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1 Markov Processes

In this section, we study the Markov processes, which cover a wide range of stochastic processes. Roughly

speaking, a Markov process is a stochastic process such that, given the current information, the future states

are conditionally independent of the past states.

Our discussion is based on a filtered probability space (Ω,F ,P). The state space of stochastic processes is

a measurable space (E,E ). Usually, E is a topological space, and E is the Borel σ-algebra on E.

1.1 Transition Functions

Definition 1.1 (Transition probability). Let (E,E ) be a measurable space. A transition probability on E is

a mapping P : E × E → [0, 1] such that

(i) For every x ∈ E, the mapping E ∋ A 7→ P (x,A) is a probability measure on (E,E ); and

(ii) For every A ∈ E , the mapping E ∋ x 7→ P (x,A) is E -measurable.

Remark. If f ∈ B(E), i.e. f is a bounded measurable function on E, we define

(Pf)(x) =

∫
E

P (x, dy)f(y).

Then Pf is also a bounded measurable function on E. For this reason, P is also viewed as a linear operator

on the Banach space B(E). Furthermore, P satisfies the following properties:

(i) P is positive, i.e. Pf ≥ 0 for each f ≥ 0;

(ii) P is a contraction, i.e. ∥Pf∥∞ ≤ ∥f∥∞, where ∥ · ∥∞ is the uniform norm on B(E).

Furthermore, if both P and Q are transition probabilities, we define the multiplication operation:

PQ(x,A) =

∫
E

P (x, dy)Q(y,A).

Then PQ is also a transition probability on E, and can be viewed as the composition of operators P and Q.

Definition 1.2 (Transition function). A transition function on E is a family {Ps,t : 0 ≤ s < t} of transition

probabilites such that for all 0 ≤ r < s < t,

Pr,t(x,A) =

∫
E

Pr,s(x, dy)Ps,t(y,A) (1.1)

for each x ∈ E and each A ∈ E . The relation (1.1) is called the Chapman-Kolmogorov equation. The transition

function is said to be homogeneous if Ps,t depends on s and t only through the difference t− s. In that case,

we write Pt for P0,t, and the Chapman-Kolmogorov equation writes

Pt+s(x,A) =

∫
E

Ps(x, dy)Pt(y,A).

In other words, the family {Pt, t ≥ 0} forms a semigroup.

Definition 1.3 (Markov process). Let (Ω,F , (F )t≥0,P) be a filtered probability space. An adapted stochastic

process (Xt)t≥0 is said to be a Markov process with respect to (Ft)t≥0 with transition function (Ps,t), if for

any nonnegative measurable function f : E → R+ and any pair (s, t) with s < t,

E [f(Xt)|Fs] = Ps,tf(Xs) P-a.s.. (1.2)

Remark. If the filtration is not specified, we usually use the canonical filtration

FX
t = σ(Xs, 0 ≤ s ≤ t).
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Proposition 1.4. A stochastic process (Xt)t≥0 is a Markov process with transition function Ps,t and initial

measure µ, if and only if for any 0 = t0 < t1 < · · · < tn and A0, A1, · · · , An ∈ E ,

P (Xt0 ∈ A0, Xt1 ∈ A1, · · · , Xtn ∈ An) =

∫
A0

γ(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn). (1.3)

Proof. If (Xt)t≥0 is a Markov process,

P (Xt0 ∈ A0, Xt1 ∈ A1, · · · , Xtn ∈ An) = E [1A0
(Xt0)1A1

(Xt1) · · ·1An
(Xtn)]

= E
[
1A0

(Xt0)1A1
(Xt1) · · ·1An−1

(Xtn−1
)E
[
1An

(Xn)|FX
tn−1

]]
= E

[
1A0(Xt0)1A1(Xt1) · · ·1An−1(Xtn−1)Ptn−1,tn1An(Xtn−1)

]
= E

[
1A0

(Xt0)1A1
(Xt1) · · ·1An−1

(Xtn−1
)

∫
An

Ptn−1,tn(Xtn−1
, xn) dxn

]
.

Repeating this procedure, we have

P (Xt0 ∈ A0, Xt1 ∈ A1, · · · , Xtn ∈ An) = E
[
1A0

(Xt0)

∫
A1

Pt0,t1(Xt0 , dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)

]
=

∫
A0

γ(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn).

Now we assume that (Xt)t≥0 satisfies (1.3). To prove (1.2), we must show that for all A ∈ FX
s ,

E [f(Xt)1A] = E [Ps,tf(Xs)1A] . (1.4)

Since the sets A satisfying form a λ-system, by π-λ theorem, it suffices to show (1.4) for all cylinder sets

A = {Xt0 ∈ A0, Xt1 ∈ A1, · · · , Xtn ∈ An} ,

where 0 = t0 < t1 < · · · < tn = s and A0, A1, · · · , An ∈ E . If f = 1B , where B ∈ E , by (1.3), we have

E [1B(Xt)1A] = P (Xt0 ∈ A0, Xt1 ∈ A1, · · · , Xtn ∈ An, Xt ∈ B)

=

∫
A0

γ(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)

∫
B

Ptn,t(xn, dy)

=

∫
A0

γ(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)Ps,t1B(xn)

= E
[
1A0

(Xt0)

∫
A1

Pt0,t1(X0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)Ps,t1B(xn)

]
= E

[
E
[
1A0

(Xt0)1A1
(Xt1)

∫
A2

Pt1,t2(X1, dx2) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)Ps,t1B(xn)|FX
0

]]
= · · · = E

[
E
[
· · ·E

[
Ps,t1B(Xs)1A|FX

tn−1

]
· · · |FX

0

]]
= E [Ps,t(Xs)1A] .

Thus (1.4) holds for all indicators, and hence for all simple functions. By simple function approximation and

monotone convergence theorem, (1.4) holds for all nonnegative meaesurable functions f : E → R+.

Remark. We can construct a Markov process with transition function Ps,t and initial measure γ with this

proposition. We define (Ω,F ) = (ER+ ,E R+), and let Xt(ω) = ωt be the projction map. Then (1.3) defines a

compatible family of finite marginal distributions on (ER+ ,E R+). If all marginal distributions (P(ωt), t ≥ 0)

are inner-regular (which is the case, for example, if E is locally compact, Hasudorff and second countable), by

the Kolmogorov extension theorem, the transition function Ps,t extends to a unique probability measure Pγ

on (ER+ ,E R+). The canonical process (Xt)t≥0 is a Markov process under this probability measure.
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Notation. For every probability measure γ on (E,E ), we denote by Pγ the law of the Markov process

with transition function Ps,t and initial measure γ, which is a probability measure on (ER+ ,E R+). For any

nonnegrative measurable function Φ : ER+ → R+, we write

Eγ [Φ] =

∫
Φ dPγ .

For any fixed x ∈ E, we we write Px = Pδx , and

Ex[Φ] =

∫
Φ dPx.

We have the following useful conclusion.

Proposition 1.5. For any nonnegrative or bounded measurable function Φ : ER+ → R+, the map x 7→ Ex[Φ]

is E -measurable, and for any probability measure γ on (E,E ),

Eγ [Φ] =

∫
E

γ(dx)Ex[Φ].

Proof. For simplicity, we fix the initial measure γ. Let A be the class of cylinder sets

A = {(xt)t≥0 : xt0 ∈ A0, xt1 ∈ A1, · · · , xtn ∈ An} ∈ E R+ ,

where 0 = t0 < t1 < · · · < tn, and A0, A1, · · · , An ∈ E . Then A is a π-system, and

Ex[1A] =

∫
A0

δx(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)

= 1{x∈A0}

∫
A1

Pt0,t1(x, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn),

which is a E -measurable function of x ∈ E. Also,

Eγ [1A] =

∫
A0

γ(dx0)

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn)

=

∫
E

γ(dx0)1{x0∈A0}

∫
A1

Pt0,t1(x0, dx1) · · ·
∫
An

Ptn−1,tn(xn−1, dxn) =

∫
E

γ(dx0)Ex0
[Φ].

Hence the proposition is true for all Φ = 1A, where A ∈ A is a cylinder set. Since the class of functions Φ

satisfying this proposition is closed under addition, scalar multiplication and increasing limits (by monotone

convergence theorem), we conclude the proof by applying the monotone convergence theorem for funtions.
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2 Diffusion Process

In this section, we study the stochastic differential equation (SDE)

dXt = σ(t,Xt) dBt + b(t,Xt) dt, (2.1)

where σ = (σij)i∈[p],j∈[q] : R+ × Rp → Rp×q and b = (bi)i∈[p] : R+ × Rp → Rp be locally bounded measurable

functions. The function b : Rp → Rp is called the drift coefficient, and σ : Rp → Rp×q is called the diffusion

coefficient. The soltions of (2.1) with continuous sample paths are called diffusion processes.

For notation simplicity, we also write E(σ, b) for the SDE (2.1). For each x ∈ Rp, we write Ex(σ, b) for the

SDE (2.1) together with the initial value X0 = x. We use | · | to denote the Euclidean norm of vectors and

the Frobenius norm of matrices. Throughout this section, we assume that the coefficients of SDE (2.1) are

Lipschitz continuous, i.e. there exists a constant K > 0 such that for all x, y ∈ Rp,

|σ(t, x)− σ(s, y)| ≤ K|t− s|+K|x− y|, |b(t, x)− b(s, y)| ≤ K|t− s|+K|x− y|.

2.1 Solutions of SDE

In this subsection, we discuss the solvability of stochastic differential equations.

Definition 2.1. A solution of the stochastic equation (2.1) consists of:

• A filtered probability space (Ω,F ,P) and a complete filtration (F )t≥0;

• A q-dimensional (Ft)-Brownian motion B = (B1, · · · , Bq) starting from 0;

• An (Ft)-adapted and sample-continuous process X = (X1, · · · , Xp) taking values in Rp, such that

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds.

Definition 2.2. For the stochastic differential equation E(σ, b), we say that there is

• weak existence, if for every x ∈ Rp, there exists a solution of Ex(σ, b);

• weak existence and weak uniqueness, if in addition, for every x ∈ Rp, all solutions of Ex(σ, b) have the

same law;

• pathwise uniqueness, if, whenever the filtered probability space (Ω,F , (Ft)t≥0,P) and the (Ft)-Brownian

motion B are fixed, two solutions X and Y such that X0 = Y0 a.s. are indistinguishable.

Furthermore, we say that a solution X of E(σ, b) is a strong solution if X is adapted with respect to the

completed canonical filtration of B.

For the completeness of our discussion, we state (without proof) two theorems concerning the existence

and uniqueness of the solution of SDEs with Lipschitz continuous coefficients.

Theorem 2.3. Let σ and b be Lipschitz continuous. Then pathwise uniqueness holds for the SDE E(σ, b).

Furthermore, for every complete filtered probability space (Ω,F , (Ft)t≥0,P), every (Ft)-Brownian motion B

and every x ∈ Rp, there exists a unique strong solution of Ex(σ, b).

Theorem 2.4. Equip both C(R+,Rp) and C(R+,Rq) with the Borel σ-algebra of the compact convergence

topology, and complete the σ-algebra on C(R+,Rp) by W -negligible sets, where W is the Wiener measure.

Then for all x ∈ Rp, there exists a measurable mapping Fx : C(R+,Rq) → C(R+,Rp) satisfying

(i) for every t ≥ 0, the mapping w 7→ Fx(w)t coincides W -a.s. a measurable function of (w(r))0≤r≤t;

(ii) for every w ∈ C(R+,Rq), the mapping x 7→ Fx(w) is continuous;

(iii) for every t ≥ 0, and for every choice of the complete filtered probability space (Ω,F , (Ft)t≥0,P) and of

the (Ft)-Brownian motion B with B0 = 0, the process Xt = Fx(B)t is the unique solution of E(σ, b).

Furthermore, if Z is an F0-measurable Rp-valued random variable, the process FZ(B)t is the unique

solution of E(σ, b) with X0 = Z.
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Theorem 2.5 (Markov property of diffusion processes). Assume that X = (Xt)t≥0 is a solution of SDE (2.1)

on a complete filtered probability space (Ω,F , (Ft)t≥0,P). Then (Xt)t≥0 is a Markov process with respect to

the filtration (Ft)t≥0. For each s ≥ 0 and t > 0, the transition function Ps,s+t defined by

Ps,s+tf(x) = E [f(Yt)] ,

where Y = (Yt)t≥0 is an arbitrary solution of{
dYt = σ(s+ t, Yt) dBt + b(s+ t, Yt) dt,

Y0 = x.

Let Fx be the mapping given by Theorem 2.4 corresponding to the above SDE. Then we also write

Ps,s+tf(x) =

∫
f(Fx(w)t)W (dw).

Proof. We first prove that, for any f ∈ B(Rp) and any s ≥ 0, t > 0, we have

E [f(Xs+t)|Fs] = Ps,s+tf(Xs),

To deal the time shift s, we define filtration (F ′
t)t≥0 and processes (X ′

t)t≥0, (B
′
t)t≥0 as follows:

F ′
t = Fs+t, X ′

t = Xs+t, B′
t = Bt+s −Bs.

Then (F ′
t)t≥0 is a complete filtration, X ′ is adapted to (F ′

t)t≥0, and B′ is a q-dimensional (F ′
t)-Brownian

motion. Furthermore,

X ′
t = Xs+t = Xs +

∫ s+t

s

σ(r,Xr) dBr +

∫ s+t

s

b(r,Xr) dr = Xs +

∫ t

0

σ(s+ r,X ′
r) dB

′
r +

∫ t

0

b(s+ r,X ′
r) dr.

Consequently, X ′ solves E(σ, b) on the space (Ω,F , (F ′
t)t≥0,P) and with Brownian motion B′, with X ′

0 = Xs.

By Theorem 2.4 (iii), we have X ′ = FXs(B
′) a.s., which implies

E [f(Xs+t)|Fs] = E [f(X ′
t)|Fs] = E [f(FXs

(B′)t)|Fs] =

∫
f(FXs

(w)t)W (dw) = Ps,s+tf(Xs),

where the third equality follows from the independence of B′ and Fs.

Now it remains to verify that Ps,s+t is a transition function. Clearly, x 7→ Ps,s+tf(x) is a continuous map,

hence is measurable. Finally, note that

Ps,s+t+vf(x) = E [f(Yt+v)] = E [E [f(Yt+v)|Fs+t]] = E [Ps+t,s+t+vf(Yt)] =

∫
Ps,s+t(x, dy)Ps+t,s+t+vf(y),

which is the Chapman-Kolmogorov equation. This completes the proof.

Remark. According to Theorem 2.4 (ii), if we take f ∈ Cb(Rp), by dominated convergence theorem,

Ps,s+tf(x) =

∫
f(Fx(w)t)W (dw)

is in Cb(Rp) as well.

In our later discussion, we use Ps,t to denote the transition function of the diffusion processes (Xt)t≥0

defined by SDE (2.1).

6



2.2 Transition Functions

In this subsection, we discuss the properties of the transition function of a diffusion process.

Theorem 2.6. Let Ps,t be the transition function of the diffusion process defined by

dXt = σ(t,Xt) dBt + b(t,Xt) dt.

For every φ ∈ C2
b (Rp),

dφ(Xt) = σ∗(t,Xt)∇φ(Xt) dBt +

(
1

2
σσ∗(t,Xt) · ∇2φ(Xt) + b(t,Xt) · ∇φ(Xt)

)
dt. (2.2)

where σ∗ is the matrix transpose of σ. Furthermore, for every x ∈ Rp, we have

lim
h↓0

Pt,t+hφ(x)− φ(x)

h
=

1

2
σσ∗(t, x) · ∇2φ(x) + b(t, x) · ∇φ(x), (2.3)

and

lim
h↓0

Pt−h,tφ(x)− φ(x)

h
=

1

2
σσ∗(t, x) · ∇2φ(x) + b(t, x) · ∇φ(x). (2.4)

We will give a formal proof of this Theorem later. For convenience of our analysis, we introduce a useful

lemma in the study of differential equations.

Lemma 2.7 (Gronwall’s lemma). Let T > 0, and g : [0, T ] → R+ is a bounded measurable function. If there

exist two constants a ≥ 0 and b ≥ 0 such that

g(t) ≤ a+ b

∫ t

0

g(s) ds, ∀t ∈ [0, T ],

then we have g(t) ≤ aebt for all t ∈ [0, T ].

Proof. A simple recursion on g gives

g(t) ≤ a+ b

∫ t

0

(
a+ b

∫ s1

0

g(s2) ds

)
ds1

= a+ a(bt) + b2
∫ t

0

ds1

∫ s1

0

ds2 g(s2)

≤ a+ a(bt) + b2
∫ t

0

ds1

∫ s1

0

ds2

(
a+ b

∫ s2

0

g(s3) ds3

)
= a+ a(bt) + a

(bt)2

2
+ b3

∫ t

0

ds1

∫ s1

0

ds2

∫ s2

0

ds3g(s3) ≤ · · ·

≤ a+ a(bt) + a
(bt)2

2
+ · · ·+ a

(bt)n

n!
+ bn+1

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn+1

0

dsn+1 g(sn+1).

Since g is bounded, we let 0 ≤ g(t) ≤M for all t ∈ [0, T ]. Then

g(t) ≤ a

n∑
k=0

(bt)n

n!
+
M(bt)n+1

(n+ 1)!
.

The desired result follows by letting n→ ∞.

Remark. A usseful case of this lemma is that when a = 0, we have g(t) = 0.
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We then give an estimate for the second moment of a diffusion process.

Lemma 2.8. Fix x ∈ Rp, and let (Xx
t )t≥0 be a solution of the SDE Ex(σ, b). Then there exists a constant

Cx > 0 depending only on x, such that for all t ≥ 0,

E
[
|Xx

t − x|2
]
≤ Cxe

Cx(t+t2)(t+ t2 + t3 + t4).

Proof. By the triangle inequality and Lipschitz continuity, for all t ≥ 0, we have

|σ(t,Xx
t )|2 ≤ (|σ(0, x)|+ |σ(0, x)− σ(t, x)|+ |σ(t,Xx

t )− σ(t, x)|)2

≤ 3|σ(0, x)|2 + 3K2t2 + 3K2|Xx
t − x|2.

(2.5)

A similar formula also holds for |b(t,Xx
t )|2. We define a stopping time τ = inf{t ≥ 0 : |Xx

t −x| > M} for some

M > 0, and fix T > 0. Then the function t 7→ E
[
|Xx

t∧τ − x|2
]
is bounded on [0, T ]. For any t ∈ [0, T ], we have

E
[
|Xx

t∧τ − x|2
]
≤ 2E

[(∫ t∧τ

0

σ(s,Xx
s ) dBs

)2
]
+ 2E

[(∫ t∧τ

0

b(s,Xx
s ) ds

)2
]

≤ 2E
[∫ t∧τ

0

|σ(s,Xx
s )|2 ds

]
+ 2E

[
T

∫ t∧τ

0

|b(s,Xx
s )|2 ds

]
≤ 6T (|σ(0, x)|2 + T |b(0, x)|2) + 2K2T 3(1 + T ) + 6K2(1 + T )

∫ t∧τ

0

E
[
|Xx

s − x|2
]
ds

≤ 6T (|σ(0, x)|2 + T |b(0, x)|2) + 2K2T 3(1 + T ) + 6K2(1 + T )

∫ t

0

E
[
|Xx

s∧τ − x|2
]
ds.

where we use (2.5) in the third inequality. By Gronwall’s lemma, we have

E
[
|Xx

t∧τ − x|2
]
≤
(
6T |σ(0, x)|2 + 6T 2|b(0, x)|2 + 2K2T 3 + 2K2T 4

)
e6K

2(1+T )T , ∀t ∈ [0, T ].

We let M → ∞, and apply the monotone convergence theorem to obtain

E
[
|Xx

T − x|2
]
≤
(
6T |σ(0, x)|2 + 6T 2|b(0, x)|2 + 2K2T 3 + 2K2T 4

)
e4K

2(T+T 2).

Setting Cx = 6max
{
|σ(0, x)|2, |b(0, x)|2,K2

}
concludes the proof.

Now we prove the main result.

Proof of Theorem 2.6. (i) The covariation of the process (Xt)t≥0 is

⟨Xi, Xj⟩t =
q∑

k=1

∫ t

0

σik(s,Xs)σjk(s,Xs) ds =

∫ t

0

(σσ∗)ij(s,Xs) ds.

Then we apply Itô’s formula to the semimartingale φ(Yt):

φ(Xt)− φ(X0) =

p∑
i=1

∫ t

0

∂φ

∂xi
(Xs) dX

i
s +

1

2

p∑
i,j=1

∫ t

0

∂2φ

∂xi∂xj
(Xs) d⟨Xi, Xj⟩s

=

q∑
k=1

p∑
i=1

∫ t

0

σik(s,Xs)
∂φ

∂xi
(Xs) dB

k
s

+

∫ t

0

 p∑
i=1

bi(s,Xs)
∂φ

∂xi
(Xs) +

1

2

p∑
i,j=1

(σσ∗)ij(s,Xs)
∂2φ

∂xi∂xj
(Xs)

 ds.
This is equivalent to (2.2).
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(ii) Next, we verify that Ps,tφ(x) → φ(x) as t− s ↓ 0. Let (Yt) be a Markov process with transition function

{Ps+t,s+v, v > t ≥ 0} beginning from x. For any λ > 0,

|Ps,tφ(x)− φ(x)| = |E [φ(Yt−s)]− φ(x)|
≤ sup

y:|y−x|≤λ

|φ(y)− φ(x)|+ 2 ∥φ∥∞ P (|Yt−s − x| > λ)

≤ sup
y:|y−x|≤λ

|φ(y)− φ(x)|+ 2Cx

λ2
eCx(t−s)(1+t−s)

4∑
k=1

(t− s)k∥φ∥∞.

Hence

lim
t−s↓0

|Ps,tφ(x)− φ(x)| ≤ sup
y:|y−x|≤λ

|φ(y)− φ(x)|,

which holds for all λ > 0. Since φ is continuous, taking λ ↓ 0 gives Ps,tφ(x) → φ(x). Furthermore, the

convergence rate depends on s, t only through their difference t− s, i.e.

lim
h↓0

sup
s≥0

|Ps,s+hφ(x)− φ(x)| = 0.

(iii) We fix T ≥ 0 and a Brownian motion (Bt)t≥0. Then we define a Markov process (Yt)t≥0 beginning from

Y0 = x with transition function {PT+s,T+t, t > s ≥ 0} by

Yt = x+

∫ t

0

σ(T + s, Ys) dBs +

∫ t

0

b(T + s, Ys) ds.

Similar to (i), we apply Itô’s formula to the semimartingale φ(Yt):

φ(Yt) = φ(x) +

p∑
i=1

q∑
k=1

∫ t

0

σik(T + s, Ys)
∂φ

∂xi
(Ys) dB

k
s

+

∫ t

0

 p∑
i=1

bi(T + s, Ys)
∂φ

∂xi
(Ys) +

1

2

p∑
i,j=1

(σσ∗)ij(T + s, Ys)
∂2φ

∂xi∂xj
(Ys)

 ds.
Define function g : R+ × Rp → R by

g(t, y) =
1

2

p∑
i,j=1

(σσ∗)ij(t, y)
∂2φ

∂xi∂xj
(y) +

p∑
i=1

bi(t, y)
∂φ

∂xi
(y) =

1

2
σσ∗(t, y) · ∇2φ(y) + b(t, y)∇φ(y).

Then g is also a continuous function, and

|g(t, y)− g(s, y)| ≤ 1

2
K2∥∇2φ∥∞ +K∥∇φ∥∞ =: R.

We then take expectation on both sides of the identity

φ(Yt)− φ(x)−
∫ t

0

g(T + s,Xs) ds =

p∑
i=1

q∑
k=1

∫ t+ϵ

t

σik(T + s, Ys)
∂φ

∂xi
(Ys) dB

k
s .

to get

PT,T+t φ(x)− φ(x)−
∫ t

0

PT,T+s g(T + s, x) ds = 0. (2.6)
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We also note that

1

t

∫ t

0

|PT,T+s g(T + s, x)− g(T, x)| ds

≤ 1

t

∫ t

0

|PT,T+s g(T + s, x)− PT,T+sg(T, x)| ds+
1

t

∫ t

0

|PT,T+s g(T, x)− g(T, x)| ds

≤ 1

t

∫ t

0

∥g(T + s, ·)− g(T, ·)∥∞ ds+
1

t

∫ t

0

|PT,T+s g(T, x)− g(T, x)| ds

≤ Rt

2
+ sup

s∈[0,t]

|PT,T+sg(T, x)− g(T, x)|,

(2.7)

which converges to 0 as t ↓ 0. Combining (2.6) and (2.7), we obtain

lim
t↓0

PT,T+t φ(x)− φ(x)

t
= g(T, x).

Replacing T with T − t, (2.6) becomes

PT−t,T φ(x)− φ(x)−
∫ t

0

PT−t,T−t+s g(T − t+ s, x) ds = 0.

Similar to (2.7), we have

1

t

∫ t

0

|PT−t,T−t+s g(T − t+ s, x)− g(T, x)| ds

≤ 1

t

∫ t

0

|PT−t,T−t+s g(T − t+ s, x)− PT−t,T−t+sg(T, x)| ds+
1

t

∫ t

0

|PT−t,T−t+s g(T, x)− g(T, x)| ds

≤ 1

t

∫ t

0

∥g(T − t+ s, ·)− g(T, ·)∥∞ ds+
1

t

∫ t

0

|PT−t,T−t+s g(T, x)− g(T, x)| ds

≤ Rt

2
+ sup

s∈[0,t]

|PT−t,T−t+sg(T, x)− g(T, x)|.

Combining the last two display gives

lim
t↓0

PT−t,T φ(x)− φ(x)

t
= g(T, x).

Thus we complete the proof.

Remark. For notation simplicity, we denote by Σ = σσ∗, and write

Ltφ =
1

2
Σ(t, ·) · ∇2φ+ b(t, ·) · ∇φ =

1

2

p∑
i,j=1

(σσ∗)ij(t, ·)
∂2φ

∂xi∂xj
+

p∑
i=1

bi(t, ·)
∂φ

∂xi
, φ ∈ C2(Rp).

Using integration by parts, the adjoint of Lt is given by

L ∗
t ψ =

1

2
∇2

x · Σ(t, ·)ψ −∇x · b(t, ·)ψ =
1

2

p∑
i,j=1

∂2

∂xi∂xj
(σσ∗)ij(t, ·)ψ −

p∑
i=1

∂

∂xi
bi(t, ·)ψ, ψ ∈ C2(Rp).

The adjoint property holds in the sense of integration∫
Rp

Ltφ(x)ψ(x) dx =

∫
Rp

φ(x)L ∗
t ψ(x) dx, φ, ψ ∈ C∞

c (Rp).
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2.3 The Kolmogorov Backward and Forward Equations

Theorem 2.9 (Kolmogorov backward equation). Fix T > 0 and φ ∈ C2
b (Rp). Define u : R+ × Rp → R by

u(t, x) = Pt,Tφ(x).

Suppose that u ∈ C1,2(R+ × Rp). Then u(t, x) solves the following Kolmogorov backward equation:
∂u

∂t
+

1

2
Σ · ∇2

xu+ b · ∇xu = 0, 0 ≤ t ≤ T,

u(T, x) = φ(x).

(2.8)

Proof. By definition, the final value u(T, x) = φ(x). To recover the PDE, note that

−∂u
∂t

(t, x) = lim
h↓0

Pt−h,T (x)φ− Pt,Tφ(x)

h
= lim

h↓0

Pt−h,tu(t, x)− u(t, x)

h
.

The result follows from (2.4).

Remark. We define u(s, x) = u(T − s, x) = PT−s,Tφ(x). Then we turn (2.8) to an initial value problem:
∂u

∂t
=

1

2
Σ · ∇2

xu+ b · ∇xu, 0 ≤ t ≤ T,

u(0, x) = φ(x).

Theorem 2.10 (Kolmogorov forward equation). Let ps,t(·|x) be the probability density of Ps,t(x, ·), and assume

that ps,t(·|x) ∈ C1,2(R+ × Rp) for all t > s ≥ 0 and x ∈ Rp. Then
∂

∂t
ps,t(y|x) =

1

2
∇2

y · Σ(t, y)ps,t(y|x)−∇y · b(t, y)ps,t(y|x),

limt↓s ps,t(y|x) = δ(y − x).

(2.9)

Proof. Let ps,t(·|x) be the probability density function of P0,t(x, ·), where t > 0. Let φ ∈ C∞
c (Rp). Then

lim
h↓0

1

h

(∫
Rp

φ(y)pt,t+h(y|x) ds− φ(x)

)
= Ltφ(x).

For any t > 0, we use interchangeability of derivative and integration:∫
Rp

φ(y)
∂

∂t
ps,t(y|x) dy =

∂

∂t

∫
Rp

φ(y)ps,t(y|x) dy = lim
h↓0

1

h

∫
Rp

φ(y) (ps,t+h(y|x)− ps,t(y|x)) dy

= lim
h↓0

1

h

(∫
Rp

∫
Rp

ps,t(z|x)pt,t+h(y|z)φ(y) dz dy −
∫
Rp

ps,t(z|x)φ(z) dz
)

= lim
h↓0

∫
Rp

ps,t(z|x) ·
1

h

(∫
Rp

φ(y)pt,t+h(y|z) dy − φ(z)

)
dz

=

∫
Rp

Ltφ(z)ps,t(z|x) dz =
∫
Rp

φ(z)L ∗
t ps,t(z|x) dz,

where the second line follows from the Chapman-Kolmogorov equation, and in the fifth equality we apply the

dominated convergence theorem. Since the above equation holds for all φ ∈ C∞
c (R),

∂

∂t
ps,t(y|x) = L ∗

t ps,t(y|x) =
1

2
∇2

y · Σ(t, y)ps,t(y|x)−∇y · b(t, y)ps,t(y|x). (2.10)

Then we finish the proof.
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2.4 The Feynman-Kac Formula

The Feynman-Kac formula is a generalization of the Kolmogorov backward equation. It reveals a connection

between parabolic partial differentiabl equations and stochastic differential equations.

Theorem 2.11 (Feynman-Kac formula). Fix T > 0. Let (Xt)0≤t≤T be a diffusion process defined by

dXt = b(t,Xt) dt+ σ(t,Xt) dBt.

For each t ≥ 0 and x ∈ Rp, let

u(t, x) = E
[
e−

∫ T
t

V (s,Xs) dsφ(XT )

∣∣∣∣Xt = x

]
.

Suppose that u ∈ C1,2(R+ × Rp). Then u(t, x) solves the final value problem
∂u

∂t
+ b · ∇xu+

1

2
Σ · ∇2

xu = V u, 0 ≤ t ≤ T,

u(T, x) = φ(x).

(2.11)

Proof. We let u be a solution of (2.11). By Itô’s lemma, we have

du(t,Xt) =
∂u

∂t
(t,Xt) dt+∇xu(t,Xt) · dXt +

1

2
∇2

xu(t,Xt) · d⟨X,X⟩t

=

[
∂u

∂t
(t,Xt) + b(t,Xt) · ∇xu(t,Xt) +

1

2
Σ(t,Xt) · ∇2

xu(t,Xt)

]
dt+∇xu(t,Xt) · σ(t,Xt) dBt.

Since u satisfies (2.11), we have

du(t,Xt) = V (t,Xt)u(t,Xt) dt+∇xu(t,Xt) · σ(t,Xt) dBt.

Wo solve the SDE by integrating both sides on [t, T ]. For the part involving dt, we note that the integrating

factor e
∫ t
0
V (s,Xs) ds is a finite variation process. We multiply both sides of the SDE by the factor and apply

methods for solving ordinary differential equations. Then

u(T,XT ) e
−

∫ T
0

V (s,Xs) ds − u(t,Xt) e
−

∫ t
0
V (s,Xs) ds =

∫ T

t

e−
∫ s
0
V (τ,Xτ ) dτ∇2

xu(s,Xs) · σ(s,Xs) dBs,

and

u(t,Xt) = φ(XT )e
−

∫ T
t

V (s,Xs) ds −
∫ T

t

e−
∫ s
t
V (τ,Xτ ) dτ∇2

xu(s,Xs) · σ(s,Xs) dBs. (2.12)

Conditional on Xt = x, the process
∫ ·
t
e−

∫ s
t
V (τ,Xτ ) dτ∇2

xu(s,Xs) ·σ(s,Xs) dBs is a continuous local martingale,

and it becomes a martingale when stopped by T . By the martingale property,

E

[∫ T

t

e−
∫ s
t
V (τ,Xτ ) dτ∇2

xu(s,Xs) · σ(s,Xs) dBs

∣∣∣∣Xt = x

]
= 0.

Hence by taking the expectation conditional on Xt = x on both sides of (2.12), we get

u(t, x) = E
[
φ(XT )e

−
∫ T
t

V (s,Xs) ds

∣∣∣∣Xt = x

]
,

which completes the proof.
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Remark. (i) We define

u(t, x) = u(T − t, x) = E
[
e−

∫ T
T−t

V (s,Xs) dsφ(XT )

∣∣∣∣XT−t = x

]
.

Then we turn (2.11) into an initial value problem
∂u

∂t
= b · ∇xu+

1

2
Σ · ∇2

xu− V u, 0 ≤ t ≤ T,

u(0, x) = φ(x).

(ii) More generally, we define

u(t, x) = E

[
e−

∫ T
t

V (s,Xs) dsφ(XT ) +

∫ T

t

e−
∫ s
t
V (τ,Xτ ) dτg(s,Xs) ds

∣∣∣∣Xt = x

]
.

Suppose that u ∈ C1,2(R+ × Rp). Then u(t, x) solves the final value problem
∂u

∂t
+ b · ∇xu+

1

2
Σ · ∇2

xu = V u+ g, 0 ≤ t ≤ T,

u(T, x) = φ(x).

This is the Feynman-Kac formula for inhomogeneous parabolic PDEs.

2.5 The Fokker-Planck Equation

The Fokker-Planck equation describes the evolution of the probabiity density in a diffusion process.

Theorem 2.12 (Fokker-Planck equation). Consider the diffusion process

dXt = σ(t,Xt) dBt + b(t,Xt) dt.

Let the Assumption of Theorem 2.9 holds. Let ρ(t, x) the probability density of Xt for each t ≥ 0, and write

ρ0 = ρ(0, ·). If ρ ∈ C1,2(R+ × Rp), then ρ solves the following Fokker-Planck equation:
∂ρ

∂t
=

1

2
∇2

x · Σρ−∇x · bρ, t > 0,

ρ(0, x) = ρ0(x).

(2.13)

Proof. If X0 ∼ ρ0, we have

ρ(t, y) =

∫
Rp

p0,t(y|x)ρ0(x) dx.

Integrating both sides of the Kolmogorov forward equation (2.9), we obtain∫
Rp

∂

∂t
p0,t(y|x)ρ0(x) dx =

1

2

∫
Rp

∇2
y · Σ(t, y)p0,t(y|x)ρ0(x) dx−

∫
Rp

∇y · b(t, y)p0,t(y|x)ρ0(x) dx

The dominated convergence theorem gives the guarantee of exchangeability of derivative and integration.
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2.6 Anderson’s Reverse-time SDE

In this subsection, we study the time-reversal of diffusion processes. A reverse-time SDE

dXt = σ(t,Xt) ⃗dBt + b(t,Xt) dt,

consists of

• A diffusion coefficient σ : R+ × Rp → Rp×q and a drift coefficicent b : R+ × Rp → Rp;

• A backward q-dimensional Brownian motion (Bt) with respect to a backward filtration (Gt)t≥0, which is

a continuous stochastic process such that B0 = 0, and for any t > s ≥ 0, the increment

Bt −Bs ∼ N(0, (t− s) Id)

and is independent of Gt;

• A stochastic process (Xt)t≥0 satisfying

Xt = X0 +

∫ t

0

σ(s,Xs) ⃗dBs +

∫ t

0

b(s,Xs) ds,

where the backward Itô integral is defined by∫ t

0

σ(s,Xs) ⃗dBs = lim
m→∞

nm∑
k=1

σ
(
tmk , Xtmk

) (
Btmk

−Btmk−1

)
, (2.14)

where 0 = tm0 < tm1 < · · · < tmnm
= t is an increasing sequence of partitions of [0, t] such that the mesh

max1≤k≤mn
|tmk − tmk−1| ↓ 0 as m → ∞, and the limit holds in probability. Note that we evaluate the

integrad σ at the right end of each subinterval [tmk−1, t
m
k ] in the Riemann sum (2.14). In comparision, we

evaluate the integrand at the left end in the (forward) Itô integral.

Theorem 2.13 (Anderson’s reverse-time SDE Theorem). Let (Xt)t≥0 be the process defined by

dXt = σ(t,Xt) dBt + b(t,Xt) dt,

where σ : R+×Rp → Rp×q and b : R+×Rp → Rp are such as to guarantee the existence of a probability density

ρ(t, x) for t ≥ 0 as a smooth and unique solution of its associated Fokker-Planck equation (2.13). Define a

q-dimensional process (Bt)t≥0 by B0 = 0, and

dB
j

t = dBj
t +

1

ρ(t,Xt)

p∑
i=1

∂(σijρ)

∂xi
(t,Xt) dt, j = 1, 2, · · · , q,

and suppose further that the Fokker-Planck equation associated with the joint process (Xt, Bt)t≥0 yields a

smooth and unique solution for t ≥ 0. Then

(i) (Bt)t≥0 is a backward Brownian motion with respect to the backward filtration (Gt)t≥0, where Gt is the

sub-σ-algebra generated by (Xs, Bs)s≥t.

(ii) (Xt)t≥0 satisfies the reversed-time SDE

dXt = σ(t,Xt) ⃗dBt + b(t,Xt) dt,

where the reverse-time drift coefficient b : R+ × Rp → Rp is defined by

b
i
(t, x) = bi(t, x)−

p∑
k=1

∂(σσ∗)ik
∂xk

(t, x)−
p∑

k=1

(σσ∗)ik
∂ log ρ

∂xk
(t, x), i = 1, 2, · · · , p.
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Remark. For notation simplicity we write

dBt = dB0 +
1

ρ(t,Xt)
∇x · ρσ∗(t,Xt) dt, and b(t, x) = b(t, x)−∇x · σσ∗(t, x)− σσ∗(t, x)∇x log ρ(t, x).

We let ρ(t, x, w) be the joint density of (Xt, Bt), which solves the following Fokker-Planck equation:

∂ρ

∂t
=

1

2
∇2

x,w ·

(
σσ∗ σ

σ∗ Id

)
ρ−∇x,w ·

(
bρ

∇x · σ∗ρ

)

=
1

2
∇2

x · σσ∗ρ+

p∑
i=1

q∑
j=1

∂2(σijρ)

∂xi∂wj
+

1

2
tr(∇2

wρ)−∇x · bρ−
q∑

j=1

∂

∂wj

(
p∑

i=1

∂(σijρ)

∂xi

)

=
1

2
∇2

x · σσ∗ρ+
1

2
tr(∇2

wρ)−∇x · bρ.

Let X0 ∼ ρ0 be a random variable independent of the Brownina motion (Bt)t≥0. Then the full problem is
∂ρ
∂t = 1

2∇
2
x · σσ∗ρ+ 1

2 tr(∇
2
wρ)−∇x · bρ,

ρ(0, x, w) = ρ0(x)δ(w).
(2.15)

Lemma 2.14. Let ρ̃(t, x) be a time-varying density function that solves the Fokker-Planck equation (2.13) for

the process (Xt)t≥0. Define

ϕ(t, w) =
1

(2πt)q/2
e−

|w|2
2t , t > 0, w ∈ Rq.

Then the solution ρ(t, x, w) of the Fokker-Planck equation for (Xt, Bt)t≥0 is given by

ρ(t, x, w) = ρ̃(t, x)ϕ(t, w).

Proof. We note that

1

2
∇2

x · (σσ∗ρ)−∇x · bρ = ϕ ·
(
1

2
∇2

x · σσ∗ρ̃−∇x · bρ̃
)
,

and

1

2
tr
(
∇2

wρ
)
=

1

2

q∑
j=1

ρ̃ ·

(
w2

j

t2
− 1

t

)
ϕ = ρ̃ ·

(
|w|2

2t2
− q

2t

)
· ϕ.

Therefore ρ satisfy the Fokker-Planck equation:

∂ρ

∂t
= ϕ

∂ρ̃

∂t
+ ρ̃

∂ϕ

∂t
= ϕ ·

(
1

2
∇2

x · σσ∗ρ̃−∇x · bρ̃
)
+ ρ̃ ·

(
|w|2

2t2
− q

2t

)
· ϕ

=
1

2
∇2

x · (σσ∗ρ)−∇x · bρ+ 1

2
tr
(
∇2

wρ
)
.

Since the initial condition ρ(0, t, w) = ρ0(x)δ(w) is clear, and we complete the proof.

Remark. An elementary application of Bayes’ theorem shows that the conditional distribution of Bt given Xt

is described by the density function

ρt(w|x) = ϕ(w, t) =
1

(2πt)q/2
e−

|w|2
2t .

Hence Bt is independent of Xt.
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Lemma 2.15. Let ρ(t, x, w) = ρ̃(t, x)ϕ(t, w) be the solution of the Fokker-Planck equation (2.15). Then for

any t > s ≥ 0, the conditional density associated with (2.15) is

ρ(t, xt, wt|s, ws) = ρ̃(t, xt)ϕ(t− s, wt − ws) (2.16)

Proof. We first consider the conditional density ρ(xt, wt|xs, ws), which satisfies the Fokker-Planck equation

(2.15) with initial condition ρ(s, x, w|s, xs, ws) = δ(x− xs)δ(w − ws). By Lemma 2.14,

ρ(t, xt, wt|s, xs, ws) = ps,t(xt|xs)ϕ(t− s, wt − ws).

Then

ρ(t, xt, wt|s, ws) =

∫
Rp

ρ(s, xs|s, ws)ρ(t, xt, wt|s, xs, ws) dxs

=

∫
Rp

ρ̃(s, xs)ps,t(xt|xs)ϕ(t− s, wt − ws) dxs = ρ̃(t, xt)ϕ(t− s, wt − ws).

Also, as t ↓ s, both sides of (2.16) has the same limit ρ̃(s, xt)δ(wt − ws).

Remark. If t > s ≥ 0, the joint conditional density of Xt and Bt −Bs given Bs is also given by (2.16), which

depends on wt and ws only through their difference. Therefore, the joint distribution of Xt and Bt −Bs does

not depend on the value of Bs. Furthermore, Xt, Bt and Bt −Bs are mutually independent:

ρs,t(xt, wt − ws|ws) = ρs,t(xt, wt − ws) = ρ̃(t, xt)ϕ(t− s, wt − ws).

Based on this property, we define Gs to be the σ-algebra generated by random varibles (Xt)t≥s and (Bt)t≥s.

Then the continuous semimartingale (Bt)t≥0 satisfies Bt − Bs ∼ N(0, (t − s) Id) for all t > s ≥ 0. Since the

increment Bt −Bs is independent of Gt, we can view the stochastic process (Bt)t≥0 as a backward Brownian

motion with respect to the backward filtration (Gt)t≥0.

Proof of Theorem 2.13. The result (i) is shown in the above remark, and it remains to shown (ii). By definition

of (Xt, Bt)t≥0, we can write (Xt)t≥0 as the following forward Itô integral:

Xt = X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

b(s,Xs) ds

= X0 +

∫ t

0

σ(s,Xs) dBs +

∫ t

0

(
b(s,Xs)− σ(s,Xs)

∇x · σ∗ρ(s,Xs)

ρ(s,Xs)

)
ds. (2.17)

To reverse the process, we need to compute the backward Itô integral. Let 0 = tm0 < tm1 < · · · < tmnm
= t be

an increasing sequence of partitions of [0, t] such that max1≤k≤mn
|tmk − tmk−1| ↓ 0 as m→ ∞. Then

∫ t

0

σij(s,Xs) ⃗dB
j

s = lim
m→∞

nm∑
k=1

σij
(
tmk , Xtmk

) (
B

j

tmk
−B

j

tmk−1

)
= lim

m→∞

nm∑
k=1

(
B

j

tmk
−B

j

tmk−1

)
×
(
σij

(
tmk−1, Xtmk−1

)
+ (tmk − tmk−1)

∂σij
∂t

(
tmk−1, Xtmk−1

)
+∇xσij

(
tmk−1, Xtmk−1

)
·
(
Xtmk

−Xtmk−1

))
=

∫ t

0

σij(s,Xs) dB
j

s +

p∑
k=1

∫ t

0

∂σij
∂xk

(s,Xs) d⟨Xk, B
j⟩s

=

∫ t

0

σij(s,Xs) dB
j

s +

p∑
k=1

∫ t

0

∂σij
∂xk

(s,Xs)σkj(s,Xs) ds.

16



Hence, to convert (2.17) to a backward Itô integral, we need to subtract a correction term:

Xi
t = Xi

0 +

q∑
j=1

∫ t

0

σij(s,Xs) ⃗dB
j

s

+

∫ t

0

bi(s,Xs)−
q∑

j=1

p∑
k=1

∂σij
∂xk

(s,Xs)σkj(s,Xs)−
q∑

j=1

σij(s,Xs)

ρ(s,Xs)

p∑
k=1

∂(σkjρ)

∂xk
(s,Xs)

 ds
= Xi

0 +

q∑
j=1

∫ t

0

σij(s,Xs) ⃗dB
j

s +

∫ t

0

bi(s,Xs)−
q∑

j=1

p∑
k=1

(
∂(σijσkj)

∂xk
(s,Xs) + σijσkj

∂ log ρ

∂xk
(s,Xs)

) ds
= Xi

0 +

q∑
j=1

∫ t

0

σij(s,Xs) ⃗dB
j

s +

∫ t

0

[
bi(s,Xs)−

p∑
k=1

(
∂(σσ∗)ik
∂xk

(s,Xs) + (σσ∗)ik
∂ log ρ

∂xk
(s,Xs)

)]
ds.

We write this integral to a compact form:

Xt = X0 +

∫ t

0

σ(s,Xs) ⃗dBs +

∫ t

0

[b(s,Xs)− (∇x · Σ)(s,Xs)− Σ(s,Xs)∇x log ρ(s,Xs)] ds,

where Σ = σσ∗, and

∇x · Σ =

p∑
k=1


∂Σ1k

∂xk

...
∂Σpk

∂xk

 . (2.18)

Equivalently, we write the reverse-time SDE as

dXt = σ(t,Xt) ⃗dBt + b(t,Xt) dt,

where b = b−∇x · Σ− Σ∇x log ρ is the reversed-time drift coefficient.

Remark. We can prove a weaker analogue of Theorem 2.13 in the sense of marginal distribution. We fix T > 0,

and let (ρt)0≤t≤T be the marginal densities of the process (Xt)0≤t≤T defined by

dXt = σ(t,Xt) dBt + b(t,Xt) dt, X0 ∼ ρ0. (2.19)

Then the reverse-time SDE is

dXt = σ(t,Xt) ⃗dBt + [b(t,Xt)−∇x · Σ(t,Xt)− Σ(t,Xt)∇x log ρt(Xt)] dt, XT ∼ ρT .

We can convert this to a forward-time SDE by defining YT−t = Xt. Then

dYt = σ(T − t, Yt) dBt − [b(T − t, Yt)−∇x · Σ(T − t, Yt)− Σ(T − t, Yt)∇x log ρT−t(Yt)] dt, Y0 ∼ ρT . (2.20)

Let (λt)0≤t≤T be the marginal densities of the process (Yt)0≤t≤T . Then (λt)0≤t≤T satisfies the following

Fokker-Planck equation with λ0 = ρT :

∂λt
∂t

(y) =
1

2
∇2

y · Σ(T − t, y)λt(y) +∇y · [b(T − t, y)−∇y · Σ(T − t, y)− Σ(T − t, y)∇y log ρT−t(y)]λt(y).

Also, let ρt = λT−t be the marginal densities of (Xt)0≤t≤T . Then ρT = ρT , and

∂ρt
∂t

(x) = −1

2
∇2

x · Σ(t, x)ρt(x)−∇x · [b(t, x)−∇x · Σ(t, x)− Σ(t, x)∇x log ρt(x)] ρt(x). (2.21)
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We plug-in (ρt)0≤t≤T = (ρt)0≤t≤T into (2.21) to obtain

∂ρt
∂t

(x) = −1

2
∇2

x · Σ(t, x)ρt(x)−∇x · [b(t, x)−∇x · Σ(t, x)− Σ(t, x)∇x log ρt(x)] ρt(x)

= −1

2
∇2

x · Σ(t, x)ρt(x)− [b(t, x)−∇x · Σ(t, x)− Σ(t, x)∇x log ρt(x)] · ∇xρt(x)

−
[
∇x · b(t, x)−∇2

x · Σ(t, x)− (∇x · Σ)(t, x)∇x log ρt(x)− Σ(t, x) · ∇2
x log ρt(x)

]
ρt(x)

= −1

2
∇2

x · Σ(t, x)ρt(x)− b(t, x) · ∇xρt(x) + (∇x · Σ)(t, x) · ∇xρt(x) +
∇xρt(x)

⊤

ρt(x)
Σ(t, x)∇xρt(x)

− ρt(x)∇x · b(t, x) + ρt(x)∇2
x · Σ(t, x) + (∇x · Σ)(t, x)∇xρt(x)

+ Σ(t, x) · ∇2
xρt(x)−

Σ(t, x)

ρt(x)
· ∇xρt(x)∇xρt(x)

⊤

= −1

2
∇2

x · Σ(t, x)ρt(x) + ρt(x)∇2
x · Σ(t, x) + 2(∇x · Σ)(t, x) · ∇xρt(x) + Σ(t, x) · ∇2

xρt(x)

− b(t, x) · ∇xρt(x)− ρt(x)∇x · b(t, x)

=
1

2
∇2

x · Σ(t, x)ρt(x)−∇x · b(t, x)ρt(x),

which is the Fokker-Planck equation for (ρt)0≤t≤T . Since ρT = ρT = λ0, the marginal densities (ρt)0≤t≤T

solves the Fokker-Planck equation (2.21), and ρt = ρt = λT−t. This implies

Xt
d
= Xt = YT−t, 0 ≤ t ≤ T.

To summarize, the marginal densities of (Xt)t≥0 and (Yt)t≥0 are reversely aligned.
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