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0 Notations

x ∈ A or A 3 x : x belongs to set A

A ∪B : The union of A and B, i.e. {x : x ∈ A or x ∈ B}

A ∩B : The intersection of A and B, i.e. {x : x ∈ A and x ∈ B}

A ⊂ B or B ⊃ A : A is a subset of B, i.e. ∀x ∈ A, x ∈ B

A ( B or B ) A : A is a proper subsetof B, i.e. A ⊂ B and ∃b ∈ B such that b /∈ A

B\A : The difference of B from A, i.e. {b : b ∈ B, b /∈ A}

A×B : The cartesian product of A and B, i.e. the set of tuples {(a, b) : a ∈ A, b ∈ B}⋃
α∈J Aα : The union of collection {Aα, α ∈ J}, i.e. {a : ∃α ∈ J, a ∈ Aα}⋂
α∈J Aα : The intersection of collection {Aα, α ∈ J}, i.e. {a : ∀α ∈ J, a ∈ Aα}∏
α∈J Aα : The cartesian product of collection {Aα, α ∈ J}, i.e. {(xα)α∈J : xα ∈ Aα for each α ∈ J}

πβ : The projection map that carries a tuple x = (xα)α∈J to its β-th component xβ

∅ : The empty set

A : The closure of subspace A

Å : The interior of subspace A

∂A : The frontier of subspace A

O(x0, ε) : The open ball centered at x0 of radius ε in a metric space (X, d), i.e. {x ∈ X : d(x, x0) < ε}

d(x,A) The distance from a point x to a set A in a metric space (X, d), i.e. d(x,A) = infa∈A d(x, a)

xn → x : The point sequence xn converges to x

Y X : The set of all functions from X to Y , namely, the Cartesian product
∏
x∈X Y

f |A : The restriction of function f : X → Y on subspace A, i.e. f |A : A→ Y, a 7→ f(a)

χA The indicator function of a subset A ⊂ X, i.e. χA : X → {0, 1} with χA(A) = {1} and χA(X\A) = {0}

fn ⇒ f : The function sequence fn converges uniformly to f

N : The set of all positive integers, i.e. {1, 2, · · · , n, n+ 1, · · · }

N0 : N ∪ {0}

Z : The set of all integers, i.e. N ∪ {0} ∪ (−N)

Q : The set of all rational numbers, i.e. {n/m : n ∈ Z,m ∈ Z}

R : The set of all real numbers, the completion of (Q, | · − · |)

R+ : The set of nonnegative real numbers, i.e. {x : x ∈ R, x ≥ 0}

C : The set of complex numbers, i.e. {a+ bi : a ∈ R, b ∈ R}, where i2 = −1
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1 Open and Closed Sets

1.1 Open and Closed Sets in Topological Spaces

Definition 1.1 (Topology and open sets). Let X be a nonempty open set. A topology on X is a collection

T of nonempty subsets of X, called open sets, such that

(i) any union of open sets is open,

(ii) any finite intersection of open sets is open, and

(iii) both X and ∅ are open.

A set X together with a topology T on it is called a a topological space, denoted by (X,T ). Without ambiguity,

we drop T and say X is a topological space.

Examples of topological spaces.

• (Euclidean Space). Let X = Rn. A subset U of X is open if for every x ∈ U, there exists δ > 0 such that

the ball O(x, δ) = {y ∈ Rn : ‖y − x‖2 < δ} lies entirely in U .

• (Discrete topology). Let X be a non-empty set. Every subset of X is an open set.

• (Subspace topology/induced topology). Let Y be a non-empty subset of X. A subset U of Y is open if

there exists an open set O in X such that U = O ∩ Y .

Definition 1.2 (Neighborhood). Let X be a topological space. Given a point x ∈ X, a subset N of X is

called a neighborhood of x, if we can find an open set O in X such that x ∈ O ⊂ N .

By definition, an open set O ⊂ X is a neighborhood of each of its points. Conversely, if O is a neighborhood

of each of its points, we can find an open Nx for each x ∈ O such that x ∈ Nx ⊂ O. Then O =
⋃
x∈ONx as a

union of open sets is itself open.

Proposition 1.3 (Properties of neighborhoods). Let X be a topological space, and x is a point in X. Then

the following statements hold:

(i) x lies in each of its neighborhood.

(ii) The intersection of two neighborhoods of x is itself a neighborhood of x.

(iii) If N is a neighborhood of x and N ⊂M ⊂ X, then M is a neighborhood of x.

(iv) If N is a neighborhood of x, then N̊ = {y ∈ N : N is a neighborhood of y} is also a neighborhood of x.

Proof. The first three statements are trivial. We prove the fourth statement. Let N be a neighborhood of x,

then there exists an open set O in X such that x ∈ O ⊂ N . Since O, as an open set, is a neighborhood of each

of its points, we have O ⊂ N̊ , which concludes the proof.

Remark. The four properties in Proposition 1.3 form an alternative construction of a topological space. More

specifically, let X be a non-empty sets, for each point x ∈ X we define the collection of its neighborhoods as

satisfying (i)-(iv). A subset O of X is called an open set if it is a neighborhood of each of its point. Then we

can verify that the collection of open sets in X satisfies Definition 1.1.

Definition 1.4 (Closed sets). A subset A of a topological space X is said to be a closed set in X, if its

complement X\A is open.

Remark. Combining Definition 1.1 and Definition 1.4, it is clear that any intersection of closed sets, any

finite union of closed sets, the entire space X and the empty set ∅ are closed. To characterize closed sets in a

topological space, we introduce the following definition.

Definition 1.5 (Limit points/accumulation points). Let A be a subset of a topological space X. A point

p ∈ X is called a limit point of A if every neighborhood of p contains at least one point of A\{p}.
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Theorem 1.6 (Characterization of closed sets). A set is closed if and only if it contains all its limit points.

Proof. Let A be a closed set in a topological space X. Then its complement X\A, being an open set, is a

neighborhood of each of its points. Then any x ∈ X\A is not a limit point of A, and A contains all its limit

points. Conversely, if A contains all of its limit points, then for each x ∈ X\A, there exists a neighborhood of

x lying in X\A. Therefore X\A is a neighborhood of each of its points.

Definition 1.7 (Closure). Let A be a subset of a topological space X. The union of A and all its limit points,

denoted by A, is called the closure of A.

Theorem 1.8. Let A be a subset of a topological space X. Then A is the intersection of all closed sets in X

that contains A. In other words, A is the smallest closed set that contains A.

Proof. We first prove that A is closed. For every x ∈ X\A, we can find an open neighborhood O of x such

that O does not intersect with A. If O contains a limit point of A, denoted by p, then O as a neighborhood of

p contains a point of A, a contradiction! Hence O ⊂ X\A, showing A is closed. Now let B ⊃ A be a closed set

in X. It suffices to show that any limit point p of A is contained in B. To see this, suppose p /∈ B. Since X\B
is open, it is a neighborhood of p. Then X\B contains at least one point in A, again a contradiction!

The following conclusion immediately follows from Theorem 1.8.

Corollary 1.9. A set is closed if and only if it is equal to its closure.

Definition 1.10 (Interior). Let A be a subset of a topological space X. The interior of A, denoted by Å, is

the union of all subsets of A that are open in X. A point that is in Å is an interior point of A.

It is clear that a set is open if and only if it is equal to its interior. We can also check that a point x lies

in Å if and only if A is a neighborhood of x, which is consistent with the notation we use in Proposition 1.3.

Definition 1.11 (Frontier). Let A be a subset of a topological space X. We define the frontier of A as the

intersection of its closure and the closure of its complements, ∂A := A ∩ (X\A).

Proposition 1.12. Let A be a subset of a topological space X. Then Å ∩ ∂A = ∅, and Å ∪ ∂A = A.

Proof. Let {Oλ : λ ∈ Λ} be the collection of all open subsets of A. Then {X\Oλ : λ ∈ Λ} is the collection

of all closed sets in X that contains X\A. By Definition 1.10 and Theorem 1.8, we have Å =
⋃
λ∈ΛOλ, and

(X\A) =
⋂
λ∈Λ(X\Oλ) = X\Å. Hence Å ∩ ∂A = ∅, and ∂A = A ∩ (X\Å) = A\Å.

Remark. In the above proof, we obtain an alternative definition of the interior: Å = X\(X\A)

Proposition 1.13. Let A and B be two subsets of a topological space X. The following statements hold:

(i) (A ∪B)◦ ⊃ Å ∪ B̊; (ii) (A ∩B)◦ = Å ∩ B̊; (iii) (Å)◦ = Å.

(iv) A ∪B = A ∪B; (v) A ∩B ⊂ A ∩B; (vi) A = A;

Proof. Applying (i) and (ii) to X\A and X\B yields (v) and (iv), respectively. The result (iii) holds because

Å is open, and (vi) holds because A is closed. Hence it remains to show (i) and (ii).

(i): x ∈ Å ∪ B̊ ⇔ either A or B is a neighborhood of x⇒ A ∪B is a neighborhood of x ⇔ x ∈ (A ∪B)◦.

(ii): x ∈ (A∩B)◦ ⇔ A∩B is a neighborhood of x ⇔ both A,B are neighborhoods of x ⇔ x ∈ Å∪ B̊.

Remark. The equality does not necessarily holds in (i) and (v). As a counterexample of (i), consider

A = [−1, 0] and B = [0, 1] in X = R.
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1.2 Density and Separability

Definition 1.14 (Dense sets). Let A be a subset of a topological space X. A subset D of X is said to be

dense in A if A ⊂ D. Specifically, D is a dense set if D = X.

Remark. D is also called an everywhere dense set when D = X.

Proposition 1.15. Let A be a subset of a topological space X. Then A is dense if and only if it intersects

with every nonempty open set in X.

Proof. Suppose that A intersects with every nonempty open set in X. It suffices to show that for any x ∈ X\A,

x is a limit point of A. This is clear because every neighborhood of x, containing a nonempty open set in X,

intersects with A. Conversely, let O be a nonempty open set in X, and let A be dense in O. Choose x ∈ O.

The conclusion is clear if x ∈ A, so it remains to prove the case x /∈ A. Since A is dense in O, x is a limit

point of A. Hence O as a neighborhood of x contains at least one point of A, which concludes the proof.

Proposition 1.16. Let A be a dense set in a topological space X. Then for every nonempty open set O ⊂ X,

A ∩O is dense in O.

Proof. Choose x ∈ O, we want to show that x ∈ A ∩O. It suffices to prove the case x /∈ A. Let N be an

arbitrary neighborhood of x. By Proposition 1.3 (ii), N ∩O is a neighborhood of x, and contains at least one

point of A. Hence N ∩ (O ∩A) 6= ∅, and x is a limit point of A ∩O.

Definition 1.17 (Basis). Let X be a topological space.

(i) A basis for the topological space X is a family B of open sets such that every open set in X is a union

of members of B. Elements of B are called base sets.

(ii) A neighborhood basis for X at x is a family Bx of open sets containing x such that every neighborhood

of X contains at least one member of Bx.

Remark. A family of sets B is a basis for X if and only if B contains a neighborhood basis at each x ∈ X.

Theorem 1.18. Let B be a nonempty collection of subsets of a set X. If the intersection of any finite number

of members of B is always in B, and if
⋃
B∈B B = X, then B is a basis for a topology on X.

Proof. Let T be the collection of all unions of members of B. Then T forms a topology on X. (To see this,

just check the three conditions in Definition 1.1.)

Remark. Given any family E of sets in X, we can generate a topology on X which consists of all unions of

finite intersections of members of E .

Definition 1.19 (Second countable space). A topological space is said to be a second countable space if it

has a countable basis.

Definition 1.20 (Separable space). A topological space is separable if it has a countable dense subset.

Theorem 1.21. A second countable topological space is separable.

Proof. Let X be a second countable topological space with a basis B = {Bn : n ∈ N}, and without loss of

generality let each Bn be nonempty since empty sets can be discarded. Choose xn ∈ Bn for each n and let

A = {xn, n ∈ N}, then X is separable if we can show that A is dense in X.

By Proposition 1.15, it suffices to show that A intersects with every nonempty open set in X. Let O be an

arbitrary nonempty open set in X. Then there exists Bn such that Bn ⊂ O. Consequently, O and A meet at

the point xn.
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1.3 The Subspace Topology

Definition 1.22 (Subspace topology). Let Y be a non-empty subset of a topological space (X,TX). Let

TY = {O ∩ Y : O ∈ TX} be the collection of open sets in Y , then TY defines a topology on Y , which is called

the subspace topology. The topological space (Y,TY ) is also called a subspace. Without ambiguity we can drop

TY and say Y is a subspace of X.

Proposition 1.23. If Y is a subspace of X, and Z is a subspace of Y , then Z is a subspace of X.

Proof. By definition, we have Z ⊂ Y ⊂ X, and TY = {O ∩ Y : O ∈ TX}, TZ = {O′ ∪ Z : O′ ∈ TY }.
∀O′ ∩ Z ∈ TZ , ∃O ∈ TX such that O′ ∩ Z = (O ∩ Y ) ∩ Z = O ∩ Z.
And ∀O ∈ TX , we have O ∩ Z = O ∩ (Y ∩ Z) = O′ ∩ Z ∈ TZ , where O′ := O ∩ Y ∈ TY .

Hence TZ = {O ∪ Z : O ∈ TX}, and Z is a subspace of X.

Proposition 1.24 (Closed sets in a subspace). Let Y be a subspace of X. Then a subset of Y is closed if and

only if it is the intersection of Y with a closed set in X.

Proof. For the “if” statement, let K = B ∩ Y, where B is closed in X. Then Y \K = Y \B = Y ∩ (X\B) is

open in Y , because X\B is open in X. Therefore K is closed in Y .

For the “only if” statement, suppose K is closed in Y . Then we know that Y \K is open in Y , and ∃ open

O in X such that Y \K = O ∩ Y . Hence (X\O) ∩ Y = Y \(O ∩ Y ) = K, which concludes the proof.

Lemma 1.25 (Open and closed subspaces). Let Y be a subspace of X such that Y is open (closed) in X, and

A be a subset of Y . Then A is open (closed) in Y if and only if A is open (closed) in X.

Proof. By Definition 1.22 and Proposition 1.24.

Proposition 1.26 (Closures and interiors in a subspace). Let Y be a subspace of X, and A be a subset of Y .

Denoted by AX and AY the closure of A in X and in Y , respectively, and similarly ÅX and ÅY the interiors.

Then: (i) AY = AX ∩ Y , (ii) ÅY ⊃ ÅX .

Proof. (i) Let {Bλ : λ ∈ Λ} be the collection of all closed subsets of X that contains A. By Proposition 1.24,

{Bλ ∩Y : λ ∈ Λ} is the collection of all closed subsets of Y that contains A, and (i) follows from Theorem 1.8.

(ii) We only show the case ÅX 6= ∅. If a ∈ ÅX , then ∃ an open set O in X such that a ∈ O ⊂ ÅX . Since

O ∩ Y is open in Y , and we have a ∈ O ∩ Y ⊂ A, A is a neighborhood of a in subspace Y . Hence a ∈ ÅY .

Remark. In Proposition 1.26, the equality in (ii) does not necessarily holds. As a counterexample, consider

Euclidean spaces X = R2 and Y = R, A = (0, 1) ⊂ Y . Then ÅX = ∅, ÅY = A.
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2 Continuity

2.1 Continuous Functions

Definition 2.1 (Continuous functions). Let X and Y be two topological spaces. A function f : X → Y is

said to be continuous if the inverse image of each open set in Y is open in X, i.e., for each open set O ⊂ Y ,

the inverse image f−1(O) := {x ∈ X : f(x) ∈ O} is open in X.

Proposition 2.2 (Neighborhood characterization of continuity). Let X and Y be two topological spaces. A

function f : X → Y is continuous if and only if for each point x ∈ X and each neighborhood N of f(x) in Y ,

the inverse image f−1(N) is a neighborhood of x in X.

Proof. “If” part: Let O be an open set in Y . Then for every x ∈ f−1(O), O is a neighborhood of f(x) in Y .

By our assumption, f−1(O) is a neighborhood of x in X.

“Only if” part: Let x ∈ X and N be a neighborhood of f(x) in Y . Then ∃ an open set O such that

f(x) ∈ O ⊂ N . Since f−1(O) is open, f−1(N) ⊃ f−1(O) 3 x is a neighborhood of x in X.

Remark. In some literature, Proposition 2.2 is also used as the definition of continuous functions.

Theorem 2.3. The composition of two continuous functions is continuous.

Proof. Let X,Y, Z be topological spaces, and f : X → Y, g : Y → Z be continuous functions. Let O be an

open set in Z, then g−1(O) is open in Y , and f−1g−1(O) is open in X. Since (g ◦ f)−1(O) = f−1g−1(O), we

conclude that g ◦ f : X → Z is continuous.

Theorem 2.4. Let X and Y be two topological spaces, and f : X → Y be a continuous function. Let

A ⊂ X have the subspace topology. Then the restriction f |A : A→ Y is continuous.

Proof. Let O be an open set in Y , then f−1(O) is open in X, and (f |A)−1(O) = A ∩ f−1(O) is open in the

subspace topology on A. Then f |A is continuous.

Remark. The function from X to X which sends each point x ∈ X to itself is called the identity map,

denoted by IX . If we restrict IX to a subspace A of X, we obtain the inclusion map, denoted by ι : A→ X.

Theorem 2.5. Let X and Y be two topological spaces. The following statements are equivalent:

(i) f : X → Y is continuous.

(ii) If B is a basis for the topology of Y , then the inverse image of every member of B is open in X.

(iii) f(A) ⊂ f(A) for any subset A of X.

(iv) f−1(B) ⊂ f−1(B) for any subset B of Y .

(v) The inverse image of each closed set in Y is closed in X.

Proof. (i) ⇒ (ii): By Definition 2.1.

(ii) ⇒ (iii): Let A be a subset of X. Since f(A) ⊂ f(A), it suffices to show f(x) is a limit point of f(A) for

x ∈ A\A such that f(x) /∈ f(A). If N is a neighborhood of f(x) in Y , then ∃B ∈ B such that f(x) ∈ B ⊂ N ,

and f−1(B) is an open neighborhood of x. Since x is a limit point of A, f−1(B) contains at least one point in

A. As a result B and N both contain at least on point in f(A), which concludes the proof.

(iii) ⇒ (iv): Let A = f−1(B) in (iii).

(iv) ⇒ (v): Let B be a closed set in Y . Then B = B, and by (iv) f−1(B) ⊂ f−1(B) ⊂ f−1(B) = f−1(B).

(v)⇒ (i): Let O be an open set in Y . Then by (iv) f−1(Y \O) = X\f−1(O) is closed, and f−1(O) is open.
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Definition 2.6 (Homeomorphism). Let X and Y be two topological spaces. A homeomorphism is a function

h : X → Y that is continuous, bijective and that has continuous inverse.

Remark. In Definition 2.6, the condition of continuous inverse is required. Consider function f : [0, 1) →
{z ∈ C : |z| = 1}, x 7→ ei2πx, which is continuous and bijective. The inverse f−1 : {z ∈ C : |z| = 1} →
[0, 1), z 7→ 1

2π arg z is not continuous. For example, it maps
{

eiθ : θ ∈ [0, π)
}

to [0, 1/2), the inverse image of

an open set is not open!

2.2 Metric Spaces and Tietze Extension Theorem

Definition 2.7 (Metric, metric spaces and metric topology). Let X be a nonempty set. A metric on X is a

function d : X ×X → R such that for all x, y, z ∈ X the following conditions are satisfied:

(i) d(x, y) ≥ 0, and d(x, y) = 0 holds if and only if x = y;

(ii) d(x, y) = d(y, x); (iii) d(x, z) + d(z, y) ≥ d(x, y).

A set X together with a metric d is called a metric space, denoted by (X, d). Without ambiguity, we drop

d and say X is a metric space.

Given a metric d on a set X, we let O(x, ε) := {y : d(x, y) < ε} the open ball centered at x of radius ε > 0.

Then a topology can be induced as follows: a subset U of X is open, if for each x ∈ U , there exists ε > 0 such

that O(x, ε) is contained in U . This topology satisfies the axioms in Definition 1.1. It is also referred to as the

metric topology.

Remark. We can check that Definition 2.1 is consistent with the definition of continuity in metric spaces,

which is characterized by ε-δ the condition: given any x ∈ X and any ε > 0, there exists δ > 0 such that

dX(x, x′) < δ implies dY (f(x), f(x′)) < ε.

Let (X, dX) and (Y, dY ) be two metric spaces, and f : X → Y be a function. Suppose the ε-δ condition

holds, and let U be an open set in Y . Then for every x ∈ f−1(U), we can find some ε > 0 such that

the open ball OY (f(x), ε) lies in U . Moreover, there exists δ > 0 such that for all x′ ∈ OX(x, δ) we have

f(x′) ∈ OY (f(x), ε) ⊂ U . Hence O(x, δ) ⊂ f−1(U). Hence f−1(U) is open.

Conversely, suppose f is continuous. Then for any ε > 0 and x ∈ X, f−1 (OY (f(x), ε)) must be an open

neighborhood of x in X. As a result, there exists δ > 0 such that OX(x, δ) ⊂ {x′ ∈ X : dY (f(x), f(x′)) < ε}.

Lemma 2.8. Let A be a subset in a metric space (X, d). For a point x ∈ X, define its distance to set A as

d(x,A) = infy∈A d(x, y). Then the function x 7→ d(x,A) is continuous on X.

Proof. Let x ∈ X and let N be a neighborhood of d(x,A) on the real line. Choose a small ε > 0 such that

(d(x,A)− ε, d(x,A) + ε) ⊂ N , and a ∈ A such that d(x, a) < d(x,A) + ε/2. For z ∈ O(x, ε/2), we have

d(z,A) ≤ d(z, a) ≤ d(z, x) + d(x, a) < d(x,A) + ε.

Similarly, we have d(x,A) < d(z,A) + ε. Hence O(x, ε/2) is mapped inside (d(x,A)− ε, d(x,A) + ε) ⊂ N , and

the inverse image of N is a neighborhood of N . Following Proposition 2.2 completes the proof.

Lemma 2.9. Following Lemma 2.8, d(x,A) = 0 if and only if x ∈ A.

Proof. For the “if” statement, it suffices to show the case x ∈ A\A, which implies that x is a limit point of A,

and O(x, ε) ∩A 6= ∅ for all ε > 0. Hence 0 ≤ d(x,A) = infy∈A d(x, y) < ε for all ε > 0, and d(x,A) = 0.

For the “only if” statement, suppose x is neither a point nor a limit point of A. Then there exists ε > 0

such that O(x, ε) ∩A = ∅. As a result, d(x,A) ≥ ε > 0. Hence d(x,A) = 0 only if x ∈ A.
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Corollary 2.10. Following Lemma 2.8, d(x,A) = d(x,A) for all x ∈ X.

Proof. Fix x ∈ X. Since A ⊂ A, it suffices to show d(x,A) ≤ d(x,A). For all z ∈ A, by Lemma 2.9, we have

d(x,A) ≤ d(x, z) + d(z,A) = d(x, z), which completes the proof.

Lemma 2.11 Let A and B be two disjoint closed subsets in a metric space (X, d). Then there exists a

continuous R-valued function on X such that f(A) = {1}, f(B) = {−1} and f(X\(A ∪B)) = (−1, 1).

Proof. Since A and B are closed and disjoint, Lemma 2.9 implies that d(x,A) + d(x,B) > 0 for all x ∈ X.

Hence we can define

f(x) =
d(x,A)− d(x,B)

d(x,A) + d(x,B)
, x ∈ X

which takes on the required values. Moreover, the continuity of f follows from Lemma 2.8.

Let A be a subspace of topological space X. Given a continuous function f : A → R, we are interested if

we are able to extend f to the whole space X without damage its continuity. More explicitly, we want to find

a continuous R-valued function on X such that its restriction on A is f .

Theorem 2.12 (Tietze extension theorem). Any real-valued continuous function defined on a closed subset

of a metric space can be extended over the whole space.

We left the proof of Theorem 2.12 to Theorem 5.16. To prove this conclusion in the metric space case, we

can apply Lemma 2.11 instead of the Urysohn lemma. The proof also uses the Weierstrass M-test, which is

introduced in Theorem 2.20.

2.3 Convergence and Uniform Convergence

Definition 2.13 (Metrizable spaces). Let X be a topological space. Then X is said to be metrizable if

there exists a metric d on X that induces the topology of X. Under this definition, a metric space (X, d) is a

metrizable space X together with a specific metric d that gives the topology of X.

Remark. Without ambiguity, we share the terms “metric space” and “metrizable space” in later sections.

Definition 2.14 (Boundedness). Let (X, d) be a metric space. A subset A of X is said to be bounded if

there exists M > 0 such that d(x, x′) > 0 for every pair x, x′ of points of A. If A is bounded and nonempty,

then the diameter of A is defined as DA = supx,x′∈A d(x, x′).

Remark. Boundedness of a set is not a topological property, for it depends on the metric d defined on X.

In fact, we can find for every metric space (X, d) a metric d which induces the same topology on X and is

bounded.

Theorem 2.15 (Standard bounded metric). Let (X, d) be a metric space. Define d : X × X → R by the

equation

d(x, x′) = min{d(x, x′), 1}, ∀x, x′ ∈ X.

Then d is a metric that induces the same topology as d.
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Proof. It is easy to verify that d is a valid metric which satisfies the three conditions in Definition 2.7. To

check the third condition, note that

d(x, y) + d(y, z) = min{d(x, y), 1}+ min{d(y, z), 1} = min{d(x, y) + d(y, z), 1 + d(x, y), 1 + d(y, z), 2}

≥ min{d(x, y) + d(y, z), 1} ≥ d(x, z).

For both d and d, note that the collection of open balls {O(x, ε), x ∈ X, ε < 1} forms a basis for any metric

topology. Then the topologies induced by d and d share the same basis.

Now we introduce the convergence of point sequences in a topological space.

Definition 2.16 (Convergent sequences). Let X be a topological space, and let (xn) be a sequence of points

of X. We say that the sequence (xn) converges to the point x0 ∈ X, if for any neighborhood U of x0, there

exists N such that xn ∈ U for all n ≥ N .

Let A ⊂ X. If there is a sequence of points of A that converges to x ∈ X, then by definition x ∈ A.

Moreover, the converse holds for any metrizable X: for any x ∈ A, we can construct a sequence (xn) of points

of A by choosing xn ∈ O(x, n−1) ∩A.

Theorem 2.17. Let X and Y be topological spaces; let f : X → Y .

(i) If f is continuous, then for every convergent sequence xn → x in X, {f(xn)} converges to f(x).

(ii) If X is metrizable and f(xn)→ f(x) for every convergent sequence xn → x in X, then f is continuous.

Proof. (i) For any neighborhood U of f(x) in Y , f−1(U) is a neighborhood of x in X by continuity of f . Then

∃N such that xn ∈ f−1(U) for all n ≥ N , consequently f(xn) ∈ U .

(ii) Let A ⊂ X, where X is metrizable. Then for any x ∈ A, there exists a convergent sequence xn → x.

By our assumption, f(xn)→ f(x) ∈ f(A). Hence f(A) ⊂ f(A), and f is continuous by Theorem 2.5 (iii).

Definition 2.18 (Uniform convergence). Let fn : X → Y be a sequence of functions from a topological

space X to a metric space Y . We say that the sequence {fn} converges uniformly to the function f : X → Y

if for any ε > 0, there exists N such that dY (fn(x), f(x)) < ε for all n ≥ N and all x ∈ X.

Remark. The condition for uniform convergence can be rewritten as

sup
x∈X

dY (fn(x), f(x)) < ε, ∀n ≥ N.

We use the notation fn ⇒ f to stand for uniform convergence.

Theorem 2.19 (Uniform limit theorem). Let fn : X → Y be a sequence of continuous functions from a

topological space X to a metric space Y . If {fn} converges uniformly to f , then f is continuous.

Proof. Let V be open in Y , and let x0 ∈ f−1(V ). We want to find a neighborhood U of x0 in X such that

U ⊂ f−1(V ). We choose ε > 0 such that the open ball O(f(x0), ε) lies in V . Then we can use the uniform

convergence to choose N such that dY (fn(x), f(x)) < ε/3 for all n ≥ N and all x ∈ X.

Now we fix n ≥ N . Since fn is continuous, we can choose U = f−1
n (O(fn(x0), ε/3)), which is a neighborhood

of x0 in X. Then for any x ∈ U , we have

dY (f(x), f(x0)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(x0)) + dY (fn(x0), f(x0)) < ε.

Hence U ⊂ O(f(x0), ε) ⊂ V , completing the proof.
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Theorem 2.20 (Weierstrass M-test). Let X be a topological space and fn : X → R be a sequence of

functions. Define

Sn(x) =

n∑
j=1

fj(x).

Weierstrass M-test for uniform convergence: If |fj(x)| ≤ Mj for all x ∈ X and all j ∈ N, and if the series∑∞
n=1Mn converges, then the sequence {Sn} converges uniformly to a function S.

Proof. Let rn =
∑∞
j=n+1Mj , which converges to 0 as n→∞. Fix x ∈ X. For n > m, we have

|Sn(x)− Sm(x)| ≤
n∑

j=m+1

|fj(x)| ≤
n∑

j=m+1

Mj ≤ rm.

Hence {Sn(x)} is a Cauchy sequence, which must converge to some S(x) ∈ R. Thus we obtain a function

S : X → R of pointwise convergence. It remains to show the uniform convergence. To show this, let n → ∞
in the equation above:

|S(x)− Sm(x)| ≤ rm, ∀x ∈ X.

Then we conclude the proof.
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3 Connectedness

3.1 Connected Spaces

Definition 3.1 (Connected space). A topological space X is connected if it cannot be decomposed as the

union of two disjoint nonempty open sets.

By saying a subset Y of X is connected, we mean that Y is connected in its subspace topology.

Proposition 3.2 (Alternative definition of connectedness). The following statements are equivalent:

(i) X is a connected space.

(ii) Any decomposition X = A ∪B of nonempty subsets of X satisfies A ∩B 6= ∅ or A ∩B 6= ∅.
(iii) X cannot be decomposed as the union of two disjoint nonempty closed sets.

(iv) The only sets that are both open and closed in X are ∅ and X itself.

(v) There exists no onto continuous function from X to a discrete space that contains more than one points.

Proof. (i) ⇒ (ii): Assume there exist nonempty subsets A and B of X such that X = A ∪B, A ∩B = ∅ and

A ∩ B = ∅. Then X = A ∪ B ⊂ A ∪ B = X, hence B = X\A is open in X. Similarly A is open in X. Hence

X is the union of two disjoint nonempty open sets A and B, a contradiction!

(ii) ⇒ (iii): Assume there exist two nonempty closed sets A and B such that A∩B = ∅, A∪B = X, then

A = A and B = B, which contradicts (ii).

(iii) ⇒ (iv): If there exists a both open and closed subset A in X such that A 6= X and A 6= ∅, then

X = A ∪ (X\A) is a decomposition of two disjoint nonempty closed sets.

(iv) ⇒ (i): If X = A ∪ B is a decomposition of two disjoint nonempty open sets, then A must be a both

open and closed in X such that A 6= ∅ and A 6= X.

(i)⇒ (v): Let Y be a discrete space with more than one point and f : X → Y an onto continuous function.

Break up Y as a union U ∪ V of two disjoint nonempty open sets. Then X = (f−1U) ∪ (f−1V ).

(v) ⇒ (ii): Assume there exist two nonempty sets A and B such that A ∩ B = ∅, A ∪ B = X, then both

A = X\B and B = X\A are open. Define f = 1A − 1B : X → {−1, 1}, then f is continuous and onto.

Theorem 3.3 (Connectedness of the real line). The real line R is a connected space.

Proof. We argue that R by checking the condition (ii) in Proposition 3.2. Let R = A ∪ B be a partition of

R, i.e. A and B are nonempty, and A ∩ B = ∅. Choose a ∈ A, b ∈ B, and without loss of generality suppose

a < b. Then {x ∈ A : x < b} is nonempty. Let s = sup{x ∈ A : x < b}. By the very definition of supremum,

we have s ∈ A. If s /∈ B, then s ∈ R\B = A, and s < b. Moreover, (s, b] lies in B, then s is a limit point of B,

showing s ∈ B. Therefore s lies either in A ∪B or in A ∪B.

Theorem 3.4. (Connected subsets of the real line). A nonempty subset of R is connected if and only if it

is an interval. (Note that any single point a ∈ R is also an interval [a, a].)

Proof. Akin to the proof of Theorem 3.3, we can show that any interval is connected. If a nonempty set A

is not an interval, then we can find a < p < b such that p /∈ A and a, b ∈ A. Let B = {x ∈ A : x < p},
then both B and A\B are nonempty. Since p /∈ A, we have B ∈ (−∞, p) and A\B ∈ (p,∞). Hence

B ∪ (A\B) = B ∪ (A\B) = ∅, showing A is not connected.
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Theorem 3.5 (Connected dense set). Let X be a topological space and let Y be a subspace of X. If Y is

connected, and if Y is dense in X, then X is connected.

Proof. Let A be a nonempty subset of X which is both open and closed. Since Y is dense in X, Y intersects

every nonempty open subset of X, A ∩ Y is nonempty. Note that A ∩ Y is both open and closed in Y , and Y

is connected, we have A ∩ Y = Y , i.e., Y ⊂ A. Therefore X = Y ⊂ A = A ⊂ X, meaning A = X.

Corollary 3.6. Let X be a topological space and let Y be a connected subspace of X. If Y ⊂ Z ⊂ Y , then

Z is connected. Particularly, the closure Y of a connected subspace Y is connected.

Proof. By Proposition 1.26 (i), Y is dense in Z. Applying Theorem 3.5 yields the wanted result.

Lemma 3.7. If topological space X = A∪B, where A and B are disjoint open sets, and if Y is a connected

subspace of X, then Y lies entirely within either A or B.

Proof. We observe that both A ∩ Y and B ∩ Y are open sets in Y , and they forms a partition of Y . Since Y

is connected, at least one of them should be empty.

Theorem 3.8 (Union of connected subspaces). Let X = {Xα, α ∈ J} be a collection of connected subspaces

of X such that
⋂
α∈J Xα 6= ∅. Then

⋃
α∈J Xα is connected.

Proof. Let p ∈
⋂
α∈J Xα, and Y :=

⋃
α∈J Xα = A ∪B, where A and B are disjoint open sets in Y . Then p is

in one of A and B. Without loss of generality, let p ∈ A. For each α ∈ J , Xα 3 p ∈ A. Since Xα is connected,

by Lemma 3.7, Xα ⊂ A. Hence A = Y and B = ∅.

Now we introduce the concepts of set product and box topology. Let X = {Xα, α ∈ J} be a collection

of indexed sets. The cartesian product of this indexed collection, denoted by
∏
α∈J Xα, is defined to be the

set of all J-tuples (xα)α∈J such that xα ∈ Xα for each α ∈ J . Equivalently, it is the set of all functions

x : J →
⋃
a∈J Xα such that x(α) ∈ Xα for each α ∈ J .

Definition 3.9 (Box topology on a product). We take as a basis for a topology on the product
∏
α∈J Xα

the collection of the sets of the form
∏
α∈J Oα, with Oα open in Xα for each α ∈ J . The topology generated

by this basis is called the box topology.

Remark. To check the basis we choose is valid, we use Theorem 1.18. The first condition is satisfied because∏
α∈J Xα is itself a basis element. The second condition is satisfied because the intersection of any two basis

elements is another basis element: (∏
α∈J

Uα

)
∩
(∏
α∈J

Yα

)
=
∏
α∈J

(Uα ∩ Vα).

Theorem 3.10. The cartesian product of finitely many connected spaces is connected.

Proof. It suffices to show that the cartesian product of two connected spaces is connected. Let X and Y

be two connected topological space. For each x ∈ X , {x} × Y , being homeomorphic to Y , is connected (we

will interpret this in Corollary 3.15). Similarly, X × {y} is connected for each y ∈ Y . By Theorem 3.8, the

cross-shaped set Cx,y := ({x}×Y )∪ (X×{y}) is connected. Fix (x0, y0) ∈ X×Y . Then X×Y =
⋃
y∈Y Cx0,y,

and (x0, y0) ∈
⋂
y∈Y Cx0,y. Again by Theorem 3.8, the product space X × Y is connected.
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3.2 Path-connected Spaces

Definition 3.11 (Path-connected space). A topological space X is path-connected if for each a, b ∈ X, there

exists a path in X from a to b, that is, a continuous function f : [0, 1]→ X with f(0) = a and f(1) = b.

Lemma 3.12. A path-connected space is connected.

Proof. Let X be a path-connected space. If X is not connected, there exists a partition X = A∪B such that

A and B are disjoint nonempty open sets in X. Choose a ∈ A, b ∈ B, then there exists a continuous function

f : [0, 1] 7→ X such that f(0) = a and f(1) = b. Then f−1(A) and f−1(B) are nonempty disjoint open sets in

[0, 1] whose unions are [0, 1], contradicting the connectedness of [0, 1].

Remark. A connected space is not necessarily path-connected. We will give a counterexample afterwards.

Theorem 3.13 establishes a relation between connected sets and path-connected sets in Euclidean spaces.

Theorem 3.13. Any connected open set in a euclidean space is path-connected.

Proof. Consider euclidean space Rn. Let X be a connected open set in Rn and fix x ∈ X. Let U(x) be the set

of all points in X that can be joined to x by a path in X. By construction, U(x) is path-connected. It suffices

to show U(x) = X. Let y ∈ U(x) and choose an open ball O(y, ε) that lies entirely in X. Then we can join z

to x whenever z ∈ O(y, ε). Hence O(y, ε) ⊂ U(x), and U(x) is open in X. Also, X\U(x) =
⋃
y∈X\U(x) U(y) as

the union of a collection of open sets is open, then U(x) is closed. Recall that X is connected, U(x) = X.

Theorem 3.14 (The continuous image of connected/path-connected sets). Let function f : X → Y be

continuous and onto. (i) If X is connected, so is Y ; (ii) If X is path-connected, so is Y .

Proof. (i) Let Y = A ∪ B, where A and B are disjoint open set in Y . Then X = f−1(A) ∪ f−1(B), with

f−1(A) and f−1(B) being disjoint and open in X. Since X is connected, one of f−1(A) and f−1(B) is empty.

f is onto, hence one of A and B is empty.

(ii) For each a, b ∈ Y , choose u ∈ f−1({a}) and v ∈ f−1({b}), whose nonemptiness is ensured by the

surjectivity of f . Since X is path-connected, we can find a path g in X from u to v. Since the composition

preserves continuity, f ◦ g is a path in Y from a to b.

Theorem 3.14 immediately implies the following conclusion.

Corollary 3.15. If h : X → Y is a homeomorphism, then X is connected (path-connected) if and only if Y

is connected (path-connected). In other words, connectedness (path-connectedness) is a topological property.

3.3 Local Connectedness and Local Path-connectedness

Definition 3.16 (Locally connected sets and locally path-connected sets). A topological space X is said to

be locally connected at x if for every neighborhood U of x, there is a connected neighborhood V of x contained

in U . If X is locally connected at each of its points, it is said simply to be locally connected.

Similarly, a topological space X is said to be locally path-connected at x if for every neighborhood U of x,

there is a path-connected neighborhood V of x contained in U . If X is locally path-connected at each of its

points, then it is said to be locally path-connected.

To characterize local connectedness and local path-connectedness, we need to introduce the concepts of

components and path components.
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Definition 3.17 (Components and path components). Let X be a topological space, and define an equiv-

alence relation on X by letting x ∼ y if there is a connected subspace of X containing both x and y. The

equivalence classes are called the (connected) components of X.

Define another equivalence relation on X by letting x ∼ y if there is a path in X joining x and y. The

equivalence classes are called the path components of X.

Remark. We need to verify the validity of the equivalence relations we define. For the first statement, the

symmetry and reflexivity is clear, and the transitivity follows from Theorem 3.8.

For the second statement, the symmetry holds because when f : [0, 1] → X is a path from x to y then

g : t 7→ f(1 − t) is a path from y to x, and the reflexivity follows from the continuity of constant functions.

For the transitivity, suppose f : [0, 1]→ X is a path from x to y, and g : [0, 1]→ X a path from y to z. Then

we can construct a path from x to z by h : t 7→ f(2t)χ[0,1/2](t) + g(2t− 1)χ(1/2,1](t).

Theorem 3.18 (Component decomposition). The components of X are disjoint connected subspaces of X

whose union is X, and each nonempty connected subspace of X lies in one of them.

The path-components of X are disjoint path-connected subspaces of X whose union is X, and each

nonempty path-connected subspace of X lies in one of them.

Proof. We first prove the first statement. Being equivalence classes, the components of X are disjoint and their

union is X. For each connected subspace A of X, if there exists p1, p2 ∈ A such that p1 ∈ C1 and p2 ∈ C2,

where both C1 and C2 are components of X, then C1 = C2 because p1 ∼ p2. Hence A intersects with only

one component of X, and it must lie entirely in that component.

It remains to show that each component C is connected. To argue this, choose x0 ∈ C, for each x ∈ C,

x ∼ x0, and there exists a connected subspace containing x0 and x. By the result just proved, Ax ⊂ C, and

C =
⋃
x∈C Ax is connected by Theorem 3.8.

For the second statements, we make a slight modification on Theorem 3.8: for a collection of path-connected

subspaces {Xα, α ∈ J} in X, if ∃p ∈
⋂
α∈J Xα, then we can construct a path between any two points in⋃

α∈J Xα that meets p.

Remark. By Theorem 3.18, we can set that the components (path-components) are the collection of maximal

connected (path-connected) subspaces of a topological space.

Theorem 3.19. A topological space X is locally connected if and only if for every open set U of X, each

component of U is open in X. Similarly, X is locally path-connected if and only if for every open set U of X,

each path component of U is open in X.

Proof. We only prove the first statement, since the proof of the second is parallel. Suppose X is locally

connected and U is an open set in X. If C is a component of U and x ∈ C, then we can choose some V ⊂ U

such that V is a connected neighborhood of x. By Theorem 3.18, V ⊂ C, and C is open in X.

Conversely, given x ∈ X and a neighborhood U of x (without loss of generality suppose it is open), let C

be the component of U that contains x. Then C is a connected neighborhood of x if C is open. Since C ⊂ U ,

X is locally connected at x.

Theorem 3.20. Let X be a topological space. Then every path component of X lies in a component of X.

If X is locally path-connected, then the components and the path components of X are the same.

Proof. Let C be a component of X and x ∈ C. Suppose P is the path component containing x. Since P is

connected, P ⊂ C. It remains to show P = C if X is locally path-connected.
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Assume P ( C. Denote by Q the union of all the path components of X that is different from P and

meets C. Then C = P ∪ Q. By Theorem 3.19, each path component of X is open in X. Then P and Q are

disjoint nonempty open sets whose union is C, contradicting the connectedness of C.

The following statements immediately follows from Theorem 3.20.

Corollary 3.21. If a topological space X is connected and locally path-connected, then X is path-connected.

Remark. As an end of this section, let’s see an example of connected space that is not path-connected.

Consider the following closed set in euclidean space R2:

A =

{
(x, y) ∈ R2 : y = sin

1

x
, x > 0

}
The line segment L = {(0, y) : −1 ≤ y ≤ 1} lies in A.

Consider the function f : R → R2, x 7→ (x, sin 1
x ), which is continuous. Then f((0,∞)) as the image of a

connected set (0,∞) is connected, and A = f((0,∞)) as the closure is also connected.

Let f : [0, 1] → X be a path starting at a point in L. Then f−1(L) is closed since f is continuous. If we

can show f−1(L) is open, then f−1(L) = [0, 1] because [0, 1] is connected and f−1(L) is nonempty. Hence

f([0, 1]) ∈ L, and there is no path joining a point in A to a point in B.

Fix t ∈ f−1(L), and choose an open ball U = O(f(t), ε) in R2. Then U ∩ A has infinitely many path

components including U ∩ L. Since f is continuous, f−1(U) 3 t is an open set in [0, 1]. Then there exists an

interval I ⊂ f−1(U) such that I is open in [0, 1] and I 3 t. Note that I is path-connected, then f(I), being

path-connected, lies in U ∩ L by Theorem 3.18. Therefore I ⊂ f−1(L), and t is an interior point of f−1(L).

Since t is arbitrarily chosen, f−1(L) is an open set in [0, 1], which concludes our proof.
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4 Compactness

4.1 Compact Sets

Definition 4.1 (Cover). A collection A = {Aα, α ∈ J} of subsets of a topological space X is said to be a

cover of X (or briefly, a cover), if X =
⋃
α∈J Aα. It is called an open cover of X if its elements are open sets

in X. A subcollection of a cover A whose union is equal to X is called a subcover.

Definition 4.2 (Compact sets). Let X be a topological space. X is said to be compact, if every open cover

of X has a finite subcover.

Remark. If Y is a subspace of X, a collection A = {Aα, α ∈ J} of (open) subsets of X is said to be a cover

(an open cover) of Y if the union of its elements contains Y . By definition, we can verify that a subspace Y

of X is compact if and only if every open cover of Y contains a finite subcover of Y .

Lemma 4.3. Every closed subspace of a compact space is compact.

Proof. Let X be a compact space and let K be a closed subspace of X. Then for every open cover A of K,

then B = A ∪ {X\K} forms an open cover of X. By the very definition of compactness, B contains a finite

subcover B′ of X. Since X\K does not intersect K, we can remove X\K from B′ if required, resulting in a

finite subcover A ′ ⊂ A of K.

Theorem 4.4 (Continuity and compactness). The continuous image of a compact space is compact.

Proof. Let X be a compact space and let f : X → Y be a continuous function. Let A be an open cover of

f(X) in Y . By continuity, {f−1(A) : A ∈ A } is an open cover of X, from which we can find finite many

f−1(A1), · · · , f−1(An) that cover X. Then A1, · · · , An ∈ A form a finite subcover of f(X).

Now we investigate the compactness of products of compact sets.

Lemma 4.5 (Tube lemma). Let X and Y be two topological spaces, and let Y be compact. For every x ∈ X,

if an open set O in X × Y contains {x}× Y , then there exists a neighborhood Ux of x such that Ux × Y ⊂ O.

Proof. Fix x ∈ X, and let O be an open set in X × Y containing slice {x} × Y . By the property of box

topology, we can cover {x} × Y by an collection of basis elements in form of U × V lying in O. Note that the

space {x} × Y is compact (because Y is compact, and {x} itself is open in the subspace topology), we can

cover it with finitely many basis sets U1 × V1, · · · , Un × Vn.

Let Ux =
⋂n
j=1 Uj , then Ux is an open neighborhood of x in X. Then for each (x′, y′) ∈ Ux × Y , y′ must

lie in some Vj , and x′ lies in Ux ⊂ Uj . Hence (x′, y′) ∈ O, as desired.

Theorem 4.6 (Product of compact spaces). The product of finitely many compact spaces is compact.

Proof. It suffices to show the product of two compact spaces X and Y is compact. Let A be an open cover

of X × Y . Then for each x ∈ X, the slice {x}× Y is compact, and there exist finitely many Ax1 , · · · , Axnx
∈ A

with
⋃nx

j=1A
x
nx
⊃ {x} × Y . By Lemma 4.5, there exists an open neighborhood Ux of x such that Ux × Y is

covered by finitely many elements of A . Noticing that {Ux, x ∈ X} is an open cover of compact space X,

there exists finitely many Ux × Y that covers X × Y , with each Ux × Y covered by finitely many elements of

A . Then X × Y is covered by finitely many elements of A .
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Lemma 4.7 (Projection). For two topological spaces X and Y , define π1 : X × Y → X, (x, y) 7→ x.

(i) π1 is an open map, that is, it carries open sets to open sets.

(ii) If Y is compact, then π1 is a closed map, that is, it carries closed sets to closed sets.

Proof. (i) Let O be an open set in X × Y . Then for any x ∈ π1(O), we can find some (x, y) ∈ O. By the

property of box topology, we can find a basis set U × V such that (x, y) ∈ U × V ⊂ O, where U and V are

open sets in X and Y , respectively. As a result, x ∈ U ⊂ π1(O).

(ii) Let C be a closed sets in X × Y , where Y is compact. We are about to show X\π1(C) is open.

Take x /∈ π1(C). The slice {x} × Y is disjoint from C. Since Y is compact, by Lemma 4.5, there exists a

neighborhood Ux 3 x such that Ux × Y ⊂ (X × Y )\C. Therefore Ux is a neighborhood of x which is disjoint

from π1(C), completing the proof.

Now we investigate the compact sets in euclidean spaces.

Theorem 4.8. A closed interval [a, b] is compact.

Proof. The case a = b is trivial, so we may assume a < b.

Step I: Let A be an open cover of [a, b]. We first prove that if x ∈ [a, b]\{b}, then ∃y > x of [a, b] such that

[x, y] can be covered by at finitely many elements of A . Choose A ∈ A such that A 3 x. Since x 6= b and A

is open, A contains an interval of the form [a, c) for some c ∈ [a, b]. Choose y ∈ (x, c), then [x, y] is covered by

a single element of A .

Step II: Let C be the set of all points y > a of [a, b] such that [a, y] can be covered by finitely many elements

of A . By our conclusion in Step I, C is nonempty. Let c be the least upper bound of C, then a < c ≤ b.

We show that c ∈ C. Choose B ∈ A such that B 3 c. B is open, so it contains an interval of the form (d, c]

for some d ∈ [a, b]. If c /∈ C, then there exists z ∈ C lying in (d, c), otherwise d would be an upper bound of

C smaller than c. Since z ∈ C, [a, z] is able to be covered by finitely many elements of A , so is [a, z] ∪ [z, c],

contradicting c /∈ C!

Step III: It remains to show c = b, which completes our proof. Assume c < b, then applying Step I can we

find some y > c in [a, b] such that [c, y] is covered by finitely many elements of A . So is [a, y] = [a, c] ∪ [c, y].

However this means C 3 y > c, another contradiction!

Theorem 4.9 (Heine-Borel). A subspace of an euclidean space Rn is compact if and only if it is closed and

bounded.

Proof. “If” part: Provided K is bounded in Rn, we can find a cell [−b, b]n ⊃ K, which is compact by Theorems

4.6 and 4.8. By Lemma 4.3, if K is closed, then it is compact.

“Only if” part: Suppose K is compact. The collection of centered open balls {O(0, n), n = 1, 2, · · · } is a

cover of Rn, so there exist finitely many balls that cover K. Then K must be contained in an open ball of

finite radius, and it suffices to show that K is closed.

Argue by contraction. Assume x is a limit point of K that is not contained in K. Then we can construct

an open cover
{
R\O(x, n−1), n = 1, 2, · · ·

}
of K. Since x is a limit point, any O(x, n−1) contains at least one

point in K, and we cannot find a finite subcover of K from our construction.

Theorem 4.10 (Extreme value theorem). Let X → R be a continuous function. If X is compact, then there

exists points a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.

Proof. By the continuity of f , the image f(X) is compact in R. Then it suffices to show that f(X) has a largest

element M and a smallest element m. Argue by contradiction. Suppose f(X) has no largest element. Then

{(−∞, a) : a ∈ f(X)} is an open cover of f(X) because for every x ∈ X there exists a > x in X. However,
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every finite subcollection {(−∞, aj) : j = 1, · · · , n} does not cover X because there exists b > maxj=1,··· ,n aj

in X, contradicting the compactness of f(X). Similarly we can prove that f(X) has a smallest element.

Now we introduce the concept of uniform continuity.

Definition 4.11 (Uniform continuity). Let (X, dX) and (Y, dY ) be two metric spaces. A function f : X → Y

is said to be uniformly continuous, if given any ε > 0, ∃δ > 0 such that for every x, x′ ∈ X, dX(x, x′) < δ

implies dY (f(x), f(x′)) < ε.

By definition, a uniformly continuous function must be continuous, but the converse is not true: in the defi-

nition of uniformly continuity, the choice of δ only depends on ε but not on location x. The following Theorem

4.13 tells us in what case does a continuous function become uniformly continuous. We first introduce a techni-

cal lemma. Recall that for a bounded subset B of a metric space (X, d), we denote by DB = supx,x′∈B d(x, x′)

the diameter of B.

Lemma 4.12 (Lebesgue number lemma). Let A be an open cover of a compact metric space (X, d). Then

there exists a δ > 0 such that for each subset of X having diameter less than δ, there exists an element of A

that contains it. The number δ is called a Lebesgue number for the cover A .

Proof. If X ∈ A , then any positive number is a Lebesgue number of A . So we assume X /∈ A . By compactness

of X, there exist finite many A1, · · · , An ∈ A whose union contains X, and we set Cj = X\Aj for j = 1, · · · , n.

Define f : X → R, x 7→
∑n
j=1 d(x,Cj), which is a continuous function by Lemma 2.8. By Theorem 4.10, there

exists x0 ∈ X such that f(x) ≥ f(x0) := δ for all x ∈ X. Since A1, · · · , An is an open cover of X, there exists

ε > 0 such that the open ball O(x0, ε) lies in some Aj . Then d(x0, Cj) ≥ ε, and δ = f(x) ≥ ε/n > 0.

Now we prove δ is a Lebesgue number of A . Let B be a subset of X of diameter less than δ. Choose

any b ∈ B, then O(b, δ) ⊃ B. Let m ∈ argmaxj∈{1,··· ,n}d(b, Cj), then δ ≤ f(b) ≤ d(b, Cm). Consequently,

B ⊂ O(b, δ) ⊂ X\Cm = Am, completing the proof.

Theorem 4.13 (Uniform continuity theorem). Let f : X → Y be a continuous function on a compact metric

space (X, dX) to a metric space (Y, dY ). Then f is uniformly continuous.

Proof. By the continuity of f , the image f(X) is compact in Y . Fix ε > 0, then the collection of open balls

{OY (y, ε/2) : y ∈ f(X)} covers f(X), and there exist finite many open balls OY (y1, ε/2), · · · , OY (yn, ε/2) that

cover f(X). Take δ to be a Lebesgue number of {Uj := f−1OY (yj , ε/2), j = 1, · · · , n}, which is an open cover

of X. Then for any dX(x, x′) < δ, {x, x′} as a point set of diameter less than δ must lie in some Uj , and

dY (f(x), f(x′)) ≤ dY (f(x), yj) + dY (yj , f(x′)) < ε, completing the proof.

Theorem 4.14 (Closed set criterion for compactness). Let X be a topological space. Then X is compact if

and only if for every collection C of closed sets in X having the finite intersection property, that is, for every

finite subcollection {C1, · · · , Cn} of C , their intersection
⋂n
i=1 Ci is nonempty, the intersection

⋂
C∈C C of all

elements of C is nonempty.

Proof. Given a collection A of subsets of X, let C = {X\A : A ∈ A } be the collection of their complements.

Then the following statements hold:

(i) A is a collection of open sets in X if and only if C is a collection of closed sets.

(ii) A covers X if and only if
⋂
C∈C C is empty.

(iii) A finite subcollection {A1, · · · , An} ⊂ A covers X if and only if the intersection of the finite subcollection

{Cj = X\Aj : j = 1, · · · , n} ⊂ C is empty.

Then we can derive three equivalent characterizations of compactness:
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• Given any collection A of open sets in X, if A covers X, then there exists a finite subcollection of A

that covers X.

• Given any collection A of open sets in X, if no finite subcollection of A covers X, then A does not

cover X.

• Given any collection C of closed sets in X, if every finite subcollection of C has nonempty intersection,

then
⋂
C∈C C is nonempty.

The last statement is the condition of our theorem.

The following corollary immediately follows from Theorem 4.14.

Corollary 4.15 For a nested sequence C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ · · · of nonempty closed sets in a

compact space X, the intersection
⋂∞
n=1 Cn is nonempty.

4.2 Hausdorff Spaces

Motivation. One’s experience with open and closed sets and limit points in euclidean spaces can be mis-

leading when considering general topological space. For example, in an euclidean space, every single point set

{x0} is closed because for every x 6= x0 we can find one of its neighborhood O(x, ε) not containing x0 when ε

is sufficiently small. However, this property does not hold for arbitrary topological spaces.

We can also consider the properties of convergent sequences. In a topological space X, a sequence {xn}∞n=1

of points is said to converge to a point x0 ∈ X if for every neighborhood N of x0, there exists a positive integer

N such that xn ∈ N for all n ≥ N . It is clear that x0 is a limit point of any set that contains {xn}∞n=1. In

euclidean spaces a convergent sequence never converges to more than one point.

On a three-point set {a, b, c}, consider the topology τ = {∅, {b}, {a, b}, {b, c}, {a, b, c}}. The one-point set

{b} is not closed, because its complement {a, c} is not open. Also, the sequence defined by {xn = b, n =

1, 2, · · · } converges not only to b, but also to points a and c since their neighborhoods always contain b.

In this section we consider a special class of topological spaces, which enjoys some nice properties.

Definition 4.16 (Hausdorff spaces/T2 spaces). A topological space X is called a Hausdorff space if for each

pair of distinct points x, y ∈ X, there exists a neighborhood U of x and a neighborhood V of y such that U

and V are disjoint.

Proposition 4.17 (Properties of Hausdorff spaces). Suppose X is a Hausdorff space.

(i) Every finite point set in X is closed;

(ii) A sequence of points of X converges to at most one point of X;

(iii) The product of Hausdorff spaces {Xα}α∈J is Hausdorff;

(iv) Any subspace of X is a Hausdorff space.

Proof. (i) Fix x0 ∈ X. For any x 6= x0 in X, we can find two disjoint neighborhoods U and V of x0 and x,

respectively. Since x /∈ U , x /∈ {x0}. Consequently, {x0} = {x0}.
(ii) Let (xn)∞n=1 be a sequence of points of X that converges to x ∈ X. Then for any x′ ∈ X distinct from

x, let U 3 x and V 3 x′ be their disjoint neighborhoods. Then there exists infinite many elements of {xn}n∈N
that do not lies in V .

(iii) For any pair of distinct points x = (xα)α∈J and y = (yα)α∈J in
∏
α∈J Xα, There exists β ∈ J with

xβ 6= yβ . Then there exist disjoint neighborhoods U 3 xβ and V 3 yβ in Xβ . As a result, π−1
β (U) and π−1

β (V )

are disjoint neighborhoods of x and y, respectively, in
∏
α∈J Xα.
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(iv) Let A be a subspace of X. For each pair of distinct points x1, x2 ∈ A ⊂ X, there exist distinct

neighborhoods U 3 x1 and V 3 x2 in X. Then U ∩ A and V ∩ A are disjoint neighborhoods of x1 and x2,

respectively, in the subspace topology.

Now let’s investigate the compact sets in Hausdorff spaces.

Lemma 4.18. If K is a compact subspace of a Hausdorff space X, and x0 ∈ X is not in K. Then there

exists disjoint open sets U and V in X such that U 3 x0 and V ⊃ K.

Proof. For each point y ∈ K, we are able to choose two disjoint open neighborhoods Uy 3 x0 and Vy 3 y. The

collection {Vy : y ∈ K} is an open cover of K, then there exist finitely many y1, · · · , yn ∈ K such that the

V :=
⋃n
j=1 Vyj ⊃ K. As a result, U :=

⋂n
j=1 Uyj is an open neighborhood of x that does not intersect K.

Theorem 4.19 (Compact sets in Hausdorff spaces). Every compact subspace of a Hausdorff space is closed.

Proof. Let K be a compact subspace of a Hausdorff space X. Lemma 4.18 tells us X\K is an open set, because

every x0 ∈ X\K lies in the interior of X\K. Thus we complete the proof.

One important use of Theorem 4.19 is as a tool for verifying that a function is a homeomorphism.

Theorem 4.20. Let f : X → Y be a bijective continuous function. If X is compact and Y is Hausdorff,

then f is a homeomorphism.

Proof. We show that images of closed sets of X under f are closed in Y , which implies the continuity of f−1.

This is clear: K is closed in X ⇒ K is compact ⇒ f(K) is compact ⇒ f(K) is closed in Y .

Theorem 4.21 (Closed graph). Let f : X → Y , and define the graph of f as Gf = {(x, f(x)) : x ∈ X}.
(i) If Gf is closed and Y is compact, then f is continuous.

(ii) If f is continuous and Y is Hausdorff, then Gf is closed.

Proof. (i) Let O be an open set in Y , we need to show f−1(O) is open in X. The intersection Gf ∩X× (Y \O)

is closed in X × Y . By Lemma 4.7 (ii), the compactness of Y implies that π1(Gf ∩X × (Y \O)) = f−1(Y \O)

is closed in X. Then f−1(O) is open in X.

(ii) For any (x, y) ∈ (X × Y )\Gf , we have y 6= f(x). Since Y is Hausdorff, we can find two disjoint open

sets U 3 y and V 3 f(x). Then (x, y) ∈ f−1(V ) × U . Moreover, for any point (z, f(z)) ∈ Gf , if it lies

in f−1(V ) × U , then z ∈ f−1(V ), however f(z) lies in V which is disjoint from U , a contradiction! Hence

f−1(V )× U is a neighborhood of (x, y) which is disjoint from Gf .

Now we introduce the definition of isolated points in topological spaces.

Definition 4.22 (Isolated points). Let X be a topological space. An isolated point of X is a point x of X

such that the one-point set {x} is open in X.
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Theorem 4.23. Let X be a nonempty compact Hausdorff space. If X has no isolated point, then X is

uncountable.

Proof. Step I: We first show that for any nonempty open set U in X and any x ∈ X, we can find a nonempty

open set V contained in U such that x /∈ V . By our assumption that X has no isolated points, we can always

find some y ∈ U such that y 6= x. Since X is Hausdorff, we can find two disjoint open sets Wy 3 y and Wx 3 x.

Letting V = Wy ∩ U yields the desired result.

Step II: It suffices to show that any function f : N→ X is not surjective. Let xn = f(n), n = 1, 2, · · · . For

x1 ∈ X, we can find a nonempty open set V1 such that x1 /∈ V1. Then we can iteratively find Vn+1 ⊂ Vn such

that xn+1 /∈ Vn+1 for each n ∈ N. Then we obtain a nested sequence V1 ⊃ V2 ⊃ · · · of nonempty closed sets

in X. By Corollary 4.15,
⋂∞
n=1 Vn is nonempty, that is, there exists x ∈

⋂∞
n=1 Vn ⊂ X such that x /∈ {xn}∞n=1,

which concludes the proof.

The uncountability of real numbers immediately follows from Theorem 4.23.

Corollary 4.24. Every closed interval in R is uncountable.

As supplementary, let’s discuss another class of spaces called T1 spaces. They are weaker than Hausdorff

spaces and less commonly used. The proof of Lemma 4.26 can be adapted from Proposition 4.17 (i).

Definition 4.25 (T1 spaces). A topological space X is called a T1 space if for each pair of distinct points

x, y ∈ X there exists a neighborhood U of x such that y /∈ U , and a neighborhood V of y such that x /∈ V .

Lemma 4.26. Let X be a T1 space. Then every finite point set in X is closed.

Theorem 4.27. Let X be a T1 space; let A be a subset of X. Then a point x ∈ X is a limit point of A if

and only if every neighborhood of x contains infinitely many points of A.

Proof. The sufficiency is clear, so we need to prove the necessity. We let x be a limit point of A, and choose

an arbitrary neighborhood N of x in X. If N contains only finitely many points a1, · · · , an of A\{x}, then

U := N ∩ (X\{a1, · · · , an}) is also a neighborhood of x, since {a1, · · · , an} is closed by Lemma 4.26. However,

U as a neighborhood of the limit point x should contains at least one point of A\{x}, a contradiction!

Remark. By definition, a Hausdorff space must be a T1 space. but not conversely. As a counterexample,

consider the finite complement topology on N: T = {U : U ⊂ N and N\U is finite} ∪ {∅}. This is a T1 space,

because for any distinct m,n ∈ N, we can choose neighborhoods N\{m} and N\{n} that separates m and n.

However, it is not Hausdorff because any two nonempty open sets are not disjoint!

4.3 Limit Point Compact, Countably Compact and Sequentially Compact Sets

In this section we introduce other formulations of compactness that are commonly used.

Definition 4.28 (Limit point compactness/Fréchet compactness/Bolzano-Weierstrass property). Let X be

a topological space. Then X is said to be limit point compact if every infinite subset of X has a limit point.
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Theorem 4.29 (Compactness implies limit point compactness). A compact space X is limit point compact.

Proof. Let X be a compact space. We prove the contrapositive: if a subset A of X has no limit point, then

A is finite. Suppose A has no limit point. Then A is closed because it contains all its limit points (which is

the empty set). Since X is compact, A is also compact. Furthermore, for each a ∈ A we can choose an open

neighborhood Ua of a such that Ua ∩A = {a}. Then space A is covered by open sets {Ua, a ∈ A}, and we can

find a finite subcollection {Ua1 , · · · , Uan} that contains A. Hence A = {a1, · · · , an}.

Remark. Conversely, limit point compactness does not necessarily imply compactness. Consider A =

{a1, a2} with a topology {A, ∅}. Given N the discrete topology, the space X = N × A is limit point com-

pact, because every nonempty subset of X has a limit point. To see this, suppose (a1, n) lies in a set U ⊂ X,

then (a2, n) must be a limit point of U because any neighborhood of (a2, n) contains (a1, n). However X is

not compact, since the open cover {{n} ×A,n ∈ N} has no finite subcover.

Definition 4.30 (Countable compactness). A space X is said to be countably compact if every countable

open cover of X contains a finite subcover of X.

Theorem 4.31. Let X be a topological space. (i) If X is countably compact, then it is limit point compact;

(ii) If X is a limit point compact T1 space, then it is countably compact.

Proof. (i) Let A be an infinite subset of X that has no limit point. We can assume A to be countable because

if A has no limit point, so does its countable subsets. Since A has no limit points, A is closed. Moreover, for

each a ∈ A we can find an open set Ua in X with Ua∩A = {a}. Then X\A and {Ua : a ∈ A} form a countable

open cover of X that has no finite subcover.

(ii) Argue by contradiction. Let {An}∞n=1 be an countable open cover of X. If there exists no finite

subcover, then we choose xn ∈ X\
⋃n
j=1An for each n. Since X is limit point compact, B := {xn : n ∈ N} has

a limit point x. Moreover, there exists at least one element Am that contains x, and Am ∩B ⊂ {x1, · · · , xm}.
However, Am as a neighborhood of x contains only finite points of B, contradicting with Theorem 4.27!

Definition 4.32 (Sequential compactness). A topological space X is said to be sequentially compact if every

sequence of points of X has a convergent subsequence.

Lemma 4.33 (Lebesgue number lemma for sequentially compact metric space). Let A be an open cover of

a sequentially compact metric space (X, d). Then there exists a δ > 0 such that for each subset of X having

diameter less than δ, there exists an element of A that contains it.

Proof. Argue by contradiction. Let A be an open cover of X, we assume that there exists no δ > 0 such that

each set of diameter less than δ has an element of A containing it. Then for each n ∈ N, there exists a set

Cn of diameter less than 1/n that is not contained by any element of A . Choose a point xn ∈ Cn for each n.

Since X is sequentially compact, there exists a subsequence {xnk
}k∈N that converges to some x∞ ∈ X. Since

x∞ ∈ A for some element A of A , we can choose some ε > 0 such that O(x∞, ε) ⊂ A. Then for a large enough

k such that 1/nk < ε/2 and d(xnk
, x∞) < ε/2, Cnk

⊂ O(xnk
, ε/2) ⊂ O(x∞, ε) ⊂ A, a contradiction!

Definition 4.34 (Totally bounded sets). A metric space (X, d) is said to be totally bounded, if for every

ε > 0, there exists a finite cover of X by open ε-balls.

Remark. It is clear that a compact metric space is totally bounded, since we can find a finite subcover of the

open cover {O(x, ε) : x ∈ X} of X for any ε > 0. Conversely, a totally bounded space is not always compact.

As a simple counterexample, consider the open interval (0, 1).
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Lemma 4.35. A metrizable space X is totally bounded if it is sequentially compact.

Proof. Argue by contradiction. Suppose that ∃ε > 0 such that X cannot be covered by finitely many open

ε-balls. We construct a sequence {xn} as follows. Choose any x1 ∈ X, then O(x1, ε) ( X. For any n > 1,

choose xn ∈ X\
⋃n−1
j=1 O(xj , ε). By construction, d(xn, xj) ≥ ε for j = 1, · · · , n − 1. Then {xn} does not

converge in X, contradicting the sequential compactness of X.

Now we are prepared to introduce a profound conclusion of metric spaces.

Theorem 4.36 (Equivalence of four kinds of compactness in metric spaces). Let X be a metrizable space.

The following are equivalent: (i) X is compact; (ii) X is limit point compact; (iii) X is countably compact;

(iv) X is sequentially compact.

Proof. (i) ⇒ (ii): By Theorem 4.29. (ii) ⇔ (iii): A metric space is T1. Apply Theorem 4.31.

(ii) ⇒ (iv): Assume X is limit point compact, and let {xn}∞n=1 be a sequence of points of X. Consider the

set A = {xn : n ∈ N}. If A is finite, then we can choose infinitely many xn that coincides with some x ∈ A,

which form a convergent subsequence. On the other hand, if A is infinite, then A has a limit point x ∈ X. We

can construct a convergent subsequence as follows. We first choose n1 such that xn1
lies in open ball O(x, 1).

For every k ≥ 2, we can also find Nk such that xn ∈ O(x, 1/k) for all n ≥ Nk. If xnk−1
is given, we can choose

nk ≥ max{nk−1, Nk} so that xnk
∈ O(x, 1/k). Then {xnk

}∞k=1 converges to x ∈ X.

(iv) ⇒ (i): Let A be an open cover of a sequentially compact metric space (X, d). By Lemma 4.33, A has

a Lebesgue number δ > 0. By Lemma 4.35, we can cover X by finitely many open δ/3-balls. Each of these

balls has diameter no greater than 2δ/3, hence lies in some elements of A . By choosing this elements of A

we immediately obtain a finite subcover of X.

4.4 Local Compactness and Compactification

Definition 4.37 (Locally compact spaces). A topological space X is said to be locally compact at x if there

is some compact subspace C of X that contains a neighborhood of x. If X is locally compact at each of its

points, X is said to be locally compact.

Example. (i) The euclidean space Rn is locally compact, because for any x ∈ Rn, we can always find a

compact closed cell [−b, b]n containing a neighborhood of x, where b > ‖x‖∞.

(ii) The rational numbers Q as a subspace of R is not locally compact. For any q ∈ Q, choose an open

neighborhood Nq := Q ∩ O(q, ε) of q. Since Nq is countable, denote by {q1, q2, · · · } its elements. Then

A = {O(qn, 2
−nε), n = 1, 2, · · · } is an open cover of Nq. However, any finite subcollection of A , with total

length less than 2ε, does not cover Nq.

Theorem 4.38. Let X be a topological space. Then X is locally compact Hausdorff if and only if there

exists a space Y satisfying the following conditions:

(i) X is a subspace of Y ;

(ii) Y \X consists of a single point;

(iii) Y is a compact Hausdorff space.

If Y and Y ′ are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y ′ that

equals the identity map on X.

Proof. Step I: We first verify the uniqueness. Let Y and Y ′ be two spaces satisfying (i)-(iii). Define h : Y → Y ′

by letting h map the single point p of Y \X to the point q of Y ′\X, and let h equal the identity on X. We

show that if U is open in Y , then h(U) is open in Y ′. Symmetry then implies that h is a homeomorphism.
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First, consider the case p /∈ U . Since U is open in Y and U ⊂ X, it is open in X. Noticing X = Y ′\{q}
and Y ′ is Hausdorff, X is open in T ′. Then h(U) = U is open in Y ′.

Second, let p ∈ U . Since C = Y \U is closed in Y ′ and Y ′ is compact, C is compact as a subspace of Y .

Since C ⊂ X, it is a compact subspace of X. Because X is a subspace of Y ′, C is also compact in Y ′. Since

Y ′ is Hausdorff, C is closed in Y , and Y ′\C = h(U) is open in Y ′.

Step II: Now we suppose X is a locally compact Hausdorff space X and construct Y . Let us take some

object that is not a point of X, denoted by the symbol ∞ for convenience, and adjoin it to X, forming the set

Y = X ∪ {∞}. Inspired by Step I, we topologize Y by defining the collection of open sets of Y to consist of

(i) all sets U that are open in X, and

(ii) all sets of the form Y \C, where C is a compact subspace of X.

We first check that such collection is indeed a topology on Y .

• Clearly, ∅ and Y are open sets of type (i) and (ii), respectively.

• For the intersection condition, let U1 and U2 be open sets of X, and let C1 and C2 be compact sets in X.

Then U1 ∩U2 is of type (i), (Y \C1)∩ (Y \C2) = Y \(C1 ∪C2) is of type (ii), and U ∩ (Y \C) = U ∩ (X\C)

is of type (i) because X is Hausdorff.

• For the union condition, let {Uα} be a collection of open sets of X, and let {Cβ} be a collection of

compact sets in X. Then
⋃
α Uα = U is of type (i),

⋃
β(Y \Cβ) = Y \

⋂
β Cβ = Y \C is of type (ii), and

U ∪ (Y \C) = Y \(C\U) is of type (ii) because C\U is a closed subset of compact set C.

Then we need to verify that X is a subspace of Y :

• Given any open set in Y , its intersection with X is open in X. If the open set is of type (i), it is clearly

open in X. If it is of type (ii), then (Y \C) ∩X = X\C is open in Hausdorff space X.

• Conversely, given any open set in X, it is a type (i) open set in Y .

Now we show Y is compact. Let A be an open cover of Y , Then it must contain at least one open set

of type (ii), denoted by Y \C, to contain ∞. Taking all members in A but Y \C and intersect them with

X, we obtain a cover of X. Since C is a compact subspace of X, finitely many of them cover C. Then the

corresponding finite collection of elements of A along with Y \C form a cover of Y .

It remains to show Y is Hausdorff. Let x and y be two elements of Y :

• Both x and y lies in X, which is a clear case since X is Hausdorff.

• Assume y = ∞. By the local compactness of X, we can choose a compact set C in X that contains a

neighborhood U of x, then U and Y \C are disjoint neighborhoods of x and ∞, respectively, in Y .

Step III: Finally, we prove the converse. Suppose a space Y satisfying conditions (i)–(iii) exists. Then X

is Hausdorff, because it is a subspace of Hausdorff space Y . Now fix x ∈ X. Choose disjoint open sets U 3 x
and V ⊃ {Y \X} in Y . Then C = Y \V is closed in Y , and is compact. Since C is contained in X, it is also

compact in X. Furthermore, it contains a neighborhood U of x.

Definition 4.39 (Compactification). If Y is a compact Hausdorff space, and X is a proper dense subspace

of Y , then Y is said to be a compactification of X. If Y \X equals a single point, then Y is called the one-point

compactification of X.

Remark. By Theorem 4.38, X has a one-point compactification Y if and only if X is a locally compact

Hausdorff space that is not itself compact. Moreover, it is uniquely determined up to a homeomorphism.
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Example. (i) The one-point compactification of real line R is homeomorphic to the circle S1. To see this,

we define f : R ∪ {∞} → S1 as follows:

f(t) :=


(

1−t2
1+t2 ,

2t
1+t2

)
, t ∈ R,

(−1, 0), t =∞,
, f−1(x, y) :=

 y
1+x , (x, y) 6= (−1, 0),

∞, (x, y) = (−1, 0).

By construction, f |R is a homeomorphism between R and S1\{(−1, 0)}. Furthermore, the compactification of

S1\{(−1, 0)} is its closure S1.

(ii) The one-point compactification of R2 is homeomorphic to the sphere S2. If R2 is looked at as the space

C of complex numbers, then C ∪ {∞} is called the Riemann sphere, or the extended complex plane.

Here we also give another formulation of local compactness which aligns with Definition 3.16. The two

formulations are equivalent in Hausdorff spaces.

Theorem 4.40 (Another equivalent characterization of local compactness in Hausdorff spaces). Let X be

a Hausdorff space. Then X is locally compact if and only if given any x ∈ X and any neighborhood U of x,

there exists a neighborhood V of x such that V is compact and V ⊂ U .

Proof. Clearly this characterization implies local compactness of X, and this direction does not require X to

be Hausdorff. We prove the converse.

Suppose X is locally compact and Hausdorff, then we can take the one-point compactification Y of X. For

any x ∈ X and any neighborhood U of x, let C = Y \U . Then C is compact since Y is compact Hausdorff and

U is open. Applying Lemma 4.18, we can find disjoint open sets V and W in Y such that V 3 x and W ⊃ C.

Then V is compact because it is a closed subset of a compact space Y , and V ⊂ U because V is disjoint from

a open set W containing C.

Corollary 4.41. (i) A closed subspace of a locally compact space is locally compact; (ii) An open subspace

of a locally compact Hausdorff space is locally compact.

Proof. (i) Suppose that A is a closed subspace of a locally compact space X. For any x ∈ A, let X be a

compact subspace of X that contains a neighborhood U of x. Then C ∩A as a closed subset of C is compact.

Furthermore, it contains the neighborhood U ∩A of x in A.

(ii) Now suppose that A is an open subspace of a locally compact Hausdorff space X. Then for any x ∈ A
and any neighborhood U of x in A, U is also a neighborhood of x in X. Hence we find can a neighborhood V

of x in X such that V is compact and V ⊂ U .

Combining Theorem 4.38 and Corollary 4.41 immediately yields the following result.

Corollary 4.42. A subspace of X is homeomorphic to an open subspace of a compact Hausdorff subspace

if and only if X is locally compact Hausdorff.

Proof. “If” part: If Y is an open subspace of a locally compact Hausdorff space X, then Y is locally compact

by Corollary 4.41.

“Only if” part: If Y is locally compact, then Y is a subspace of its one-point compactification X, which is

compact and Hausdorff by Theorem 4.38.
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5 Countability and Trennungsaxiom

5.1 First Countability, Second Countability, Separability and Lindelöf Spaces

Definition 5.1 (First countable spaces). Let X be a topological spaces. Given a point x ∈ X, the space

X is said to be first countable at x, if there exists a countable collection B of neighborhoods of x such that

each neighborhood of x contains at least one of the elements of B. In other words, there exists a countable

neighborhood basis for T at x.

By definition, a metrizable space is always first-countable: for any x of a metrizable space X, the collection

B = {O(x, 1/n), n ∈ N} of open balls satisfies Definition 5.1. But the converse is not true.

We give a generalization of Theorem 2.17 as below. It states that in a first-countable space, convergent

sequences are adequate to detect limit points of sets and to check continuity of functions.

Theorem 5.2. Let X be a first countable space.

(i) Let A ⊂ X. If x ∈ A, then we can find a sequence {xn} of points of A that converges to x.

(ii) Let f : X → Y . If for every convergent sequence xn → x in X, the sequence f(xn) converges to f(x),

then f is continuous.

Proof. (i) Fix x ∈ A. Then there exists a countable neighborhood basis B = {Bn, n ∈ N} at x, and each

neighborhood of x contains at least one of the elements of B. Choose xn ∈ A ∩
(⋂n

j=1Bn
)
. Then for any

neighborhood U of x, it contains some BN ∈ B. Hence xn ∈ U for all n ≥ N .

(ii) By (i), f(A) ⊂ f(A) for all A ⊂ X. Then f is continuous.

Recalling Definition 1.19, a topological space is said to be second countable if it has a countable basis. A

second countable space must be first countable, because we can always find a countable collection of neigh-

borhoods that satisfying Definition 5.1 by choosing the base sets containing x.

Conversely, a first-countable space is not always second-countable. As a simplest example, consider the

metric space R (or any uncountable set) with metric d(x, y) := 1{x 6=y}. Then (X, d) is first-countable, because

for any x ∈ R, {x} is a neighborhood of x, and any countable collection of neighborhoods of x containing {x}
satisfies Definition 5.1. However, a basis for this topology must contains all singletons, hence is uncountable.

Theorem 5.3. A subspace of a first-countable (second-countable) space is first-countable (second-countable).

A finite product of first-countable (second-countable) spaces is first countable (second-countable).

Proof. Suppose X is first-countable, and Y is a subspace of X. Fix y ∈ Y . If B is a collection of neighborhoods

of y in X such that each neighborhood of y in X contains at least one element of B, then the same condition

holds for {B ∩ Y : B ∈ B} in Y .

Suppose {Xj , j = 1, · · · , n} are first-countable spaces. Then for each x = (x1, · · · , xn) ∈
∏n
j=1Xj , there

exists a countable collection Bj of neighborhoods of xj that satisfies Definition 5.1 for each j = 1, · · · , n.

Consequently, any neighborhood of x in
∏∞
n=1Xn contains at least one element of the countable collection
n∏
j=1

Bj : Bj ∈ Bj , ∀j ∈ N

 .

The statement for second countability is similar.

Recall Definition 1.20, a topological space is said to be separable if it has a dense subset. We also show in

Theorem 1.21 that a second-countable space must be separable. The following theorem reveals the relationship

among compactness, separability and second countability.
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Theorem 5.4. (i) A compact metrizable space is separable. (ii) A separable metrizable space is second-

countable.

Proof. (i) Let X be a compact metric space. Let B1 be a finite cover of 1-balls of X. Similarly, let Bn be

a finite cover of 1/n-balls of X, n = 2, 3, · · · . Let A be the centers of these balls, then A being the union of

countable finite sets is countable. Clearly, A is dense in X.

(ii) Let X be a separable metrizable space. Then there exists a dense subset A = {xn, n ∈ N} of X. Let

B = {O(x, k−1) : x ∈ A, k ∈ N} be a collection of open balls in X. We show that B is a basis for X.

Let U be a nonempty open set in X. For each y ∈ U , we can find some ε > 0 such that O(y, ε) ⊂ U .

Since A is dense in X, there exists x ∈ A and 2/ε < k ∈ N such that y ∈ O(x, k−1) ⊂ O(y, ε) by the triangle

inequality. Denote by By the open ball in B with y ∈ By ⊂ U . Then U =
⋃
y∈U By.

Now we introduce another countability axiom.

Definition 5.5 (Lindelöf spaces). Let X be a topological space. X is said to be a Lindelöf space, if every

open cover of X contains a countable subcover of X.

Theorem 5.6. (i) A second-countable space is Lindelöf; (ii) A metrizable Lindelöf space is second-countable.

Proof. (i) Suppose X is a second-countable space with countable basis B = {Bn, n ∈ N}. Let A be an open

cover of X. Then each element of A contains some element of B. Furthermore, for any x ∈ X, it is contained

in some A ∈ A , hence is contained in some Bn ∈ B such that x ∈ Bn ⊂ A.

Let B′ = {Bn ∈ B : ∃A ∈ A such that Bn ⊂ A}. For each B ∈ B′, we choose one A ∈ A with A ⊃ B.

Then we obtain a finite subcover of X from A .

(ii) Let X be a Lindelöf metric space. Let B1 be a countable cover of 1-balls of X. Similarly, let Bn be a

countable cover of 1/n-balls of X, n = 2, 3, · · · . We show that B =
⋃∞
n=1 Bn is a countable basis for X.

Let U be a nonempty open set in X. For each y ∈ U , ∃ε > 0 such that O(y, ε) ⊂ U . Let n > 2/ε, then we

can choose some By := O(x, n−1) ∈ Bn such that y ∈ O(x, n−1) ⊂ O(y, ε). Then U =
⋃
y∈U By.

Remark. Combining Theorem 5.4 and Theorem 5.6, it is clear that the second countability axiom, the

separability axiom, and the Lindelöf axiom are equivalent for metrizable spaces.

Theorem 5.7. Let f : X → Y be continuous. (i) If X is first-countable, so is f(X); (ii) If X is second-

countable, so is f(X); (iii) If X is separable, so is f(X); (iv) If X is Lindelöf, so is f(X).

Proof. (i) Fix x ∈ X. Let B be a countable collection of neighborhoods of x such that any neighborhood of

x contains a member of B. Then for any neighborhood V of f(x) in f(X), f−1(V ), being a neighborhood of

x in X, must contain some B ∈ B. Hence V ⊃ f(B).

(ii) Similar to (i), we can verify that if B is a basis for X, then {f(B) : B ∈ B} is a basis for f(X).

(iii) Let A be a countable dense subset of X, then f(X) = f(A) ⊂ f(A).

(iv) Let A be an open cover of f(X). By continuity {f−1(A) : A ∈ A } is an open cover of X, from which

we can choose countably many {f−1(An)} that cover X. Then {An} covers f(X).

Example: Lower limit topology R`. Let B = {[a, b) : a < b} be the collection of all half-open intervals

on R of the form [a, b). Then the topology generated by B is called the lower limit topology on R, and we

denote this topological space by R`. The space R` is first-countable, separable and Lindelöf. However, it is

not second-countable.

We first show that R` is not second countable. Let B′ be a basis for R`. ∀x ∈ R, ∃Bx ∈ B′ such that

x ∈ Bx ⊂ [x, x+ 1). Then x 6= y implies Bx 6= By since x = inf Bx 6= inf By = y. Hence B′ is uncountable.
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Given x ∈ R`, the set {[x, x + 1/n), n ∈ N} is a countable basis at x, which implies first-countability.

Following this, every neighborhood of x includes a rational number, hence x ∈ QR` . Since x is arbitrarily

chosen, the set of all rational numbers Q is dense in R`, which implies separability.

Now it remains to show that R` is Lindelöf. Since every open cover of R` can be rewritten as a union of

basis elements, we show that every open cover of R` by basis elements contains a countable subcover of R`.
Let A = {[aα, bα)}α∈J be such a cover, we wish to find a countable subcover of A .

Step I: Let C =
⋃
α∈J(aα, bα), we show that R`\C is countable. Let x ∈ R`\C. Then x lies in no open

interval (aα, bα), and there exists β ∈ J such that x = aβ . We choose a rational qx such that qx ∈ (aβ , bβ).

Similarly, we can choose such qy for y ∈ R`\C with y > x. If qy ≤ qx, then y ∈ (x, qy) ⊂ (x, qx) ⊂ (aβ , bβ),

contradicting y /∈ C! Therefore qx < qy, and the map x 7→ qx,R`\C → Q is injective.

Step II: We show that some countable subcollection of A covers R`. By Step I, we find a countable

subcollection A ′ = {[aβ , bβ) : β ∈ J and aβ ∈ R`\C} that covers R`\C. To cover C, note that C is an

open set in the standard topology on R, which is second-countable by Theorem 5.4 (ii). Since C is covered by

{(aα, bα)}α∈J , there exists a countable subcollection {(aαn
, bαn

)}n∈N that covers C. Let A ′′ = {[aαn
, bαn

)}n∈N,

then A ′ ∪A ′′ is a countable subcollection of A that covers R`.

Example: Sorgenfrey plane R2
` . The Sorgenfrey plane, as the product of two R` space, has as basis all

sets of the form [a, b)× [c, d). We claim that R2
` is not Lindelöf.

Consider the subspace L = {(x,−x) : x ∈ R`} of R2
` . For any (y, z) /∈ L, we can find a basis element

containing (y, z) and not intersecting L. Hence L is closed in R2
` .

Then we construct an open cover of R2
` by R2

`\L and by all basis elements of the form [x, b) × [−x, d).

Clearly, L is uncountable, and each of these open sets intersects L in at most one point. Therefore we require

uncountably many open sets to cover L. As a result, R2
` is not Lindelöf.

5.2 Regular Spaces and Normal Spaces

Definition 5.8 (Regular spaces/T3 spaces). Let X be a topological space where one-point sets are closed.

Then X is said to be regular if for each pair consisting of a point x of X and a closed set B disjoint from x,

there exist disjoint open sets containing x and B, respectively.

Definition 5.9 (Normal spaces/T4 spaces). Let X be a topological space where one-point sets are closed.

Then X is said to be normal if for each pair of disjoint closed sets A and B, there exist disjoint open sets

containing A and B, respectively.

Example. The left limit topology R` is normal. It is clear that one-point sets in R` are closed. Let A and B

be two disjoint closed sets in R`. For each point a of A, we can choose a basis element [a, xa) not intersecting

B since B is closed. Similarly, we choose a basis element [b, xb) not intersecting A for each b ∈ B. Then

U =
⋃
a∈A

[a, xa) and V =
⋃
b∈B

[b, xb)

are two disjoint open sets containing A and B, respectively. Hence R` is normal.

Lemma 5.10. Let X be a topological space where one-point sets are closed.

(i) X is regular if and only if given any point x of X and any neighborhood U of x, there exists an open

neighborhood V of x such that V ⊂ U .

(ii) X is normal if and only if given any closed set A in X and any open set U ⊃ A, there is an open set V

containing A such that V ⊂ U .
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Proof. (i) For the “if” part, let x be a point of X and B be a closed set disjoint from x. Then X\B is a

neighborhood of x, and we can find a neighborhood V of x in X such that V ⊂ X\B. Let O ⊂ U be an open

set containing x. Then O and X\V are disjoint open sets that contain x and B, respectively.

Conversely, suppose X is regular. For any x ∈ X and any neighborhood U of x, let O ⊂ U be an open set

containing x. Then X\O and x can be separated with two open sets F ⊃ X\O and G 3 x. For any y /∈ O, we

have y ∈ F . Since F is open and disjoint from G, y /∈ G. Hence G ⊂ O ⊂ U , the proof is completed.

(ii) is similar to (i) by replace x with A.

We also have the following properties of regular spaces alike Proposition 4.17.

Lemma 5.11. (i) A product of regular spaces is regular; (ii) A subspace of regular space is regular.

Proof. (i) Let {Xα}α∈J be a collection of regular spaces, and let X =
∏
α∈J Xα be the product. By Proposition

4.17 (iii), X is Hausdorff, then one-point sets in X are closed. Let x = (xα)α∈J be a point of X and U be a

neighborhood of x in X. Choose a basis element
∏
α∈J Uα ⊂ U containing x. By Lemma 5.11, there exists a

neighborhood Vα of xα in Xα such that V α ⊂ Uα for every α ∈ J . Moreover, V =
∏
Vα is a neighborhood of

x in X whose closure is contained in U . Applying Lemma 5.11 again concludes the proof.

(ii) Let Y be a subspace of a regular space X. Let x be a point of Y and B be a closed set in Y disjoint

from x. Let BX be the closure of B in X, then B = BX ∩ Y by Proposition 1.26 (i). Moreover, x /∈ BX . The

regularity of X allows us to find disjoint open sets U 3 x and V ⊃ BX in X, and the conclusion follows from

taking their intersection with Y .

Remark. There is no analogous conclusion for normal spaces. As a counterexample, the left limit topology

on real line R` is normal, but the Sorgenfrey plane R2
` is not normal.

Now we are going to discuss some common conclusions about normal spaces.

Theorem 5.12. A second-countable regular space is normal.

Proof. Let X be a second-countable regular space with a countable basis B. Let A and B be two disjoint

closed sets in X. Using the regularity, each a ∈ A has a neighborhood U not intersecting B, and we can choose

a neighborhood V of a whose closure lies in U by Lemma 5.10. Furthermore, we can choose a basis element

from B containing a and contained by V . By choosing such a basis element for each a ∈ A, we obtain a

countable open cover of A whose closure does not intersect B. We denote by {Un} the elements of this cover.

Similarly, we can construct a countable open cover {Vn} of B whose closure does not intersect A. Define

U ′n = Un\

(
n⋃
i=1

V i

)
, V ′n = Vn\

(
n⋃
i=1

U i

)
, n = 1, 2, · · · .

Then U ′ =
⋃
n U
′
n is still an open cover of A, since

⋃
n V n does not intersect A. Also, V ′ =

⋃
n V
′
n is an open

cover of B. Moreover, U ′ and V ′ are disjoint, for if there exists x ∈ U ′ ∩ V ′, then there exists i and j such

that x ∈ U ′i ∩ V ′j ⊂ Ui ∩ Vj . If j ≥ i, then x ∈ V ′j and x /∈ U i, a contradiction! A similar contradiction occurs

when i ≥ j. Then we conclude the proof.

Theorem 5.13. A compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space, and let A and B be two disjoint closed sets in X.

We first prove the regularity of X. Fix a ∈ A, then we can find disjoint open sets Ub 3 a and Vb 3 b for

every b ∈ B. Since B is closed in X, B is compact, and there exist finitely many Vb1 , · · · , Vbn that cover B.

As a result,
⋂n
i=1 Ubi and

⋃n
i=1 Vbi are disjoint open sets that contains a and B, respectively.
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Now we prove the normality. Using the above conclusion, we can find disjoint open sets Ua 3 a and Va ⊃ B
for every a ∈ A. Since A is closed in X, we can find finitely many a1, · · · , am such that U :=

⋃m
i=1 Uai ⊃ A.

Meanwhile, V :=
⋂m
i=1 Vai ⊃ B is disjoint from U , which concludes the proof.

Theorem 5.14. A metrizable space is normal.

Proof. Let (X, d) be a metric space. Let A and B be two disjoint closed sets in X. For each a ∈ A, a /∈ B = B,

hence we can find na such that the open ball O(a, 1/na) does not intersect B. Similarly, we can find nb for

each b ∈ B such that O(b, 1/nb) does not intersect A. Define

U =
⋃
a∈A

O

(
a,

1

3na

)
, V =

⋃
b∈B

O

(
b,

1

3nb

)
.

Then U and V are open sets containing A and B, respectively. It suffices to show U and V are disjoint.

Suppose there exists x ∈ U ∩ V . Then there exists a ∈ A and b ∈ B such that x ∈ O(a, n−1
a /3) ∩O(b, n−1

b /3),

which implies d(a, b) ≤ d(x, a) + d(x, b) < 1
3 (n−1

a + n−1
b ). However, by construction of na and nb, we have

d(a, b) ≥ max{n−1
a , n−1

b }, a contradiction!

Review. The separation axioms are listed in order of increasing strength.

• T1: For every pair of distinct points, each has a neighborhood not containing the other point.

• T2 (Hausdorff): For every pair of distinct points, there exists disjoint neighborhoods of each.

• T3 (Regular): One-point sets are closed; For each closed set and a point not contained in the closed set,

there exists disjoint open sets containing each.

• T4 (Normal): One-point sets are closed; For each pair of disjoint closed sets, there exists disjoint open

sets containing each.

The letter “T” comes from the German “Trennungsaxiom”, which means “separation axiom”.

5.3 Urysohn Lemma and Tietze Extension Theorem

In normal spaces, we have similar conclusions as we have discussed in Section 2.2. We first introduce the

Urysohn lemma, which is a generalization of Lemma 2.11.

Theorem 5.15 (Urysohn lemma). Let X be a normal space. Let A and B be disjoint closed sets in X.

Then there exists a continuous map f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.

Proof. Step I: Let [Q]10 = Q ∩ [0, 1]. We shall construct a collection {Uq}q∈[Q]10
of open sets in X indexed by

the rational numbers in [0, 1], such that whenever p < q, we have Up ⊂ Uq. Since [Q]10 is countable, we can

follow a sequence of elements in [Q]10 and define the sets Uq by induction. Let the first two elements of the

sequence be 1 and 0, and denote by Qn the first n numbers in the sequence.

Let U1 = X\B, then U1 ⊃ A. Since A is closed in X and X is normal, we can find an open set U0 such

that A ⊂ U0 ⊂ U0 ⊂ U1 by Lemma 5.10. Then the first two sets are defined, and we wish to define Uq for

general q ∈ [Q]10 by induction. Suppose Uq is defined for all q ∈ Qn−1, where n ≥ 3, and let r be the next

number in the sequence, i.e. Qn = Qn−1 ∪ {r}.
Clearly, 0 < r < 1. Since Qn−1 is finite, we can always find the predecessor p = max{x ∈ Qn−1 : x < r}

and successor q = min{x ∈ Qn−1 : x > r} of r in Qn. By the induction assumption, we have Up ⊂ Uq. Using

Lemma 5.10 again, we choose an open set Ur such that Up ⊂ Ur ⊂ Ur ⊂ Uq. Since p is the predecessor of r in

Qn and q is the successor, the inclusion order p < q ⇒ Up ⊂ Uq is guaranteed for all p, q ∈ Qn. By induction,

Uq is defined for all q ∈ [Q]10.
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Step II: Following Step I, we extend the definition of Uq to all q ∈ Q by setting Uq = ∅ for q < 0 and

Uq = X for q > 1. The condition p < q ⇒ Up ⊂ Uq still holds for any pair p, q ∈ Q.

Step III: For any point x of X, define Qx = {q ∈ Q : x ∈ Uq}, which is the set of all rational indices whose

corresponding open sets contain x. By definition, Qx contains no rational numbers less than 0 and all rational

numbers greater than 1. Since Qx is bounded below, we define

f(x) = inf Qx = inf{q ∈ Q : x ∈ Uq}, x ∈ X.

Then f is bounded by [0, 1]. For any x ∈ A, x ∈ U0, and Qx = Q ∩ [0,∞). For any x ∈ B, x /∈ U1, and

Qx = Q ∩ [1,∞). Hence f(A) = {0}, and f(B) = {1}.

Step IV: It remains to show that f : X → [0, 1] is continuous: given a point x0 of X and an open interval

(a, b) that contains f(x0), we show that there exists a neighborhood U of x0 such that f(U) ⊂ (a, b).

Let p and q be two rational numbers with a < p < f(x0) < q < b. Since f(x0) < q, we have q ∈ Qx0 , which

implies x0 ∈ Uq. Moreover, we can find some p′ ∈ Q such that p < p′ < f(x0), which implies p′ /∈ Qx0
, and

x0 /∈ Up′ ⊃ Up. Hence x0 ∈ Uq\Up.
Now we prove that U = Uq\Up is the desired neighborhood of x0. Fix x ∈ U . Since x ∈ Uq, q ∈ Qx, and

f(x) ≤ q < b. Moreover, x /∈ Up implies p /∈ Qx, and f(x) ≥ p. Hence f(x) ∈ [p, q] ⊂ (a, b), as desired.

The following Tietze extension theorem is a generalization of Theorem 2.12. It is an immediate corollary

of the Urysohn lemma.

Theorem 5.16 (Tietze extension theorem). Let X be a normal space, and let A be a closed subspace of X.

(i) Any continuous map of A into the closed interval [a, b] of R can be extended to a continuous map of all

of X into [a, b] (with the same bound).

(ii) Any continuous map of A into R may be extended to a continuous map of all of X into R.

Proof. Step I: Let A be a closed subset in a metric space X, and f : A → R a continuous function. We

first consider a bounded function f : A → R, with supx∈A |f(x)| ≤ M < ∞. We claim that there exists a

continuous function g : X → R such that

sup
x∈X
|g(x)| ≤ 1

3
M, sup

x∈A
|f(x)− g(x)| ≤ 2

3
M.

Let U = {x ∈ A : f(x) ≥ M/3} and L = {x ∈ A : f(x) ≤ −M/3}. By Lemma 1.25, U and L are disjoint

closed subsets of A in X. Using the Urysohn lemma (Theorem 5.16), we can find a continuous function

g : X → [−M/3,M/3] such that g(U) = {M/3} and g(L) = {−M/3}. Clearly, g is the desired function.

Step II. Now we prove the part (i). Without loss of generality, let f : A→ [−1, 1]. By step (i), there exists

a continuous function g1 such that

sup
x∈X
|g1(x)| ≤ 1

3
, sup

x∈A
|f(x)− g1(x)| ≤ 2

3
.

Now consider function f − g1. Applying Step I again, we can find a continuous function g2 : X → R such that

sup
x∈X
|g2(x)| ≤ 2

9
, sup

x∈A
|f(x)− g1(x)− g2(x)| ≤ 4

9
.
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Repeat this procedure, we obtain a sequence of functions gn : X → R such that

sup
x∈X
|gn(x)| ≤ 1

3

(
2

3

)n−1

, sup
x∈A
|f(x)− g1(x)− · · · − gn(x)| ≤

(
2

3

)n
.

By Weierstrass M-test (Theorem 2.20), the series
∑∞
n=1 gn converges uniformly on X, and we denote it by g.

For any x ∈ A, we have ∣∣∣∣∣f(x)−
n∑
k=1

gk(x)

∣∣∣∣∣ ≤
(

2

3

)n
→ 0 as n→∞.

Then g and f agree on A, and g is uniformly bounded by
∑∞
n=1 2n−1/3n = 1. Furthermore, g is continuous

by Theorem 2.19. Hence g extends f to the whole space X.

Step III: Now we prove the case for general continuous f , which is the part (ii). Choose a homeomorphism

h : R → (−1, 1) and consider the composition h ◦ f , which is bounded. Then we extend it to a continuous

R-valued function g : X → [−1, 1] as in Step II.

We need to deal with the endpoints. Let E = g−1({−1, 1}), which is closed by continuity of g. Since g and

h◦f agrees on A, g(A) ⊂ (−1, 1). Then A and E are disjoint closed sets, and we can find a continuous function

φ : X → [0, 1] such that φ(E) = {0} and φ(A) = {1} by the Urysohn lemma. Then we have g(x)φ(x) ∈ (−1, 1)

for all x ∈ X, and g(a)φ(a) = g(a) for all a ∈ A. Now h−1 ◦ (g · φ) is well-defined and continuous, and by

construction it extends f over X. Thus we complete the proof.
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6 Product Spaces

6.1 The Product Topology

In Definition 3.9, we have introduced the concepts of set product and the box topology. However, the box

topology does not behave well in some cases. For example, in the box topology, an infinite product of compact

spaces is not necessarily compact. In this section, we are going to introduce another topology on products of

topological spaces, which enjoys some good properties.

Definition 6.1 (Product topology). Let X =
∏
α∈J Xα be the product of topological spaces {Xα, α ∈ J}.

Let Sβ denote the collection

Sβ = {π−1
β (Uβ) : Uβ is open in Xβ},

and let S =
⋃
β∈J Sβ be the union of these collections. Then the topology generated by the subbasis S is

called the product topology. In this topology X =
∏
α∈J Xα is called a product space.

Remark. Let’s consider the basis B that S generates. By Theorem 1.18, B consists of all finite intersections

of elements of S . Since a finite intersection of open sets are still open, we do not produce anything new if we

intersect the elements from the same collection Sβ . Hence we intersect elements from different collections Sβ :

Let β1, · · · , βn be a finite set of distinct indices from J , and let Uβi
be an open set in Xβi

for i = 1, · · · , n.

Then we generate a typical element of B as

B =

n⋃
i=1

π−1
βi

(Uβi
)

If a point x = (xα) belongs to B, then xβi
∈ Uβi

for i = 1, · · · , n, and there is no restriction for xα if α /∈
{β1, · · · , βn}. Therefore, we can write B as the product B =

∏
α∈J Uα, where Uα = Xα for α /∈ {β1, · · · , βn}.

Comparison of the box and product topologies. The box topology on
∏
α∈J Xα has as basis all sets of

the form
∏
α∈J Uα, where Uα is open in Xα for each α ∈ J . The product topology on

∏
α∈J Xα has as basis

all sets of the form
∏
α∈J Uα, where Uα is open in Xα for each α ∈ J , and Uα 6= Xα for only finitely many

values of α ∈ J . Clearly, two topologies are equivalent when the index set J is finite.

As a result, we can generate the bases for the two topologies from the bases {Bα} of topological spaces

{Xα, α ∈ J} as follows. The collection of all sets of the form
∏
α∈J Bα, where Bα ∈ Bα for all α ∈ J , serves as

a basis for the box topology on
∏
α∈J Xα. The collection of all sets of the form

∏
α∈J Bα, where Bα ∈ Bα for

finitely many indices α and Bα = Xα for all the remaining indices, serves as a basis for the product topology

on
∏
α∈J Xα.

Lemma 6.2 (Subspace topology of product spaces). Let Yα ⊂ Xα for each α ∈ J . Then
∏
α∈J Yα is a

subspace of
∏
α∈J Xα if both products are given the product topology, or if both are given the box topology.

Proof. Check that if B is a basis for
∏
α∈J Xα, then {B ∩ Y,B ∈ B} is a basis for Y =

∏
α∈J Yα.

Lemma 6.3. Let Aα ⊂ Xα for each α ∈ J . If
∏
α∈J Xα is given either the box topology or the product

topology, then ∏
α∈J

Aα =
∏
α∈J

Aα.
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Proof. Let x = (xα) be a point of
∏
α∈J Aα. Let U =

∏
α∈J Uα be a basis element for either the box

or product topology that contains x. Since xα ∈ Aα, there exists yα ∈ Uα ∩ Aα for each α ∈ J . Then

y = (yα) ∈ U ∩
∏
α∈J Aα. Since U is arbitrary, x ∈

∏
α∈J Aα.

Conversely, let x = (xα) ∈
∏
α∈J Aα in either topology. Fix β ∈ J . Let Vβ be an arbitrary open set in Xβ

that contains xβ . Then π−1
β (Vβ) is a neighborhood of x in

∏
α∈J Xα, and it intersects

∏
α∈J Aα. Hence Vβ

intersects Aβ , and xβ ∈ Aβ .

Remark. In Proposition 4.17 (iii) and Lemma 5.11 (i), we use the term “product” and do not distinguish box

topology and product topology. In fact, our proofs hold for both. Therefore, a product of Hausdorff/regular

spaces is still Hausdorff/regular, under both box and product topologies.

Now we introduce two important conclusions of product topologies.

Lemma 6.4. Let X =
∏
α∈J Xα be a product space. Let (xn) be a sequence of points of X. Then xn → x

if and only if πα(xn)→ πα(x) for all α ∈ J .

Proof. Consider the projection mapping πα :
∏
α∈J Xα → Xα. If Uα is open in Xα, then π−1(Uα) is also open.

Since the projection mapping πα : X → Xα is continuous, it preserves convergent sequences.

Conversely, if πα(xn)→ πα(x) for every α ∈ J , we choose a basis element U =
∏
α∈J Uα that contains x.

For every α ∈ J with Uα 6= Xα, choose Nα such that πα(xn) ∈ Uα for all n ≥ Nα. Since {Nα} is finite, let

N = max{Nα : α ∈ J, Uα 6= Xα}. Then for all n ≥ N , xn ∈ U . Since U is arbitrary, xn → x.

Remark. Lemma 6.4 states that the coordinate convergence implies the convergence under the product

topology. However, there is no similar conclusion for box topologies when J is infinite, since {Nα} can be

unbounded and we are not able to find an appropriate N .

Theorem 6.5. Let f : X →
∏
α∈J Yα be given by the equation

f(x) =
(
fα(x)

)
α∈J ,

where fα : X → Yα for each α ∈ J . Give
∏
α∈J Yα the product topology. Then f is continuous if and only if

each function fα is continuous.

Proof. Suppose f is continuous. For any α ∈ J , since πα is continuous, fα = πα ◦ f is also continuous.

Conversely, suppose fα is continuous for all α ∈ J . By Theorem 2.5 (ii), it suffices to show that the inverse

image of each element of the subbasis S is open in X:

f−1(π−1
β (Uβ)) = f−1

β (Uβ).

Since fβ is continuous, the inverse image is open in X. Then we conclude the proof.

6.2 The Tychonoff Theorem

In Theorem 4.6, we have shown that the product of finitely many compact spaces is compact. Naturally, we

wonder if a similar conclusion holds for the product of infinitely many compact spaces. The Tychonoff theorem

gives a positive answer, under the product topology.

Recall the definition of the finite intersection property, which is given in Theorem 4.14: A collection C of

sets is said to have the finite intersection property, if for every finite subcollection {C1, · · · , Cn} of C , their

intersection
⋂n
i=1 Cn is nonempty.
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Lemma 6.6 (Maximal element having the finite intersection property). Let X be a nonempty set. Let A

be a collection of subsets of X having the finite intersection property. Then there is a collection D of subsets

of X such that D ⊃ A , and D has the finite intersection property, and no collection of subsets of X that

properly contains D has this property.

Proof. We construct D by Zorn’s lemma: Suppose a partially ordered set P has the property that every simply

ordered subset of P has an upper bound in P , then P has at least one maximal element.

We use C to denote a subset of X, use C to denote a collection of subsets of X, and use C to denote a

superset whose elements are collections of subsets of X. We shall apply Zorn’s lemma on such a superset.

By assumption, we have a collection A of subsets of X that has the finite intersection property. Let A be

the superset consists of all collections B of subsets of X such that B ⊃ A and B has the finite intersection

property. We use proper inclusion ( as our strict partial order on A. To prove the conclusion, we need to

show that A has a maximal element D .

We show that if B is a “subsuperset” of A that is simply ordered by proper inclusion, then B has an upper

bound in A. Then the conclusion follows from Zorn’s Lemma. In fact, the collection C =
⋃

B∈B B is the

desired upper bound. To show this, it suffices to show that C ∈ A.

Clearly, C ⊃ A . To show the finite intersection property, choose finitely many C1, · · · , Cn ∈ C . Since C

is a union of elements of B, we can find some Bi ∈ B containing Ci for each i ∈ [n]. Then we obtain a finite

superset {Bi}i∈[n], which is contained in a simply ordered set B and has a maximal element Bk such that

Bk ⊃ Bi for each i. Hence C1, · · · , Cn ∈ Bk, and their intersection is nonempty, as desired.

Lemma 6.7. Let X be a nonempty set, and let D be a collection of subsets of X that is maximal with

respect to the finite intersection property. Then: (i) Every finite intersection of elements of D is an element

of D ; (ii) If A is a subset of X that intersects every element of D , then A is an element of D .

Proof. (i) Let B be an intersection of finitely many elements of D , and define E = D ∪ {B}. If we can show

that E has the finite intersection property, then E = D by maximality of D , which implies B ∈ D .

Take E1, · · · , En ∈ E . The case B /∈ {E1, · · · , En} is clear. Without loss of generality, assume E1 = B.

Then B ∩ E2 ∩ · · · ∩ En is also an intersection of finite many elements of D , hence is nonempty.

(ii) Let F = D ∪ {A}, it suffices to show F has the finite intersection property. Take D1, · · · , Dn ∈ D .

Since
⋂n
i=1Di is nonempty, and A intersects every element of D ,

(⋂n
i=1Di

)
∩A is nonempty.

Theorem 6.8 (Tychonoff theorem). The product of any collection of compact topological spaces is compact

in the product topology.

Proof. Let {Xα}α∈J be a collection of compact topological spaces, and define X =
∏
α∈J Xα. Let A be a

collection of subsets of X having the finite intersection property. Following Theorem 4.14, it suffices to show

that the intersection
⋂
A∈A A is nonempty.

By Lemma 6.6, we choose a collection D of subsets of X such that D ⊃ A and D is maximal with respect

to the finite intersection property. We show that the intersection
⋂
D∈D D is nonempty.

For each α ∈ J , the collection {πα(D) : D ∈ D} of subsets of Xα also has the finite intersection property

as D does. By compactness of Xα, there exists xα ∈
⋂
D∈D πα(D). Therefore, we are able to find a point

x = (xα)α∈J of X. We shall show that x ∈ D for every D ∈ D , which concludes the proof.

Fix β ∈ J , and let π−1
β (Uβ) be a subbasis element containing x. By definition, xβ ∈ πβ(D) for all D ∈ D .

Then Uβ , being a neighborhood of xβ in Xβ , intersects every πβ(D). By Lemma 6.7 (ii), π−1
β (Uβ) ∈ D , and

by Lemma 6.7 (i), every basis element of the product topology that contains x belongs to D . Since D has the

finite intersection property, every basis element containing x intersects every element of D . Hence x ∈ D for

every D ∈ D as desired.

37



7 Metric Spaces and Function Spaces

7.1 Completeness and Compactness

Definition 7.1 (Cauchy sequence and completeness). Let (X, d) be a metric space. A sequence (xn) of

points of X is said to be a Cauchy sequence, if ∀ε > 0, ∃N ∈ N such that n,m ≥ N implies d(xn, xm) < ε.

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges with respect to d.

Lemma 7.2. Let (X, d) be a metric space.

(i) If (X, d) is complete, A is a closed subspace of X, and dA is the restricted metric of A, i.e. dA(x, y) =

d(x, y) ∀x, y ∈ A, then (A, dA) is a complete metric space.

(ii) Let d̄ be the standard bounded metric, i.e. d̄(x, y) = min{d(x, y), 1} ∀x, y ∈ X, then (X, d̄) is complete

if and only if (X, d) is complete.

Proof. (i) Let (xn) be a Cauchy sequence in A under dA. Then (xn) is also a Cauchy sequence in X under d,

and it converges to some x ∈ X. By definition, any neighborhood U of x contains infinitely many points of

(xn). Hence x is a limit point of A. Since A is closed, x ∈ A, and (xn) converges with respect to dA.

(ii) Let (xn) be a sequence of points of X. Then the conclusion is clear if we can prove:

• (xn) is a Cauchy sequence relative to d̄ if and only if it is a Cauchy sequence relative to d, and

• For x ∈ X, d̄(xn, x)→ 0 if and only if d(xn, x)→ 0.

We only prove the first claim. Since d̄ is never greater than d, the “if” direction is clear. Conversely, let

(xn) be a Cauchy sequence relative to d̄. Given ε > 0, we set ε′ = min{ε, 1/2}. Then there exists N such that

n,m ≥ N implies d̄(xn, xm) < ε′ ≤ ε. In this case, d(xn.xm) = d̄(xn, xm) < 1/2, hence (xn) is also a Cauchy

sequence relative to d. The proof for the second claim is similar.

Now we introduce a criterion for a metric space to be complete.

Lemma 7.3 (Subsequence criterion). A metric space (X, d) is complete if every Cauchy sequence in X has

a convergent subsequence.

Proof. Let (xn) be a Cauchy sequence in X, and let (xnk
) be a convergent subsequence of (xn). Fix ε > 0.

We first choose a positive integer N such that n,m ≥ N implies d(xn, xm) < ε/2.

Suppose that (xnk
) converges to x ∈ X. We choose a sufficiently large integer K so that nK ≥ N and

k ≥ K implies d(xnk
, x) < ε/2. Then for any n ≥ N , we have

d(xn, x) ≤ d(xnk
, xn) + d(xnk

, x) <
ε

2
+
ε

2
= ε.

Since ε is arbitrarily chosen, (xn) converges to x.

Example. Let k ∈ N. The Euclidean space (Rk, d) is complete, where d(x,y) =
(∑k

i=1(xi − yi)2
)1/2

.

To see this, let (xn) be a Cauchy sequence in Rk. Fix ε = 1, then we can find N such that n,m ≥ N

implies d(xn,xm) < 1. Let B be the closed ball of radius max{d(0,x1), · · · , d(0,xN−1), d(0,xN )+1} centered

at 0. Then B is a compact set that contains the sequence (xn). By Theorem 4.36, B is sequentially compact,

hence (xn) has a convergent subsequence. By Lemma 7.3, the space Rk is complete.

Now we discuss the compactness in metric spaces. In Theorem 4.36, we have established the equivalence of

four kinds of compactness in metric spaces, which is a very important conclusion. Following this, we are going

to introduce another two kinds of “compactness”.
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Definition 7.4 (Relatively compactness and relative sequential compactness). Let (X, d) be a metric space,

and let A be a subset of X.

(i) A is said to be relatively compact (or precompact) if its closure is compact;

(ii) A is said to be relatively sequentially compact, if for every sequence (xn) ⊂ A there exists a subsequence

that converges to some x ∈ X. (Clearly, x ∈ A.)

The following theorem reveals the equivalence of these two definitions.

Theorem 7.5 (Equivalence of relative sequential compactness and relative compactness). Let (X, d) be a

metric space. Let A ⊂ X. Then A is relatively sequentially compact if and only if A is relatively compact.

Proof. Suppose that A is compact. Then A is also sequentially compact by Theorem 4.36, and the relative

sequential compactness of A is clear.

Conversely, suppose that A is relatively sequentially compact. We show that A is sequentially compact.

Let (xn) be a sequence of points of A. For every n ∈ N, since xn ∈ A, we can choose yn ∈ A such that

d(xn, yn) < 1/n. By relative sequential compactness of A, there is a subsequence (ynk
) with ynk

→ y ∈ A.

Fix ε > 0. We first choose K1 ∈ N such that d(ynk
, y) < ε/2 for all k ≥ K1. Then we choose K2 ∈ N such

that nk > 2/ε for all k ≥ K2, which implies d(xnk
, ynk

) < ε/2. Hence d(xnk
, y) < ε for all k ≥ max{K1,K2},

and the subsequence (xnk
) converges to y ∈ A as k →∞. Therefore A is sequentially compact.

Next, we are going to establish the equivalence between relatively compact sets and totally bounded sets

in complete metric spaces. Recall Definition 4.34: a metric space is said to be totally bounded if it has a finite

ε-net (a cover consists of open ε-balls) for any ε > 0.

Let (X, d) be a metric space. Then a subset A of X is said to be totally bounded if A can be covered by

finitely many ε-balls in X for any ε > 0. Clearly, if A is totally bounded, so is A. To see this, let ε > 0 be

given. Then A can be covered by finitely many ε
2 -balls. For any x ∈ A, there exists y ∈ A with d(x, y) < ε/2.

Hence we can cover A by expanding the radii of the balls to ε.

Theorem 7.6 (Hausdorff). Let X be a metric space. Let A ⊂ X.

(i) If A is relatively compact, then A is totally bounded.

(ii) If X is complete and A is totally bounded, then A is relatively compact.

Proof. (i) Consider a cover of A consists of open ε-balls, the conclusion is clear by finding a finite subcover.

(ii) We shall prove that A is sequentially compact. Let (xn) be a sequence of points, it suffices to construct

a subsequence of (xn) that is a Cauchy sequence, which converges by completeness of A.

We first cover A by finitely many 1-balls. At least one of these balls, denoted by O1, contains infinitely

many elements of (xn). We denote by J1 = {n ∈ N : xn ∈ O1} the index set of these elements.

Next, cover A by finitely may 1/2-balls. Since J1 is infinite, at least one of these balls, denoted by O2,

contains infinitely many elements of {xn : n ∈ J1}. Similarly, let J2 = {n ∈ J1 : xn ∈ O2}. By repeating this

procedure, we obtain a finite cover of A by 1/k-balls and an infinite index set Jk = {n ∈ Jk−1 : xn ∈ Ok} for

arbitrarily large k, with Jk ⊂ Jk−1 ⊂ · · · ⊂ J1.

Choose n1 ∈ J1. Given nk−1, choose nk ∈ Jk with nk > nk−1, which is feasible because Jk is infinite. For

any l,m ≥ k, nl, nm ∈ Jk, and xnl
, xnm ∈ Ok, implying d(xnl

, xnm) < 2/k. Hence the subsequence (xnk
) is a

Cauchy sequence, as desired.

Corollary 7.7. A metric space X is compact if and only if it is complete and totally bounded.

Proof. By Lemma 7.3 (“only if” part) and Theorem 7.6 (“if” part).

Now we are going to introduce some criterions for a metric space to be complete.
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Lemma 7.8. Every Cauchy sequence in a metric space is totally bounded.

Proof. Let (X, d) be a metric space, and let (xn) be a Cauchy sequence in X. Given ε > 0, there exists

N such that d(xn, xm) < ε for all n,m ≥ N , which implies O(xN , ε) ⊃ {xn, n ≥ N}. Then the open balls

O(x1, ε), · · · , O(xN , ε) form a cover of X.

Theorem 7.9. A metric space X is complete if every totally bounded set in X is relatively compact.

Proof. Let (xn) be a Cauchy sequence in X. By Lemma 7.8, (xn) is totally bounded. Then (xn) is relatively

sequentially compact, and the completeness follows from Lemma 7.3.

Lemma 7.10. If A is a dense subset of a metric space (X, d), and every Cauchy sequence in A converges in

X, then (X, d) is complete.

Proof. Let (xn) be a Cauchy sequence in X. Since A = X, there exists find an ∈ A such that d(an, xn) < 1/n

for each n ∈ N. Fix ε > 0. Then there exists N such that d(xn, xm) < ε/3 for all n,m ≥ N . By setting

n,m ≥ max{N, 3ε−1}, we have

d(an, am) ≤ d(an, xn) + d(xn, xm) + d(xm, am) < ε.

Hence (an) is a Cauchy sequence in A, and it converges to some x ∈ X. Since d(xn, an)→ 0, and d(an, x)→ 0,

we have d(xn, x)→ 0, which concludes the proof.

Finally, we present a useful lemma in analysis.

Lemma 7.11. Any relatively compact set is separable.

Proof. Let A be a relatively compact subset of a metric space X. Since A is totally bounded, we can cover

it by finitely many 1-balls. We denote the centers of these balls by C1. Similarly, we can cover A by finitely

many 1/n-balls for arbitrarily large n ∈ N, and extract their centers Cn. Then
⋃∞
n=1 Cn, being the union of

countably many finite sets, is a countable dense set in X.

7.2 Completion of Metric Spaces

Definition 7.12 (Completion). Let (X, d) be a metric space. A complete metric space (Y, d̃) is said to

be a completion of (X, d), if there exists an injective mapping ι : X → Y such that (i) ι is isometric, i.e.

d̃(ι(x), ι(x′)) = d(x, x′) for any pair x, x′ ∈ X, and (ii) ι(X) = Y . In this case, ι is called an imbedding.

The following theorem states that every incomplete metric space has at least one completion.

Theorem 7.13 (Existence of a completion). Let (X, d) be a metric space. Then there exists a completion

of (X, d). Namely, there exists an isometric imbedding from X to a complete metric space.

Proof. We prove this theorem by constructing a complete metric space which consists of equivalence classes

of Cauchy sequences in X.

Step I: Let Y ′ be the set of all Cauchy sequences x = (x1, x2, · · · ) in X. Let d′(x,y) := limn→∞ d(xn, yn).

Then d′ is a pseudometric on Y ′, that is, d′ : Y ′ × Y ′ → R+ satisfies symmetry and triangle inequality.

Step II: Define a relation ∼ on Y ′: for x = (xn) and y = (yn) in Y ′,

x ∼ y
def.⇔ lim

n→∞
d(xn, yn) = 0.
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It is clear that ∼ is an equivalence relation on Y ′, i.e., ∼ has reflexivity, symmetry and transitivity. Let

Ỹ = Y ′/ ∼ be the set of equivalence classes on Y ′, and define d̃ : Ỹ × Ỹ → R+ as

d̃([x], [y]) = lim
n→∞

d(xn, yn).

Note that d̃([x], [y]) = d′(x,y). Following Step I, d̃ is a metric on Ỹ .

Step III: Define ι : X → Ỹ , x 7→ [(x, x, · · · )], which maps a point of X to an equivalence class of a constant

sequence. Clearly, d̃(ι(x), ι(y)) = d(x, y), which implies that ι is an isometric imbedding.

Now we show that ι(X) = Ỹ . Given any Cauchy sequence x = (xn) ∈ Y ′, we have

lim
n→∞

d̃(ι(xn), [x]) = lim
n,m→∞

d(xn, xm) = 0,

which implies [x] ∈ ι(X). Since x is arbitrary, we have ι(X) = Ỹ .

Step IV: It remains to show the completeness of (Ỹ , d̃). By Lemma 7.10, it suffices to show that every

Cauchy sequence in ι(X) converges in Ỹ .

Let {[x(n)]}n∈N be a Cauchy sequence in ι(X), where x(n) = (xn, xn, · · · ) for each n ∈ N. By definition,

d̃([x(n)], [x(m)]) = d(xn, xm), which implies that x = (xn) is a Cauchy sequence in X. Moreover,

lim
n→∞

d̃
(

[x(n)], [x]
)

= lim
n→∞

[
lim
k→∞

d(xn, xk)

]
= 0,

which implies [x(n)]→ [x] ∈ Ỹ . Therefore we obtain a completion of X.

By construction, we showed that every metric space has at least one completion. Naturally, we wonder if

the completion is unique. We have the following theorem.

Theorem 7.14 (Uniqueness of the completion). The completion of a metric space (X, d) is uniquely de-

termined up to an isometry. Namely, if ι1 : X → Y1 = ι1(X) and ι2 : X → Y2 = ι2(X) are two isometric

imbeddings from X to a complete metric space, then there exists an isometric bijection from Y1 to Y2.

Proof. Step I: Define map φ0 : ι1(X) → ι2(X), ι1(x) 7→ ι2(x), which is bijective and isometric from ι1(X) to

ι2(X). We extend φ0 to φ : Y1 → Y2 as follows: Given y1 ∈ Y1, choose a sequence (xn) of points of X such

that dY1
(ι1(xn), y1)→ 0, which is feasible because Y1 = ι1(X), and define

φ(y1) = lim
n→∞

φ0(ι1(xn)) = lim
n→∞

ι2(xn).

Step II: check that φ is well-defined. Since (ι1(xn)) converges to y1 ∈ Y1, it is a Cauchy sequence in Y1.

Note that ι1 and ι2 are isometric, (xn) is a Cauchy sequence in X, and (ι2(xn)) is a Cauchy sequence in Y2.

By completeness of Y2, (ι2(xn)) converges to some point y2 of Y2.

Suppose (x′n) is another sequence of points of X such that ι1(x′n)→ y1. Repeat the above procedure, there

exists y′2 ∈ Y2 such that ι2(x′n)→ y′2. Moreover,

dY2(y2, y
′
2) = lim

n,m→∞
dY2(ι2(xn), ι2(x′m)) = lim

n,m→∞
d(xn, x

′
m) = lim

n,m→∞
dY1(ι1(xn), ι1(x′m)) = dY1(y1, y1) = 0.

Hence y2 = y′2. Therefore, φ : Y1 → Y2 is well-defined and agrees with ι2 ◦ ι−1
1 on ι1(X).
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Step III: It remains to show that φ is isometric. Given y, y′ ∈ Y1, we choose two sequences (xn) and (x′n)

from X such that ι1(xn)→ y and ι1(x′n)→ y′. Then we have

dY2
(φ(y), φ(y′)) = lim

n,m→∞
dY2

(ι2(xn), ι2(x′m)) = lim
n,m→∞

d(xn, x
′
m) = lim

n,m→∞
dY1

(ι1(xn), ι1(x′m)) = dY1
(y, y′).

Hence φ is an isometric bijection from Y1 to Y2.

Remark. Combining Theorem 7.13 and Theorem 7.14, we conclude that for every metric space, there exists

a unique completion up to an isometry.

7.3 Function Spaces and Arzelà–Ascoli Theorem

Let Y be a topological space, and let J be a set. Then each point y = (yα)α∈J of the cartesian product Y J

can be viewed as a function y : J → Y, α 7→ yα. In this section, we shift from the classical tuple notation

y = (yα)α∈J to the functional notation f : J → Y .

Definition 7.15 (Uniform metric). Let (Y, d) be a metric space, and let d̄(x, y) = min{d(x, y), 1} be the

standard bounded metric on Y derived from d. If f, g ∈ Y J are functions from J to Y , let

ρ̄(f, g) = sup
α∈J

d̄ (f(α), g(α)) .

Then ρ̄ is said to be the uniform metric on Y J corresponding to the metric d on Y .

Theorem 7.16. Let (Y, d) be a complete metric space, and let ρ̄ be the uniform metric on Y J corresponding

to d. Then (Y J , ρ̄) is complete.

Proof. By Lemma 7.2 (ii), (Y, d̄) is a complete metric space, where d̄ is the standard bounded metric corre-

sponding to d. Suppose {fn}n∈N is a Cauchy sequence in (Y J , ρ̄). Then for any α ∈ J , we have

d̄ (f(α), f(α)) ≤ ρ̄ (fn, fm) , n,m ∈ N.

Since {fn}n∈N is a Cauchy sequence in (Y J , ρ̄), (fn(α)) is a Cauchy sequence in (Y, d̄), which converges to

some f(α) ∈ Y by completeness of (Y, d̄). As a result, we obtain f ∈ Y J such that fn(α)→ f(α) in metric d̄

for each α ∈ J . We claim that fn → f in metric ρ̄.

Given ε > 0, we choose a sufficiently large N such that ρ̄(fn, fm) < ε/2 for all n,m ≥ N . Then

d̄ (fn(α), fm(α)) < ε/2 holds for all n,m ≥ N and all α ∈ J . Setting m → ∞, we have d̄ (fn(α), f(α)) ≤ ε/2

for all n ≥ N and all α ∈ J . Therefore

ρ̄ (fn, f) = sup
α∈J

d̄ (fn(α), f(α)) ≤ ε

2
< ε,

for all n ≥ N , as desired.

Up to now, we have not imposed any assumption on set J when discussing the function space Y J . Let’s

go one step further: consider the set Y X of all functions f : X → Y , where X is a topological space and (Y, d)

is a metric space. We are going to investigate two special subsets of Y X :

• C(X,Y ) is the set of all continuous functions f : X → Y . A function f : X → Y is said to be continuous

if the inverse image of any open set in Y is open in X.

• B(X,Y ) is the set of all bounded functions f : X → Y . A function f : X → Y is said to be bounded if

its image f(X) is a bounded subset of (Y, d).
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Theorem 7.17. Let X be a topological space and let (Y, d) be a metric space. Then both the set C(X,Y )

of all continuous functions and the set B(X,Y ) of all bounded functions are closed in Y X under the uniform

metric ρ̄ corresponding to d. As a result, both C(X,Y ) and B(X,Y ) are complete in ρ̄ if Y is complete in d.

Proof. We first show that if a sequence of elements {fn} of Y X converges to f ∈ Y X relative to ρ̄, then it

converges uniformly to f relative to the standard bounded metric d̄. Given ε > 0, we can choose N ∈ N such

that ρ̄ (fn, f) < ε for all n ≥ N . Then d̄ (fn(x), f(x)) ≤ ρ̄ (fn, f) < ε for all n ≥ N and all x ∈ X.

Now we prove that C(X,Y ) is closed in Y X under the topology induced by ρ̄. Let f ∈ C(X,Y ), then there

exists a sequence {fn} ⊂ C(X,Y ) that converges to f relative to ρ̄. As a result, {fn} converges to f uniformly

relative to d̄. By the uniform limit theorem (Theorem 2.19), f is continuous. Hence f ∈ C(X,Y ).

Finally, we prove that B(X,Y ) is closed in Y X under the topology induced by ρ̄. Let f ∈ B(X,Y ), then

there exists a sequence {fn} ⊂ B(X,Y ) that converges to f relative to ρ̄. Set ε = 1/2, then we can choose

N ∈ N such that ρ̄ (fn, f) < 1/2 for all n ≥ N . Since d (fN (x), f(x)) = d̄ (fN (x), f(x)) ≤ ρ̄ (fn, f) < 1/2 for

all x ∈ X, and fN is bounded, we can bound the diameter of f(X) as follows:

sup
x,x′∈X

d(f(x), f(x′)) ≤ sup
x,x′∈X

{
d(f(x), fN (x)) + d(fN (x), fN (x′)) + d(fN (x′), f(x′))

}
< sup
x,x′∈X

d(fN (x), fN (x′)) + 1 <∞.

Hence f ∈ B(X,Y ), and B(X,Y ) is closed.

Following Lemma 7.2 (i) and Theorem 7.16, we conclude that C(X,Y ) and B(X,Y ) are complete in ρ̄

when (Y, d) is complete.

Definition 7.18 (Supremum metric). Let X be a topological space and let (Y, d) be a metric space. If

f, g ∈ B(X,Y ), define

ρ(f, g) = sup
x∈X

d (f(x), g(x)) .

Then ρ is a well-defined metric on B(X,Y ), since the set f(X) ∪ g(X), being the union of two bounded sets,

is bounded. The metric ρ is called the supremum metric.

Remark. (i) Suppose f, g ∈ B(X,Y ). Then:ρ (f, g) ≤ 1 ⇒ ∀x ∈ X, d (f(x), g(x)) ≤ 1 ⇒ ∀x ∈ X, d̄ (f(x), g(x)) = d (f(x), g(x))⇒ ρ̄ (f, g) = ρ (f, g) ;

ρ (f, g) > 1 ⇒ ∃x0 ∈ X, d (f(x0), g(x0)) > 1 ⇒ d̄ (f(x0), g(x0)) = 1⇒ ρ̄(f, g) = 1;

Hence we obtain a simple relation between the supremum metric ρ and the uniform metric ρ̄:

ρ (f, g) = min{ρ̄ (f, g) , 1}.

Applying Theorem 7.16 and Lemma 7.2 (ii), we conclude that (B(X,Y ), ρ) is complete if (Y, d) is complete.

(ii) Suppose X is a compact space. Then for any f ∈ C(X,Y ), f(X) is compact. Hence it is always bounded

in Y , and f ∈ B(X,Y ). In this case, C(X,Y ) is a closed subspace of B(X,Y ). Furthermore, if the metric

space (Y, d) is complete, then (C(X,Y ), ρ) is also complete.

In the remaining part of this section, we investigate the compactness in function spaces.
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Definition 7.19 (Equicontinuity). Let X be a topological space and let (Y, d) be a metric space. Let F be

a subset of the function space C(X,Y ). Given x0 ∈ X, the function class F is said to be equicontinuous at x0

if for any ε > 0, there exists a neighborhood U of x0 such that d(f(x), f(x0)) < ε for all x ∈ U and all f ∈ F .

If F is equicontinuous at x0 for all x0 ∈ X, then F is said simply to be equicontinuous.

Remark. By definition, any finite subset of C(X,Y ) is equicontinuous. Furthermore, equicontinuity depends

on the specific metric d rather than merely on the topology of Y .

Lemma 7.20. Let X be a topological space and let (Y, d) be a metric space. Let F be a subset of C(X,Y ).

If F is totally bounded under the uniform metric corresponding to d, then F is equicontinuous under d.

Proof. Suppose F is totally bounded. Given ε ∈ (0, 1) and x0 ∈ X, we wish to find a neighborhood U of x0

such that d(f(x), f(x0)) < ε for all x ∈ U and all f ∈ F .

Since F is totally bounded, we cover F by finitely many ε/3-balls

O
(
f1,

ε

3

)
, · · · , O

(
fn,

ε

3

)
in C(X,Y ). For each j = 1, · · · , n, fj is continuous, and we can choose a neighborhood Uj of x0 such that

d(fj(x), fj(x0)) < ε/3 for all x ∈ Uj . We show that U =
⋂n
j=1 Uj is the desired neighborhood of x0.

Let f be any function in F . Then there exists 1 ≤ k ≤ n such that ρ̄ (f, fk) < ε/3, where ρ̄ is the uniform

metric corresponding to d. By definition, we have for all x ∈ X that

d (f(x), fk(x)) = d (f(x), fk(x)) ≤ ρ̄ (f, fk) <
ε

3
.

For all x ∈ U , x ∈ Uk. Therefore

d (f(x), f(x0)) ≤ d (f(x), fk(x))︸ ︷︷ ︸
<ε/3

+ d (fk(x), fk(x0))︸ ︷︷ ︸
<ε/3

+ d (fk(x0), f(x0))︸ ︷︷ ︸
<ε/3

< ε,

which concludes the proof.

The converse of Lemma 7.20 holds if we introduce some additional assumptions.

Lemma 7.21. Let X be a compact space and let (Y, d) be a compact metric space. Let F be a subset of

C(X,Y ). If F is equicontinuous under d, then F is totally bounded under both the uniform and supremum

metrics corresponding to d.

Proof. Since X is compact, the supremum metric ρ corresponding to d is well-defined on C(X,Y ). Since the

uniform metric ρ̄ never exceeds the supremum metric ρ, and every ε-ball under ρ is also an ε-ball under ρ̄

whenever ε < 1, total boundedness does not vary between ρ and ρ̄. Hence we use ρ throughout.

Assume F is equicontinuous. Given ε > 0, we wish to find finitely many functions f1, · · · , fN ∈ C(X,Y )

such that for every f ∈ F , there exists l ∈ {1, · · · , N} such that ρ(f, fl) < ε.

For each z ∈ X, we can find an open set Uz containing z such that d(f(x), f(z)) < ε/3 for all x ∈ Uz

and f ∈ F by equicontinuity of F . Since X is compact, we can choose finitely many z1, · · · , zk ∈ X with⋃k
i=1 Uzi ⊃ X. For every x ∈ X, there exists zi such that d(f(x), f(zi)) < ε/3.

For the compact metric space (Y, d), we choose finitely many ε/6-balls O1, · · · , Om that cover the whole

space. Now for every tuple (i, j) ∈ {1, · · · , k} × {1, · · · ,m}, if there exists f ∈ F such that f(zi) ∈ Oj , then

we set this function as fij . We prove that {fij , 1 ≤ i ≤ k, 1 ≤ j ≤ m} ⊂ F is the desired finite subset.
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Given x ∈ X, we choose i ∈ {1, · · · , k} such that d(f(x), f(zi)) < ε/3 for all f ∈ F . Fix f ∈ F , then f(zi)

is contained in some Oj , and we have fij such that fij(zi) ∈ Oj . As a result, d(f(zi), fij(zi)) < ε/3, and

d (f(x), fij(x)) ≤ d (f(x), f(zi)) + d (f(zi), fij(zi)) + d (fij(zi), fij(x)) < ε.

Since x is arbitrary, we have ρ(f, fij) < ε. Hence F is covered by the ε-balls centered at {fij}, as desired.

Definition 7.22 (Pointwise boundedness). Let X be a set and let (Y, d) be a metric space. A subset F of

C(X,Y ) is said to be pointwise bounded if for each x ∈ X, the subset F(x) = {f(x) : f ∈ F} of Y is bounded.

The Arzelà–Ascoli theorem characterizes relatively compact subsets in space C(X,Y ), where X is compact

and Y is a metric space in which all closed bounded subsets are compact.

Theorem 7.23 (Arzelà–Ascoli). Let X be a compact space. Let (Y, d) be a metric space in which all closed

bounded subspaces are compact, and give C(X,Y ) the corresponding uniform topology. Then a subset F of

C(X,Y ) is relatively compact if and only if F is equicontinuous and pointwisely bounded.

Proof. Since X is compact, the uniform topology on C(X,Y ) is induced by the supremum metric ρ corre-

sponding to d, which is well-defined.

Step I: We first show that F is equicontinuous and pointwise bounded when it is relatively compact, from

which the “only if” direction follows.

By Theorem 7.6 (i), F is totally bounded under both ρ and ρ̄. Following Lemma 7.20, it is equicontinuous

under d. To prove the pointwise boundedness, note that d(f(x), g(x)) ≤ ρ(f, g) for all f, g ∈ F and all x ∈ X.

Hence the diameter of F(x) never exceeds that of F , which is bounded by compactness.

Step II: We show that if F is equicontinuous and pointwise bounded, so is F .

Suppose F is equicontinuous, and let g ∈ F . For any ε > 0, there exists fg ∈ F such that ρ(fg, g) < ε/3.

Now fix x0 ∈ X. By equicontinuity of F , there exists a neighborhood U of x0 in X such that d(f(x), f(x0)) <

ε/3 for all x ∈ U and f ∈ F . Then we have

d (g(x), g(x0)) ≤ d (g(x), fg(x)) + d (fg(x), fg(x0)) + d (fg(x0), g(x0)) < ε, ∀x ∈ U.

Since g is arbitrary, F is equicontinuous at x0.

Now suppose F is pointwise bounded. For any ε > 0 and g, h ∈ F , there exists fg, fh ∈ F such that

ρ(fg, g) < ε/2 and ρ(fh, h) < ε/2. Fix x ∈ X, then

d (g(x), h(x)) ≤ d (g(x), fg(x)) + d (fg(x), fh(x)) + d (fh(x), h(x))

≤ ρ (fg, g) + d (fg(x), fh(x)) + ρ (fh, h) < diam(F(x)) + ε.

Taking supremum with respect to g and h yields diam(F(x)) ≤ diam(F(x)) ≤ diam(F(x)) + ε for all ε > 0.

Hence diam(F(x)) = diam(F(x)) <∞.

Step III: Let G = F . We show that there exists a compact subspace K of Y that contains the set

G(X) =
⋃
g∈G g(X) =

⋃
x∈X G(x) = {g(x) : g ∈ G, x ∈ X}.

Fix ε > 0. For each z ∈ X, we can choose an open neighborhood Uz of z such that d(g(x), g(z)) < ε

for all x ∈ Uz and all g ∈ G by equicontinuity of G. Following compactness of X, we choose finitely many

z1, · · · , zn ∈ X such that
⋃n
k=1 Uzk = X. By pointwise boundedness of G, G(zk) is a bounded subset of Y for

each k, and the union
⋃n
k=1 G(zk) is also bounded. Take any y ∈

⋃n
k=1 G(zk), then OY (y,D) ⊃

⋃n
k=1 G(zk),

where D is the diameter of
⋃n
k=1 G(zk). As a result, G(X) is contained in the open ball OY (y,D + ε), and

K = OY (y,D + ε) is the desired compact subspace of Y .
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Step IV: We show that G is complete and totally bounded. Then Theorem 7.6 (ii) implies that F is

relatively compact. Since G is a closed subspace of the complete space (C(X,Y ), ρ), it is complete.

To show total boundedness of G under ρ, apply Lemma 7.21: Step II states that G is equicontinuous under

metric d, and Step III implies that G ⊂ C(X,K), where (K, d) is a compact metric space.

We also have the following criterion for compactness.

Corollary 7.24. Let X be a compact space. Let (Y, d) be a metric space in which all closed bounded

subspaces are compact, and give C(X,Y ) the corresponding uniform topology. A subset F of C(X,Y ) is

compact if and only if F is closed, bounded under ρ and equicontinuous under d.

Proof. If F is bounded under ρ, then it is pointwise bounded under d. If we further assume F is equicontinuous

under d, then F is relatively compact by Theorem 7.23. Since F is closed, it is compact.

Conversely, if F is compact, then it is closed and bounded. By Theorem 7.23, it is equicontinuous.

Corollary 7.25 (Arzelà’s theorem). Let X be a compact space. Let (Y, d) be a metric space in which all

closed bounded subspaces are compact, and give C(X,Y ) the corresponding uniform topology. If a sequence

(fn) is equicontinuous and pointwise bounded, then it has a uniformly convergent subsequence.

Proof. By Theorem 7.23, the collection {fn} is relatively compact. Then it is relatively sequentially compact,

i.e., it has a subsequence (fnk
) under the supremum metric ρ that converges to some f ∈ C(X,Y ), which

implies fnk
⇒ f .

7.4 The Topologies of Pointwise and Compact Convergence

In addition to the uniform topology, there are other useful topologies on the function spaces Y X and C(X,Y ).

Definition 7.26 (Topology of pointwise convergence/point-open topology). Let X be a set, and let Y be a

topological space. Given a point x of X and an open set U in Y , let

S(x, U) = {f ∈ Y X : f(x) ∈ U}.

The sets {S(x, U) : x ∈ X, U is open in Y } are a subbasis for a topology on Y X , which is called the topology

of pointwise convergence (or the point-open topology).

Remark. The set of all finite intersections of subbasis elements S(x, U) forms a basis for the topology of

pointwise convergence. Then a typical basis element containing the function f consists of all functions g that

are close to f at finitely many points. Note that if we use the tuple notation y = (yα)α∈X instead of the

functional notation f : X → Y , we have

S(β, U) = {y = (yα)α∈X ∈ Y X : yβ ∈ U} = π−1
β (U).

It is seen that the topology of pointwise convergence is the product topology we introduced in Definition 6.1.

The terminology “topology of pointwise convergence” follows from Lemma 6.4. We reformulate it below.

Lemma 7.27. A sequence fn : X → Y of functions converges to the function f in the topology of pointwise

convergence if and only if for each x ∈ X, the sequence fn(x) of points of Y converges to the point f(x).
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Remark. Let X be a topological space and let Y be a metric space. In Theorem 7.17, we have shown that

the function space C(X,Y ) is closed in the uniform topology. However, it is not necessarily closed in the

topology of pointwise convergence.

To see a counterexample, consider the sequence (fn) in C([0, 1],R), where fn(x) = xn for x ∈ [0, 1]. This

sequence converges to the function f = χ(0,1], which is not continuous at point x = 0.

Definition 7.28 (Topology of compact convergence). Let X be a topological space and let (Y, d) be a metric

space. Given a point f of Y X , a compact subspace C of X, and a number ε > 0, define BC(f, ε) by

BC(f, ε) =

{
g ∈ Y X : sup

x∈C
d (f(x), g(x)) < ε

}
.

Then the sets {BC(f, ε) : f ∈ Y X , ε > 0 and C is a compact subset of X} form a basis for a topology on Y X ,

which is called the topology of compact convergence (or the topology of uniform convergence on compact sets).

Remark. We check that the sets BC(f, ε) satisfy the conditions for a basis. It suffices to show that the

intersection of any two basis elements BC1
(f1, ε1) and BC2

(f2, ε2) is a union of basis elements. We prove

that for every g ∈ BC1
(f1, ε1) ∩ BC2

(f2, ε2), there exists a basis element containing g and contained in this

intersection. Let

δ = min

{
ε1 − sup

x∈C1

d (f1(x), g(x)) , ε2 − sup
x∈C2

d (f2(x), g(x))

}
> 0.

Then BC1∪C2
(g, δ) ⊂ BC1

(f1, ε1) ∩BC2
(f2, ε2), since for any h ∈ BC1∪C2

(g, δ),

sup
x∈C1

d (f1(x), h(x)) ≤ sup
x∈C1

{d (f1(x), g(x)) + d (g(x), h(x))} ≤ sup
x∈C1

d (f1(x), g(x)) + δ < ε1,

and the case for BC2
(f2, ε2) is similar.

In contrast to the topology of pointwise convergence, a typical basis element of the topology of compact

convergence containing f requires a function g to be close to f at all points of some compact set rather than

merely at finitely many points. The choice of terminology “topology of compact convergence” is justified by

the following lemma.

Lemma 7.29. A sequence fn : X → Y of functions converges to the function f in the topology of compact

convergence if and only if for each compact subspace C of X, the sequence fn|C converges uniformly to f |C .

Proof. For any compact subspace C of X, we have

fn|C ⇒ f |C ⇔ sup
x∈C

d (fn(x), f(x))→ 0 ⇔ ∀ε > 0, ∃Nε ∈ N such that fn ∈ BC(f, ε) ∀n ≥ Nε.

Then the proof is immediate.

Review. Up to now, we have three topologies for the function space Y X when Y is a metric space. We

summarize the form of basis elements in these topologies below.

• The topology of pointwise convergence: given finitely many points x1, · · · , xn of X, a function f ∈ Y X

and a number ε > 0,

B(f, ε;x1:n) =

{
g ∈ Y X : max

1≤j≤n
d (f(xj), g(xj)) < ε

}
.
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• The topology of compact convergence: given a compact subspace C of X, a function f ∈ Y X and a

number ε > 0,

BC(f, ε) =

{
g ∈ Y X : sup

x∈C
d (f(x), g(x)) < ε

}
;

• The uniform topology: given a function f ∈ Y X and a number ε > 0,

Bρ(f, ε) =
{
g ∈ Y X : ρ (f, g) < ε

}
=

{
g ∈ Y X : sup

x∈X
d (f(x), g(x)) < ε

}
;

The relation between them is stated in the following theorem.

Theorem 7.30. Let X be a topological space, and let Y be a metric space. For the function space Y X , the

topology Tp of pointwise convergence, the topology Tc of compact convergence, and the uniform topology Tu

admits the following inclusions:

Tp ⊂ Tc ⊂ Tu.

If X is discrete, the first two coincide, and if X is compact, the second two coincide.

Proof. For the first inclusion, note that any basis element for Tp is also a basis element for Tc, since the finite-

point sets are automatically compact. If X is discrete, then only the finite-point sets are compact because all

one-point sets are open, hence the bases for Tc and Tp are the same.

For the second inclusion, it suffices to show every basis element BC(f, ε) for Tc is an open set in Tu.

For each g ∈ BC(f, ε), set δg = ε − supx∈C d(f(x), g(x)). Then Bρ(g, δg) ⊂ BC(g, δg) ⊂ BC(f, ε), and

BC(f, ε) =
⋃
g∈BC(f,ε)Bρ(g, δg) is an open set in Tu. If X is compact, then every basis element for Tu is also

a basis element for Tc.

Remark. By Theorem 7.30, the collections of neighborhoods in the three topologies also admit the same

inclusions. Then we have the following relation between convergences:

Uniform convergence ⇒ Compact convergence ⇒ Pointwise convergence.

Now we introduce a special class of topological spaces called compactly generated spaces.

Definition 7.31 (Compactly generated spaces). A space X is said to be compactly generated if it satisfies

the following condition: a set A is open in X if A ∩ C is open in C for each compact subspace C of X.

Remark. Another equivalent condition for compactly generated spaces requires a set B to be closed in X if

B ∩ C is closed in C for each compact subspace C of X.

Lemma 7.32. If X is locally compact, or if X is first-countable, then X is compactly generated.

Proof. Let X be locally compact and let A be a set such that A ∩ C is open in C for each compact subspace

C of X. Given x ∈ A, choose an open neighborhood U of x such that U lies in a compact subspace C of X.

Then A∩C is open in C by assumption, and A∩U is open in U , hence is open in X. Therefore A contains a

neighborhood of x in X for each x ∈ A.

Let X be first-countable and let B be a set such that B ∩ C is closed in C for each compact subspace C

of X. Given x ∈ B, we show that x ∈ B. Since X has a countable basis at x, we can find a sequence (xn) of
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points of B such that xn → x. The subspace C = {xn, n ∈ N} ∩ {x} is compact, because for each open set

U 3 x, C\U contains only finitely many points of C. By assumption, B ∩ C is closed in C, and x ∈ B ∩ C.

Therefore, x ∈ B, and B is closed, as desired.

Lemma 7.33. Let X be a compact generated space and let f : X → Y . Then f is continuous if the

restriction f |C is continuous for each compact subspace C of X.

Proof. Let V be an open set in Y . We show that f−1(V ) is open in X. The restriction f |C : C → Y is

continuous for each compact subspace C of X, the set

f |−1
C (V ) = f−1(V ) ∩ C

is open in C. Since X is compactly generated, f−1(V ) is open in X.

A crucial fact about continuous functions on compactly generated spaces is the following.

Theorem 7.34. Let X be a compact generated space and let (Y, d) be a metric space. Then C(X,Y ) is a

closed subspace of Y X in the topology of compact convergence.

Proof. Let f be a limit point of C(X,Y ), we wish to show that f is continuous. By Lemma 7.33, it suffices to

show that f |C is continuous for each compact subspace C of X.

For each n ∈ N, consider the neighborhood BC(f, 1/n) of f , which intersects C(X,Y ). So we choose

fn ∈ BC(f, 1/n) ∩ C(X,Y ). Then fn|C : C → Y converges uniformly to f |C . By the uniform limit theorem,

f |C is continuous.

An immediate corollary is stated below.

Corollary 7.35. Let X be a compact generated space and let (Y, d) be a metric space. If a sequence of

continuous functions fn : X → Y converges to a function f ∈ Y X in the topology of compact convergence,

then f is continuous.

Now we consider another topology on function spaces.

Definition 7.36 (Compact-open topology). Let X and Y be topological spaces. Given a compact subspace

C of X and an open set U of Y , define

S(C,U) = {f ∈ C(X,Y ) : f(C) ⊂ U} .

The sets {S(C,U) : C is a compact subspace of X, U is an open set in Y } form a subbasis for a topology on

C(X,Y ) that is called the compact-open topology.

Clearly, the compact-open topology is finer than the topology of pointwise convergence. In fact, we can

establish the equivalence between the topology of compact convergence and the compact-open topology on the

subspace C(X,Y ).

Theorem 7.37. Let X be a space and let (Y, d) be a metric space. On the set C(X,Y ), the compact-open

topology and the topology of compact convergence coincide.

Proof. Step I: Given a subset A of Y and ε > 0, let O(A, ε) =
⋃
a∈AO(a, ε). If A is a compact subset of Y

and V is an open set containing A, then U(A, ε) ⊂ V for ε = mina∈A d(a,X\V ) > 0.
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Step II: We first prove that the topology of compact convergence is finer than the compact-open topology.

It suffices to show that every S(C,U) is open in the topology of compact convergence. We show that for

each f ∈ S(C,U), there exists a basis element BC(f, ε) contained in S(C,U). Since C is compact and f

is continuous, f(C) is compact. By Step I, there exists ε > 0 such that O(f(C), ε) ⊂ U . Then for any

g ∈ BC(f, ε), supx∈C d(f(x), g(x)) < ε, and g(C) ⊂ O(f(C), ε) ⊂ U . Hence BC(f, ε) ⊂ S(C,U).

Step III: We then prove that the compact-open topology is finer than the topology of compact convergence.

Since every open set in the topology of compact convergence contains some BC(f, ε) for each of its element f ,

it suffices to find a basis element B for the compact-open topology such that f ∈ B ⊂ BC(f, ε).

For each x ∈ X, we can choose a neighborhood Ux such that f(Ux) ⊂ O(f(x), ε/4) by continuity of f . Then

f(Ux) ⊂ O(f(x), ε/3). Since C is compact, we cover it by finitely many Ux1
, · · · , Uxn

, and set Ci = Uxi
∩ C,

which is compact for each i. Let

B =

n⋂
i=1

S
(
Ci, O

(
f(xi),

ε

3

))
.

Clearly, we have f(Ci) ⊂ f(Uxi
) ⊂ O(f(xi), ε/3) for each i. This implies f ∈ B. For any g ∈ B, we also

have g(Ci) ⊂ O(f(xi), ε/3). Given x ∈ C, we have x ∈ Ci for some i. Then

d(f(x), g(x)) < d(f(x), f(xi)) + d(f(xi), g(x)) < 2ε/3.

Hence supx∈C d(f(x), g(x)) ≤ 2ε/3 < ε, which implies B ⊂ BC(f, ε). Thus B is the desired basis element.

The following corollary is immediately implied by Theorem 7.37.

Corollary 7.38. Let Y be a metric space. The topology of compact convergence on C(X,Y ) does not

depend on the metric of Y . As a result, if X is compact, the uniform topology on C(X,Y ) does not depend

on the metric of Y .

Another important fact about the compact-open topology is that it satisfies the requirement of joint

continuity: the expression f(x) is continuous jointly in both the variables x and f .

Theorem 7.39 (Continuous evaluation map). Give C(X,Y ) the compact-open topology, and define the

evaluation map e : X ×C(X,Y )→ Y by the equation e(x, f) = f(x). If X is locally compact Hausdorff, then

the evaluation map e is continuous.

Proof. Given a point (x, f) of X×C(X,Y ) and an open set V in Y containing the image point e(x, f) = f(x),

we wish to find a neighborhood W of (x, f) such that e(W ) ⊂ V .

The function f ∈ C(X,Y ), the inverse image f−1(V ) is open. By Theorem 4.40, we can find an open set

U 3 x of which the closure U is compact and contained in f−1(V ), since X is locally compact Hausdorff.

Then f belongs to the subbasis element S(U, V ) for the compact-open topology, and W = U × S(U, V ) is the

desired neighborhood of (x, f).

Remark. For any x ∈ X, the evaluation functional e(x, ·) : C(X,Y ) → Y is in fact the restriction of

projection map πx : Y X → Y on C(X,Y ).

Definition 7.40 (Induced map). Given a continuous function f : X × Z → Y , there is a corresponding

function F : Z → C(X,Y ), defined by the equation

(F (z))(x) = f(x, z).
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Conversely, given F : Z → C(X,Y ), this equation defines a corresponding function f : X × Z → Y . We say

that F is the map of Z into C(X,Y ) that is induced by f .

Remark. We need to check that F (z) : x 7→ f(x, z) is a continuous function from X to Y . Let V be an open

set in Y . We show that (F (z))−1(V ) =
{
x : (x, z) ∈ f−1(V )

}
is an open set in X: for any x ∈ (F (z))−1(V ),

there is a basis element U ×W containing (x, z) and contained in f−1(V ). Then x ∈ U ⊂ (F (z))−1(V ).

Theorem 7.41. Let X, Y and Z be topological spaces, and give C(X,Y ) the compact-open topology. If

f : X ×Z → Y is continuous, then so is the induced map F : Z → C(X,Y ). The converse holds if X is locally

compact Hausdorff.

Proof. Suppose f : X × Z is continuous. To prove the continuity of F , we take z0 ∈ Z and show that the

inverse image of any basis element S(C, V ) containing F (z0) is a neighborhood of z0 in Z.

Since F (z0) ∈ S(C, V ), we have f(C × {z0}) ⊂ V . The continuity of f implies that f−1(V ) is open in

C × Z. As a result, the intersection f−1(V ) ∩ C × Z is an open set in the subspace C × Z containing the

slice C × {z0}. By tube lemma (Theorem 4.5), there exists a neighborhood Uz0 of z0 in Z such that the tube

C × Uz0 ⊂ f−1(V ). Then we have f(x, z) ∈ V for any (x, z) ∈ C × Uz0 , which implies F (Uz0) ⊂ S(C, V ).

Conversely, suppose X is a locally compact Hausdorff space and F is continuous. Then the evaluation

map e is continuous. Note that f : X × Z → Y satisfies f(x, z) = e(x, F (z)). Hence f as the composition

e ◦ (iX × F ) is continuous.

Finally, we introduce a more general version of Arzelà-Ascoli theorem.

Theorem 7.42 (Ascoli’s theorem). Let X be a topological space and let (Y, d) be a metric space. Give the

space C(X,Y ) the topology of compact convergence. Let F be a subset of C(X,Y ).

(i) If F is equicontinuous under d and the set F(x) = {f(x) : f ∈ F} is relatively compact for each x ∈ X,

then F is a relatively compact subset of C(X,Y ).

(ii) The converse holds if X is locally compact Hausdorff.

Proof. (i) Step I: We first show that F is relatively compact in the topology of pointwise convergence on Y X .

By assumption, F(x) is a compact subspace of Y for each x ∈ X. By the Tychonoff theorem (Theorem 6.8),

the product space ∏
x∈X
F(x)

is a compact set in the topology of pointwise convergence on Y X that contains F .

Now we show that Y X given the topology of pointwise convergence is Hausdorff, which implies the relative

compactness of F . Given distinct functions f, g ∈ Y X , there exists x ∈ X such that f(x) 6= g(x). Choose

disjoint open sets U 3 f(x) and V 3 g(x) in Y , then S(x, U) and S(x, V ) are disjoint subbasis elements that

containing f and g, respectively.

Step II: Let G be the closure of F in the pointwise convergence topology on Y X . We prove G ⊂ C(X,Y ).

Let g be a limit point of F , x0 ∈ X, and ε > 0. By equicontinuity of F , there exists a neighborhood

U of x0 such that d(f(x), f(x0)) < ε/3 for all x ∈ U and f ∈ F . Then for any x ∈ U , the basis element

S
(
x,O(g(x), ε/3)

)
∩ S
(
x0, O(g(x0), ε/3)

)
intersects F . Choose some f from this intersection, we have

d(g(x), g(x0)) ≤ d(g(x), f(x)) + d(f(x), f(x0)) + d(f(x0), g(x0)) < ε.

Hence g is continuous. Moreover, the closure G is also equicontinuous.
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Step III: We prove that the topology of pointwise convergence and the topology of compact convergence

coincides on G. By Theorem 7.30, the latter is finer than the former. We need to prove the converse.

Given a basis element BC(g, ε)∩G for the topology of compact convergence, we wish to find a basis element

B ∩ G for the topology of pointwise convergence, which contains g and is contained by BC(g, ε) ∩ G. Using

the compactness of C and the equicontinuity of G, we choose finitely many x1, · · · , xn ∈ C such that for every

x ∈ X, there exists j satisfying

d (h(x), h(xj)) <
ε

4
, ∀h ∈ G. (*)

Then we let the desired basis element be

B =

n⋂
j=1

S
(
xj , O

(
g(xj),

ε

4

))
.

For any h ∈ B ∩ G and x ∈ C, we choose an index j satisfying (*), then

d (g(x), h(x)) ≤ d (g(x), g(xj)) + d (g(xj), h(xj)) + d (h(xj), h(x)) <
3ε

4
.

Then supx∈C d(g(x), h(x)) ≤ 3ε/4 < ε, as desired.

Step IV: By Steps I and III, G is also compact in the topology of compact convergence. Following Step I

and Theorem 7.30, the space C(X,Y ) given the the topology of compact convergence is also Hausdorff. Hence

F ⊂ G is relatively compact in the topology of compact convergence.

(ii) Let F be a relatively compact subset of C(X,Y ). We show that the closure H of F is equicontinuous

under d and that H(x) = {h(x) : h ∈ H} is compact for each x ∈ X.

We first show the equicontinuity ofH under d. Given x0 ∈ X, choose a compact subspace K of X containing

a neighborhood U of x0. It suffices to show the equicontinuity of H|K = {f |K : f ∈ H} at x0.

We define the restriction map rK : C(X,Y ) → C(K,Y ), f 7→ f |K , and give both spaces the topology of

compact convergence. Then the inverse image of every basis element BC(f |K , ε) under rK contains BC(f, ε),

which implies the continuity of rK . Hence H|K = rK(H) is compact. Since K is compact, the uniform and

compact convergence topologies coincide on C(K,Y ). By Theorem 7.7 is totally bounded under the uniform

metric. The equicontinuity of H|K follows from Lemma 7.20.

Next we show the compactness of H(x) = {h(x) : h ∈ H} for each x ∈ X. We define jx : C(X,Y )→ X ×
C(X,Y ), f 7→ (x, f), which is clearly continuous. By Theorem 7.39, the evaluation map e : X ×C(X,Y )→ Y

is continuous. Since H(x) = e(x,H) is the image of H under the composition e ◦ j, it is compact.
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8 Potpourri

8.1 Net

The concept of net is introduced to generalize the definition of sequence, which is viewed as a mapping from

the natural number set N into a target set X.

Definition 8.1 (Directed set and net). A directed set is a set I equipped with a binary relation � such that

• i � i for all i ∈ I;

• If i � j and j � k, then i � k;

• For every i, j ∈ I there exists k ∈ I such that i � k and j � k.

We also write j � i for i � j. A net in a set X is a mapping i 7→ xi from a directed set I into X. We denote

such a mapping by (xi)i∈I , and we call it a net indexed by I.

Like the sequences, we can discuss the convergence property of nets.

Definition 8.2 (Nets in topological spaces). Let X be a topological space, A ⊂ X, and x ∈ X. Let I be a

directed set, and let (xi)i∈I be a net in X.

• (xi)i∈I is said to be eventually in A if there exists i0 ∈ I such that xi ∈ A for all i � i0;

• (xi)i∈I is said to be frequently in A if for every i ∈ I there exists j � i such that xj ∈ A;

• (xi)i∈I is said to converge to x if it is eventually in every neighborhood of x;

• x is said to be a cluster point of (xi)i∈I if it is frequently in every neighborhood of x.

Example. Here are some examples of directed sets:

• The set of positive integers N, with i � j if and only if i ≤ j.
• The set R\{a}, with x � y if and only if |x− a| ≥ |y − a|.
• The set of all partitions (xj)

n
j=0 of a compact interval [a, b] (i.e. a = x0 ≤ xi ≤ · · · ≤ xn = b), with

(xj)
n
j=0 � (yk)mk=0 if and only if max1≤j≤n |xj − xj−1| ≥ max1≤k≤m |yk − yk−1|. This set is used in the

definition of the Riemann integral.

• The set N of all neighborhoods of a point x in a topological space X, with N directed by reverse

inclusion, i.e. U � V if and only if U ⊃ V .

• The Cartesian product I × J of two directed sets, with (i, j) ≤ (i′, j′) if and only if i � i′ and j � j′.

Proposition 8.3. Let X be a topological space, A ⊂ X, and x ∈ X. Then x is a limit point of A if and only

if there is a net in A\{x} that converges to x, and x ∈ A if and only if there is a net in A that converges to x.

Proof. Let x be a limit point of E, and let N be the set of neighborhoods of x directed by reverse inclusion.

For each U ∈ N , take xU ∈ U\{x}. Then the net xU → x. Conversely, if (xi)i∈I is a net in A\{x} that

converges to x, then every punctured neighborhood of x contains some xi, and x is a limit point of A. The

second result follows by noting that A contains the set A itself and the limit points of A.

We provide an analogue of Theorem 5.2. The property can be generalized to nets, which allows us to drop

the requirement of first countability.

Proposition 8.4. Let X and Y be two topological spaces. A function f : X → Y is continuous at x ∈ X if

and only if for every net (xi)i∈I converging to x, the net (f(xi))i∈I converges to f(x) in Y .

Proof. If f is continuous at x and V ⊂ Y is a neighborhood of f(x), then f−1(V ) is a neighborhood of x. For

any net (xi)i∈I with xi → x, it is eventually in f−1(V ), and (f(xi))i∈I is eventually in V . Hence f(xi)→ f(x).

On the other hand, if f is not continuous at x, there is a neighborhood V of f(x) such that f−1(V ) is not

a neighborhood of x. Hence x /∈ (f−1(V ))̊, and x ∈ f−1(V c). By Proposition 8.3, there exists a net (xi)i∈I in

f−1(V c) that converges to x. But then f(xi) /∈ V , so f(xi) 6→ f(x).

53



Similarly, the definition of subnet generalizes the idea of subsequence.

Definition 8.5. A subnet of a net (xi)i∈I is a net (yj)j∈J together with a map j 7→ ij from J to I such that

(i) for every i0 ∈ I there exists j0 ∈ J such that ij � i0 for all j � j0, and (ii) yj = xij . We also write (xij )j∈J

for the subnet. Clearly, if the net (xi)i∈I converges to x, so does any subnet (xij )j∈J .

Remark. Though we use the term “subnet” here, we point out that the set J can have greater cardinality

than I, and the mapping j 7→ i may not be injective.

Proposition 8.6. If (xi)i∈I is a net in a topological space X, then x ∈ X is a cluster point of (xi)i∈I if and

only if (xi)i∈I has a subnet that converges to x.

Proof. Let (yj)j∈J = (xij )j∈J be a subnet of (xi)i∈I converging to x. Given any neighborhood U of x, we

choose j1 ∈ J such that yj ∈ U for j � j1. Also, for any i0 ∈ I, we take j2 ∈ J such that ij � i0 for all j � j2.

We take j ∈ J with j � j1 and j � j2. Then ij � i0 and xij = yj ∈ U . Hence (xi)i∈I is frequently in U , and

x is a cluster point of (xi)i∈I .

Conversely, if x is a cluster point of (xi)i∈I , let N be the set of neighborhoods of x directed by reverse

inclusion. To proceed, we consider the directed set N × I, where (U, i) � (U ′, i′) if and only if U ⊃ U ′ and

i � i′. For each (U, j) ∈ N × I, take i(U,j) ∈ I such that i(U,j) � j and xi(U,j)
∈ U . Then if (U ′, j′) � (U, j),

i(U ′,j′) � j′ � j, and xi(U′,j′) ∈ U
′ ⊂ U.

Hence (xi(U,j)
)(U,j)∈N ×I is a subnet that converges to x.

Recall that any sequence in a Hausdorff space converges to at most one point. A similar property also

holds for nets, and we can even characterize a Hausdorff space by this property.

Proposition 8.7 (Characterization of Hausdorff space). A topological space X is Hausdorff if and only if

every net in X converges to at most one point.

Proof. Assume that X is Hausdorff and (xi)i∈I is a net in X that converges to x. If y 6= x, we can find two

disjoint neighborhood Ux and Uy. Since (xi)i∈I is eventually in Ux, it is not eventually in Uy, and xi 6→ y.

On the other hand, if X is not Hausdorff, let x and y be distinct points with no disjoint neighborhoods.

We consider the set Nx ×Ny directed by reverse inclusion, where Nx and Ny are the sets of neighborhoods

of x and y, respectively. For each (U, V ) ∈ Nx×Ny, take x(U,V ) ∈ U ∩ V . Then the net {x(U,V )}(U,V )∈Nx×Ny

converges to both x and y.

8.2 Topological Vector Space (TVS)

The vector space is an algebraic structure that is closed under addition and scalar multiplication. In this

section, we discuss how the algebraic properties interact with topological properties.

Definition 8.8 (Topological vector space). A topological vector space (TVS) is a vector space X over the

field K (= R or C) which is endowed with a topology such that the mappings (x, y) 7→ x+ y and (λ, x) 7→ λx

are continuous from X ×X and K×X to X.

Endowed with the vector operations, it is possible to discuss the convexity.

Definition 8.9 (Locally convex TVS). A topological vector space is said to be locally convex if there is a

basis for the topology consisting of convex sets.

The most common way of defining locally convex topologies on vector spaces is in terms of seminorms.
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Theorem 8.10 (Characterization of locally convex TVS). Let {pα}α∈A be a family of seminorms on the

vector space X. For each x ∈ X, α ∈ A and ε > 0, define

U εx,α = {y ∈ X : pα(y − x) < ε} ,

and define T to be the topology generated by the sets U εx,α.

(i) For each x ∈ X, the finite intersections of sets U εx,α (α ∈ A, ε > 0) form a neighborhood basis at x.

(ii) If (xi)i∈I is a net in X, then xi → x if and only if pα(xi − x)→ 0 for all α ∈ A.

(iii) (X, T ) is a locally convex topological vector space.

Proof. (i) Every neighborhood of x must contain a finite intersection
⋂n
i=1 U

εj
xj ,αj . Let δj = εj − pα(x − xj).

By triangle inequality, we have x ∈
⋂n
i=1 U

δj
x,αj ⊂

⋂n
i=1 U

εj
xj ,αj .

(ii) Following (i), every neighborhood of x contains some set U εx,α. We fix α ∈ A. It suffices to observe

that pα(xi − x)→ 0 if and only if (xi)i∈I is eventually in U εx,α for every ε > 0.

(iii) The continuity of vector operations follows from Proposition 8.4. Indeed, if nets xi → x, yi → y and

λi → λ, then (λi) is bounded, and

pα((xi + yi)− (x+ y)) ≤ pα(xi − x) + pα(yi − y)→ 0,

pα(λixi − λx) ≤ |λi|pα(xi − x) + |λi − λ|pα(x)→ 0.

Hence xi + yi → x + y and λixi → λx, and (X, T ) is a topological vector space by (ii). Furthermore, if

y, z ∈ U εx,α and 0 ≤ λ ≤ 1, we have

pα(λy + (1− λ)z − x) ≤ λpα(y − x) + (1− λ)pα(z − x) < ε,

and U εx,α is a convex set. By (i), the basis for T consists of convex sets, and the local convexity follows.

In topological vector spaces, the continuity of linear maps is also associated to boundedness.

Proposition 8.11. Let X and Y be topological vector spaces with topologies defined, respectively, by families

{pα}α∈A and {qβ}β∈B of seminorms. Let T : X → Y be a linear map. Then T is continuous if and only if

for each β ∈ B, there exists α1, · · · , αk ∈ A and C > 0 such that qβ(Tx) ≤ C
∑k
j=1 pαj (x) for all x ∈ X.

Proof. Suppose the latter condition holds, and take a net (xi)i∈I converging to x. By Theorem 8.10 (b),

we have pα(x − xi) → 0 for all α ∈ A, and qβ(Txi − Tx) → 0 for all β ∈ B. Hence Txi → Tx, and T is

continuous by Proposition 8.4. Conversely, if T is continuous,then for every β ∈ B there is a neighborhood U

of 0 in X such that qβ(Tx) < 1 for all x ∈ U . By Theorem 8.10 (a), we may assume U =
⋂k
j=1 U

εj
x,αj , and let

ε = min{ε1, · · · , εk}. Then qβ(Tx) < 1 whenever pαj
(x) < ε for all j. Given x ∈ X, one of the following holds:

• If pαj (x) > 0 for some j, let y = εx/
∑k
j=1 pαj (x). Then pαj (y) < ε for all j, and

qβ(Tx) ≤ 1

ε

k∑
j=1

pαj (x)qβ(Ty) ≤ 1

ε

k∑
j=1

pαj (x). (8.1)

• If pαj (x) = 0 for all j, then pαj (λx) = 0 for all j and all λ > 0, and

λqβ(Tx) = qβ(T (λx)) < 1, ∀λ > 0.

Hence qβ(Tx) = 0, and the estimate (8.1) also holds in this case.
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Theorem 8.12. Let X be a topological vector space with topology defined by the family {pα}α∈A of seminorms.

(i) X is a Hausdorff space if and only if for each x 6= 0, there exists α ∈ A such that pα(x) 6= 0.

(ii) If X is Hausdorff and A is countable, then X is metrizable with a translation invariant metric ρ, i.e.

ρ(x, y) = ρ(x+ z, y + z) for all x, y, z ∈ X.

Proof. (i) If X is a Hausdorff space, we can separate 0 and any nonzero x ∈ X by disjoint neighborhoods⋂n
i=1 U

εi
0,αi

and
⋂n
j=1 U

δj
x,βj

. Since x /∈
⋂n
i=1 U

εi
0,αi

, we have pαj
(x) ≥ εj > 0 for at least one αj .

Conversely, if the latter condition holds, we separate 0 and any nonzero x ∈ X by disjoint U ε0,α and U εx,α,

where ε = 1
3pα(x) > 0. For any distinct pair x, y ∈ X, we separate 0 and x− y. Hence X is Hausdorff.

(ii) We suppose X is topologized by countably many seminorms (pn)∞n=1. We define ρ : X ×X → R+ by

ρ(x, y) =

∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X.

Clearly this mapping is translation invariant, and it remains to verify that ρ is a metric on X.

• If x 6= y, since X is Hausdorff, there exists n ∈ N such that pα(x− y) 6= 0, and ρ(x, y) > 0.

• The symmetry ρ(x, y) = ρ(y, x) follows from the homogeneity of seminorm.

• For all x, y, z ∈ X, we have pn(x− z) ≤ pn(x− y) + pn(y − z) for all n ∈ N, and

ρ(x, z) =
∞∑
n=1

2−n
pn(x− z)

1 + pn(x− z)
≤
∞∑
n=1

2−n
pn(x− y) + pn(y − z)

1 + pn(x− y) + pn(y − z)

≤
∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y) + pn(y − z)
+

∞∑
n=1

2−n
pn(y − z)

1 + pn(x− y) + pn(y − z)

≤
∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
+

∞∑
n=1

2−n
pn(y − z)

1 + pn(y − z)
= ρ(x, y) + ρ(y, z).

Now we show that the ρ indeed induces the topology on X. We denote by Tρ the topology induced by ρ. Since

any base set
⋂k
j=1 U

εj
x,nj contains the open ball Bρ(x, ε), where ε = min{2−n1 ε1

1+ε1
, · · · , 2−nk εk

1+εk
}, the metric

topology Tρ is finer than T . On the other hand, for any open ball Bρ(x, ε), we choose 2−N < ε/2. Then all

y ∈
⋃N
n=1 U

δ
x,n, with δ = ε/N , satisfy

∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
≤

N∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
+ 2−N

≤
N∑
n=1

2−n
δ

1 + δ
+
ε

2
< ε.

Hence
⋃N
n=1 U

δ
x,n is contained in Bρ(x, ε), and T is finer than Tρ. To summarize, T and Tρ coincide.

We can generalize the concept of Cauchy property of sequences to nets.

Definition 8.13 (Cauchy net and completeness). Let X be a topological vector space. A net (xi)i∈I in X is

said to be a Cauchy net if the net (xi − xj)(i,j)∈I×I converges to 0, where I × I is directed in the usual way,

i.e. (i, j) � (i′, j′) if and only if i � i′ and j � j′. Furthermore, the space X is said to be complete if every

Cauchy sequence in X converges.

When determining the completeness of a first countable topological vector space, it suffices to consider

Cauchy sequences.

Theorem 8.14. Let X be a first countable topological vector space. Then X is complete if and only if every

Cauchy sequence in X converges.
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We require some technical result to prove the theorem.

Lemma 8.15. Let X be a topological vector space. If W ⊂ X is an neighborhood of 0, then there exists a

neighborhood U of X such that U + U ⊂W .

Proof. Since the addition operation p : X ×X → X is continuous at (0, 0), the set p−1(W ) is a neighborhood

of (0, 0) in the product topology on X × X, and there exist base sets V1, V2 3 0 such that V1 + V2 ⊂ W .

Putting U = V1 ∩ V2, we get the desired property U + U ⊂W .

Proof of Theorem 8.14. The “only if” direction is easy since every Cauchy sequence is also a Cauchy net.

Conversely, assume every Cauchy sequence in X converges. If (xi)i∈I is a Cauchy net, the net (xi−xj)(i,j)∈I×I

converges to 0. Take a countable basis (Un)∞n=1 at 0, and take an index sequence i1 � i2 � · · · in I such that

xi − xj ∈ Un for all i, j � in. Then the net (xik − xim)(k,m)∈N×N is eventually in every Un, hence converges to

0. As a result, (xik)k∈N is a Cauchy sequence, which converges to some x ∈ X.

Now we show that that (xi− x)i∈I converges to 0. By Lemma 8.15, if W is a neighborhood of 0, there is a

neighborhood U of 0 such that U +U ⊂W . Therefore the sets Vn = Un +Un also form a neighborhood basis

at 0. We argue that (xi−x)i∈I is eventually in each Vn. Since xim → x, we take k ∈ N such that xim −x ∈ Un
for all m ≥ k. Then for all i � max{ik, in}, we take m ≥ max{k, n} to obtain

xi − x = (xi − xim) + (xim − x) ∈ Un + Un = Vn.

Thus xi − x→ 0, and the net (xi)i∈I converges to x.

Finally we introduce the definition of Fréchet space, which is a generalization of the Banach space.

Definition 8.16 (Fréchet space). Let X be a topological vector space. X is called a Fréchet space if it satisfies

the following three properties:

(i) X is a Hausdorff space,

(ii) the topology of X is induced by a countable family of seminorms (pn)∞n=1, and

(iii) X is complete (with respect to the family of seminorms).

Remark. By Theorem 8.12, the property (ii) implies that X is first countable. Therefore, to determine

completeness, it suffices to consider the Cauchy sequences in X.

Example. Following are some examples of Fréchet spaces.

• Every Banach space is a Fréchet space, as the norm induces a translation-invariant metric and the space

is complete with respect to this metric.

• The space L1
loc(Rn) of locally integrable functions on Rn is a Fréchet space with the topology induced

by the seminorms

pn(f) =

∫
{|x|≤n}

|f(x)| dx, n ∈ N.

• The Schwartz space S(Rn) is a class of fast decreasing C∞ functions. To be specific,

S(Rn) =

{
f ∈ C∞(Rn) : sup

x∈Rn

(1 + |x|)N |∂αf | <∞, forall N ∈ N0, α ∈ Nn0
}

This is a Fréchet space with the topology induced by the norms

‖f‖(N,α) = sup
x∈Rn

∣∣(1 + |x|)N∂αf
∣∣ , N ∈ N0, α ∈ Nn0 .
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8.3 The Krein-Milman Theorem

The Krein-Milman theorem is a general result about compact convex subsets of a locally convex Hausdorff

topological vector space. We first give the definition of extreme point and face.

Definition 8.17 (Extreme point and face). Let X be a topological vector space and let K ⊂ X be a nonempty

convex subset.

(i) A point x of K is called an extreme point of K if there do not exist y, z ∈ K and 0 < λ < 1 such that

λy + (1− λ)z = x. We denote by ext(K) the set of extreme points of K.

(ii) A nonempty convex subset F ⊂ K is called a face of K if for all x, y ∈ K and 0 < λ < 1 such that

λx+ (1− λ)y ∈ F , we have x, y ∈ F .

Remark. A point x ∈ K is an extreme point of K if and only if the singleton {x} is a face of K.

Lemma 8.18. Let X be a vector space, and let A,B,C be convex subsets of K. If B is a face of A and C is

a face of B, then C is a face of A.

Proof. Let x, y ∈ A and 0 < λ < 1. If λx+ (1− λ)y ∈ C, since C ⊂ B and B is a face of A, we have x, y ∈ B.

Again, since C is a face of B, we have x, y ∈ C. Therefore C is a face of A.

Lemma 8.19. Let X be a locally convex Hausdorff topological space. If K ∈ K is a compact convex set and

` : X → R is a continuous linear functional, the set

F` :=

{
x ∈ K : `(x) = sup

y∈K
`(y)

}
is a nonempty compact convex subset of K, and F` is a face of K.

Proof. We abbreviate c = supy∈K `(y).

• Since K is compact and ` is continuous, there exists x ∈ K such that `(x) = c, and F is nonempty.

• Since X is Hausdorff and ` is continuous, both K and `−1({c}) is closed. Hence F` is closed and compact.

• Since K is convex and f is linear, `−1({c}) is convex, and so is F .

To summarize, F is nonempty, compact and convex. To prove that F is a face of K, we fix x, y ∈ K and

0 < λ < 1 such that λx+ (1− λ)y ∈ F . Then λ`(x) + (1− λ)`(y) = `(λx+ (1− λ)y) = c. Since both `(x) and

`(y) are no greater than c, we have `(x) = `(y) = c, and x, y ∈ F . Hence F` is a face of K.

Lemma 8.20 (Existence). Let X be a locally convex Hausdorff topological vector space, and let K ⊂ X be a

nonempty compact convex set. Then the set of extreme points of K is nonempty.

Proof. The proof is divided to three steps.

Step I. Let K be the set of all nonempty compact convex subset of X, and define the relation � on K by

F � K if and only if F is a face of K. By Lemma 8.18, (K,�) is a partially ordered set. Since X is Hausdorff,

every nonempty chain C ⊂ K has a infimum C0 =
⋂
C∈C C ∈ K .

Step II. We claim that every minimal element of K is a singleton.

If K ⊂ K is not a singleton, we take x, y ∈ K such that x 6= y and take a convex open neighborhood

U of x that does not contain y. Using the hyperplane separation theorem, there exists a continuous linear

functional ` : X → R such that `(y) < `(z) for all z ∈ U . By Lemma 8.19, the set F` ∈ K is a face of K and

y ∈ K\F . Hence K is not a minimal element of K .

Step IV. By Step I and Zorn’s lemma, there exists a minimal element E ⊂ K . By Step III, the minimal

element E is a singleton {x}. Then x ∈ ext(K).

Now we introduce the Krein-Milman theorem.
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Theorem 8.21 (Krein-Milman theorem). Let X be a locally convex Hausdorff topological vector space, and

let K ⊂ X be a nonempty compact convex set. Then K is the closed convex hull of its extreme points, i.e.

K = conv(ext(K)).

Proof. Following the proof of Lemma 8.20, we have K ∈ K . To prove the desired result, it suffices to

show K ⊂ conv(ext(K)). We argue by contradiction. If x ∈ K\conv(ext(K)), there exists an open convex

neighborhood U ⊂ X of x such that U ∩ conv(ext(K)) = ∅. Since ext(K) is nonempty by Lemma 8.20,

there exists a continuous linear functional ` such that `(x) > supy∈conv(ext(K)) `(y). By Lemma 8.19, the set

F` = {x ∈ K : f(x) = sup f(K)} is a face of K and F` ∩ ext(K) = ∅. On the other hand, by Lemma 8.20, the

compact convex set F` has an extreme point x, which is also an extreme point of K by Lemma 8.18. This

contradicts the fact that F` ∩ ext(K) = ∅. Thus we complete the proof.
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8.4 The Stone-Weierstrass Theorem

The classical Stone-Weierstrass theorem asserts that each continuous function on a closed interval [a, b] can

be approximated by a polynomial under the uniform metric. In this section, we discuss a generalized version

of the Stone-Weierstrass theorem. Throughout this section, X is a compact Hausdorff space, and C(X,R)

(resp. C(X)) is the space of all continuous real-valued (resp. complex-valued) functions on X equipped with

the uniform metric. Before we proceed, here is some useful concepts:

• A subset A of C(X,R) or C(X) is said to separate points of X, if for every x, y ∈ X with x 6= y there

exists f ∈ A such that f(x) 6= f(y).

• A set A of functions is called an algebra, if it is a real or complex vector space that is closed under

function multiplication, i.e. fg ∈ A for all f, g ∈ A. Clearly, C(X,R) and C(X) are algebras.

• A subset A of C(X,R) is called a lattice, if min{f, g} ∈ A and max{f, g} ∈ A for every pair f, g ∈ A.

• A subset A of C(X) is said to be non-vanishing, if for each x ∈ X, there exists f ∈ A with f(x) 6= 0.

• Since the algebra and lattice operations are continuous, if A is an algebra or a lattice, so is its closure A
under the uniform metric.

We first introduce the result in the real case.

Theorem 8.22 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space. If A is a sub-algebra of

C(X,R) that separates points of X, then either A is dense in C(X,R) or A = {f ∈ C(X,R) : f(x0) = 0} for

some x0 ∈ X. The first alternative holds if and only if A is non-vanishing.

Lemma 8.23. Consider R2 as an algebra under coordinate-wise addition and multiplication. Then the only

sub-algebras of R2 are R2, {(0, 0)}, span{(1, 0)}, span{(0, 1)} and span{(1, 1)}.

Proof. Clearly, all the five subspaces of R2 listed above are algebras. If A ⊂ R2 is a nonzero algebra and

(0, 0) 6= (a, b) ∈ A, then (a2, b2) ∈ A, and one of the following four cases holds:

• If a 6= 0, b 6= 0 and a 6= b, then (a, b) and (a2, b2) are linearly independent, and A = R2;

• If a = b 6= 0, then A = span{(1, 1)};
• If a 6= 0 and b 6= 0, then A = span{(1, 0)};
• If a = 0 and b 6= 0, then A = span{(0, 1)}.

Then we conclude the proof.

Lemma 8.24. For any ε > 0, there is a polynomial P on [−1, 1] such that P (0) = 0 and

sup
x∈[−1,1]

|P (x)− |x|| < ε.

Proof. Consider the Taylor series of
√

1− t:

√
1− t = 1−

∞∑
n=1

(2n− 3)!!

2n
tn

n!
= 1−

∞∑
n=1

cnt
n,

where cn > 0. This series converges for |t| < 1. By monotone convergence theorem,

∞∑
n=1

cn = lim
t↑1

∞∑
n=1

cnt
n = 1− lim

t↑1

√
1− t = 1.

Since
∑∞
n=1 cn is finite, the series 1 −

∑∞
n=1 cnt

n converges uniformly on [−1, 1]. Therefore, given ε > 0,

by taking a suitable partial sum of this series we obtain a polynomial Q such that |
√

1− t − Q(t)| < ε
2 for

t ∈ [−1, 1]. Setting t = 1− x2 and R(x) = Q(1− x2), we obtain a polynomial R such that |R(x)− |x|| < ε
2 on

[−1, 1]. Since |R(0)| = |Q(1)| < ε
2 , the desired polynomial is obtained by setting P (x) = R(x)−R(0).
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Lemma 8.25. Let A be a sub-algebra of C(X,R). Then |f | ∈ A for all f ∈ A, and A is a lattice.

Proof. If f ∈ A and f 6= 0, let h = f/‖f‖∞. Then h(X) ⊂ [−1, 1]. If ε > 0 and P is as in Lemma 8.24, we

have ‖P ◦ h− |h|‖∞ < ε. Since P (0) = 0, the function P ◦ h has no constant term, hence is contained in the

algebra A. Letting ε ↓ 0, we have |h| ∈ A, and |f | = ‖f‖∞|h| ∈ A. Note that

max{f, g} =
1

2
(f + g + |f − g|) , min{f, g} =

1

2
(f + g − |f − g|) .

Then the second result follows.

Lemma 8.26. Let A be a lattice in C(X,R), and let f ∈ C(X,R). If for every x, y ∈ X, there exists a

function gx,y ∈ A such that gxy(x) = f(x) and gxy(y) = f(y), then f ∈ A.

Proof. For every ε > 0 and x, y ∈ X, we take

U εx,y = {z ∈ X : f(z) < gxy(z) + ε} , and V εx,y = {z ∈ X : f(z) > gxy(z)− ε}

These sets are open and contain x and y. By the compactness of X, for each y ∈ X, there exists a finite

cover {U εxj ,y}
n
j=1 of X. We define gy = max{gx1,y, · · · , gxn,y}. Then f < gy + ε on X, and f > gy − ε on

V εy =
⋂n
j=1 V

ε
xj ,y, which is an open neighborhood of y.

Again, by the compactness of X, we take a finite cover {V εx,yj}
m
j=1 of X, and take g = min{gy1 , · · · , gym}.

Then ‖f − g‖∞ < ε. Since A is a lattice, g ∈ A, and f ∈ A.

Proof of Theorem 8.22. Given x, y ∈ X with x 6= y, define

Ax,y = {(f(x), f(y)) : f ∈ A} .

Then Ax,y is a sub-algebra of R2, since f 7→ (f(x), f(y)) is an algebra homomorphism. Since A separates

points in X, it cannot be {(0, 0)} or the linear span of (1, 1). By Lemma 8.23, one of the following cases holds:

• If Ax,y = R2 for all x, y ∈ X, by Lemmata 8.25 and 8.26, A = C(X,R).

• If Ax,y is span{(0, 1)} or span{(1, 0)} for some x, y ∈ X, there exists x0 ∈ X such that f(x0) = 0 for all

f ∈ A. Since A separates points in X, there is only one such x0. Furthermore, Ax,y = R2 when neither

x nor y is x0. Again by Lemmata 8.25 and 8.26, A = {f ∈ C(X,R) : f(x0) = 0}.
Finally, the first alternative holds if and only if A is non-vanishing. Thus we complete the proof.

Theorem 8.27 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space. If A is a sub-algebra of

C(X) that separates points of X and is closed under complex conjugation, then either A is dense in C(X) or

A = {f ∈ C(X) : f(x0) = 0} for some x0 ∈ X. The first alternative holds if and only if A is non-vanishing.

Proof. Since Ref = f+f
2 and Imf = f−f

2i , the set AR of real and imaginary parts of functions in A is a

sub-algebra of C(X,R) to which Theorem [8.22] applies. Since A = {f+ ig : f, g ∈ AR}, the result follows.
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