ≤ M , and ∥x− xn∥ ≤ 2M . We apply (iv) and the dominated convergence theorem to obtain

lim
n→∞

∥∥∥∥∥
∫ b

a

xn(t) dt−
∫ b

a

x(t) dt

∥∥∥∥∥ ≤ lim
n→∞

∫ b

a

∥xn(t)− x(t)∥ dt = 0.

Thus we finish the proof.

Next, we introduce the differentiation of Banach space valued functions.

Definition 5.4 (Differentiability). Let X be a real or complex Banach space, and let x : [a, b] → X be a

continuous function. For each t ∈ [a, b], the right derivative of x at t is given by

d

dt+
x(t) = lim

h→0

x(t+ h)− x(t)

h

For each t ∈ [a, b), the left derivative of x at t is given by

d

dt−
x(t) = lim

h→0

x(t)− x(t− h)

h

For t ∈ (a, b), we say x is differentiable at t if the left and right derivatives of x both exist at t and are equal.

If x is differentiable at each t ∈ (a, b), and d
dt+x(a) and

d
dt−x(b) exists, we say x is differentiable on [a, b], and

write ẋ : [a, b] → X for its derivative. We say x is continuously differentiable if in addition ẋ is continuous.
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Theorem 5.5 (Fundamental theorem of calculus). Let X be a Banach space, and −∞ < a < b < ∞.

(i) If x : [a, b] → X is a continuously differentiable function, then

x(t)− x(a) =

∫ t

a

ẋ(s) ds, for all t ∈ [a, b]. (5.3)

(ii) Let y : [a, b] → X be a continuous function, x0 ∈ X, and define

x(t) = x0 +

∫ t

a

y(s) ds, for all t ∈ [a, b]. (5.4)

Then x : [a, b] → X is continuously differentiable, and ẋ(t) = y(t) for t ∈ [a, b].

Proof. (i) For each x∗ ∈ X∗, by the fundamental theorem of calculus for real-valued functions,

⟨x∗, x(t)− x(a)⟩ =
∫ t

a

d

ds
⟨x∗, x(s)⟩ ds =

∫ t

a

⟨x∗, ẋ(s)⟩ ds.

By the Hahn-Banach theorem, we complete the proof of (5.3).

(ii) Let a ≤ t < b, and take h > 0 with t < t+ h ≤ b. Then∥∥∥∥∥y(t)− 1

h

∫ t+h

t

y(s) ds

∥∥∥∥∥ ≤ 1

h

∫ t+h

t

∥y(s)− y(t)∥ ds ≤ sup
t≤s≤t+h

∥y(s)− y(t)∥.

Since y : [a, b] → X is continuous, the above bound tends to 0 as h ↓ 0. This implies

y(t) = lim
h↓0

1

h

∫ t+h

t

y(s) ds = lim
h↓0

x(t+ h)− x(t)

h
=

d

dt+
x(t).

Likewise we have d
dt−x(t) = y(t) for all t ∈ (a, b]. This proves (5.4).

Proposition 5.6. Let X be a Banach space, and −∞ < a < b < ∞.

(i) (Change of variables). Let −∞ < α < β < ∞. If ϕ : [α, β] → [a, b] is a diffeomorphism, then∫ β

α

x(ϕ(s))ϕ̇(s) ds =

∫ b

a

x(t) dt. (5.5)

(ii) (Differentiation of integrals). Let φ : [a, b] × [c, d] → X be a Lipschitz continuous function. If for each

t ∈ [a, b], the function φ(t, ·) : [c, d] → X is continuously differentiable, then∫ b

a

d

dλ
φ(t, λ) dt =

d

dλ

∫ b

a

φ(t, λ) dt, for all t ∈ [a, b]. (5.6)

Proof. (i) For each x∗ ∈ X∗, we apply the change of variables formula to obtain

∫ b

a

⟨x∗, x(t)⟩ dt =
∫ β

α

⟨x∗, x(ϕ(s))⟩ϕ̇(s) ds =

〈
x∗,

∫ β

α

x(ϕ(s))ϕ̇(s) ds

〉
.

By the Hahn-Banach theorem, we finish the proof of (5.5).

(ii) Since φ is Lipschitz continuous on [a, b]× [c, d], the family of functions
(

φ(t)−φ(s)
t−s

)
s,t∈[a,b]

is bounded. By

the dominated convergence theorem in Proposition 5.3, for all λ ∈ [c, d),

d

dλ+

∫ b

a

φ(t, λ) dt = lim
h↓0

∫ b

a

φ(t, λ+ h)− φ(t, λ)

h
dt =

∫ b

a

lim
h↓0

φ(t, λ+ h)− φ(t, λ)

h
dt =

∫ b

a

d

dλ
φ(t, λ) dt,
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and for all λ ∈ (c, d],

d

dλ−

∫ b

a

φ(t, λ) dt = lim
h↓0

∫ b

a

φ(t, λ)− φ(t, λ− h)

h
dt =

∫ b

a

lim
h↓0

φ(t, λ)− φ(t, λ− h)

h
dt =

∫ b

a

d

dλ
φ(t, λ) dt.

Hence we finish the proof of (5.6).

Ordinary differential equations in a Banach space. The classical existence-uniqueness theory for ODEs

with Lipschitz continuous coefficients can be extended to Banach spaces without any substantial change. We

let F : X → X be a Lipschitz continuous map, i.e. there exists constant L > 0 such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, for every x, y ∈ X. (5.7)

Given an initial point x0 ∈ X, consider the Cauchy problem

ẋ(t) = F (x(t)), x(0) = x0. (5.8)

Theorem 5.7 (Existence-uniqueness of solutions to a Cauchy problem). Let X be a Banach space and let

F : X → X be a Lipschitz continuous map satisfying (5.7). Then for every x0 ∈ X, the Cauchy problem (5.8)

has a unique solution t 7→ x(t), defined for all t ∈ R.

Proof. We fix T > 0 and consider the Banach space C([0, T ];X) for all continuous mappings u : [0, T ] → X,

with the equivalent norm

∥u∥∗ = max
t∈[0,T ]

e−2tL∥u(t)∥.

A function x : [0, T ] → X is a solution to the Cauchy problem (5.8) if and only if x(·) is a fixed point of the

Picard operator

Φ(u)(t) := x0 +

∫ t

0

F (u(s)) ds, t ∈ [0, T ].

Clearly Φ is a map on C([0, T ];X). We claim that Φ is a strict contraction. For any u, v ∈ C([0, T ];X),

∥u(s)− v(s)∥ ≤ e2sL∥u− v∥∗, ∀s ∈ [0, T ].

Then we have

∥Φ(u)− Φ(v)∥∗ = max
t∈[0,T ]

e−2tL

∥∥∥∥∫ t

0

[F (u(s))− F (v(s))] ds

∥∥∥∥ ≤ max
t∈[0,T ]

e−2tL

∫ t

0

∥F (u(s))− F (v(s))∥ ds

≤ max
t∈[0,T ]

e−2tL

∫ t

0

L ∥u(s)− v(s)∥ ds ≤ max
t∈[0,T ]

∫ t

0

e−2L(t−s)L ∥u− v∥∗ ds

≤ max
t∈[0,T ]

1− e2Lt

2
∥u− v∥∗ ≤ 1

2
∥u− v∥∗.

Hence Φ is a strict contraction on C([0, T ];X), which, by Banach fixed point theorem, admits a unique fixed

point x ∈ C([0, T ];X), i.e.

x(t) = x0 +

∫ t

0

F (x(s)) ds, t ∈ [0, T ].

This function provides the unique solution to the Cauchy problem (5.8). By reversing time we can also extend

this solution to the domain t ≤ 0.
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5.2 Strongly Continuous Semigroups

Motivation. We consider a linear operator A : Rn → Rn. For every x0 ∈ Rn, the linear Cauchy problem

ẋ(t) = Ax(t), x(0) = x0

has the solution t 7→ etAx0, where the matrix exponential

etA =

∞∑
k=0

tk

k!
Ak.

This series is absolutely convergent for all t ∈ R. Furthermore, the exponential map t 7→ etA satisfies

• (Semigroup property). e0A = Id, esAetA = e(s+t)A;

• (Path continuity). for every x0 ∈ Rn, the map t 7→ etAx0 is continuous.

Generally, we consider a linear evolution equation in a Banach space X, say

d

dt
u(t) = Au(t), u(0) = u0 ∈ X, (5.9)

where A : X → X is a linear operator. Inspired by the matrix case, we would like to express the solution as

u(t) = etAu0 for some family of linear operators (etA)t≥0.

Definition 5.8 (Semigroup). Let X be a Banach space. A strongly continuous semigroup of linear operators

on X is a family of bounded linear operators (St)t≥0 on X such that

(ii) (Semigroup property). S0 = Id, and StSs = St+s for all t, s ≥ 0;

(iii) (Continuity at the origin). limt↓0 ∥Stu− u∥ = 0 for each u ∈ X.

In addition, we say (St)t≥0 is a contraction semigroup if ∥St∥ ≤ 1 for all t ≥ 0.

Next we study the norm property for semigroups.

Lemma 5.9. Let X be a Banach space, and (St)t≥0 a strongly continuous semigroup.

(i) (Local finiteness). For all T > 0, supt∈[0,T ] ∥St∥ < ∞;

(ii) (Strong continuity). For each u ∈ X, the mapping t 7→ Stu is continuous from [0,∞) into X;

(iii) (Growth rate). The function t 7→ 1
t log ∥St∥ converges in R ∪ {−∞} as t ↑ ∞, and

lim
t→∞

1

t
log ∥St∥ = inf

t>0

1

t
log ∥St∥ =: ω0; (5.10)

Furthermore, for each ω > ω0, there exists M ≥ 1 such that for all t ≥ 0,

∥St∥ ≤ Meωt. (5.11)

Proof. (i) We first show that there exist some constants δ > 0 and M ≥ 1 such that ∥St∥ ≤ M for all 0 ≤ t ≤ δ.

We argue by contradiction and suppose that sup0≤t≤δ ∥St∥ = ∞ for all δ > 0. Then there exists a sequence

tn ↓ 0 such that ∥Stn∥ is unbounded. By Banach-Steinhaus theorem, there exists u ∈ X such that ∥Stnu∥ is

unbounded, which contradicts the continuity property limt↓0 ∥Stu∥ = 0.

Next, we fix T > 0 and take N such that Nδ > T , so for each t ∈ [0, T ], there exists k ∈ {0, 1, · · · , N − 1}
such that kδ ≤ t < (k + 1)δ. By the semigroup property,

∥St∥ ≤ ∥Sδ∥k∥St−kδ∥ ≤ Mk+1 ≤ MN < ∞.

(ii) is a corollary of (i), since

∥St+hu− Stu∥ ≤ ∥St∥∥Shu− u∥ ↓ 0, and ∥Stu− St−hu∥ ≤ ∥St−h∥∥Shu− u∥ ↓ 0, as h ↓ 0.
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(iii) We may assume St ̸= 0 for all t > 0, otherwise the property holds with ω0 = −∞. For fixed t > 0, there

exists u ∈ X with Stu ̸= 0, and by the semigroup property Ssu ̸= 0 for all 0 ≤ s ≤ t. According to (ii),

t 7→ ∥Stu∥ is a continuous map. Then sup0≤s≤t ∥Stu∥ > 0, and so sup0≤s≤t ∥St∥ > 0. Hence we can take a

constant c ≥ 1 such that c−1 ≤ ∥Ss∥ ≤ c for all s ∈ [0, t].

Then we define a function g(t) = log ∥St∥ on [0,∞), which is locally bounded and subadditive:

g(0) = 0, g(s+ t) ≤ g(s) + g(t), M(t) := sup
0≤s≤t

|g(s)| < ∞.

The remaining part follows most from Fekete’s lemma. Fix t0 > 0. For any t > 0, take k ∈ N0 such that

t = kt0 + s, where s ∈ [0, t0). Then

g(t)

t
≤ kg(t0) + g(s)

t
=

g(t0)

t0
− sg(t0)

t0t
+

g(s)

t
≤ g(t0)

t0
+

2M(t0)

t
.

Hence for all t0 > 0,

lim sup
t↑∞

g(t)

t
≤ g(t0)

t0
.

To prove (5.10), just note that

lim sup
t↑∞

g(t)

t
≤ inf

t>0

g(t)

t
.

Finally, we fix ω > ω0. Then there exists T > 0 such that 1
t log ∥St∥ ≤ ω for all t ≥ T . Consequently,

∥St∥ ≤ max

{
eωt, sup

0≤s≤T
∥Ss∥

}
≤ sup

0≤s≤T
∥Ss∥eωt

for all t ≥ 0, which completes the proof.

We also see that some properties of one member of a semigroup can be extended to the whole semigroup.

Lemma 5.10. Let (St)t≥0 be a strongly continuous semigroup on a Banach space X. Then

(i) The operator St is injective for some t > 0 if and only if it is injective for all t > 0.

(ii) The operator St is surjective for some t > 0 if and only if it is injective for all t > 0.

(iii) The operator St has a dense range for some t > 0 if and only if it has a dense range for all t > 0.

(iv) Assume St is injective for all t > 0. The operator St has a closed range for some t > 0 if and only if it

has a closed range for all t > 0.

Proof. We fix t0 > 0 and assume St0 has the desired property. For each t > 0, we take k ∈ N with kt0 > t.

(i) If St0 is injective and Stu = 0, we have Sk
t0u = Skt0−tStu = 0 and u = 0. Hence St is injective.

(ii) If St0 is surjective, so is Sk
t0 , and R(St) ⊃ R(StSkt0−t) = R(Sk

t0) = X.

(iii) By continuity of St0 , we have St0(A) ⊃ St0(A) for all A ⊂ X. If St0 has dense range in X, so does Sk
t0 ,

and

R(St) ⊃ R(StSkt0−t) = R(Sk
t0) = X.

(iv) Assume St is injective for all t > 0. If St0 has closed range, then R(St0) is a complete subspace of X,

and St0 : X → R(St0) has bounded inverse. Hence there exists c > 0 such that ∥St0u∥ ≥ c∥u∥ for all u ∈ X.

Consequently,

∥Skt0−t∥ ∥Stu∥ ≥ ∥Skt0u∥ ≥ ck∥u∥.

By injectivity of St, for any sequence (vn) ⊂ R(St) converging to v in X, we take un = S−1
t vn ∈ X. Then

∥un−um∥ ≤ c−k∥Skt0−t∥ ∥vm − vn∥, and (un) is a Cauchy sequence in X, which converges to some u ∈ X. By

continuity of St, we have Stu = limn→∞ Stun = limn→∞ vn = v, and v ∈ R(St). Hence R(St) is closed.
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5.3 The Infinitesimal Generator

Definition 5.11 (Infinitesimal generator). Let (St)t≥0 be a strongly continuous semigroup on a Banach space

X. We define

D(A) =

{
u ∈ X : lim

t↓0

Stu− u

t
exists

}
,

and

Au = lim
t↓0

Stu− u

t
, u ∈ D(A).

We call A : D(A) → X the (infinitesimal) generator of the semigroup (St)t≥0, and D(A) is the domain of A.

The infinitesimal generator is related to the differential properties of semigroups.

Proposition 5.12 (Differential properties of semigroups). Let A be the generator of a strongly continuous

semigroup (St)t≥0 on a Banach space X, and u ∈ X. The following are equivalent:

(i) u ∈ D(A);

(ii) The function t 7→ Stu is continuously differentiable on [0,∞), takes values in the domain of A, and

satisfies the differential equation

d

dt
Stu = AStu = StAu for all t > 0.

Proof. By definition (ii) implies (i). To prove (i) ⇒ (ii), we fix u ∈ D(A). For each t ≥ 0, by the semigroup

property and continuity of St, we have

lim
h↓0

Sh(Stu)− Stu

h
= lim

h↓0
St

(
Shu− u

h

)
= St

(
lim
h↓0

Shu− u

h

)
= StAu.

Hence Stu ∈ D(A), and AStu = StAu. For each t ≥ 0,

lim
h↓0

(St+hu− Stu)

h
= lim

h↓0

St(Shu− u)

h
= St

(
lim
h↓0

Shu− u

h

)
= StAu.

Also, for each t > 0,

lim
h↓0

∥∥∥∥ (Stu− St−hu)

h
− StAu

∥∥∥∥ ≤ lim
h↓0

[∥∥∥∥St−h

(
Shu− u

h
−Au

)∥∥∥∥+ ∥St−hAu− StAu∥
]

≤ lim
h↓0

∥∥∥∥St−h

(
Shu− u

h
−Au

)∥∥∥∥+ lim
h↓0

∥St−hAu− StAu∥

≤ sup
0≤s≤t

∥Ss∥ lim
h↓0

∥∥∥∥Shu− u

h
−Au

∥∥∥∥+ lim
h↓0

∥St−hAu− StAu∥ = 0.

By path continuity, the derivative StAu is continuous. Then we finish the proof.

Remark. By this proposition, the function t 7→ Stu0 solve the linear evolution equation (5.9) about u(·).

Lemma 5.13 (Variation of constants). Let A be the generator of a strongly continuous semigroup (St)t≥0 on

a Banach space X, and f : [0,∞) → X a continuously differentiable function. Define

x(t) =

∫ t

0

St−sf(s) ds

Then x : [0,∞) → X is continuously differentiable, x(t) ∈ D(A) for all t ≥ 0, and

ẋ(t) = Ax(t) + f(t) = Stf(0) +

∫ t

0

St−sḟ(s) ds. (5.12)
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Proof. We fix t ≥ 0. For each h > 0,

Shx(t)− x(t)

h
=

Sh − Id

h

∫ t

0

Ssf(t− s) ds =
1

h

∫ t

0

Ss+hf(t− s) ds− 1

h

∫ t

0

Ssf(t− s) ds

=
1

h

∫ t+h

h

Ssf(t+ h− s) ds− 1

h

∫ t

0

Ssf(t− s) ds

=

∫ t

0

Ss
f(t+ h− s)− f(t− s)

h
ds+

1

h

∫ t+h

t

Ssf(t+ h− s) ds− 1

h

∫ h

0

Ssf(t+ h− s) ds.

By the dominated convergence theorem, we let t ↓ 0 in the above display to obtain

Ax(t) =

∫ t

0

Ssḟ(t− s) ds+ Stf(0)− f(t).

This proves the second identity in (5.12). Next, for all t ≥ 0,

lim
h↓0

x(t+ h)− x(t)

h
= lim

h↓0

[
1

h

∫ t+h

0

St+h−sf(s) ds−
1

h

∫ t

0

St−sf(s) ds

]

= lim
h↓0

Shx(t)− x(t)

h
+ lim

h↓0

1

h

∫ t+h

t

St+h−sf(s) ds = Ax(t) + f(t).

On the otherhad, for all t > 0,

lim
h↓0

x(t)− x(t− h)

h
= lim

h↓0

[
1

h

∫ t

0

St−sf(s) ds−
1

h

∫ t−h

0

St−h−sf(s) ds

]

= lim
h↓0

[
1

h

∫ t

0

St−sf(s) ds−
1

h

∫ t

h

St−sf(s− h) ds

]
= lim

h↓0

1

h

∫ h

0

St−sf(s) ds+ lim
h↓0

∫ t

h

St−s
f(s)− f(s− h)

h
ds = Stf(0) +

∫ t

0

St−sḟ(s) ds.

Hence x(·) is differentiable on [0,∞) and the derivative is given by (5.12).

Proposition 5.14 (Properties of the generator). Let A be the generator of a strongly continuous semigroup

(St)t≥0 on a Banach space X. Write D(A1) = D(A), and for n ≥ 2 define the linear subspace D(An) of X

recursively:

D(An) = {x ∈ D(A) : Ax ∈ D(An−1)}.

Then D(A1) ⊃ D(A2) ⊃ · · · , and
(i) the linear subspace

D(A∞) :=
⋂
n∈N

D(An)

is dense in X; and

(ii) A is a closed operator, i.e. the graph {(u,Au) : u ∈ D(A)} of A is closed in X ×X.

Proof. We let u ∈ X and let ϕ : R+ → R+ be a compactly supported smooth function. We take 0 < ϵ < 1

with suppϕ ⊂ [ϵ, ϵ−1]. By plugging in f(s) = ϕ(t− s)u for t > ϵ−1 to Lemma 5.13, we have

A

∫ t

0

ϕ(t− s)St−su dt+ ϕ(0)u = ϕ(t)Stu−
∫ t

0

ϕ̇(t− s)St−su dt.

Since ϕ is supported on [ϵ, ϵ−1],

A

∫ ∞

0

ϕ(t)Stu dt = −
∫ ∞

0

ϕ̇(t)Stu dt.
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By induction, for every n ∈ N, we have
∫∞
0

ϕ(t)Stu dt ∈ D(An), and

An

∫ ∞

0

ϕ(t)Stu dt = (−1)n
∫ ∞

0

ϕ(n)(t)Stu dt.

(i) Take a smooth function ϕ : R → R+ supported on [ 12 , 1] with
∫
R ϕ(t) dt = 1. For each u ∈ X, let

un = n

∫ ∞

0

ϕ(nt)Stu dt, n = 1, 2, · · · .

By the previous conclusion, xn ∈ D(A∞), and

∥un − u∥ ≤ n

∫ ∞

0

ϕ(nt)∥Stu− u∥ dt ≤ sup
0≤t≤ 1

n

∥Stu− u∥ ↓ 0, n → ∞.

Hence un → u in X, and D(A∞) is dense in X.

(ii) We take a sequence un ∈ X and u, v ∈ X such that ∥un − u∥ → 0 and ∥Aun − v∥ → 0 as n → ∞. Then

Stu− u = lim
n→∞

(Stun − un) = lim
n→∞

∫ t

0

SsAxn ds =

∫ t

0

Ssv ds, t > 0.

Letting t ↓ 0, we have Au = v and u ∈ A. Then we finish the proof.

Next we discuss the property of closed densely defined partial operator. For a closed densely defined partial

operator A : D → X, define on D(A) the graph norm

∥u∥G(A) = ∥u∥+ ∥Au∥, u ∈ D(A).

If (un) ⊂ D(A) is a Cauchy sequence in ∥ · ∥G(A), both (un) and (Aun) are Cauchy sequences in X. We let u

and v be the limit of sequences (un) and (Aun), respectively. Then the Cartesian product (un, Aun) converges

to (u, v) in X ×X. Since the graph G(A) of A is closed in X ×X, we have (u, v) ∈ G(A), i.e. u ∈ D(A) and

v = Au. Therefore, D(A) becomes a Banach space under the graph norm ∥u∥G(A). Since ∥u∥G(A) ≤ ∥Au∥,
the operator A can be viewed as a bounded linear operator from D(A) into X.

Proposition 5.15. Let (St)t≥0 be a strongly continuous semigroup on a Banach space X, and let A : D(A) →
X be a closed linear operator with a dense domain D(A) ⊂ X. Then the following are equivalent:

(i) The operator A is the infinitesimal generator of (St)t≥0;

(ii) For each u ∈ D(A) and t > 0, we have Stu ∈ D(A), StAu = AStu, and Stu− u =
∫ t

0
SsAuds.

(iii) For each u ∈ D(A), the function [0,∞) → X : t 7→ x(t) := Stu is continuously differentiable, takes values

in D(A), and satisfies the differential equation ẋ(t) = Ax(t) for all t ≥ 0.

Proof. It is clear that (i) ⇒ (ii) ⇒ (iii). Now we prove (iii) ⇒ (i).

Step I. Assume A satisfies (iii). Let u ∈ D(A) and t > 0. By (iii), the function ξ : [0, t] → X defined

by ξ(s) = Ssu takes values in D(A), and Aξ = ξ̇ : [0, t] → X is continuous. Consequently the function

ξ : [0, t] → D(A) is continuous with respect to the graph norm ∥ · ∥G(A). Hence
∫ t

0
ξ(s) ds ∈ D(A), and

A

∫ t

0

Ssu ds = A

∫ t

0

ξ(s) ds =

∫ t

0

Aξ(s) ds = ξ(t)− ξ(0) = Stu− u.

Step II. We let u ∈ X and t > 0, and take a sequence (un) ⊂ D(A) that converges to u in X. By Step I,

ξn :=
∫ t

0
Ssun ds ∈ D(A) and Aξn = Stun−un. Since A has closed graph, ξn →

∫ t

0
Ssu ds and Aξn → Stu−u,∫ t

0

Ssu ds ∈ D(A), and A

∫ t

0

Ssu ds = Stu− u.
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Step III. Finally, we prove that A is the infinitesimal generator of (St)t≥0, i.e. for any u, v ∈ X,

v = lim
h↓0

Shu− u

h
⇔ u ∈ D(A), and v = Au.

If u ∈ D(A) and v = Au, we have limh↓0 h
−1(Shu − u) = Au = v by (iii). Conversely, we suppose that

limh↓0 h
−1(Shu− u) = v. For each h > 0, by Step II, h−1

∫ h

0
Ssu ds ∈ D(A), and

A

(
1

h

∫ h

0

Ssu ds

)
=

Shu− u

h
.

Since h−1
∫ h

0
Ssu ds → u in X, and A has closed graph, we have u ∈ D(A) and Au = v.

Proposition 5.16. Let A : D(A) → X be the infinitesimal generator of a strongly continuous semigroup

(St)t≥0 on a Banach space X. The following are equivalent:

(i) D(A) = X;

(ii) A is bounded on X;

(iii) the mapping [0,∞) → B(X) : t 7→ St is continuous in the norm topology on B(X) (the space of bounded

linear operators on X).

Proof. (i) ⇒ (ii). By the closed graph theorem, if a linear operator A : D(A) → X is defined on a closed

subspace D(A) of X, then A is bounded if and only if it has a closed graph.

(ii) ⇒ (iii). By Proposition 5.15 and the bound (5.11), there exists M > 0 and ω ∈ R so that for all u ∈ D(A),

∥Stu− Ssu∥ =

∥∥∥∥∫ t

s

SrAudr

∥∥∥∥ ≤
∫ t

s

∥Sr∥ ∥A∥ ∥u∥ dr ≤ ∥A∥ ∥u∥
∫ t

s

Meωr dr =
M |eωt − eωs|

|ω|
∥A∥ ∥u∥

Since D(A) is dense in X,

∥Stu− Ssu∥ ≤ M |eωt − eωs|
|ω|

∥A∥ ∥u∥

for all u ∈ X. Hence ∥St − Ss∥ ≤ M
|ω| |e

ωt − eωs| ∥A∥, which converges to 0 as |t− s| → 0.

(iii) ⇒ (i). By continuity of t 7→ St in the norm topology, we have limt↓0 ∥St − Id ∥ = 0. We take δ > 0 such

that sup0≤t≤δ ∥St − Id ∥ < 1− ϵ for some ϵ ∈ (0, 1), and define

Qt =

∞∑
n=1

(−1)n−1

n
(St − Id)n, 0 ≤ t ≤ δ.

Then t 7→ Qt is continuous in the topology, since for all t, s ∈ [0, δ],

∥Qt −Qs∥ ≤
∞∑

n=1

1

n
∥St − Ss∥

n−1∑
k=0

∥St − Id ∥k∥Ss − Id ∥n−k ≤
∞∑

n=1

(1− ϵ)n∥St − Ss∥ =
∥St − Ss∥

ϵ
.

Note that the power series f(z) =
∑∞

n=1
(−1)n−1

n (z−1)n satisfies ef(z) = z for all |z−1| < 1 and f(zk) = kf(z)

whenever |zj − 1| < 1 for j = 1, · · · , k. Then eQt = St for t ∈ [0, δ], and Qkt = kQt for t ∈ [0, k−1δ]. By

continuity of t 7→ Qt, we have Qrt = rQt for all reals r ∈ [0, δ/t] by approximating r with rationals. Hence

Qt = tδ−1Qδ for all t ∈ [0, δ]. We let A = δ−1Qδ ∈ B(X). Then St = eQt = etA for t ∈ [0, δ], and

lim
t↓0

Stu− u

t
= lim

t↓0

∞∑
k=1

tk−1Aku = Au, x ∈ X.

Hence A is the infinitesimal generator of (St)t≥0, and D(A) = X.
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5.4 The Resolvent

Definition 5.17 (Resolvent set and operator). Let A : D(A) → X be a closed linear operator on a complex

Banach space X with domain D(A) ⊂ X. We define

ρ(A) =
{
λ ∈ C

∣∣ the operator λ Id−A : D(A) → X is bijective
}

to be the resolvent set of A. If λ ∈ ρ(A), the resolvent operator Rλ : X → X is defined by

Rλu = (λ Id−A)−1u.

Remark. Since A has a closed graph, so does Rλ : X → D(A) ⊂ X. By the closed graph theorem, Rλ is a

bounded linear operator on X. Furthermore,

RλAu = ARλu = λRλu− u, u ∈ D(A).

The following resolvent identity is clear by definition.

Proposition 5.18 (Resolvent identity). Let A : D(A) → X be a closed linear operator on a Banach space X.

Then for every µ, λ ∈ ρ(A),

Rλ −Rµ = (µ− λ)RλRµ,

and

RλRµ = RλRµ.

Proof. Let u ∈ X. Then for every λ, µ ∈ ρ(A),

Rλu = Rλ(µ Id−A)(µ Id−A)−1u = (λ Id−A)−1((µ− λ) Id+λ Id−A)(µ Id−A)−1u

= (µ− λ)(λ Id−A)−1(µ Id−A)−1u+ (µ Id−A)−1u = (µ− λ)RλRµu+Rµu.

The second identity is clear if λ = µ. If λ ̸= µ, by switching the positions of λ and µ we have

RλRµ =
Rλ −Rµ

µ− λ
=

Rµ −Rλ

λ− µ
= RµRλ.

Then we finish the proof.

Next, we study the smoothness of the resolvent mapping ρ(A) → B(X) : λ 7→ (λ Id−A)−1.

Proposition 5.19 (Holomorphy). Let A : D(A) → X be a closed linear operator with domain D(A) ⊂ X on

a complex Banach space X. Let µ ∈ ρ(A) and λ ∈ C such that

|λ− µ| < 1

∥(µ Id−A)−1∥
. (5.13)

The λ ∈ ρ(A) and

(λ Id−A)−1 =

∞∑
k=0

(µ− λ)k(µ Id−A)−k−1.

Proof. Define the bounded linear operator Tλ ∈ B(X) by

Tλu = u− (µ− λ)(µ Id−A)−1u, u ∈ X.

By (5.13), Tλ is invertible and

T−1
λ =

∞∑
k=0

(µ− λ)k(µ Id−A)−k.
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For all u ∈ D(A), we have Tλ(µ Id−A)u = (µ Id−A)u− (µ− λ)u = (λ Id−A)u. Hence λ Id−A : D(A) → X

is bijective, and

(λ Id−A)−1 = (µ Id−A)−1Tλ =

∞∑
k=0

(µ− λ)−1(µ Id−A)−k−1.

This finish the proof.

Remark. According to this proposition, the resolvent set ρ(A) is open, and

lim
h→0

((λ+ h) Id−A)−1 − (λ Id−A)−1

h
= lim

h→0

∑∞
k=1(−h)k(λ Id−A)−k−1

h
= −(λ Id−A)−2, λ ∈ ρ(A).

Therefore the mapping ρ(A) → B(X) : λ 7→ (λ Id−A)−1 is holomorphic. Furthermore, we can compute the

higher-order derivatives by induction:

d

dλ
(λ Id−A)−k = lim

h→0

((λ+ h) Id−A)−k − (λ Id−A)−k

h

= lim
h→0

((λ+ h) Id−A)
[
((λ+ h) Id−A)−(k+1) − (λ Id−A)−(k+1)

]
+ h(λ Id−A)−(k+1)

h

= (λ Id−A)
d

dλ
(λ Id−A)−(k+1) + (λ Id−A)−(k+1), k ∈ N.

Therefore
d

dλ
(λ Id−A)−k = −k(λ Id−A)−(k+1), k ∈ N,

and
dk

dλk
(λ Id−A)−1 = (−1)kk!(λ Id−A)−(k+1), k ∈ N.

Next we study the resolvent of the infinitesimal generator.

Proposition 5.20 (Resolvent identity for semigroups). Let A : D(A) → X be the infinitesimal generator of a

strongly continuous semigroup (St)t≥0 on a complex Banach space X. Let λ ∈ C satisfy

Reλ > ω0 := lim
t→∞

log ∥St∥
t

.

Then λ ∈ ρ(A), and the resolvent (λ Id−A)−1 of A satisfies

(λ Id−A)−ku =
1

(k − 1)!

∫ ∞

0

tk−1e−λtStu dt, u ∈ X, k ∈ N. (5.14)

Proof. We first prove the case k = 1. We take ω ∈ (ω0,Reλ). By Lemma 5.9, there exists a constant M ≥ 1

such that ∥St∥ ≤ Meωt for all t ≥ 0. Hence ∥e−λtStu∥ ≤ Me(ω−Reλ)t∥u∥ for all u ∈ X and all t ≥ 0. Hence

R̃λu :=

∫ ∞

0

e−λtStu dt = lim
T→∞

∫ T

0

e−λtStu dt, x ∈ X

defines a bounded linear operator R̃λ on X, since ∥R̃λu∥ ≤ M
λ−ω∥u∥.

Step I. For any u ∈ X and T > 0, we set f(t) = e−λ(T−t)u and t = T in Lemma 5.13 to obtain∫ T

0

e−λtStu dt ∈ D(A), A

∫ T

0

e−λtStu dt = e−λTSTu− u+ λ

∫ T

0

e−λtStu dt.

Note that
∫ T

0
e−λtStu dt → R̃λu as T ↑ ∞, and both sides of the above identity converges. Since A has a

closed graph, we have R̃λu ∈ A and AR̃λu = λR̃λu− u. In other words, (λ Id−A)R̃λu = u for all u ∈ X.
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Step II. For any u ∈ D(A) and T > 0, we use integration by parts on d
dtStu = StAu to obtain∫ T

0

e−λtStAudt = e−λTSTu− u+ λ

∫ T

0

e−λtStu dt.

Again we let T ↑ ∞ to conclude that R̃λAu = λR̃λu − u. That is, R̃λ(λ Id−A)u = u for all u ∈ D(A).

Combining Step I, we know that λ Id−A : D(A) → X is bijective and (λ Id−A)−1 = R̃λ. Hence

(λ Id−A)−1u = R̃λu =

∫ ∞

0

e−λtStu dt.

For the general case, note that

(λ Id−A)−ku =
(−1)k−1

(k − 1)!

dk−1

dλk−1
(λ Id−A)−1u =

(−1)k−1

(k − 1)!

dk−1

dλk−1

∫ ∞

0

e−λtStu dt

=
1

(k − 1)!

∫ ∞

0

tk−1e−λtStu dt.

Hence we prove (5.14) for all k ∈ N.

Remark. According to this proposition, the spectrum of A satisfies

sup
λ∈σ(A)

Reλ ≤ ω0 = lim
t→∞

log ∥St∥
t

.

5.5 The Hille-Yosida-Phillips Theorem

In this subsection, we discuss how to generate a semigroup with its infinitesimal generator. First, we note that

a strongly continuous semigroup is uniquely determined by its infinitesimal generator.

Lemma 5.21 (Uniqueness). A linear operator A on a Banach space X is the infinitesimal generator of at

most one strongly continuous semigroup.

Proof. We let A : D(A) → X be the generators of two strongly continuous semigroups (St)t≥0 and (Tt)t≥0,

and fix u0 ∈ D(A). By Proposition 5.12, u(t) = Ttu0 is a solution of the Cauchy problem

u̇(t) = Au(t), u(0) = u0.

We then fix t ≥ 0, and prove that [0, t] → X : s 7→ St−su(s) is constant. Note that u(s) ∈ D(A), and

lim
t−s≥h→0

St−su(s)− St−s−hu(s)

h
= St−sAu(s), 0 ≤ s ≤ t.

This implies

d

ds
St−su(s) = lim

h→0

St−s−hu(s+ h)− St−su(s)

h

= lim
h→0

St−s−h

(
u(s+ h)− u(s)

h
−Au(s)

)
+ lim

h→0

(
St−s−hu(s)− St−su(s)

h
+ St−sAu(s)

)
+ lim

h→0
(St−sAu(s)− St−s−hAu(s))

= 0.

Hence the function [0, t] → X : s 7→ St−su(s) is everywhere differentiable and its derivative vanishes, and so it

is a constant. Thus Ttu0 = u(t) = Stu0, which holds for all u0 ∈ D(A) and t > 0. Since D(A) is dense in X,

it follows that Ttu = Stu for all u ∈ X and t > 0. Then we finish the proof.
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Theorem 5.22 (Hille-Yosida-Phillips). Let A : D(A) → X be a closed linear operator with a dense domain

D(A) ⊂ X on a real Banach space X. Fix ω ∈ R and M ≥ 1. Then the following are equivalent:

(i) A is the infinitesimal generator of a strong continuous semigroup (St)t≥0 that satisfies

∥St∥ ≤ Meωt for all t ≥ 0. (5.15)

(ii) For every real number λ > ω, the operator λ Id−A : D(A) → X is bijective, and

∥(λ Id−A)−k∥ ≤ M

(λ− ω)k
, for all λ > ω and k ∈ N. (5.16)

Proof. (i) ⇒ (ii). Since ∥St∥ ≤ Meωt, we have ω ≥ ω0 := limt→∞ t−1 log ∥St∥. We fix λ > ω and k ∈ N. Since
λ > ω0, we have λ ∈ ρ(A). By Proposition 5.20, for all u ∈ X,

∥(λ Id−A)−ku∥ ≤ 1

(k − 1)!

∫ ∞

0

tk−1e−λt∥Stu∥ dt ≤
M∥u∥
(k − 1)!

∫ ∞

0

tk−1e−(λ−ω)t dt =
M∥u∥

(λ− ω)k
.

(ii) ⇒ (i). Let A : D(A) → X be a densely defined closed linear operator such that λ Id−A : D(A) → X is

bijective and satisfies (5.16) for each λ > ω.

Step I. We prove that u = limλ↑∞ λ(λ Id−A)−1u for every u ∈ X. If u ∈ D(A), we have

λ(λ Id−A)−1u− u = (λ Id−A)−1λu− (λ Id−A)−1(λ Id−A)u = (λ Id−A)−1Au, λ > ω.

Then

∥λ(λ Id−A)−1u− u∥ =
∥∥(λ Id−A)−1Au

∥∥ ≤ M∥Au∥
(λ− ω)k

→ 0 as λ ↑ ∞.

We also note that ∥λ(λ Id−A)−1∥ ≤ λM
λ−ω ≤ 2M for all λ > 2ω+. Hence for each u ∈ X, we find a sequence

(un) ⊂ D(A) converging to u. Then

∥λ(λ Id−A)−1u− u∥ ≤ ∥λ(λ Id−A)−1∥∥un − u∥+ ∥λ(λ Id−A)−1un − un∥+ ∥un − u∥ → 0 as λ ↑ ∞.

Step II. For λ > ω and t ≥ 0, define operators

Aλ = λA(λ Id−A)−1, and Sλ
t = etAλ =

∞∑
k=0

(tAλ)
k

k!
.

Then (Sλ
t )t≥0 is a strongly continuous semigroup with bounded infinitesimal generator Aλ on X. Furthermore,

since Aλ = λ2(λ Id−A)−1 − λ Id, we have

∥Sλ
t ∥ ≤ e−tλ

[ ∞∑
k=0

tkλ2k

k!

∥∥(λ Id−A)−k
∥∥] ≤ e−tλ

[ ∞∑
k=0

tkλ2k

k!

M

(λ− ω)k

]
= Me

tλω
λ−ω . (5.17)

As a result,

∥Sλ
t ∥ ≤ M(e2tω ∨ 1), for all λ > 2ω+. (5.18)

We claim that for all u ∈ X, λ > µ > ω and t ≥ 0,∥∥Sλ
t u− Sµ

t u
∥∥ ≤ M2e

tµω
µ−ω t ∥Aλu−Aµu∥ . (5.19)

By the resolvent identity RλRµ = RµRλ, we have AλAµ = AµAλ, and AλS
µ
t = Sµ

t Aλ. Then

Sλ
t u− Sµ

t u =

∫ t

0

d

ds
Sµ
t−sS

λ
s u ds =

∫ t

0

Sµ
t−sS

λ
s (Aλu−Aµu) ds, u ∈ X.

63



Consequently,

∥Sλ
t u− Sµ

t u∥ ≤
∫ t

0

∥Sµ
t−s∥ ∥Sλ

s ∥ ∥Aλu−Aµu∥ ds

≤ M2e
tµω
µ−ω ∥Aλu−Aµu∥

∫ t

0

e−
sµω
µ−ω+ sλω

λ−ω ds ≤ M2e
tµω
µ−ω t ∥Aλu−Aµu∥,

where we use µ
µ−ω > λ

λ−ω , which proves (5.19).

Step III. We claim that for all t ≥ 0 and u ∈ X, the limit Stu := limλ↑∞ Sλ
t u exists, and St : X → X is a

bounded linear operator. Furthermore, (St)t≥0 is a strongly continuous semigroup satisfying (5.15).

We first assume u ∈ D(A). By Step I, we have limλ↑∞ Aλu = Au. By the estimate (5.19), the limit

Stu := limλ↑∞ Sλ
t u exists for all t ≥ 0, and the convergence is uniform on every compact interval [0, T ], where

0 < T < ∞. For each u ∈ X, we take a sequence (un) ⊂ D(A) such that un → u in X. By (5.18),

lim sup
λ,µ↑∞

∥Sλ
t u− Sµ

t u∥ ≤ lim sup
λ,µ↑∞

(
∥Sλ

t (u− un)∥+ ∥Sλ
t un − Sµ

t un∥+ ∥Sµ
t (u− un)∥

)
≤ lim sup

λ,µ↑∞
∥Sλ

t un − Sµ
t un∥+ 2 sup

λ>2ω+

∥Sλ
t (u− un)∥ ≤ 2M(e2tω ∨ 1)∥u− un∥, (5.20)

Letting n → ∞, we see that (Sλ
t u)λ>2ω+

is a Cauchy net, which converges in X. Furthermore, by estimate

(5.17), Stu := limλ↑∞ Sλ
t u satisfies

∥Stu∥ = lim
λ↑∞

∥Sλ
t u∥ ≤ lim

λ↑∞
Me

tλω
λ−ω ∥u∥ ≤ Metω∥u∥, u ∈ X.

Hence St is a bounded linear operator on X with ∥St∥ ≤ Metω.

Similarly, we fix T > 0 consider the bounded linear operator family ϕλ : X → C([0, T ], X) defined by

ϕλ(u; t) = Sλ
t u. For each u ∈ D(A), ϕλ(u; ·) converges uniformly to a continuous function ϕλ(u; ·) : t 7→ Stu

on [0, T ]. Using a similar control to (5.20), we conclude that t 7→ Stu is continuous on [0, T ] for all u ∈ X and

all T > 0. Also, SsStu = limλ↑∞ Sλ
s S

λ
t u = limλ↑∞ Sλ

s+tu = Ss+tu for all s, t ≥ 0, and S0u = limλ↑∞ Sλ
0 u = u.

Step IV. Finally we prove that A is the infinitesimal operator of (St)t≥0.

We fix u ∈ D(A) and h > 0. Then for each t ∈ [0, h], by (5.17) and (5.20),

∥Sλ
t Aλu− StAu∥ ≤ ∥Sλ

t ∥∥Aλu−Au∥+ ∥Sλ
t Au− StAu∥

≤ M(e2hω ∨ 1)∥Aλu−Au∥+M2e
tλω
λ−ω h∥Aλu−Au∥, λ > 2ω+.

By Step I, we know that the function t 7→ Sλ
t Aλu converges uniformly to t 7→ StAu on [0, h] as λ ↑ ∞. Then∫ h

0

StAudt = lim
λ↑∞

∫ h

0

Sλ
t Aλu dt = lim

λ→∞
Sλ
hu− u = Shu− u,

and so

lim
h↓0

Shu− u

h
= lim

h↓0

1

h

∫ h

0

StAudt = Au.

We let B be the infinitesimal generator of (St)t≥0. Then D(A) ⊂ D(B) and B|D(A) = A. Next we fix v ∈ D(B)

and λ > ω. Define u := (λ Id−A)−1(λ Id−B)v ∈ D(A) ⊂ D(B). Then

(λ Id−B)u = (λ Id−A)u = (λ Id−B)v.

By Proposition 5.20, λ ∈ ρ(B), and so λ Id−B : D(B) → X is bijective. Hence v = u ∈ D(A). This implies

D(B) = D(A) and B = A, which completes the proof.
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Remark. This theorem also tells us how to generate a semigroup from its infinitesimal generator. Let

A : D(A) → X be a densely defined closed linear operator satisfying (ii). Then the strongly continuous

semigroup (St)t≥0 generated by A is given by the strong operator limit

Stu = lim
λ↑∞

e−tλ
∞∑
k=0

tkλ2k

k!
(λ Id−A)−ku, u ∈ X, t ≥ 0.

Corollary 5.23. Let A : D(A) → X be a closed complex linear operator with a dense domain D(A) ⊂ X on

a complex Banach space X. Fix ω ∈ R and M ≥ 1. Then the following are equivalent:

(i) A is the infinitesimal generator of a strong continuous semigroup (St)t≥0 that satisfies (5.15)

(ii) For every real number λ > ω, the operator λ Id−A : D(A) → X is bijective and satisfies (5.16).

(iii) For every λ ∈ C with Reλ > ω, the operator λ Id−A : D(A) → X is bijective, and

∥(λ Id−A)−k∥ ≤ M

(Reλ− ω)k
, for all k ∈ N. (5.21)

Proof. By Proposition 5.20 and the same argument in the proof of Theorem 5.22, we have (i) ⇒ (iii). Clearly

(iii) ⇒ (ii). Finally, (ii) ⇒ (i) follows from the proof of Theorem 5.22 and the fact that the operators Sλ
t in

the proof of Theorem 5.22 are complex linear whenever A is complex linear.

Next, we discuss the generation of contraction semigroups.

Definition 5.24 (Dissipative operators). Let X be a complex Banach space. A complex linear operator

A : D(A) → X with a dense domain D(A) ⊂ X is said to be dissipative if, for every u ∈ D(A), there exists

u∗ ∈ X∗ such that

∥u∗∥2 = ∥u∥2 = ⟨u∗, u⟩, Re⟨u∗, Au⟩ ≤ 0. (5.22)

When X = H is a complex Hilbert space, A is dissipative if and only if

Re⟨u,Au⟩ ≤ 0 for all u ∈ D(A).

The following theorem characterizes the infinitesimal generators of contraction semigroups.

Theorem 5.25 (Lumer-Phillips). Let A : D(A) → X be a closed complex linear operator with a dense domain

D(A) ⊂ X on a complex Banach space X. Then the following are equivalent:

(i) A is the infinitesimal generator of a contraction semigroup (St)t≥0.

(ii) For every real number λ > 0, the operator λ Id−A : D(A) → X is bijective, and

∥(λ Id−A)−1∥ ≤ 1

λ
. (5.23)

(iii) For every λ ∈ C with Reλ > 0, the operator λ Id−A : D(A) → X is bijective, and

∥(λ Id−A)−1∥ ≤ 1

Reλ
. (5.24)

(iv) The operator A : D(A) → X is dissipative and there exists λ > 0 such that the operator λ Id−A :

D(A) → X has a dense range.

Proof. The equivalence of (i), (ii) and (iii) follows from Corollary 5.23 with M = 0 and ω = 0.

Step I. We claim that if A is dissipative then

∥λu−Au∥ ≥ Reλ∥u∥.

for all u ∈ D(A) and all λ ∈ C with Reλ > 0.
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Note that A is dissipative, there exists u∗ ∈ X∗ such that (5.22). Then

∥u∥ ∥λu−Au∥ = ∥u∗∥ ∥λu−Au∥ ≥ Re⟨u∗, λu−Au⟩ ≥ Reλ⟨u∗, u⟩ = Reλ∥u∥2,

which proves Step I.

Step II. We prove that (iv) ⇒ (iii). Assume A satisfies (iv) and define

Λ = {λ ∈ C : Reλ > 0 and λ Id−A has a dense range} ,

which is nonempty by (iv). By Step I, for every λ ∈ C with Reλ > 0, the operator λ Id−A : D(A) → X is

injective. Furthermore, for every sequence (vn) ⊂ R(λ Id−A) with vn → v ∈ X, we let un ∈ D(A) be such

that λun −Aun = vn. Then

∥un − um∥ ≤ 1

Reλ
∥vn − vm∥,

and (un) is a Cauchy sequence, which converges to some u ∈ X. Since A has a closed graph, we have u ∈ D(A)

and v = Au. Hence λ Id−A has a closed range D(λ Id−A) for every λ ∈ C with Reλ > 0. By definition of Λ,

we know that Λ ⊂ ρ(A), and

∥(λ Id−A)−1∥ ≤ 1

Reλ
for all λ ∈ Λ. (5.25)

Next, if λ ∈ Λ and |λ − µ| < Reλ, then Reµ > 0, and by Proposition 5.19 we have µ ∈ ρ(A). Hence µ ∈ Λ.

Consequently, with λ ∈ Λ fixed, we have {µ ∈ C : 0 < Reµ < 2Reλ, Imµ = Imλ} ⊂ Λ. By induction, we have

{µ ∈ C : Reµ > 0, Imµ = Imλ} ⊂ Λ.

Similarly, for each µ in the above set, the line {ν ∈ C : Re ν = Reµ} ⊂ Λ. The union of these lines is the entire

positive half-plane in C. Hence {λ ∈ C : Reλ > 0} ⊂ ρ(A), and (iii) follows from the estimate (5.25).

Step III. We prove that (i) ⇒ (iv). We assume (i) holds and fix u ∈ D(A). By Hahn-Banach theorem, there

exists u∗ ∈ X∗ such that ∥x∗∥2 = ∥x∥2 = ⟨x∗, x⟩. Since (Sh)h≥0 is a contraction group, we have

Re ⟨u∗, Shu− u⟩ ≤ ∥u∗∥∥Shu∥ − ∥u∥2 ≤ 0, h > 0.

We let h ↓ 0 to conclude that

Re ⟨u∗, Au⟩ = lim
h↓0

Re ⟨u∗, Shu− u⟩
h

≤ 0.

Hence A is dissipative. Furthermore, for all λ > ω0 := limt↓0 t
−1 log ∥St∥, we have λ ∈ ρ(A), and so the

operator λ Id−A : D(A) → X has range X, which proves (iv).
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6 Hausdorff Measures, Area and Coarea Formulae

In this section, we study measures that estimate the “low-dimensional” volume of “very small” subset of Rn,

which are obtained by considering the size of coverings.

6.1 Definitions and Fundamental Properties

Definition 6.1 (Hausdorff measures). Let X be a metric space, E ⊂ X, 0 ≤ s < ∞ and 0 < δ ≤ ∞. Define

Hs
δ(E) = inf


∞∑
j=1

αs

(
diamEj

2

)s ∣∣∣∣E ⊂
∞⋃
j=1

Ej , diamEj ≤ δ

 , where αs =
πs/2

Γ
(
s
2 + 1

) .
Based on this notation, we define the s-dimensional Hausdorff measure on X by

Hs(E) := lim
δ↓0

Hs
δ(E) = sup

δ>0
Hs

δ(E). (6.1)

Remark. If s is an integer, the constant αs is the volume of the unit ball in s-dimensional Euclidean space.

Also, the set on which we take infimum is decreasing as δ ↓ 0, hence the limit (6.1) is well-defined. We can

view this definition as evaluating the “volume” of a set by convering it with finer and finer balls.

To establish some fundamental results about Hausdorff criterions, we first introduce a criterion to verify

that an outer measure in Rn is Borel.

Theorem 6.2 (Caratheodory’s criterion). Let µ be an outer measure on a metric space X. If for all sets

A,B ⊂ X with d(A,B) > 0, we have µ(A ∪B) = µ(A) + µ(B), then µ is a Borel measure.

Proof. Step I. Assume E,F ⊂ X and F is closed. We claim that

µ(E) ≥ µ(E\F ) + µ(E ∩ F ). (6.2)

Without loss of generality we assume µ(E) < ∞, otherwise the inequality (6.2) is obvious. Define

Fm =

{
x ∈ Rn : d(x, F ) ≤ 1

m

}
, m = 1, 2, · · · .

Then d(E\Fm, E ∩ F ) ≥ 1
m > 0, and

µ(E\Fm) + µ(E ∩ F ) = µ(E ∩ (F ∪ F c
m)) ≤ µ(E). (6.3)

Step II. We then set

Ak =

{
x ∈ E :

1

k + 1
< d(x, F ) ≤ 1

k

}
, k = 1, 2, · · · .

Since F is closed, E\F = (E\Fm) ∪ (
⋃∞

k=m Ak), and

µ(E\Fm) ≤ µ(E\F ) ≤ µ(E\Fm) +

∞∑
k=m

µ(Ak). (6.4)

If j ≥ i+ 2, we have d(Ai, Aj) > 0. By induction, for all m ∈ N,

m∑
k=1

µ(A2k−1) = µ

(
m⋃

k=1

A2k−1

)
≤ µ(E), and

m∑
k=1

µ(A2k) = µ

(
m⋃

k=1

A2k

)
≤ µ(E).
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Combining these results and letting m → ∞, we have
∑∞

k=1 µ(Ak) ≤ 2µ(E) < ∞. Recalling (6.4), we have

µ(E\Fm) → µ(E\F ) as m → ∞. We plug in this limit to (6.3) to get (6.2).

Step III. Since the outer measure is subadditive, the opposite of (6.2) holds, and we have for all closed sets

F ⊂ X the Carathéodory condition

µ(E) = µ(E\F ) + µ(E ∩ F ), for all E ⊂ X.

Hence µ is a measure on the σ-algebra generated by all closed subsets of X, which is the Borel σ-algebra.

Theorem 6.3. Let n ∈ N. For each 0 ≤ s < ∞, the Hausdorff measure Hs on a metric space X satisfies:

(i) Hs is a Borel measure on X;

(ii) (Borel Regularity). For each E ⊂ X, there exists a Borel set B ⊃ E such that Hs(B) = Hs(E).

Proof. Step I. We claim that Hs is an outer measure. Let A1, A2, · · · ⊂ X. For any δ > 0, let Ak ⊂
⋃∞

j=1 E
k
j ,

with diamEk
j ≤ δ. Then {Ek

j }∞j,k=1 covers
⋃∞

k=1 Ak, and

Hs
δ

( ∞⋃
k=1

Ak

)
≤

∞∑
j=1

∞∑
k=1

αs

(
diamEk

j

2

)s

Taking the infima over {Ek
j }∞j,k=1, we have

Hs
δ

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

Hs
δ(Ak) ≤

∞∑
k=1

Hs(Ak).

Finally, we take δ ↓ 0 to conclude the proof of our claim.

Step II. Let A,B ⊂ X be two sets with d(A,B) > 0. By Caratheodory’s criterion, we can conclude that Hs is

a Borel measure if Hs(A ∪B) = Hs(A) +Hs(B). Below we prove this identity.

We take 0 < δ < 1
4d(A,B), and assume that A ∪ B ⊂

⋃∞
j=1 Ej with diamEj < δ for all j ∈ N. We define

A = {Ej : A∩Ej ̸= ∅} and B = {Ej : B ∩Ej ̸= ∅}. Then A ⊂
⋃

Ej∈A Ej and B ⊂
⋃

Ej∈B Ej . Furthermore, if

Ei ∈ A and Ej ∈ B, we have d(Ei, Ej) > 2δ by the fact diamEi,diamEj < δ. Hence

∞∑
k=1

αs

(
diamEk

2

)s

=
∑
Ej∈A

αs

(
diamEj

2

)s

+
∑
Ej∈B

αs

(
diamEj

2

)s

≥ Hs
δ(A) +Hs

δ(B).

Taking the infimum over all such sets (Ej)
∞
j=1, we conclude that Hs

δ(A ∪ B) ≥ Hs
δ(A) + Hs

δ(B) for 0 < δ <
1
4d(A,B). Letting δ ↓ 0, we have Hs(A ∪B) ≥ Hs(A) +Hs(B). The opposite holds by subadditivity of µ.

Step III. To verify the assertion (ii), we assume E ⊂ X and Hs(E) < ∞ (otherwise just take B = X). For

each k ∈ N, take Ek
1 , E

k
2 , · · · ⊂ X such that E ⊂

⋃∞
j=1 X, diamEk

j ≤ 1
k for all j ∈ N, and

∞∑
j=1

αs

(
diamEk

j

2

)s

≤ Hs
1/k(E) +

1

k
.

We can further assume Ek
j ’s are closed, since the cover property and set diameters do not change when we

take closures. We pick B =
⋂∞

k=1

⋃∞
j=1 E

k
j , which is a Borel set that contains E. Then for each k ∈ N,

Hs
1/k(E) ≤ Hs

1/k(B) ≤ Hs

 ∞⋃
j=1

Ek
j

 ≤
∞∑
j=1

αs

(
diamEk

j

2

)s

≤ Hs
1/k(E) +

1

k
.

Letting k → ∞ concludes the proof.
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We next study some properties of Hausdorff measures on Euclidean spaces.

Proposition 6.4. Let 0 ≤ s < ∞ and let Hs be the s-diemnsional Hausdorff measure on Rn.

(i) (Scaling). Let λ ∈ R and E ⊂ Rn. Then Hs(λE) = |λ|sHs(E).

(ii) (Affine Invariance). Let T : Rn → Rn be an affine isometry, and E ⊂ Rn. Then Hs(TE) = Hs(E).

(iii) Let E ⊂ Rn. If Hs
δ(E) = 0 for some 0 < δ < ∞, then Hs(E) = 0.

(iv) If s > n, then Hs ≡ 0 on Rn.

Proof. The properties (i) and (ii) is clear by definition.

(iii) The conclusion is clear for s = 0, so we may assume s > 0. For any ϵ > 0, there exists E1, E2, · · · ⊂ Rn

such that E ⊂
⋃∞

j=1 Ej and

∞∑
j=1

αs

(
diamEj

2

)s

< ϵ.

Then for each j, we have diamEj ≤ δϵ := 2
(

ϵ
αs

)1/s
, and Hs

δϵ
(E) < ϵ. Since δϵ ↓ 0 as ϵ ↓ 0, we have Hs(E) = 0.

(iv) For each m ∈ N, the unit cube Q ∈ Rn can be divided into mn cubes with side 1
m and diameter

√
n

m . Then

Hs√
n

m

(Q) ≤
mn∑
j=1

αs

(√
n

2m

)s

= αs

(√
n

2

)s

mn−s.

When s > n, the last term goes to zero as m → ∞. Then Hs(Q) = 0, and Hs(Rn) = 0.

Now we focus on Hausdorff measures of low dimensions.

Proposition 6.5. (i) H0 is the counting measure. (ii) H1 on R coincides the Lebesgue measure m.

Proof. (i) By definition, for each x ∈ Rn, we have H0
δ({x}) = 1 for all δ > 0, and H0({x}) = 1.

(ii) Note that α1 = 2. Let E ⊂ R and δ > 0. Since the Lebesgue measure as an outer measure on R,

m(E) = inf


∞∑
j=1

diamEj

∣∣∣∣∣
∞⋃
j=1

Ej ⊃ E

 ≤ inf


∞∑
j=1

diamEj

∣∣∣∣∣
∞⋃
j=1

Ej ⊃ E, diamEj ≤ δ

 = H1
δ(E).

On the other hand, set Ik = [(k − 1)δ, kδ] for k ∈ Z. Then

m(E) = inf


∞∑
j=1

diamEj

∣∣∣∣∣
∞⋃
j=1

Ej ⊃ E

 ≥ inf


∞∑
j=1

∑
k∈Z

diam(Ik ∩ Ej)

∣∣∣∣∣
∞⋃
j=1

Ej ⊃ E

 ≥ H1
δ(E).

Hence H1
δ = m for all δ > 0, and H1 = m on R.

We next study what happens to the Hausdorff measure Hs of a E ⊂ Rn when we change the dimension s,

and introduce the Hausdorff dimension.

Proposition 6.6. Let X be a metric space, E ⊂ X and 0 ≤ s < t < ∞.

(i) If Hs(E) < ∞, then Ht(E) = 0.

(ii) If Ht(E) > 0, then Hs(E) = ∞.

Proof. We take δ > 0, and
⋃∞

j=1 Ej ⊃ E with diamEj ≤ δ. Then

∞∑
j=1

αs

(
diamEj

2

)s

≤ Hs
δ(E) + 1 ≤ Hs(E) + 1.
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Note that diamEj ≤ δ. Hence

Ht
δ(E) =

∞∑
j=1

αt

(
diamEj

2

)t

≤ αtδ
t−s

αs2t−s

∞∑
j=1

αs

(
diamEj

2

)s

≤ αtδ
t−s

αs2t−s
(Hs(E) + 1) .

If Hs(E) < ∞, we send δ ↓ 0 to conclude Ht(E) = 0. Note that (ii) is the contrapositive of (i).

The above proposition justifies the following definition of Hausdordff dimension.

Definition 6.7 (Hausdorff dimension). Let X be a metric space. The Hausdorff dimension of a set E ⊂ X is

dimH(E) = inf{0 ≤ s < ∞ : Hs(E) = 0}.

Remark. By Proposition 6.6,

Hs(E) =

{
∞, 0 ≤ s < dimH(E),

0, s > dimH(E).

Hence we have following equivalent characterization of Hausdorff dimension:

dimH(E) = inf{0 ≤ s < ∞ : Hs(E) < ∞} = sup{0 ≤ s < ∞ : Hs(E) > 0}
= sup{0 ≤ s < ∞ : Hs(E) = ∞} = inf{0 ≤ s < ∞ : Hs(E) = 0}.

The Hausdorff dimension of a set in a general metric space can be infinity. But in the Euclidean space Rn, it

is clear that dimH(E) ≤ n for all E ⊂ Rn.

Theorem 6.8 (Countable stability). Let X be a metric space and E1, E2, · · · ⊂ X. Then

dimH

 ∞⋃
j=1

Ej

 = sup
j∈N

dimH(Ej).

Proof. If s < supj∈N dimH(Ej), there exists j ∈ N such that s < dimH(Ej), and Hs(Ej) = ∞. Then

Hs

 ∞⋃
j=1

Ej

 ≥ Hs(Ej) = ∞. (6.5)

Hence s ≤ dimH(
⋃∞

j=1 Ej). Since s < supj∈N dimH(Ej) is arbitrary, we let s ↑ dimH(Ej) to obtain

sup
j∈N

dimH(Ej) ≤ dimH

 ∞⋃
j=1

Ej

 .

Also, if s > supj∈N dimH(Ej), then Hs(Ej) = 0 for all j ∈ N, and

Hs

 ∞⋃
j=1

Ej

 ≤
n∑

j=1

Hs(Ej) = 0.

Hence s ≥ dimH(
⋃∞

j=1 Ej), and we can similarly obtain

sup
j∈N

dimH(Ej) ≥ dimH

 ∞⋃
j=1

Ej

 ,

which is the opposite of (6.5).
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Example 6.9 (Hausdorff dimension of Cantor sets). Let 0 < γ < 1
2 . Beginning from the unit interval [0, 1], the

γ-ary Cantor set is obtained by repeatedly removing the middle open 1− 2γ from the interval. To elaborate,

we first remove the open interval (γ, 1− γ) from I0,1 = [0, 1] and get

I1,1 = [0, γ], I1,2 = [1− γ, γ].

Next, we remove the middle open interval of length γ(1− 2γ) of each of the above intervals and get

I2,1 = [0, γ2], I2,2 = [γ − γ2, γ], I2,3 = [1− γ, 1− γ + γ2], I2,4 = [1− γ2, 1].

Continuing this process, after the nth step there are 2n closed intervals In,1, In,2, · · · , In,2n of length γn, and

we remove the middle open interval of length γn(1− 2γ) from each intervals at the next step. We define the

γ-ary Cantor set as the decreasing intersection

Cγ =

∞⋂
n=1

2n⋃
j=1

In,j .

Since for each n ∈ N, we can cover Cγ by 2n intervals of length γn. Hence

Hs
δn(Cγ) ≤

αs

2s
(2γs)

n
, δn =

γn

2
.

If we choose s = log 2
log(1/γ) , we have

Hs(Cγ) = lim
n→∞

Hs
δn(Cγ) ≤

αs

2s
< ∞.

We also give a lower bound of the s-dimensional Hausdorff measure of Cγ :

Hs(Cγ) ≥
αs

4 · 2s
> 0. (6.6)

According to the two estimates, we conclude that the Hausdorff dimension of Cγ is s = log 2
log(1/γ) .

Proof of (6.6). Let J be a collection of open intervals that cover Cγ . We prove that

∑
Ji∈J

m(Ji)
s ≥ 1

4
. (6.7)

We assume that Ji contains some interval Il,jl from the lth stage, and let k be the smallest integer such that

Ji contains some interval Ik,jk from the kth stage. Clearly k ≤ l. Furthermore, following our construction of

Cγ we know that no more than 4 intervals from the kth stage can intersect Ji for otherwise Ji must contain

some interval Ik−1,jk−1
from the (k − 1)th stage. Thus

4m(Ji)
s ≥

∑
Ik,j∩Ji ̸=∅

m(Ji)
s ≥

∑
Ik,j∩Ji ̸=∅

m(Ik,j)
s =

∑
Ik,j∩Ji ̸=∅

∑
Il,j′⊂Ik,j

m(Il,j′)
s ≥

∑
Il,j⊂Ji

m(Il,j)
s.

By compactness of Cγ and the Lebesgue number lemma, for sufficiently large l, every interval Il,j is contained

in some Ji ∈ J . Hence

4
∑

Ji∈J

m(Ji)
s ≥

∑
Ji∈J

∑
Il,j⊂Ji

m(Il,j)
s ≥

2l∑
j=1

m(Il,j)
s = 2l(γl)s = 1,

which establishes (6.7). Now if the estimate (6.6) did not hold, there would exist E1, E2, · · · ⊂ R such that
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⋃∞
i=1 Ei ⊃ Cγ , and for some ϵ > 0,

∞∑
i=1

(diamEi)
s <

1

4(1 + ϵ)s
.

We then replace each Ei by an open interval Ji of length (1 + ϵ) diamEi with Ji ⊃ Ei. This implies

∞∑
i=1

m(Ji)
s <

1

4
,

which contradicts (6.7). Hence we complete the proof.

6.2 Vitali’s Covering Theorem

In this subsection, we study how to fill an open set in Rn with countably many balls and introduce Vitali’s

covering theorem. We first discuss an analogue of the finite result discussed in Lemma 2.30.

Theorem 6.10 (Vitali’s covering theorem). For any collection F of non-degenerate closed balls in Rn with

sup
B∈F

diamB < ∞.

Then there exists a countable subcollection G ⊂ F of disjoint balls such that⋃
B∈F

B ⊂
⋃
B∈G

5B,

where 5B denotes the closed ball with the same center as B but with 5 times the radius.

Proof. We write M = supB∈F diamB and set

Fk =

{
B ∈ F :

M

2k
< diamB ≤ M

2k−1

}
, k = 1, 2, · · · .

We define Gk ⊂ Fk as follows:

• Let G1 be any maximal disjoint subcollection of balls in F1, which is clearly countable;

• With G1, · · · ,Gk−1 selected, we choose Gk to be any maximal disjoint subcollection ofB ∈ Fk : B ∩B′ = ∅ for all B′ ∈
k−1⋃
j=1

Gj

 .

Finally, we define G =
⋃∞

k=1 Gk, which is clearly a subcollection of disjoint balls in F . To conclude the proof,

we claim that, for each ball B ∈ F , there exists B′ ∈ G such that B ∩B′ ̸= ∅ and B ⊂ 5B′.

Fix B ∈ F . There then exists an index k such that B ∈ Fk. By maximality of Gk, there exists a ball

B′ ∈
⋃k

j=1 Gj with B ∩ B′ ̸= ∅. Since diamB′ > 2−kM and diamB ≤ 21−kM , we have diamB ≤ 2 diamB′

and so B ⊂ 5B′ by the triangle inequality.

Theorem 6.11 (Filling open sets with balls). Let U ⊂ Rn be open, and δ > 0. Then there exists a countable

collection G of disjoint closed balls contained in U such that diamB < δ for all B ∈ G and

m

(
U\

⋃
B∈G

B

)
= 0,

where m is the Lebesgue measure on Rn.
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Proof. Step I. We first assume m(U) < ∞, and fix 1 − 1
5n < θ < 1. We claim that there exists finitely many

disjoint balls B1, · · · , BM1
⊂ U such that

m

U\
M1⋃
j=1

Bj

 ≤ θm(U). (6.8)

To prove this, we let

F1 = {B ⊂ U : B is a closed ball, diamB < δ} .

By Vitali’s covering theorem [Theorem 6.10], there exists a countable subcollection G1 ⊂ F1 of disjoint balls

contained in U such that ⋃
B∈G1

5B ⊃ U.

Hence

m(U) ≤ m

( ⋃
B∈G1

5B

)
≤
∑
B∈G1

m(5B) = 5n
∑
B∈G1

m(B) = 5nm

( ⋃
B∈G1

B

)
.

As a result,

m

(
U\

⋃
B∈G1

B

)
≤
(
1− 1

5n

)
m(U).

Since m(U) < ∞ and θ > 1− 1
5n , there exists finitely many balls B1, · · · , BM1

∈ G1 satisfying (6.8).

Step II. Define

U2 = U\
⋃

B∈G1

B,

and

F2 = {B ⊂ U2 : B is a closed ball, diamB < δ} .

As above, we may find finitely many disjoint balls BM1+1, · · · , BM2 ∈ F2 such that

m

U\
M2⋃
j=1

B

 = m

U2\
M2⋃

j=M1+1

B

 ≤ θm(U2) ≤ θ2m(U).

Step III. Continuing this procedure, for each k, there exist finitely many balls B1, · · · , BMk
⊂ U with diameter

less than δ such that

m

U\
Mk⋃
j=1

B

 ≤ θkm(U), k = 1, 2, · · · .

Since θk → 0 as k → ∞, we complete the proof for the case m(U) < ∞.

Step IV. If m(U) = ∞, we apply the above construction to each of the open sets

Um = {x ∈ U : m < |x| < m+ 1} , m = 1, 2, · · · .

Then we conclude the proof.
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6.3 The Isodiametric Inequality

From now on, to distinguish between Lebesgue measures on Euclidean spaces of different dimensions, we use

Ln to denote the Lebesgue measure on Rn. This is obtained by applying Carathéodory’s extension on Rn to

a pre-measure on the semi-ring comprised of cells of the form
∏n

i=1(ai, bi]. To be specific, one define

Ln

(
n∏

i=1

(ai, bi]

)
=

n∏
i=1

(bi − ai) for all ai ≤ bi, i = 1, 2, · · · , n,

and for E ⊂ Rn, define

Ln(E) = inf


∞∑
j=1

Ln(Qj)

∣∣∣∣ (Qj)
∞
j=1 are cells of the form

n∏
i=1

(ai, bi], and

∞⋃
j=1

Qj ⊃ E

 . (6.9)

In this subsection, we are going to establish that Ln = Hn on Rn by the isodiametric inequality. To proceed,

we first introduce the Steiner symmetrization.

Definition 6.12 (Steiner symmetrization). Let ξ ∈ Rn with |ξ| = 1, and b ∈ Rn. Denote by

Lξ(b) = {b+ tξ : t ∈ R}

the line through b in the direction ξ, and

Pξ = {x ∈ Rn : ξ⊤x = 0}

by the plane through the origin perpendicular to ξ. Given E ∈ Rn, we define the Steiner symmetrization of

E with respect to the plane Pξ to be the set

Sξ(E) =
⋃

b∈Pξ, E∩Lξ(b)̸=∅

{
b+ ta : |t| ≤ 1

2
H1
(
E ∩ Lξ(b)

)}

Proposition 6.13 (Properties of the Steiner symmetrization). Let ξ ∈ Rn with |ξ| = 1, and E ⊂ Rn. Then

(i) diamSξ(E) ≤ diamE.

(ii) If E is Ln-measurable, so is Sξ(E), and Ln(Sξ(E)) = Ln(E).

Proof. (i) We may assume that diamE < ∞ and E is closed. We fix ϵ > 0 and choose x, y ∈ Sξ(E) with

diamSξ(E) ≤ |x− y|+ ϵ. Set b = x− (ξ⊤x)ξ ∈ Pξ and c = y − (ξ⊤y)ξ ∈ Pξ, and

r = inf{t : b+ tξ ∈ E}, s = sup{t : b+ tξ ∈ E}, u = inf{t : c+ tξ ∈ E}, v = sup{t : c+ tξ ∈ E}.

Without loss of generality, we may assume v − r ≥ s− u. Then

v − r ≥ 1

2
(v − r) +

1

2
(s− u) =

1

2
(s− r) +

1

2
(v − u) ≥ 1

2
H1(E ∩ Lξ(b)) +

1

2
H1(E ∩ Lξ(c)).

Also, by definition of Sξ(E), we have |x⊤ξ| ≤ 1
2H

1(E ∩ Lξ(b)) and |y⊤ξ| ≤ 1
2H

1(E ∩ Lξ(c)). Hence

v − r ≥ |x⊤ξ|+ |y⊤ξ| = |(x− y)⊤ξ|.

Therefore,

(diamSξ(E)− ϵ)
2 ≤ |x− y|2 = |b− c|2 + |(x− y)⊤ξ|2

≤ |b− c|2 + (v − r)2 = |(b+ rξ)− (c+ vξ)|2 ≤ (diamE)2,
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where the last inequality holds because E is closed and so b+ rξ, c+ vξ ∈ E. Since ϵ > 0 is arbitrary, we have

diamSξ(E) ≤ diamE.

(ii) Since Ln is rotation invariant, we may assume ξ = en = (0, · · · , 0, 1)⊤. Note that L1 = H1 on R. By

Tonelli-Fubini theorem, the map f : Rn−1 → R defined by

f(b) = H1(E ∩ Lξ(b, 0)) = L1(E ∩ Lξ(b, 0)) =

∫
R
1E(b, t) dt

is Ln−1 measurable, and Ln(E) =
∫
Rn−1 f(b) db. We use the following lemma.

Lemma 6.14. Let f : Rn−1 → [0,∞] be an Ln−1-measurable function. Then the hypograph of f , defined by

Hf =
{
(x, y) : x ∈ Rn−1, y ∈ R and y ≤ f(x)

}
,

is Ln-measurable.

Proof. Note that Hf is the level set {g ≥ 0} of the Ln+1-measurable function g(x, y) = f(x)− y.

Proof of Proposition 6.13 (Continued). We note that

Sξ(E) =

{
(b, t) ∈ Rn : −f(b)

2
≤ t ≤ f(b)

2

}
\
{
(b, 0) : b ∈ Rn−1, E ∩ Lξ(b, 0) = ∅

}
.

By Lemma 6.14, the symmetrized set Sξ(E) is Ln−1 measurable, and

Ln(Sξ(E)) =

∫
Rn

f(b) db = Ln(E).

Remark. In fact, throughout our subsequent proof of Ln = Hn, we only use the statement (ii) above in the

special case that ξ is a standard coordinate vector ei, i = 1, 2, · · · , n. Since Ln is obviously rotation invariant,

we therefore indeed prove that Ln is rotation invariant.

We next introduce the isodiametric inequality, which gives an estimate of Ln(E) in terms of diamE.

Theorem 6.15 (Isodiametric inequality). For all sets E ⊂ Rn,

Ln(E) ≤ αn

(
diamE

2

)n

.

Proof. We may assume diamE < ∞. We take the standard basis ei = (0, · · · , 0, 1
i-th

, 0, · · · , 0) of Rn, and

consider the Steiner symmetrizations E1 = Se1(E), E2 = Se2(E1), · · · , En = Sen(En−1). Write E∗ = En.

Step I. We claim that E∗ is symmetric with respect to the origin, i.e. for every x ∈ E, we have −x ∈ E.

To prove this claim, we note that E1 is clearly symmetric with respect to Pe1 . We hence assume 1 ≤ k < n

and Ek is symmetric with respect to Pe1 , · · · , Pek . Then Ek+1 = Sek+1
(Ek) is symmetric with respect to Pek .

We fix 1 ≤ j ≤ k, and let Rj : Rn → Rn be the reflection through Pej . For any b ∈ Pek+1
, since Rj(Ek) = Ek,

H1(Ek ∩ Lek+1
(b)) = H1(Rj(Ek) ∩ Lek+1

(Rjb)) = H1(Ek ∩ Lek+1
(Rjb)).

As a result,

{t ∈ R : b+ tek+1 ∈ Ek+1} = {t ∈ R : Rjb+ tek+1 ∈ Ek+1}, b ∈ Pek+1
,

and Rj(Ek+1) = Ek+1. Therefore Ek+1 is symmetric with respect to Pej , j = 1, 2, · · · , k. By induction, E∗ is

symmetric with respect to Pe1 , · · · , Pen , and hence with respect to the origin.
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Step II. If x ∈ E∗, we have −x ∈ E∗ by Step I, and so diamE∗ ≥ 2|x|. Therefore E∗ ⊂ B(0, 1
2 diamE∗), and

Ln(E∗) ≤ Ln

(
B

(
0,

diamE∗

2

))
= αn

(
diamE∗

2

)n

. (6.10)

Since E is Ln-measurable, by Proposition 6.13,

Ln((E)∗) = Ln(E), and diam(E)∗ ≤ diamE.

We then apply (6.10) on (E)∗ to obtain

Ln(E) ≤ Ln(E) = Ln((E)∗) ≤ αn

(
diam(E)∗

2

)n

≤ αn

(
diamE

2

)n

= αn

(
diamE

2

)n

.

Thus we complete the proof.

Remark. Generally, when the dimension n ≥ 2, we cannot contain a set E ⊂ Rn in a ball with diameter

diamE. For example, consider an equilateral triangle in R2.

Using the isodiametric inequality, we can establish the equivalence of Lebesgue and Hausdorff measures in

multidimensional Euclidean spaces.

Theorem 6.16 (n-dimensional Hausdorff and Lebesgue measures). We have

Hn = Ln on Rn.

Proof. Note that we can write each cell of the form
∏n

i=1(ai, bi] as the union of countably many (equilateral)

cubes. According to (6.9), for each δ > 0, we have

Ln(E) = inf


∞∑
j=1

Ln(Qj)

∣∣∣∣ (Qj)
∞
j=1 are cubes, diamQj ≤ δ, and

∞⋃
j=1

Qj ⊃ E

 , E ⊂ Rn.

Step I. We claim that Hn is absolutely continuous with respect to Ln. For each cube Qj ⊂ Rn,

Ln(Qj) =

(
diamQj√

n

)n

=
αn

Cn

(
diamQj

2

)n

, where Cn = αn

(√
n

2

)n

.

Therefore we have

Hn
δ (E) ≤ inf


∞∑
j=1

αn

(
diamQj

2

)n ∣∣∣∣ (Qj)
∞
j=1 are cubes, diamQj ≤ δ, and

∞⋃
j=1

Qj ⊃ E

 ≤ CnLn(Qj).

Letting δ ↓ 0, we conclude that Hn is absolutely continuous with respect to Ln.

Step II. We fix ϵ, δ > 0 and take cubes (Qj)
∞
j=1 such that E ⊂

⋃∞
j=1 Qj , diamQj < δ for all j ∈ N, and

∞∑
j=1

Ln(Qj) ≤ Ln(E) + ϵ.

By Theorem 6.11, for each j ∈ N, there exist disjoint closed balls (Bj
k)

∞
k=1 contained in the interior of Qj such

that diamBj
k < δ for all k and

Ln

(
Qj\

∞⋃
k=1

Bj
k

)
= Ln

(
Q̊j\

∞⋃
k=1

Bj
k

)
= 0.
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By Step I, we have

Hn

(
Qj\

∞⋃
k=1

Bj
k

)
= 0.

Therefore

Hn
δ (E) ≤

∞∑
j=1

Hn
δ (Qj) =

∞∑
j=1

Hn
δ

( ∞⋃
k=1

Bj
k

)
≤

∞∑
j=1

∞∑
k=1

Hn
δ

(
Bj

k

)
≤

∞∑
j=1

∞∑
k=1

αn

(
diamBj

k

2

)n

=

∞∑
j=1

∞∑
k=1

Ln
(
Bj

k

)
=

∞∑
j=1

Ln

( ∞⋃
k=1

Bj
k

)
=

∞∑
j=1

Ln(Qj) ≤ Ln(E) + ϵ.

Letting δ, ϵ ↓ 0, we conclude that Hn(E) ≤ Ln(E).

Step III. We fix δ > 0, and choose (Ej)
∞
j=1 such that

⋃∞
j=1 Ej ⊃ E and diamEj ≤ δ for all j. By the

isodiametric inequality [Theorem 6.15],

Ln(E) ≤
∞∑
j=1

Ln(Ej) ≤
∞∑
j=1

αn

(
diamEj

2

)n

.

Taking the infima, we have Ln(E) ≤ Hn
δ (E). Letting δ ↓ 0, we conclude that Ln(E) ≤ Hn(E).

6.4 Hausdorff Measure under Hölder and Lipschitz Continuous Mappings

In this subsection, we study Hölder and Lipschitz continuous mappings. Generally, we fix 0 < γ ≤ 1, and let

A ⊂ Rn. A function f : A → Rm is called Hölder continuous with exponent γ, provided

[f ]C0,γ(A) := sup
x,y∈A, x ̸=y

|f(x)− f(y)|γ

|x− y|
< ∞.

This is a seminorm on the vector space C0,γ(A) of γ-Hölder continuous functions on A.

Theorem 6.17 (Hausdorff measure under Hölder mappings). Let γ ∈ (0, 1], A ⊂ Rn, and f : A → Rm be a

γ-Hölder continuous function. Then for every 0 ≤ s < ∞,

Hs(f(A)) ≤
αs[f ]

s
C0,γ(A)

αγs2(1−γ)s
Hγs(A). (6.11)

Proof. We fix δ > 0 and choose subsets (Ej)
∞
j=1 of Rn with A ⊂

⋃∞
j=1 Ej and diam(Ej) ≤ δ for each j. Then

diam f(Ej) = sup
x,y∈Ej

|f(x)− f(y)| ≤ [f ]C0,1(A) sup
x,y∈Ej

|x− y|γ ≤ [f ]C0,1(A)(diamEj)
γ ≤ δγ [f ]C0,1(A).

Hence

Hs
δγ [f ]C0,1(A)

(f(A)) ≤
∞∑
j=1

αs

(
diam f(Ej)

2

)s

≤ [f ]sC0,1(A)

∞∑
j=1

αs

2(1−γ)s

(
diamEj

2

)γs

.

Taking the infima over all (Ej)
∞
j=1, we have Hs

δγ [f ]C0,1(A)
(f(A)) ≤

αs[f ]
s
C0,γ (A)

αγs2(1−γ)s Hγs
δ (A). Send δ ↓ 0.

Remark. (I) By estimate (6.11), for all s > dimH(A)
γ , we have Hs(f(A)) = 0. Then

dimH(f(A)) ≤ dimH(A)

γ
. (6.12)

By countable stability of Hausdorff dimension, (6.12) also holds for locally γ-Hölder continuous functions.
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(II) In particular, for a Lipschitz continuous function f : A → Rm, we have

Hs(f(A)) ≤ [f ]sC0,1(A)H
s(A).

One typical example is the projection map. If P : Rn → Rn is a projection, i.e. Px ⊥ x− Px for all x ∈ Rn,

then [P ]C0,1(Rn) = 1, and Hs(P (A)) ≤ Hs(A) for all A ⊂ Rn.

Next we study the Hausdorff dimension of function graphs. Given A ⊂ Rn and a function f : Rn → Rm,

we write the graph of f over A by

Grf (A) = {(x, f(x)) : x ∈ A} ⊂ Rn+m.

Theorem 6.18 (Hausdorff dimension of graphs). Let A ⊂ Rn with Ln(A) > 0, and f : Rn → Rm.

(i) dimH(Grf (A)) ≥ n;

(ii) If f is locally γ-Hölder continuous for some exponent γ > 0, then

dimH(Grf (A)) ≤ n+ (1− γ)

(
m ∧ 1

γ

)
.

Proof. (i) Consider the standard projection P : Rn+m → Rn, (x1, · · · , xn, xn+1, · · · , xn+m) 7→ (x1, · · · , xn).

Then [P ]C0,1(Rn+m) = 1, and Hn(Grf (A)) ≥ Hn(P (Grf (A))) = Hn(A) > 0. Hence dimH Grf (A) ≥ n.

(ii) We let Q denote any cube in Rn of side length 1, and divide Q into kn subcubes Q1, Q2, · · · , Qkn of side

length 1
k . Then diamQj =

√
n
k for each j. Define

aij = inf
x∈A∩Qj

f i(x), bij = sup
x∈A∩Qj

f i(x), i = 1, · · · ,m, j = 1, · · · , kn.

By γ-Hölder continuity,

bij − aij ≤ [f ]C0,γ(Q) diam(Qj ∩A)γ ≤ [f ]C0,γ(Q)

(√
n

k

)γ

.

Then the image of f over A ∩Qj satisfies f(A ∩Qj) =
∏m

i=1[a
i
j , b

i
j ].

(ii.1) By our estiamte of bij − aij , each the image f(A ∩Qj) can be covered by Ckm(1−γ) cubes in Rm of side

length 1
k , where C is a constant depending on f, n,m and γ. Consequently, the graph

Grf (A ∩Q) ⊂
kn⋃
j=1

Qj × f(A ∩Qj)

is covered by a constant multiple of kn+(1−γ)m cubes in Rn+m of side length 1
k . Then

Hn+(1−γ)m
√

n+m
k

(Grf (A ∩Q)) ≤ Ckn+(1−γ)mαn+(1−γ)m

(√
n+m

2k

)n+(1−γ)m

≤ Cαn+(1−γ)m

(√
n+m

2

)n+(1−γ)m

.

Letting k ↑ ∞, we obtain Hs(Grf (A ∩Q)) < ∞, and

dimH(Grf (A ∩Q)) ≤ n+ (1− γ)m,

which holds for all cubes Q ⊂ Rn. By countable stability of Hausdorff dimension, we can subdivide Rn into

countably many cubes and conclude that dimH(Grf (A)) ≤ n+ (1− γ)m.
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(ii.2) We let Ej = Qj × f(A ∩Qj), j = 1, 2, · · · , kn, which together cover Grf (A ∩Q). Then

diamEj ≤

√√√√ n

k2
+

m∑
i=1

(bij − aij)
2 ≤ 1

kγ

√
n+mnγ [f ]2C0,γ(Q) =:

C

kγ
.

Consequently,

Hn/γ
k−γC(A ∩Q) ≤

kn∑
j=1

αn/γ

(
diamEj

2

)n/γ

≤ αn/γ

(
C

2

)n/γ

.

Letting k ↑ ∞, we obtain Hn+(1−γ)m(Grf (A ∩Q)) < ∞, and dimH(Grf (A ∩Q)) ≤ n/γ. Again by countable

stability of Hausdorff dimension, we have dimH(Grf (A)) ≤ n
γ , which complete the proof.

Remark. In particular, if f : Rn → Rm is Lipschitz continuous on A, then dimH(Grf (A)) = n.

Aside: Kirszbraun’s Extension Theorem. In some scenarios, we may concerns if a Lipschitz continuous

function on a subset A ⊊ Rn can be extended to the whole space. We can indeed prove the possibility of

extension in a more general setting. Let X,Y be two Hilbert spaces, A ⊂ X, and f : A → Y be a Lipschitz

continuous function. We write the global Lipschitz constant by

[f ]C0,1(A) = sup
x,y∈X, x ̸=y

∥f(x)− f(y)∥
∥x− y∥

.

The formal statament is presented below.

Theorem 6.19 (Kirszbraun). Let X,Y be two Hilbert spaces, A ⊂ X, and f : A → Y a Lipschitz continuous

function. Then there exists an extension f̄ : X → Y such that

(i) f = f̄ on A, and

(ii) [f̄ ]C0,1(X) = [f ]C0,1(A).

To begin with, we first prove a weaker result.

Lemma 6.20. Let I, J ⊂ X be two finite sets, K ≥ 0, and let f : I → Y be a function such that

∥f(x)− f(y)∥ ≤ K∥x− y∥

for all x, y ∈ I. Then there exists a function g : I ∪ J → Y such that g(x) = f(x) for all x ∈ I, and

∥g(x)− g(y)∥ ≤ K∥x− y∥ for all x, y ∈ I ∪ J .

Proof. By induction on the number of points in J , it suffices to show the case J = {a} with a ∈ X\I. We

claim that there exists b ∈ Y such that ∥f(x) − b∥ ≤ K∥x − a∥ for each x ∈ I. If K = 0, then f is constant

on I, and we take b to be the constant value of f . If K > 0, we may assume K = 1 by replacing f with f/K.

Step I. We write I = {x1, · · · , xm} and set D = Conv(f(I)). Then D is a compact set for the norm topology

since it is the image of the continuous mapping

(λ1, · · · , λm) 7→ λ1f(x1) + · · ·+ λmf(xm)

over the compact set {λ ∈ [0, 1]m : λ1, · · · , λm ≥ 0, 1⊤λ = 1}.

Step II. For each x ∈ I, the function z 7→ ∥z−f(x)∥
∥a−x∥ from K to [0,∞) is continuous. Since I is finite,

h(z) = max
x∈I

∥z − f(x)∥
∥a− x∥

is also a continuous function, which attains its infimum over D.
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Step III. We let b ∈ K be such that h(b) ≤ h(z) for all z ∈ D. Define

I∗ =

{
x ∈ I :

∥b− f(x)∥
∥a− x∥

= h(b)

}
,

which is a nonempty subset of I. We claim that b ∈ Conv(f(I∗)) and argue this by contradiction.

Note that Conv(f(I∗)) is a compact convex set. If b /∈ Conv(f(I∗)), we take z0 ∈ Conv(f(I∗)) such that

∥b− z0∥ = infz∈Conv(f(I∗)) ∥b− z∥. Then for all z ∈ Conv(f(I∗)),

⟨b− z0, z − z0⟩ ≤ −1

2
∥z − z0∥2 ≤ 0.

In particular, ⟨b− z0, f(x)− z0⟩ ≤ 0 for every x ∈ I∗. Then we fix 0 < ϵ ≤ 1 and take bϵ = b+ ϵ(z0 − b) ∈ D.

For every x ∈ I∗,

⟨bϵ − b, f(x)− b⟩ = ⟨bϵ − b, f(x)− z0⟩+ ⟨bϵ − b, z0 − b⟩ ≥ ϵ∥z0 − b∥2.

Consequently,

∥f(x)− bϵ∥2 = ∥f(x)− b∥2 − 2⟨bϵ − b, f(x)− b⟩+ ∥bϵ − b∥2

≤ ∥f(x)− b∥2 − (2ϵ− ϵ2)∥z0 − b∥2 < ∥f(x)− b∥2.

Recalling the definition of I∗, we have

∥f(x)− bϵ∥
∥x− a∥

<
∥f(x)− b∥
∥x− a∥

= h(b), x ∈ I∗.

On the other hand,

lim
ϵ↓0

∥f(x)− bϵ∥
∥x− a∥

=
∥f(x)− b∥
∥x− a∥

< h(b), x ∈ I\I∗.

Since I\I∗ is a finite set, we can find ϵ1 > 0 such that for each ϵ ∈ (0, ϵ1),

∥f(x)− bϵ∥
∥x− a∥

< h(b), for all x ∈ I.

This implies h(bϵ) < h(b), contradicting the fact that h(b) ≤ h(z) for all z ∈ D.

Step IV. We assume h(b) > 1, which implies that ∥f(x) − b∥ = h(b)∥x − a∥ > ∥x − a∥ for all x ∈ I∗. Note

that ∥f(x)− f(y)∥ ≤ ∥x− y∥ for all x, y ∈ I∗. Then we have

⟨x− a, y − a⟩ = 1

2

(
∥x− a∥2 + ∥y − a∥2 − ∥x− y∥2

)
<

1

2

(
∥f(x)− b∥2 + ∥f(y)− b∥2 − ∥f(x)− f(y)∥2

)
= ⟨f(x)− b, f(y)− b⟩.

Since b ∈ Conv(f(I∗)), we write b =
∑

x∈I∗ λxf(x), where λx ≥ 0 for all x ∈ I∗ and
∑

x∈I∗ λx = 1. Then

0 =

〈∑
x∈I∗

λxf(x)− b,
∑
y∈I∗

λyf(y)− b

〉
=
∑

x,y∈I∗

λxλy⟨f(x)− b, f(y)− b⟩

>
∑

x,y∈I∗

λxλy⟨x− a, y − a⟩ =

〈∑
x∈I∗

λxx− a,
∑
x∈I∗

λyy − a

〉
≥ 0,

again a contradiction. Therefore h(b) ≤ 1, that is, ∥f(x)− b∥ ≤ ∥x− a∥ for all x ∈ I.

Step VI. Finally, we set g(x) = f(x) for all x ∈ I, and g(a) = b. Then g has the desired property.
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To prove Kirszbraun’s Theorem, we need extend the above result from finite to infinite sets. A key tool is

the product topology and Tychonoff’s theorem.

Proof of Theorem 6.19. We may assume A is nonempty, otherwise we just make f ≡ 0. Fix a ∈ A.

Step I. For each x ∈ X, let

Bx =
{
y ∈ Y : ∥y − f(a)∥ ≤ [f ]C0,1(A)∥x− a∥

}
,

which is a compact subset Y under the weak topology. By Tychonoff’s Theorem, F =
∏

x∈X Bx is also compact

in the product topology. Next, for any finite set I ⊂ X, set

FI =
{
g ∈ F : g(x) = f(x) for all x ∈ I ∩A, ∥g(x)− g(y)∥ ≤ [f ]C0,1(A)∥x− y∥ for all x, y ∈ I

}
.

Clearly F = F{a} ⊃ FI for any finite subset I ⊂ X. Furthermore, by Lemma 6.20, we can find an extension

g0 of f on I ∪ {a} such that g0(x) = f(x) for all x ∈ (I ∩ A) ∪ {a} and ∥g(x)− g(y)∥ ≤ [f ]C0,1(A)∥x− y∥ for

all x, y ∈ I ∪ {a}. We let g(x) = g0(x) for x ∈ I ∪ {a} and g(x) = f(a) for x ∈ X\(I ∪ {a}). Then

∥g(x)− f(a)∥ ≤ ∥g0(x)− g0(a)∥ =

{
∥x− a∥, x ∈ I ∪ {a},
0, x /∈ I ∪ {a}.

Therefore g ∈ F , and consequently FI is nonempty.

Step II. Now we check that each set FI is closed. To show this, we note that:

• For each x ∈ (I∩A)∪{a}, the projection map g 7→ g(x) : X → Bx is continuous, and the set {f(x)} ⊂ Y

is closed in the weak topology. Then {g ∈ F : g(x) = f(x)} is closed.

• For all x, y ∈ I ∪ {a}, the maps g 7→ g(x) and g 7→ g(y) from F to Y given its weak topology are

continuous. Also, the function z 7→ ⟨z, w⟩ : Y → R is continuous for each w ∈ Y . Then the functions

g 7→ ⟨g(x)− g(y), w⟩ from F to R are continuous. Therefore

{g ∈ F : ⟨g(x)− g(y), w⟩ ≤ [f ]C0,1(A)∥x− y∥}

is closed in F given the product weak topology. Also,

{g ∈ F : ∥g(x)− g(y)∥ ≤ [f ]C0,1(A)∥x− y∥} =
⋂

∥w∥≤1

{g ∈ F : ⟨g(x)− g(y), w⟩ ≤ [f ]C0,1(A)∥x− y∥}

is an intersection of closed subsets of F , hence is also closed.

• Finally, the intersection

FI =

( ⋂
x∈I∩A

{g ∈ F : g(x) = f(x)}

)
∩

( ⋂
x,y∈I

{g ∈ F : ∥g(x)− g(y)∥ ≤ [f ]C0,1(A)∥x− y∥}

)

is also closed.

Step III. We define F = {FI : I ⊂ X is finite}, which is a collection of closed subsets of F . Also, F has the

finite intersection property. For finite subset I1, · · · , Im of X, then I =
⋃m

j=1 Ij is also a finite subset of X,

and
m⋂
j=1

FIj =

m⋂
j=1

FIj∩{a} ⊃ FI∩{a} = FI ̸= ∅.

Step IV. By compactness of F , the intersection of all members of F is nonempty, and we take an element

f̄ ∈
⋂

I⊂X is finite FI . In particular, for all x ∈ A, we have f̄ ∈ F{x,a} and f̄(x) = f(x). Also, for all x, y ∈ X,

we have f̄ ∈ F{x,y,a} and ∥f̄(x)− f̄(y)∥ ≤ [f ]C0,1(A)∥x− y∥. Hence f̄ is the desired extension.
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6.5 Hausdorff Measure under Linear Transformations

Review: Linear maps. Let L : Rn → Rm be a linear map. If we equip both Rn and Rm the standard

orthonormal bases, we can identify L with a m × n matrix L = (Lij)1≤i≤m,1≤j≤n. We can establish the

equivalence of a series of concepts and properties between linear maps and matrices:

• (Adjoint). L∗ is the conjugate transpose matrix of L ⇔ ⟨Lx, y⟩ = ⟨x, L∗y⟩.
• (Symmetry). S∗ = S ⇔ ⟨Sx, y⟩ = ⟨x, Sy⟩.
• (Orthogonality). Q∗Q = Id ⇔ ⟨Qx,Qy⟩ = ⟨x, y⟩.

We then introduce the polar decomposition of linear maps. Given a linear map L : Rn → Rm, we take its

singular value decomposition

L =

k∑
j=1

σiuiv
⊤
j ,

where rank(L) = dimR(L) = k, the singular values σ1, · · · , σk > 0, {u1, · · · , um} ⊂ Rm is some orthonormal

basis of Rm, and {v1, · · · , vn} ⊂ Rn is some orthonormal basis of Rn.

(i) If m ≥ n, there exists a symmetric map S : Rn → Rn and an orthogonal map Q : Rn → Rm such that

L = QS.

To see this, we take the singular value decomposition Q =
∑n

i=1 uiv
⊤
i and S =

∑k
i=1 σiviv

⊤
i .

(ii) If m ≤ n, there exists a symmetric map S : Rm → Rm and an orthogonal map Q : Rm → Rn such that

L = SQ∗.

To see this, we take the singular value decomposition Q =
∑m

i=1 viu
⊤
i and S =

∑k
i=1 σiuiu

⊤
i .

We define the Jacobian of L as the determinant of the symmetric matrix S in the polar decomposition:

JLK = JL∗K = detS =

{√
det(L∗L), m ≥ n,√
det(LL∗), m ≤ n.

Lemma 6.21. Let L : Rn → Rm be a linear map, and A ⊂ Rn.

(i) If n ≤ m, then

Hn(L(A)) = JLKLn(A).

(ii) If n ≥ m and A ⊂ Rn is Ln-measurable, then y 7→ Hn−m(A ∩ L−1{y}) is Lm-measurable, and∫
Rm

Hn−m(A ∩ L−1{y}) dy = JLKLn(A).

Proof. (i) We take the polar decomposition L = QS as above.

Case i.1. If JLK = detS = 0, then dimS(Rn) ≤ n− 1, and dimL(Rn) ≤ n− 1, hence Hn(L(A)) = 0.

Case i.2. If JLK = detS > 0, by Theorem 6.17, for any ball B(x, r) ⊂ Rn, we have

Hn(L(B(x, r)))

Ln(B(x, r))
=

Hn(Q∗L(B(x, r)))

Ln(B(x, r))
=

Ln(S(B(x, r)))

Ln(B(x, r))
=

Ln(S(B(0, 1)))

Ln(B(0, 1))
= detS = JLK.

Next, we define ν(A) = Hn(L(A)) for all A ⊂ Rn. Then ν is a Radon measure on Rn with ν ≪ Ln, and by

Theorem 2.29,
dν

dLn
(x) = lim

r↓0

ν(B(x, r))

Ln(B(x, r))
= JLK.

Hence for all Borel sets B ⊂ Rn, we have Hn(L(B)) = ν(B) = JLKLn(B). the same formula holds for all

subsets A ⊂ Rn by Borel regularity of Hausdorff measures.
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(ii) We take the polar decomposition L = SQ∗ as above.

Case ii.1. If dim(L(Rn)) < m, we have A ∩ L−1{y} = ∅ for Ln-a.e. y ∈ Rm, and Ln−m(A ∩ L−1{y}) = 0.

Also, since S = LQ, we have S(Rm) = L(Rn), which implies dim(S(Rm)) < m and JLK = detS = 0.

Case ii.2. If L = P is the projection map (x1, · · · , xm, xm+1, · · · , xn) 7→ (x1, · · · , xm), then for each y ∈ Rm,

P−1{y} = P−1{0} + P ∗y is an (n −m)-dimensional affine subspace of Rn and a translation of P−1{0}. By

Fubini’s theorem, y 7→ Hn−m(A ∩ P−1{y}) is Lm-measurable, and∫
Rm

Hn−m(A ∩ P−1{y}) dy =

∫
Rm

∫
P−1{y}

1A(x) dHn−m(x) dy =

∫
Rm

∫
P−1{0}

1A(x+ P ∗y) dHn−m(x) dy

=

∫
Rm

∫
Rn−m

1A

(
y

x

)
dLn−m(x) dLm(y) =

∫
Rn

1A dLn = Ln(A).

Case ii.3. For the general case of dim(L(Rn)) = m, we write Q∗ = PU , where U : Rn → Rn is an

orthogonal map. Then L = SPU . Similar to the Case ii.2, L−1{0} is an (n − m)-dimensional subspace

of Rn and L−1{y} = L−1{0} + QS−1y is a translation of L−1{0} for each y ∈ Rm. By Fubini’s theorem,

y 7→ Hn−m(A ∩ L−1{y}) is Lm-measurable. Using the conclusion in Case ii.2, we have

Ln(A) = Ln(U(A)) =

∫
Rm

Hn−m(U(A) ∩ P−1{y}) dy =

∫
Rm

Hn−m(A ∩ (U−1 ◦ P−1{y})) dy

We set z = Sy. By the change of variables formula,

Ln(A) =
1

|detS|

∫
Rm

Hn−m(A ∩ (U−1 ◦ P−1 ◦ S−1{z})) dz =
1

JLK

∫
Rm

Hn−m(A ∩ (L−1{z})) dz

Then we finish the proof.

Remark. In the remain of this section, we will apply (i) to establish the area formula and (ii) to establish the

coarea formula. Note that in the proof of (ii), we use the change of variables formula, which is an immediate

corollary of the area formula.

6.6 The Area Formula

Throughout this subsection, we assume n ≤ m and study the area formula. For a locally Lipschitz map

f = (f1, f2, · · · fm) : Rn → Rm, we define its Jacobian

Jf(x) = JDf(x)K, where Df(x) =


f1
x1

f1
x2

· · · f1
xn

f2
x1

f2
x2

· · · f2
xn

...
...

. . .
...

fm
x1

fm
x2

· · · fm
xn


The area formula points out that, for every A ⊂ Rn, the n-dimensional measure of the image f(A) ⊂ Rm,

counting multiplicity, can be computed by integrating the Jacobian Jf over A.

Definition 6.22. Let f : Rn → Rm be a Lipschitz continuous function, n ≤ m, and A ⊂ Rn. The mapping

y 7→ H0(A ∩ f−1(y)) is the multiplicity function of f .

Remark. The multiplicity function counts the number of points of A that are taken to the point y ∈ Rm by

function f . We shall see that f−1{y} is at most countable for Hn-a.e. y ∈ Rm.

Theorem 6.23 (Area formula). Let f : Rn → Rm be a Lipschitz continuous function, n ≤ m. Then for each

Ln-measurable subset A ⊂ Rn, ∫
A

Jf(x) dx =

∫
Rm

H0(A ∩ f−1{y}) dHn(y).
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From now on, we fix a Lipschitz continuous function f : Rn → Rm, n ≤ m. To prove the are formula, we

need to introduce some technical lemmata.

Lemma 6.24. Let A ⊂ Rn be Ln-measurable. Then

(i) f(A) is Hn-measurable,

(ii) the multiplicity function y 7→ H0(A ∩ f−1(y)) is Hn-measurable, and∫
Rm

H0(A ∩ f−1(y)) dHn ≤ [f ]nC0,1Ln(A).

Proof. We may assume that A is bounded by taking the intersections with countably many cubes covering Rn.

Step I. By the inner regularity of Ln, there exist compact sets Km ⊂ A such that Ln(A\Km) ≤ 1
m , m ∈ N.

By compactness of Km and continuity of f , the images f(Km) are compact and Hn-measurable. Also, the

image f(
⋃∞

m=1 Km) =
⋃∞

m=1 f(Km) is Hn-measurable, and by Theorem 6.17,

Hn

(
f(A)\f

( ∞⋃
m=1

Km

))
= Hn

(
f

(
A\

∞⋃
m=1

Km

))
≤ [f ]nC0,1Ln

(
A\

∞⋃
m=1

Km

)
= 0.

Therefore f(A) is Hn-measurable, which proves (i).

Step II. We subdivide Rn into cubes of side length 2−k, and write

Rn =
⋃

Q∈Bk

Q, Bk =

{
n∏

i=1

(
ai
2k

,
bi
2k

]
: ai, bi ∈ Z, i = 1, · · · , n

}
.

Then the function

gk =
∑

Q∈Bk

1f(A∩Q)

is Hn-measurable by (i). Furthermore, for each point y ∈ Rm, gk(y) is the number of cubes Q ∈ Bk such

that f−1{y} ∩ (A ∩ Q) ̸= ∅. As k → ∞, we have gk(y) ↑ H0(A ∩ f−1{y}) for each y ∈ Rm. Therefore

y 7→ H0(A ∩ f−1{y}) is Hn-measurable. By monoton convergence theorem,∫
Rm

H0(A ∩ f−1(y)) dHn = lim
k→∞

∫
Rm

∑
Q∈Bk

1f(A∩Q) dHn = lim
k→∞

∑
Q∈Bk

Hn (f(A ∩Q))

≤ lim sup
k→∞

∑
Q∈Bk

[f ]nC0,1Ln (A ∩Q) ≤ [f ]nC0,1Ln (A)

Then we complete the proof.

Lemma 6.25. Let t > 1, and define

P = {x ∈ Rn : Df(x) exists, Jf(x) > 0} .

Then there is a countable collection (Ek)
∞
k=1 of Borel subsets of Rn such that

(i)
⋃∞

k=1 Ek = P ,

(ii) f |Ek
is injective (k = 1, 2, · · · ); and

(iii) For each k = 1, 2, · · · , there exists a nonsingular symmetric linear map Tk : Rn → Rn such that

[(f |Ek
) ◦ T−1

k ]C0,1 ≤ t, [Tk ◦ (f |Ek
)−1]C0,1 ≤ t, and t−n|detTk| ≤ Jf |Ek

≤ tn|detTk|.

Proof. We fix ϵ > 0 such that t−1 + ϵ < 1 < t − ϵ. Let Q be a countable dense subset of P , and let S be a

countable dense subset of nonsingular symmetric linear map on Rn.
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Step I. For each q ∈ Q, T ∈ S and l ∈ N, define

E(q, T, l) =
{
x ∈ Q ∩B

(
q, l−1

)
:
(
t−1 + ϵ

)
|Tz| ≤ |Df(x)z| ≤ (t− ϵ)|Tz| for all z ∈ Rn,

and |f(y)− f(x)−Df(x)(y − x)| ≤ ϵ|T (x− y)| for all y ∈ B
(
x, 2l−1

)}
Since Df is Borel measurable, E(q, T, l) is a Borel set. Also, for all x ∈ E(q, T, l) and y ∈ B(x, 2

m ),

t−1|T (y − x)| ≤ |f(y)− f(x)| ≤ t|T (y − x)|. (6.13)

We claim that for each x ∈ E(q, T, l),(
t−1 + ϵ

)n |detT | ≤ Jf(x) ≤ (t− ϵ)n|detT |. (6.14)

Consider the polar decomposition Df(x) = L(x) = Q(x)S(x), so Jf(x) = JL(x)K = |detS(x)|. For all z ∈ Rn,(
t−1 + ϵ

)n |Tz| ≤ |Q(x)S(x)z| = |S(x)z| ≤ (t− ϵ)|Tz|,

and hence (
t−1 + ϵ

)n |z| ≤ |S(x)T−1z| ≤ (t− ϵ)|z|.

Consequently, we have (S(x) ◦ T−1)B(0, 1) ⊂ B(0, t− ϵ), and

αn|det(S(x)T−1)| ≤ αn(t− ϵ)n.

Hence Jf(x) = det |S(x)| ≤ (t− ϵ)n|detT |. The proof of the other inequality in (6.14) is similar.

Step II. We relabel the countable collection {E(q, T, l) : q ∈ Q,T ∈ S, l ∈ N} as {Ek}∞k=1. For each x ∈ P ,

we write the polar decomposition Df(x) = Q(x)S(x) as above. Choose T ∈ S with ∥T − S(x)∥ so small that

∥TS(x)−1∥ = ∥(T − S(x))S(x)−1 + Id ∥ ≤ 1

t−1 + ϵ
, and ∥S(x)T−1∥ = ∥(S(x)− T )T−1 + Id ∥ ≤ t− ϵ.

Then |Df(x)z| = |Q(x)S(x)z| = |S(x)z| satisfies

(
t−1 + ϵ

)
|Tz| ≤ |Tz|

∥TS(x)−1∥
≤ |S(x)z| ≤ ∥S(x)T−1∥|Tz| ≤ (t− ϵ) |Tz| , ∀z ∈ Rn.

Next, we choose m ∈ N and q ∈ Q such that q ∈ B(x, 1
l ), and

|f(y)− f(x)−Df(x)(y − x)| ≤ ϵ

∥T−1∥
|y − x| ≤ ϵ|T (y − x)|

for all y ∈ B(x, 2
l ). Then x ∈ E(q, T, l), which proves (i).

Step III. We fix any Ek = E(q, T, l), and let Tk = T . By (6.13), for all x ∈ Ek and y ∈ B(x, 2
l ),

t−1|Tk(y − x)| ≤ |f(y)− f(x)| ≤ t|Tk(y − x)|.

Since Ek ⊂ B(q, 1
l ) ⊂ B(x, 2

l ), the above estimate in fact holds for all x, y ∈ Ek. Therefore f |Ek
is injective,

and

[(f |Ek
) ◦ T−1

k ]C0,1 ≤ t, [Tk ◦ (f |Ek
)−1]C0,1 ≤ t.

The estimate (6.14) implies

t−n|detTk| ≤ Jf |Ek
≤ tn|detTk|.

Thus we complete the proof of (ii) and (iii).
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Proof of Theorem 6.23. By Rademacher’s Theorem, we may assume Df(x) and Jf(x) exist for all x ∈ A. We

may also assume Ln(A) < ∞.

Case I: A ⊂ {Jf > 0}. We fix t > 1 and choose (Ek)
∞
k=1 as in Lemma 6.25. We may assume that (Ek)

∞
k=1

are disjoint by sequentially removing the intersection. Also, we take the disjoint cubes Bl as in Lemma 6.24.

We then set

F l
j,k = Ek ∩Qj ∩A, Qj ∈ Bk, j, k = 1, 2, · · · .

Then (F l
j,k)

∞
j,k=1 are disjoint, and A =

⋃∞
j,k=1 F

l
j,k. We define

gl =

∞∑
j,k=1

1f(F l
j,k)

.

Then for each y ∈ Rn, gl(y) is the number of sets F l
j,k such that F l

j,k ∩ f−1{y} ≠ ∅. Consequently, gl(y) ↑
H0(A ∩ f−1{y}), and we use the monotone convergence theorem to conclude that∫

Rm

H0(A ∩ f−1{y}) dHn(y) = lim
l→∞

∫
Rm

gl(y) dHn(y) = lim
l→∞

∞∑
j,k=1

Hn(f(F l
j,k)). (6.15)

By estimate (6.13) and Theorem 6.17,

Hn(f(F l
j,k)) = Hn(f |Ek

◦ T−1
k ◦ Tk(F

l
j,k)) ≤ tnLn(Tk(F

l
j,k)),

and

Ln(Tk(F
l
j,k)) = Hn(T k ◦ (f |Ek

)−1 ◦ f |Ek
(F l

j,k)) ≤ tnHn(f(F l
j,k)).

Next, we repeatedly use estimate (6.13) and Lemma 6.21 to obtain

t−2nHn(f(F l
j,k)) ≤ t−nLn(Tk(F

l
j,k)) = t−n|detTk| Ln(F l

j,k)

≤
∫
F l

j,k

Jf dLn

≤ tn|detTk| Ln(F l
j,k) = tnLn(Tk(F

l
j,k)) = t2nHn(f(F l

j,k))

We sum on j and k to conclude

t−2n
∞∑

j,k=1

Hn(f(F l
j,k)) ≤

∫
A

Jf dLn ≤ t2n
∞∑

j,k=1

Hn(f(F l
j,k))

Recalling (6.15), we can send l ↑ ∞ and t ↓ 1in the above estimate to obtain∫
A

Jf dLn =

∫
Rm

H0(A ∩ f−1{y}) dHn(y).

Case II: A ⊂ {Jf = 0}. We fix 0 < ϵ < 1, and define g : Rn → Rm+n as g(x) = (f(x), ϵx). Then f = P ◦ g,
where P : Rm+n → Rm is the standard projection P (y1, · · · , ym, ym+1, · · · , yn) = (y1, · · · , ym). By definition,

Dg(x) =

(
Df(x)

ϵ Idn×n

)
,

and

Jg(x) =
√
det (Df(x)Df(x)⊤ + ϵ2 Idn×n) =

√√√√ n∏
j=1

(σj(x)2 + ϵ2),
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where σ1(x) ≥ · · · ≥ σ2
n(x) = 0 are singular values of Df(x) in decreasing order. By Lipschitz continuity of f

over Rn, we have σ1(x) = ∥Df(x)∥1 ≤ [f ]C0,1 . Also, since Jf = 0, we have σn(x) = 0. Therefore

0 < ϵn ≤ Jg(x) ≤
(
1 + [f ]2C0,1

)n−1
2 ϵ, x ∈ A.

Since P : Rm+n → Rn is the standard projection, we apply Theorem 6.17 and the Case I above to obtain

Hn(f(A)) ≤ Hn(g(A)) =

∫
Rn+m

1g(A)(y, z) dHn(y, z)

≤
∫
Rn+m

H0(A ∩ g−1{(y, z)}) dHn(y, z) =

∫
A

Jg dLn ≤
(
1 + [f ]2C0,1

)n−1
2 ϵLn(A).

Sending ϵ ↓ 0, we have Hn(f(A)) = 0. Since y 7→ H0(A ∩ f−1{y}) is supported on f(A), we have∫
Rm

H0(A ∩ f−1{y}) dHn = 0 =

∫
A

Jf dLn.

Finally, for the general case A ⊂ Rn, we just apply Cases I and II above to A ∩ {Jf > 0} and A ∩ {Jf = 0},
respectively. Then we conclude the proof.

Remark. The area formula also implies that f−1{y} is at most countable for Hn-a.e. y ∈ Rm. Since f is a

Lipschitz function, the Jacobian Jf is bounded on Rn. Then for each cube Q ⊂ R,∫
Rm

H0(Q ∩ f−1{y}) dHn =

∫
Q

Jf dLm < ∞,

and Hn{y ∈ Rm : H0(Q ∩ f−1{y}) = ∞} = 0. We take Rn =
⋃∞

k=1 Qk, where Qk’s are lattice cubes. Then

H0(Qk ∩ f−1{y}) < ∞ on each cube Qk for Hn-a.e. y ∈ Rm, and f−1{y} is at most countable.

One most important corollary of the area formula is the change of variables formula.

Theorem 6.26 (Change of variables). Let f : Rn → Rm be Lipschitz continuous, n ≤ m. Then for each

Ln-integrable function g : Rn → R,

∫
Rn

g(x)Jf(x) dx =

∫
Rm

 ∑
x∈f−1{y}

g(x)

 dHn(y).

Proof. If g ≥ 0 is measurable, we may write g =
∑∞

k=1
1
k1Ak

, where we define A1 = {x ∈ Rn : f(x) ≥ 1}, and

Ak =

x ∈ Rn : f(x) ≥ 1

k
+

k−1∑
j=1

1

j
1Aj

 , k = 2, 3, · · · .

Then ∫
Rn

g(x)Jf(x) dx =

∞∑
k=1

1

k

∫
Ak

Jf(x) dx =

∞∑
k=1

1

k

∫
Rm

H0(Ak ∩ f−1{y}) dHn(y)

=

∞∑
k=1

1

k

∫
Rm

∑
x∈f−1{y}

1Ak
(x) dHn(y) =

∫
Rm

∑
x∈f−1{y}

[ ∞∑
k=1

1

k
1Ak

(x)

]
dHn(y)

=

∫
Rm

 ∑
x∈f−1{y}

g(x)

 dHn(y).

For the general case that g is an Ln-integrable function, write g = g+−g− and apply the above conclusion.
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Remark. In particular, if f : Rn → Rn is Lipschitz continuous and injective, then for each Ln-integrable

function g : Rn → R, ∫
Rn

g(x)Jf(x) dx =

∫
f(Rn)

g(f−1(y)) dy.

Now we see some applications of the area formula.

Example 6.27 (Length of a curve). Let f = (f1, · · · , fn) : R → Rm be Lipschitz continuous and injective.

We write for ḟ the derivative of f :

ḟ =

(
df1

dt
,
df2

dt
, · · · , df

m

dt

)
For −∞ < a < b < ∞, we define the curve Γ = {f(t)}a≤t≤b ⊂ Rm. By the area formula,

H1(Γ) =

∫
Rm

1Γ dH1 =

∫
Rm

H0([a, b] ∩ f−1{y}) dH1(y) =

∫
[a,b]

Jf dL1 =

∫ b

a

|ḟ(t)| dt.

Hence the length of the curve Γ is given by

H1(Γ) =

∫ b

a

|ḟ(t)| dt.

Example 6.28 (Surface area of a graph). Let g : Rn → R be Lipschitz continuous. We define f(x) = (x, g(x)).

Then f is injective, and

Df(x) =

(
Idn×n

∇g(x)⊤

)
, and Jf(x) =

√
det(Idn×n +∇g(x)∇g(x)⊤) =

√
1 + |∇g(x)|2.

Given an open set U ⊂ Rn, the graph of g over U is

G = Grg(U) = {(x, g(x)) : x ∈ U} = {f(x) : x ∈ U}.

By the area formula,

Hn(G) =

∫
Rn

1G dHn =

∫
Rn+1

H0(U ∩ f−1(y)) dHn(y) =

∫
U

Jf dLn =

∫
U

√
1 + |∇g(x)|2 dx.

Hence the n-dimensional surface area of G is given by

Hn(G) =

∫
U

√
1 + |∇g(x)|2 dx.

Example 6.29 (Surface area of a patametric hypersurface). Let f : Rn → Rn+1 be Lipschitz continuous and

injective. By the Binet-Cauchy formula,

Jf(x)2 =

n∑
k=1

∣∣∣∣∂(f1, · · · , fk−1, fk+1, · · · , fn+1)

∂(x1, · · · , xn)

∣∣∣∣2 .
By the area formula, the n-dimensional surface area of S = f(U) ⊂ Rn+1 is given by

Hn(S) =

∫
U

√√√√ n∑
k=1

∣∣∣∣∂(f1, · · · , fk−1, fk+1, · · · , fn+1)

∂(x1, · · · , xn)

∣∣∣∣2 dx.
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6.7 The Coarea Formula

Throughout this subsection, we assume n ≥ m and study the coarea formula. Given a Lipschitz function

f : Rn → Rm, the coarea states that the integral of (n − m)-dimensional measure of level sets of f can be

obtained by integrating the Jacobian. This is a kind of “curvilinear” generalization of Fubini’s theorem.

Theorem 6.30 (Coarea formula). Let f : Rn → Rm be a Lipschitz continuous function, n ≥ m. Then for

each Ln-measurable set A ⊂ Rn, ∫
A

Jf(x) dx =

∫
Rm

Hn−m(A ∩ f−1{y}) dy.

Like in Section 6.6, we fix a Lipschitz continuous function f : Rn → Rm, n ≥ m and introduce some

technical lemmata.

Lemma 6.31. Let A ⊂ Rn be Ln-measurable. Then

(i) A ∩ f−1{y} is Hn−m-measurable for Lm-a.e. y ∈ Rm,

(ii) the function y 7→ Hn−m(A ∩ f−1{y}) is Lm measurable, and∫
Rm

Hn−m(A ∩ f−1{y}) dy ≤ αn−mαm

αn
[f ]mC0,1Ln(A).

Proof. Step I. For each k ∈ N, there exists closed balls (Bk
j )

∞
j=1 such that

A ⊂
∞⋃
j=1

Bk
j , diamBk

j ≤ 1

k
,

∞∑
j=1

Ln(Bk
j ) ≤ Ln(A) +

1

k
.

We define

gkj = αn−m

(
diamBk

j

2

)n−m

1f(Bk
j )
, j, k = 1, 2, · · · ,

which is Lm-measurable. Then for all y ∈ Rm, we have A ∩ f−1{y} ⊂
⋃∞

j=1, y∈f(Bk
j )

Bk
j , and

Hn−m
1
k

(A ∩ f−1{y}) ≤
∞∑
j=1

gkj (y).

Thus, using Fatou’s Lemma and the isodiametric inequality,∫ ∗

Rm

Hn−m(A ∩ f−1{y}) dy =

∫ ∗

Rm

lim
k→∞

Hn−m
1
k

(A ∩ f−1{y}) dy ≤
∫
Rm

lim inf
k→∞

∞∑
j=1

gkj (y) dy

≤ lim inf
k→∞

∫
Rm

∞∑
j=1

gkj (y) dy = lim inf
k→∞

∞∑
j=1

αn−m

(
diamBk

j

2

)n−m

Lm(f(Bk
j ))

≤ lim inf
k→∞

∞∑
j=1

αn−m

(
diamBk

j

2

)n−m

αm

(
diam(f(Bk

j ))

2

)m

≤ αn−mαm

αn
[f ]mC0,1 lim inf

k→∞

∞∑
k=1

Ln(Bk
j ) ≤

αn−mαm

αn
[f ]mC0,1Ln(A),

where
∫ ∗

is the upper integral. This automatically establishes (iii) once we prove (ii).

Remark. The very same procedure also establish that∫ ∗

Rm

Hs(A ∩ f−1{y}) dy ≤ αsαm

αs+m
[f ]mC0,1Hs+m(A), 0 ≤ s ≤ n−m. (6.16)
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Step II. We first assume that A is compact. Fix t ≥ 0, and for each k ∈ N, define

Uk =

{
y ∈ Rm : there exists finitely many open sets S1, · · · , Sl such that A ∩ f−1{y} ⊂

l⋃
j=1

Sl,

diamSj ≤
1

k
for each j = 1, · · · , l, and

l∑
j=1

αn−m

(
diamSj

2

)n−m

≤ t+
1

k

}
.

For each y ∈ Uk, assume A ∩ f−1{y} ⊂
⋃l

j=1 Sl as above. Then by continuity of f and compactness of A,

the image f(A\
⋃l

j=1 Sl) is a compact set not containing {y}, and for z ∈ Rm sufficiently close to y, we have

z /∈ f(A\
⋃l

j=1 Sl), and A ∩ f−1(z) ⊂
⋃l

j=1 Sl. Hence Uk is an open set.

Step III. We claim that

{y ∈ Rm : Hn−m(A ∩ f−1{y}) ≤ t} =

∞⋂
k=1

Uk. (6.17)

To establish this, we note that if Hn−m(A∩ f−1{y}) ≤ t, then Hn−m
δ (A∩ f−1{y}) ≤ t for each δ > 0. For any

k ∈ N, choose 0 < δ < 1
k . Then there exists sets (Sj)

∞
j=1 such that

⋃∞
j=1 Sj ⊃ A ∩ f−1{y}, diamSj ≤ δ < 1

k

for all j ∈ N and
∞∑
j=1

αn−m

(
diamSj

2

)n−m

< t+
1

k
.

We may assume Sj ’s are open by replacing Sj with
⋃

x∈Sj
B(x, ϵj) with sufficiently small ϵj ’s. Since A∩f−1{y}

is compact, a finite subcollection {S1, · · · , Sl} covers A ∩ f−1{y}, and hence y ∈ Sk for all k ∈ N.
On the other hand, if y ∈

⋂∞
k=1 Uk, one have Hn−m

1
k

(A ∩ f−1{y}) ≤ t+ 1
k for each k ∈ N. Letting k → ∞

gives Hn−m(A ∩ f−1{y}) ≤ t. Thus we finish the proof of (6.17). Consequently, the set on the left side is

Borel, and y 7→ Hn−m(A ∩ f−1{y}) is a Borel measurable function.

Step IV. If A ⊂ Rn is open, there exist increasing compact sets K1 ⊂ K2 ⊂ · · · ⊂ A such that A =
⋃∞

j=1 Kj .

Then for each y ∈ Rm,

Hn−m(A ∩ f−1{y}) = lim
j→∞

Hn−m(Kj ∩ f−1{y}).

Hence y 7→ Hn−m(A ∩ f−1{y}) is a Borel measurable function for every open subset A ⊂ Rn.

Step V. If A ⊂ Rn is Ln-measurable and Ln(A) < ∞, by Borel regularity and outer regularity, there exists

open sets V1 ⊃ V2 ⊃ · · · ⊃ A such that L(Vj\A) → 0 and Ln(V1) < ∞. Then

Hn−m(Vj ∩ f−1{y}) ≤ Hn−m(A ∩ f−1{y}) +Hn−m((Vj\A) ∩ f−1{y}).

Consequently,

lim sup
j→∞

∫
Rm

∣∣Hn−m(Vj ∩ f−1{y})−Hn−m(A ∩ f−1{y})
∣∣ dy

≤ lim sup
j→∞

∫
Rm

Hn−m((Vj\A) ∩ f−1{y}) dy ≤ lim sup
j→∞

αn−mαm

αn
[f ]mC0,1Ln(Vj\A) = 0.

Hence for Ln-a.e. y ∈ Rn, we have Hn−m((Vj\A)∩ f−1{y}) ↓ 0, and so A\f−1{y} is Hn−m-measurable. Also,

Hn−m(Vj ∩ f−1{y}) → Hn−m(A ∩ f−1{y}) for Ln-a.e. y ∈ Rn.

By Step IV, it follows that y 7→ Hn−m(A ∩ f−1{y}) is Ln-measurable.

Step VI. Finally, if A ⊂ Rn is Ln-measurable and Ln(A) = ∞, we just write A as an increasing union of

bounded Ln-measurable sets and apply Steps I and V to estabilish (i) and (ii).
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Lemma 6.32. Let t > 1, and assume h : Rn → Rn is Lipschitz continuous. Set

P = {x ∈ Rn : Dh(x) exists, Jh(x) > 0} .

Then there is a countable collection (Fk)
∞
k=1 of Borel subsets of Rn such that

(i) Ln(P\
⋃∞

k=1 Fk) = 0,

(ii) h|Fk
is injective for each k = 1, 2, · · · ; and

(iii) For each k = 1, 2, · · · , there exists a nonsingular symmetric linear map Sk : Rn → Rn such that

[(h|Fk
)−1 ◦ Sk]C0,1 ≤ t, [S−1

k ◦ (h|Fk
)]C0,1 ≤ t, and t−n|detSk| ≤ Jh|Fk

≤ tn|detSk|.

Proof. Step I. We first select Borel sets (EK)∞k=1 and symmetric automorphisms (Tk)
∞
k=1 as in Lemma 6.25:

(a) P ⊂
⋃∞

k=1 Ek,

(b) h|Ek
is injective for each k = 1, 2, · · · ; and

(c) For each k = 1, 2, · · · ,

[(h|Ek
) ◦ T−1

k ]C0,1 ≤ t, [Tk ◦ (h|Ek
)−1]C0,1 ≤ t, and t−n|detTk| ≤ Jh|Ek

≤ tn|detTk|.

According to the properties (b) and (c), the inverse map (h|Ek
)−1 is also Lipschitz continuous. By Theorem

6.19, there exists a Lipschitz continuous mapping hk : Rn → Rn such that hk = (h|Ek
)−1 on h(Ek).

Since hk ◦ h(x) = x for x ∈ Ek, by Theorem 3.7, we have Dhk(h(x))Dh(x) = Id for Ln-a.e. x ∈ Ek. Hence

Jhk(h(x))Jh(x) = 1 for Ln-a.e. x ∈ Ek. By property (c), we know that Jhk(h(x)) > 0 for Ln-a.e. x ∈ Ek,

and by Lipschitz continuity of h, it holds Jhk(x) > 0 for Ln-a.e. x ∈ h(Ek).

Step II. For each k ∈ N, we apply Lemma 6.25 on hk and h(Ek) to select Borel sets (Gk
j )

∞
j=1 and symmetric

non-singular linear maps (Rk
j )

∞
j=1 such that

(d) Ln
(
h(Ek) ⊂

⋃∞
j=1 G

k
j

)
= 0,

(e) hk|Gk
j
is injective for each k = 1, 2, · · · ; and

(f) For each k = 1, 2, · · · ,

[(hk|Gk
j
) ◦ (Rk

j )
−1]C0,1 ≤ t, [Rk

j ◦ (hk|Gk
j
)−1]C0,1 ≤ t, and t−n|detRk

j | ≤ Jhk|Gk
j
≤ tn|detRk

j |.

We take

F k
j = Ek ∩ h−1(Gk

j ), Sk
j = (Rk

j )
−1, j, k = 1, 2, · · · .

Note that

hk

h(Ek)\
∞⋃
j=1

Gk
j

 = h−1

h(Ek)\
∞⋃
j=1

Gk
j

 = Ek\
∞⋃
j=1

F k
j ,

by Lipschitz continuity of hk, we have Ln(Ek\
⋃∞

j=1 F
k
j ) = 0. Recalling property (a), we establish (i). Also,

property (b) implies that h|Fk
j
is injective, which establishes (ii). Finally, note that

[(h|Fk
j
)−1 ◦ Sk

j ]C0,1 = [(h|Fk
j
)−1 ◦ (Rk

j )
−1]C0,1 ≤ [(hk|Gk

j
) ◦ (Rk

j )
−1]C0,1 ≤ t,

and

[(Sk
j )

−1 ◦ (h|Fk
j
)]C0,1 = [Rk

j ◦ (h|Fk
j
)]C0,1 ≤ [Rk

j ◦ (hk|Gk
j
)−1]C0,1 ≤ t.

Since Jhk(h(x))Jh(x) = 1 for Ln-a.e. x ∈ F k
j , the property (f) implies

t−n|detSk
j | = t−n|detRk

j |−1 ≤ Jh|Fk
j
≤ tn|detRk

j |−1 = tn|detSk
j |.

Thus we establish (iii) and complete the proof.
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Now we are prepared to proof the coarea formula. We define

Λ(n, n−m) = {λ : {1, 2, · · · , n−m} → {1, 2, · · · , n} |λ is strictly increasing}.

It is clear that there are
(
n
m

)
elements in the set. For each λ ∈ Λ(n, n−m), we define Pλ : Rn → Rn−m by

Pλ(x) = (xλ(1), xλ(2), · · · , xλ(n−m)).

Proof of Theorem 6.30. In the view of Lemma 6.32, we may assume that Df and Jf exist for all x ∈ A and

that Ln(A) < ∞.

Case I: A ⊂ {Jf > 0}. For each λ ∈ Λ(n, n −m), we write f = p ◦ hλ, where hλ : Rn → Rn is defined by

h(x) = (f(x), Pλ(x)), and p : Rn → Rm is the standard projection p(x1, · · · , xm, xm+1, xn) = (x1, · · · , xm).

We set

Aλ = {x ∈ A : detDhλ(x) ̸= 0} = {x ∈ A : Pλ|Df(x)−1{0} is injective}.

Then A =
⋃

λ∈Λ(n,n−m) Aλ. Hence for simplicity we may assme A = Aλ for some λ ∈ Λ(n, n−m).

Step I.1. We fix t > 1 and apply Lemma 6.32 to h = hλ to obtain disjoint Borel sets {Fk}∞k=1 and nonsingular

symmetric linear maps {Sk}∞k=1 satisfying properties (i)-(iii) in Lemma 6.32. We set Gk = A ∩ Fk, and claim

that

t−nJp ◦ SkK ≤ Jf |Gk
≤ tnJp ◦ SkK. (6.18)

Since f = p ◦ h,
Df = p ◦Dh = p ◦ Sk ◦ S−1

k ◦Dh = (p ◦ Sk) ◦D(S−1
k ◦ h).

By Lemma 6.32 (iii),

[(h|Gk
)−1 ◦ Sk]C0,1 ≤ t, [S−1

k ◦ (h|Gk
)]C0,1 ≤ t. (6.19)

Then for all x, y ∈ Gk,

t−1 ≤
∣∣S−1

k ◦ h(x)− S−1
k ◦ h(y)

∣∣
|(h|Gk

)−1 ◦ Sk(S
−1
k ◦ h(x))− (h|Gk

)−1 ◦ Sk(S
−1
k ◦ h(y))|

=

∣∣S−1
k ◦ h(x)− S−1

k ◦ h(y)
∣∣

|x− y|
≤ t

Hence

t−1 ≤ λmin(D(S−1
k ◦ h)) ≤ λmax(D(S−1

k ◦ h)) ≤ t on Gk. (6.20)

Now we fix x ∈ Gk, and take the polar decomposition Df = S ◦ U∗ and p ◦ Sk = T ◦ V ∗, where S, T ∈ Rm×m

are symmetric and U, V ∈ Rn×m are orthogonal. Then S = T ◦V ∗ ◦D(S−1
k ◦h)◦U . Since Gk ⊂ A ⊂ {Jf > 0},

we have detS ̸= 0, and so detT ̸= 0. Then for all z ∈ Rm, by (6.20),

|T−1 ◦ Sz| = |V ∗ ◦D(S−1
k ◦ h) ◦ Uz| ≤ |D(S−1

k ◦ h) ◦ Uz| ≤ t|Uz| = t|z|.

Therefore ∥T−1S∥ ≤ t, and

Jf = |detS| = |detT |
∣∣det(T−1S)

∣∣ ≤ tn |detT | .

On the other hand, by (6.20),

|S−1 ◦ Tz| = |U∗ ◦D(S−1
k ◦ h)−1 ◦ V z| ≤ |D(S−1

k ◦ h)−1 ◦ V z| ≤ t|V z| = t|z|.

Therefore ∥S−1T∥ ≤ t, and

Jf =
1

|detS−1|
=

|detT |
|det(S−1T )|

≥ t−n |detT | .

Then we finish the proof of (6.3).
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Step I.2. We repeatedly apply (6.18), (6.19) and Lemma 6.21 (ii) to obtain

t−3n+m

∫
Rm

Hn−m(Gk ∩ f−1{y}) dy = t−3n+m

∫
Rm

Hn−m((h|Gk
)−1(h(Gk) ∩ p−1{y})) dy

≤ t−2n

∫
Rm

Hn−m(S−1
k (h(Gk) ∩ p−1{y})) dy = t−2n

∫
Rm

Hn−m(S−1
k ◦ h(Gk) ∩ (p ◦ Sk)

−1{y}) dy

= t−2nJp ◦ SkKLn(S−1
k ◦ h(Gk)) ≤ t−nJp ◦ SkKLn(Gk)

≤
∫
Gk

Jf dLn

≤ tnJp ◦ SkKLn(Gk) = tnJp ◦ SkKLn((h|Gk
)−1 ◦ Sk(S

−1
k ◦ h(Gk))) ≤ t2nJp ◦ SkKLn(S−1

k ◦ h(Gk))

= t2n
∫
Rm

Hn−m(S−1
k ◦ h(Gk) ∩ (p ◦ Sk)

−1{y}) dy = t2n
∫
Rm

Hn−m(S−1
k (h(Gk) ∩ p−1{y})) dy

≤ t3n−m

∫
Rm

Hn−m((h|Gk
)−1(h(Gk) ∩ p−1{y})) dy = t3n−m

∫
Rm

Hn−m(Gk ∩ f−1{y}) dy

Since Ln(A\
⋃∞

k=1 G) = 0, we sum on k, use Lemma 6.31, and let t ↓ 1 to conclude∫
A

Jf dLn =

∫
Rm

Hn−m(A ∩ f−1{y}) dy.

Case II: A ⊂ {Jf = 0}. We fix 0 < ϵ < 1 and define

g(x, y) = f(x) + ϵy, p(x, y) = y, x ∈ Rn, y ∈ Rm.

Then Dg = (Df, ϵ Idm×m), and similar to our proof of Theorem 6.23, ϵm ≤ Jg ≤ Cf,mϵ for some constant

Cf,m depending on f and m only. We observe that∫
Rm

Hn−m(A ∩ f−1{y}) dy =

∫
Rm

Hn−m(A ∩ f−1{y − ϵw}) dy for all w ∈ Rm

=
1

αm

∫
B(0,1)

∫
Rm

Hn−m(A ∩ f−1{y − ϵw}) dy dw. (6.21)

We set D = A×B(0, 1) ⊂ Rn+m. For any y ∈ Rm and w ∈ B(0, 1), we have (x, z) ∈ D ∩ g−1{y} ∩ p−1{w} if

and only if x ∈ A, z ∈ B(0, 1), f(x)+ ϵ = y and z = w, if and only if x ∈ A, z = w ∈ B(0, 1) and f(x) = y− ϵw.

Hence

D ∩ g−1{y} ∩ p−1{w} =

{
(A ∩ f−1{y − ϵw})× {w}, w ∈ B(0, 1)

∅, w /∈ B(0, 1).

Then (6.21) becomes∫
Rm

Hn−m(A ∩ f−1{y}) dy =
1

αm

∫
Rm

∫
Rm

Hn−m(D ∩ g−1{y} ∩ p−1{w}) dw dy

≤ αn−m

αn

∫
Rm

Hn(D ∩ g−1{y}) dy =
αn−m

αn

∫
D

Jg dLn+m

≤ αn−m

αn
Ln+m(D)Cf,mϵ =

αn−mαm

αn
Ln(A)Cf,mϵ,

where we use (6.16) and our conclusion in Case I on g in the second line. Letting ϵ ↓ 0, we conclude that∫
Rm

Hn−m(A ∩ f−1{y}) dy = 0 =

∫
A

Jf dLn.

Finally, in the general case, we just split A into A∩{Jf > 0} and A∩{Jf = 0}, and apply Cases I and II.
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The coarea formula implies another form of change of variables formula.

Theorem 6.33 (Changing variables). Let f : Rn → Rm be a Lipschitz continuous function, n ≥ m. Then for

each Ln-integrable function g : Rn → R, g|f−1{y} is Hn−m-integrable for Lm-a.e. y ∈ Rm, and

∫
Rn

g(x)Jf(x) dx =

∫
Rm

[∫
f−1{y}

g dHn−m

]
dy (6.22)

Proof. We first assume g ≥ 0. We may also assume g is Borel measurable by modifying its value on a Ln-null

set. Similar to our proof of Theorem 6.26, we can write g =
∑∞

k=1
1
k1Ak

for appropriate Borel sets (Ak)
∞
k=1.

By continuity of f , the set f−1{y} is closed. Then g|f−1{y} is Hn−m-measurable. By monotone convergence,

∫
Rn

g(x)Jf(x) dx =

∞∑
k=1

1

k

∫
Ak

Jf(x) dx =

∞∑
k=1

1

k

∫
Rm

Hn−m(Ak ∩ f−1{y}) dy

=

∞∑
k=1

1

k

∫
Rm

∫
f−1{y}

1Ak
dHn−m dy =

∫
Rm

∫
f−1{y}

( ∞∑
k=1

1

k
1Ak

)
dHn−m dy

=

∫
Rm

[∫
f−1{y}

g dHn−m

]
dy.

For the general case that g is a Ln-integrable function, write g = g+ − g− and apply the above conclusion. By

Lipschitz continuity of f on Rn, Jf is bounded and the left side of (6.22) is finite. Then for Lm-a.e. y ∈ Rm,∫
f−1{y} g

± dHn−m < ∞, and g|f−1{y} is Hn−m integrable.

Corollary 6.34 (Polar coordinates). For each Ln-integrable function g : Rn → R,

∫
Rn

g dx =

∫ ∞

0

(∫
∂B(0,r)

g dHn−1

)
dr.

In particular, for L1-a.e. r > 0,
d

dr

∫
B(0,r)

g dx =

∫
∂B(0,r)

g dHn−1.

Proof. We let f(x) = |x| in (6.22). Then Df(x) = x
|x| and Jf(x) = 0 for every x ̸= 0.

Corollary 6.35 (Integration over level sets). Let f : Rn → R be a Lipschitz continuous function. Then∫
Rn

|∇f(x)| dx =

∫ ∞

−∞
Hn−1({f = t}) dt.

If ess sup |∇f | > 0, then for any Ln-integrable function g : Rn → R,

∫
{f>t}

g(x) dx =

∫ ∞

t

(∫
{f=s}

g

|∇f |
dHn−1

)
ds.

In particular,
d

dt

∫
{f>t}

g(x) dx = −
∫
{f=t}

g

|∇f |
dHn−1

Proof. The assertion (i) follows from the coarea formula, since Jf = |∇f |. To prove (ii) and (iii), note that

∫
{f>t}

g dLn =

∫
Rn

1{f>t}g

|∇f |
Jf dLn =

∫
R

(∫
f−1{s}

1{f>t}g

|∇f |
dHn−1

)
ds =

∫ ∞

t

(∫
f−1{s}

g

|∇f |
dHn−1

)
ds

by Theorem 6.33. Then we complete the proof.
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6.8 The Gauss-Green Theorem

In this subsection, we fix a bounded open set U ⊂ Rn and study how the boundary integral of a C1 function

is related to the interior integral of its gradient.

Definition 6.36 (C1 boundary). We say the boundary ∂U is C1, if for each point x0 ∈ ∂U there exist r > 0

and a C1 function γ : Rn−1 → R such that – upon relabeling and reorientating the coordinates axes if necessary

– we have

U ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, · · · , xn−1)}.

Remark. In fact, for each δ > 0, we can define a cylinder

C(x0, δ) = {x ∈ Rn : |Px− Px0| < δ, |xn − x0
n| < δ},

where P : (x1, · · · , xn−1, xn) → (x1, · · · , xn−1) is the standard projection from Rn into Rn−1. For sufficiently

small δ > 0, we have C(x0, δ) ⊂ B(x0, r), and

U ∩ C(x0, δ) = {x ∈ C(x0, δ) : xn > γ(x1, · · · , xn−1)}. (6.23)

By continuity of γ, we know that

∂U ∩ C(x0, δ) ⊂ {x ∈ C(x0, δ) : xn = γ(x1, · · · , xn−1)}. (6.24)

To summarize, a bounded open domain U has a C1 boundary means that for each x0 ∈ ∂U there is a

neighborhood B(x0, δ) such that ∂U ∩ B(x0, δ) can written as the graph of a C1 function with U ∩ B(x0, δ)

lying on one side of this graph.

Definition 6.37 (Unit normal). Let U ⊂ Rn be a bounded open set with C1 boundary ∂U . For each point

x0 ∈ ∂U , choose r > 0 and γ : Rn−1 → R as above. Then the (outward pointing) unit normal at x0 ∈ ∂U is

νU (x0) =
(∇γ(x0),−1)√
1 + |∇γ(x0)|2

The function νU : ∂U → ∂B(0, 1) is called the unit normal field.

Lemma 6.38 (Integration by parts). Let U ⊂ Rn be a bounded open set. Let g : Rn → R be Lipschitz

continuous, and φ ∈ C1
c (U). Then ∫

U

φ∇g dx = −
∫
U

g∇φdx.

Proof. We write u = gφ. For each 0 < |h| < 1
2dist(suppφ,U

c), we have B(x, h) ⊂ U for every x ∈ suppφ.

Then for each i = 1, · · · , n,

|u(x+ hei)− u(x)|
h

≤ |g(x+ hei)− g(x)| |φ(x+ hei)|
h

+
|g(x)| |φ(x+ hei)− φ(x)|

h

≤ [g]C0,1∥φ∥∞ + [φ]C0,1 (|g(x0)|+ [g]C0,1 diamU) < ∞,

where x0 ∈ U is fixed. By the dominated convergence theorem,∫
U

∂u

∂xi
dx =

∫
suppφ

lim
h→0

u(x+ hei)− u(x)

h
dx = lim

h→0

1

h

∫
suppφ

(u(x+ hei)− u(x)) dx

= lim
h→0

1

h

∫
U

(u(x+ hei)− u(x)) dx = 0.

Therefore
∫
U
∇u dx = 0. Since ∇u = φ∇g + g∇φ a.e. on U , we complete the proof.
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Theorem 6.39 (Gauss-Green Theorem). Let U ⊂ Rn be a bounded open set with C1 boundary and unit

normal field νU : ∂U → ∂B(0, 1). Then for each φ ∈ C1
c (Rn),∫

U

∇φdx =

∫
∂U

φνU dHn−1.

Proof. Step I. We fix x0 ∈ ∂U , and take a Lipschitz function γ : Rn−1 → R and a cylinder C(x0, δ) satisfying

(6.23) and (6.24). For each ϵ > 0, we define gϵ : C(x0, δ) → R by

gϵ(y) =


1, if yn > γ(Py) + ϵ,

1
2ϵ (yn − γ(Py) + ϵ), if |yn − γ(Py)| ≤ ϵ,

0, if yn < γ(Py)− ϵ.

Then gϵ is a Lipschitz continuous function with [gϵ]C0,1 ≤ ϵ−1[γ]C0,1 , and gϵ → 1{U∩C(x,δ)} Ln-a.e.. For any

φ ∈ C1
c (C(x0, δ)), by the dominated convergence theorem and Lemma 6.38,∫

U

∇φdy =

∫
U∩C(x0,δ)

∇φdy = lim
ϵ↓0

∫
C(x0,δ)

gϵ∇φdy = − lim
ϵ↓0

∫
C(x0,δ)

φ∇gϵ dy. (6.25)

Next, we write

Fϵ = {y ∈ C(x0, δ) : |yn − γ(Py)| < ϵ} = {y ∈ C(x0, δ) : ∇gϵ(y) ̸= 0}.

We note that ∇gϵ(y) =
1
2ϵ (−∇γ(Py), 1) for y ∈ Fϵ. By Fubini’s theorem,

∫
C(x,δ)

φ∇gϵ dy =

∫
Fϵ

φ∇gϵ dy =

∫
{|z−Px0|<δ}

(
−∇γ(z)

1

)(
1

2ϵ

∫ γ(z)+ϵ

γ(z)−ϵ

φ(z, t) dt

)
dz.

By continuity of φ we have

lim
ϵ↓0

1

2ϵ

∫ γ(z)+ϵ

γ(z)−ϵ

φ(z, t) dt = φ(z, γ(z)), z ∈ Rn−1.

We then fix the Lipschitz mapping f : z 7→ (z, γ(z)). By the dominated convergence theorem and the change

of variables formula [Theorem 6.26],

− lim
ϵ↓0

∫
C(x0,δ)

φ∇gϵ dy =

∫
{|z−Px0|<δ}

φ(z, γ(z))

(
∇γ(z)

−1

)
dz

=

∫
{|z−Px0|<δ}

φ(z, γ(z)) νU (z, γ(z))
√

1 + |∇γ(z)|2 dz

=

∫
Rn−1

1{|z−Px0|<δ}φ(z, γ(z)) νU (z, γ(z)) Jf(z) dz

=

∫
Rn

 ∑
z∈f−1{y}

1{|z−Px0|<δ}φ(z, γ(z)) νU (z, γ(z))

 dHn−1(y)

=

∫
Rn

1∂U∩C(x0,δ)(y)φ(y) νU (y) dHn−1(y) =

∫
∂U

φνU dHn−1,

where the last line holds because ∂U ∩ C(x0, δ) = {y ∈ Rn : |P (y − x0)| < δ, yn = γ(Py)}. Recalling (6.25),∫
U

∇φdy =

∫
∂U

φνU dHn−1. (6.26)

This also holds for all φ ∈ C(B(x0, δ)), where δ > 0 is appropriately chosen as above.
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Step II. By compactness of ∂U , one can find finitely many balls B(xk, δk) ⊂ ∂U (k = 1, · · · , N) such that

∂U ⊂
⋃N

k=1 B(xk, δk), where each δk > 0 is selected so that (6.26) holds for all φ ∈ C1
c (B(xk, δk)). We also

take an open set V0 such that V 0 ⊂ U and V 0 ∪
⋃N

k=1 B(xk, δk) ⊃ U . Then there exists a smooth partition

of unity 0 ≤ ζk ≤ 1(k = 0, 1, · · · , N) such that ζ0 ∈ C∞
c (V0) and ζk ∈ C∞

c (B(xk, δk)) for k = 1, · · · , N , and∑∞
k=0 ζk ≡ 1 on U . Then for any φ ∈ C1

c (Rn),

∫
U

∇φdy =

N∑
k=0

∫
U

∇(ζkφ) dy =

∫
U

∇(ζ0φ) dy +

n∑
k=1

∫
∂U

ζkφνU dHn−1 =

∫
∂U

φνU dHn−1.

Then we complete the proof.

Remark. For each component i = 1, 2, · · · , n, the Gauss-Green Theorem asserts that∫
U

∂φ

∂xi
dx =

∫
∂U

φνiU dHn−1, φ ∈ C1
c (Rn).

Corollary 6.40 (Divergence theorem). Let U ⊂ Rn be a bounded open set with almost C1 boundary and unit

normal field νU : ∂U → ∂B(0, 1). Then for each f ∈ C1
c (Rn;Rn),∫

U

∇ · f dx =

∫
∂U

f · νU dHn−1.

Proof. According to the Gauss-Green theorem, for each i = 1, · · · , n,∫
U

∂f i

∂xi
dx =

∫
∂U

f iνiU dHn−1.

We then sum over i to establish the desired result.
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