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1 Preliminaries

1.1 Topology of the Complex Plane

Before we proceed, we introduce some useful terminology in topology.

Definition 1.1. We use C to denote the complex plane {x+ iy : x, y ∈ R}.
(i) Let z0 ∈ C, and r > 0. We use B(z0, r) to denote the open disc of radius r centered at z0:

B(z0, r) = {z ∈ R : |z − z0| < δ} .

Any set U ⊂ C that contains an open disc centered at z0 is called a neighborhood of z0.

(ii) A subset U ⊂ C is said to be open, if for all z ∈ U , there exists δ > 0 such that D(z, δ) ⊂ U . A subset

D ⊂ C is said to be closed if its complement Dc = C\D is open. Particularly, the complex plane C and

the empty set ∅ are both open and closed.

(iii) A point z ∈ C is said to be a limit point (or an accumulation point) of a set E ⊂ C, if

B(z, δ) ∩ E\{z} 6= ∅

for all δ > 0. In other words, z is a limit point of E if each neighborhood of z contains a point of E that

is not z. Note that z is not required to be a point of E.

(iv) A point z ∈ C is said to be an interior point of a set E ⊂ C, if there exists δ > 0 such that B(z, δ) ⊂ E.

In other words, z is an interior point of E if E is a neighborhood of z.

(v) The closure of a set E ⊂ C is the set of all limit point of E, denoted by E:

E = {z ∈ E : ∀δ > 0, B(z, δ) ∩ E\{z} 6= ∅} .

The interior of a set E ⊂ C is the set of all interior point of E, denoted by E̊:

E̊ = {z ∈ E : ∃δ > 0, B(z, δ) ⊂ E} .

(vi) The boundary of a set E ⊂ C is ∂E = E ∩ Ec.
(vii) A set K ⊂ C is said to be compact, if every open cover of K has a finite subcover. In other words, for

any collection of open sets {Uα}α∈J with K ⊂
⋃
α∈J Uα, there exist finitely many indices α1, · · · , αn ∈ J

such that K ⊂
⋃n
j=1 Uαj .

(viii) A set C ⊂ C is said to be connected, if there do not exist two disjoint nonempty open sets A and B such

that C ⊂ A ∪B, and neither A nor B contains C.

(ix) Given z1, z2 ∈ C, we use [z1, z2] to denote the line segments on C with endpoints z1 and z2. A polygonal

line is a finite union of line segments of the form [z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn].

(x) If any two points of a set E ⊂ C can be connected by a polygonal line contained in E, then E is said to

be polygonally connected.

Since the complex plane C is homeomorphic to the Euclidean space R2, some standard results of the

topology of Euclidean spaces follows.

Proposition 1.2. Let E be a subset of C.

(i) E is closed if and only if E contains all its limit point.

(ii) The closure E is closed, and it is the minimal closed set that contains E. In other word, for any closed

set D ⊃ E, we have D ⊃ E.

(iii) The interior E̊ is open, and it is the maximal open set that is contained E. In other word, for any open

set U ⊂ E, we have U ⊂ E̊.
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(iv) E is compact if and only if it is closed and bounded in C.

(v) If E is polygonally connected, then it is connected.

(vi) If E is a connected open set, then E is polygonally connected.

Proof. Here we only provide a proof of (vi), since it is related to our later discussion. Take z0 ∈ E. Let A be

the set of all points of E that can be polygonally connected to z0 in E, and let B be the set of all points of E

that cannot be polygonally connected to z0 in E.

We claim that A is an open set. For every z ∈ A, we can choose an open disc centered at z and contained

in E. Since z is polygonally connected to z0, so is every point in the open disc by joining a line segment

connecting the point and the center z. Similarly, B is also an open set.

Finally, we point out that, since A contains z0, and the connected set E is a disjoint union of open sets A

and B, the set B must be empty. Therefore, every point in E is polygonally connected to z0, and every two

point in E is polygonally connected by joining two polygonal lines intersecting at z0.

Remark. According to this proof, we can even make our statement stronger. For any two points in a

connected open domain E, they can be connected by a polygonal line, of which any two successive vertices

represent the endpoints of a horizontal or vertical segment.

To end this section, we see a useful application of polygonal connectedness. A complex-valued function

f : C→ C can be split into real and imaginary parts:

f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u, v are both real-valued functions on R2.

Proposition 1.3. If the function u(x, y) has partial derivatives ux and uy that vanish at every point of a

connected open domain U , then u is a constant in U .

Proof. Let (x, y), (x̃, ỹ) ∈ U , so they can be connected by a polygonal path that is contained in U . Any two

successive vertices of the path represent the endpoints of a horizontal or vertical segment. Hence, by the

Lagrange mean-value theorem for one real variable, the change in u between these vertices is given by the

value of a partial derivative of u somewhere between the endpoints times the difference in the non-identical

coordinates of the endpoints. Since, however, ux and uy vanish identically in U , the change in u is 0 between

each pair of successive vertices. Therefore u(x, y) = u(x̃, ỹ).

In complex analysis, we are often interested in the sets that have no disjoint parts and no holes that go

completely through it. These sets are called simply connected sets. A formal definition is given below.

Definition 1.4 (Simply connected domains). Let U ⊂ C be a connected open set. If for each point z0 ∈ U c

and each ε > 0, there exists a continuous mapping γ : [0,∞) → C such that (i) d(γ(t), U c) < ε for all t ≥ 0,

(ii) γ(0) = z0, and (iii) limt→∞ |γ(t)| =∞, then E is said to be simply connected.

Remark. Let R be a rectangle in C. If U is a simply connected open set, and ∂R ⊂ U , then R ⊂ U . To

verify this, assume z0 ∈ R is not in U . Then any path γ from z0 to ∞ intersects ∂R at some γ(t) ∈ ∂R. Since

γ(t) ∈ U , there exists B(γ(t), δ) ⊂ U , and dγ(t)z, U c) ≥ δ. This contradicts (i)!
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1.2 Differentiability and Holomorphy

Similar to the derivative for real-valued functions, we can define the derivative for complex-valued functions

f : C→ C, which is given by the limit

f ′(z) = lim
h→0

f(z + h)− f(z)

h
. (1.1)

Note that in this definition, the quantity h is complex. If the limit (1.1) exists at some point z ∈ C, we say

that f is (complex) differentiable at z, and the limit is called the derivative of f at z.

Theorem 1.5 (Cauchy-Riemann equation). Let f : C→ C, and let f(x+ iy) = u(x, y)+ iv(x, y), where u and

v are real and imaginary parts of f , respectively. If f is differentiable at z ∈ C, then the partial derivatives

ux, uy, vx, vy exists at z, and they satisfy the Cauchy-Riemann equation:ux − vy = 0,

vx + uy = 0.
(1.2)

Proof. Fix any z = x+ iy ∈ C. Since f is differentiable at z, the limit

lim
h→0

f(z + h)− f(z)

h

exists. We consider the limit along the real and imaginary directions:

lim
R3h→0

f(z + h)− f(z)

h
= lim

R3h→0

u(x+ h, y)− u(x, y) + i (v(x+ h, y)− v(x, y))

h
= ux + ivx,

lim
R3h→0

f(z + ih)− f(z)

ih
= lim

R3h→0

u(x, y + h)− u(x, y) + i (v(x, y + h)− v(x, y))

ih
= vy − iuy.

The two limits should be equal, and the result follows.

Remark. The Cauchy-Riemann equation is not a sufficient condition for differentiability. Here consider

f(z) = f(x, y) =


xy(x+ iy)

x2 + y2
, z 6= 0,

0, z = 0.

Since f = 0 on coordinate axes, we have ux(0, 0) + ivx(0, 0) = vy(0, 0) − iuy(0, 0) = 0, which is the Cauchy-

Riemann equation at z = 0. However, on the line y = αx, we have

lim
R3x→0

f(x+ iαx)− f(0)

x+ iαx
=

α

1 + α2
,

which depends on α. Hence the limit at z = 0 does not exist. In the next theorem, we provide a practical

sufficient condition for differentiability.

Theorem 1.6. Let f : C → C, and let f(x + iy) = u(x, y) + iv(x, y), where u and v are real and imaginary

parts of f , respectively. If the partial derivatives ux, uy, vx, vy exist in a neighborhood of z and are continuous

at z, and they satisfy the Cauchy-Riemann equation (1.2).

Proof. Let z = x+ iy ∈ C and h = ξ + iη ∈ C. We want to show that

lim
h→0

f(z + h)− f(z)

h
= ux + ivx
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We decompose the difference of f as follows:

f(z + h)− f(z) = u(x+ ξ, y + η)− u(x, y) + iv(x+ ξ, y + η)− iv(x, y)

By mean-value theorem, there exist θ1, θ2, θ3, θ4 ∈ (0, 1) such that

u(x+ ξ, y + η)− u(x, y) = u(x+ ξ, y + η)− u(x+ ξ, y) + u(x+ ξ, y)− u(x, y)

= ηuy(x+ ξ, y + θ1η) + ξux(x+ θ2ξ, y),

v(x+ ξ, y + η)− v(x, y) = v(x+ ξ, y + η)− v(x+ ξ, y) + v(x+ ξ, y)− v(x, y)

= ηvy(x+ ξ, y + θ3η) + ξvx(x+ θ4ξ, y).

By continuity of partial derivatives,

f(z + h)− f(z)

h
=

η

ξ + iη
[uy(x+ ξ, y + θ1η) + ivy(x+ ξ, y + θ3η)] +

ξ

ξ + iη
[ux(x+ θ2ξ, y) + ivx(x+ θ4ξ, y)]

=
η

ξ + iη
[uy(x, y) + ivy(x, y) + ε1] +

ξ

ξ + iη
[ux(x, y) + ivx(x, y) + ε2] ,

where ε1 and ε2 are quantities converging to 0 as h→ 0. By Cauchy-Riemann equation at z = x+ iy,

f(z + h)− f(z)

h
=

iη

ξ + iη
[ivx(x, y) + ux(x, y)− iε1] +

ξ

ξ + iη
[ux(x, y) + ivx(x, y) + ε2]

= ux(x, y) + ivx(x, y) +
ηε1 + ξε2
ξ + iη

,

Since ∣∣∣∣ηε1 + ξε2
ξ + iη

∣∣∣∣ ≤ |ε1|+ |ε2| → 0

as h→ 0, the result follows.

To end this section, we introduce some useful definitions.

Definition 1.7. Let z0 ∈ C be a point, and let U ⊂ C be an open set. Let f : C→ C be a complex function.

(i) If f is differentiable in a neighborhood of a point z0, then f is said to be holomorphic at z0;

(ii) If f is everywhere differentiable in U , then f is said to be holomorphic in U ;

(iii) If f is holomorphic in C, then f is said to be entire.

Proposition 1.8. Let f : U → C be a holomorphic function in an open connected region U .

(i) Let f = u+ iv. If u is a constant in D, so is f .

(ii) If |f | is a constant in D, so is f .

Proof. (i) This result follows from Cauchy-Riemann equation and the polygonal connectedness of U .

(ii) Let f = u+ iv. It suffices to consider the case |f | =
√
u2 + v2 ≡ c > 0. By taking derivatives on both

sides of u2 + v2 ≡ c in U , we obtain

uux + vvx = 0, uuy + vvy = 0.

By applying the Cauchy-Riemann equation twice, we have

0 = u(uux + vvx) = u2ux + uvvx = u2ux − vuuy = u2ux + v2vy = (u2 + v2)ux.

Hence ux ≡ 0 in U . Similarly, we can show uy ≡ 0 in U . Then the result follows from (i).

5



1.3 Complex Power Series and Analyticity

Analytic Polynomial. A polynomial P (x, y) is said to be an analytic polynomial, if there exists complex

numbers c0, c1, · · · , cn ∈ C such that

P (x, y) = c0 + c1(x+ iy) + c2(x+ iy)2 + · · ·+ cn(x+ iy)n.

We then say that P is a polynomial in the complex variable z ∈ C, and write

P (z) = c0 + c1z + c2z
2 + · · ·+ cnz

n.

It is direct to verify that a polynomial P (x, y) = u(x, y) + iv(x, y) is analytic if and only if it satisfies the

Cauchy-Riemann equation (1.2).

A power series of z is given by an “infinite polynomial”.

Definition 1.9 (Complex power series). A power series in z is an infinite series of the form

f(z) =

∞∑
n=0

cnz
n,

where c0, c1, · · · ∈ C.

Naturally, we are interested in the domain where a power series converges.

Theorem 1.10. Suppose lim supn→∞ |cn|1/n = L.

(i) If L = 0, the power series
∑∞
n=0 cnz

n converges for all z ∈ C. In this case, R = ∞ is called the radius

of convergence of the power series.

(ii) If L = ∞, the power series
∑∞
n=0 cnz

n converges if and only if z = 0. In this case, R = 0 is called the

radius of convergence of the power series.

(iii) If 0 < L <∞, set R = 1
L . Then the power series

∑∞
n=0 ckz

k converges for all |z| < R, and diverges for

all |z| > R. In this case, R is called the radius of convergence of the power series.

(iv) When the radius of convergence R > 0, the power series
∑∞
n=0 cnz

n converges uniformly on the closed

disc B(0, r) for each 0 < r < R.

Proof. (i) When L = 0, we have lim supn→∞ |cn|1/n|z| = 0 for all z ∈ C. Hence for each z ∈ C, there exists

some N such that |cnzn| < 2−n for all n ≥ N . Therefore the series converges by Cauchy’s criterion.

(ii) When L = ∞ and z 6= 0, we have |cn|1/n > 1/|z| for infinitely many n ∈ N. Then the terms of the

series do not approach 0 as n→∞, and the series diverges.

(iii) Assume 0 < L <∞, and R = 1/L. If |z| < R, we set |z| = R(1− 2ε) for some ε > 0. Then

lim sup
n→∞

|cn|1/n|z| < 1− ε,

and we have |cnzn| < (1 − ε)n, n ≥ N beginning from some N . On the other hand, when |z| > R, we have

lim supn→∞ |cn|1/n|z| > 1, and there exists infinitely many terms greater than 1 in the series.

(iv) The case R =∞ is clear if we can prove the case R <∞. When R <∞, for all |z| ≤ r < R, we have

lim sup
n→∞

|cn|1/n|z| ≤
r

R
< 1− R− r

2R
:= 1− ε.

Hence we have |cnzn| < (1− ε)n, n ≥ N beginning from some N . For k ≥ N , the remainder
∑∞
n=k+1 cnz

n is

uniformly controlled by (1− ε)k/ε on B(0, r). Hence the convergence is uniform.
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We can write the derivative of a power series into termwise differentiation.

Theorem 1.11. Let f(z) =
∑∞
n=0 cnz

n be a power series with the radius R > 0 of convergence. Then f is

holomorphic in B(0, R), and

f ′(z) =

∞∑
n=1

ncnz
n−1, |z| < R.

Furthermore, the above series has the same radius of convergence as f .

The following corollary is easily obtained by applying Theorem 1.11 recursively.

Corollary 1.12. Let f(z) =
∑∞
n=0 cnz

n be a power series with the radius R > 0 of convergence. Then f is

infinitely differentiable in B(0, R), and

cn =
f (n)(0)

n!
, ∀n ∈ N0.

We now introduce the definition of analytic functions in the complex plane.

Definition 1.13 (Analyticity). Let f : U → C be a complex function on an open set U , and let z0 ∈ U . The

function f is said to be analytic at point z0, if there exists complex coefficients c0, c1, · · · ∈ C such that

f(z) =

∞∑
n=0

cn(z − z0)n

in a neighborhood of z0. In other words, f is analytic at z0 if it equals a power series near z0.

Remark. By definition, if f is analytic at z0, it is also holomorphic at z0. In later discussion, we will show

that the two properties are equivalent.

Theorem 1.14 (Uniqueness theorem for power series). We have the following result:

(i) If a power series equals zero at all the points of a nonzero sequence (zk)∞k=1 that converges to zero, the

power series is identically zero.

(ii) If two power series
∑∞
n=0 anz

n and
∑∞
n=0 bnz

n converge and agree on a set of points with an accumulation

point at the origin, then an = bn for all n.

Proof. (i) Let f(z) =
∑∞
n=0 cnz

n. By the continuity of f at the origin,

c0 = f(0) = lim
z→0

f(z) = lim
k→∞

f(zk) = 0.

Then g(z) = f(z)
z = c1 + c2z + c3z

2 + · · · is also continuous at the origin, and

c1 = g(0) = lim
z→0

f(z)

z
= lim
k→∞

f(zk)

zk
= 0.

By induction, for all n ∈ N,

cn = lim
z→0

f(z)

zn
= lim
k→∞

f(zk)

znk
= 0.

(ii) We can reduce the set to a sequence of points since we can always choose a point zn from each neighborhood

B(0, n−1) of the origin. Then consider the series
∑∞
n=0(bn − an)zn and apply (i).
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2 Cauchy’s Integral Theorem and its Consequences

2.1 Complex Line Integral

In this section, we deal with the integral on the complex plane C.

Definition 2.1 (Smooth curves). Let x = x(t) and y = y(t) be continuous real-valued functions on [a, b]. If

we use these equations as the real and imaginary parts in z = x + iy, we can parameterize the points z on a

curve C by means of a complex-valued function of a real-variable t:

C = {z(t) = x(t) + iy(t), a ≤ t ≤ b}.

(i) The curve C parameterized by z(t) is said to be differentiable, if both x and y are continuously differen-

tiable on [a, b]. We define the derivative of z(t) by

z′(t) = x′(t) + iy′(t), a ≤ t ≤ b.

Furthermore, if z′(t) 6= 0 for all a < t < b, then C is said to be smooth.

(ii) The a curve C is said to be piecewise smooth, if C can be obtained by joining finitely many smooth

curves. Formally, if C is piecewise smooth, we can find a partition a = t0 < t1 < · · · < tn = b such

that z(t) is continuous on [a, b], is continuously differentiable on each sub-interval [tj−1, tj ], and z′(t) 6= 0

except at finitely many points.

(iii) The curve C is said to be simple if z injective, i.e. s 6= t implies z(s) 6= z(t).

(iv) The curve C is said to be closed if z(a) = z(b).

(v) A simple closed curve C is said to be a contour (or a Jordan curve). By Jordan curve theorem, a contour

always divide the complex plane C into two connected open components. One of these components is

bounded and simply connected, called the interior of C, and the other component is unbounded, called

the exterior of C. Furthermore, the contour C is the boundary of each component.

Definition 2.2 (Complex integral). Let f(t) = u(t) + iv(t) be a continuous complex valued function of the

real variable a ≤ t ≤ b, where u and v are both real-valued. Define∫ b

a

f(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt.

Let C be a smooth curve given by z(t), a ≤ t ≤ b, and suppose f : C→ C is continuous at all the points z(t).

Then, the integral of f along C (or round C, if C is a contour) is∫
C

f(z) dz =

∫ b

a

f(z(t)) z′(t) dt.

Remark. By this definition, the linearity of complex line integral follows from the real case. Furthermore,

the value of the integral is independent of the particular parameterization. To see this, we consider two

particular smooth curves

C1 : z(t), a ≤ t ≤ b and C2 : ω(t), c ≤ t ≤ d.

We assume that there exists a bijective C1-mapping λ : [a, b] → [c, d] such that c = λ(a), d = λ(b), λ′(t) > 0

for all t ∈ [a, b], and z(t) = ω(λ(t)). Then C1 and C2 are smoothly equivalent in the complex plane C, and∫
C1

f(z) dz =

∫ b

a

f(z(t))z′(t) dt =

∫ b

a

f(ω(λ(t)))ω′(λ(t))λ′(t) dt
s=λ(t)

=

∫ d

c

f(ω(s))ω′(s) ds =

∫
C2

f(z) dz.
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Change the direction. The line integral depends not only on the set of points of the curve, but also the

direction of the curve. Given a curve C parameterized by z(t), a ≤ t ≤ b, the curve −C along the opposite

direction is given by z(b+ a− t), a ≤ t ≤ b. Then∫
−C

f(z) dz =

∫ b

a

f(z(b+ a− t)) (−z′(b+ a− t)) dt = −
∫ b

a

f(z(s))z′(s) ds = −
∫
C

f(z) dz,

where we change the variable s = b+ a− t in the second identity.

Estimation. Now we aim to derive a bound for the complex line integral. Before we proceed, we point out

that a smooth curve C = {z(t) : a ≤ t ≤ b} is rectifiable, and its length is given by

L =

∫
C

|dz| =
∫ b

a

|z′(t)| dt = sup
a=t0<t1<···<tn=b

n∑
j=1

|z(ti)− z(ti−1)|.

We will use this definition to estimate a complex integral.

Lemma 2.3. Let F : [a, b]→ C be a complex function that is continuous at each point of C. Then∣∣∣∣∣
∫ b

a

F (t) dt

∣∣∣∣∣ ≤
∫ b

a

|F (t)| dt.

Proof. Assume that
∫ b
a
F (z) dz = reiθ, where r =

∣∣∣∫ ba F (z) dz
∣∣∣ and θ ∈ [0, 2π). Then

r =

∫ b

a

e−iθF (t) dt =

∫ b

a

Re
(
e−iθF (t)

)
dt ≤

∫ b

a

∣∣e−iθF (t)
∣∣ dt =

∫ b

a

|F (t)| dt.

Thus we complete the proof.

Theorem 2.4 (M-L formula). Let C = {z(t) : a ≤ t ≤ b} be a piecewise smooth curve of length L. Let f be a

complex function that is continuous at each point of C, and |f | ≤M on C. Then∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ML.

Proof. According to the previous lemma, we have∣∣∣∣∫
C

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t))z′(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(z(t))| |z′(t)| dt ≤M
∫ b

a

|z′(t)| dt = ML.

Thus we complete the proof.

Fundamental theorem of complex line integrals. For complex functions, the Newton-Leibniz formula

also holds. This formula is really helpful. It removes the dependence of the integral value on the integral path,

so the integral value only relies on the initial and terminal points.

Theorem 2.5 (Fundamental theorem of complex line integrals). Let C = {z(t) : a ≤ t ≤ b} be a piecewise

smooth curve. Let F be a complex function defined in an open set containing C. Suppose that F is holomorphic

at each point of C, and the derivative f(z) = F ′(z) is continuous at each point of C. Then∫
C

f(z) dz = F (z(b))− F (z(a)).

9



Proof. Let G(t) = F (z(t)), a ≤ t ≤ b. By the chain rule, the derivative of G is

G′(t) = lim
R3h→0

G(t+ h)−G(t)

h
= lim

R3h→0

F (z(t+ h))− F (z(t))

z(t+ h)− z(t)
· z(t+ h)− z(t)

h
= F ′(z(t))z′(t).

Then ∫
C

f(z) dz =

∫ b

a

F ′(z(t))z′(t) dt =

∫ b

a

G′(t) dt = G(b)−G(a) = F (z(b))− F (z(a)),

where the third equality holds by apply Newton-Leibniz formula on both real and imaginary parts.

Uniform Convergence. In the real case, one can interchange the integral and the function limit when

the function sequence to be integrated is uniformly convergent. This result also applies to the complex line

integral. A function sequence (fn) converges uniformly to f on a set U ⊂ C, if

lim
n→∞

sup
z∈U
|fn(z)− f(z)| = 0.

We have the following theorem.

Theorem 2.6. Let U be an open domain, and let (fn) be a sequence of continuous functions which converges

uniformly on U . For any piecewise smooth curve C = {z(t) : a ≤ t ≤ b} in U ,

lim
n→∞

∫
C

fn(z) dz =

∫
C

lim
n→∞

fn(z) dz.

Proof. Let f be the uniform limit of (fn) on U , which is also continuous. By M-L formula [Theorem 2.4],∣∣∣∣∫
C

f(z) dz −
∫
C

fn(z) dz

∣∣∣∣ ≤ sup
z∈U
|f(z)− fn(z)|

∫
C

|dz| → 0.

Thus we complete the proof.

2.2 Cauchy-Goursat Theorem

From now on, we assume that all the curves and contours we study are piecewise smooth. Unless otherwise

specified, we also assume that all contour integrals are taken in the counterclockwise direction, which is

consistent with the unit circle {eiθ : 0 ≤ θ ≤ 2π}.
We study the contour integral of holomorphic functions in this section. Before we proceed, we first study

a special case of the contour integral, where the contour is assumed to be the boundary of a rectangle.

Lemma 2.7. Let Γ be the boundary of a rectangle R. Let f be an affine function defined in an open domain

U containing R, i.e. f is of the form f(z) = α+ βz. Then∫
Γ

f(z) dz = 0.

Proof. Note that f is everywhere the derivative of an entire function F (z) = αz+ 1
2βz

2, and that Γ is a closed

curve. Assume Γ = {z(t) : a ≤ t ≤ b}, so z(a) = z(b). The result immediately follows from Theorem 2.5.

Lemma 2.8. Let Γ be the boundary of a rectangle R. Let f be a holomorphic function defined in an open

domain U containing R. Then ∫
Γ

f(z) dz = 0.

10



Proof. We write I =
∣∣∫

Γ
f(z) dz

∣∣.To show that I = 0, we use the method of continued bisection. That is,

we split the rectangle R into four congruent subrectangles by bisecting each of the sides. We denote by

Γ1,Γ2,Γ3,Γ4 the boundaries of the four rectangles. Since the integral on the interior lines cancels out when

integrating along opposite directions, we have

∫
Γ

f(z) dz =

4∑
i=1

∫
Γi

f(z) dz.

Hence for at least one Γi, 1 ≤ i ≤ 4, denoted by Γ(1),∣∣∣∣∫
Γ(1)

f(z) dz

∣∣∣∣ ≥ I

4
.

Let R(1) be the rectangle bounded by Γ(1). We repeat this procedure by dividing R(n) into four congruent

subrectangles. Then we obtain a nested sequence

R(1) ⊃ R(2) ⊃ R(3) ⊃ · · ·

with their boundaries Γ(1),Γ(2),Γ(3), · · · . This sequence satisfies diamR(n+1) = 1
2 diamR(n), and∣∣∣∣∫

Γ(n)

f(z) dz

∣∣∣∣ ≥ I

4n
. (2.1)

Take z0 ∈
⋂∞
n=1R

(n), which is nonempty by the nested interval theorem. Since f is holomorphic at z0,

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0).

By Lemma 2.7, we have∫
Γ(n)

f(z) dz =

∫
Γ(n)

(
f(z0) + f ′(z0)(z − z0) +

(
f(z)− f(z0)

z − z0
− f ′(z0)

)
(z − z0)

)
dz

=

∫
Γ(n)

(
f(z)− f(z0)

z − z0
− f ′(z0)

)
(z − z0) dz.

We assume that the largest side of the original boundary Γ has length `. Then∫
Γ(n)

|dz| ≤ 4`

2n
, and |z − z0| ≤

√
2`

2n
, ∀z ∈ Γ(n).

11



We fix ε > 0, and choose N so that

|z − z0| ≤
√

2`

2N
⇒

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ ≤ ε.
Then for all n ≥ N , by M-L formula [Theorem 2.4],∣∣∣∣∫

Γ(n)

f(z) dz

∣∣∣∣ ≤ 4
√

2`2

4n
ε. (2.2)

Combining (2.1) and (2.2), we have

I ≤ 4
√

2`2ε.

Since ε > 0 can be chosen arbitrarily small, we have I = 0.

We use this lemma to show that any holomorphic function is the derivative of another one.

Theorem 2.9 (Integral theorem). Let U be a simply connected open domain. If f : U → C is a holomorphic

function in U , then f is everywhere the derivative of another holomorphic function in U . That is, there exists

a holomorphic function F : U → C such that F ′(z) = f(z) for all z ∈ U .

Proof. We may assume without loss of generality that 0 ∈ U . Define F (z) as

F (z) =

∫
Γ(z)

f(ζ) dζ, z ∈ U

where Γ(z) is a polygonal line contained in U , starting from 0 and terminating at z, and every line segment

is either horizontal or vertical. In fact, the value of this integral is independent of the choice of the particular

path Γ(z), because the difference of this integral along any two such paths can be represented as a contour

integral round the boundaries of finitely many rectangles contained in U (because U is simply connected).

Since f is holomorphic through these rectangles, by Lemma 2.8, the boundary integral always cancels out.

Fix z ∈ U . For sufficiently small |h| > 0, we have

F (z + h)− F (z) =

∫ z+h

z

f(ζ) dζ

Where
∫ z+h
z

is the line integral along the segments [z, z+ Reh] ∪ [z+ Reh, z+ h]. Note that the line integral

along line segments [z, z + Reh] ∪ [z + Reh, z + h] is h, we have

F (z + h)− F (z)

h
− f(z) =

1

h

∫ z+h

z

(f(ζ)− f(z)) dζ. (2.3)

We then fix ε > 0, and choose δ > 0 such that |f(ζ) − f(z)| < ε for all |ζ − z| < δ. According to the M-L

formula [Theorem 2.4], whenever |h| < δ,∣∣∣∣∣ 1h
∫ z+h

z

(f(ζ)− f(z)) dζ

∣∣∣∣∣ ≤ 1

|h|
· 2|h|ε = 2ε.

Since ε > 0 is arbitrarily chosen, 2.3 converges to 0 when h→ 0. Therefore f(z) = F ′(z).

This result immediately gives the Cauchy’s integral theorem for holomorphic functions.
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Theorem 2.10 (Cauchy-Goursat). Let f : U → C be a holomorphic function in a simply connected open

domain U . Let C = {z(t) : a ≤ t ≤ b} be a piecewise smooth contour in U . Then∫
C

f(z) dz = 0.

Proof. By integral theorem [Theorem 2.9], we can find a holomorphic function F : U → R whose derivative is

f everywhere in U . Then ∫
C

f(z) dz = F (z(b))− F (z(a))

by Theorem 2.5. Since C is closed, z(a) = z(b), and the value of the integral is 0.

Remark. According to our proof, to cancel out a contour integral, we only require that f is the derivative

of a holomorphic function inside a simply connected open domain containing the contour C.

Theorem 2.11 (Deformation principle). Let C1 and C2 be contours, with C2 lying wholly inside C1, and

suppose that f is holomorphic in an open domain containing the closed domain between C1 and C2. Then∫
C1

f(z) dz =

∫
C2

f(z) dz.

Proof. We join C1 and C2 by two segments [z11, z21] and [z22, z12], as is shown in the figure. Then we obtain

two contours on the upper domain D1 and lower domain D2, respectively, and the integrals of f round these

two contours are both 0. We add up these two integrals, of which the part on the segments is canceled out:∫
∂D1

f(z) dz +

∫
∂D2

f(z) dz =

∫
C1

f(z) dz +

∫
−C2

f(z) dz = 0.

In the last display, changing the direction of −C2 and rearranging complete our proof.

Remark. In the deformation principle, we require f to be holomorphic near the inner contour C2, but we

allow f to be not holomorphic inside the inner contour.
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2.3 Cauchy’s Integral Formula

An important integral. To begin this section, we first compute an important contour integral∫
C

(z − z0)n dz,

where C is a piecewise smooth contour going around a fixed point z0 ∈ C, and n ∈ Z.

• Case I: n ≥ 0. In this case, (z − z0)n is an analytic polynomial, which is entire. Then the value of the

integral is 0 by Cauchy-Goursat theorem [Theorem 2.10].

• Case II: n = −1. We use the deformation principle to compute this integral. Since 1
z−z0 is holomorphic

on the whole complex plane C except at z0, we choose a circle ∂B(z0, ε) that is lying wholly inside C,

which is parameterized by {z0 + εeiθ : 0 ≤ θ ≤ 2π}:∫
C

dz

z − z0
=

∫
∂B(z0,ε)

dz

z − z0
=

∫ 2π

0

iεeiθdθ

εeiθ
= 2πi.

• Case II: n ≤ −2. In this case, (z− z0)n is the derivative of the function (z−z0)n+1

n+1 , which is holomorphic

on the whole on the whole complex plane C except at z0. Since C is closed, the value of the integral is

0 by the fundamental theorem of complex line integral [Theorem 2.5].

We then summarize our result below:

∫
C

(z − z0)n dz =

0, n 6= −1,

2πi, n = −1.

The Cauchy’s integral formula is motivated by this example.

Theorem 2.12 (Cauchy’s integral formula). Let f : U → C be a holomorphic function in a simply connected

open domain U . Let C be any piecewise smooth contour in U that goes around some fixed point z0 ∈ U . Then

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz. (2.4)

Proof. Since f(z)
z−z0 is holomorphic in U\{z0}, by the deformation principle [Theorem 2.11], we may change C

to any circle ∂B(z0, ε) of radius ε > 0 and centered at z0:∫
C

f(z)

z − z0
dz =

∫
∂B(z0,ε)

f(z)

z − z0
dz

=

∫
∂B(z0,ε)

f(z0) + f ′(z0)(z − z0) + (f(z)− f(z0)− f ′(z0)(z − z0))

z − z0
dz

=

∫
∂B(z0,ε)

f(z0)

z − z0
dz︸ ︷︷ ︸

= 2πif(z0)

+

∫
∂B(z0,ε)

f ′(z0) dz︸ ︷︷ ︸
= 0

+

∫
∂B(z0,ε)

(
f(z)− f(z0)

z − z0
− f ′(z0)

)
dz︸ ︷︷ ︸

remainder

.

By M-L formula [Theorem 2.4], the remainder satisfies∣∣∣∣∫
C

f(z)

z − z0
dz − 2πif(z0)

∣∣∣∣ =

∣∣∣∣∣
∫
∂B(z0,ε)

(
f(z)− f(z0)

z − z0
− f ′(z0)

)
dz

∣∣∣∣∣ ≤ 2πε sup
|z−z0|≤ε

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ .
The remainder can be dominated by arbitrarily small quantity as ε→ 0. Then (2.4) follows.

We have similar results for higher order derivatives.
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Theorem 2.13 (Generalized Cauchy’s integral formula). Let f : U → C be a holomorphic function in a simply

connected open domain U . Then f is infinitely differentiable in U , and

f (n)(z0) =
n!

2πi

∫
C

f(z)

(z − z0)n+1
dz, (2.5)

where C is any piecewise smooth contour in U that goes around some fixed point z0 ∈ U .

Proof. Since U is open, we can find an open disc B(z0, ε) ⊂ U . We fix C to be its boundary |z− z0| = ε. Then

for all z with |z − z0| = ε and ω ∈ B(z0,
ε
2 ), we have the expansion

1

z − ω
=

1

(z − z0)
(

1− ω−z0
z−z0

) =

∞∑
n=0

(ω − z0)n

(z − z0)n+1
. (2.6)

This series converges uniformly on B(z0,
ε
2 ), since for all n ∈ N,∣∣∣∣∣

∞∑
n=N+1

(ω − z0)n

(z − z0)n+1

∣∣∣∣∣ < 1

2N ε
, ∀ω ∈ B

(
z0,

ε

2

)
.

Then we apply Theorem 2.6 to interchange the infinite sum and the integration:

f(ω) =
1

2πi

∫
C

f(z)

z − ω
dz =

1

2πi

∫
C

∞∑
n=0

f(z)(ω − z0)n

(z − z0)n+1
dz

=

∞∑
n=0

(
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

)
(ω − z0)n, ω ∈ B

(
z0,

ε

2

)
.

Therefore, f can be written into a power series in a neighborhood B(z0,
ε
2 ). Furthermore, the coefficients are

in fact independent of our choice of C by the deformation principle, since C lies in U and goes around z0.

Hence f is infinitely differentiable in this neighborhood, and

f (k)(ω) =

∞∑
n=k

(
n(n− 1) · · · (n− k + 1)

2πi

∫
C

f(z)

(z − z0)n+1
dz

)
(ω − z0)n−k, ω ∈ B

(
z0,

ε

2

)
.

Taking ω = z0, we obtain (2.5), which completes the proof.

The proof above also establishes the analyticity of holomorphic functions. We can even modify our result

to make it a little stronger.

Corollary 2.14. Let f : U → C be a holomorphic function in a simply connected open domain U . Then f is

analytic in U . Furthermore, for each z0 ∈ U , f can be represented as the local Taylor series near z0:

f(ω) =

∞∑
n=0

f (n)(z0)

n!
(ω − z0)n =

∞∑
n=0

(
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

)
(ω − z0)n, ω ∈ B(z0, ε) ⊂ U,

where B(z0, ε) is the largest open disc centered at z0 and contained in U .

Proof. Since ω ∈ B(z0, ε), there exists θ > 0 such that ω ∈ B(z0, (1 − θ)ε). Then we fix C to be the circle

|z − z0| = (1 − θ
2 )ε. With this choice, the power series (2.6) still converges uniformly on B(z0, (1 − θ)ε), and

the remainder totally follows from the previous proof.

Remark. If f : C→ C is entire, then f is globally equal to its Taylor series at any point z0 ∈ C.
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2.4 Liouville’s Theorem and the Fundamental Theorem of Algebra

Theorem 2.15 (Liouville’s Theorem). A bounded entire function is a constant.

Proof. Let f : C → C be a entire function bounded by some M > 0. For each z1, z2 ∈ C, we take any circle

C = {z : |z| = R} with R > max{|z1|, |z2|}. By Cauchy’s integral formula,

f(z1)− f(z2) =
1

2πi

∫
C

f(z)

z − z1
dz − 1

2πi

∫
C

f(z)

z − z2
dz =

1

2πi

∫
C

f(z)(z2 − z1)

(z − z1)(z − z2)
dz.

By M-L formula [Theorem 2.4],

|f(z1)− f(z2)| = 1

2π

∣∣∣∣∫
C

f(z)(z2 − z1)

(z − z1)(z − z2)
dz

∣∣∣∣ ≤ MR |z2 − z1|
(R− |z1|)(R− |z2|)

→ 0, R→∞.

Hence f(z1) = f(z2) for all z1, z2 ∈ C, and f is a constant on C.

Theorem 2.16 (Extended Liouville’s Theorem). If f : C → C is an entire function, and if for some integer

k ≥ 0, f grows no faster than |z|k, that is, there exist constants A,B > 0 such that

|f(z)| ≤ A+B|z|k, ∀z ∈ C,

then f is a polynomial of degree at most k.

Proof. The case k = 0 is the original Liouville theorem, and we use induction to prove the general case. We

define a new function g : C→ C as follows:

g(z) =


f(z)−f(0)

z , z 6= 0

f ′(0), z = 0
⇒ g(z) =

∞∑
n=1

f (n)(0)

n!
zk−1, z ∈ C.

Clearly, g is also an entire function. We pick any R > 0. Then g(z) is bounded in the compact disc |z| ≤ R,

and its absolute value grows no faster than |z|k−1 as z →∞. Hence there exists C,D > 0 such that

|g(z)| ≤ C +D|z|k−1.

According to the induction hypothesis, g is polynomial of degree at most k − 1. Therefore f is a polynomial

of degree at most k.

We then use Liouville’s theorem to prove the fundamental theorem of algebra.

Lemma 2.17. Every non-constant polynomial with complex coefficients has a zero in C.

Proof. Let P (z) be a non-constant polynomial. If P (z) has no zero in C, then 1
P (z) is an entire function. Since

P (z) is non-constant, P (z) → ∞ as z → ∞, and 1
P (z) is bounded in C. By Liouville’s theorem, 1

P (z) is a

constant, and so is P (z), which is a contradiction!

Theorem 2.18 (Fundamental theorem of algebra). If P (z) is a polynomial of degree n ≥ 1 with complex

coefficients, then there exist complex numbers A and z1, · · · , zn such that

P (z) = A(z − z1)(z − z2) · · · (z − zn), z ∈ C.

Proof. The case n = 1 is clear, and the general case follows by induction. By the previous lemma, any

polynomial P (z) of degree n has a zero zn ∈ C, and the function Q(z) = P (z)
z−zn grows no faster than |z|n−1.

By the extended Liouville’s theorem, Q(z) is a polynomial of degree k − 1, and the result follows.
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Remark. According to the fundamental algebra, we can write a polynomial P (z) of degree n to the form

P (z) = A(z − z1)m1(z − z2)m2 · · · (z − zk)mk ,

where z1, z2, · · · , zk ∈ C are zeroes of P (z) and are mutually distinct, and m1, · · · ,mk are positive integers

such that m1 + · · · + mk = n. The number mj is called the multiplicity of the zero zj . It is easy to see that

zj is a zero of multiplicity mj if and only if

P (zj) = P ′(zj) = P ′′(zj) = · · · = P (mj−1)(zj) = 0, P (mj)(zj) 6= 0. (2.7)

Factorization of polynomials with real coefficients. We let P (z) be a polynomial of degree n with real

coefficients. In this case, we have P (z) = P (z) for all z ∈ C. Consequently, if ω ∈ C is a zero of P (z), so is ω.

Furthermore, the conjugate zeroes have the same multiplicity by the condition (2.7). Therefore, there exists

an integer k ≤ n
2 , non-real zeroes ω1, ω2, · · · , ωk ∈ C and real zeroes c1, · · · , cn−2k ∈ R such that

P (z) = A(z − ω1)(z − ω1)(z − ω2)(z − ω2) · · · (z − ωk)(z − ωk)(z − c1)(z − c2) · · · (z − cn−2k),

Note that (z − ωj)(z − ωj) is a quadratic polynomial with real coefficients:

(z − ωj)(z − ωj) = z2 − αjz + βj , where αj = 2 Reωj and βj = |ωj |2.

Therefore, we have the following factorization of P (z):

P (z) = A

k∏
j=1

(z2 − αjz + βj)

n−2k∏
p=1

(z − cp),

which consists of only linear and quadratic polynomials with real coefficients.

We finally introduce a result concerning both the zeroes of a polynomial and of its derivative.

Theorem 2.19 (Gauss-Lucas theorem). The zeroes of the derivative of any polynomial lie within the convex

hull of the zeroes of the polynomial.

Proof. Let P (z) be a polynomial of degree n with zeroes z1, · · · , zn ∈ C. Then

P ′(z)

P (z)
=

1

z − z1
+

1

z − z2
+ · · ·+ 1

z − zn
, ∀z /∈ {z1, z2, · · · , zn}.

Assume ω ∈ C is a zero of P ′(z). We may assume ω ∈ {z1, · · · , zn}, otherwise the result is clear. Then

0 =

(
P ′(ω)

P (ω)

)
=

ω − z1

|ω − z1|2
+

ω − z2

|ω − z2|2
+ · · ·+ ω − zn

|ω − zn|2
.

Hence

ω =

n∑
j=1

λjzj , where λj =
|ω − zj |−2∑n
k=1 |ω − zk|−2

> 0, and λ1 + · · ·+ λn = 1.

Then we conclude the proof.

Remark. By induction, for a polynomial P (z) of degree n, the zeroes of the derivative P (k)(z) of any order

k = 1, 2, · · · , n− 1 lie in the convex hull of the zeroes of P (z).
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2.5 The Converse of Cauchy’s Integral Theorem: Morera’s Theorem

The Cauchy’s theorem asserts that the integral of any holomorphic function in a simple connected open domain

round any contour inside the domain is zero. The following result, due to Morera, gives a converse statement.

Theorem 2.20 (Morera’s theorem). Let f : U → R be a continuous function on an open set U . If∫
C

f(z) dz = 0

for all contours C in U , then f is holomorphic in U .

Proof. We fix z0 ∈ U , and choose an open disc B(z0, δ) ⊂ U . We then define the primitive

F (z) =

∫ z

z0

f(ζ) dζ,

where
∫ z
z0

denote the integral along the path [z0, z0 + Re(z − z0)] ∪ [z0 + Re(z − z0), z]. Like in the proof of

Theorem 2.9, we consider a difference quotient of F and that fact that
∫

Γ
f(z) dz = 0 around any rectangle in

B(z0, δ), we may conclude that

F (z + h)− F (z)

h
− f(z) =

1

h

∫ z+h

z

(f(ζ)− f(z))dζ → 0, as h→ 0.

Hence F is holomorphic in B(z0, δ), and f = F ′, which can be represented by a power series in B(z0, δ), is

holomorphic at z0. Finally, since z0 ∈ U is arbitrary, f is holomorphic in U .

Remark. We can make the condition slightly weaker by letting C to be any rectangular boundary inside U

with sides parallel to the real and imaginary axes.

Compact convergence. In some cases, we may concern whether the limit of a sequence of holomorphic

functions is holomorphic. To answer this question, we need to introduce a new convergence mode. Let (fn)

be a sequence of functions defined on a topological space U . We say that (fn) converges compactly to f , if

fn → f uniformly on each compact subset K of U . That is,

lim
n→∞

sup
z∈K
|fn(z)− f(z)| = 0, ∀ compact K ⊂ U.

Theorem 2.21. Let (fn) be a sequence of holomorphic functions in an open domain U such that fn → f

compactly. Then f is also holomorphic in U .

Proof. For each point z0, f is the uniform limit of the sequence (fn) on a compact disc B(z0, δ) about z0. Hence

f is continuous in U . Furthermore, for any rectangular boundary Γ ⊂ U , since Γ is compact, fn converges

uniformly to f on Γ. By Theorem 2.6,∫
Γ

f(z) dz =

∫
Γ

lim
n→∞

f(z) dz = lim
n→∞

∫
Γ

f(z) dz = 0.

Hence, by Morera’s theorem, f is holomorphic in U .

Theorem 2.22. Suppose f is a continuous function in an open set U , and f is holomorphic there except

possibly at the points of a line segment L. Then f is holomorphic throughout U .

Proof. We may assume that the line segment L lies on the real axis. Otherwise, our proof applies to the

function g(z) = f(T−1z), where Tz = z−z0
z1−z0 is a linear transformation that maps any segment [z0, z1] to the

compact interval [0, 1] ⊂ R, and the holomorphy of f in U is equivalent to the holomorphy of g in TU .
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Since holomorphy is a local property, we may also assume that U is an open disc. We prove that
∫

Γ
f(z) dz =

0 for any rectangular boundary Γ ⊂ U with sides parallel to the real and imaginary axes.

(i) When L does not coincide the rectangular bounded by Γ, we have
∫

Γ
f(z) dz by Cauchy-Goursat theorem.

(ii) When L coincides with the bottom (top) side of Γ, we slightly shift up (down) the bottom (top) side by

a small quantity ε > 0 and get a boundary Γε, which reduces to case (i). By boundedness and uniform

continuity of f on compact sets,

lim
ε→0

(∫ 0

ε

f(a+ iy) dy +

∫ b

a

f(x+ iε) dx+

∫ ε

0

f(b+ iy) dy

)
= 0 +

∫ b

a

f(x) dx+ 0 =

∫ b

a

f(x) dx.

for all [a, b] ⊂ U . Then ∫
Γ

f(z) dz = lim
ε→0

∫
Γε

f(z) dz = 0.

(iii) When L is surrounded by Γ, split Γ by the real line to Γ1 and Γ2. Then the integral of Γ1 and Γ2 reduces

to the case (ii), and ∫
Γ

f(z) dz =

∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz = 0.

Finally, by Morera’s theorem, f is holomorphic in U .

Theorem 2.23 (Schwarz Reflection Principle). Suppose f is holomorphic in a simply connected open domain

U that is contained in either the upper or lower half plane and whose boundary contains a segment [a, b] on the

real axis, and suppose f(z) ∈ R for real z. Then we can define a holomorphic extension g of f to the domain

U ∪ (a, b) ∪ U∗ that is symmetric with respect to the real axis by setting

g(z) =

f(z), z ∈ U ∪ (a, b),

f(z), z ∈ U∗,

where U∗ = {z : z ∈ U}.

Proof. If z ∈ U∗, we choose a small quantity h with z + h ∈ U∗, then

lim
h→0

g(z + h)− g(z)

h
= lim
h→0

f(z + h)− f(z)

h
= lim
h→0

[
f(z + h)− f(z)

h

]
= f ′(z).

Hence g is holomorphic both in U and U∗. Since f(z) ∈ R for all real z, the function f is continuous in the

domain U ∪ (a, b) ∪ U∗. Then f is also holomorphic in this domain by employing Theorem 2.22.
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3 Singularities of Analytic Functions and Calculus of Residues

3.1 Branch Cuts

Motivation. We consider the logarithm function and the root function in a complex plane. Given a complex

number reiθ, the solutions of the equation ez = reiθ are

z = log r + i(θ + 2kπ), where k ∈ Z,

and the solutions of the equation zn = reiθ (n = 2, 3, · · · ) are

z = r1/nei
θ+2kπ
n , where k = 0, 1, · · · , n− 1.

These functions are multi-valued in the complex case, which map a number z ∈ C to a subset of C. The

difficulty comes from the fact that z 7→ ez and z 7→ zn are no longer bijective. In the last two cases, each k

correspond to a branch of the multi-valued function.

A branch cut is a curve in the complex plane such that it is possible to define a single analytic branch of

a multi-valued function on the plane minus that curve.

Definition 3.1. Let U be a simply connected open domain. A function f : U → C is said to be an analytic

branch of log(z), if

(i) f is analytic in U , and

(ii) f is an inverse of the exponential function there, i.e. ef(z) = z.

Remark. When z ∈ C\{0}, the principal value of log z is chosen to be the logarithm whose imaginary part

lies in the interval (−π, π], called the principle argument of z, written Arg(z):

Log(z) = log |z|+ iArg(z), z ∈ C\{0}.

We choose the branch cut to be (−∞, 0]. On the simply connected open domain U = C\(−∞, 0], the principal

logarithm z 7→ Log(z) is continuous, because both the modulus |z + h| − |z| and the principal argument

Arg(z + h)−Arg(z) changes little within a small region |h| < ε for fixed z ∈ U . Then

lim
h→0

Log(z + h)− Log(z)

h
=

(
lim
h→0

eLog(z+h) − eLog(z)

Log(z + h)− Log(z)

)−1

= e−Log(z) =
1

z
.

Therefore Log(z) is analytic in C\(−∞, 0]. This is a useful analytical branch of log(z).

Theorem 3.2. Let U ⊂ C be a simply connected domain such that 0 /∈ U . We choose z0 ∈ U , fix a value of

log z0 and define

f(z) = log z0 +

∫ z

z0

dζ

ζ
.

Then f is an analytic branch of log(z) in U .

Proof. Since 1/ζ is a holomorphic function of ζ in the simply connected open domain U , by Theorem 2.9, it

is the derivative of some primitive holomorphic function in U , and the integral along any two paths from z0

to z has the same value. Then f ′(z) = z−1 on U , and f is holomorphic, hence analytic.

Now we consider the function g(z) = ze−f(z). Since g′(z) = e−f(z) − zf ′(z)e−f(z) = 0, the function g is a

constant in U , and g(z) = g(z0) = z0e
−f(z0) = 1. Hence ef(z) = z, completing the proof.

Remark. The principal logarithm z 7→ Log(z) corresponds to z0 = 1, log 1 = 0 and U = C\(−∞, 0].
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3.2 Isolated Singularities

In this section, we study the behavior of an analytic function in the neighborhood of an isolated singularity.

We call a set of the form U\{z0} a deleted neighborhood of z0, where U is a neighborhood of z0.

Definition 3.3. A function f is said to have an isolated singularity at z0 if f is holomorphic in a deleted

neighborhood U\{z0}, but is not holomorphic at z0.

Remark. According to Theorem 2.22, f must be discontinuous at an isolated singularity.

Definition 3.4 (Classification of isolated singularities). Assume that f has a singularity at z0.

(i) If there exists a function g such that f(z) = g(z) for all z in some deleted neighborhood of z0, we say f

has a removable singularity at z0.

(ii) If there exists analytic functions A(z) and B(z) such that A(z0) 6= 0, B(z0) = 0 and f(z) = A(z)
B(z) for all

z in some deleted neighborhood of z0, we say f has a pole at z0.

In addition, if B(z) has a zero of multiplicity k at z0, the pole at z0 is said to be of order k. A pole of

order 1 (resp. 2, 3) is called a simple (resp. double, triple) pole.

(iii) If f has neither a removable singularity nor a pole at z0, we say f has an essential singularity at z0.

Now we discuss the properties of each class of singularity.

Theorem 3.5 (Riemann’s principle of removable singularities). If f has an isolated singularity at z0 and if

limz→z0(z − z0)f(z) = 0, then the singularity is removable.

Proof. Define the function h(z) = (z − z0)f(z) in an appropriate deleted neighborhood of z0, which is also

analytic. If we add a continuous extension h(z0) = 0, by Theorem 2.22, h is also analytic at z0. Then the

function g(z) = h(z)
z−z0 is analytic at z0 and agrees with f in a deleted neighborhood of f .

Remark. According to this theorem, if f is bounded in a deleted neighborhood of an isolated singularity,

then the singularity is removable.

Theorem 3.6. If f has an isolated singularity at z0 and if there exists a positive integer k such that

lim
z→z0

(z − z0)kf(z) 6= 0, but lim
z→z0

(z − z0)k+1f(z) = 0

then the singularity at z0 is a pole of order k.

Proof. We set g(z) = (z − z0)k+1f(z) in an appropriate deleted neighborhood of z0, and set g(z0) = 0. By

Theorem 2.22, g is continuous and analytic at z0. Likewise, the function A(z) = g(z)
z−z0 = (z − z0)kf(z) is also

analytic at z0, and A(z0) 6= 0 by hypothesis. Then we conclude the proof by setting B(z) = (z − z0)k in the

previous Definition 3.4(ii) of poles.

Remark. Combining Theorems 3.5 and 3.6, we conclude that f(z) has a pole of order k at z0 if and only if

(z − z0)kf(z) has a removable singularity at z0.

Theorem 3.7 (Casorati-Weierstrass Theorem). If f has an essential singularity at z0 and if D = U\{z0} is

a deleted neighborhood of z0, then the range R = {f(z) : z ∈ D} is dense in the complex plane.

Proof. Argue by contradiction. If there exists some open disc B(ω, δ) not intersecting R, then |f(z)− ω| ≥ δ,
and 1

|f(z)−ω| ≤
1
δ throughout D. By Riemann’s principle of removable singularities, 1

f(z)−ω has at worst a

removable singularity at z0, and 1
f(z)−ω = g(z) on D for some g that is analytic at z0. Consequently, we have

f(z) = ω + 1
g(z) near z0. Therefore, f has either a removable singularity (if g(z0) 6= 0) or a pole (if g(z0) = 0)

at z0, contradicting the fact that f has an essential singularity at z0!
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3.3 Laurent Series

In the previous sections, we see that an analytic function in an open disc can be represented there by its Taylor

series. For analytic functions in an annulus {z ∈ C : R1 < |z| < R2}, we have a similar representation, which

is in the form of a two-sided power series, which is called the Laurent series.

Theorem 3.8. The series f(z) =
∑∞
n=−∞ cnz

n is convergent in the domain

D = {z ∈ C : |z| < R2 and |z| > R1} ,

where

R2 =

(
lim sup
n→∞

|cn|1/n
)−1

, and R1 = lim sup
n→∞

|c−n|1/n.

If R1 < R2, D = {z ∈ C : R1 < |z| < R2} is an annulus and f is analytic in D.

Proof. Define power series g(z) =
∑∞
n=1 c−nz

n, and f2(z) =
∑∞
n=0 cnz

n. By Theorem 1.10, g is convergent

in the domain {z ∈ C : |z| < 1/R1}, and f2 is convergent in the domain {z ∈ C : |z| < R2} are convergent.

Furthermore, by Theorem 1.11, they are both analytic in their respective domains. Let f1(z) = g(1/z), which

is convergent and analytic in the domain {z ∈ C : |z| > R1}. Hence f = f1 + f2 is convergent in D, and is

analytic when D is nonempty.

Theorem 3.9. If f is analytic in the annulus D = {z ∈ C : R1 < |z| < R2}, then f has an expansion of the

following form throughout D:

f(z) =

∞∑
n=−∞

cnz
n. (3.1)

Furthermore, in this form, the coefficients cn are uniquely given by

cn =
1

2πi

∫
C

f(z)

zn+1
dz, n ∈ Z,

where C is any circle in D centered at 0. This expansion is called the Laurent series of f about 0.

Proof. Choose R1 < r1 < r2 < R2, and let C1 and C2 be the circles centered at 0 of radii r1 and r2, respectively.

Fix z ∈ D with r1 < |z| < r2. Since f is analytic in D, so is the function g(ω) = f(ω)−f(z)
ω−z with g(z) = f ′(z).

By the deformation principle [Theorem 2.11],∫
C1

f(ω)− f(z)

ω − z
dω =

∫
C2

f(ω)− f(z)

ω − z
dω, z ∈ D. (3.2)

Since z lies inside C2 and outside C1,∫
C1

f(z)

ω − z
= 0,

∫
C2

f(z)

ω − z
= 2πif(z).

Therefore, we rearrange (3.2) and then use the power series 1
1−t =

∑∞
n=0 t

n, |t| < 1:

2πif(z) =

∫
C2

f(ω)

ω − z
dω −

∫
C1

f(ω)

ω − z
dω =

∫
C2

f(ω)

ω
(
1− z

ω

) dω +

∫
C1

f(ω)

z
(
1− ω

z

) dω
=

∫
C2

∞∑
n=0

f(ω)
zn

ωn+1
dω +

∫
C1

∞∑
n=0

f(ω)
ωn

zn+1
dω.
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Note that
∑∞
n=0 f(ω) zn

ωn+1 converges uniformly on the circle C2, and
∑∞
n=0 f(ω) ωn

zn+1 converges uniformly on

the circle C1. Therefore, we interchange the infinite sum and the integral by Theorem 2.6:

2πif(z) =

∞∑
n=0

(∫
C2

f(ω)

ωn+1
dω

)
zn +

∞∑
n=0

(∫
C1

ωnf(ω) dω

)
1

zn+1
.

Again, by the deformation principle, we can switch the integral paths C1 and C2 to any circle C in D centered

at 0 without changing the integral value:

2πif(z) =

∞∑
n=−∞

(∫
C

f(ω)

ωn+1
dω

)
zn.

This ensures the existence of the expansion in form (3.1). It remains to prove the uniqueness of this expansion.

If the expansion f(z) =
∑∞
n=−∞ cnz

n converges in D, it converges uniformly on any circle C lying in D

centered at 0. Hence for all k ∈ Z,∫
C

f(z)

zk+1
dz =

∞∑
n=−∞

cn

(∫
C

zn−k−1 dz

)
= 2ckπi,

where all terms in the infinite sum vanish except n− k − 1 = −1. This proves uniqueness.

Remark. For any point z0 ∈ C, if f is analytic in the annulus D = {z ∈ C : R1 < |z − z0| < R2}, we can

apply the previous result to the function g(z) = f(z + z0). This gives the Laurent series of f about z0:

f(z) =

∞∑
n=−∞

cn(z − z0)n, R1 < |z| < R2,

where the coefficients are

cn =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz, n ∈ Z,

and C = ∂B(z0, R) is any circle of radius R1 < R < R2 centered at z0. Furthermore, an isolated singularity

at z0 corresponds to case of R1 = 0. We formally state the result below.

Corollary 3.10. If f have an isolated singularity at z0, then f equals to its Laurent series

f(z) =

∞∑
n=−∞

cn(z − z0)n =

∞∑
n=−∞

(
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

)
(z − z0)n

in some deleted neighborhood 0 < |z − z0| < δ of z0.

Terminology. The series

fa(z) =

∞∑
n=0

cn(z − z0)n

is called the analytic part of f at z0. The series

fp(z) =

∞∑
n=1

c−n
(z − z0)n

is called the principal part of f at z0. We can use the principle part of the Laurent series to determine the

class of isolated singularities.
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Theorem 3.11. Suppose f has an isolated singularity at z0, and the Laurent series of f about z0 is

f(z) =

∞∑
n=−∞

cn(z − z0)n, 0 < |z − z0| < δ.

(i) If f has an isolated singularity at z0, all the coefficients of the principle part are zero.

(ii) If f has a pole of order k at z0, then c−k 6= 0 and c−N = 0 for all N > k.

(iii) If f has an essential singularity at z0, then there are infinitely many nonzero terms in its principal part.

Proof. (i) If f has an isolated singularity at z0, then there exists a one-point modification g of f in an

appropriate neighborhood of z0, and g is analytic at z0. By the uniqueness argument, the Laurent series of f

about z0 equals the Taylor series of g at z0.

(ii) If f has a pole of order k at z0, there exists an analytic function A(z) such that f(z) = A(z)
(z−z0)k

in an

appropriate deleted neighborhood of z0 and such that A(z0) 6= 0. The result follows by plugging in the Taylor

series of A(z) at z0 and uniqueness of the Laurent series.

(iii) If f had an essential singularity at z0, and there were only finitely many nonzero terms in its principal

part, then (z − z0)Nf(z) would be analytic for large enough N and hence f would have either a removable

singularity or a pole at z0.

We can use the Laurent series to derive a partial fraction decomposition of any rational function.

Theorem 3.12 (Partial fraction decomposition). Any proper rational function

R(z) =
P (z)

Q(z)
=

P (z)

(z − z1)k1(z − z2)k2 · · · (z − zn)kn
,

where P and Q are polynomials with degP < degQ and z1, · · · , zn ∈ C are mutually distinct, can be written

as a sum of polynomials in 1
z−zj , where j = 1, 2, · · · , n. That is, there exist polynomials P1, · · · , Pn such that

R(z) = P1

(
1

z − z1

)
+ P2

(
1

z − z2

)
+ · · ·+ Pn

(
1

z − zn

)
.

Proof. We may assume P (zj) 6= 0 for all j = 1, · · · , n, otherwise we can eliminate the factor (z − zj) in both

the numerator and the denominator. By definition, R(z) has a pole of order k1 at z1. Write

R(z) =

k1∑
`=1

c−`
(z − z1)`

+

∞∑
m=0

cm(z − z1)m = P1

(
1

z − z1

)
+A1(z),

where the principal part P1( 1
z−z1 ) of the Laurent series of R about z1 is a polynomial in 1

z−z1 of order k1, and

A1 is the analytic part. We can repeat this procedure on the analytic parts A1, A2, · · · to obtain

R(z) = P1

(
1

z − z1

)
+ P2

(
1

z − z2

)
+ · · ·+ Pn

(
1

z − zn

)
+An(z).

By construction, An is entire because it is analytic at all possible singularities z1, · · · , zn. Furthermore, An

is bounded because the rational function R(z) and all the principal parts approach 0 as z → ∞. Then by

Liouville’s theorem [Theorem 2.15], An ≡ 0 on C, and

R(z) = P1

(
1

z − z1

)
+ P2

(
1

z − z2

)
+ · · ·+ Pn

(
1

z − zn

)
.

This completes the proof.

24



3.4 The Residue Theorem

In this section, we generalize the Cauchy-Goursat theorem to functions with isolated singularities.

Definition 3.13 (Residues). Assume that f has an isolated singularity at z0, and

f(z) =

∞∑
n=−∞

cn(z − z0)n, 0 < |z − z0| < δ

for some δ > 0, which is the Laurent series of f about z0. The coefficient c−1 of 1
z−z0 in the Laurent series is

called the residue of f at z0, and we write c−1 = Res(f, z0).

Remark. Here are some general methods for computing residues.

(i) If f has a removable singularity at z0, then Res(f, z0) = 0.

(ii) If f has a pole at z0, we may find analytic functions A and B such that A(z0) 6= 0 and B(z0) = 0, and

f(z) =
A(z)

B(z)
, 0 < |z − z0| < δ, ∃δ > 0.

If f has a simple pole at z0, then

(z − z0)f(z) = c−1 + c0(z − z0) + c1(z − z0)2 + c2(z − z0)3 + · · ·

is analytic, and

Res(f, z0) = c−1 = lim
z→z0

(z − z0)f(z) = lim
z→z0

A(z)
B(z)−B(z0)

z−z0

=
A(z0)

B′(z0)
.

(iii) More generally, if f has a pole of order k at z0, then

(z − z0)kf(z) =

∞∑
n=0

cn−k(z − z0)n,

dk−1

dzk−1

[
(z − z0)kf(z)

]
=

∞∑
n=0

(n+ k − 1)!

n!
cn−1(z − z0)n

Hence

Res(f, z0) = c−1 =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1

[
(z − z0)kf(z)

]
.

(iv) In most cases of higher-order poles, as with essential singularities, the most convenient way to determine

the residue is directly from the Laurent expansion.

Examples.

• Res

(
1

z4 − 1
, i

)
=

1

4i3
= − i

4
.

• e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ · · · , Res(e1/z, 0) = 1.

• 1

z − 1
cos

(
1

z − 1

)
=

1

z − 1
− 1

2!(z − 1)3
+

1

4!(z − 1)5
− · · · , Res

(
1

z − 1
cos

(
1

z − 1

)
, 1

)
=

1

2
.

• sin z

z4
=

1

z3
− 1

3!z
+
z

5!
− z3

7!
+ · · · , Res

(
sin z

z4
, 0

)
= −1

6
.
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Theorem 3.14 (Cauchy’s residue theorem). Let U be a simply connected open domain. If f is analytic in U

except for finitely many isolated singularities z1, · · · , zk ∈ U , and C is a piecewise smooth contour in U , then

∫
C

f(z) dz = 2πi

k∑
j=1

n(C, zj) Res(f, zj), (3.3)

where for each j = 1, 2, · · · , k,

n(C, zj) =

1, if zj is enclosed by C,

0, otherwise.

Proof. We subtract the principal parts from the Laurent series of f(z) about z1, · · · , zk:

f(z) = P

(
1

z − z1

)
+ P

(
1

z − z2

)
+ · · ·+ P

(
1

z − zk

)
︸ ︷︷ ︸

principal parts

+ A(z)︸︷︷︸
analytic part

, z ∈ U\{z1, z2, · · · , zk}.

By Cauchy-Goursat theorem [Theorem 2.10], ∫
C

A(z) dz = 0.

Note that the principal part series P
(

1
z−zj

)
=
∑∞
m=1 c−m,j(z − zj)−m about zj is analytic in U except at zj .

This series converges uniformly outside any open disc centered at zj . Hence∫
C

P

(
1

z − zj

)
dz =

∞∑
m=1

c−m,j

∫
C

dz

(z − zj)m
dz = Res(f, zj)

∫
C

dz

z − zj
,

where the terms in the infinite sum with m ≥ 2 vanish because (z− zj)−m is the derivative of the holomorphic

function 1
1−m (z − zj)1−m. Finally, note that

∫
C

dz

z − zj
=

2πi, if zj is enclosed by C,

0, otherwise.

We set n(C, zj) = 1
2πi

∫
C

dz
z−zj . Hence

∫
C

f(z) dz =

k∑
j=1

P

(
1

z − zj

)
dz =

k∑
j=1

Res(f, zj)

∫
C

dz

z − zj
= 2πi

k∑
j=1

n(C, zj) Res(f, zj).

Thus we complete the proof.

Remark. Let C be a piecewise smooth contour. If f is analytic in an open domain containing C except for

finitely many isolated singularities z1, · · · , zk, which are enclosed by C,

∫
C

f(z) dz = 2πi

k∑
j=1

Res(f, zj).

Using this formula, we transform the integration into the calculus of residues.
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3.5 Applications of the Residue Theorem: Integration

Various types of real definite integrals can be associated with integrals around closed curves in the complex

plane. In this situation, the residue theorem can be a powerful tool for evaluating integrals.

Example 3.15 (Rational functions on the real line). Let P and Q be two polynomials of single variable.

Assume Q(x) 6= 0 on R. If deg(Q) ≥ deg(P ) + 2, we know that the integral∫ ∞
−∞

P (x)

Q(x)
dx = lim

R→∞

∫ R

−R

P (x)

Q(x)
dx.

We want to evaluate this integral.

Solution. We choose the integral path consisting of the line segment [−R,R] and the upper semicircle CR =

{eiθ, 0 ≤ θ ≤ π} from θ = 0 to θ = π:

Re

Im

R−R

CR

0

By the residue theorem, ∫ R

−R

P (z)

Q(z)
dz +

∫
CR

P (z)

Q(z)
dz = 2πi

n∑
j=1

Res

(
P

Q
, zj

)
, (3.4)

where z1, · · · , zn are roots of Q(z) in the semicircle region enclosed by [−R,R] and CR. The integrand decays

like R−2, i.e. there exists a constant C > 0 such that

sup
z∈C:|z|=R

∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ C

R2
,

for sufficiently large R > 0, we have∣∣∣∣∫
CR

P (z)

Q(z)
dz

∣∣∣∣ ≤ πC

R
→ 0, as R→∞.

Therefore, letting R→∞ in (3.4), we have∫ ∞
−∞

P (z)

Q(z)
dz = 2πi

n∑
j=1

Res

(
P

Q
, zj

)
,

where z1, · · · , zn are roots of Q(z) lying in the upper half plane.

Remark. The poles of P (z)
Q(z) are all roots of the polynomial Q(z). If zj is a root of Q(z) of multiplicity 1,

namely zj is a simple pole, one can calculate the residue of P (z)
Q(z) by

Res

(
P

Q
, zj

)
= P (zj)

z − zj
Q(z)

∣∣∣∣
z=zj

.
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Example 3.16 (Oscillatory integral). Let P and Q be two polynomials of single variable. Assume Q(x) 6= 0

on R, and deg(Q) ≥ deg(P ) + 2. We want to evaluate the integrals∫ ∞
−∞

P (x)

Q(x)
sin(x) dx and

∫ ∞
−∞

P (x)

Q(x)
cos(x) dx. (3.5)

Solution. We consider the integral ∫ ∞
−∞

P (x)

Q(x)
eix dx.

We continue to use the integral path in Example 3.15. By the residue theorem,∫ R

−R

P (x)

Q(x)
eix dx+

∫
CR

P (x)

Q(x)
eix dx = 2πi

n∑
j=1

Res

(
P (z)

Q(z)
eiz, zj

)
.

where z1, · · · , zn are roots of Q(z) lying in the semicircle region enclosed by [−R,R] and CR. According to

the M-L estimate, since Re(iz) ≤ 0 on CR, we have |eiz| ≤ 1. Then there exists a constant C > 0 such that

sup
z∈CR

∣∣∣∣P (z)

Q(z)
eiz
∣∣∣∣ ≤ C

R2
,

for sufficiently large R > 0, we have∣∣∣∣∫
CR

P (z)

Q(z)
eiz dz

∣∣∣∣ ≤ πC

R
→ 0, as R→∞.

Therefore, letting R→∞ in (3.4), we have∫ ∞
−∞

P (z)

Q(z)
eiz dz = 2πi

n∑
j=1

Res

(
P (z)

Q(z)
eiz, zj

)
,

where z1, · · · , zn are roots of Q(z) lying in the upper half plane. The value of the two integrals in (3.5) follows

from the real and imaginary part of the last display.

Lemma 3.17 (Jordan’s lemma). Let P (z) and Q(z) be polynomials with deg(Q) ≥ deg(P ) + 1. If m > 0,

lim
R→∞

∫
CR

P (z)

Q(z)
eimz dz = 0,

where CR is the upper semicircle {Reiθ, 0 ≤ θ ≤ π} from θ = 0 to π. The same conclusion also holds when

m < 0 and CR is the lower semicircle {Reiθ, π ≤ θ ≤ 2π} from θ = π to 2π.

Proof. We only need to show the case deg(Q) = deg(P ) + 1, otherwise one can apply M-L estimate. Assume

m > 0. Then for |z| � 1 great enough, we have ∣∣∣∣P (z)

Q(z)

∣∣∣∣ ≤ K

|z|
,

where K > 0 is an appropriate constant. We parameterize CR by {Reiθ, 0 ≤ θ ≤ π}. Then∣∣∣∣∫
CR

P (z)

Q(z)
eimz dz

∣∣∣∣ =

∣∣∣∣∫ π

0

P (Reiθ)

Q(Reiθ)
eimRe

iθ

iReiθ dθ

∣∣∣∣ ≤ K ∫ π

0

e−mR sin θ dθ.
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Since sin θ ≥ 2θ
π for 0 ≤ θ ≤ π

2 , we have

K

∫ π

0

e−mR sin θ dθ ≤ 2K

∫ π/2

0

e−mR sin θ dθ ≤ 2K

∫ π/2

0

e−
2θ
π mR dθ =

πK

mR

(
1− e−mR

)
.

This bound converges to 0 as R→∞. The case m < 0 is similar.

Example 3.18 (Principal value integral). We consider the integral∫ ∞
−∞

sin(x)

x
dx.

The integrand decays like x−1, and the integral does not converge absolutely. Nevertheless, we can still evaluate

the principal value of this integral, which is defined as∫ ∞
−∞

sin(x)

x
dx = lim

R→∞

∫ R

−R

sin(x)

x
dx

Solution. We consider the function f(z) = eiz

z and the integral path consisting of four parts: the upper

semicircle CR = {Reiθ, 0 ≤ θ ≤ π} from θ = 0 to π, the line segment [−R,−r], the lower semicircle Cr =

{reiθ, π ≤ θ ≤ 2π} from θ = π to 2π, and the line segment [r,R].

Re

Im

R−R r−r

CR

Cr

By the residue theorem,∫ −r
−R

f(z) dz +

∫
Cr

f(z) dz +

∫ R

r

f(z) dz +

∫
CR

f(z) dz = 2πiRes (f, 0) = 2πi.

According to Lemma 3.17, the integral on CR converges to 0 as R→ 0. For the integral on Cr, note that∫
Cr

eiz

z
dz =

∫
Cr

1

z
dz +

∫
Cr

eiz − 1

z
dz

=

∫ 2π

π

1

reiθ
ireiθ dθ +

∫
Cr

eiz − 1

z
dz = πi+

∫
Cr

eiz − 1

z
dz.

The function z 7→ eiz−1
z is holomorphic, hence is bounded near z = 0. Then the integral

∫
Cr

eiz−1
z dz converges

to 0 as r → 0. Therefore

P.V.

∫ ∞
−∞

eix

x
dx = lim

r→0,R→∞

(∫ −r
−R

f(z) dz +

∫ R

r

f(z) dz

)
= πi

Taking the imaginary part, we have
∫∞
−∞

sin(x)
x = π.
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Example 3.19 (Trigonometric rational functions on the unit circle). Let P and Q be two polynomials of two

variables, and define R = P
Q . We want to evaluate the integral

∫ 2π

0

R(cos θ, sin θ) dθ.

Solution. By changing the variable z = eiθ,∫ 2π

0

f(eiθ) dθ =

∫ 2π

0

f(eiθ)

ieiθ
deiθ =

∫
|z|=1

f(z)

iz
dz.

Since cos θ = 1
2

(
z + 1

z

)
, and sin θ = 1

2i

(
z − 1

z

)
, we have∫ 2π

0

R(cos θ, sin θ) dθ =

∫
|z|=1

1

iz
R

(
z2 + 1

2z
,
z2 − 1

2iz

)
dz.

The integrand is also a rational function of z:

g(z) =
1

iz
R

(
z2 + 1

2z
,
z2 − 1

2iz

)
Then we can compute the integral by∫ 2π

0

R(cos θ, sin θ) dθ = 2πi

n∑
j=1

Res(g, zj),

where z1, z2, · · · , zn are poles of g inside the unit disk |z| < 1.

Example 3.20 (Sector contours). We want to evaluate the following integral:∫ ∞
0

dx

1 + xn
, n = 2, 3, · · · .

Solution. We consider the integral path round a sector of radius r and angle 2π
n , which consists of segment

[0, R], the arc CR =
{
Reiθ, 0 ≤ θ ≤ 2π

n

}
and the segment

[
Re

2πi
n , 0

]
. The function f(z) = 1

1+zn has a simple

pole at e
iπ
n inside the sector when R > 1.

Re

Im

R

CR

0

By the residue theorem,∫ R

0

dz

1 + zn
+

∫
CR

dz

1 + zn
+

∫ 0

Re
2πi
n

dz

1 + zn
= 2πiRes

(
1

1 + zn
, e

iπ
n

)
.

The integral on CR converges to 0 by M-L estimate. The integral on the segment
[
Re

2πi
n , 0

]
is

∫ 0

R

e
2πi
n dx

1 +
(
xe

2πi
n

)n = −e 2πi
n

∫ R

0

dx

1 + xn
.
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Letting R→∞, we have (
1− e 2πi

n

)∫ ∞
0

dx

1 + xn
= 2πiRes

(
1

1 + zn
, e

iπ
n

)
.

It remains to calculate the residue:

Res

(
1

1 + zn
, e

iπ
n

)
=

1

nzn−1

∣∣∣∣
z=e

iπ
n

= − 1

n
e
iπ
n .

Therefore, ∫ π

0

dx

1 + xn
=

2πi

n
(
e

2πi
n − 1

)eπi
n =

2πi

n
(
e
πi
n − e−πi

n

) =
π

n sin
(
π
n

) .
This formula holds for all integers n greater than 1.
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4 Miscellaneous

4.1 Analytic Continuation

We first introduce the uniqueness theorem for analytic functions.

Theorem 4.1 (Uniqueness theorem for analytic functions). Let f be an analytic function in an open connected

domain such that f(zn) = 0 for a sequence (zn)∞n=1 of distinct points with zn → z0 ∈ U . Then f ≡ 0 in U .

Proof. Since f is analytic at z0, it has a power series representation around z0. By the uniqueness theorem

for power series [Theorem 1.14], f ≡ 0 throughout some open disc containing z0. To show that f ≡ 0 in U ,

we partition U into two sets:

A = {z ∈ U : z is a limit of zeros of f} , B = U\A.

For each z ∈ A, since it is a limit of zeros of f , we know that f ≡ 0 in some open disc containing z, and

z ∈ Å. Hence A is an open set. On the other hand for each z ∈ B, we have f(ω) 6= 0 in a punctured disc

0 < |ω − z| < δ, and z ∈ B̊. Hence B is also an open set. By connectedness of U , either A or B is empty.

Since z0 ∈ A, B is empty, and every z ∈ U is a limit of zeroes of f . By continuity, f ≡ 0 throughout U .

Corollary 4.2. Let U be an open connected domain U . If two analytic functions f and g in U agree at a set

of points with a limit point in U , then f ≡ g through U .

Proof. Consider the function f − g and apply Theorem 4.1.

Suppose we are given a function f which is analytic in an open domain U . We say that f can be continued

analytically to an open domain U1 that intersects U if there exists a function g, analytic in U and such that

g = f throughout U ∩ U1. By the uniqueness theorem, any such continuation of f is uniquely determined.

Definition 4.3 (Regularity). Let f be an analytic function in an open disc D. If z0 ∈ ∂D and and f can be

continued analytically to an open neighborhood U of z0, then f is said to be regular at z0. Otherwise, f is

said to have a singularity at z0.

We first discuss the analytical continuation of power series.

Theorem 4.4. If the power series
∑∞
n=0 cnz

n has a positive radius of convergence R < ∞, the function

f(z) =
∑∞
n=0 cnz

n has at least one singularity on the circle |z| = R.

Proof. Argue by contradiction. If f has no singularities on |z| = R, we can choose an open disc B(z, εz)

to which f can be continued analytically for each |z| = R. By taking the union of B(0, R) and these discs

centered on |z| = R, we obtain an open connected domain U to which f can be continued analytically.

We consider the function d(z, U c) = infy∈Uc |y − z|, which is continuous on z ∈ B(0, R). By compactness,

there exists ε > 0 such that d(z, U c) > ε for all z ∈ B(0, R). Hence the disc B(0, R + ε) lies in U . Using

the uniqueness theorem [Theorem 1.14], the continuation g of f on B(0, R + ε) has the same power series

representation
∑
n=0 cnz

n, which is convergent for all |z| < R + ε. But
∑∞
n=0 cnz

n has radius of convergence

R, which leads to a contradiction.

Theorem 4.5. If the power series
∑∞
n=0 cnz

n has a positive radius of convergence R <∞ and cn ≥ 0 for all

n ∈ N0, the function f(z) =
∑∞
n=0 cnz

n has a singularity at z = R.

Proof. By Theorem 4.4, f has singularity at some Reiθ. Consider the power series for f about a point ρeiθ,

with 0 < ρ < R:

f(z) =

∞∑
n=0

an(z − ρeiθ)n =

∞∑
n=0

f (n)(ρeiθ)

n!
(z − ρeiθ)n.
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The radius of convergence of this series is R− ρ. Furthermore, for any nonnegative integer k,

f (k)(ρeiθ) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)cn(ρeiθ)n−k.

Since cn ≥ 0, we have |f (k)(ρeiθ)| ≤ f (k)(ρ). By Theorem 1.10, the power series expansion of f at ρ,

∞∑
n=0

f (n)(ρ)

n!
(z − ρ)n,

has radius of convergence R− ρ. On the other hand, if f were regular at z = R, the above power series would

converge in a disc of radius greater than R− ρ. Therefore f is singular at z = R.

Definition 4.6 (Natural boundary). If f(z) =
∑∞
n=0 cnz

n has a singularity at every point on its circle of

convergence, then that circle is called a natural boundary of f .

The following criterion is useful for determining the natural boundary of power series.

Theorem 4.7 (Ostrowski-Hadamard gap theorem). Let f(z) =
∑∞
k=0 ckz

nk be a power series with a positive

radius of convergence R <∞. If

lim inf
k→∞

nk+1

nk
> 1,

the circle of convergence of the power series is a natural boundary for f .

Proof. Since the result is independent of ck, we may assume without loss of generality that the radius of

convergence is 1. Also, by neglecting finitely many terms if necessary, we may assume that for some δ > 0 and

for all k, it holds nk+1/nk > 1 + δ. Finally, it suffices to show that f is singular at the point z = 1. For the

same result, applied to the series
∑∞
k=0 ck(ze−iθ)nk , shows that f is singular at any point z = eiθ.

Choose an integer m > δ−1 and consider the power series g(ω) obtained by setting z = ωm+ωm+1

2 and in f

and expanding the terms:

g(ω) = f

(
ωm + ωm+1

2

)
=

c0
2n0

ωmn0 +
c0n0

2n0
ωmn0+1 +

c0n0(n0 + 1)

2 · 2n0
ωmn0+2 + · · ·+ c0

2n0
ωmn0+n0

+
c1
2n1

ωmn1 +
c1n1

2n1
ωmn1+1 +

c1n1(n1 + 1)

2 · 2n1
ωmn1+2 + · · ·+ c1

2n1
ωmn1+n1 + · · · .

Note that in this expression no two terms involve the same power of ω, since

mnk+1 > mnk + nk whenever
nk+1

nk
> 1 +

1

m
.

When |ω| < 1, we have z = ωm+ωm+1

2 < 1, hence g(ω) = f(z) is absolutely convergent. On the other hand,

if we take ω > 1, we have z = ωm+ωm+1

2 > 1, and g(ω) diverges. Hence the power series g(ω) has radius of

convergence 1. By Theorem 4.4, g must have a singularity at some ω0 with |ω0| = 1. If ω0 6= 1,∣∣∣∣ωm + ωm+1

2

∣∣∣∣ = |ω|m
∣∣∣∣1 + ω

2

∣∣∣∣ < 1.

Since f(z) is analytic in |z| < 1, g is regular at ω0. Thus g must have a singularity at ω0 = 1, and since

g(ω) = f

(
ωm + ωm+1

2

)
,

f(z) must have a singularity at z = 1.
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4.2 Holomorphic Functions Defined by Integrals

Theorem 4.8 (Holomorphy of definite integrals). Let F (z, t) be a continuous function of z ∈ U ⊂ C and

t ∈ [a, b], where U is an open domain in C. If F is holomorphic in z for each fixed t ∈ [a, b], then

f(z) =

∫ b

a

F (z, t) dt

is holomorphic in U , and the complex derivative is

f ′(z) =

∫ b

a

∂F

∂z
(z, t) dt.

Proof. We first claim that the first and second partial derivatives Fz and Fzz are continuous as functions of

two variables. By Cauchy’s integral theorem,

F (z, t) =
1

2πi

∫
C

F (ω, t)

ω − z
dω, Fz(z, t) =

1

2πi

∫
C

F (ω, t)

(ω − z)2
dω, Fzz(z, t) =

1

πi

∫
C

F (ω, t)

(ω − z)3
dω,

where C is any contour in U enclosing z. Given z0 ∈ U , we let C be the boundary of a closed disc B(z0, r)

contained in U . Since F is uniformly continuous on the compact set B(z0, r)× [a, b], and on C × [a, b], we let

M = maxω∈C,t∈[a,b] F (ω, t). Then for all z ∈ B(z0, ε) with ε < r,∣∣∣∣∫
C

F (ω, t)

(ω − z)2
dω −

∫
C

F (ω, t)

(ω − z0)2
dω

∣∣∣∣ ≤ 2πrM max
ω∈C

∣∣∣∣ 1

(ω − z)2
− 1

(ω − z0)2

∣∣∣∣ ≤ 4πr2Mε

(r − ε)4
,

and by uniform continuity of F on C × [a, b],

lim
t′→t

∣∣∣∣∫
C

F (ω, t)

(ω − z0)2
dω −

∫
C

F (ω, t′)

(ω − z0)2
dω

∣∣∣∣ = 0.

Hence Fz is continuous. The continuity of Fzz follows in a similar approach. We then consider the expansion

F (z, t) = F (z0, t) + Fz(z0, t)(z − z0) +R(z, t), z ∈ B(z0, r),

where the remainder R(z, t) satisfies a uniform estimate of the form

|R(z, t)| ≤ A|z − z0|2, A = max
z∈B(z0,r), t∈[a,b]

|Fzz(z, t)|.

For all z ∈ B(z0, r),∣∣∣∣∣
∫ b

a

(
F (z, t)− F (z0, t)

z − z0
− Fz(z0, t)

)
dt

∣∣∣∣∣ ≤
∫ b

a

A|z − z0| dt = A(b− a)|z − z0|.

Hence
∫ b
a
F (z, t) dt is holomorphic in z, and the derivative is

∫ b
a
Fz(z, t) dt. Thus we complete the proof.

Remark. The same conclusion does not necessarily hold if we replace the compact interval [a, b] by a non-

compact one. For example,

f(z) =

∫ ∞
−∞

eitz

1 + t2
dt

is not holomorphic in z. In fact, the integral does not converges when z /∈ R.
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Theorem 4.9 (Holomorphy of improper integrals). Let F (z, t) be a continuous function of z ∈ U ⊂ C and

t ∈ (0,∞), where U is an open domain in C. Assume that F is holomorphic in z for each fixed t ∈ (0,∞),

and the improper integral

f(z) =

∫ ∞
0

F (z, t) dt

is absolutely convergent for all z ∈ U . Furthermore, assume that for all compact K ⊂ U ,

lim
a→0+, b→∞

sup
z∈K

∣∣∣∣∣
∫ b

a

F (t, z) dt− f(z) dt

∣∣∣∣∣ = 0.

In other words, the improper integral converges uniformly in z on any compact subset of U . Then f(z) is

holomorphic in U , and

f ′(z) =

∫ ∞
0

∂F

∂z
(z, t) dt. (4.1)

Proof. The previous theorem implies that

fn(z) =

∫ n

1
n

F (z, t) dt, n = 1, 2, · · ·

is a sequence of holomorphic functions in U . By our assumption, fn → f pointwise and compactly. Using

Theorem 2.21, we know that f(z) is also holomorphic in U . By Cauchy’s integral formula and Theorem [2.6],

f ′(z) =
1

2πi

∫
C

f(z)

(ω − z)2
dω = lim

n→∞

1

2πi

∫
C

fn(z)

(ω − z)2
dω = lim

n→∞
f ′n(z),

where we choose C to be a circle around z and contained in U . Then the derivative formula (4.1) follows.

4.3 The Gamma Function

Gamma function in the right half-plane. We consider the improper integral

Γ(s) =

∫ ∞
0

ts−1e−t dt,

where s ∈ C, and the power ts−1 is defined by e(s−1) log t. The integral converges absolutely when Re(s) > 0.

Furthermore, we fix some compact set K ⊂ {z : Re(z) > 0} with 0 < κ < Re(s) < σ for all s ∈ K. When we

take the integral near infinity, we obtain the following uniform estimate for s ∈ K:∣∣∣∣∫ ∞
b

ts−1e−t dt

∣∣∣∣ ≤ ∫ ∞
b

tRe(s)−1e−t dt ≤
∫ ∞
b

e−
t
2 dt× sup

t≥b
e−

t
2 tRe(s)−1 ≤ 2e−

b
2 sup
t≥b

e−
t
2 tσ−1.

Clearly, this estimate converges to 0 as b→∞. On the other hand, we also the following uniform estimate for

s ∈ K when we take the integral near 0:∣∣∣∣∫ a

0

ts−1e−t dt

∣∣∣∣ ≤ ∫ a

0

tRe(s)−1e−t dt ≤
∫ a

0

tκ−1 dt ≤ aκ

κ
.

Again this estimate converges to 0 when a → 0. Hence we verified the compact convergence condition in

Theorem 4.9. To conclude, the Gamma function Γ(s) is holomorphic in the right-half plane Re(s) > 0. Next,

we are going to extend this function to the whole plane.
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Meromorphic continuation of Γ to C. Use the integration by parts formula, we see that

Γ(s+ 1) =

∫ ∞
0

tse−t dt = tset
∣∣t=∞
t=0

+ s

∫ ∞
0

e−tts−1 dt = sΓ(s), Re(s) > 0.

This identity allows us to define an extension of Γ to the half-plane Re(s) > −1, s 6= 0:

Γ(s) =
Γ(s+ 1)

s
, Re(s) > −1, s 6= 0.

Clearly, the extended Γ is holomorphic in both Re(s) > 0 and −1 < Re(s) < 0, and continuous on the nonzero

imaginary axis {iy : y 6= 0}. By Theorem 2.22, the extended Γ is holomorphic throughout Re(s) > 1, s 6= 0.

Furthermore, we have Γ(s) ∼ 1
s near s = 0, since

lim
s→0

sΓ(s) = lim
s→0

Γ(s+ 1) = 0.

Hence Γ has a simple pole at s = 0 with residue 1. We repeat the same manner and define

Γ(s) =
Γ(s+ 2)

s(s+ 1)
, Re(s) > −2, s 6= 0,−1,

Γ(s) =
Γ(s+ 3)

s(s+ 1)(s+ 2)
, Re(s) > −3, s 6= 0,−1,−2,

· · · ,

Γ(s) =
Γ(s+ k + 1)

s(s+ 1) · · · (s+ k)
, Re(s) > −k − 1, s 6= 0,−1, · · · ,−k.

Then we obtain an extended Γ that is meromorphic on C with poles only at nonpositive integers. Moreover,

near s = −k, where k ∈ N0,

lim
s→−k

(s+ k)Γ(s) = lim
s→−k

Γ(s+ k + 1)

s(s+ 1) · · · (s+ k − 1)
=

(−1)k

k!
.

Hence

Res(Γ,−k) =
(−1)k

k!
, k = 0,−1,−2, · · · .

Thus we get an meromorphic continuation of Γ on the entire complex plane.

Euler-Mascheroni constant. We consider the sequence tn = 1 + 1
2 + · · · + 1

n−1 − log n. One can easily

verify that (tn) is a bounded monotone increasing sequence:

tn = 1 +
1

2
+ · · ·+ 1

n− 1
− log n =

n−1∑
k=1

(
1

k
− log

k + 1

k

)

≤
n−1∑
k=1

1

2k2
≤
∞∑
k=1

1

2k2
=
π2

12
.

Hence the sequence (tn) is convergent, and its limit limn→∞ tn equals

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
≈ 0.5772156649.

This limit is called the Euler-Mascheroni constant. This constant is related to the gamma function.
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Theorem 4.10 (Gauss). The Γ function can be written as

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
, s ∈ C, s 6= 0,−1,−2, · · · . (4.2)

Proof. By calculus, we have e−t/n −
(
1− t

n

)
≤ t2

2n2 . Applying the inequality an − bn ≤ nan−1(a− b) for a > b

and n ≥ 1 gives

e−t −
(

1− t

n

)n
≤ t2e−(1− 1

n )t

2n
≤ t2e−t/2

2n
≤ 8

ne2
, n ≥ 2.

Hence
(
1− t

n

)n → e−t uniformly on (0,∞). We plug-in this limit to the integral definition of Γ function and

apply integration by parts:

Γ(s) =

∫ ∞
0

ts−1e−t dt = lim
n→∞

∫ n

0

ts−1

(
1− t

n

)n
dt = lim

n→∞

1

nn

∫ n

0

ts−1(n− t)n dt

= lim
n→∞

1

nn
· n
s

∫ n

0

ts(n− t)n−1 dt = · · · = lim
n→∞

1

nn
· n(n− 1) · · · 1
s(s+ 1) · · · (s+ n− 1)

∫ n

0

ts+n−1 dt

= lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
, Re(s) > 0.

Furthermore, for Re(s) > −k − 1, we use the continuation given before to get

Γ(s) =
Γ(s+ k + 1)

s(s+ 1) · · · (s+ k)
= lim
n→∞

n!ns+k+1

s(s+ 1) · · · (s+ k) · (s+ k + 1) · · · (s+ k + n+ 1)

= lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
× lim
n→∞

n

s+ n+ 1
· n

s+ n+ 2
· · · n

s+ n+ k + 1

= lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
.

Therefore we obtain the alternative definition for Γ.

Theorem 4.11 (Weierstrass-Hadamard product). For all s ∈ C, the reciprocal of Γ(s) is

1

Γ(s)
= seγs

∞∏
n=1

(
1 +

s

n

)
e−

s
n ,

where γ is the Euler-Mascheroni constant.

Proof. If s 6= 0,−1,−2, · · · , we insert the factors e−
s
n to the reciprocal of (4.2) and obtain

1

Γ(s)
= lim
n→∞

sn−s (1 + s)
(

1 +
s

2

)
· · ·
(

1 +
s

n

)
= lim
n→∞

ses(1+ 1
2 +···+ 1

n−logn) (1 + s) e−s
(

1 +
s

2

)
e−

s
2 · · ·

(
1 +

s

n

)
e−

s
n

= seγs
∞∏
n=1

(
1 +

s

n

)
e−

s
n

For the case s 6= 0,−1,−2, · · · , we have 1/Γ(s) = 0, and the result is clear.

Theorem 4.12 (Euler’s Reflection formula). For all s ∈ C with s 6= Z,

Γ(s)Γ(1− s) =
π

sin(sπ)
.

37



Proof. We consider 0 < Re(s) < 1. By definition,

Γ(s)Γ(1− s) =

∫ ∞
0

∫ ∞
0

us−1e−uv−se−v du dv
v=ut
=

∫ ∞
0

∫ ∞
0

t−se−u(t+1) du dt =

∫ ∞
0

t−s

1 + t
dt.

We then apply contour integral to compute the last integral. For the multi-valued function z−s, we use the

main branch (reiθ)−s = r−s(e−isθ), where 0 ≤ θ < 2π. Use the keyhole path shown below.

Re

Im

−R

iε

−iε

C+

C−

CR

Cε

By the residue theorem, we have∫ R

ε

z−s

1 + z
dz +

∫
CR

z−s

1 + z
dz +

∫ ε

R

z−se−2iπs

1 + z
dz +

∫
Cε

z−s

1 + z
dz = Res

(
z−s

1 + z
,−1

)
= e−iπs.

We use the M-L estimate to eliminate integrals on CR and Cε. On the outer circle CR,∣∣∣∣∫
CR

z−s

1 + z
dz

∣∣∣∣ ≤ 2πR · R
−Re(s)

R− 1
∼ 2πR−Re(s) → 0, as R→∞.

On the inner circle Cε, ∣∣∣∣∫
Cε

z−s

1 + z
dz

∣∣∣∣ ≤ 2πε · ε
−Re(s)

1− ε
∼ 2πε1−Re(s) → 0, as ε→ 0+.

Letting ε→ 0+ and R→∞, we have∫ ∞
0

z−s

1 + z
dz − e−2iπs

∫ ∞
0

z−s

1 + z
dz = e−iπs.

Hence ∫ ∞
0

t−s

1 + t
dt =

2πi

1− e−2iπs
e−iπs =

2πi

eiπs − e−iπs
=

π

sin(sπ)
.

Generally, for k < Res(s) < k + 1, where k ∈ N0,

Γ(s)Γ(1− s) = (s− 1)(s− 2) · · · (s− k)Γ(s− k) · Γ(1 + k − s)
(1− s)(2− s) · · · (k − s)

= (−1)kΓ(s− k)Γ(1 + k − s) =
π

sin(sπ)
.

Hence the desired result holds for all s ∈ C with s /∈ Z.
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Corollary 4.13. The reciprocal
1

Γ(s)
of the gamma function is an entire function on C.

Proof. By Theorem 4.12, Γ(s) 6= 0 on C, and the result follows from meromorphy of Γ.

Theorem 4.14 (Legendre’s duplication formula). For any s ∈ C,

Γ(s)Γ

(
s+

1

2

)
= 21−2s

√
π Γ(2s).

Proof. Let Re(s) > 0. By the integral definition of Γ, we have

Γ(s)Γ

(
s+

1

2

)
=

∫ ∞
0

e−uus−1 du ·
∫ ∞

0

e−vvs−
1
2 dv =

∫ ∞
0

∫ ∞
0

e−(v+ t
v )ts−1v−

1
2 dv dt. (let u = t/v)

Recalling that ∫ ∞
−∞

e−x
2

e−ixξdx =
√
πe−

ξ2

4 , ξ ∈ R,

we have ∫ ∞
0

e
−2ix

√
t√
v e−x

2

dx =
√
πe−

t
u .

Then

Γ(s)Γ

(
s+

1

2

)
=

1√
π

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

e
−2ix

√
t√
v e−x

2

e−vts−1v−
1
2 dx dv dt

=
1√
π

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

e−2iy
√
te−(1+y2)vts−1 dy dv dt (change y = x/

√
v)

=
1√
π

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

e−2iy
√
tts−1 e−u

1 + y2
dy du dt (change u = (1 + y2)v)

=
1√
π

∫ ∞
0

(∫ ∞
−∞

e−2iy
√
t

1 + y2
dy

)
ts−1 dt. (By Fubini’s theorem)

The inner integral can be computed by residues. By Jordan’s lemma, we choose the semicircle of radius R in

the lower half-plane and let R→∞:∫ ∞
−∞

e−2iy
√
t

1 + y2
dy = −2πiRes

(
e−2iz

√
t

1 + z2
,−i

)
= πe−2

√
t.

Then

Γ(s)Γ

(
s+

1

2

)
=
√
π

∫ ∞
0

e−2
√
tts−1 dt

x=2
√
t

=
√
π

∫ ∞
0

x2s−1

2s−1
e−x dx = 21−2s

√
π Γ(2s).

When −k < s < −k + 1
2 ,

Γ(s)Γ

(
s+

1

2

)
=

Γ(s+ k)

s(s+ 1) · · · (s+ k − 1)

Γ
(
s+ k + 1

2

)(
s+ 1

2

) (
s+ 3

2

)
· · ·
(
s+ k − 1

2

)
=

22k

2s(2s+ 1) · (2s+ 2k − 1)
21−2s−2k

√
πΓ(2s+ 2k) = 21−2s

√
π Γ(2s).

Then we complete the proof.
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4.4 Laplace Transform

Let f(t) be a function defined on [0,∞). We consider the following improper integral:

F (s) =

∫ ∞
0

f(t)e−st dt,

where s ∈ C. This integral may not converge everywhere on C. To do better, we assume that the function f

is bounded. Under this assumption, the integral converges absolutely for all Re(s) > 0.

Definition 4.15 (Laplace transform). Let f : [0,∞) → C be a continuous function such that for some

constants C > 0 and α ∈ R, |f(t)| ≤ Ceαt for all t ≥ 0. In other words, the function e−αtf(t) is bounded.

The Laplace transform of f is defined to be a function F (s), which is given by

F (s) = (Lf)(s) =

∫ ∞
0

f(t)e−st dt, s ∈ C, Re(s) > α.

Remark. The integral converges absolutely in the domain Re(s) > α.

Proposition 4.16 (Properties of the Laplace transform). Let f and g be continuous functions on [0,∞) that

grow no faster than exponential functions.

(i) If a ∈ C and g(t) = eatf(t), then (Lg)(s) = (Lf)(s− a).

(ii) If a > 0 and g(t) = f(at), then (Lg)(s) = 1
a (Lf)

(
s
a

)
.

(iii) If f is continuously differentiable,

(Lf ′)(s) = s(Lf)(s)− f(0).

Proof. Both (i) and (ii) is proved by change of variables. To prove (iii), we use integration by parts:

(Lf ′)(s) =

∫ ∞
0

f ′(t)e−st dt = f(t)e−st
∣∣t=∞
t=0
−
∫ ∞

0

f(t) de−st = s

∫ ∞
0

f(t)e−st dt− f(0).

Then we complete the proof.

Proposition 4.17. The Laplace transform Lf is holomorphic in the half-plane Re(s) > α.

Proof. The function f(t)e−st is continuous in s and t. Following Theorem 4.9, we can prove the desired result

by discuss the compact convergence property of Lf .

Since the function f(t)e−st is well-behaved near t = 0, it suffices to consider the convergence property of

the improper integral near infinity. We fix a compact set K ⊂ {z : Re(z) > α} with α < κ < Re(s) < σ for all

s ∈ K. Then we have the following uniform estimate for all s ∈ K:∣∣∣∣∫ ∞
b

f(t)e−st
∣∣∣∣ ≤ ∫ ∞

b

|f(t)|e−Re(s)t ≤
∫ ∞
b

Ceαte−κt dt = Ce−(κ−α)b.

This estimate converges to 0 as b→∞. Then we finish the proof.

Remark. By Theorem 4.9, the complex derivative of the Laplace transform F = Lf is

F ′(s) = −
∫ ∞

0

tf(t)e−st dt, Re(s) > α.

More generally, the derivative of F of order n is

F (n)(s) = (−1)n
∫ ∞

0

tnf(t)e−st dt, Re(s) > α.

40



We are curious if we can recover a function f from its Laplace transform Lf .

Theorem 4.18 (Bromwich integral). Let f be a continuous function on [0,∞) that grows no faster than

exponential functions, and let F be the Laplace transform of f . Then

f(t) = (L−1F )(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)est ds, σ > α. (4.3)

Remark. The integral transform (4.3) is also called the inverse Laplace transform of F . Practically, we can

compute the inverse Laplace transform using residues.

Proof. We extends f to the real line by defining g = f on R+ and g(t) = 0 for all t < 0. Then

F (σ + iξ) = (Lf)(σ + iξ) =

∫ ∞
0

f(t)e−σte−iξt dt =

∫ ∞
−∞

g(t)e−σte−iξt dt, σ > α, ξ ∈ R.

This is the Fourier transform of g(t)e−σt. By Fourier inversion formula,

g(t)e−σt =
1

2π

∫ ∞
−∞

F (σ + iξ)eiξt dξ.

We multiply both sides of the last display by eσt and change the variable s = σ + iξ:

g(t) =
1

2π

∫ ∞
−∞

F (σ + iξ)eσ+iξ dξ =
1

2πi

∫ σ+i∞

σ−i∞
F (s)est ds.

This is the desired result when t ≥ 0.

Finally, we introduce the convolution theorem for the Laplace transform.

Theorem 4.19 (Convolution theorem). Let f and g be two continuous functions on [0,∞) that grow no faster

than eαt. Define the convolution of f and g to be

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ, t ≥ 0.

Then in the half-plane Re(s) > α,

L(f ∗ g) = Lf · Lg.

Proof. Let F (s) and G(s) be the Laplace transform of f(t) and g(t), respectively. Then

(L(f ∗ g))(s) =

∫ ∞
0

(∫ t

0

f(τ)g(t− τ) dτ

)
e−st dt

=

∫ ∞
0

∫ t

0

f(τ)e−sτg(t− τ)e−s(t−τ) dτ dt

=

∫ ∞
0

f(τ)e−sτ
(∫ ∞

τ

g(t− τ)e−s(t−τ) dt

)
dτ

=

∫ ∞
0

f(τ)e−sτG(s) dτ = F (s)G(s).

Thus we finish the proof.
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