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Conformal prediction is a popular, modern technique for providing valid predictive inference for arbitrary

machine learning models. It deals with a contemporary challenge: when working with a ”black box” algorithm

that constructs a predictive model from training data, how do we establish calibrated prediction intervals around

the model’s output, ensuring they reliably achieve a desired coverage level?

1 Adjusted Quantiles

1.1 General setting

Let (Xi, Yi) ∼ P, i = 1, 2, · · · , n be i.i.d. feature and response pairs from a distribution P on X × Y. Let

α ∈ (0, 1) be a small error level. We are possibly interested in finding a prediction band Ĉn : X → Y , where Y

is the class of measurable subsets of Y. Moreover, for a new pair (Xn+1, Yn+1) ∼ P, we hope that our prediction

band covers the true response with high probability:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α. (1.1)

Intuitively, a narrower band yields less uncertainty in our prediction at a constant error level α. We consider a

simpler context where there are no features at all and Y = R. Let q = Quantile(1− α;P ),

P (Yn+1 ∈ (−∞, q]) = 1− α (1.2)

gives a natural prediction band. Given Y1, · · · , Yn ∼ P, to approximate quantile q, we can use the empirical

distribution n−1
∑n

i=1 δYi
:

q̂n = Quantile

(
1− α;

1

n

n∑
i=1

δYi

)
.

However, our prediction band Ĉn = (−∞, q̂n] is not an exact confidence set, since (1.2) only holds asymptotically

when n → ∞ under some regular conditions when q is replaced by q̂n. Below we address this problem.

1.2 Adjusted quantiles

We first introduce a useful tool which allows us to generate random variables distributed according to arbitrary

cumulative distribution function F from a uniform variable U ∼ Unif(0, 1).

Lemma 1.1 (Galois inequality). Let F be a cumulative distribution function (c.d.f.) and Z be an R-valued
random variable such that P(Z ≤ z) = F (z), z ∈ R. Define the corresponding quantile function QF as follows:

QF (t) = inf{z : F (z) ≥ t}, t ∈ [0, 1].

Then for any t ∈ [0, 1] and z ∈ R,
F (z) ≥ t ⇔ QF (t) ≤ z. (1.3)

Moreover, if U ∼ Unif(0, 1), then QF (U) ∼ F.
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Proof. By definition, F (z) ≥ t implies z ≥ QF (t). Now suppose z ≥ QF (t). By definition, ∀ϵ > 0, we have

F (z + ϵ) ≥ t. Since F as a c.d.f. is right-continuous, it holds

F (z) = lim
ϵ→0+

F (z + ϵ) ≥ t.

Then we conclude the proof of (1.3). Moreover, if U ∼ Unif(0, 1), then for any t ∈ [0, 1],

P(QF (U) ≤ t) = P(F (t) ≥ U) = F (t).

Hence QF (U) is distributed according to F .

Corollary 1.2. Fix t ∈ [0, 1]. By setting z = QF (t) in (1.3), we have

P(Z ≤ QF (t)) = F (QF (t)) ≥ t.

In other words, with probability at least t, Z is not greater than its t quantile.

Lemma 1.3 (Order statistics). Let F be a c.d.f. and Y1, · · · , Yn+1 be i.i.d. random variables drawn from F.

Let Y(1), · · · , Y(n) be the order statistics of Y1, · · · , Yn. Then

P(Yn+1 ≤ Y(k)) ≥
k

n+ 1
, k = 1, · · · , n. (1.4)

Proof. We first prove that QF is non-decreasing. Since F is non-decreasing, if t1 ≤ t2, we have

{z : F (z) ≥ t1} ⊇ {z : F (z) ≥ t2} ⇔ inf{z : F (z) ≥ t1} ≤ inf{z : F (z) ≥ t2}. (1.5)

Now we show (1.4). Let U1, · · · , Un+1
i.i.d.∼ Unif(0, 1). By Lemma 1.1, we have the representation Yi = QF (Ui)

for i = 1, · · · , n+1. Since QF is non-decreasing, Y(k) = QF (U(k)) holds, where U(1), · · · , U(n) are order statistics

of U1, · · · , Un. By (1.5), we have

P(Yn+1 ≤ Y(k)) ≥ P(Un+1 ≤ U(k)) = E
[
P(Un+1 ≤ U(k)|U1, · · · , Un)

]
= E[U(k)] =

k

n+ 1
.

Then we conclude the proof.

Remark. If F is continuous on R, then (1.4) becomes an equality:

P(Yn+1 ≤ Y(k)) =
k

n+ 1
.

Now we are prepared to introduce the adjusted quantile for empirical distributions.

Definition 1.4 (Adjusted quantile). Let α ∈ [0, 1]. The α-adjusted quantile of the empirical distribution of

i.i.d. random variables Y1, · · · , Yn is defined as

q̂n = Quantile

(
⌈(1− α)(n+ 1)⌉

n
;

n∑
i=1

δYi

)
= Y(⌈(1−α)(n+1)⌉). (1.12)

Using this definition, we can achieve (1.1) exactly by setting Ĉn = (−∞, q̂n]. Moreover, if Y1, · · · , Yn+1 are

drawn from a continuous distribution, we can bound the coverage rate of Ĉn as follows:

P
(
Yn+1 ∈ Ĉn

)
=

⌈(1− α)(n+ 1)⌉
n+ 1

∈
[
1− α, 1− α+

1

n+ 1

)
. (1.6)
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An alternative formulation. Parallel to Lemma 1.3, we can prove P(Yn+1 ≥ Y(k)) ≥ 1− k
n+1 , k = 1, · · · , n.

Then we define

q̃n = Quantile

(
⌊α(n+ 1)⌋

n
;

n∑
i=1

δYi

)
= Y(⌊α(n+1)⌋),

and we can also achieve (1.1) exactly by setting Ĉn = [q̃n,∞). Similarly, (1.6) holds in a continuous setting.

2 Split Conformal Prediction

Regression Setting. In a regression task, we observe both the features Xi ∈ X and responses Yi ∈ R. A lot

of algorithms allow we to construct find a point estimator f̂n : X → R that predict the value of Yi based on Xi.

Then, we consider the residuals the on training set:

Ri = |Yi − f̂n(Xi)|, i = 1, · · · , n.

Let q̂n be the adjusted 1− α quantile of R1, · · · , Rn, we can immediately construct a prediction band:

Ĉn(x) = {y : |y − f̂n(x)| ≤ q̂n},

or equivalently,

Ĉn(x) =
[
f̂n(x)− q̂n, f̂n(x) + q̂n

]
.

However, this prediction band may undercover because Rn+1 = |Yn+1 − f̂n(Xn+1)| is not exchangeable with

R1, · · · , Rn, since f̂n is only trained on {(Xi, Yi)}ni=1. (Generally, Rn+1 are greater than expected.)

2.1 Overcovering conformal sets

Symmetrization. From the above analysis, it is necessary to generate residuals satisfying the exchangeability

condition if we want to use the adjust quantile method. In this context, the split conformal prediction will be

helpful. The split conformal prediction divides the training set D into two disjoint subsets:

• proper training set D1 ⊊ D with |D1| = n1, and

• calibration set D2 = D\D1 with |D2| = n2 = n− n1.

Then, fit a point estimator f̂n1 on the proper training set {(Xi, Yi), i ∈ D1}, and calculate the calibration

residuals {Rj = |Yj − f̂n1
(Xj)|, j ∈ D2} and the conformal quantile:

q̂n2
= Quantile

⌈(1− α)(n+ 1)⌉
n2

;
1

n2

∑
j∈D2

δRj

 .

Use f̂n1 and q̂n2 to construct the conformal set

Ĉn =
[
f̂n1

(x)− q̂n2
, f̂n1

(x) + q̂n2

]
Conditioning on the proper training set {(Xi, Yi), i ∈ D1}, the calibration residuals {Rj , j ∈ D2} and the test

residual Rn+1 = Yn+1 − f̂n1
(Xn+1) are i.i.d., hence our confidence set satisfies (1.1) exactly:

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣ (Xi, Yi), i ∈ D1

)
=

⌈(1− α)(n2 + 1)⌉
n2 + 1

∈
[
1− α, 1− α+

1

n2 + 1

)
. (2.1)

Modification of residuals. Let V (x, y) be a negatively-oriented score function that measures the conformity

of point (x, y) (negatively-oriented meaning that a lower value indicates better conformity). For example, in
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the previous discussion, V (x, y) := |y − f̂n1
(x)|. Then we generalize the residuals by the conformity score:Rj := V (Xj , Yj), j ∈ D2,

Rn+1 := V (Xn+1, Yn+1).

And we can construct the conformal set:

Ĉn(x) =

y : V (x, y) ≤ Quantile

⌈(1− α)(n2 + 1)⌉
n2

;
1

n2

∑
j∈D2

δRj

 . (2.2)

Relation to the prediction algorithm. It can be seen that the width of the prediction band is exactly

the same at each point x ∈ X . Any prediction algorithm (which fits or interpolates the proper training set D1

by a point estimator) produces a conformal band with valid coverage, which protects the point estimator f̂n1

against overfitting. However, a good prediction algorithm often yields a smaller prediction sets, because the

point estimator f̂n1
(X) falls in high density regions of our conditional distribution PY |X .

2.2 Auxiliary randomization*

The conformal set (2.2) can be rewritten as a c.d.f. form:

Ĉn(x) =

y :
1

n2

∑
j∈D2

1{Rj≤V (x,y)} ≤ ⌈(1− α)(n2 + 1)⌉
n2

 .

Denote by F̂n2+1 the empirical distribution of {Rj , j ∈ D2} and Rn+1. Then

Yn+1 ∈ Ĉn(Xn+1) ⇔ F̂n2+1(Rn+1) ≤
⌈(1− α)(n2 + 1)⌉

n2 + 1
,

which occurs with probability at least 1− α.

The following proposition is useful in our analysis.

Proposition 2.1. Suppose an R-valued random variable Z is distributed according to c.d.f. F . Then the

random variable F (Z) is sub-uniform, i.e. P(F (Z) ≤ t) ≤ t for each t ∈ [0, 1]. Furthermore,

P(F (Z) ≤ t) = t ⇔ t ∈ {F (z) : z ∈ R}.

Proof. If t ∈ {F (z) : z ∈ R}, let z∗ = sup{z : F (z) ≤ t}. Then either F (z∗) = t or limϵ→0+ F (z∗ − ϵ) = t, and

P(F (Z) ≤ t) =

P(Z < z∗) = limϵ→0+ F (z∗ − ϵ) = t, t /∈ {F (z) : z ∈ R},

P(Z ≤ z∗) = F (z∗) = t, t ∈ {F (z) : z ∈ R}.

If t /∈ {F (z) : z ∈ R}, then there exists ϵ > 0 such that

P(F (Z) ≤ t) = P(F (Z) ≤ t− ϵ) = P(F (QF (U)) ≤ t− ϵ) ≤ P(U ≤ t− ϵ) = t− ϵ,

where U ∼ Unif(0, 1), and the inequality follows by Corollary 1.2. Therefore P(F (Z) ≤ t) ≤ t, and

P(F (Z) ≤ t) = t

if and only if t ∈ {F (z) : z ∈ R}.
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To deal with possible discontinuity of a c.d.f. F, we make a modification

F ∗(z;u) = uF (z) + (1− u) lim
ϵ→0+

F (z − ϵ), u ∈ [0, 1].

Then if F is discontinuous at z, we can connect F (z) and limϵ→z+ F (z − ϵ) by sliding u in F ∗ from 0 to 1.

Proposition 2.2. Suppose Z ∼ F and U ∼ Unif(0, 1). Then P(F ∗(Z;U) ≤ t) = t for each t ∈ [0, 1].

Proof. Fix t ∈ (0, 1), and let z∗ = sup{z : F (z) ≤ t}. The case of z∗ ∈ {z : F (z) ≤ t} is easy. We show the

case of z∗ /∈ {z : F (z) ≤ t}. By Proposition 2.1, we know that F (z∗) > t, and F−(z∗) := limϵ→0+ F (z∗ − ϵ) ≤ t.

Note that

t =
t− F−(z∗)

F (z∗)− F−(z∗)
F (z∗) +

F (z∗)− t

F (z∗)− F−(z∗)
F−(z∗),

we have

P(F ∗(Z;U) ≤ t) = P
(
{Z < z∗} ∪

{
Z = z∗, U ≤ t− F−(z∗)

F (z∗)− F−(z∗)

})
= F−(z∗) +

(
F (z∗)− F−(z∗)

) t− F−(z∗)

F (z∗)− F−(z∗)
= t.

Then we conclude the proof.

Back to our discussion of conformal sets. Note that

F̂n2+1(Rn+1) =
1

n2 + 1

∑
j∈D2

1{Rj≤Rn+1} + 1

 , lim
ϵ→0+

F̂n2+1(Rn+1 − ϵ) =
1

n2 + 1

∑
j∈D2

1{Rj<Rn+1},

we can calculate the modified empirical distribution function F̂ ∗
n2+1:

F̂ ∗
n2+1(Rn+1;u) =

1

n2 + 1

∑
j∈D2

1{Rj<Rn+1} +
u

n2 + 1

∑
j∈D2

1{Rj=Rn+1} + 1

 .

By defining the randomized confidence set

Ĉ∗
n(x;U) =

y :
1

n2 + 1

∑
j∈D2

1{Rj<V (x,y)} +
U

n2 + 1

∑
j∈D2

1{Rj=V (x,y)} + 1

 ≤ 1− α

 , (2.17)

we have

F̂ ∗
n2+1(Rn+1;U) ≤ 1− α ⇔ Yn+1 ∈ Ĉ∗

n(Xn+1;U). (2.18)

Applying Proposition 2.2:

P
(
Yn+1 ∈ Ĉ∗

n(Xn+1;U)
∣∣ (Xi, Yi), i ∈ D1

)
= P

(
F̂ ∗
n2+1(Rn+1;U) ≤ 1− α

∣∣ (Xi, Yi), i ∈ D1

)
= 1− α. (2.19)

It can be seen that our auxiliary randomization achieves an exact coverage in our prediction sets.

2.3 Conditional coverage

From (2.1), we can see that split conformal prediction comes with the strong, distribution-free coverage guar-

antee. By marginalizing over the proper training set, we get the unconditional coverage property:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
∈
[
1− α, 1− α+

1

n2 + 1

)
.
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2.3.1 Conditioning on entire training set

Lemma 2.3. Let X1, · · · , Xn+1
i.i.d.∼ F , where F is continuous on R. Let X(1), · · · , X(n) be the order statistics

of X1, · · · , Xn. Then

P(Xn+1 ≤ X(k)|X1, · · · , Xn) = Beta(k, n+ 1− k). (2.21)

Proof. Let U1, · · · , Un
i.i.d.∼ Unif(0, 1), and Xi = QF (Ui). Let U(i), i = 1, · · · , n be the order statistics of

U1, · · · , Un. Since F is non-decreasing, we have X(i) = Q(U(i)), i = 1, · · · , n. Moreover, the continuity of F

implies F (QF (u)) = u, ∀u ∈ [0, 1], because QF (u) = inf{z : F (z) ≥ u} ∈ {z : F (z) = u}. Then

P(Xn+1 ≤ X(k)|X1, · · · , Xn) = P(Xn+1 ≤ QF (U(k))|U1, · · · , Un)

= F (QF (U(k))) = U(k) ∼ Beta(k, n− k + 1), (2.22)

which concludes the proof.

The following proposition is an immediate corollary of Lemma 2.3.

Proposition 2.4. Consider the form of conformal set given in (2.2). Provided the residuals are almost surely

distinct, it holds

P
(
Yn ∈ Ĉn(Xn+1)

∣∣ (Xi, Yi), i = 1, · · · , n
)
∼ Beta (kα, n2 + 1− kα) ,

where kα = ⌈(1− α)(n2 + 1)⌉.

Remark. This distribution has mean

kα
n2 + 1

=
⌈(1− α)(n2 + 1)⌉

n2 + 1
,

which is the same as the marginal version. Moreover, the variance

kα(n2 + 1− kα)

(n2 + 1)2(n2 + 2)
≈ α(1− α)

n2 + 2

decreases as the calibration set D2 expands.

2.3.2 X-conditional coverage

Our prediction band has the same width and coverage at each test location x ∈ X . Therefore the coverage

conditional on Xn+1 is obtained easily:

P
(
Yn+1 ∈ Ĉn(x)

∣∣ (Xi, Yi), i ∈ D1, Xn+1 = x
)
=

⌈(1− α)(n2 + 1)⌉
n2 + 1

≥ 1− α, ∀x ∈ X .

3 Full Conformal Prediction

Another idea of generating exchangeable residuals is to include the test data in the regression stage. We do this

in a subtle approach: fix any test location x ∈ X , we evaluate how possibly a given response value y ∈ R falls

in our prediction band Ĉn(x). The value y is called a trial or query. The procedure of full conformal prediction

is summarized below:

• Fit a point estimator f̂n,(x,y) on an augmented training set: (X1, Y1), · · · , (Xn, Yn), (x, y);

• Define residuals: R
(x,y)
i = |Yi − f̂n,(x,y)(Xi)|, i = 1, · · · , n,

R
(x,y)
n+1 = |y − f̂n,(x,y)(x)|.

(3.1)

6



• Define the conformal set:

Ĉn(x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
⌈(1− α)(n+ 1)⌉

n
;
1

n

n∑
i=1

δ
R

(x,y)
i

)}
. (3.2)

By plugging in (x, y) = (Xn+1, Yn+1) to equation (3.1), we can produce residuals {Ri := R
(Xn+1,Yn+1)
i } that are

exchangeable if our prediction algorithm treats all training point indiscriminately. Hence

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α,

and an upper bound 1− α+ 1
n+1 holds if all residuals are almost surely distinct. This approach has adaptivity

to the test location, meaning that the band width is not a constant over the whole region. Meanwhile, it is far

more computationally expensive than split conformal prediction. Theoretically we need to fit a point estimator

at each location y ∈ Y ⊆ R, which is intractable if Y is continuous. Practically, we do this over a finite grid of

y values, which still requires large computation cost.

All of the extensions mentioned in the split conformal section carry over to full conformal prediction.

Modification of residuals. Any symmetric negatively-oriented score function can replace the absolute resid-

ual score: R
(x,y)
i = V

(
(Xi, Yi); (X1, Y1), · · · , (Xn, Yn), (x, y)

)
, i = 1, · · · , n,

R
(x,y)
n+1 = V

(
(x, y); (X1, Y1), · · · , (Xn, Yn), (x, y)

)
.

Here V is symmetric in its last n+ 1 arguments, which ensures the exchangeability of residuals.

Auxiliary randomization. Inject auxiliary randomness in the conformal set:

Ĉ∗
n(x) =

{
y :

1

n+ 1

n∑
i=1

1{
R

(x,y)
i <R

(x,y)
n+1

} +
U

n+ 1

(
n∑

i=1

1{
R

(x,y)
i =R

(x,y)
n+1

} + 1

)
≤ 1− α

}
.

This conformal set possesses an exact coverage of 1− α.

Connection to hypothesis testing. The conformal set in (3.2) can be rewritten as

Ĉn(x) =

{
y :

1

n

n∑
i=1

1{
R

(x,y)
n+1 ≥R

(x,y)
i

} ≤ ⌈(1− α)(n+ 1)⌉
n

}

=

{
y :

1

n

n∑
i=1

1{
R

(x,y)
n+1 <R

(x,y)
i

}
︸ ︷︷ ︸
p-value for H0:Yn+1=y

≥ ⌊α(n+ 1)− 1⌋
n

}
. (3.6)

Hence it is equivalent to a hypothesis testing where the null hypothesis is H0 : Yn+1 = y, and we compare the

p-value to an adjusted significance level ⌊α(n+1)−1⌋
n .

3.1 Impossibility of X-conditional coverage

In this subsection, we investigate the X-conditional coverage property of distribution-free conformal sets over

the feature space X . We first introduce the following tensorization inequality of total variation.

Lemma 3.1 (Le Cam). Let P,Q be two probability measures on X ⊆ Rd, and P⊗n, Q⊗n the corresponding

product measures on Xn. Fix ϵ > 0. If dTV(P,Q) ≤ ϵn := 1− (1− ϵ2/2)1/n, then we have dTV(P
⊗n, Q⊗n) ≤ ϵ.

Here dTV stands for the total variation between two probability measures.
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Proof. Recall the definition of squared Hellinger distance: H2(P,Q) = 2−2EQ

[√
dP
dQ

]
, we have the tensorization

property of Hellinger distance:

H2

(
n∏

i=1

Pi,

n∏
i=1

Qi

)
= 2− 2

n∏
i=1

[
1− H2(Pi, Qi)

2

]
.

Use the sandwich bound for total variation:

1

2
H2 ≤ dTV ≤ H

√
1− H2

4
≤ H,

we have

dTV(P
⊗n, Q⊗n) ≤

√
H2(P⊗n, Q⊗n) =

√
2− 2

(
1− H2(P,Q)

2

)n

≤
√
2− 2(1− dTV(P,Q))n.

Hence dTV(P,Q) ≤ ϵn = 1−
(
1− ϵ2

2

)1/n
implies dTV(P

⊗n, Q⊗n) ≤ ϵ.

The following theorem is drawn from Lei and Wasserman (2014), which reveals the impossibility of construct

uniform X-conditional coverage in a distribution-free setting.

Theorem 3.2 (Impossibility of finite sample conditional validity). Suppose that Ĉn is a prediction band produced

by i.i.d. (Xi, Yi) ∼ P, i = 1, · · · , n, and Ĉn satisfies

P
(
Yn+1 ∈ Ĉn(x)

∣∣Xn+1 = x
)
≥ 1− α

for any distribution P and PX-almost every x, where PX is the marginal of X. Then for any P and any

x0 ∈ N (PX) := {x ∈ X : limδ→0 PX(B(x0, δ)) = 0}, we have

P

(
lim
δ→0

ess sup
x∈B(x0,δ)

µ
{
Ĉn(x)

}
= ∞

)
= 1, (3.3)

where µ is the Lebesgue measure, and B(x0, δ) := {x ∈ X : ∥x − x0∥ ≤ δ} is the closed ball centered at x0 of

radius δ.

Proof. Fix ϵ > 0, and let

ϵn = 1− (1− ϵ2/2)1/n, n = 1, 2, · · · .

Let x0 be a non-atom on PX and choose δn > 0 such that PX(B(x0, δn)) < ϵn. Fix K > 0 and let K0 = K
2(1−α) .

Given P , define another probability measure

Q(A) = P (A ∩ Sc) + U(A ∩ S), S = {(x, y) : x ∈ B(x0, δn), y ∈ R},

and U has total mass P (S) and is uniform on {(x, y) : x ∈ B(x0, δ), |y| < K0}. Then we have

dTV(P,Q) = sup
A

{P (A)−Q(A)} = sup
A

{P (A ∩ S)− U(A ∩ S)} ≤ P (S) ≤ ϵn.

By Lemma 3.1, we have dTV(P
⊗n, Q⊗n) ≤ ϵ. Moreover, for all x ∈ B(x0, δn), note that

1− α ≤
∫
Ĉn(x)

dQY |X(y|x) =
∫
Ĉn(x)

dUY |X(y|x) ≤
µ
{
Ĉn(x)

}
2K0

,
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then µ
{
Ĉn(x)

}
≥ 2(1− α)K0 = K. Therefore

Q⊗n

{
ess sup

x∈B(x0,δ)

µ
{
Ĉn(x)

}
≥ K

}
= 1,

and

P⊗n

{
ess sup

x∈B(x0,δ)

µ
{
Ĉn(x)

}
≥ K

}
≥ Q⊗n

{
ess sup

x∈B(x0,δ)

µ
{
Ĉn(x)

}
≥ K

}
− dTV(P

⊗n, Q⊗n) ≥ 1− ϵ.

Then (3.3) follows as a result of ϵ → 0 and K → ∞ .

We can interpret the result as follows. In an arbitrarily small neighborhood B(x0, δ) of a non-atom point

x0 ∈ X , any prediction band, claiming to cover the response at almost every point in B(x0, δ), for every joint

distribution P, is infinite in size.

4 Conformal Classification

4.1 Likelihood scores

Consider a classification problems where the response Y is drawn from a label set Y = {1, · · · ,K}. Similar

to the idea of split conformal prediction discussed in section 2, we first train a probabilistic classifier f̂n1
=

{f̂n1(·; k), k = 1, · · · ,K} over the proper training set {(Xi, Yi), i ∈ D1}. To be specific, f̂n1
(x; k) predicts

P(Y = k |X = x) for each k = 1, · · · ,K. Then, we can calculate likelihood scores on the calibration set:

{Rj = f̂n1(Xj ;Yj), j ∈ D2}.

Note that this is an example of positively-oriented score, which indicates the probability assigned to the correct

class. Then we can construct the conformal set as follows:

Ĉn(x) =

k ∈ [K] : f̂n1
(x; k) ≥ Quantile

⌊α(n2 + 1)⌋
n2

;
1

n2

∑
j∈D2

δRj

 .

4.2 Adaptive prediction sets

To make the conformal prediction sets more adaptive, Romano et al. (2020) propose a conformity score based

on cumulative likelihood. For each j ∈ D2, let πj be the permutation of 1, · · · ,K that sorts the predicted

probabilities in decreasing order:

f̂n1
(Xj ;πj(1)) ≥ f̂n1

(Xj ;πj(2)) ≥ · · · ≥ f̂n1
(Xj ;πj(K)).

Then the cumulative likelihood is

Ri =

kj∑
i=1

f̂n1
(Xj ;πj(i)), where πj(kj) = Yj , j ∈ D2,

which is a negatively-oriented score. Then the adjusted quantile is defined as

q̂n2 = Quantile

⌈(1− α)(n2 + 1)⌉
n2

;
1

n2

∑
j∈D2

δRj

 ,
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and the confidence set is defined as

Ĉn(x) = {πx(1), · · · , πx(kx)} , where kx = min

k :

k∑
j=1

f̂n1(x;πx(j)) ≤ q̂n2

 .

5 Likelihood-weighted conformal prediction

Motivation: covariate shift. In many instances, the covariates in test set is not identically distributed as

in training set. Consider the following setting of covariate shift:(Xi, Yi)
i.i.d.∼ P = PY |XPX , i = 1, · · · , n,

(Xn+1, Yn+1) ∼ P̃ = PY |X P̃X , independent of {(Xi, Yi)}ni=1.
(5.1)

In general, the distribution shift impacts the exchangeability among residuals.

Review: rank-based quantiles. In Lemma 1.3, we have shown that for exchangeable variablesR1, · · · , Rn+1,

P

(
Rn+1 ≤ Quantile

(
k

n
;
1

n

n∑
i=1

δRi

))
≥ k

n+ 1
. (5.2)

Since Rn+1 is never strictly greater than itself, that Rn+1 is greater than the k smallest of R1, · · · , Rn is

equivalent to that Rn+1 is greater than the k smallest of R1, · · · , Rn+1. Hence (5.2) can be rewritten as

P

(
Rn+1 ≤ Quantile

(
k

n+ 1
;

1

n+ 1

n+1∑
i=1

δRi

))
≥ k

n+ 1
.

Let kα = ⌈(1 − α)(n + 1)⌉. Recall the definition of quantile function QF (t) = inf{z : F (z) ≥ t}, 0 ≤ t ≤ 1, we

know that the quantile of empirical distribution 1
n+1

∑n+1
i=1 δRi

only changes in increments of 1/(n+ 1). Hence,

its 1− α quantile is equivalent to its kα/(n+ 1) quantile, and

P

(
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n+1∑
i=1

δRi

))
≥ kα

n+ 1
≥ 1− α. (5.3)

Finally, let’s consider a discrete distribution F supported on m points s1, · · · , sn ∈ R. Fix t ∈ [0, 1], and denote

qt = QF (t) = inf{z : F (z) ≥ t}. If we reassign the points si > qt to arbitrary values strictly greater than qt,

yielding a new distribution F ′, then it still holds qt = QF ′(t). Using this fact, we can rewrite (5.3) as

P

(
Rn+1 ≤ Quantile

(
1− α;

1

n+ 1

n∑
i=1

δRi
+

δ∞
n+ 1

))
≥ 1− α. (5.4)

5.1 Weighted exchangeability

We first introduce a generalization of exchangeability for random variables.

Definition 5.1 (Weighted exchangeability). A group of random variables R1, · · · , Rn+1 are said to be weighted

exchangeable with respect to weight functions w1, · · · , wn+1, if their joint density (more generally, Radon-

Nikodym derivative with respect to an arbitrary base measure) admits the following representation:

f(r1, · · · , rn+1) =

n+1∏
i=1

wi(ri) · g(r1, · · · , rn+1), (5.5)

where g is a permutation invariant function, i.e. g(r1, · · · , rn) = g(rσ(1), · · · , rσ(n+1)) for all permutation σ.
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Lemma 5.2 (Quantile lemma). Let {Zi, i = 1, · · · , n + 1} be n exchangeable random variables with respect to

weight functions w1, · · · , wn+1. Let the scores be

Ri = V (Zi;Z1, · · · , Zn), i = 1, · · · , n+ 1,

where V is any score function symmetric in its last n+ 1 arguments. Define

pwi (z1, · · · , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j))∑

σ

∏n+1
j=1 wj(zσ(j))

, i = 1, · · · , n+ 1, (5.8)

where the sum is over permutations σ of numbers 1, · · · , n+ 1. Then for all α ∈ (0, 1),

P

{
Rn+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi (Z1, · · · , Zn+1)δRi
+ pwn+1(Z1, · · · , Zn+1)δ∞

)}
≥ 1− α. (5.6)

Proof. We fix z1, · · · , zn+1 and denote by E(z1, · · · , zn+1) the event that {Z1, · · · , Zn+1} = {z1, · · · , zn+1}. Let
ri = V (zi; z1, · · · , zn+1), i = 1, · · · , n + 1, and denote S(i) = {j ∈ [n + 1] : ri = V (zj ; z1, · · · , zn+1)} (which is

introduced to deal with possible ties in r1, · · · , rn+1). Using the joint density of Z1, · · · , Zn+1 given in (5.5), for

each i, it holds

P(Rn+1 = ri|E(z1, · · · , zn+1)) = P(Zn+1 ∈ {zj : j ∈ S(i)}|E(z1, · · · , zn+1))

=

∑
σ:σ(n+1)∈S(i)

∏n
j=1 wj(zσ(j))g(zσ(1), · · · , zσ(n+1))∑

σ

∏n
j=1 wj(zσ(j))g(zσ(1), · · · , zσ(n+1))

=

∑
σ:σ(n+1)∈S(i)

∏n
j=1 wj(zσ(j))g(z1, · · · , zn+1)∑

σ

∏n
j=1 wj(zσ(j))g(z1, · · · , zn+1)

=
∑

k∈S(i)

pwk (z1, · · · , zn+1).

The the second equality follows from permutation invariance of g. Then we have

Rn+1 |E(z1, · · · , zn+1) ∼
n+1∑
i=1

pwi (z1, · · · , zn+1)δri .

By Corollary 1.2, we have

P

{
Rn+1 ≤ Quantile

(
1− α;

n+1∑
i=1

pwi (z1, · · · , zn+1)δri

) ∣∣∣∣E(z1, · · · , zn)

}
≥ 1− α. (5.7)

We can then replace each ri with Ri in (5.7), and marginalize on E. Akin to the discussion above (5.4), we can

change the point mass at Rn+1 to one at ∞ and derive a form of (5.6), which concludes the proof.

Following Lemma 5.2, we can design a weighted version of conformal prediction.

Theorem 5.3 (Weighted conformal prediction). Assume that Zi = (Xi, Yi) ∈ X × Y, i = 1, · · · , n + 1 are

weighted exchangeable with respect to weight functions w1, · · · , wn+1. Let V be an arbitrary score function that

is symmetric in its last n+ 1 arguments. Define scoresR
(x,y)
i = V

(
(Xi, Yi);Z1, · · · , Zn, (x, y)

)
, i = 1, · · · , n,

R
(x,y)
n+1 = V

(
(x, y);Z1, · · · , Zn, (x, y)

)
.

(5.8)
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and a conformal set

Ĉw
n (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

pwi
(
Z1:n, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1:n, (x, y)

)
δ∞

)}
, (5.9)

where {pwi , i = 1, · · · , n+ 1} are defined in (5.8). Then Ĉw
n satisfies

P
(
Yn+1 ∈ Ĉw

n (Xn+1)
)
≥ 1− α. (5.10)

Proof. Abbreviate Ri = R
(Xn+1,Yn+1)
i , i = 1, · · · , n + 1. By construction of Ĉw

n in (5.9), our conclusion (5.10)

follows right from Lemma 5.2.

Split version. The split conformal version of the above result can be viewed as a special case where the score

function relies on a point predictor that has been fit on an external dataset. For example, if we take it to be

V (x, y) = |y − µ̂0(x)|, where µ̂0 has been pre-trained on a data set Z0, then (5.9) simplifies to

Ĉw
n (x) = µ̂0(x)±Quantile

(
1− α;

n∑
i=1

pwi
(
Z1:n, (x, y)

)
δ|Yi−µ̂0(Xi)| + pwn+1

(
Z1:n, (x, y)

)
δ∞

)
, (5.16)

which has coverage at least 1− α, conditional on Z0.

CDF form. The set (5.9) can be rewritten as

Ĉw
n (x) =

{
y :

n∑
i=1

pwi
(
Z1:n, (x, y)

)
1{

R
(x,y)
i ≤R

(x,y)
n+1

} ≤ ⌈1− α⌉w

}
,

where ⌈1−α⌉w = min
{
τ ∈ Range(F̂w

n ) : τ ≥ 1− α
}
, and F̂w

n is the c.d.f. of the weighted empirical distribution∑n
i=1 p

w
i

(
Z1, · · · , Zn, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1, · · · , Zn, (x, y)

)
δ∞.

Auxiliary randomization. Parallel to our discussion in secntion 2.2, we can construct a randomized confor-

mal set which as exact 1− α coverage:

Ĉw,∗
n (x) =

{
y :

n∑
i=1

pwi
(
Z1:n, (x, y)

)
1{

R
(x,y)
i <R

(x,y)
n+1

} + U

n+1∑
i=1

pwi
(
Z1:n, (x, y)

)
1{

R
(x,y)
i =R

(x,y)
n+1

} ≤ 1− α

}
,

where U is an independent Unif(0, 1) variable.

We can also randomize the quantile form in (5.9) using an external variable

Bw ∼ Bernoulli

(
1− α− ⌊1− α⌋w

⌈1− α⌉w − ⌊1− α⌋w

)
,

where ⌊1− α⌋w = max
{
τ ∈ Range(F̂w

n ) : τ ≤ 1− α
}
. The randomized conformal set is

Ĉw,∗
n =

{
y : R

(x,y)
n+1 ≤BwQuantile

(
1− α;

n∑
i=1

pwi
(
Z1:n, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1:n, (x, y)

)
δ∞

)

+ (1−Bw)

(
⌊1− α⌋w;

n∑
i=1

pwi
(
Z1:n, (x, y)

)
δ
R

(x,y)
i

+ pwn+1

(
Z1:n, (x, y)

)
δ∞

)}
.

Both the two randomized conformal set have exact 1− α coverage.
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5.1.1 Conformal prediction for covariate shift

We now demonstrate how to apply the above results to derive a covariate-shifted version of conformal prediction.

Proposition 5.4. Suppose that {Zi = (Xi, Yi), i = 1, · · · , n + 1} is distributed according to model (5.1)., and

P̃X is absolutely continuous with respect to PX with Radon-Nikodym derivative w = dP̃X/dPX . Suppose V is a

score function that is symmetric in its last n+ 1 arguments. Define

πw
i (x) =

w(Xi)∑n
j=1 w(Xj) + w(x)

, i = 1, · · · , n and πw
n+1(x) =

w(x)∑n
j=1 w(Xj) + w(x)

. (5.11)

Fix a nominal error level α ∈ (0, 1), and define a weighted conformal set at a point x ∈ X by

Ĉw
n (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

πw
i (x)δR(x,y)

i
+ πw

n+1(x)δ∞

)}
, (5.12)

where {R(x,y)
i } is defined in (5.8). Then Ĉw

n satisfies

P
(
Yn+1 ∈ Ĉw

n (Xn+1)
)
≥ 1− α. (5.13)

Proof. Since {Zi = (Xi, Yi), i = 1, · · · , n} are i.i.d., their joint distribution are symmetric. Then we can set

w1, · · · , wn to be 1. Moreover, set wn+1 to be an importance ratio:

w =
dP̃

dP
=

dP̃X

dPX
,

which is the Radon-Nikodym derivative. Hence {Zi = (Xi, Yi), i = 1, · · · , n} is exchangeable with respect to

w1 = 1, · · · , wn = 1 and wn+1 = w. According to (5.8), for {zi = (xi, yi), i = 1, · · · , n+ 1},

pwi (z1, · · · , zn+1) =

∑
σ:σ(n+1)=i wn+1(xσ(n+1))∑

σ wn+1(xσ(n+1))
=

n!w(xi)

n!
∑n+1

j=1 w(xj)
=

w(xi)∑n+1
j=1 w(xj)

,

namely, πw
i (x) = pwi (Z1, · · · , Zn, (x, y)), i = 1, · · · , n+1. Then the coverage property of Ĉw

n given in (5.12) and

(5.13) follows from Theorem 5.3.

5.1.2 Likelihood ratio estimation

In weighted conformal prediction, we need to estimate the likelihood ratio w = dP̃X/dPX . Suppose we have

access to unlabeled data Xn+1, · · · , Xn+m ∈ X at prediction time. Then we can use any classifier like logistic

regression or random forests to estimate probabilities of class membership.

• Add class labels to the training data {(Xi, Ci)}m+n
i=1 , where we assign Ci = 0 for i = 1, · · · , n and Ci = 1

for i = n+ 1, · · · , n+m.

• Train a classifier p̂ : R → [0, 1] on {(Xi, Ci)}m+n
i=1 such that p̂(x) estimates the probability P(C = 1|X = x).

Note that the odds ratio

P(C = 1|X = x)

P(C = 0|X = x)
=

P(C = 1)

P(C = 0)

dP̃X

dPX
.

By (5.11), it suffices to know the likelihood ratio up to a proportionally constant. Therefore, we can estimate

our weight function by

ŵ(x) =
p̂(x)

1− p̂(x)
,

and construct a weighted conformal set according to (5.11) and (5.12).
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5.1.3 Generalization: Conformal prediction for structured-X settings

We now consider a more general case of covariate shift, in which we assume a joint distribution Λ of our

training and test samples. This can be useful in certain structured-X settings, for example, where the sequence

X1, · · · , Xn+1 has some kind of Markov structure.

Model. We assume {Zi = (Xi, Yi), i = 1, · · · , n+ 1} are distributed to(X1, · · · , Xn+1) ∼ Λ,

Yi |Xi ∼ PY |X , independently, for i = 1, · · · , n+ 1.

Furthermore, let λ be the joint density (or more generally, Radon-Nikodym derivative with respect to a base

measure) of X1, · · · , Xn.

Theorem 5.5. Let V be a score function that is symmetric in its last n + 1 arguments. Define conformity

scores {R(x,y)
i } as in (5.8), and

pλi (x1, · · · , xn+1) =

∑
σ:σ(n+1)=i λ(xσ(1), · · · , xσ(n+1))∑

σ λ(xσ(1), · · · , xσ(n+1))
. (5.14)

Define the conformal set at a point x ∈ X with nominal error level α ∈ (0, 1) by

Ĉλ
n(x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

pλi (X1, · · · , Xn, x)δR(x,y)
i

+ pλn+1(X1, · · · , Xn, x)δ∞

)}
. (5.15)

Then Ĉλ
n satisfies

P
(
Yn+1 ∈ Ĉλ

n(Xn+1)
)
≥ 1− α. (5.16)

Proof. We fix
{
zi = (xi, yi)

}n
i=1

and denote by E(z1, · · · , zn+1) the event that {Z1, · · · , Zn+1} = {z1, · · · , zn+1}.
Let ri = V (zi; z1, · · · , zn+1), i = 1, · · · , n+ 1, and denote S(i) = {j ∈ [n+ 1] : ri = V (zj ; z1, · · · , zn+1)}. Then
we have for all i = 1, · · · , n+ 1 that

P(Rn+1 = ri|E(z1, · · · , zn+1)) = P(Zn+1 ∈ {zj : j ∈ S(i)}|E(z1, · · · , zn+1))

=

∑
σ:σ(n+1)∈S(i) λ(xσ(1), · · · , xσ(n+1))

∏n+1
i=1 pY |X(yi|xi)∑

σ λ(xσ(1), · · · , xσ(n+1))
∏n+1

i=1 pY |X(yi|xi)

=
∑

k∈S(i)

pλk(z1, · · · , zn+1). (5.30)

Then we have

Rn+1 |E(z1, · · · , zn+1) ∼
n+1∑
i=1

pλi (z1, · · · , zn+1)δri . (5.31)

The remaining part is akin to the proof of Lemma 5.2.

Theorem 5.5 constructs a conformal set (5.15) with general coverage (5.16). However, the computational

expense can be extremely high because the cauculation (5.14) is complicated, even intractable when n is large.
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6 Non-exchangeable Conformal Prediction

In this section we discuss non-exchangeable conformal prediction, as developed in Barber et al. (2022). This

approach does not require the assumptions of exchangeability of the data. It is also referred to as custom-

weighted conformal prediction, since the weights are fixed manually instead of being a function of the data.

6.1 Robust inference through weighted quantiles

As an extension, let {Zi = (Xi, Yi), i = 1, · · · , n + 1} be data points (with the last one Zn+1 = (Xn+1, Yn+1)

serving as the test point) that are no longer changeable, and V a score function. For non-exchangeable conformal

prediction, we choose a set of fixed weights w1, · · · , wn ∈ [0, 1] such that a higher weight is associated with a data

point that undergoes less distribution shift from Zn+1 (for example, in sense of temporal or spatial proximity).

To simplify notation, in what follows, given wi ∈ [0, 1], i = 1, · · · , n, we define normalized weights

w̃i =
wi∑n

i=1 wi + 1
, i = 1, · · · , n, and w̃n+1 =

1∑n
i=1 wi + 1

.

So far, we still assume that the score function V is symmetric in its last n+1 arguments. With the normalized

weight given, we then define the full conformal set:

Ĉw
n (x) =

{
y : R

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑
i=1

w̃iδR(x,y)
i

+ w̃n+1δ∞

)}
, (6.1)

where the conformity scores {R(x,y)
i } are defined in (5.8).

Split version. As before, the split conformal version of the above result can be viewed as a special case where

the score function relies on a point predictor that has been fit on an external dataset:

Ĉw
n (x) = µ̂0(x)±Quantile

(
1− α;

n∑
i=1

w̃iδ|Yi−µ̂0(Xi)| + w̃n+1δ∞

)
, (6.2)

where µ̂0 is a pre-trained model.

Remark. In fact, we can recover the classical conformal prediction methods (unweighted version) by setting

weights w1 = · · · = wn = 1. Furthermore, as in the discussion of likelihood-weighted conformal prediction,

we can derive the CDF form and auxiliary randomization (but here it is not clear we will achieve an exact

coverage).

The theoretical results of these conformal sets will follow as a corollary of more general results that also

accommodate nonsymmetric algorithms, which is going to be discussed in section 6.2. For brevity, we do not

restate them in this section.

6.2 Enhanced predictions with nonsymmetric algorithms

Now, we will allow the score function V to be an arbitrary function of the data points, removing the requirement

of being symmetric in the last n+1 arguments. Namely, the prediction algorithm does not treat all input data

points in a symmetric way. For instance, the order of input data matters. We first introduce some notations:

• Denote by Z = (Z1, · · · , Zn+1) the data vector (an ordered sequence),

• Zi = (Z1, · · · , Zi−1, Zn+1, Zi+1, · · · , Zn, Zi) the sequence with components i and n+ 1 swapped, and

• R(Z) the conformity score vector corresponding to data Z, with components R(Z)j = V (Zj ;Z).
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With the added flexibility of a nonsymmetric prediction algorithm, we will need some key modification to

the methods to maintain predictive coverage. Our modification requires that, before applying the model fitting

algorithm, we first randomly swap the tags of two of the data points in the ordering.

We first draw a random index K from a multinomial distribution which puts mass w̃i at value i:

K ∼
n+1∑
i=1

w̃iδi. (6.3)

Then we apply our prediction algorithm to data ZK in place of Z. Let Z(x,y) = ((X1, Y1), · · · , (Xn, Yn), (x, y)) ,

our conformity scores are defined as follows:R
(x,y),K
i = V

(
(Xi, Yi);

(
Z(x,y)

)K)
, i = 1, · · · , n,

R
(x,y),K
n+1 = V

(
(x, y);

(
Z(x,y)

)K)
.

(6.4)

After drawing a random index K as in (6.3) and obtaining the conformity scores in (6.4), the prediction set is

given by

Ĉw
n (x) =

{
y : R

(x,y),K
n+1 ≤ Quantile

(
1− α;

n∑
i=1

w̃iδR(x,y),K
i

+ w̃n+1δ∞

)}
, (6.5)

Now let’s investigate the coverage property of the conformal set given by (6.5). The following theorem gives

a lower bound on coverage, which can be seen as a generalization of its counterpart of exchangeable data points

and symmetric score functions.

Theorem 6.1 (Lower bounds on coverage). Let V be an arbitrary score function. Define the random index

and the conformity scores as in (6.3)-(6.4). Then the non-exchangeable full conformal set Ĉw
n given by (6.5)

satisfies

P
(
Yn+1 ∈ Ĉw

n (Xn+1)
)
≥ 1− α−

n∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

)
. (6.6)

This result also holds for split conformal sets (6.2) and (6.3) with random index K dropped.

Proof. For brevity, we denote RK
i = R

(Xn+1,Yn+1),K
i , i = 1, · · · , n + 1. The definition of the non-exchangeable

conformal set (6.6) implies

Yn+1 /∈ Ĉw
n (Xn) ⇔ RK

n+1 > Quantile

(
1− α;

n∑
i=1

w̃iδRK
i
+ w̃n+1δ∞

)
. (6.7)

Note that

R(ZK) =
(
RK

1 , · · · , RK
K−1, R

K
n+1, R

K
K−1, · · · , RK

n , RK
K

)
, (6.8)

we have

n∑
i=1

w̃iδRK
i
+ w̃n+1δ∞ =

n∑
i=1,i̸=K

w̃iδRK
i
+ w̃K

(
δRK

K
+ δ∞

)
+ (w̃n+1 − w̃K) δ∞, (6.9)

n+1∑
i=1

w̃iδ(R(ZK))i
=

n∑
i=1,i̸=K

w̃iδRK
i
+ w̃K

(
δRK

K
+ δRK

n+1

)
+ (w̃n+1 − w̃K) δRK

K
. (6.10)

Since w1, · · · , wn ∈ [0, 1], we have w̃n+1 = max{w̃1, · · · , w̃n+1}. Hence the distribution (6.9) is greater than
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(6.10), and

Quantile

(
1− α;

n∑
i=1

w̃iδRK
i
+ w̃n+1δ∞

)
≤ Quantile

(
1− α;

n+1∑
i=1

w̃iδ(R(ZK))i

)
.

Combining (6.7), (6.8) and (6.9) yields

Yn+1 /∈ Ĉw
n (Xn) ⇒

(
R(ZK)

)
K

> Quantile

(
1− α;

n+1∑
i=1

w̃iδ(R(ZK))i

)
⇔ K ∈ S

(
R(ZK)

)
, (6.11)

where we define for any r = (r1, · · · , rn+1) ∈ Rn+1 the strange point set:

S(r) =

i ∈ [n+ 1] : ri > Quantile

1− α;

n∑
j=1

w̃jδrj

 .

Suppose R ∼
∑n

j=1 w̃jδrj , which is a multinomial distribution. By Corollary 1.2, we have

∑
i∈S(r)

w̃i = P

R > Quantile

1− α;

n∑
j=1

w̃jδrj

 ≤ α, (6.15)

which holds for all r ∈ Rn+1.

Recall that K ∼
∑n+1

i=1 w̃iδi is independent of Z := Z(Xn+1,Yn+1), we can bound the probability of the last

event in (6.11) as follows:

P
{
K ∈ S

(
R(ZK)

)}
=

n+1∑
i=1

w̃i · P
{
i ∈ S

(
R(Zi)

)}
≤

n+1∑
i=1

w̃i

{
P {i ∈ S (R(Z))}+ dTV

(
R(Z), R(Zi)

)}
= E

 ∑
i∈S(R(Z))

w̃i

+

n+1∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

)
≤ α+

n+1∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

)
, (6.16)

where the last inequality follows from (6.15). By combining (6.11) and (6.16), we obtain the bound in (6.12).

Theorem 6.2 (Upper bounds on coverage). Let V be an arbitrary score function. Define the random index and

the conformity scores as in (6.3)-(6.4). Suppose the scores R
(Xn+1,Yn+1),K
i , i = 1, · · · , n + 1 are almost surely

distinct. Then the non-exchangeable full conformal set Ĉw
n given by (6.5) satisfies

P
(
Yn+1 ∈ Ĉw

n (Xn+1)
)
< 1− α+ w̃n+1 +

n∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

)
. (6.12)

This result also holds for split conformal sets (6.1) and (6.2) with random index K dropped.

Proof. For brevity, we denote RK
i = R

(Xn+1,Yn+1),K
i , i = 1, · · · , n + 1. The definition of the non-exchangeable
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conformal set (6.5) implies

Yn+1 ∈ Ĉw
n (Xn) ⇔ RK

n+1 ≤ Quantile

(
1− α;

n+1∑
i=1

w̃iδRK
i

)
(Replacing δ∞ by δRK

n+1
)

⇔
(
R(ZK)

)
K

≤ Quantile

(
1− α;

n+1∑
i=1

w̃σK(i)δ(R(ZK))i

)
, (6.13)

where we denote by σK the permutation on [n+ 1] after swapping n+ 1 and K. Since K is independent of Z,

P
(
Yn+1 ∈ Ĉw

n (Xn)
)

=

n+1∑
k=1

w̃k · P

((
R(Zk)

)
k
≤ Quantile

(
1− α;

n+1∑
i=1

w̃σk(i)δ(R(Zk))i

))

≤
n+1∑
k=1

w̃k ·

{
P

(
(R(Z))k ≤ Quantile

(
1− α;

n+1∑
i=1

w̃σk(i)δ(R(Z))i

))
+ dTV

(
R(Z), R(Zk)

)}

≤ E

[
n+1∑
k=1

w̃k · 1

{
(R(Z))k ≤ Quantile

(
1− α;

n+1∑
i=1

w̃σk(i)δ(R(Z))i

)}]
︸ ︷︷ ︸

(a)

+

n+1∑
k=1

w̃k · dTV

(
R(Z), R(Zk)

)
.

The it remains to bound term (a). For any r = (r1, · · · , rn+1) ∈ Rn+1, define the normal point set:

N (r) =

{
k ∈ [n+ 1] : rk ≤ Quantile

(
1− α;

n+1∑
i=1

w̃σk(i)δri

)}
. (6.14)

Recall the form in (a), it suffices to show that for any r ∈ Rn+1 such that r1, · · · , rn+1 are distinct,∑
k∈N (r)

w̃k < 1− α+ w̃n+1. (6.15)

Let k∗ = argmaxk∈N (r)rk, which indices the greatest rk over k ∈ N (r). Define K∗ := {k ∈ [n+ 1] : rk ≤ rk∗},
and K∗∗ := {k ∈ [n+ 1] : rk < rk∗}. Since N (r) ⊆ K∗, we have∑

k∈N (r)

w̃k ≤
∑
k∈K∗

w̃k = w̃k∗ +
∑

k∈K∗∗

w̃k = w̃k∗ +
∑

k∈K∗∗

(w̃k − w̃σk∗ (k))︸ ︷︷ ︸
(b)

+
∑

k∈K∗∗

w̃σk∗ (k)︸ ︷︷ ︸
(c)

. (6.16)

To bound term (b), note that

(b) =

n+1∑
k=1

(w̃k − w̃σk(k∗))1{rk<rk∗}

=

n∑
k=1,k ̸=k∗

XXXXX(w̃k − w̃k)1{rk<rk∗} + (w̃n+1 − w̃k∗)1{rn+1<rk∗} + (w̃k∗ − w̃n+1)
XXXXX1{rk∗<rk∗} ≤ w̃n+1 − w̃k∗ .

(6.17)

For the term (c), we have k∗ ∈ N (r), hence

rk∗ ≤ Quantile

(
1− α;

n+1∑
k=1

w̃σk∗ (k)δrk

)
⇒ (c) =

n+1∑
k=1

w̃σk(k∗)1{rk<rk∗} < 1− α. (6.18)

Combining (6.16), (6.17) and (6.18) yields (6.15), which concludes the proof.
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By Theorem 6.1 and Theorem 6.2, the coverage of non-exchangeable conformal sets falls in an interval, akin

to what we derived in exchangeable cases:

P
(
Yn+1 ∈ Ĉw

n (Xn)
)
∈

[
1− α−

n∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

)
, 1− α+ w̃n+1 +

n∑
i=1

w̃i · dTV

(
R(Z), R(Zi)

))
.

6.3 Remarks

Choosing the weights. Theoretical findings presented earlier validate the intuition that assigning higher

weights, denoted as wi, to data points (Xi, Yi) believed to be drawn from a distribution similar to (Xn+1, Yn+1)

is beneficial, while lower weights should be allocated to less reliable points. However, optimal weight selection

involves a tradeoff. If many weights wi are set to be quite low, it shrinks the effective sample size of the method.

For instance, in split conformal prediction, this reduction in effective sample size affects the estimation of the

empirical quantile of the residual distribution, often resulting in broader prediction intervals. Striking the right

balance is crucial, as excessively low weights may lead to overly wide prediction intervals. At the extreme

end, setting all weights to zero (w1 = · · · = wn = 0) eliminates the coverage gap but yields an uninformative

prediction interval, denoted as Ĉw
n (Xn+1) ≡ R. The optimal choice of weights, and how to quantify optimality,

pose intriguing and important questions for future exploration.

Coverage gap bounds. We define the coverage gap as the loss in coverage compared to what is achieved

under exchangeability. At a desired error level of 1− α, we have:

Coverage gap := 1− α− P
(
Yn+1 ∈ Ĉw

n (Xn+1)
)
,

By Theorem 6.1, we can bound the coverage gap as

Coverage gap ≤
n∑

i=1

w̃i · dTV

(
R(Z), R(Zi)

)
≤

n∑
i=1

w̃i · dTV

(
Z,Zi

)
. (6.19)

where the second inequality follows from the data processing inequality.

Exchangeable setting. When Zi = (Xi, Yi), i = 1, · · · , n+ 1 are exchangeable, we are back to the classical

setting for conformal prediction. Since we have R(Z)
d
= R(Zi) by exchangeability, the slack in (6.6) vanishes

and the coverage collapses to an exact 1− α lower bound.

Independent setting. When Zi = (Xi, Yi), i = 1, · · · , n+ 1 are independent (but not necessarily identically

distributed), the bound for coverage gap in (6.19) can be slacked to

Coverage gap ≤
n∑

i=1

w̃i · dTV

(
Z,Zi

)
≤ 2

n∑
i=1

w̃i · dTV(Zi, Zn+1). (6.20)

To prove this result, we need to introduce the theory of coupling.

Definition 6.3 (Coupling). Let P and Q be two probability measures on the same measurable space (R,B).
A coupling of P and Q is a probability measure µ on the product space (R2,B2) such that the marginals of µ

coincide with P and Q: µ(A× R) = P (A), µ(R×A) = Q(A). In other words, if random variables X ∼ P and

Y ∼ Q, then (X ′, Y ′) is a coupling of X and Y if X ′ d
= X and Y ′ d

= Y .

Lemma 6.4 (Maximal coupling). For any coupling µ of P and Q, we have

µ({(x, y) : x = y}) ≤ 1− dTV(P,Q). (6.21)

Moreover, there exists a maximal coupling µ∗ such that (6.21) becomes an equality after replacing µ by µ∗.
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Proof. Using Hahn decomposition theorem, we know that there exists a partition (E,Ec) of R such that for

any Borel set A ⊆ E, P (A) ≤ Q(A), and for any Borel set B ⊆ Ec, P (B) ≥ Q(B). Then any coupling µ of P

and Q must satisfy

µ({(x, y) : x = y}) = µ({(x, y) : x = y, x ∈ E}) + µ({(x, y) : x = y, x ∈ Ec})

≤ µ({(x, y) : x ∈ E}) + µ({(x, y) : y ∈ Ec})

= P (E) + 1−Q(E) = 1− dTV(P,Q).

For brevity, we denote γ = 1 − dTV(P,Q). Then we define probability measures F,G,H on (R,B) as follows:

for all A ∈ B,

F (A) =
P (A ∩ E) +Q(A ∩ Ec)

γ
, G(A) =

P (A ∩ Ec)−Q(A ∩ Ec)

1− γ
, H(A) =

Q(A ∩ E)− P (A ∩ E)

1− γ
.

For any S ∈ B2, we define the marginals Sx = {(x′, y′) ∈ S : x′ = x}, and Sy = {(x′, y′) ∈ S : y′ = y}. Then we

define the maximal coupling µ∗ as

µ∗(S) = γF ({(x, y) ∈ S : x = y}) + (1− γ)(G×H)(S),

where (G×H)(S) =
∫
H(Sx)dG(x) =

∫
G(Sy)dH(y) by Fubini’s theorem. Then for all A ∈ B,

µ∗(A× R) = γF (A) + (1− γ)G(A) = P (A),

µ∗(R×A) = γF (A) + (1− γ)H(A) = Q(A),

and

µ∗({(x, y) : x = y}) = γF (R) = 1− dTV(P,Q).

Hence µ∗ is a valid maximal coupling of P and Q, and we complete the proof.

Lemma 6.5. Let Zi = (Xi, Yi), i = 1, · · · , n+ 1 be independent random variables. Then for any i ∈ [n],

dTV

(
Z,Zi

)
= 2dTV (Zi, Zn+1)− d2TV (Zi, Zn+1) .

Proof. By Lemma 6.4, there exists a distribution µ∗ on a pair of random variable (Ui, Un+1) such that,

marginally, Ui
d
= Zi and Un+1

d
= Zn+1, and such that P (Ui = Un+1) = 1 − dTV(Zi, Zn+1). Let (Vi, Vn+1)

be an independent copy of (Ui, Un+1). Denote

U = (Z1, · · · , Zi−1, Ui, Zi+1, · · · , Zn, Vn+1),V = (Z1, · · · , Zi−1, Vi, Zi+1, · · · , Zn, Un+1).

Then U
d
= V

d
= Z. Again applying Lemma 6.4, we have

dTV(Z,Z
i) = dTV

(
U,Vi

)
≤ 1− P

(
U = Vi

)
= 1− P (Ui = Un+1, Vi = Vn+1)

= 1− P (Ui = Un+1)P (Vi = Vn+1)

= 1− (1− dTV (Zi, Zn+1))
2
= 2dTV (Zi, Zn+1)− d2TV (Zi, Zn+1) ,

which concludes the proof.

By applying Lemma 6.5 to (6.19), we immediately obtain (6.20).
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7 Adaptive conformal inference

Adaptive conformal inference (ACI), proposed by Gibbs and Candès (2021), is a common-used algorithm in

conformal-like sequential prediction.

Setting. Let {(Xt, Yt), t ∈ N0} ⊆ {Ω → X × Y} be a stochastic process indexed by time. For each step t we

have an algorithm that produces a prediction set Cβ
t ⊆ Y for Yt based on tha past data {(Xs, Ys), s < t}, at

any nominal error level β ∈ R. We assume that our prediction sets saturate at any level below 0 or above 1,

namely, for any t ∈ N,

Cβ
t = ∅, β ≤ 0, and Cβ

t = Y, β ≥ 1. (7.1)

ACI update. During the prediction process, ACI adjusts the working level 1− αt of the prediction sets over

time t ∈ N in order to maintain a realized coverage as close to 1 − α as possible, where α ∈ (0, 1) is some

prespecified error tolerance. Let η > 0 be a step size and et = 1{Yt /∈C
1−αt
t } the error indicator. Set α0 = α, the

update formula is

αt = αt−1 − η(et−1 − α), t = 1, 2, · · · . (7.2)

This formula has an intuitive interpretation. If we cover, then we shrink the prediction sets by increasing the

working error level by ηα. If we miscover, then we inflate the prediction sets by decreasing the working error

level by η(1−α). In fact, such a self-correcting property makes the working error levels {αt} produced by (7.2)

uniformly bounded.

Lemma 7.1 (Boundedness of ACI iterates). The iterates from ACI (7.2) is uniformly bounded by [−η, 1 + η].

Proof. Argue by contradiction. Suppose ∃t ≥ 1 such that αt < −η. If et−1 = 1, then Yn−1 /∈ Cβ
t−1, and

αt−1 = αt+η(1−α) < −ηα < 0. Recall the saturation property (7.1), we have Cβ
t−1 = Y, a contradiction! Hence

et−1 = 0, and αt−1 = αt − ηα < αt. Following this, we have 0 > −η > αt > αt−1 > αt−2 > · · · > α0 = α > 0,

again a contradiction! Therefore inft∈N αt ≥ −η, and similarly we can prove supt∈N αt ≤ 1+ η, which concludes

the proof.

Theorem 7.2 (Asymptotic coverage of ACI). For any t0 ≥ 0 and T ≥ 1, the errors from the ACI iterates (7.2)

satisfy ∣∣∣∣∣ 1T
t0+T∑

t=t0+1

et − α

∣∣∣∣∣ ≤ 1 + 2η

Tη
. (7.3)

Proof. By (7.2), we have

1

T

t0+T∑
t=t0+1

(et − α) =
αt0+T+1 − αt0+1

Tη
. (7.4)

By Lemma 7.1, αt0+1, αt0+T+1 ∈ [−η, 1 + η], which immediately yields the result in (7.3).

We can rewrite Theorem 7.2 to a limit form:

lim
T→∞

1

T

t0+T∑
t=t0

et = α. (7.5)

Then it can be seen that over all time, the prediction bands adjusted by ACI has an exact coverage of 1 − α.

This is a distribution-free result, since we do not pose any assumption on our sequence {(Xt, Yt)}.
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ACI as online gradient descent. The update formula (7.2) is an instance of online gradient descent applied

to a proper convex function. To see this, we define

βt = sup
{
β : Yt ∈ C1−β

t

}
(7.6)

and

ft(a) = ϕ1−α(1− βt − (1− a)) = ϕ1−α(a− βt),

where ϕ1−α is the tilted ℓ1-loss at quantile level 1− α: ϕ1−α(x) =

(1− α)|x|, x ≥ 0,

α|x|, x < 0.

We can straightforwardly calculate the subgradient of ft:

∂ft(a) =


{1− α}, a > βt,

[−α, 1− α], a = βt,

{−α}, a < βt.

(7.7)

Furthermore, (7.6) implies a > βt ⇔ Yt /∈ C1−a
t ⇔ et = 1. Then by (7.7), we have et − α ∈ ∂ft(αt).

Therefore, (7.2) is the online gradient descent with step size η for minimizing the convex function
∑T

t=1 ft(a),

with arbitrarily large horizon T .
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